

Tilburg University

Second-order inductive learning

Flach, P.A.

Publication date:
1990

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Flach, P. A. (1990). Second-order inductive learning. (ITK Research Report). Institute for Language Technology
and Artifical IntelIigence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/1ee57dda-e926-48b2-a905-980a0200530a

BII~ : ,, ,C`, ..~ ~
~

CBM ~'~J~~ ~
R ~;~~ ~G,~``'j'~~

8409 ~`;' ~ii0 J ~~ ~ ~P,1990

10

I1K

ii iiu iii ii i iu~ i iN m u u i miiu i m~~ui i m i

i~~~~tii~~.n

REPORT

INSTITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE

`[" ~ ~`~L i„j t `; i~

ITK Research Report No. 10

January 1990

Second-order
inductive learning

Peter A. Fiach

A preliminary version of this paper appeared in
Anaiogical and Inductiue Inference AII'89
K.P. Jantke (ed.), Lecture Notes in Computer Science 397,
Springer Verlag, Berlin, 1989, pp. 202-216.

ISSN 0924-7807

Institute for Language Technology and Artificial Intelligence,
Tilburg University, The Netherlands

Second-order inductive learning
Peter A. Fluc~h

ABSTRACT

In this paper, we present a new pazadigm for inductive learning, called
second-order inductive learning. It differs from concept learning from
examples in that examples are not inst.ances of the hypothesis to be leazned,
but rather instances of a prototype (i.e., a typical member of the extension) of
the hypothesis to be learned. The paradigm is introduced by means of an
example problem from the field of conceptual modeling. We analyse the
reasons why a naive solution to that problem is not fully satisfactory by
studying the Version Space model. Once it is clear why this model is not
directly applicable, we attempt to restore it by defining thc notion of a
Generalised Version Space model. An alternative formulation of the problem
is given in terms of logic.

Contents
Contents ...1
1. Introduction ..2

2. The Schema Inference Problem ..3

2.1 The problem ...3
2.2 A proposed solution ...4

2.3 The generality ordering ..5
3. Version Spaces ...8

3.1 Outline of the Versíon Space model ...8

3.2 Generalising the Version Space model ..8
4. Second-order inductive learning .. l 1

4.1 Formal definitions ..ll
4.2 Second-order Icarning of hypotheses by firs[-order learning of prototypes 13
4.3 Second-order learning in a Generalised Version Space mcxiel ... 14

4.4 Second-order inductive learning for the Schema Inference Problem]6
5. Second-order leaming and logic .. 19
6. Concluding remarks ... 21
References ... 22

1

1. Introduction

Inductive learning is an important subject in Artificial Intelligence research, because it has many

practical applications, and because it can be sufficiently formalised. Examples of such formalisations are

[Mitchell 1982] and [Laird 1988]. When devising a formal model of inductive learning, it is important to
keep the model as general as possible, thereby indicating how more specific models can be obtained from
the general model by making specific choices for, e.g., the structure of the hypothesis space involved.

Within [he field of discrete mathematics, the theory of lattices provides a particularly good example of
such a general model.

It is in a general model for inductive learning that we are interested. However, it is difficult to build

such an abstract model from scratch. To avoid this difCiculty, many existing models are based on specific

learning situations. For instance, Mitchell introduces his Version Spaces by referring to the problem of

concept learning from examples, where an example is taken to be a member from the class described by

the concept. The drawback of such an intuitively appealing model is, that some basic assumptions are left

implicit. To make these assumptions explicit, we have been looking for learníng situations for which

Version Spaces are not adequate. One such learning situation is described in this paper.

This learning situation, which we call the Schema Inference Problem, will be our guideline

throughout the paper. We will attempt to give learning algorithms for that problem, and in doing so we

will describe a learning paradigm called second-order inductive learning in which the problem fits. This

learning paradigm differs from existing models in various respects. While this is our main objective, we

also point at fundamental implicit assumptions underlying the Version Space model when we encounter

them. Such assumptions concern properties of a model for inductive learning, and are therefore `meta-

theoretical' notions. In this respect, our efforts can be interpreted as being directed `towards a meta-theory

of inducuve leaming' [Flach 1990a].

2

2. The Schema Inference Problem

2.1 The problem

The research reported here originates from the following problem: given the (partial) contents of a
knowledge base, derive (parts of) the conceptual model of that knowledge base. This is clearly an inductive
problem, and it will be studied here from the viewpoint of inductive le~tming. Aspects of this problem,
restricted to finding functional and multivalued dependencies for a relational database, will be discussed in

a forthcoming report [Flach 1990b]. Here, we study the problem of inducing type hierarchies from type

assignments to individuals, which we call the Schema Inference Problem. The signiCicance of this
problem from the standpoint of conceptual modeling is illustrated by, e.g., [Vermeir 8r. Nijssen 1982].

The use of inductive methods for these problems has, to the best of our knowledge, not been proposed
before.

SCHEMA INFERENCE PROBLEM. (syntax) Lowercase letters a, b, c, ... are constant

symbols denoting individuals; uppercase letters A, B, C, ... are type symbols denoting

types. A type set is a set of type symbols. A schema sentence is a statement of the form

A-~B. A schema E over a type set 6 is a set of schema sentences containing only type

symbols from a; a is called the domain of E. For convenience, we adopt a graphical

representation of schemas as follows: each type symbol in a is represented by a distinct

circle with the type symbol written inside, and for every schema sentence A-~B in the

schema there is a directed arrow from the circle representing A to the circle representing B.

E.g., the schema {B-~C) over (A,B,C) is represcnted asl

(semantics) A type population is a set of constant symbols. A schema population for a

schema E with domain a is a function iI mapping type symbols in a to type populations
such that for each two type symbols A and B in 6, A-~~ implies iI(A)~li(B); -~E is

defined to be the transitive closure of -~ (interpre[ed as a relation between type symbols,
defined by the schema E).

(examples) A positive example is a statement of the form A(a); a negative ezample is a
statement of the form -,B(c).

