l_‘._l
TILBURG 0‘5%?@ ¢ UNIVERSITY
lf:fl

Tilburg University

Second-order inductive learning
Flach, P.A.

Publication date:
1990

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Flach, P. A. (1990). Second-order inductive learning. (ITK Research Report). Institute for Language Technology
and Artifical Intelligence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021


https://research.tilburguniversity.edu/en/publications/1ee57dda-e926-48b2-a905-980a0200530a

n

o

D

INSTITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE






ITK Research Report No. 10

January 1990

Second-order
inductive learning

Peter A. Flach

A preliminary version of this paper appeared in

Analogical and Inductive Inference AII'89
K.P. Jantke (ed.), Lecture Notes in Computer Science 397,
Springer Verlag, Berlin, 1989, pp. 202-216.

ISSN 0924-7807

Institute for Language Technology and Artificial Intelligence,
Tilburg University, The Netherlands



Second-order inductive learning
Peter A. Flach

ABSTRACT

In this paper, we present a new paradigm for inductive learning, called
second-order inductive learning. It differs from concept learning from
examples in that examples are not instances of the hypothesis to be learned,
but rather instances of a prototype (i.e., a typical member of the extension) of
the hypothesis to be learned. The paradigm is introduced by means of an
example problem from the field of conceptual modeling. We analyse the
reasons why a naive solution to that problem is not fully satisfactory by
studying the Version Space model. Once it is clear why this model is not
directly applicable, we attempt to restore it by defining the notion of a
Generalised Version Space model. An alternative formulation of the problem
is given in terms of logic.

Contents
COMIBIILS .nususmevsssinsisss ssunssssasssas sos oo ss s ss ¥ asvassn ey sssys v aass s HEAR S SaH OGN ST P s H Y SRS PAE S 6 aF s s 1
B IETOAUCHONY xicvin e i s aniagi i sininsinging sbrge iniinnsimomesinmaps fns rwmmmisio s Axsimm s S i masasn G sa ve 2
2. The Schema INference PrOBICNN ... quususasssssscsssssnmssesuinsossssnsssssvosssssssss oo s65esessmsmsssses sxoesss sasvssssss 3
1 The ProbIEnt: . o vimmress s san s soassvssss s s s s s eSS et 3
2.2 A proposed SOMIOMN . v.xs e nsssasssssmassssnssnnisssnies essusmassssssasimssesenssaneNosewaRoRsas %9555 55 5959 4
2.3 The generality OTAETINE.....c.ciieieieiiriuiiireeeeeerieieiiierreraeereeeeaeeeeeaaeeeaseeeeessnsnnssneeseeees 5
3. VETSION SPACES . cuvesevsnssnavssssssssssensssssnsssiass sesss sussssssvnsss s onsvsussuss saaussessisdassomnssssns iy sasasssvsnsess 8
3.1 Outline of the Version Space model............ccccoeiiimiriieieeieiiiiieieeiee e 8
3.2 'Generalising’ the: Version SPace MOMEL s susmssomssonsresionsssssmmsmsssssssssssssssismisasnmmi 8
4. Second-order inAUCHVE IAIMING .....uuiiutiirieeiie e e i ee et et et ee e e e e e e st e e et e et e e e s e e eennanen 11
4.1 Formal definitions. .ouvesesonssmmmsssssarssisssssmssnsssiomsmsene s s msininsssssmmsaisssimissn 11
4.2 Second-order learning of hypotheses by first-order learning of prototypes ..............c......... 13
4.3 Second-order learning in a Generalised Version Space model............c..ocovvveiiiiiinniinnnnnnn. 14
4.4 Second-order inductive learning for the Schema Inference Problem................................ 16
5. Second-order leammg ANd IOBIC, nsuassmresssumsimasssmsssy o ST s Es RS RS A IS AR S RS s 19
6. Concluding TeMATICS: :;: sivimess soumssnsissen 558505550 150 67655 S5EkeRaRas S5 555470 B o s mamsiosnmmesismsanmanesis iasmmsuaios 21
REICTCTIEES sos wsmmnsnsssmsens o5 8o uaE0 S ST H NS PR S A R A A R S S S S A A S R S SRS S S SR SIS TS s 22



1. Introduction

Inductive learning is an important subject in Artificial Intelligence research, because it has many
practical applications, and because it can be sufficiently formalised. Examples of such formalisations are
[Mitchell 1982] and [Laird 1988]. When devising a formal model of inductive learning, it is important to
keep the model as general as possible, thereby indicating how more specific models can be obtained from
the general model by making specific choices for, e.g., the structure of the hypothesis space involved.
Within the field of discrete mathematics, the theory of lattices provides a particularly good example of
such a general model.

It is in a general model for inductive learning that we are interested. However, it is difficult to build
such an abstract model from scratch. To avoid this difficulty, many existing models are based on specific
learning situations. For instance, Mitchell introduces his Version Spaces by referring to the problem of
concept learning from examples, where an example is taken to be a member from the class described by
the concept. The drawback of such an intuitively appealing model is, that some basic assumptions are left
implicit. To make these assumptions explicit, we have been looking for learning situations for which
Version Spaces are not adequate. One such learning situation is described in this paper.

This learning situation, which we call the Schema Inference Problem, will be our guideline
throughout the paper. We will attempt to give learning algorithms for that problem, and in doing so we
will describe a learning paradigm called second-order inductive learning in which the problem fits. This
learning paradigm differs from existing models in various respects. While this is our main objective, we
also point at fundamental implicit assumptions underlying the Version Space model when we encounter
them. Such assumptions concern properties of a model for inductive learning, and are therefore ‘meta-
theoretical’ notions. In this respect, our efforts can be interpreted as being directed ‘towards a meta-theory
of inductive learning’ [Flach 1990a].



