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ABSTRACT. A Document Management System (SPRITE) especially suited for technical
documentation is described. The system includes a powerful WYSIWYG editor and
scanning, archiving and printing facilities. A distinctive feature of SPRITE is its version
model. SPRITE not only allows the user to maintain historical versions of documents, but
also variants, or configurations, that represent slightly different versions of a certain
document. The SPRITE version model is described in detail and compared with other
versioning mechanisms.

1. Introduction

The commercial market of today offers a number of systems for technical documentation.
They range from simple systems working with single documents up to sophisticated
systems for an integral document management system, from batch-oriented systems up to
state-of-the-art interactive WYSIWYG workstations (Walter, 1988). Examples are
Documenter (Xerox) , The Publisher (ArborText) and KEEPS (Kodak).

Technical documentation differs from normal documentation as created by average text
processing systems in the following areas:

Technical documents are often very large in size. Documents exceeding 1000
pages are no exception.
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Technical documents are created by a group of authors often working
concurrently.

- Technical documents have a long lifetime, following the progressive development
of the product described. The development has to be supported by multiple
versions of one document.

Technical documents have to incorporate information from other sources (other
documents, but also paper and remote CAD~CAM or database systems).

- Since technical documents are generally complex, there is a need for management
support for such documents.

- Since technical products are often designed in series, as configurations differing on
details only, the various documents describing the products also exist as close
variants of each other.

To cope with these requírements, we are developing the SPRITE Document Management
System as an integrated system for the production and maintenance of technical
documents. We call such a system a Technical Document Management System (TDMS).

The rest of this paper is organized as follows. In section 2, we give a short overview of
the functionality of the SPRITE system. In section 3, we spell out one feature, that is,
how SPRITE supports document versions. The versioning mechanism is compared with
other sytems, such as MINOS (a multimedia database), EXODUS, ORION and ONTOS
(object-oriented database systems).

2. Overview of the SPRITE system

The document management system consists essentially of six components:

- a screen-oriented WYSIWYG document processor
- a browser and retrieval component
- a high-quality printing component
- a scanning 8i recognition component
- an inforn~ation acquisition component
- a multimedia database (MMD)

Both the database and the document processor allow the use of text, graphic and raster
data. In composing a document, an author can access other documents (by means of an
import mechanism), or retrieve information from other systems (for example, CAD
systems) by means of the information acquisition component, or extract information from
paper by means of the scanning 8c recognition component.

The system offers several functions for project management. Work on documents can be
delegated to several authors with well-defined permissions. Project information can be
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attached to a document reflecting its lifecycle ("draft", "ready for review" etc).

Documents may exist in the system in different versions. By means of the browser
component the user can easily view all versions of a document. The MMD supports
efiicient data sharing between different versions.

The system can also maintain links and interdependencies between documents. Such links
can be used either to locate related documents with the browser (hypertext-like function),
or to trigger an action in case one of a group of related documents has been updated and
the other documents have to be updated as well.

Since technical documentation generally uses a lazge amount of data and has a long
lifetime, the MMD is supplied with mass storage capabilities, which will be accomplished
by integration of an optical disk within the MMD.

The SPRITE system also supports multi-authoring. It is possible for several authors to
edit a document simultaneously. Provisions are taken so that concurrent access to a
document does not cause inconsistencies, that authors have easy access to assigned
document parts, and that a manager may easily supervise the progress of the work.

APPLICATION
LEVEL DOC PROCESSOR BROWSER SCANNER

CONCEPTUAL
LEVEL INFORMATION SERVER

PHYSICAL OPTICAL RELATIONAL
LEVEL DISK DATABASE

Figure 1: SPRITE system architecture

The architecture of the Document Management System is split up over three levels to
enhance data-independence and extensibility (see figure 1). The bottom layer (physical
layer) is responsible for the storage of content and structure of the documents. Structural
information is stored in a relational database, and content on magnetic and optical disk.
The middle layer (conceptual layer) comprises an object-oriented multimedia database
(MMD). The MMD reflects the conceptual model of the document and the document space
and supports conceptually meaningful operations such as CREATE document, INSERT
document IN folder, SELECT (seazch condition) etc. On top of the MMD, the various
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applications are located, such as the document processor, the browser, and the scanning 8z
recognition.

The MMD of the SPRITE system concentrates on all media that can be printed on paper,
such as text, drawings, photographs, tables (structured information) and business
graphics. Sound and video are not included. The document model used by SPRITE has
been based on ODA (ISO 8631 international standard for Office Document Architecture;
for an introduction, see e.g. Krdnert, 1987) but for practical reasons this standard was not
followed completely.

3. Version model

As stated in the introduction, a technical document management system (TDMS) should
support the use of versions. Two types of versions must be distinguished:

historica[ versions

confïgurations

Historical versions correspond with either the derivational or logical history of a
document. Technical documents are developed on a project basis, in consecutive steps,
over a long period of time. The TDMS should support the derivation of new versions of
documents.

Different configurations of a product require (slightly) different versions of the
documentation. For example, a car may exist in a manual transmission or automatic
configuration. The documentation system should support corresponding configurations of
the car's manual. It should also support versions that differ in style or language.

The MINOS system (Christodoulakis et al, 1986) and the EXODUS system (Carey et al,
1986) also support the derivation of new versions of a document, but no distinction is
made between historical versions and configurations. However, the combination of these
two dimensions is not trivial, and can easily lead to chaos if no special organizational
measures are taken. Distinguishing the two has the advantage of a clear conceptual picture.
In several situations, it also allows a greater level of data sharing, that is, higher efficiency
in storage use. A distinction between historical versions and alternatives is made in several
CAD~CAM systems and in the object-oriented database system ONTOS (Andrews, 1989).
For an overview of some open questions about versions, see (Kent, 1989).

3.1. HISTORICAL VERSIONS

Technical documents exist over a long period of time and are developed in several steps.
SPRITE allows the user to keep historical versions of a certain document, alternatively
called checkpoints. This mechanism has several functions:
~` recovery from mistakes. In the course of development, the author may find out that

he is on the wrong track, and wants to start again from some previous version. In

4



that case, he can use the browser to locate that old version and start editing again
from there.

~` data sharing. When the author wants to rewrite some existing document, he need
not copy its entire content. Deriving a new version from it is sufficient and
guarantees efficient content sharing.

~` project management. Technical documents typically have more than one edition.
The version mechanism represents the logical relationship between the subsequent
editions.

The historical version mechanism in SPRITE is implemented by the following operations:

NEW-CHECKPOINT(oid): oid
FREEZE(oid)
CHECKIN(oid)
CHECKOUT(oid)
DELETE(oid)
ARCHIVE(oid)

NEW-CHECKPOINT takes an object identifier as argument and returns the object
identifier of a new object. This new object (document) is initially the same as the old
object; attribute values are copied and the content is shared. When the user starts editing
the document, the affected components in the logical structure are automatically replaced
by new versions. Replacing a component by a new version triggers the replacement of the
parent component by a new version, up to the root component. The updates are performed
on the new versions. In this way, the data sharing is maximal; it is essentially the same as
used in the EXODUS system.