(consistency) A schema is consistent with a set of positive and negative examples, iff there
is a schema population II such that:
~ for each positive example A(a), aE II(A);

~ for each negative example -,B(c), c~ II(B).

1Note, that this is according to the definitions: a schema need not contain all type symbols in its
domain. In the conesponding diagram, the type symbols that are not contained in the schema are
represented by circles not connected by arrows to any other circle.

3

(learning) The problem is, to find a learning algorithm that, given a domain a for a
schema, takes one example at a time, and after each example outputs a schema over 6 that
is consistent with the examples seen so far. ~

Intuitively, a positive example A(a) states that individual a is of type A; likewise, a negative
example -,B(c) states that individual c is not of type B. A schema sentence A~B states that type A is a
sub[ype of type B. Suppose we have the positive examples A(a), A(b) and B(b), and the negative example
-,B(a), then the schema {B~A }(fig. l.a) is consistent with these examples, witnessed by the schema
population II given by II(A)-{a,b) and II(B)-(b). Of course, there are many more schemas that arc
consistent with the examples, for instance the schema (B~A, A~C} (fig. l.b), or the empty schema fd
over {A,8) (fig. l.c). Note however, that no consistent schema can contain the schema sentence A-~B,
because of the examples A(a) and ~8(a).

a. (B~A} b. {B~A, A-~C} c. Q)

Figure 1. Some schemas consistent with the examples A(a), A(b), B(b) and
~e(a).

It seems advisable not to add any type symbols to a schema that are not present in any cxample (as
happened in fig. l.b). However, there is one exception to this rule: we might want to express that two
types A and B have a common subtype X not equal to A or B. For instance, given the positive examples
A(a), A(b), B(b) and B(c) (and perhaps the negative examples -,A(c) and ~B(a)), it might be hypothesised
that (X--~A,X--~B) is the intended schema with population II(A)-(a,b), II(B)-(b,c}, II(X)-(b). Put
differently, by introducing an auxiliary type X, we can express that types A and B have something in
common. S[ill, we want to say that the domain of the resulting schema is {A,B}. Therefore, we extend
the definition of a schema as follows: a schema E over a type set 6 is a set of schema sentences; the type
symbols occurring in E but not in t5 denote auxiliary types, and each auxiliary type symbol should occur
on the left hand side of at least two schema sentences in E. Thc definition of a schema population is left
unchanged, that is, the domain of II is the type set a. Populations for auxiliary types X can then be
derived by taking the intersection of all types A for which tlte schema contains a sentence X-~A (thus, X
is taken to be the largest common subtype possible).

2.2 A proposed solution

Let us try to develop a learning algorithm for the Schema Inference Problem, learning from
positive examples only. From the consistency criterion, we derive an obvious choice for a schema
population II based on the examples: for any type A in the domain, take II(A)-{a I A(a) is a positive
example}. Add auxiliary types for non-empty intersections of type populations, that are not equal to
existing type populations. The resulting set of populations is panially ordered by set-inclusion, and the
diagram of this partial ordering represents a consistent schema2. As an illustration of this procedure,

2If two types in the domain have the same population, they aze represented by distinct circles,
connected by arrows in both directions.

4

suppose the domain of the schema is simply (A,B). Initially, there are no examples, so the initial
population TIp is dcfined by lip(A)-lip(B)-m. From this population we derive the following schema:

i.e., initially all types are considered equal. Now suppose the first example is A(a): thus, iIl(A)-(a) and
II1(B)-Q3, and we obtain the schema

After the example B(b), thc hypothesis is that both types have nothing in common:

Let the third example be A(b). We obtain iI3(A)-(a,b} and I73(B)-{b), and again we derive the hypothesis
(B~A}. If the fourth example is B(b), we have IIq(A)-IIq(B)-(a,b}, and we are back at our initial
hypothesis (B--~A, A~B}. Adding a fifth example B(c) gives IIS(A)-(a,b), ii5(B)-{a,b,c} and the
schema

There aze two points to be made here. First, without having defined anything like 'convergence' for
our learning algorithm3, it is intuitively clear that the procedure just illustrated dces not `smoothly'
converge: it switches easily between the hypotheses `B is a subtype of A', `B and A are the same type',
and `A is a subtype of B', without ever settling on one of these. Furthetmore, at one time the algorithm
proceeds from {A~B} to (A-~B, B~A), and at another time it proceeds in the opposite direction. This is
counter-intuitive: adding more positive examples should lead to more (i.e. not-less) general hypotheses.
To make this a little bit more precise, we define the notion of generality.

2.3 The generality ordering

The usual notion of generality is extensional, i.e. based on extensions (sets of instances) of
expressions. In the case of schemas, instances are schema populations. So we define: given a type set 6, a
schema E1 over a is at least as general as a schema E2 over a, notation E1?E2, iff each schema
populationq for E2 is also a schema population for E1. Alternatively, we say that E2 is at least as
specific as E1, and write E2~E1. Obviously, this relation is reflexive and transitive; strictly speaking, it
is not anti-symmetric: there are several schemas for schema populations that contain at least three
identical type populations. Because this is a bit unlikely to occur in practice, we will treat ? as a parUal
ordering5. If EI?E2 but E1~E2, we write El~E2 (E2~E1) and say that E1 is more general than E2 (E2 is
more specific than EI).

3This will be done in section 4.1.
qFor technical reasons, this definition of generality assumes schema populations consisting of
non-empty type populations. This assumption will be madc throughout the paper.
STechnically speaking, this amounts to assuming that there exists a normal form such that every
equivalence class of the quasi ordering 5 contains exactly one member in normal form.

5

There are five distinct schemas over {A,B), and their generality ordering can be depicted as in fig.
2.

.

,

Figure 2. Schemas over (A,B}, partially ordered by generality.