2. The Schema Inference Problem

2.1 The problem

The research reported here originates from the following problem: given the (partial) contents of a
knowledge base, derive (parts of) the conceptual model of that knowledge base. This is clearly an inductive
problem, and it will be studied here from the viewpoint of inductive lcarning. Aspects of this problem,
restricted to finding functional and multivalued dependencies for a relational database, will be discussed in
a forthcoming report [Flach 1990b]. Here, we study the problem of inducing type hierarchies from type
assignments to individuals, which we call the Schema Inference Problem. The significance of this
problem from the standpoint of conceptual modeling is illustrated by, e.g., [Vermeir & Nijssen 1982].
The use of inductive methods for these problems has, to the best of our knowledge, not been proposed

before.

SCHEMA INFERENCE PROBLEM. (syntax) Lowercase letters a, b, c, ... are constant
symbols denoting individuals; uppercase letters A, B, C, ... are type symbols denoting
types. A type set is a set of type symbols. A schema sentence is a statement of the form
A—B. A schema X over a type set G is a set of schema sentences containing only type
symbols from &; ¢ is called the domain of . For convenience, we adopt a graphical
representation of schemas as follows: each type symbol in o is represented by a distinct
circle with the type symbol written inside, and for every schema sentence A—B in the
schema there is a directed arrow from the circle representing A to the circle representing B.
E.g., the schema (B—C} over (A,B,C) is represented as!

S

(semantics) A type population is a set of constant symbols. A schema population for a
schema X with domain ¢ is a function Il mapping type symbols in & to type populations
such that for each two type symbols A and B in 6, A—> 3B implies [1(A)cII(B); -y is
defined to be the transitive closure of — (interpreted as a relation between type symbols,
defined by the schema X).

(examples) A positive example is a statement of the form A(a); a negative example is a
statement of the form —B(c).

(consistency) A schema is consistent with a set of positive and negative examples, iff there
is a schema population IT such that:

» for each positive example A(a), ae T1(A);

« for each negative example —B(c), ce I1(B).

1Note, that this is according to the definitions: a schema need not contain all type symbols in its
domain. In the corresponding diagram, the type symbols that are not contained in the schema are
represented by circles not connected by arrows to any other circle.



(learning) The problem is, to find a learning algorithm that, given a domain ¢ for a
schema, takes one example at a time, and after each example outputs a schema over o that
is consistent with the examples seen so far. |

Intuitively, a positive example A(a) states that individual a is of type A; likewise, a negative
example —B(c) states that individual c is not of type B. A schema sentence A—B states that type A is a
subtype of type B. Suppose we have the positive examples A(a), A(b) and B(b), and the negative example
—B(a), then the schema {B—A} (fig. 1.a) is consistent with thesc examples, witnessed by the schema
population IT given by I1(A)={a,b} and IT1(B)=(b}. Of course, there are many more schemas that are
consistent with the examples, for instance the schema {B—A, A—C} (fig. 1.b), or the empty schema @&
over {A,B} (fig. 1.c). Note however, that no consistent schema can contain the schema sentence A—B,
because of the examples A(a) and —B(a).

o o o ©C

a. {(B—A} b. (B—A,A->C) c. D

Figure 1. Some schemas consistent with the examples A(a), A(b), B(b) and
—B(a).

It seems advisable not to add any type symbols to a schema that are not present in any example (as
happened in fig. 1.b). However, there is one exception to this rule: we might want to express that two
types A and B have a common subtype X not equal to A or B. For instance, given the positive examples
A(a), A(b), B(b) and B(c) (and perhaps the negative examples —A(c) and —B(a)), it might be hypothesised
that {X—A, X—B} is the intended schema with population I1(A)={a,b}, I1(B)={b,c}, TI(X)=(b}. Put
differently, by introducing an auxiliary type X, we can express that types A and B have something in
common. Still, we want to say that the domain of the resulting schema is {A,B}. Therefore, we extend
the definition of a schema as follows: a schema X over a type set o is a set of schema sentences; the type
symbols occurring in X but not in ¢ denote auxiliary types, and each auxiliary type symbol should occur
on the left hand side of at least two schema sentences in Z. The definition of a schema population is left
unchanged, that is, the domain of IT is the type set . Populations for auxiliary types X can then be
derived by taking the intersection of all types A for which the schema contains a sentence X—A (thus, X
is taken to be the largest common subtype possible).

2.2 A proposed solution

Let us try to develop a learning algorithm for the Schema Inference Problem, learning from
positive examples only. From the consistency criterion, we derive an obvious choice for a schema
population IT based on the examples: for any type A in the domain, take I1(A)={a | A(a) is a positive
example}. Add auxiliary types for non-empty intersections of type populations, that are not equal to
existing type populations. The resulting set of populations is partially ordered by set-inclusion, and the
diagram of this partial ordering represents a consistent schemaZ. As an illustration of this procedure,

21f two types in the domain have the same population, they are represented by distinct circles,
connected by arrows in both directions.



suppose the domain of the schema is simply {A,B}. Initially, there are no examples, so the initial
population I is defined by I(A)=I1((B)=Q. From this population we derive the following schema:

i.e., initially all types are considered equal. Now suppose the first example is A(a): thus, IT11(A)={a} and
I11(B)=D, and we obtain the schema

Z

After the example B(b), the hypothesis is that both types have nothing in common;

Let the third example be A(b). We obtain I13(A)=(a,b) and I13(B)={b}, and again we derive the hypothesis
{B—A}. If the fourth example is B(b), we have [14(A)=I14(B)={a,b}, and we are back at our initial
hypothesis {B—A, A—B}. Adding a fifth example B(c) gives I15(A)={a,b}, [15(B)={a,b,c) and the

schema

There are two points to be made here. First, without having defined anything like ‘convergence’ for

®

our learning algorithm3, it is intuitively clear that the procedure just illustrated does not ‘smoothly’
converge: it switches easily between the hypotheses ‘B is a subtype of A’, ‘B and A are the same type’,
and ‘A is a subtype of B’, without ever settling on one of these. Furthermore, at one time the algorithm
proceeds from {A—B} to {A—B, B—A}, and at another time it proceeds in the opposite direction. This is
counter-intuitive: adding more positive examples should lead to more (i.e. not-less) general hypotheses.
To make this a little bit more precise, we define the notion of generality.