The new checkpoint is connected to the old checkpoint by means of a previous~next
relationship. In this way, it is easy to go back in the derivation history of a document.

Note that new checkpoints can be derived from any existing checkpoint. The relationships
between checkpoints therefore form a tree.

The effect of FREEZE is to make an object no longer revisable. Any attempts to update its
attributes or content are blocked. However, frozen documents can be displayed, printed
and used to derive new (revisable) checkpoints. At present, a FREEZE (of the old
document) is triggered by NEW-CHECKPOINT, so that all internal nodes of the
checkpoint tree are always frozen, and hence immutable, but FREEZE can also be done
directly by the user.

Not all checkpoints are equally important in the project history. Usually, authors will work
on a document for some time, and then decide to turn the last checkpoint into an edition.
An edition is defined as a special checkpoint with a certain public relevance; it may be the
checkpoint that is actually printed and shipped to the clients, or it is accepted by the
author's manager. The operation CHECKIN is used to promote a checkpoint to the status
of an edition. Editions have editionnumbers, so that it is easy to go through all editions of
a document. Editions are always frozen, and, even more strictly, cannot be used to derive
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new checkpoints. An explicit CHECKOUT command is needed beforehand.

DELETE just deletes a checkpoint. Any checkpoint can be deleted, unless it has been
azchived (by means of the ARCHIVE command).

Figure 2 gives an example of a document history. Note the difference between the
derivation history and the edition history. Checkpoint 4 is the next edition of checkpoint
8, but is derived from checkpoint 2.

Figure 2: Checkpoint tree with editions

The history mechanism of SPRITE is especially aimed at documents, but we believe it also
has a more general applicability. For example, instead of documents, we could also
consider historical versions of employee objects in a personnel department. Each time the
employee information is updated, for example, because of a new salary, a new version is
created.

3.2. CONFIGURATIONS

SPRITE supports the creation and retrieval of documents describing different
configurations of a product. Two perspectives are provided, one for authors or creators of
configuration documents, called the aggregation view, and the other, the specialisation
view, for those wishing to retrieve a coniiguration document.

Let us call the collection of documents for the different configurations of a product a
document set. The individual documents in this set will be called final or configuration
documents, to distinguish them from the objects from which they are built up, which are
called building block documents. These terms will become clearer soon.

Our examples are based on documentation for a car. The car exists with automatic or
manual transmission. Manual transmission cars have either four or five speeds, and come
with either a sports-style gear stick or a standard one. See figure 3. Thus there are three
configuration dimensions -"transmission", "speeds", and "stick", with the following
domains of configuration values :{ manual, automatic ),{ 4-speed, 5-speed }, { sports,
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standard}. Speeds and stick are sub-configurations of the manual transmission
configuration.

TRANSMISSION

car

Figure 3: Configuration model example

All of the documents in the car manual document set will be largely the same. In some
places they will be transmission specific. Similarly, the documents for manual
transmission cars will have additional parts in common with each other, but will have
some parts specific to the speeds dimension and other parts specific to the kind of stick.

The author's or creator's perspective of the SPRITE configuration model is of a
configuration document as a complex object made up of common components and
components dependent on particular configuration dimensions. The author creates all the
components (chapters, text, graphics, ..) corresponding to one configuration value (e.g.
the manual transmission, without any sub-configuration parts) in one building block
document.

Each building block document is a separate identifiable object in the system, with its own
history (as described earlier). It can be edited and manipulated separately from the other
building blocks making up the document set. Separate building block documents can be
assigned to separate authors.

The other important point about this model, from the point of view of creation and update
of configuration documents, is that a particular component or seyuence of components is
stored in only one place, even if it appears in many of the final configuration documents.
So when the picture of the sports stick needs to be changed in all the final documents, it is
replaced in one place - in the sports stick building block document.

As well as containing content such as text and graphics, building blocks include
information about how they fit together with other building block documents to create final
documents. This is explained further in the next section. As an example the sports stick
building block, the 5-speed building block and the manual transmission building block are
combined with the building block containing content common to all the car manuals to
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produce the final document for the sports stick, 5-speed, manual transmission car. It is
this building up of final documents from building blocks which leads to the name
"aggregation view" for this perspective.

The other perspective on the SPRITE configuration model is that of those retrieving
configuration documents. In this case we are not concerned with the construction of the
document, only with its content. In this perspective a document describing a specific
configuration of a product is a specialisation of a document describing the generic product.
For example the five speed manual transmission car manual is a specialisation of the
manual transmission car manual which is in turn a specialisation of the ordinary car
manual. Another way of looking at it is as inheritance - the more specialised document
inherits all the components of the more general document, (probably) adding some of its
own.

3.3. THE BUILDING BLOCK MODEL

In this section we explain more fully what a building block is and how it relates to other
building blocks of the same document set.

car

placeholder
~

tran s-
missnr`

auto manual

trans-
missni

auto manual

Figure 4: Placeholders and filling-in components for an example car manual

Figure 4 shows the conceptual structure of a sample manual for our car example. The top
part of the diagram contains content common to all the car configuration documents. In
two places final documents will contain transmission specific content. These are indicated
by placeholders. Each placeholder is marked with a domain, in this case "transmission".
At the next level we see the components which would replace these placeholders in final
documents - one component for each placeholder for each dimension value. These are
called filling-in components.
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One of the manual transmission components has a speeds-specific part and a stick-specific
part, each indicated by a placeholder. At the third level we see the filling-in components
for these placeholders.

A building block is the collection of components for a specific configuration value. In
Figure 5 we show the building blocks for the car manual document set. There are seven of
them. Each one, other than the common one marked "car", is linked to a higher level
building block. The links indicate which filling-in components fill which placeholders.

ccrr

trans-
missn

auto

mnnual stick speeds

tran s-
missn

sports

.standard

4speed

Sspeed

Figure 5: Seven building block documents for the example of figure 4

Final documents are produced by combining the set of building block documents
corresponding to the desired configurations. Each placeholder in a higher level building
block document is replaced by a filling-in component from a building block of the
corresponding configuration dimension.
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3.4. COMBINING CHECKPOINTS AND CONFIGURATIONS

As stated above, building blocks have their own checkpoint history. If we consider all
checkpoints of building blocks, the configuration tree, as exemplified in Figure 5,
becomes more complicated. For example, we may have three checkpoints of the 4speed
building block, and two of the manual transmission building block. Furthermore, it may
be the case that only the first checkpoint of the 4speed building block is compatible with
the first checkpoint of the manual transmission building block, while the second and third
checkpoints are compatible with the second. "Compatible" means here that for each filling-
in component there exists one placeholder component in the higher level building block.
The compatibility relationship is explicitly recorded and automatically updated by the
system. In this way, the user can see immediately how a certain building block can be
combined. The system also ensures that for each lower level building block at least one
compatible higher level building block exists. If this integrity constraint were not enforced,
we could get building blocks that could never be edited or printed, since editing and
printing requires a context that specifies, for each filling-in component, its position in the
logical structure of the document.