The empty schema fd over (A,B) is the most general schema, because any two type populations II(A) and
II(B) constitute a schema population for it. A somewhat more specific schema is {X-~A, X~B); any

population II for this schema must satisfy iI(A)nIi(B)~Q). More specific than this one but incomparable
to each other are the schemas (B~A) and {A-~B}, with populations satisfying II(B)cII(A) and

II(A)cII(B), respectively. Finally, the schema {B~A,A-~B) is the most specific schema, requiring

II(A)-II(B).

According to the above definitions, the population II defined by II(A)-{a,b}, II(B)-{b} is a

population for the empty schema Q) over {A,B). However, intuitively we would expect that type

populations for this schema would be disjoint, as the schema states that the two types have nothing in

common. Conversely, given the schema population II, we would intuitively say that it is typically a
population for the schema (B-~A). We can capture this intuition by deiining a typical (schema)

population IIE for a schema E to be any schema population that is not a population for a more specific

schema. That is, IIE contains not more information than E conveys: adding information to E(making it

more specific) causes IIE to be no longer a population for it. If IIE is a typical population for E, [hen we

call E an intended schema for IIE.
The naive leatning algorithm above is precisely based on typical populations and intended schemas.

The set of positive examples is interpreted as a typical population, for which an intended schema is

construed. Notice, that any population has exactly one intended schema, a property about which we will

have more to say later. The reason that the naive learning algorithm is somewhat unsatisfactory with

respect to convergence, is that type populations in typical schema populations do not monotonically get

6

larger when the intended schema gets more general. For instance, let II1(A)-II2(A)-(a,b} and
iil(B)-(b,c), II2(B)-(a,b,c), thus II2(B)~Iïl(B); yet, the intended schema for iil is E1-(X-~A, X--~B),
while the intended schema for TI2 is E2-{A-~B), hence E2~E1. We will return to this issuc as well.

The main conclusion must be, that what seems a reasonable and cautious approach at first sight,
namely, to take only the positive and certain knowledge, and to translate it into a hypothesis by
interpreting it as constituting a typical population, does not yield minimal hypotheses. On the other hand,
in concept learning from examples it is exactly this approach of taking the disjunction of the positive
examples, that dces result in minimal hypotheses. Therefore, we proceed by studying in some detail the
basic assumptions underlying the use of a partially ordered hypothesis space in concept learning. One of
the most general accounts thereof is the Version Space model [Mitchell 1982]. After that, we analyse the
differences between this model and our Schema Inference Problem, in order to come up with a model of
second-order inductive leaming.

7

3. Version Spaces

3.1 Outline of the Version Space model

Originally, the Version Space model (or VS model) was formulated as follows. Let there be given
a set I of instances i, and a language LG for expressing generalisations G. Generalisations describe sets of
instances, and a generalisation G matches an instance i if i is a member of the set described by G, or more
succinct, if i is an instance of G. Matching is described by a matching predicate M(G, t), which is we iff
i is an instance of G. Mitchell defines G1 to be more specific thanó G2 iff {iEl I M(G1, i)} ~{iEl I
M(G2, i)}. That is, G1 is more specific than G2 (and, equivalently, G2 is more general than G1) iff the
set of instances of G1 is a subset of the set of instances of G2.

Positive examples are instances of the generalisation to be learned, and negative examples are non-
instances. Conversely, a generalisation is consistent with the examples iff it matches every positive
example and no negative example. In determining the set of consistent generalisations, the generality
ordering can be utilised as follows. If a generalisation C matches a positive example p, then every
generalisation more general than G will also match p. Assuming that there are no infinite descending
chains of generalisations, this implies that there exist minimal generalisations Gp consistent with p (i.e.,
a generalisation is consistent with p if and only if it is at least as general as some Gp). Similarly, under
the assumption that every ascending chain of generalisations is finite, one can associate with each
negative example n maximal generalisations Gn such that only and all generalisations at least as specific
as some Gn are consistent with n.

From these considerations it follows that the set of generalisations consistent with every example,
the Version Space, is bounded from below by a set S of most specific generalisations, derived from the
positive examples, and bounded from above by a set G of most general generalisations, derived from the
negative examples, such that a generalisation is consistent with the examples ifC it is between S and G.
This means, that the Version Space need not be stored explicitly: if the partial ordering is recursively
enumerable, storage of S and G suffices. We further note that an efficient implementation of the VS
model is possible, if there is an algorithm for computing new elements of S(G) out of Gp (Gn) and a
new example e, when Gp (Gn) tutns out to be inconsistent with e (without a mere search of the partial
ordering).

3.2 Generalising the Version Space model

The Version Space model is a signif'icant step towards a general theory of inductive learning. Many
existing methods can be cast into the general framework of Version Spaces. However, the model presented
above uses some rather specific notions, that are not essential for the model of Version Spaces. Also,
there are some small technical shortcomings in Mitchell's formulation of the model. There is some
confusion in the notion of partial order he uses: in fact, the generality ordering as defined above is a
quasi-ordering, because several syntactically distinct generalisations may have the same set of
instances. This raises a more general point: Mitchell fails to make a distinction between syntax and
semantics. Indeed, what is presented to the learner are not instances, but descriptions of instances.
Thus, Mitchell assumes that any instance can be uniquely described within the instance language, which

6In fact, the relation should be called at least as specific as, as has been pointed out before.
However, here we follow Mitchell's account.

8

is not true in general. For a worked-out model which distinguishes between syntax and semantics, see
(Laird 1988].

