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ABSTRACT
We discuss algorithms for generation within the
Lambek Theorem Proving Framework. Efficient
algorithms for generation in this framework take
a aemantics-driven strategy. This strategy can
be modeled by means of rules in the calculus that
are geared to generation, or by means of an algo-
rithm for the Theorem Prover. The latter possibi-
lity enables processing of a óidirectional calculus.
Therefore Lambek Theorem Proving is a natural
candidate for a`uniform' architecture for natural
language parsing and generation.

introduce a second implementation: a bottom-up
algorithm for the theorem prover (4).

2 EXTENDING THE CAL-
CULUS

Natural Language Processing as deduction
The architectures in this paper resemble the uni-
form architecture in Shieber (1988) because lan-
guage processing is viewed as logical deduction, in
analysis and generation:

Keywords: generation algorithm; natural langu-
age generation; theorcm proving; bidirectionality;
categorial grammar.

1 INTRODUCTION

Algorithms for tactical generation are becoming
an increasingly important subject of reaearch in
computational linguistics (Shieber, 1988; Shieber
et al., 1989; Calder et al., 1989). In this pa-
per, we will discuss gcneration algorithms within
the Lambek Theorem Proving (LTP) framework
(Moortgat, 1988; Lambek, 1958; van Benthem,
1986). In section (2) we give an introduction to a
categorial calculus that is extended towards bidi-
rectionality. The naive top-down control strategy
in this section does not suit the needs of efficient
generation. Next, we discuss two ways to imple-
ment a aemantics-driven strategy. Firstly, we add
inference rules and cut rules geared to generation
to the calculua (3). Secondly, since these changes
in the calculus do not support bidirectionality, we

'We would like to thsnk Goase Boumn, Wieteke
S~jtsmn nnd Msrianne Ssnders for their comments on sn
esrlier drsft of the paper.

"The generation of strings matching some crite-
ria can equally well be thought of as a deductive
process, namely a process of constructive proof of
the existence of a string that matches the crite-
ria." ( Shieber, 1988, p. 614).

In the LTP framework a categorial reduction sys-
tem is viewed as a logical calculua where parsing
a syntagm is an attempt to show that it follows
from a set of axioms and inference rules. These
inference rules describe what the processor does in
assembling a semantic tepresentation (representa-
tional non-autonomy: Crain and Steedman, 1982;
Ades and Steedman, 1982). Derivation trees re-
present a particular parse process (Bouma, 1989).
These rules thus aeem to be nondeclarative, and
this raises the question whether they can be used
for generation. The answer to thia question will
emerge throughout this paper.

Lexical information As in any categorial
grammar, linguistic information in LTP ís for the
larger part represented with the signs in the lexi-
con and not with the rules of the calculus (signs
are denoted by prosody:syntax:semantics). A
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generator using a categorial grammar needs lexi-
cal information about the syntactic form of a
functor that is connected to some semantic func-
tor in order t~ sfntactically eorrectly generate the
aemantic arguments of this functor. For a parser,
the reverse is true. In order to fulfil both needs,
lexical information is made available to the theo-
tem prover in the form of instances of axioms.l
A~cioms then truely represent what should be
axiomatic in a lexicalist description of a langu-
age: the lexical items, the connections between
form and meaning.~

Rules Whenever inference rules are applied, an
attempt is made to aziomatize the functor that
participates in the inference by the first subse-
quent of the elimination rules. This way, lexical
infrrnation is retrieved fror.~ the lexicon.

A prosodic operator connects prosodic ele-
ments. A prosodic identity element, id, is ne-
cessary because introduction rules are prosodi-
cally vacuous. In order to avoid unwanted mat-
ching between axioms and id-elements, one spe-
cial axiom is added for id-elements. Meta-logical
checks are included in the rules in order to avoid
variables occuring in the final derivation. nogen-
var recursively checks whether any part of an ex-
pression is a variable.

A sequent in the calculus is denoted with
P-~ T, where P, called the antecedent, and T,
the succedent, are finite sequences of signs. The
calculus is presented in (1) . In what follows, X
and Y are categories; T and Z, are signs; R, U
and V are possibly empty sequences of signs; ~
denotes functional application, a caret denotes .~-
abstraction.3

(1)

~n axioms n~
[Pros:X:Y] -~ [Proa:X:Y] c-

[Pros:X:Y] ~1~ [Proa:X:Y] t
true.

[Pros:X:Y] s~ [Pros:X:Y] c-
(nogenvar(X), nonvar(Y)) t
true.

1Van der Linden and Minnen (aubmitted~ contsins e
more eleborate comparíson of the extended calculua with
the original calculua aa proposed in Moortgnt (1988~.

~A euggestion aimilnr to thia propoael wea made by
Ktinig (1989~ who atnted that lexicel iteme nre to be seen
ss sxioma, but did not include them sa auch in her de-
acription of the L-cstculua.