2.3 The generality ordering

The usual notion of generality is extensional, i.e. based on extensions (sets of instances) of
expressions. In the case of schemas, instances are schema populations. So we define: given a type set o, a
schema X1 over o is at least as general as a schema Z) over ¢, notation £1>X9, iff each schema
population? for £7 is also a schema population for . Alternatively, we say that Z7 is at least as
specific as Z1, and write £2<X1. Obviously, this relation is reflexive and transitive; strictly speaking, it
is not anti-symmetric: there are several schemas for schema populations that contain at least three
identical type populations. Because this is a bit unlikely to occur in practice, we will treat > as a partial
ordering5. If £12X7 but Z1#£Z2, we write £1>X) (£2<Z1) and say that X is more general than £ (X7 is
more specific than X1).

3This will be done in section 4.1.

4For technical reasons, this definition of generality assumes schema populations consisting of
non-empty type populations. This assumption will be made throughout the paper.
5Technically speaking, this amounts to assuming that there exists a normal form such that every
equivalence class of the quasi ordering < contains exactly one member in normal form.



There are five distinct schemas over {A,B}, and their generality ordering can be depicted as in fig.

® ®
Q£

* .
Figure 2. Schemas over {A,B}, partially ordered by generality.

The empty schema & over (A,B} is the most general schema, because any two type populations I'T(A) and
I1(B) constitute a schema population for it. A somewhat more specific schema is {X—A, X—B}; any
population IT for this schema must satisfy IT(A)NI1(B)#Q. More specific than this one but incomparable
to each other are the schemas {B—A} and {A—B}, with populations satisfying IT(B)cII(A) and
T1(A)cII(B), respectively. Finally, the schema {B—A, A—B} is the most specific schema, requiring
[1(A)=I1(B).

According to the above definitions, the population IT defined by I1(A)={a.b}, TI(B)=(b} is a
population for the empty schema & over {A,B}. However, intuitively we would expect that type
populations for this schema would be disjoint, as the schema states that the two types have nothing in
common. Conversely, given the schema population I, we would intuitively say that it is typically a
population for the schema {B—A}. We can capture this intuition by defining a typical (schema)
population Ty for a schema X to be any schema population that is not a population for a more specific
schema. That is, [Ty, contains not more information than X conveys: adding information to Z (making it
more specific) causes ITy to be no longer a population for it. If ITy is a typical population for Z, then we
call Z an intended schema for Ily.

The naive learning algorithm above is precisely based on typical populations and intended schemas.
The set of positive examples is interpreted as a typical population, for which an intended schema is
construed. Notice, that any population has exactly one intended schema, a property about which we will
have more to say later. The reason that the naive learning algorithm is somewhat unsatisfactory with
respect to convergence, is that type populations in typical schema populations do not monotonically get



larger when the intended schema gets more general. For instance, let IT 1(A)=I12(A)={a,b} and
IM1(B)={b,c}, M2(B)={a,b,c}, thus T12(B)>I11(B); yet, the intended schema for Iy is £1={X—A, X-B},
while the intended schema for IT7 is Z2={A—B}, hence £7<X]. We will return to this issue as well.

The main conclusion must be, that what seems a reasonable and cautious approach at first sight,
namely, to take only the positive and certain knowledge, and to translate it into a hypothesis by
interpreting it as constituting a typical population, does not yield minimal hypotheses. On the other hand,
in concept learning from examples it is exactly this approach of taking the disjunction of the positive
examples, that does result in minimal hypotheses. Therefore, we proceed by studying in some detail the
basic assumptions underlying the use of a partially ordered hypothesis space in concept learning. One of
the most general accounts thereof is the Version Space model [Mitchell 1982]. After that, we analyse the
differences between this model and our Schema Inference Problem, in order to come up with a model of
second-order inductive learning.



3. Version Spaces

3.1 Outline of the Version Space model

Originally, the Version Space model (or VS model) was formulated as follows. Let there be given
a set] of instances i, and a language L for expressing generalisations G. Generalisations describe sets of
instances, and a generalisation G matches an instance i if i is a member of the set described by G, or more
succinct, if 7 is an instance of G. Matching is described by a matching predicate M(G, i), which is true iff
i is an instance of G. Mitchell defines G to be more specific than® G iff (ie IM(G1,1)) < {iel |
M(G2,i)}. That is, G1 is more specific than G2 (and, equivalently, G2 is more general than G1) iff the
set of instances of G is a subset of the set of instances of G?.

Positive examples are instances of the generalisation to be learned, and negative examples are non-
instances. Conversely, a generalisation is consistent with the examples iff it matches every positive
example and no negative example. In determining the set of consistent generalisations, the generality
ordering can be utilised as follows. If a generalisation G matches a positive example p, then every
generalisation more general than G will also match p. Assuming that there are no infinite descending
chains of generalisations, this implies that there exist minimal generalisations Gp consistent with p (i.e.,
a generalisation is consistent with p if and only if it is at least as general as some Gp). Similarly, under
the assumption that every ascending chain of generalisations is finite, one can associate with each
negative example n maximal generalisations G, such that only and all generalisations at least as specific
as some Gy are consistent with n.

From these considerations it follows that the set of generalisations consistent with every example,
the Version Space, is bounded from below by a set § of most specific generalisations, derived from the
positive examples, and bounded from above by a set G of most general generalisations, derived from the
negative examples, such that a generalisation is consistent with the examples iff it is between S and G.
This means, that the Version Space need not be stored explicitly: if the partial ordering is recursively
enumerable, storage of § and G suffices. We further note that an efficient implementation of the VS
model is possible, if there is an algorithm for computing new elements of S (G) out of Gp (Gp) and a
new example e, when Gp (Gp) turns out to be inconsistent with e (without a mere search of the partial
ordering).

3.2 Generalising the Version Space model

The Version Space model is a significant step towards a general theory of inductive learning. Many
existing methods can be cast into the general framework of Version Spaces. However, the model presented
above uses some rather specific notions, that are not essential for the model of Version Spaces. Also,
there are some small technical shortcomings in Mitchell’s formulation of the model. There is some
confusion in the notion of partial order he uses: in fact, the generality ordering as defined above is a
quasi-ordering, because several syntactically distinct generalisations may have the same set of
instances. This raises a more general point: Mitchell fails to make a distinction between syntax and
semantics. Indeed, what is presented to the learner are not instances, but descriptions of instances.
Thus, Mitchell assumes that any instance can be uniquely described within the instance language, which

6In fact, the relation should be called at least as specific as, as has been pointed out before.
However, here we follow Mitchell’s account.



is not true in general. For a worked-out model which distinguishes between syntax and semantics, see
[Laird 1988].