Usually, the user is not interested in all checkpoints and configurations but only in one
parricular checkpoint of each configuration. It is possible to keep record of the "currently
active configurations" in a so called "composed document". This composed document is
just a set of identifiers representing compatible building blocks. This composed document
can be opened by the user when starting the editor. Composed document objects can be
regazded as offering a simple idea of context.

3.5. COMPARISON WITH OTHER APPROACHES

Distinctive features of the SPRITE version model are:

~` versioning is defined at the conceptual level;
~` a clean distinction is made between historical versions and configurations;
~` the version model is supported by an efficient storing mechanism;

As for the first feature, SPRITE differs for example from EXODUS (Carey et al, 1986)
and the general version model presented in (Klahold et al, 1986). EXODUS supports
basic versioning operations on the internal level, but leaves the conceptual level open.
(Klahold et al, 1986) represent versions by means of version graphs and partitions. The
user has the possibility to define several version graphs, and to insert versions into these
graphs. To make one object a version of another object, the user must define an edge
between the two nodes. Several version graphs can coexist, so that for example our
version model could be implemented by means of a combination of a historical graph and a
configuration graph. Partitions are used to class nodes of a graph together; for example,
our notion of editions corresponds to a partition of the historical version graph. Although
this mechanism could be used to implement our version model, it does not have the
attached semantics.

A difference between configurations and histories is made in the VISION object-oriented
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database system (Caruso 8i Sciore, 1988). The difference is here between TimeSeries and
versions. TimeSeries are ordered and accessed on date; when an object (function) is
declared as a TimeSeries, automatically all historial versions are stored (no explicit
freezing is necessary). Versions are derived from objects by means of a"newVersion"
operation, and versions can be frozen and reactivated. VISION also implements an
interesting context mechanism; however, it is not a multimedia database and apparantly has
no data sharing at the internal level.

4. Conclusion

In this paper, we described the SPRITE techical documentation system and in particular
its versioning mechanism. SPRITE makes a distinction between historical versions and
configurations. A special feature of this versioning mechanism compared with other
approaches is that versions are defined at the conceptual level. It allows for efficient data
sharing,but this occurs as a result of the user's modelling the document rather than by
direct manipulation on data structure level. We compared SPRITE in this respect with a
couple of other multi-media and~or object-oriented databases.

One limitation of the SPRITE version mechanism is that configurations must be iitted into
a hierarchy. Multiple inheritance is not possible. Taking up the example of section 3, there
is no place to put content that is specific to "5 gear, sport stick". This would require a
building block that is both a subconfiguration of "5 gear" and of "sport stick". We have
prohibited such situations in order to keep the system simple.

One interesting point of future research is to transfer this versioning mechanism from the
particular case of the document to the general level of "object". For example, for a
"person" we might also keep a history record, as well as different configurations. John
may be both a teacher and a researcher; as a teacher, he earns 30K and as a researcher he
earns 40K. Although for these cases the implementation issue of data sharing is less
relevant (because the data items are not very big), there is of course the question of how to
handle these versions cleanly on the conceptual level.
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Abstract
On the basis of practical experience in a project on multimedia databases, we
propose an object-oriented methodology for the conceptual database design.
The conceptual specification language includes the notions of generalization,
aggregation, versions and methods. The semantics of the language is described
in dynamic logic.

Keywords: design methodology, versions, multimedia databases, dynamic logic

1. INTRODUCTION
Object-oriented data models (Banerjee et al, 1987) allow the definition of complex objects
(Khoshafian 8L Copeland, 1986). An object has a number of attributes; the value of an attribute
itself is an object. An object is an instance of a class; a class may be a primitive class without
any attributes (e.g. integer, string), or may have any number of attributes. Object-oriented
models recapitulate semantic data models used in databases. Primitive classes correspond to
Lexical Object Types (LOT's) in the NIAM model (Nijssen, 1976). Other objects aze called
Non-lexical Object Types (NOLOT's). Peculiaz features of object-oriented models aze
primarily the possibility to define complex objects, and the specification of operations in the
form of inethods.

This report is based on reseazch currently performed on the design and implementation of a
document processor aimed at technical documentation. Some special features of this document
processor aze:

- the use of historical versions of documents
- the integration of different media (text, graphics, raster)
- the possibility to define variants of documents
- the availability of links for hyper-text applications
- a screen-oriented browser
- integrated access to databases and CAD~CAM files

The implementation of the Document Processor is split up over three levels to enhance
data-independence. The bottom layer is responsible for the storage of content and structure of
the documents (for the structural information, a commercial relational database system is used,
for content an Optical Disk Server). The middle layer provides a Multimedia Database (MMD).
The MMD is based on a conceptual model of the document and the document space, and
supports conceptually meaningful operations, such as CREATE document, INSERT document
(in folder), SELECT (seazch condition) etc. On top of the MMD, a couple of applications is
defined. These applications allow for, among others, editing the documents, browsing in the
document space, printing and document acquisition (scanning).

In this paper, we will concentrate on the design of the MMD, which is based on a conceptual
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model. For this model, a combination has been made between the NIAM methodology
(Nijssen, 1976) and an object- oriented approach. NIAM is a semantic data model and as far as
data structures are concerned, close to an object-oriented model. It has a graphical formalism
which makes it easier to communicate the model between various partners of the project.
Moreover, since we used a relational database for the physical layer, we could make profitable
use of the existence of a database generation tool that maps NIAM schemas to table definitions
(with all the necessary constraints - see DeTroyer, 1989).

We extended NIAM in an object-oriented way for the following reasons. First, for the design
of the MMD interface we needed also to define the dynamics of the model. The object-oriented
methodology allows a clean description of the dynamics by means of inethods attached to the
object types which we will describe shortly. Secondly, adopting an object-oriented
methodology is helpful for attaining extensibility, since it makes the dynamic addition of new
object types and methods easier. Thirdly, the objects we aze dealing with show features that
tend to be built-in in object-oriented database systems:

~` the central object type (the document) is a complex object consisting of several text and
picture components. For the reasons described above, sharing of parts of this
component structure is very important because these parts may be very large. NIAM
itself does not incorporate an aggregation concept yet explicitly. The aggregation
hierarchy is not only useful for shazing, but also as a unit of clustering, as a unit for
retrieval, as a unit for authorization, and as a unit for locking in the context of
concurrent access (cf. Kim, 1989);

~` documents may have versions, which is also a feature of advanced object-oriented
systems;

~` the document processor allows also the creation of new document types. Examples are
"manual", "letter" etc. When a document is created as instance of a certain type, it
inherits the style, and maybe some content (for example, a front page).

An object-oriented model was also adopted by the MINOS system (Christodoulakis et al,
1986), a prototype MMD system developed at the Universities of Toronto and Waterloo.

On the other hand, our database (design) differs from what is sold nowadays as "object-
oriented databases" at least in the following two respects:
(i) we use an RDBMS, extended with an Optical Disk server, for physical storage. That is,

a document, as a typically aggregated object, is not stored "object-oriented". We do
make use of the aggregation concept for clustering, but not as radical as this is done in
"object-oriented databases". This is not only because an RDBMS is more readily
availabe, but also because it is not cleaz whether an object-oriented storage strategy
gives an overall better performance.