~Throughout thia paper we will uae n Prolog notstion
becnuae the srchitecturee presented here depend psrtly on
the Prolog unificntion mechnniam.

~n elimination rulea ~~
(U,[Pros-Fu:X~Y:Functor],[TIR],V)-~[Z] c-

[Pros-Fu:X~Y:Functor] ~~
[Pros-Fu:X~Y:Functor] t

CTIR7 s~ [Pros-Arg:Y:Argl t
(U,[(Proa-FueProa-Arg):X:FunctoraArg],V) -~

[Z] .

(U,[TIR],[Pros-Fu:Y`X:Functor],V) z~ [Z] c-
[Pros-Fu:Y`X:Functor] a~

[Pros-Fu:Y`X:Functor] t
[TIR] -~ [Pros-Arg:Y:Arg] t
(U,[(Proa-ArgePros-Fu):X:FunctorOArg],V) ~~

Cz] .

~s introduction rules e~
[TIR]a~[Pros:Y`X:Var-Y'Term-X] c-
nogenvar(Y`X) t
([id:Y:Var-Y],[TIR]) a~

[(idnPros):X:Term-X].

[TIR] -~ [Pros:X~Y:Var-Y'Term-X] c-
nogenvar(X~Y) R
([TIR],Lid:Y:Var-Y]) a~

[(Proavid):X:Term.Xl

~v axiom tor prosodic id-element ~~
[id:X:Y] -1~ [id:X:Y] c-
iavar(Y).

~n lezicon, lezioms rt~
[john:np:john] ~1~ [john:np:john].
[mary:np:mary] ~1~ [mary:np:mary].
[loves:(np`s)Inp:lovea] -1~

[loves:(np`s)~np:lovea].

In order to initiate analysis, the theorem prover is
presented with sequents like (2). Inference rules
are applied recursively to the antecedent of the se-
quent until axioms are found. This regime can be
called top-down from the point of view of problem
solving and óottom-up from a"parsing" point of
view. For generation, a sequent like (3) is pre-
sented to the theorem prover. Both analysis and
generation result in a derivation like (4). Note
that generation not only results in a sequence of
lexical signs, but also in a prosodic phraaing that
could be helpful for speech generation.

(2)

[john:A:B,lovea:C:D,mary:E:F] s~ [Pros:s:Sem]

(3)

U s~ [Pros:a:loveaCmaryajohn]

Although both (2) and (3) result in (4), in the
case of generation, (4) does not represent the
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(4)

john:np:john loves:(np`s)~np:loves mary:np:maxy s~ john~(loveasmary):s:loveaQmaryQjohn t-loves:(np`s)~np:loves a~ loves:(np`s)~np:lovea c-
loves:(np`s)~np:lovss -1~ loves:(np`s)~np:loves c- true

mary:np:mary -~ mary:np:mary c-
mary:np:mary -1~ mary:np:mary c- true

john:np:john lovesamary:np`s:lovesmmary - ~ johna(loves~mary):s:lovesamaryajohn t-
loveaamary:ap`s:loveaamary z~ lovesamary:np`s:loveaQmery t- true
john:np:john -~ john:np:john t-

john:np:john -1~ john:np:john C- true
john~(lovea~mary):s:lovesamaryajohn -~ john~(lovessmary):s:lovesOmaryajohn:c- true

exact proceedings of the theorem prover. It starts
applying rules, matching them with the antece-
dent, without making use of the original seman-
tic information, and thus resulting in an ineffi-
cient and nondeterministic generation process: all
possible derivations including all lexical items are
generated until some derivation is found that re-
sults in the succedent.4 We conclude that the
algorithm normally used for parsing in LTP is in-
efficient with respect to generation.

3 CALCULI DESIGNED
FOR GENERATION

A solution to the efficiency problem raised in the
previous section is to start from the original se-
mantics. In this section we discuss calculi that
make explicit use of the original semantics. Fir-
stly, we present Lambek-like rules especially de-
signed for generation. Secondly, we introduce a
Cut-rule for generation with sets of categorial re-
duction rules. Both entail a variant of the crucial
starting-point of the semantic-heaádriven algo-
rithms described in Calder et al. (1989) and Shie-
ber et al. (1989): if the functor of a semantic
representation can be identified, and can be rela-
ted to a lexical representation containing syntac-
tic information, it is possible to generate the ar-
guments syntactically. The efficiency of this stra-
tegy stems from the fact that it is guided by the
known semantic and syntactic information, and
lexical information is retrieved as soon as possi-
ble.

In contrast to the semantic-head-driven ap-
proach, our semantic representations do not al-
low for immediate recognition of semantic heads:
these can only be identified after all arguments

have been stripped of the functor recursively (lo-
ves~maryC9john -1 loves~mary -~ loves).