A more serious restriction of the VS model, as well as an opportunity to make the model more
general, is indicated by Mitchell when he writes: ‘‘Notice the above definition of the [more-specific-than]
relation is extensional—based upon the instance sets that the generalisations represent. In order for the
more-specfic-than relation to be practically computable by a computer program, it must be possible to
determine whether G1 is more-specific-than G2, without computing the (possibly infinite) sets of
instances that they match.”” [Mitchell 1982, p.206). In other words, there should be a syntactical ordering
< on generalisations, definable without reference to instances, with the property that G1<G? iff {ic[ |
M(G1, 1)} c {iel | M(G2,i)}. But then we could forget about instance sets altogether, and relate the
matching predicate to the syntactical generality ordering as follows:

G1£Gy & Vi: M(G1,i) = M(G2.) 3.1

This equivalence boils down to the following two implications:

Vi: M(G1,i) A G12G2 = M(G2,0) (3.1a)

—(G1=G2) = Ji: M(G1,i)) A —-M(G2,)) (3.1b)

Formula (1a) expresses what is called completeness of the matching predicate (or consistency predicate) in
[Flach 1989]: it enables us to say that any generalisation between the boundaries S and G is indeed
consistent. Formula (1b) requires, for any two generalisations G1 and G2 such that not G1<G?, the
existence of a witness i that is matched by G1 and not matched by G2. In words: the matching predicate
should not be too coarse for the partial ordering at hand. This implication can be rephrased into a formula
describing the relation between syntax and semantics (see [Laird 1988]).

Formula (1a) can be generalised in several ways. First, notice that it can also be written as

Vi: —-M(G2.4) A G15G2 = —M(G1.0) (3.1a)

stating that if G2 does not match i, anything below it won’t either. Although formulas (1a) and (1a') are
logically equivalent, we could say that (1a) describes the existence of the lower boundary S, and (1a")
describes the existence of the upper boundary G. To make this more apparent, the formulas can be written
in the following form:

Vi: M§(G1,i) A G12G2 = Ms(G2,0) (3.2a)

Vi: MG(G1.i) A G12G2 = MG(G24) (3.2b)

where Mg denotes the original matching predicate M, and Mg is defined as the negation of Mg’. Now, it
has been shown in [Flach 1989] that there are other choices for MG possible (that is, other than the
negation of Mg), while retaining the VS model.

Secondly, the association of a lower boundary with positive examples and an upper boundary
with negative examples is, in a certain sense, arbitrary. We call a model a Generalised Version Space
model or GVS model if the space of consistent hypotheses (the Generalised Version Space or VSyg) is
bounded from above and below in any way, such that every generalisation between these boundaries is
consistent with the examples. In a Generalised Version Space model, positive examples could result in an
upper boundary; alternatively, it might be the case that a boundary can only be associated with both

TThus, the VS model satisfies the separability condition (see section 4.3).



positive and negative examples. Clearly, the VS model is a Generalised Version Space model, with a
lower boundary according to positive examples and an upper boundary according to ncgative examples.

It is the gencralisation to Genceralised Version Space models that applies in the case of the Schema
Inference Problem. This will be detailed in the next sections, in which we will try to capture the essential
characteristics of the Schema Inference Problem in a formal model.

10



4. Second-order inductive learning

4.1 Formal definitions

It has been shown in the previous section, that the idea of instances of generalisations playing the
role of examples underlies the development of the Version Space model. Although it can be generalised in
several ways, it certainly plays a crucial role in concept learning from examples. It has also been shown,
that the VS model can not be applied to the Schema Inference Problem. What, then, are the intuitions
behind the Schema Inference Problem?

In the Schema Inference Problem, schemas are the generalisations. Instances of schemas are schema
populations. Examples are elements of type populations, thus elements of schema populations.
Pictorially, we have the following situation:

generalisations schemas
!
populations
!
examples examples
a b.

Figure 3. Layers occurring in a. concept learning from examples and b. the
Schema Inference Problem

In the Schema Inference Problem, there is an extra layer between the examples and the generalisations, and
therefore we call the kind of learning that occurs in solutions to the Schema Inference Problem second-
order inductive learning. In this context, traditional concept learning from examples would be called first-
order inductive learning (and rote learning might be called zeroth-order inductive learning).

Let us make the nature of second-order inductive leaming more precise. In doing so, we will depart
slightly from Mitchell’s terminology by preferring the term ‘hypothesis’ over ‘generalisation’. Let there
be given a set H of (second-order) hypotheses H; with each hypothesis H, a set [H] is associated, called
the extension of H. Elements of [H] are called populations for H (in first-order learning, elements of [H]
would be called instances of H). We will assume, that there is a generality (quasi-)ordering < on H, and
employ the usual notation and terminology. Also, we assume that this quasi-ordering corresponds to the
partial ordering of extensions, i.e. H1<H? iff [H1]c[H?]. Additionally, if [H]]c[H?] we write H1<H7 and
say that H] is more specific than H7 (H?7 is more general than H1). If [H1]=[H?2], we call H1 and H?
variants. As a result of these assumptions, any population for a hypothesis H is also a population for any
hypothesis more general than H.

11



Thus far, the only difference with first-order learning is terminology. We now assume that each
population for a hypothesis is itself a set; its elements are called instances, and the set of instances is
denoted I'g. Thus: hypotheses denote sets of populations, and populations are sets of instances. An
example is an element of Ifyx(+,-}; a pair <p,+> is called a positive example, a pair <n,—> is called a
negative example (where p and n denote the instances involved in the examples). A second-order inductive
learning task <H, E> is characterised by a hypothesis space H (where extensions and instances are
implicitly understood) and a set of examples E. The consistency conditions for a second-order inductive
learning task <H, E> can now be stated as follows: a population P for a hypothesis He H is consistent
with an example e iff either e=<p,+> and pe P or e=<n,—> and ne P; P is consistent with a set of
examples E iff P is consistent with each example e€ E. A hypothesis He H is consistent with a set of
examples E iff there is a population for H that is consistent with ES.