(u) instead of using an (imperative) 00 programming language for the specificaiton of
dynamic behaviour, we tried to develop a declarative style based on dynamic logic.

This paper is organized as follows. In section 2, we describe the MMD specification language
with a special emphasis on the operations dealing with versions. In section 3, we describe the
semantics by means of an interpretation into dynamic logic. Section 4 contains some
conclusions and topics for future research.

2. OVERVIEW OF THE MMD SPECIFICATION
The MMD is a well-defined level of the Document Processor. For the design, we have
developed a specification formalism from which the following language is derived. The
specification now exists only on paper and is used as the basis for the implementation. We
intend to automate the implementation process later. Then we would have a self-contained
application-independent Object Oriented Multimedia Database Layer built azound a relational
DBMS. In the mean time, the formalism serves well as an interface between the programmers
and the application developers.
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2.1 Static part
The static part of the specification consists of class definitions. We restrict ourselves here to the
written form, ignoring the 1`TIAM pictures which have been developed in parallel. A class
definition contains an object type name, a list of attributes, and generalization information. The
lexical object types are supposed to be predefined. Some examples:

Class document space object
Attributes

name: string;
owner: user,

Subtypes
dso-type: { folder, document, document-list }

end;
Class folder
isa document space object
Attributes

content: set-of document space object independent
Functions

size: integer
- COUNT(content(~i-self))

end;

Class user
Attributes

name: string;
real-name: string;
password: string;
home-folder: folder

Keys

end;
{ name }

Class group
Attributes

name: string;
content: set-of user independent

end;

Folder is defined as a subclass of "document space object", and so it inherits the attributes
"name" and "owner". A folder has an attribute "content". In our language, this is a special
attribute with special semantics, used for the aggregation abstraction. The special semantics
include:

~` the optional use of keywords independent and exclusive (cf. Kim, 1989). When the
composite reference is dependent, this means that the deletion of the complex object
causes the deletion of the component if this component is not contained in any other
complex object of the same type. It also implies that the object can only be updated in
context. A reference is exclusive if a component may occur in at most one complex
object. By default, the component reference is dependent and not exclusive.

~ the system-defined operations INSERT, REMOVE, and MOVE immediately apply.

In contrast to database models, it is not necessary to specify the key, or the candidate keys,
because each non-lexical object is uniquely identified by an object id (unless it is an aggregation -
see below). The definition of keys is optional and imposes an extra integrity constraint on the
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model. For example, names of users must be unique within the system. Keys can be used for
quick reference. If "hansw" is the name of a user, then Qa hansw is the user with name
"hansw".

Funcrions can be defined on classes behaving like derived attributes. They can be accessed in
the same way as ordinary attributes but they cannot be updated. When subtypes are defined for
an object type, the subtype group, or criterion, should be given which also can be queried as an
attribute. An object type may have more than one subtype group.

Sometimes, we need complex objects that are existence-dependent on their components. We
call such objects aggregarions. For example, in our model we also have a class "document
list", which can be used to group several documents together, for example, the respective
editions of a manual. The elements of these list are not just documents, because we want to add
some additional information to them, in particular, some edition number and a date of insertion.
Therefore we define the class "document entry". A document list is a list of document entries.
A document entry can be defined as:

Class document entry
Aggregation-of

document;
label: string

Attributes
inserted at: date

end; -

This means that document entries can only exist as combinations of document and label. When
the document is deleted, the document entry is deleted as well (but not the other way round).

2.2. Dynamic part
For each object type declared, the functions CREATE and DELETE are predefined. For sets
and lists, we also have the functions INSERT and REMOVE. For example, if "owner" of
"document space object" would have been defined as a set of users, the operation (message)

[dsoY INSERT owner userX]
inserts the user userX in the set of owners of instance dsoY. As we noted above, the "content"
attribute has a special treatment. In that case, we do not need to give an attribute:

[folderY INSERT dsoX]
This could be viewed as a shorthand of:

[folderY INSERT content dsoX]

2.2.1 Versions
Special semantics are included for versioned objects. These must have been defined as such.
For example:

Class document
isa document space object versionable
Attributes

title: string;
style: StyleObject;
content: composite component exclusive;
authors: set of user

end;

Class component
isa object versionable
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Attributes

Subtypes
{component-type: composite component, basic component }

end;

Class composite component
isa component
Attributes

content: component dependent;
title: string optional;

end;

Class basic component
isa component
Attributes

data: set of character
end;

When an object is versionable, the following operations are provided:

FREEZE marks the object as immutable. No changes are possible anymore (but the object
can still be deleted).

NEW creates a new "checkpoint" of the object. The new checkpoint is a duplicate of
the pazameter object. Versioned objects inherit two system-defined attributes:
"generic-id" and "version-nr". These two attributes together form a key of the
object.

If dl is a document, then the operation
[dl NEW]

where generic-id(dl) - x and version-nr(dl) - n, results in a new document, d2 let's say,
with generic-id(d2) - generic-id(dl) - x, and with a different version-nr (the version-nr is
not necessarily nfl, since the versions can form a tree - it is possible to make new versions
from any old version). The id of the new object, which is a duplicate of dl, is returned.
Versioned objects do also inherit a system-defined attribute "previous-version", which for d2
in this case is set to dl.

The operation FREEZE is used for making the object ineditable. In the Document Processing
system, a NEW always triggers a FREEZE of the old version, but this is not necessary. To
know whether an object is frozen or not, it is possible to ask for the "edition-status", which is
either "revisable" or "final". Again, this attribute is system-defined. Any version mechanism
must also specify whether new versions of components are made when a new version of the
complex object is generated. Obviously, when the composite reference is exclusive, new
versions must be made. In the case of non-exclusive composite reference, we have decided to
defer the generation of new component versions. Since documents may be very large, it is
necessary to share content between versions as much as possible. We use the mechanism of
"deferred copy" to achieve this. This means that the two versions shaze their content. Now if
the old version is frozen and the user starts editing the new version, new versions must be
made from the components that get changed, and from their pazents (up to the root). The
updates are performed only on these new components. Components that aze not affected by the
update remain unchanged (and shazed). The mechanism used is essentially the same as in the
EXODUS system (Carey et al, 1988).

Note that in the specification above, both documents and components are defined as
versionable objects. If components were not versionable, the mechanism described above
should make copies of the components to be edited.
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The individuation of versions has been brought forwazd before as a problem (Kent, 1989). Is
each document version a sepazate document, or is there actually one document? In our present
conceptual model, each version is considered to be a document subsuming one generic
document. However, we would not like to treat all versioned objects in this way (for example,
persons). In general, the individuation question depends on the entity type. In (Weigand,
1990) we made a distinction between first-order entities, such as persons, second-order
entities, such as States of Affairs, third-order entities, such as propositions, and fourth-order
entities, such as sentences and texts. Roughly said, it is only for the third- and fourth-order
entities that each version is to be taken as an individual object. For the other entities, we count
only one object. In some cases, a predicate is ambiguous: for example, we must distinguish
the predicate "book" as a physical entity (first-order) from the predicate "book" as text (fourth-
order entity).