Calder et al. conjecture that their algorithm

"(...) extends naturally to the rules of compo-
sition, division and permutation of Combinatory
Categorial Grammar (Steedman, 1987) and the
Lambek Calculus (1958)" (Calder et al., 1989, p.
237).

This cor~jecture should be handled with care. As
we have stated before, inference rules in LTP de-
scribe how a processor operates. An important
difference with the categorial reduction rules of
Calder et al. is that inference-rules in LTP impli-
citly initiate the recursion of the parsing and ge-
neration process. Technically speaking, Lambek
rules cannot be arguments of the rule-predicate
of Calder et al. (1989, p. 237). The gist of our
strategy is similar to theirs, but the algorithms
differ.

Lambek-like generation Rules are presented
in (5) that explicitly start from the known in-
formation during generation: the syntax and se-
mantics of the succedent. Literally, the inference
rule states that a sequent consisting of an ante-
cedent that unifies with two sequences of signs U
and V, and a succedent that unifies with a sign
with semantics Sem-1~~Sem-Arg is a theorem
of the calculus if V reduces to a syntactic functor
looking for an argument on its left side with the
functor-meaning of the original semantics, and U
reduces to its argument. This rule is an equiva-
lent of the second elimination rule in (1).

~cf. Shieber et al. (1989) on top-down generation
algorithme.
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(5)

~e elimination rule ~~
[u,V] ~~

((Pros-ArgeProa-Fu):X:Sem-FuQSem-Arg] ~-
V s~[Proa-Fu:Y`X:Sem-Fu] t
U -~[Pros-Arg:Y:Sem-Arg].

~~ introduction-rule ~~
(TIA] z~ [Pros:Y`X:Vnr-Y'Term-X] ~-

nogenvar(Y`X) R
([[id:Y:Var-Y]],[TIR]) -~

[(id~Pros):X:Term-X].

A Cut-rule for generation A Cut-rule is a
structural rule that can be used within the L-
calculus to include partial proofs derived with ca-
tegorial reduction rules into other proofs. In (6)
a generation Cut-rule is presented together with
the AB-system.

(6)

~s Cut-rule íor generation e~
[U,V] a~ [Pros-Z:Z:Sem-Z] ~-

[Pros-X:X:Sem-X, Pros-Y:Y:Sem-Y] art)
[Proa-Z:Z:Sem-Z]

U -~ [Pros-X:X:Sem-X] t
V L~ [Pros-Y:Y:Sem-Y].

~t reduction rules, sqstem AH e~
[Pros-Fu:X~Y:Functor, Pros-Arg:Y:Arg] ~~~

(Pros-FU~Pros-Arg):X:FunctormArg].

[Pros-Arg:Y:Arg, Proa-Fu:Y`X:Functor] ~~~
(Pros-ArgsProa-Fu):X:FunctoraArg].

The generator regimes presented in this section
are semantics-driven: they start from a seman-
tic representation, assume that it is part of the
uppermost sequent within a derivation, and work
towards the lexical items, axioms, with the recur-
sive application of inference rules. From the point
of view of theorem proving, this process should be
described as a top-down problem solving strategy.
The rules in this section are, however, geared to-
wards generation. Use of these rules for parsing
would result in massive non-determinism. Effi-
cient parsing and generation require different ru-
les: the calculus is not óidirectional.

4 A COMBINED BOT-
TOM-UP~TOP-DOWN
REGIME

In this section, we describe an algorithm for
the theorem prover that proceeds in a combined
bottom-up~top-down fashion from the problem
solving point of view. It maintains the same
semantics-driven sttategy, and enables efficient
generation with the bidirectional calculus in (1).
The algorithm results in derivationa like (4), in
the same theorem prover architecture, be it along
another path.

Bidirectionality There are two reasons to
avoid duplication of grammars for generation and
interpretation. Firatly, it is theoretically more
elegant and simple to make use of one grammar.
Secondly, for any language processing system, hu-
man or machine, it is more economic (Bunt, 1987,
p. 333). Scholars in the area of language ge-
neration have therefore pleaded in favour of the
bidirectionality of linguistic descriptions (Appelt,
1987).

Bidirectionality might in the first place be im-
plemented by using one grammar and two sepa-
rate algorithms for analysis and generation (Ja-
cobs, 1985; Calder et al., 1989). However, apart
from the desirability to make use of one and the
same grammar for generation and analyais, it
would be attractive to have one and the same
processing architecture for both analysis and ge-
neration. Although attempts to find such archi-
tectures (Shieber, 1988) have been termed "look-
ing for the fountain of youth",6 it is a stimulating
question to what extent it is possible to use the
same architecture for both tasks.