Note carefully, that this definition of consistency of hypotheses requires the existence of a single
population that is consistent with every example. That is, H is consistent with e if there is a
population P 1€ [H] such that P is consistent with e1; similarly, H may be consistent with e by virtue
of another population P2e [H], consistent with e2. Still, this does not entail that / is consistent with
{e1,e2]), because it is conceivable that [H] contains no single population consistent with both e¢] and e3.
We call the property of a hypothesis H being consistent with a set of examples E iff H is consistent with
each example in E, the property of compositionality. It is an important property, because it allows for
incremental learning algorithms that need not reconsider all previous examples, once an inconsistency is
detected. While in first-order inductive learning the property of compositionality holds by definition, it
need not be valid a priori in every second-order learning problem. For instance, it is not valid for the
Schema Inference Problem.

For judging the correctness of a learning algorithm, i.e. its capability to infer the correct
hypothesis eventually, consistency is not enough. As an example, in first-order learning the strategy to
take a most general consistent hypothesis is incorrect when only positive examples are available, because
in that case it will stick to the most general hypothesis forever, and thus will fail to come up with the
correct hypothesis (unless it is the most general one). On the other hand, a strategy to take a most specific
consistent hypothesis is correct in this case, provided that such a hypothesis is unique once enough
examples are available. Several models for correctness of inductive algorithms have been proposed. One of
the best-known models is identification in the limit [Gold 1967, Angluin & Smith 1983]. An inductive
algorithm identifies the correct hypothesis in the limit, iff it makes the correct guess after a finite amount
of time, and never changes its guess afterwards. To this end, the algorithm is supplied with a sufficient
presentation, i.e. a sequence of examples such that every instance occurs at least once. The algorithm is
not required to signal its final guess (if it does, it finitely identifies the correct hypothesis); hence, for all
practical applications restrictions are applied to the global convergence of the sequence of hypotheses. A
common restriction is consistency, i.e. any hypothesis should be consistent with the examples seen so
far. This restriction leads to algorithms of which the intermediate hypotheses make sense. Another
common restriction is, that the algorithm be conservative, that is, it outputs a hypothesis different from
its previous guess only when the previous guess is inconsistent with the examples seen so far.

How do these criteria apply to the naive learning algorithm (henceforth referred to as the NLA) for
the Schema Inference Problem? The first question is, whether the algorithm is correct. Let Z( be the
correct schema. In order to give examples for this schema, the teacher selects a population I for Xg. If
the teacher supplies a sufficient presentation, eventually every pair (4,a), where ae IT((A), will have been
presented as an example A(a). But then the NLA has identified IT(), because it constructs the minimal

8For brevity, if the set of examples E is understood we talk about consistent populations and
hypotheses.

12



population from the examples. For this population, the NLA constructs the intended schema. This
schema will only be equal to Zq, if I is a typical population for X(. Hence, we can draw the conclusion
that the NLA is correct iff the teacher selects examples according to a typical population for the correct
hypothesis. This constraint scems fairly reasonable.

The NLA is also consistent: at any stage, the current hypothesis X has a population (namely, its
typical population ITy) such that for every example A(a), ac ITx(A). However, the algorithm is not
conservative, as can easily be concluded from the illustration given in section 2.2, where the hypothesis
{B—A} is first adopted, then abandoned, only to be adopted again later. Because the hypothesis is adopted
a second time and the algorithm is consistent, there is a population corresponding to all the examples
given until then; but then the hypothesis is also consistent with any subset of the examples given, and it
follows that there was no need to abandon it in the first place. Because the NLA is not conservative, it
does not exhibit a ‘smooth’ convergence towards the correct schema.

4.2 Second-order learning of hypotheses by first-order learning of
prototypes

As may have become apparent in the previous section, the naive learning algorithm presented in
section 2.2 embodies a particular implementation technique for second-order inductive learning. As has
been shown, the algorithm contains a correct (as well as consistent and conservative) procedure for first-
order learning of populations. In a second stage, the inferred population is mapped to a uniquely
determined (because intended) schema. Obviously, this mapping is only justified if the original population
is a typical population for the correct schema. The underlying assumptions can be generalised as follows.

PROTOTYPE ASSUMPTION. Some populations have unique minimal (with respect to the
generality ordering <) hypotheses for which they are populations. Such populations are
called prototypes, and the corresponding minimal hypothesis for a prototype is called its
intended hypothesis. There exists an effective procedure for calculating the intended
hypothesis for a given prototype. [ |

The idea of the Prototype Assumption is, that if the teacher uses a prototype for selecting examples, the
learner can learn by first-order identification of the prototype from the examples, followed by the
determination of the intended hypothesis for that prototype. First-order identifiability (of populations)
refers to the existence of methods for identification in the limit of any population from positive and
negative examples (involving instances). Similarly, second-order identifiability (of hypotheses) refers to
the existence of methods for identification in the limit of any hypothesis from positive and negative
examples (involving instances). We thus arrive at the following proposition.

PROPOSITION 1. Under the Prototype Assumption, first-order identifiability of prototypes
implies second-order identifiability of intended hypotheses. [ |

Interestingly, under the Prototype Assumption it is possible to identify a hypothesis in the limit
without being able to identify a single prototype in the limit. Define the relation =: P=P’ iff any two
prototypes P and P’ have the same intended hypothesis. Clearly, this relation is an equivalence relation,
and each of its equivalence set contains all prototypes for a specific hypothesis. Suppose it is possible to
identify some hypothesis H() from examples, then it may still be the case that no first-order inductive
algorithm is able to distinguish some elements of the set of prototypes for H().