2.2.2 Attribute update operations
The language includes a general SET command which can be used to update the value of an
attribute. Examples:

[x1 SET owner ~a hansw]
[dl [cl SET title "introduction"]]

The first message is a request to object xl to set the owner attribute to (the user with name)
hansw. The second message shows the use of aggregation. It is a request to document dl to
request to component cl to set the title to "introduction". This is the way to update some object
in the context of a complex object. We recall that if the the attribute is set-valued, the operations
INSERT and REMOVE aze available as well.

2.2.3 Schema evolution
The language allows the creation of new types by means of the command CREATE-TYPE.
The new type can be created as a subtype of an existing type, in which case attributes are
inherited. The new type can be edited. If it is versioned, it can also be frozen, and new
versions can be made from it. We allow the creation of instances only for frozen or
non-versionable types. In the Document Processor, the CREATE-TYPE is used for defining
document types such as manuals, or memo's. The document type specifies, among others, the
possible styles of the document (page size, font, font size etc).

2.2.4 Variants
The MMD also allows variants of documents to be created, by means of the command
MARK-CONFIGURATION, which takes as arguments a document, a configuration
dimension (for example, "terminal") and a domain (for example, vt110, vt220). This means
that the document exists in two variants, one for "terminal-vt 110" and one for
"terminal-vt220". The user should indicate which components of the document are shared, and
which ones are configuration-dependent. We intend to present the variant mechanism in a
separate paper (see Hederman 8L Weigand, 1990).

2.2.5 User-defined dynamic constraints
The operations CREATE, INSERT, FREEZE etc do already provide the user with a powerful
general operation language. Application-dependent dynamic constraints can be defined in
methods. We distinguish preconditions, postconditions and triggers. Preconditions are
conditions that must be fulfilled before the operation can be executed. For example, a
component can be removed from a document only if the document has editionstatus
"revisable". Postconditions aze conditions that aze true immediately after the operation. For
example, when a document is created, the owner of the document is the current user, and the
document must have at least one component. Triggers are operations that should occur
afterwards. For example, when a document is deleted, all links with other documents must be
deleted as well. We also allow the definition of "before-triggers". These triggers aze executed
before the operation. In general, the methods are defined by forms with the following structure:
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NAME
CREATE

CLASS
document

PARAMETERS
~i-name: string
~i-folder: folder

RETURN
~o-id: document

DESCRIPTION
Create a document with name ~i-name in folder.

PRECONDITIONS
C1 NOTEXIST ~I-doc contained-in ~i-folder

WHERE name(~i-doc) - ~i-name
C2

LOCALCONDITIONS
L 1 ...
L2
POSTCONDfTIONS
P 1 EXIST ~o-id
P2 name(~o-id) - ~i-name
P2 owner(~o-id) - ~g-user

TRIGGER BEFORE
D 1 ...

TRIGGER AFTER
T1 ...

ERRORS
EC1 Name not unique within folder
EC2 ...

REMARKS

END

The meaning of these specifications will be described precisely in section 3. Intuitively,
PRECONDTI'IONS contains necessary preconditions of the method, and POSTCONDTITONS
describes the effect. Both are in the form of first-order formulae, possibly open in the
parameter variables. For each precondition, we have one corresponding error specification. If
the precondition is not met, the corresponding error message is returned. The TRIGGER
BEFORE and TRIGGER AFTER are calls to other methods, to be executed before or after the
operation. Finally, the LOCAL CONDITION part can be used to set the value of local variables
to be used in the postconditions. For example, consider a method for BIRTHDAY:

NAME
BIRTHDAY

CLASS
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person
PARAMETERS

DESCRIPTION
BIRTHDAY increases the age of the person.

LOCAL CONDITIONS
L1 age(~i-self) - ~I-n

POSTCONDffION
P1 age(~i-self) - ~I-n t 1

END

This operation specifies that if the age of person is n, then after BIRTFIDAY, the age is ntl
(note that the input parameters aze prefixed with ~i, and the local variables with ~l - note also
that the object of the class to which the message is sent, need not be mentioned explicitly in the
pazameter list). The two examples, CREATE-DOCUMENT and BIRTHDAY exemplify two
kinds of specifications. CREATE-DOCUMENT is an example of a method that refines and
replaces an already defined method ( the standard CREATE). BIRTHDAY is a method defined
independently.

2.3 Retrieval
To achieve full data-independence, a query language is defined that hides the relational table
definitions, and that also supports the generalization and aggregation abstraction. For practical
purposes, we have chosen for a format that remains close to SQL. The following syntax
defines the first version of this query language:

-----------------------------------------------------------------
~S~ -~ SELECT ~A~~ FROM ~V~ ~I'~ WHERE cC~
cA~ -) cATTRIBUTE~
~V~ -~ [A-Z][0-9]~
~I'~ -~ ~I'YPE~
~C~ -~ ( ~C1~(AND I OR ) ~C~ I ~C 1~)
~C1~-~ („(„ ~C~ „)„ I ~E~ )
~E~ -~ ~L~ ("-" I"~" I"~" I"!-" I IN I CONTAINED-IN ) ~L,~
~L~ -~ ( ~CONSTANT, I ~V~ I ~M~ I ~F~ "(" ~La ")" )
~F~ -~ ( ~ATTRIBUTE~ I ~FLTNCTION~ )
~IVi~ -~ „(" ~Q~ ~V~ ~I'~ WHERE ~C~ „)"
~Q~ -~ ( SOME I Tl~ )
-----------------------------------------------------------------

- The query takes the form of a SELECT statement, where ~ specifies the type domain, ~C~
the seazch condition, and ~A~ the attributes that must be retrieved. A variable ~V~ must be
supplied so that it can be used in the search condition. Example:

SELECT real-name
FROM X user
WHERE name(X) - "maria"

which returns the real-name of the user(s) with name "maria". Now a more complicated
example:

SELECT name title
FROM D document
WHERE owner(D) -(THE X WHERE name(X) -"maria") AND
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(SOME C figure WHERE caption(C) -"NIAM picture 1")
CONTAINED-IN D

This query returns the name and title of documents owned by "maria" and containing some
figure with caption "NIAM picture 1". The search condition contains two terms (type ~M~).
One is a definite term with variable X, which refers to user "maria", and the other one is an
indefinite term with variable C, which refers to a figure (subtype of component) in the
document. A term corresponds to a subquery in SQL. Note the use of the CONTAINED-IN,
which takes the transitive closure of the function content (content() f content(content()) f...).
This is a useful construct to support the aggregation abstraction.

- Some integrity constraints on the syntax must be supplied. The most important one is that
each atomic part of the condition must contain at least one reference to the seazch variable. The
same condition holds for the condition of the embedded terms.

- The negation is present only in the "!-" comparison operator. It is required that at least one
side of the inequation is a constant. This is too restricted, but it makes the interpretation much
easier.

- The present version of the query language does not support yet the upwared inheritance of
attributes along the aggregation dimension. In several object-oriented query languages, this is
supported by a dot notation. For example, ..font can be used as an attribute of document when
it is in fact an attribute of the style of the document. We hope to include such semantics later.