A more serious restriction of the VS model, as well as an opportunity to make the model more
general, is indicated by Mitchell when he writes: "Notice the above deCinition of the [more-specific-than]
relation is extensional-based upon the instance sets that the generalisations rcpresent. In order for the
more-specfic-than relation to be practically computable by a computer program, it must be possible to
determine whether G 1 is more-specific-than G2, without computing the (possibly infinite) sets of
instances that they match." [Mitchell 1982, p.206]. In other words, there should be a syntactical ordering
5 on generalisations, definable without reference to instances, with the property that G15G2 iff (iEI I
M(G1, t)) ~ (iel I M(G2, i)}. But then we could forget about instance sets altogether, and relate the
matching predicate to the syntactical generality ordering as follows:

G1~G2 r~ t1i: M(Gl,i) ~ M(G2,t)

This equivalence boils down to the following two implications:

~li: M(Gl,t) n G15G2 ~ M(G2,i)

(3.1)

(3.1a)

~(G1SG2) ~ 3i: M(Gl,t) n ~ÁI(G2,i) (3.1b)

Formula (la) expresses what is called completeness of the matching predicate (or consistency predicate) in
[Flach 1989]: it enables us to say that any generalisation between the boundaries S and G is indeed
consistent. Formula (lb) requires, for any two generalisations G1 and G2 such that not G1~G2, the
existence of a witness i that is matched by G1 and not matched by G2. In words: the matching predicate
should not be too coarse for the paztial ordering at hand. This implication can be rephrased into a formula
describing the relation between syntax and semantics (see [Laird 1988]).

Formula (la) can be generalised in several ways. First, notice that it can also be written as

`di: ~M(G2,i) ~ G15G2 ~ -,M(Gl,t~ (3.1á)

stating that if G2 dces not match i, anything below it won't either. Although formulas (la) and (la') are
logically equivalent, we could say that (la) describes the existence of the lower boundary S, and (la')
describes the existence of the upper boundary G. To make this more apparent, the formulas can be written
in the following form:

b'i: MS(G l ,i) n G1~G2 ~ MS(G2,i) (3.2a)

`di: MG(GLi) ~ G1?G2 ~ MG(G2,i) (3.2b)

where MS denotes the original matching predicate M, and MG is defined as the negation of MS~. Now, it
has been shown in (Flach 1989] that there aze other choices for MG possible (that is, other than the
negation of MS), while retaining the VS model.

Secondly, the association of a lower boundary with positive examples and an upper boundary
with negative examples is, in a certain sense, arbitrary. We call a model a Generalised Version Space
model or GVS model if the space of consistent hypotheses (the Generalised Version Space or VSg) is
bounded from above and below in any way, such that every generalisation between these boundaries is
consistent with the examples. In a Generalised Version Space model, positive examples could result in an
upper boundary; alternatively, it might be the case that a boundary can only be associated with both

~Thus, the VS model satisfies the separability condition (see section 4.3).

9

positive and negative examples. Clearly, the VS model is a Generalised Version Space model, with a
lower boundary according to positive examples and an upper boundary according to negative examples.

It is the generalisation to Generalised Version Space models that applies in the case of the Schema
[nfcrcnce Problem. This will be detailed in the next seclions, in which we will try to capture the cssential
characteristics of the Schema Inference Problem in a formal model.

10

4. Second-order inductive learning

4.1 Formal definitions

It has been shown in the previous section, that the idea of instances of generalisations playing the
role of examples underlies the development of the Version Space model. Although it can be generalised in
several ways, it certainly plays a crucial role in concept learning from examples. It has also been shown,
that the VS model can not be applied to the Schema Inference Problem. What, then, are the intuitions
behind the Schema Inference Problem?

In the Schema Inference Problem, schemas are the generalisations. Insiances of schemas are schema
populations. Examples are elements of type populations, thus elements of schema populations.
Pictorially, we have the following situation:

generalisarions

T

schemas

T

populations

I

examples

a

examples

b.

Figure3. Layers occurring in a. concept learning from examples and b. the
Schema Inference Problem

In the Schema Inference Problem, there is an extra layer between the examples and the generalisations, and
therefore we call the kind of learning that occurs in solutions to the Schema Inference Problem second-
order inductive learning. In this context, traditional concept learning from examples would be calledfrst-
order inductive leaming (and rote learning might be called zeroth-order inductive leaming).

Let us make the nature of second-order inductive leaming more precise. In doing so, we will depart
slightly from Mitchell's terminology by preferring the term `hypothesis' over `generalisation'. Let there
be given a set H of (second-order) hypotheses H; with each hypothesis H, a set [H] is associated, called
the extension of H. Elements of [NJ aze called populations for ff (in first-order learning, elements of [H]
would be called instances of H). We wili assume, that there is a generality (quasi-)ordering 5 on H, and
employ the usual notation and terminology. Also, we assume that this quasi-ordering corresponds to the
partial orderíng of extensions, i.e. H1~J-!2 iff [H11~[H2]. Additionally, if [H1]c[H2]we write Hl~ff2 and
say that H1 is more specific than H2 (H2 is more general than H1). If [H11-(H21, we call H1 and H2
variants. As a result of these assumptions, any population for a hypothesis H is also a population for any

hypothesis more general than FI.

11

Thus far, the only difference with first-order learning is terminology. We now assume that each
population for a hypothesis is itself a set; its elements are called instances, and the set of instances is
denoted IH. Thus: hypotheses denote sets of populations, and populations are sets of instances. An
example is an element of lyx(t;); a pair ~p,t~ is called a positive cxample, a pair ~n,-~ is called a
negative example (where p and n denote the instances involved in the examples). A second-order indur.tive
learning task cH, E~ is chazacterised by a hypothesis space H (where extensions and instances are
implicitly understood) and a set of examples E. The consistency conditions for a second-order inductive
leatning task ~II, E~ can now be stated as follows: a population P for a hypothesis HE H is consistent
with an example e iff either e-~p,f~ and pE P or e-~n;~ and né P; P is con.ristent with a set of
ezamples E iff P is consistent with each example eE E. A hypothesis HE H is consistent with a set of
examples E iff there is a population for H that is consistent with Eg.

Note carefully, that this definition of consistency of hypotheses requires the existence of a single
population that is consistent with every example. That is, H is consistent with e 1 if there is a
population P1E [H] such that Pl is consistent with el; similarly, H may be consistent with e2 by virtue
of another population P2E [H], consistent with e2. Still, this dces not entail that H is consistent with
{el,e2}, because it is conceivable that [H] contains no single population consistent with both el and e2.
We call the property of a hypothesis H being consistent with a set of examples E iff H is consistent with
each example in E, the property of compositionality. It is an important property, because it allows for
incremental learning algorithms that need not reconsider all previous examples, once an inconsistency is
detected. While in first-order inductive learning the property of compositionality holds by definition, it
need not be valid a priori in every second-order learning problem. For instance, it is not valid for the
Schema Inference Problem.