13



PROPOSITION 2. Under the Prototype Assumption, second-order identifiability is at least as
strong as first-order identifiability. -]

It should be obvious by now that Proposition 1 describes the approach exemplified by the naive
learning algorithm: in the Schema Inference Problem, every population is a prototype (a typical
population in the terminology of secion 2.3) for its intended schema. Notice also, that in the Schema
Inference Problem there are indeed several prototypes for every hypothesis. As we have seen, this causes
the second-order learning of hypotheses by means of first-order learning of prototypes to be non-
conservative, even if the first-order learning is conservative. Another drawback of this approach is, that no
advantage can be taken of the generality ordering < on the hypothesis space, if this ordering does not
correspond to the partial ordering by set inclusion of populations, as we have seen in the Schema
Inference Problem. In the next section, we study a method for implementing second-order inductive
learning directly.

4.3 Second-order learning in a Generalised Version Space model

The notion of a Generalised Version Space model has already been introduced. The idea is, that
positive examples do not necessarily result in most specific hypotheses and thus a lower boundary of the
Version Space; nor do negative examples necessarily result in an upper boundary. Any other set of
boundaries could be equally useful as the VS model. In this section, it will be shown that second-order
inductive learning satisfies a GVS model without satisfying the VS model. This requires the following:

() there exist minimal/maximal consistent hypotheses such that no hypothesis

below/above one of these is consistent with the examples;

(i) every hypothesis between one of the minimal consistent hypotheses and one of the

maximal consistent hypotheses is consistent with the examples.

As has been remarked earlier, Mitchell’s Version Spaces are VSg’s. In addition, they satisfy the
separability condition: consistency can be split into upper consistency and lower consistency, such that
any hypothesis is minimal consistent iff it is minimal lower consistent and upper consistent, and any
hypothesis is maximal consistent iff it is maximal upper consistent and lower consistent. In the VS
model, lower consistency means consistency with positive examples, and upper consistency means
consistency with negative examples. If a Generalised Version Space model satisfies the separability
condition, condition (i) above can be split into two parts:

(iia) every hypothesis above one of the minimal consistent hypotheses is lower

consistent with the examples;

(iib) every hypothesis below one of the maximal consistent hypotheses is upper

consistent with the examples.

The following result shows, that second-order inductive learning satisfies a Generalised Version
Space model.

14



THEOREM 3. Assuming that every ascending or descending chain in the hypothesis space is
finite, second-order inductive learning satisfies a Generalised Version Space model.
Proof. The following has to be proven: if Hmpip is a minimal consistent hypothesis and
Hmax is a maximal consistent hypothesis and Hyin<H<Hmax, then H is a consistent
hypothesis. Assuming the existence of minimal and maximal consistent hypotheses, this is
logically equivalent with

H1 is consistent A H7 is consistent A H1<H<H?7 = H is consistent
According to the definitions, a hypothesis H is consistent iff there is a population P for 4
that is consistent. But then P is also a population for any H>H, hence any H">H is also
consistent:

H1 is consistent A H1<H = H is consistent

Obviously this latter formula implies the former. |

The latter formula also implies that the VSg is only bounded from above by the most general hypotheses,
and that this upper boundary is fixed. This means, that convergence has to be provided by the lower
boundary moving upwards alone. In other words, second-order inductive learning trivially satisfies the
separability condition: in practice, we only work with the lower boundary.

Why are boundaries of a Version Space useful? The appropriate answer, of course, is that thase
boundaries move toward each other as learning proceeds, excluding more and more hypotheses. Indeed,
would this be not true for a particular learning problem, then we would have severe doubts concerning the
well-definedness of the problem. We therefore define a problem of inductive learning to be sound iff any
hypothesis that becomes inconsistent after a number of examples, remains inconsistent when new
examples are added. The following result shows that second-order inductive learning is sound. In stating
this Theorem, we use the notions of positive instance set PE={pe Iy | <p,+> is a positive example} and
negative instance set NE={neIfy | <n,—> is a negative example}.

THEOREM 4 (Soundness of second-order inductive learning). Any hypothesis that is
inconsistent with positive instance set PE or negative instance set NE, will also be
inconsistent with any larger positive instance set PE’SPE resp. any larger negative instance
set NE'ONE.

Proof. H is inconsistent iff for every population P for H, PE¢P v P¢(Ig—NE), which
implies for any PE’DPE and any NE'ONE, PE'¢P v P¢(Iif—NE") for every population P
for H. m

Finally, we investigate the condition under which a hypothesis Hmin is a minimal consistent
hypothesis. Let Pmin be a population for Hmin, and let H be a hypothesis below Hmin, then any
population P for H should be inconsistent:

PECPminc(IH—NE) A H<Hmin = PE¢P v P¢(Ig—NE) 4.1)

Until more is known about the relation between populations and hypotheses, nothing more can be said.
If, for instance, smaller hypotheses would have smaller populations, the lower boundary would be
associated with positive examples (as in first-order learning), and any hypothesis with minimal
populations P such that PECP would belong to this boundary. Similarly, if smaller hypotheses have
larger populations, the lower boundary would be associated with negative examples. Of course, a lower
boundary could exist even if the separability condition does not apply.

15



4.4 Second-order inductive learning for the Schema Inference Problem

In this section, we will develop a learning algorithm for the Schema Inference Problem, based on
the GVS approach. This learning algorithm will be conservative, as opposed to the naive learning
algorithm given in section 2.2, and thus converge more smoothly to the final solution. As suggested in
the previous section, we have to establish the relation between populations and schemas, in order to
construct a minimal consistent schema. Recall that a schema is consistent if it has a population
containing every positive example and no negative example. It follows thaat a minimal consistent
schema must have a typical population containing every positive example and no negative example
(otherwise, there would be a more specific schema for this population, which would also be consistent).
In the naive learning algorithm, we tried to find this minimal consistent schema by constructing a
smallest population agreeing with the examples (i.e., the positive instance set PE?). However, this rests
upon the assumption that smaller populations have more specific intended schemas, which is not true in
general. For instance, IT11={A(a),A(b),B(b),B(c)) is a prototype for £1={X—>A,X—>B}, and
IT2={A(a),A(b),B(a).B(b),B(c)]) is a prototype for £={A—B}: I11cIl2, and £1>X7. This can be
formalised as follows.