3. SEMANTICS
The semantics of the retrieval language is not worked out here. For the semantics of the
specification language, we make use of dynamic logic. Dynamic logic has been used before for
the definition of integrity constraints (Khosla et al, 1986; Wieringa, Meyer, Weigand, 1989;
Wieringa et al, 1989). We briefly review the main concepts. The syntax of the specification
language, with AND, OR etc, is already logic-based. The interpretation of this part of the
syntax is therefore omitted. The same holds for complex term expressions, for example,
expressions with arithmetical operators. We concentrate on those points of the language that are
really different.

3.1 Dynamic logic
Dynamic logic is an extension of first-order logic that can be used profitably for integrity
constraint specification. For static constraints, we can simply use the first-order part. An
example is the constraint that birds aze warm-blooded. For dynamic constraints, the language is
extended as follows. We assume a fixed set A of atomic actions, and then define the language
L-Act of actions as elements of A, the non-deterministic choice of two actions, represented as
al I a2, the parallel execution of two actions, represented as al 8z a2, the non-performance of
the action a, represented as NEG a, and the special constants ANY (denoting the unspecified
action) and FAIL (denoting the empty action). For the semantics, we assume an SS
Herbrand-Kripke structure PW which can be viewed as a collection of Herbrand structures
which aze called worlds or-,tr~tes. The semantics of actions is that they aze functions on PW.
Note that if an action changes a world, it does so instantaneously, i.e. there are no intermediate
worlds during the execution of an action. A sequence of action steps is called a transaction.
Now the extension of first-order logic L-Dyn is basically the addition of formulas of the form

[t] f
where t is a transaction and f some well-formed formula, with the intended meaning that f is
true AFTER t. An example of a dynamic logic expression is

FORALL e: NOT employee(e)
-~ [hire(e)] employee(e)

(we use the verbalizations FORALL and NOT for the corresponding logical operators; "hireQ"
is supposed to be an atomic action, and employee a predicate; for the use of parameters in
actions, see Dignum, 1989). The meaning of this formula is that for all e, if e is not an
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employee then he is an employee AFTER the performance of the action "hire". Dynamic logic
can be used again to implement a variant of deontic logic. The interested reader is referred to
the afore-mentioned publication, and to (Fiadeiro et al, this volume) for application in software
specification. We specify here only the representation of objective modalities:

POS(a) ~-~ NOT [a] false ~~` possible
NEC(a) ~-~ [NEG a] false ~~` necessary
DIS(a) ~-~ NOT NEC(a) ~` discretionary
IMP(a) ~-~ NOT POS(a) ~` impossible

Moreover, if al and a2 aze actions, then al ~~ a2, pronounced as: "action al implies action a2"
is defined as:

al ~~ a2 ~-~ IMP(a18zNEGa2)
That is, al cannot be executed if a2 is not executed in parallel.

In (Wieringa et al, 1989), special attention was given to the inheritance of dynamic and deontic
integrity constraints. For this purpose, the language was endowed with two special predicates.
First, the unary predicate E for existence, indicating which entities exist in the world in
question. Second, the binary predicate TYPE, where the second azgument can only be filled
with a type name (of set T), such as "bird" or "employee". If tl and t2 are type names, we use
the abbrevation

t1 ~ t2
to say that tl is a subtype of t2, that is,

FORALL x: TYPE(x,tl) -~ TYPE(x,t2)

3.2 Further extensions to the dynamic logic
In order to be able to give compositional semantics from our object-oriented specification
language to dynamic logic, we define the following useful structures. We define a special
ternary predicate ATT, where the first and third azgument is always a type name, and the
second argument an attribute name (of set AT). Moreover, a ternary predicate VALUE, where
the second argument is always an attribute name. In this way, we arrive at a semi-second order
logic where we can quantify o~er attributes. Some examples of well-formed atomic formulae:

ATT(document, title, string)
ATT(document, author, person)
ATT(person, age, integer)
VALUE(c 1, title, "An object-oriented approach in an MMD project")
VALUE(cl, author, c2)
VALUE(c2, age, 30)

where
AT -( title, author, age, owner, ... )

The following axioms must be defined in L-Dyn:

A1 FORALL el,a,x: (TYPE(x,el) AND AT(a) AND EXIST y: VALUE(x,a,y))
-~ (EXIST e2: ATT(el,a,e2))

A2 FORALL el,e2,x,a,y: (AT(a) AND T(el) AND T(e2) AND ATT(el,a,e2) AND
TYPE(x,el) AND VALUE(x,a,y))

-~ TYPE(y,e2)

The first axiom says that if some object has some value for some attribute, then this attribute
must have been defined for the object type. A2 requires that the attribute value of an object falls
within the domain of the attribute. Additionally, we need axioms to inherit attributes from
supertypes to subtypes. These aze not specified here.
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3.3 Semantics of class definitions
With the TYPE and ATT predicates defined above, the translation of class definitions to
dynamic logic is straightforward. Each class name is mapped by the interpretation function I to
one type name in T. Each attribute name is mapped to one attribute name in AT. If c1 is a
subclass of c2, then I(cl) ~ I(c2), that is, they aze subtypes. If cl has attribute al with domain
c2, then ATT(I(cl),I(a),I(c2)). The "content" attribute is mapped in a special way (see 3.6).
The definition of TYPE and ATT is such that the inheritance of attributes follows as a theorem.
Let us define the predicate POSS-ATT(,) for specifying the possible attributes of an object.
That is,

FORALL x,a: POSS-ATT(x,a) ~-~
(EXIST t,c: T(t) AND TYPE(x,t) AND ATT(t,a,c))

Then, we can easily prove that:

T1 FORALL x,tl, t2: (T(tl) AND T(t2) AND tl ~ t2 AND TYPE(x,tl))
-~ (FORALL a,c: (ATT(t2,a,c) -~ POSS-ATT(x,a)))

3.4. Semantics of objects and versions
For the representation of objects and versions, we assume that our language L-Dyn contains
the natural numbers as constants (cf. Wieringa, Meyer, Weigand, 1989). We define the
function symbols id() and vid(,). By taking the natural numbers as arguments, we have
infinitely many terms id(1), id(2), .. . We keep a pre-defined "counter" predicate "last-id".
Now we assume the atomic action CREATE'() in our action set A with the following
properties:

A3 FORALL n,m: (last-id(n) AND m~ n) -~ NOT E((id(m))
A4 FORALL n,t: last-id(n) AND T(t)

-~ [CREATE'(t)J ( last id(ntl) AND E(id(nfl)) AND TYPE(id(ntl),t) )
AS FORALL n,m: (last id(n) AND last-id(m)) -~ n-m
A6 FORALL x,n: (x - id(n)) ~-~ generic-id(x)-n)

A3 says that objects beyond the last-id do not exist yet (in this world). Note that the extension
of last-id may differ from one world to another. A4 says that the effect of the CREATE' (with
argument "type name") is that the "last-id" is incremented with one, that there exists now an
object ident~ed by id(nf1) of the specified type. A6 defines the system-attribute "generic-id"
which for non-versioned objects is just the inverse of idQ. Similarly, we have an atomic action
DELETE'Q with properties:

A7 FORALL x: E(x) -~ [DELETE'(x)] NOT E(x)
A8 FORALL x: NOT E(x) -~ IMP ( DELETE'(x) )
A6 simply states that an existing object does not exist anymore after the DELETE. A7 states
that it is impossible to delete a non-existing object. For versions, we use the same mechanism
with function v-id(,). This function takes two arguments, the first being a generic id and the
second being a version number. In analogy with the predicate last-id, we define a function
last-versionQ which returns the last version number of the object. We assume an atomic action
NEW'() in A as follows:

A9 FORALL x,m,t: ((TYPE(x,t) AND E(x) AND last-version(x) - m)
-~ [NEW'(x)] (last-version(x) - mfl AND E(v-id(generic-id(x),mfl))

AND TYPE(v-id(generic-id(x),mfl),t)))

In words: after the NEW' operation, there exists one more version of the object, of the same
type. In fact, this is still to weak: what we want in addition is the following. For convenience,
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we define the term "new(x)" as an equivalent of "v-id( generic-id(x), last-version(
generic-id(x)))".