For judging the correctness of a learning algorithm, i.e. its capability to infer the correct
hypothesis eventually, consistency is not enough. As an example, in first-order learning the strategy to
take a most general consistent hypothesis is incorrect when only positive examples are available, because
in that case it will stick to the most general hypothesis forever, and thus will fai! to come up with the
conect hypothesis (unless it is the most general one). On the other hand, a strategy to take a most specific
consistent hypothesis is correct in this case, provided that such a hypothesis is unique once enough
examples aze available. Several models for correctness of inductive algorithms have been proposed. One of
the best-known models is identification in the limit [Gold 1967, Angluin 8c Smith 1983]. An inductive
algorithm identifies the correct hypothesis in the limit, iff it makes the cotrect guess after a finite amount
of time, and never changes its guess afterwards. To this end, the algorithm is supplied with a sufficienr
presentation, i.e. a sequence of examples such that every instance occurs at least once. The algorithm is
not required to signal its final guess (if it dces, it finitely identifies the correct hypothesis); hence, for all
practical applications restrictions are applied to the global convergence of the sequence of hypotheses. A
common restriction is consistency, i.e. any hypothesis should be consistent with the examples seen so
faz. This restriction leads to algorithms of which the intermediate hypotheses make sense. Another
common restriction is, that the algorithm be conservative, that is, it outputs a hypothesis different from
its previous guess only when the previous guess is inconsistent with the ezamples seen so far.

How do these criteria apply to the naive learning algorithm (henceforth referred to as the NLA) for
the Schema Inference Problem? The first question is, whether the algorithm is correct. Let Ep be the
correct schema. In order to give examples for this schema, the teacher selects a population IIp for F,p. If
the teacher supplies a sufficient presentation, eventually every pair (A,a), where aE IIp(A), will have been
presented as an example A(a). But then the NLA has identified IIp, because it constructs the minimal

gFor brevity, if the set of examples E is understood we talk about consistent populations and
hypotheses.

12

population from the examples. For this population, the NLA constructs the intended schema. This
schema will only be equal to F{l, if IIp is a typical population for Fp. Hence, we can draw the conclusion
that the NLA is correct iff the teacher selects examples according to a typical population for the conect
hypothesis. This constraint seems fairly reasonable.

The NLA is also consistent: at any stage, the current hypothesis E has a population (namely, its
typical population IIE) such that for every example A(a), aE IIE(A). However, the algorithm is not
conservative, as can easily be concluded from the illustration given in section 2.2, where the hypothesis
(B~A} is first adopted, then abandoned, only to be adopted again later. Because the hypothesis is adopted
a second time and the algorithm is consistent, there is a population corresponding to all the examples
given until then; but then the hypothesis is also consistent with any subset of the examples given, and it
follows that there was no need to abandon it in the f"ust place. Because the NLA is not conservative, it
dces not exhibit a`smooth' convergence towards the correct schema.

4.2 Second-order learning of hypotheses by first-order learning of
prototypes

As may have become apparent in the previous section, the naive learning algorithm presented in
section 2.2 embodies a particular implementation technique for second-order inductive leaming. As has
been shown, the algorithm contains a correct (as well as consistent and conservative) procedure for first-
order learning of populations. In a second stage, the inferred population is mapped to a uniquely
determined (because intended) schema. Obviously, this mapping is only justified if the original population
is a typical population for the correct schema. The underlying assumptions can be generalised as follows.

PROTOTYPE ASSUMPTION. Some populations have unique minimal (with respect to the

generaliry ordering 5) hypotheses for whieh they are populations. Such populations are

called prototypes, and the corresponding minimal hypothesis for a prototype is called its

intended hypothesis. There ezists an effective procedure for calculating the intended

hypothesis for a given prototype. ~

The idea of the Prototype Assumption is, that if the teacher uses a prototype for selecting examples, the
learner can learn by first-order identification of the prototype from the examples, followed by the
detennination of the intended hypothesis for that prototype. First-order identifiability (of populations)
refers to the existence of inethods for identification in the limit of any population from positive and
negative examples (involving instances). Similarly, second-order identifiabiliry (of hypotheses) refers to
the existence of inethods for identification in the limit of any hypothesis from positive and negative
examples (involving instances). We thus arrive at the following proposition.

PROPOSTI'ION 1. Under the Protorype Assumption, frst-order identifiability of protorypes
implies second-order identifzabiliry of intended hypotheses. ~

Interestingly, under the Prototype Assumption it is possible to identify a hypothesis in the limit

without being able to identify a single prototype in the limit. Define the relation -: P-P' iff any two
prototypes P and P' have the same intended hypothesis. Clearly, this relation is an equivalence relation,

and each of its equivalence set contains all prototypes for a specific hypothesis. Suppose it is possible to

identify some hypothesis Hp from examples, then it may still be the case that no first-order inductive
algorithm is able to distinguish some elements of the set of prototypes for Hp.

13

PROPOSITION 2. Under the Prototype Assumption, second-order identifiability is at least as
strong as first-order identiftability. ~

It should be obvious by now that Proposition 1 describes the approach exemplified by the naive
learning algorithm: in the Schema Inference Problem, every population is a prototype (a typical
population in the terminology of secion 2.3) for its intended schema. Notice also, that in the Schema
Inference Problem there aze indeed several prototypes for every hypothesis. As we have seen, this causes
the second-order learning of hypotheses by means of first-order learning of prototypes to be non-
conservative, even if the first-order learning is conservative. Another drawback of this approach is, that no
advantage can be taken of the generality ordering ~ on the hypothesis space, if this ordering dces not
correspond to the partial ordering by set inclusion of populations, as we have seen in the Schema
Inference Problem. In the next section, we study a method for implementing second-order inductive
learning directly.