THEOREM 5. Let II be a population containing the type symbol A and the constant
symbol b, and let X be its intended schema. If X’ is the intended schema for ITU{A(b)},
then X'<X.

Proof. If A(b)eTl, then Z'=X. If A(b)eI1, then there is a type symbol B such that B(b)e I1.
Thus, adding A(b) to IT increases the number of individuals A and B have in common.
Withouth loss of generality, we may assume that X is over {A,B} (see fig. 2). We can
distinguish the following cases:

() I=; (a) Z'={X—A, X—B)} (b) Z'=(B—A)

(i) IZ={X—>A,X->B); () T'=(X—A,X—B) (b) T'={B—A)

(iii) X={A—Bj}; (a) X'={A—B} (b) Z'=({A—>B.B—>A)

(iv) Z={A—>B,B—A} and L'={A—>B B—A}. [ ]

The condition that the constant symbol b is already contained in IT is crucial, because otherwise the
resulting schema might indeed be more general. E.g., if [1={A(a),B(a)}, then Z={A—B, B—>A}, but
MU {A(b)}={A(a),B(a),A(b)}, hence £’={A—B} and £'>X. Theorem 5 can be paraphrased as: larger
prototypes!? have more specific intended schemas.

COROLLARY 6. Every schema more specific than a given schema X can be obtained by
augmenting a prototype II for X with typed individuals, of which both type and individual
occur in I1.

Proof. See cases (i)-(iv) of Theorem 5. | |

Due to the fact that compositionality does not hold for the Schema Inference Problem, a second-
order learning algorithm for it can not be incremental. At each stage, we have to use all previous
examples to build a consistent schema. Corollary 6 suggests the following method for obtaining a
minimal consistent schema: augment the positive instance set PE to a population IT that assigns every
individual in PE to every type in the type set, and construct an intended schema for IT-NE. For instance,

9In this section, we specify populations for a schema by sets like {A(a),B(a),...}, in order to keep
on using set-inclusion among populations.
10That is, if we compare prototypes that contain exactly the same type and constant symbols.

16



if the examples are A(a), B(b) and —A(b), then we have I1={A(a),A(b),B(a),B(b)} and I1-
NE={A(a),B(a),B(b)}, such that {A—B} is the minimal consistent schema. There is however one caveat: if
there are many negative examples, then some types may have no individuals in common in I[T-NE. But it
is always possible that such an individual will be introduced in a new positive example. Therefore, in the
final prototype ITy we include a typed individual A(x) for every type symbol A in the type set (where x is
a reserved individual symbol, not present in the examples). E.g., if the examples are A(a), B(b), —A(b),
—B(a), then we build the ‘maximal’ consistent prototype {A(a),A(x),B(b),B(x)}, with intended schema
{X—A, X—>B]}. Notice that this is indeed a minimal consistent schema, as opposed to @, which we
would have obtained had we not included A(x) and B(x) in our prototype. Notice also, that there is
obviously no way of arriving at @ as a minimal consistent schema, if the number of constant symbols is
uncountable.

Note carefully, that we have not yet made any assumption about whether the teacher chooses his
examples from a typical population or just from any population for the target schema. The fact that the
most specific consistent schemas are consistent by virtue of prototypes is just a consequence of the model
itself. Therefore, the assumption that the teacher chooses his examples according to a typical population
does not make any difference for the lower boundary. It does, however, make some difference for the upper
boundary: once it has been established that in a prototype two types have a common member, a
maximal consistent hypothesis should at least state that these two types have a common subtype.
However, this is a hypotheses that can never be falsified, ands so it will remain the maximal consistent
hypothesis forever. Convergence has not improved much.

Let us state the convergence properties for second-order learning for the Schema Inference Problem
more clearly. In general, the VS, will not collapse to a unique solution, because in many cases the
boundaries never meet. So we have two learning strategies: stick to the lower boundary, and stick to the
upper boundary. If we stick to the lower boundary, the resulting algorithm performs identification in the
limit provided the teacher selects examples according to a prototype, and provided the correct schema is
connected. Moreover, the resulting algorithm is consistent and conservative, thus providing ‘smoother’
convergence than the NLA. If we stick to the upper boundary, the resulting algorithm performs
identification in the limit provided the teacher selects examples according to a prototype, and provided the
types in the correct schema are either unconnected or only connected via common subtypes (two rather
uninteresting cases).

Finally, we illustrate the second-order inductive learning algorithm for the Schema Inference
Problem roughly sketched in this section. Let the type set be {A,B}. In fig. 4 below, each line specifies
the example given, the maximal consistent hypothesis after that example, the minimal consistent
hypothesis after that example, and the prototype used to construe that minimal consistent hypothesis.

17



, @

{A(x).B(x))
1. -A(b) @ {A(x),B(x)}
2.B(b) @ {A(x),B(b),B(x)}

3. A(a) @

4. B(a) ° {A(@) A(x),B(a) B(b).B(x))

(A(@).A(x),B(a) B(b).B(x))

Figure 4. Learning process for the Schema Inference Problem using the
second-order inductive leaming algorithm.

Initially, VSg is equal to the entire space of hypotheses. The first, negative example has no effect on
VSg. The second, positive example concerns the same constant symbol as the first, negative example, and
causes the lower boundary to move upwards. The third, positive example again has no effect, but in
combination with the fourth, positive example it causes the upper boundary to move downwards. Should
we add two more examples, A(c) and —B(c), then the upper and lower boundary would collapse, and the
single solution would be {X—A, X—B}. Notice, that the upper boundary moves downward due to
positive examples, and the lower boundary moves upward due to the combination of positive and negative
examples.

18



5. Second-order learning and logic

Until now, we have contrasted second-order inductive learning with the standard framework of
Version Spaces, and we have concluded that there are many differences. This is an important result,
because it allows us to incorporate the Version Space model in a more general ‘meta-model’. On the other
hand, a formulation of the Schema Inference Problem in first-order logic!! does not seem (at first sight) to
cause problems. An example is a ground literal like p (a) (positive example) or —~q (b) (negative
example); a schema consists of formulas of the form p (X) : -q (X) , and a schema S is consistent with a
set of examples E iff S,E }# 0. In this section, we briefly investigate whether existing methods for
induction in first-order logic are applicable to the Schema Inference Problem.