A10 FORALL x,t,a,v: ((E(x) AND TYPE(x,t)) AND AT(a) AND VALUE(x,a,v))
-~ [NEW'(x)] (VALUE(new(x),a,v) AND previous-version(new(x),x)))

This says that the new version of the object has the same attribute values as the object itself,
and the previous-version of this new version is the object. Previous-version(,) is another
system-defined attribute, which just like "generic-id" and "version-nr" is not treated as the
normal user-defined attributes. The use of the two functions id and v-id(,) needs some
justification. In (Wieringa, Meyer, Weigand, 1989) functions were restricted to so-called
transpazant functions, which roughly means that the output of the function must be an already
existing constant. In this way, no new ground terms have to be added in the construction of the
Herbrand Universe. So the functions id() and v-id(,) must be transpazant too. To show that it
is possible to define them so, it is sufficient to show how they could be mapped to the set ofnatural numbers. A numerical solution could be to map id(n) to the n-th prime number, and use
the exponentials of these primes for the versions v-id(n,m).

3.5 Semantics of inethods
The semantics of inethods is given as follows. First, CREATE and DELETE can be mapped to
the atomic actions CREATE' and DELETE' above. Similazly, for NEW we can use the NEW'
action. The attribute update operation (2.2.2)

[~i-object SET ~i-att ~i-val]
is interpreted by a function SET'(I(~i-object,I(~i-att), I(~i-val) given by:

All FORALL x,a,v: [SET'(x,a,v)] VALUE(x,a,v)

(the meaning of I(~i-val) should be specified again compositionally, if ~i-val is a complex
expression - see DeBakker, 1980). For the user-defined methods, we must make a distinction
between methods that refine system-defined methods, such as CREATE-DOCUMENT in2.2.5, and independent ones, such as BIRTHDAY. For independent methods, the meaning isas follows. Let m be the method, then I(m) is an atomic action in L-Dyn, with the followingaxioms (in fact, axiom schemata):

A12 FORALL m(p): POS(m(p)) -~ I(PRECONDITIONS(m(p)))
A13 FORALL x,p: I(LOCAL CONDITIONS) -~ [m(p)] I(POSTCONDITIONS(pfx))

Axiom schema A12 (we need one for each method m) specifies that the preconditions of m arenecessary preconditions, that is, the action is only possible if the preconditions aze met. The"p" in this formula should be read as a vector of variables, one for each input parameter of themethod. Similarly, "x" in A13 is a vector of local variables. A13 specifies that after theexecution of the action, the postconditions hold. For convenience, we take the parameterdefinitions and the preconditions together. For example, for the BIRTHDAY method we get:

(12) FORALL ~i-p: POS(BIRTHDAY(~i-p)) -~ TYPE(~i-p,person)
(13) FORALL ~1-n, ~i-p: VALUE(~i-p,age,~l-n)

-~ [BIRTHDAY(~i-p)] VALUE(~i-p,age,~l-n fl)

In (12), the PRECONDITIONS part contains only the parameter specification that the inputparameter must be of type person. In (13), the LOCAL CONDITION is put at the left-handside, and the postcondition (with [m]) at the right-hand side of the implication. In the case ofrefined operations, triggers can be defined. Let ml be some primitive operation(system-defined or user-defined), mapped to atomic action I(ml) in A. Let m2 be a refinementof ml, and let the TRIGGER BEFORE of m2 be "b" and the TRIGGER AFTER be "a" (both aand b may be empty). Then the interpretation of m2 is the transaction tm, defined as:I(m2) - tm - I(b); I(m1); I(a)
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that is, the action I(ml) preceded by the action I(b) and followed by action I(a). The
interpretation of the pre- and postconditions for this method is the same as for primitive
operations. The only difference is that I(m2) is a transaction rather than a primitive action. If a
is empty, then I(a) is the identity action, the action that maps each world to itself. This
interpretation of refined methods dces justice to the intuition that the refinement must "include"
the original. However, in general there will be no simple relationship between the
postconditions of the original and the refinement. This is because the TRIGGER AFTER (c.q.
I(a)) may partly undo the effect of I(ml). So it is not always the case that the postconditions of
ml are still valid after the transaction tm.

3.6 Semantics of aggregation
For the aggregation abstraction, some special semantics are needed. In the first place, we have
the primitive operations INSERT and REMOVE that work on sets. We assume corresponding
atomic actions INSERT' AND REMOVE' defined by:

A14 FORALL x,a,v: [INSERT'(x,a,v)] VALUE(x,a,v)
A15 FORALL x,a,v: [REMOVE'(x,a,v)] NOT VALUE(x,a,v)
A16 FORALL x,a,v: POS(REMOVE'(x,a,v)) -~ VALUE(x,a,v)

The last axiom says that REMOVE' is only possible if the element is first included in the set.
Note that in L-Dyn, attributes may be multi- valued. If an attribute can only have one value, we
must specify

A17 FORALL a,t: (AT(a) AND T(t) AND Single valued(t,a)) ~-~
(FORALL x,vl,v2: ('TYPE(x,t) AND VALUE(x,a,vl) AND VALUE(x,a,v2))
-~ v1-v2)

and mark all single-valued attributes as "Single-valued". The content attribute has a special
meaning in our language, since it signals a composite reference. The composite reference can
be exclusive andlor dependent. The meaning of these is as follows. We do not translate this
attribute to some attribute name in AT, but to a special binary predicate CONTAIN(,). At the
type level, we introduce the predicate COMP-REF(„), where the first argument is some object
type ( the composite object), the second argument is some object type (the component object)
and the third argument indicates the kind of composite reference, of the set {excl, dep,
non-excl, indep}. In this way we can interpret the composite reference between "document"
and "component" (2.2.1) as:

COMP-REF(I(document),I(component),dep)
(if the reference was exclusive also, we have to add a second clause). If document dl contains
component cl, this is represented as:

CONTAIN(dl,c1)
To get the complete content of a complex object, we need the transitive closure of CONTAIN,
as follows:

A18 FORALL x,y: REC-CONTAIN(x,y) c-~
(CONTAIN(x,y) OR (EXIST z: CONTAIN(x,z) AND REC-CONTAIN(z,y))