Example An example will illustrate how our
algorithm proceeds. In order to generate from
a sign, the theorem prover assumes that it is
the succedent of one of the subsequents of one
of the inference rules (7-1~2). ( In case of an
introduction rule the sign is matched with the
succedent of the headsequent; this implies a top-
down step.) If unification with one of these subse-
quents can be established, the other subsequents
and the headsequent can be partly instantiated.
These sequents can then serve as starting points
for further bottom-up processing. Firstly, the he-
adsequent is subjected to bottom-up processing

óRon Kaplan during diecu~sion of the Shieber presen-
tetion nt Coling 1988.
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(7)

Generation of nounphrase the taóle. Start with sequent

P z~ [Proa:np:theatable]

ï- Assume succedent is part of an auom:

[Pros:np:the0tnble] z) [Proa:np:the0table]

2- Match axiom with last subsequent of an inference rule:

(U,[Pros-Fu:X~Y:Functor],[TIR],V) E~ [Z] ~-
[Proa-Fu:X~Y:Functor] a) [Proa-Fu:X~Y:Functor] t
[TIR] ~~ [Pros-Arg:Y:Arg] t
(U,[(Pros-Fu~Proa-Arg):X:FunctoraArg],V) a~ [Z].

Z- Pros:np:the~table; Functor - the; Arg - table; X- np; U-[]; V-[].

3- Derive instantiated head sequent:

[Pros-Fu:np~Y:the],[TIR] ~~ [Pros:np:theotable]

4- No more applications in head sequent: Prove (bottom-up) first instantiated subsequent:

[Pros-Fu:np~Y:the] a~ [Pros-Fu:np~Y:the]

Unifies with the axiom for "the": Pros-Fu - the; Y- n.

5- Prove (bottom-up) second instantiated subsequent:

[TIR]z~[Pros-Arg:n:table]

Unifies with a~riom for "table": Pros-Arg - table; T- table:n:table; R-[]

6- Prove (bottum-up) last subsequent: is a nonlexical axiom.

[(theetable):np:theatable] z~ [(the~table):np:the0table].

7- Final derivation:

the:np~n:the table:n:table a~ theetable:np:theatable ~-
the:np~n:the 3~ the:np~n:the ~-

the:np~n:the ~1~ the:np~n:the ~- true
table:n:table ~~ table:n:table ~-

table:n:table ~1~ tabls:n:table t- true
theetnble:np:the0table -~ theetable:np:theatable ~- true
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(7-3), in order to axiomatize the head functor
as soon as possible. Bottom-up processing stops
when no more applic.ation operators can be eli-
minated from the head sequent (7-4). Secondly,
working top-down, the other subsequents (7-4~5)
are made subject to bottom-up processing, and
at last the last subsequent (7-6). (7) presents ge-
neration of a nounphrase, the table.

5 CONCLUDING
REMARKS

Conclusion Efficient, bidirectional use of cate-
gorial calculi is possible if extensions are made
with respect to the calculus, and if a combined
bottom-up~top-down algorithm is used for gene-
ration. Analysis and generation take place within
the same processing architecture, with the same
linguistics descriptions, be it with the use of dif-
ferent algorithms. LTP thus serves as a natural
candidate for a uniform architecture of parsing
and generation.

Semantic non-monotonicity A constraint on
grammar formalisms that can be dealt with in
current generation systems is semantic monotoni-
city (Shieber, 1988; but cf. Shieber et al., 1989).
The algorithm in Calder et al. (1989) requires an
even stricter constaint. Firstly, in van der Lin-
den and Minnen (submitted) we describe how the
addition of a unification-based semantics to the
calculus described here enables processing of non-
monotonic phenomena such as non-compositional
verb particles and idioms. Identity semantics (cf.
Calder et al. p. 235) should be no problem in this
respect. Secondly, unary rules and type-raising
(ibid.) are part of the L-calculus, and are neither
fundamental problems.

Inverse ~i-reduction A problem that exists for
all generation systems that include some form of
.~-semantics is that generation necessitates the in-
verse operation of,0-reduction. Although we have
implemented algorithms for inverse ~3-reduction,
these are not computationally tractable.ó A way
out could be the inclusion of a unification based
semantics.~

BBunt (1987) atates that an ezpression with n constante
resulte in 2n - 1 possible inveree ,0-reductions.

TAa proposed in van der Linden nnd Minnen (aubmit-
tcd) for the calculua in (2).

Non-determinism A source for non-determin-
ism in the semantics-driven strategy is the fact
that the theorem prover forms hypotheses about
the direction a functor seeks its arguments, and
then checka these against the lexicon. A possibi-
lity here would be to use a calculus where domi-
nance and precedence are taken apart. We will
pursue this suggestion in future research.

Implementation The algorithms and calculi
presented here have been implemented with the
use of modified versions of the categorial calculi
interpreter described in Moortgat (1988).
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