A general framework for inductively inferring logical theories from facts was provided by [Shapiro
1981]. In this framework, the induction algorithm starts with the most general theory 00 (which implies
everything), and a new example is read. If the current theory is too strong (implies too much), then the
guilty clause is diagnosed and removed from the theory. If the current theory is too weak, then a new
clause has to be added to the theory; candidates are socalled refinements of previously removed clauses. In
order to guarantee identification in the limit of the theory, the refinement operator must be complete. A
complete refinement operator for the Schema Inference Problem is shown in fig. 4.

O

p (X) / \q(x)
EZANTIEZAN

p (b)
p (X) : =g (X) \

p (X) :=x(X) q(X) :-x(X)

q(X) :-p (X)

Figure 4. A complete refinement operator for the Schema Inference Problem.

Despite appearances, there is a problem here: the clauses below the dashed line in fig. 4 will never be
induced, because the refinements that yield a smaller increase in the size of the current theory are tried
first. In other words, the induction algorithm will do nothing more than collecting the examples. The
reason, of course, is the definition of consistency: in Shapiro’s framework, a theory is consistent with a
set of facts if it implies these facts, while in our framework, we use the weaker property of logical
consistency.

An alternative, but equally general (although somewhat less elaborated formally) framework for
induction of logical theories is presented in [Muggleton & Buntine 1988]. In this framework, induction is
carried out by inverting resolution. A number of inverse resolution operators is defined, including the V-

The term ‘second-order’ as applied to inductive learning should not be interpreted in the logical
sense of ‘second-order predicates’, although these issues are related: in the Schema Inference
Problem, we are trying to find out if the second-order predicate ‘subtype of’ is satisfied.

19



operator, which induces g (X) : -p (X) from p (a) and g (a), and the W-operator, which induces
p(X) :=x(X),x(a),and p (X) : -x (X) from p(a) and q (a) (fig. 5).

p(a) q(X) :-p(X) P (X) : =x(X) x(a) q(X) :=x(X)
q(a) p(a) g(a)
(a) V-operator (b) W-operator

Figure 5. Inverse resolution operators for the Schema Inference Problem.

Of course, there is a control regime that decides the order in which the inverse resolution operators are
tried in a given situation. Because of our non-standard definition of consistency, we can not use
Muggleton and Buntine’s control regime directly. On the other hand, it seems very well possible to
incorporate the idea of inverse resolution operators in the framework of second-order inductive learning.

20



6. Concluding remarks

In this paper, we have presented a new paradigm for inductive learning. The usefulness of this
paradigm was suggested by the Schema Inference Problem, which we used to define the paradigm. We
have sketched methods for devising leaming algorithms for second-order inductive learning, one based on
traditional first order learning, and a new method specifically for second-order learning.

In the course of the paper, we have pointed at several possibilities for generalising the Version
Space model. One of these generalisations we called Generalised Version Spaces or VSg’s, in which upper
and lower boundaries may differ from the Version Space boundaries. We have also identified the
separability condition, which allows consistency to be separated into upper and lower consistency, and the
soundness property of inductive learning. Another important notion is compositionality, which allows for
incremental learning algorithms. We have shown, that compositionality does not hold (in general) in
second-order inductive learning. In our ongoing research [Flach 1990a], we are merging these notions into
a general model.

We have shown, that second-order inductive learning not only differs from the Version Space
model, but also from the framework of induction of logical theories from facts, with respect to the
consistency criterion used. Consequently, Shapiro’s methods are not applicable (at least not without
modification), while Muggleton and Buntine’s inverse resolution operators are, by deriving a new control
regime under which they should be applied.

A final observation: an alternative account of second-order inductive learning can be given, if a
population is viewed as an example, that is only incompletely specified by the instances. In [Flach 1989]
we argued that concept learners should allow for incomplete examples, because they still provide some
information, albeit less than a completely specified example. From this perspective, second-order
inductive learning as defined here could be called concept learning from one incomplete example. This
account of second-order inductive learning possibly makes an integration of first-order and second-order
learning into a general theory of inductive learning more feasible.

21



References

[Angluin & Smith 1983] D. ANGLUIN & C.H. SMITH, ‘Inductive inference: theory and methods’,
Computing Surveys 15:3, 238-269.

[Flach 1989] P.A.FLACH, ‘On the significance of examples in inductive learning’, unpublished
manuscript.

[Flach 1990a] P.A. FLACH, ‘Towards a meta-theory of inductive learning’, ITK Research Report,
Institute for Language Technology & Artificial Intelligence, Tilburg University, the Netherlands
(forthcoming).

[Flach 1990b] P.A. FLACH, ‘Inductive methods in data modeling’, ITK Research Report, Institute for
Language Technology & Artificial Intelligence, Tilburg University, the Netherlands
(forthcoming).

[Gold 1967] E.M. GOLD, ‘Language identification in the limit’, Information and Control 10, 447-474.
[Laird 1988] P.D.LAIRD, Learning from good and bad data, Kluwer, Boston.
[Mitchell 1982] T.M. MITCHELL, ‘Generalization as search’, Artificial Intelligence 18, 203-226.

[Muggleton & Buntine 1988] S. MUGGLETON & W. BUNTINE, ‘Machine invention of first-order
predicates by inverting resolution’, Proc. Fifth Int. Conf. on Machine Learning, Morgan
Kaufmann, San Mateo.

[Shapiro 1981] E.Y. SHAPIRO, Inductive inference of theories from facts, Techn. rep. 192, Comp. Sc.
Dep., Yale University.

[Vermeir & Nijssen 1982] D. VERMEIR & G.M. NIJSSEN, ‘A procedure to define the object type
structure of a conceptual schema’, Information Systems 7:4, 329-336.

22



Bibliotheek K. U. Brabant

17 000 011132157

ITK: PO. BOX 90153 5000 LE TILBURG THE NETHERLANDS



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