The predicate REC-CONTAIN corresponds to (the inverse of) the operator CONTAINED-IN
defined in our specification language. When a composite reference is exclusive, components
can occur in at most one complex object:

A19 FORALL x,y: (TYPE(x,el) AND TYPE(y,e2) AND COMP-REF(el,e2,exc1)
AND CONTAIN(x,y))
-~ (NOT EXIST z: CONTAIN(z,y) AND z!- x)

When the composite reference is dependent, the component must be contained in at least one
complex object. It is deleted if it dces not occur in any complex object. This is accomplished by
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the following extra axiom for DELETE'
A20 FORALL x,y,el,e2: (CONTAIN(x,y) AND TYPE(x,el) AND TYPE(y,e2) AND

(NOT EXIST z: CONTAIN(z,y) AND z!-x)
AND COMP-REF(el,e2,dep)

-~ (DELETE'(x) ~~ DELETE'(y))

and of course we also have:

A21 FORALL x,y: CONTAIN(x,y) -~ [DELETE'(x)] (NOT CONTAIN(x,y))

The effect of A20 for exclusive composite references is that the component is always deleted
when the containing object is deleted since there cannot exist another object containing the
component. For non-exclusive composite references, it depends. Note the use of the imply
symbol for actions "~~". This formalation is preferable over a specification where the
conseqent is:

-~ [DELETE'(x)] (NOT E(y))
since other axioms may add additional semantics to the DELETE'(y) which would be missed
otherwise.

Axiom A21 is simple: if x dces not exist anymore after the operation, of course it cannot
contain any object. Such existence axioms are needed for all predicates, not just for
CONTAIN. When the composite reference is exclusive, and the object is versionable, new
versions of components must be made when the complex object gets a new version:

A22 FORALL x,y,el,e2: (TYPE(x,el) AND TYPE(y,e2) AND
COMP-REF(e 1,e2,exc1) AND CONTAIN(x,y))
-~ [NEW'(x)] (E(new(x) AND E(new(y) AND CONTAIN(new(x),new(y)))

When the composite reference is non-exclusive, and the object is versionable, the new version
shazes content with its predecessor.

A23 FORALL x,y,el,e2: (TYPE(x,el) AND TYPE(y,e2) AND
COMP-REF(el,e2,non-excl) AND CONTAIN(x,y))
-~ [NEW'(x)] CONTAIN(new(x),y)

This is the analogon of A 10, which specified that attribute values are the same for the new
version. However, when the two versions share content, new versions of components must be
made as soon as some update operation is performed on the component. Such an update is
made in the context of the complex object. The semantics of such contextualized updates
becomes rather complex and we give only the rough outline here. The basic idea is that, if

m - [x [y ~op~]]
is some contextualized update, where ~op~ is some operation, and y is in the content of x
(dependent composite reference), then the interpretation of m is a transaction tm in which first a
new version of the object y is made before the operation is performed (on the new version).
That is, if y is a shazed component,

tm - (NEW'(y); I(op) { new(y)~y } )
where s{ a~b } should be read as: "s in which all references to b aze replaced by references to a".
If y is not a shared component, the interpretation is of course the same as for not contextualized
updates. The general interpretation is the disjunction of these two cases, where each case starts
with a condition. We cannot express that in the L-Dyn as we introduced it above; see (Hazel,
1984) and (Meyer, 1988) for conditional actions in dynamic logic.

Example. Let m be the operation
[dl [cl [SET title "Introduction"]]

Then the interpretation becomes, if c 1 is a shared component,
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(NEW'(cl); SET'(new(cl),title,"Introduction")
However, this is still not correct, since we must make a new version of the component cl
ONLY in the document dl. Hence we also need a revised version of the NEW'(). In the above,
we did not yet specify the effect of this operation for component objects. For that purpose, we
must extend the NEW'() to a two-place operator NEW-DEP'(,), defined as follows:

A?A FORALL x,y: CONTAIN(x,y)
-~ [NEW-DEP'(x,y)] (E(new(y) AND NOT CONTAIN(x,y) AND

CONTAIN(x,new(y)))

In other words, the effect of the NEW-DEP' is the same as for NEW' (we should repeat A9
here completely), but at the same time it replaces the occurrence of y in complex object x by its
last version new(y). So the interpretation of contextualized operations should be:

tm - (NEW-DEP'(x,y); I(op) ( new(y)~y } )
Now the interpretation works well on one level of the aggregation hierarchy. We refrain here
from generalizing it to arbitrary levels. The operation NEW-DEP is not possible for exclusive
references:

A25 FORALL x,y,e 1,e2: (TYPE(x,e 1) AND TYPE(y,e2) AND CONTAIN(x,y)
AND COMP-REF(x,y,excl))

-~ NOT POS(NEW-DEP(x,y))

Finally, we must specify the semantics for the aggregation. If object c is an aggregation of
objects xl,x2 .. xn, then it is automatically deleted when one of the objects xi is deleted. We
interpret aggregation attributes in the same way as ordinary attributes (the set AT in L- Dyn),
but we record the fact that the attribute is an aggregation attribute with the predicate Aggr(,).
For example, Aggr(document entry, document) specifies that "document" is an aggregation
attribute of object type "document entry". The semantics is expressed in A26:

A26 FORALL x,y,el,a: (TYPE(x,el) AND VALUE(x,a,y) AND Aggr(el,a))
-~ (DELETE'(y) ~~ DELETE'(x))

That is, the effect of DELETE'(y) is not only that y no longer exists, but aggregate object x
exists no longer as well.

4. CONCLUSION
In this paper, we have introduced a specification language for both the static and the dynamic
part of a conceptual model. The language has been used in an object-oriented design method.
We described the main semantics in the form of dynamic logic, which has been used before
successfully for the semantics of programming languages and for the specification of integrity
constraints in conceptual models. In comparison with the MINOS system (Christodoulakis et
al, 1986), which is also object-oriented, our system has a more refined versioning mechanism
(we distinguish historical versions from co-occurring variants), and it facilitates object-oriented
specification of operations. Combined with the three-level architecture of the system, this may
make our system more extensible.

Some integrity constraints can be expressed in first-order logic as well as in dynamic logic. An
example is the dependency relationship between composite objects and components. The
advantage of the dynamic logic formulation is that it gives a better clue for the interpretation. A
difference can be made between forbidding some action that would cause an inconsistent state
and allowing it, then "repairing" the inconsistency immediately. The dynamic logic formulation
can be mapped easily on an implementation; for the static integrity constraint, additional choices
would have to be made during the mapping.

The variant mechanism has not been considered in this paper. We intend to work out the
semantics of these separately.

z~



In the short future, we plan to implement a Data Dictionary facility in which the 00
specifications can be stored and which supports the interpretation of GQL queries. It will be
integrated with the RIDL tools so that database tabe, simple constrants and atomic procedures
can be generated automatically. In the remote future, we plan to work on the compilation of the
method specifications. At that stage, we also have to consider what restrictions must be set on
the formats of the postconditions in order to guarantee automatic compilation. If the
postcondition is too complex, the designer must specify an implementation method for it.
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