4.3 Second-order learning in a Generalised Version Space model

The notion of a Generalised Version Space model has already been introduced. The idea is, that
positive examples do not necessarily result in most specific hypotheses and thus a lower boundary of the
Version Space; nor do negative examples necessarily result in an upper boundary. Any other set of
boundaries could be equally useful as the VS model. In this section, it will be shown that second-order
inductive learning satisfies a GVS model without satisfying the VS model. This requires the following:

(t) there exist minimallmaximal consistent hypotheses such that no hypothesis
below~above one of these is consistent with the examples;

(ii) every hypothesis between one of the minimal consistent hypotheses and one of the
maximal consistent hypotheses is consistent with the examples.

As has been remarked earlier, Mitchell's Version Spaces are VSg's. In addition, they satisfy the
separability condition: consistency can be split into upper consistency and lower consistency, such that
any hypothesis is minimal consistent iff it is minimal lower consistent and upper consistent, and any
hypothesis is maximal consistent iff it is maximal upper consistent and lower consistent. In the VS
model, lower consistency means consistency with positive examples, and upper consistency means
consistency with negative examples. If a Generalised Version Space model satisfies the separability
condition, condition (ii) above can be split into two parts:

(iia) every hypothesis above one of the minimal consistent hypotheses is lower
consistent with the examples;

(itb) every hypothesis below one of the maximal consistent hypotheses is upper
consistent with the ezamples.

The following result shows, that second-order inductive learning satisfies a Generalised Version
Space model.

14

THEOREM 3. Assuming that every ascending or descending chain in the hypothesis space is
finite, second-order inductive learningsatisfies a Generalised Version Space model.
Proof. The following has to be proven: if Hmin is a minimal consistent hypothesis and

Hmax is a maximal consistent hypothesis and HminSH~Flmax. then H is a consistent
hypothesis. Assuming the existence of minimal and maximal consistent hypotheses, this is
logically equivalent with

A1 is consistent n HZ is consistent n H15H5l-12 ~ H is consistent
According to the definitions, a hypothesis H is consistent iff there is a population P for H
that is consistent. But then P is also a population for any H2fí, hence any H2F1 is also
consistent:

H1 is consistent n H1~H ~ H is consistent
Obviously this latter fotmula implies the former. ~

The latter formula also implies that the VSg is only bounded from above by the most general hypotheses,
and that this upper boundary is fixed. This means, that convergence has to be provided by the lower
boundary moving upwards alone. In other words, second-order inductive learning trivially satisfies the
separability condition: in practice, we only work with the lower boundary.

Why are boundaries of a Version Space useful? The appropriate answer, of course, is that thase
boundaries move toward each other as leaming proceeds, excluding more and more hypotheses. Indeed,
would this be not true for a particular learning problem, then we would have severe doubts concerning the
well-definedness of the problem. We therefore define a problem of inductive learning to be sound iff any
hypothesis that becomes inconsistent after a number of examples, remains inconsistent when new
examples are added. The following result shows that second-order inductive learning is sound. In stating
this Theorem, we use the notions of positive instance set PE-(pEly I ~p,t~ is a positive example) and
negative instance set NE-{nEly I ~n;~ is a negative example).

THEOREM 4(Soundness of second-order inductive learning). Any hypothesis that is
inconsistent with positive instance set PE or negative instance set NE, will also be
inconsistent with any farger positive instance set PE'~PE resp. any largernegative instance
set NE'.~NE.
Proof. H is inconsistent iff for every population P for H, PE~P v P~(IgNE), which
implies for any PE'~PE and any NE'~NE, PE'~P v P~(I~NE~ for every population P
for H. ~

Finally, we investigate the condition under which a hypothesis Hmin is a minimal consistent
hypothesis. Let Pmin ~ a population for Hmin, and let H be a hypothesis below Hmin. then any
population P for H should be inconsistent:

PE~Pmin~(IlfNE) n H~Flmin ~ PE~P v P~(IH--NE) (4.1)

Until more is known about the relation between populations and hypotheses, nothing more can be said.
If, for instance, smaller hypotheses would have smaller populations, the lower boundary would be
associated with positive examples (as in first-order learning), and any hypothesis with minimal
populatíons P such that PE~P would belong to this boundary. Similarly, if smaller hypotheses have
larger populations, the lower boundary would be associated with negative examples. Of course, a lower

boundary could exist even if the separability condition dces not apply.

15

4.4 Second-order inductive learning for the Schema Inference Problem

In this section, we will develop a leaming algorithm for the Schema Infcrence Problem, based on
lhe GVS approach. This learning algorithm will be conservative, as opposed to the naive learning
algorilhm given in section 2.2, and thus converge more smoothly to the final solution. As suggested in
the previous section, we have to establish the relation between populations and schemas, in order to
construct a minimal consistent schema. Recall that a schema is consistent if it has a population
containing every positive example and no negative example. It follows thaat a minimal consistent
schema must have a typical population containing every positive ezample and no negative example
(otherwise, there would be a more specific schema for this population, which would also be consistent).
In the naive learning algorithm, we tried to find this minimal consistent schema by conswcting a
smallest population agreeing with the examples (i.e., the positive instancc sct PE9). Howevcr, this rests
upon the assumption that smaller populations have more speciCic intended schemas, which is not true in
general. For instance, II1-{A(a),A(b),8(b),B(c)} is a prototype for E1-{X-aA,X~B}, and
II2-(A(a),A(b),B(a),B(b),B(c)) is a prototype for E2-{A~B): iI1cII2, and E1~E2. This can be
formalised as follows.

THEOREM 5. Let II be a population containing the type symbol A and the constant
symbol b, and let E be its intended schema. !f E' is the intended schema for 17v{A(b)} ,
then E'SE.

Proof. IfA(b)E II, then E'-E. IfA(b)~ II, then there is a type symbol B such that B(b)E II.
Thus, adding A(b) to II increases the number of individuals A and B have in common.
Withouth loss of generality, we may assume that E is over {A,B)(see fig. 2). We can
distingtrish the following cases:

(i) F~; (a) E'- {X ~A, X--~B) (b) E'- (B--~A)
(ii) ~{X-~A,X-~B}; (a)E'-{X~A,X-~B} (b)E'-(B-~A}
(iii) ~{A~B); (a) E'-(A-~B} (b) E'-(A-~B,B-~A)
(iv) ~(A~B,B~A) and E'-{A--~B,B~A}.

The condition that the constant symbol b is already contained in II is crucial, because otherwise the
resulting schema might indeed be more general. E.g., if II-{A(a),B(a)), then E-{A~B, B~A), but
II~{A(b)}-(A(a),B(a),A(b)}, hence E'-{A-a8} and E'~E. Theorem 5 can be paraphrased as: larger
prototypesto have more specif;c intended schemas.

COROLLARY 6. Every schema more specific than a given schema E can be obtained by
augmenting a prototype 17for E with typed individuals, of which both type and individual
occur in II.
Proof. See cases (í)-(iv) of Theorem 5. ~

Due to the fact that compositionality does not hold for the Schema Inference Problem, a second-
order learning algorithm for it can not be incremental. At each stage, we have to use all previous
examples to build a consistent schema. Corollary 6 suggests the following method for obtaining a
minimal consistent schema: augment the positive instance set PE to a population II that assigns every
individual in PE to every type in the type set, and construct an intended schema for iI-NE. For instance,

9In this section, we specify populations for a schema by sets like (A(a),B(a),... }, in order to keep
on using set-inclusion among popu]ations.
IdI'hat is, if we compare prototypes that contain exactly the same type and constant symbols.

16

if the examples are A(a), B(b) and „4(b), then we have II-(A(a),A(b),B(a),B(b)) and Il-
NE-(A(a),B(a),B(b)), such that (A~B) is the minimal consistent schema. There is however one caveat: if
there are many negative examples, then some types may have no individuals in common in rI-NE. But it
is always possible that such an individual will be introduced in a new positive example. Therefore, in the
final prototype IIE we include a typed individual A(x) for every type symbol A in the type set (where x is
a reserved individual symbol, not present in the ezamples). E.g., if the examples are A(a), B(b), ~A(b),
~B(a), then we build the `maximal' consistent prototype {A(a),A(x),B(b),B(x)}, with intended schema
{X-~A,X--~B). Notice that this is indeed a minimal consistent schema, as opposed to fd, which we
would have obtained had we not included A(x) and B(x) in our prototype. Notice also, that there is
obviously no way of arriving at (d as a minimal consistent schema, if the number of constant symbols is
uncountable.

Note carefully, that we have not yet made any assumption about whether the teacher chooses his
examples from a typical population or just from any population for the tazget schema. The fact that the
most specific consistent schemas are consistent by virtue of prototypes is just a consequence of the model
itself. Therefore, the assumption that the teacher chooses his examples according to a typical population
dces not make any difference for the lower boundary. It does, however, make some difference for the upper
boundary: once it has been established that in a prototype two types have a common member, a
maximal consistent hypothesis should at least state that these two types have a common subtype.
However, this is a hypotheses that can never be falsified, ands so it will remain the maximal consistent
hypothesis forever. Convergence has not improved much.

Let us state the convergence properties for second-order learning for the Schema Inference Problem
more clearly. In general, the VSg will not collapse to a unique solution, because in many cases the
boundaries never meet. So we have two learning strategies: stick to the lower boundary, and stick to the
upper boundary. If we stick to the lower boundary, the resulting algorithm performs identification in the
limit provided the teacher selects examples according to a pmtotype, and provided the correct schema is
connected. Moreover, the resulting algorithm is consistent and conservative, thus providing `smoother'
convergence than the NLA. If we stick to the upper boundazy, the resulting algorithm performs
identification in the limit provided the teacher selects examples according to a prototype, and provided the
types in the correct schema are either unconnected or only connected via common subtypes (two rather
uninteresting cases).

Finally, we illustrate the second-order inductive learning algorithm for the Schema Inference
Problem roughly sketched in this section. Let the type set be (A,B}. In fig. 4 below, each line specifies
the example given, the maximal consistent hypothesis after that example, the minimal consistent
hypothesis after that example, and the prototype used to construe that minimal consistent hypothesis.

17

0.

1. ~A(b)

2. B(b)

3. A(a)

4. B(a) (A(a),A (x),B(a),B(b),B(x))

Figure 4. Learning process for the Schema Inference Problem using the
second-order inductive leaming algorithm.

Initially, VSg is equal to the entire space of hypotheses. The first, negative example has no effect on
VSg. The second, positive example concerns the same constant symbol as the first, negative example, and
causes the lower boundary to move upwards. The third, positive example again has no effect, but in
combination with the fourth, positive example it causes the upper boundary to move downwards. Should
we add two more examples, A(c) and ~B(c), then the upper and lower boundary would collapse, and the
single solution would be {X--~A,X--~B). Notice, that the upper boundary moves downward due to
positive examples, and the lower boundary moves upward due to the combination of positive and negative
examples.

18

5. Second-order learning and logic
Until now, we have contrasted second-order inductive learning with the standard framework of

Version Spaces, and we have concluded that there are many differences. This is an important result,
because it allows us to incorporate the Version Space model in a more general `meta-model'. On the other
hand, a fonnulation of the Schema Inference Problem in first-order logic~ t dces not seem (at first sight) to
cause problems. An example is a ground literal like p(a)(positive example) or ~q (b) (negative
example); a schema consists of formulas of the form p(x) :-q (x), and a schema S is consistent with a
set of examples E iff S,E [~ 0. In this section, we briefly investigate whether exisáng methods for
induction in first-order logic are applicable to the Schema Inference Problem.

A general framework for inductively inferring logical theories from facts was provided by [Shapiro
1981]. In this framework, the induction algorithm starts with the most general theory !] (which implies
everything), and a new example is read. If the current theory is too strong (implies too much), then the
guilty clause is diagnosed and removed from the theory. If the cutrent theory is too weak, then a new
clause has to be added to the theory; candidates are socalled refinements of previously removed clauses. In
order to guarantee identification in the limit of the theory, the refinement operator must be complete. A
complete refinement operator for the Schema Inference PYoblem is shown in fig. 4.

~

~
p (X) q (X)

~ ~ ~ ~
p(a) p(b) q(a) q(b)

..,..,v................r..~..,..,:::.....,., :.:,..:.::...,.:::::...;:A,~...,..,.....,,:......,.~::..,..,.,.:::...:::.,.:::.:..:.:::::.,..'..~::.:,.:.:..,.,,.::,:::. . ::::.,.y~:. .,.::. :::::h..:

P (X) : -q (X)

p (X) : -x (X)

q(X) :-p(X)

q(X) :-x(X)

Figure4. A complete refinement operator for the Schema Inference Problem.

Despite appearances, there is a problem here: the clauses below the dashed line in fig. 4 will never be
induced, because the refinements that yield a smaller increase in the size of the current theory are tried
first. In other words, the induction algorithm will do nothing more than collecting the examples. The
reason, of course, is the definition of consistency: in Shapiro's framework, a theory is consistent with a
set of facts if it implies these facts, while in our framework, we use the weaker propeny of logical
consistency.

An alternative, but equally general (although somewhat less elaborated fortnally) framework for

induction of logical theories is presented in [Muggleton 8r. Buntine 1988]. In this framework, induction is
carried out by inverting resolution. A number of inverse resolution operators is defined, including the V-

t tThe term 'second-order' as applied to inductive leanvng should not be interpre[ed in the logical
sense of `second-order predicates', although these issues are related: in the Schema Inference
Problem, we ate trying to find out if the second-0rder predicate 'subtype of' is satisfied.

19

operaror, which induces q(x):-p (x) from p(a) and q(a), and the W-operator, which induces
p(x) :-x(x),x(a),andp(x) :-x(x) fromp(a) andq(a) (fig.5).

p(a) q(X) :-p(X) p(X) :-x(X) x(a) q(X) :-x(X)

q(a) P(a) ~I(a)

(a) V-operator (b) W-operator

Figure 5. Inverse resolution operators for the Schema Inference Problem.

Of course, there is a control regime that decides the order in which the inverse resolution operators are
tried in a given situation. Because of our non-standard definition of consistency, we can not use
Muggleton and Buntine's control regime directly. On the other hand, it seems very well possible to
incorporate the idea of inverse resolution operators in the fr~unework of second-order inductive learning.

20

6. Concluding remarks
In this paper, we have presented a new paradigm for inductive learning. The usefulness of this

paradigm was suggested by the Schema Inference Problem, which we used to define the paradigm. We
have sketched methods for devising leaming algorithms for second-order inductive learning, one based on
traditional first order leaming, and a new method specifically for second-order leaming.

In the course of the paper, we have pointed at several possibilities for generalising the Version
Space model. One of these generalisations we called Generalised Version Spaces or VSg's, in which upper
and lower boundaries may differ from the Version Space boundaries. We have also identified thc
separability condition, which allows consistency to be separated into upper and lower consistency, and the
soundness property of inductive learning. Another important notion is compositionality, which allows for
incremental learning algorithms. We have shown, that compositionality dces not hold (in general) in
second-order inductive learning. In our ongoing research [Flach 1990a], we aze merging these notions into
a general model.

We have shown, that second-order inductive leazning not only differs from the Version Space
model, but also from the framework of induction of logical theories from facts, with respect to the
consistency criterion used. Consequently, Shapiro's methods aze not applicable (at least not without
modification), while Muggleton and Buntine's inverse resolution operators are, by deriving a new control
regime under which they should be appGed.

A final observation: an alternative account of second-order inductive learning can be given, if a
population is viewed as an example, that is only incompletely specified by the instances. In [Flach 1989]
we azgued that concept learners should allow for incomplete examples, because they still provide some
information, albeit less than a completely specified example. From this perspective, second-order
inductive leaming as defined here could be called concept learning from one incomplete example. This
account of second-order inductive learning possibly makes an integration of first-order and second-order
leaming into a general theory of inductive leaming more feasible.

21

References

[Angluin 8~ Smith 1983] D. ANGLUIIY ~ C.H. SMITH, `Inductive inference: theory and methods',
Computing Surveys 15:3, 238-269.

[Flach 1989] P.A. FLACH, `On the significance of examples in inductive learning', unpublished
manuscript.

[Flach 1990a] P.A. FLACH, `Towards a meta-theory of inductive learning', ITK Research Report,
Institute for Language Technology 8t Artificial Intelligence, Tilburg University, the Netherlands
(forthcoming).

[Flach 1990b] P.A. FLACH, `Inductive methods in data modeling', TTK Research Report, Institute for
Language Technology 8t Artificial Intelligence, Tilburg University, the Netherlands
(forthcoming).

[Gold 1967] E.M. GOLD, `Language identification in the limit', Informarion and Control 10, 447-474.

[Laird 1988] P.D.LAIRD, L,earning from good and bad data, Kluwer, Boston.

(Mitchell 1982] T.M. MTTCHELL, `Generalization as search', Artif cial lntelligence 18, 203-226.

(Muggleton á Buntine 1988] S. MUGGLETON 8~ W. BUNT'INE, `Machine invention of first-order
predicates by inverring resolution', Proc. Fifth Int. Conf. on Machine Learning, Morgan
Kaufmann, San Mateo.

[Shapiro 1981] E.Y. SHAPIRO, lnductive inference of theoriesfrom facts, Techn. rep. 192, Comp. Sc.
Dep., Yale University.

[Vermeir Bz Nijssen 1982] D. VERMEIR 8t G.M. NUSSEN, `A procedure to define the object type
structure of a conceptual schema', lnformation Systems 7:4, 329-336.

22

1 11 ~11ÁIÍII~IU~ ~ÍIIÍIÍVIÍ~ Ílll ll

ITK: P.O. BOX 90153 5000 LE TILBURG THE NETHERLANDS

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

