

Tilburg University

An approach to authorization modelling in object-oriented database systems

Bertino, E.; Weigand, H.

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Bertino, E., & Weigand, H. (1991). An approach to authorization modelling in object-oriented database systems.
(ITK Research Report). Institute for Language Technology and Artifical IntelIigence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/9b35c2ca-536e-48cf-aa58-34b0dc4ea7c4

CBM c~~,
-,~~~r

CB~M `~,j~~~`~
s1 .~

8409
1991

32

iiuii iu i i iui u u i ii iu ii i u i NU i i iiun i ~ii i

I~K REPORTCH

TITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE

yL

ITK Research Report
december 1991

An Approach to
Authorization Modelling

in Object-Oriented
Database Systems

E. Bertino and H. Weigand
No. 32

ISSN 0924-7807

01991. Institute for Language Technology and Artificial Intelligence,
Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The Netherlands
Phone: f3113 663113, Fax: f3113 663110.

An Approach to Authorization Modeling

in Object-Oriented Database Systems

E.Bertino (~`)1, H.Weigand (~`~`)
(~) Dipartimento di Matematica - Universita' di Genova

Via L.Í.3. Àlberti 4, 1b1~G Genova (itaiy)
e-mail: bertino~a~igecuniv.bitnet

(~`~`) INFOLAB, Tilburg University
P.O. Box 90153

5000 LE Tilburg (The Netherlands)
e-mail: weigandt7a kub.nl

Abstract

Authorization is an important functionality that every data management system should provide. An

authorization mechanism allows different access rights on data items to be selectively assigned to users.

Authorization models and mechanisms have been widely investigated in the framework of traditional database

systems. The extension of those models and mechanisms to advanced data management systems is quite

complex, because those systems are characterized by data models with a larger number of seman[ic constructs

than traditional models, like the relational one. A fust authorization model defined for object-oriented (and

semantic) database systems has been presented in [Rabi 91]. In this paper we present an authorization model

that substantially extends and revises that model. The most significant extension concerns the support for

content-dependent authorization, which was no[pmvided in [Rabi 91]. Content-dependent authorization is

very important in providing an authorization mechanism able to directly support authorization policies of

application environments. Moreover, it is a crucial functionality in environmen[where data objects frequently

change their status. In addiuon, the model presented here differs from the model dcfined in [Rabi 91] under

several aspects that are pointed out in the paper.

1. Introduction

The technology of object-oriented database management systems (OODBMSs) is very promising to a number of

applications in business, and industry. An OODBMS combines the features of object-oriented programming languages

with those of database management systems [Bert 91]. Therefore, an OODBMS is a powerful environment supporting

application design, development and evolution, providing at the same time functionalities ensuring data protection and

security. In particular, preventing unauthorized accesses to data stonrd into the database is a functionality that is required by

1 The work reported in this paper was carried out by E.Bertino when visiting the University of Tilburg during summer
1991.

1

most applications, both traditional and advanced [Jajo 91]. It is very common that an organization uses information with

different degrees of sensitivity. Therefore, data management systems must provide capabilities to selectively share data

among multiple users.

Although most commercial DBMSs have security subsystems supporting access control, authorization in object-oriented

(and advanced) database systems has not yet been fully investigated. The definition of a suitable authorization model for

those systems poses several requirements. First of all, the unit of authorization must be the object, since objects are the

access units. However, the authorization model should support different levels of granularíty for both performance and user

convenience reasons. For example, it should be possible to grant authorization on a single object, but also on an entire

class, or on an entire database. The model should take into account all semantic modeling constructs commonly found in

object-oriented data models, such as composite objects and versions.

An object-oriented authorization model, satisfying the previous requirements, has been defined in the Orion system

framework [Rabi 91]. Other systems implement less sophisticated models or have no authorization at all. The model

defined in [Rabi 91] uses the object as the authorization unit. In addition, this authorization model accounts for semantic

modeling aspects, such as inheritance hierarchy, versions, and composite objects. However, a limitation of the model

defined in [Rabi 91] is that it does not support authorization that depends on object contents. A way of supporting this in

relational databases is through views (see for example [Bert 88]). A view states conditions (expressed as the qualification

clause of the view query) that the wples must verify in order to be accessed by a user (or group of users). In this paper, we

present an authorization model that extends the model of [Rabi 91] with content-dependent authorization rules, therefore

providing the same function as protection views [Bert 88]. In addition, we simplify some aspects of the model defined in

[Rabi 91] and we introduce two different modalities for authorization administration. Moreover, we outline how the model

can be extended to support me[hod-based authorization as well.

Recent work has been reported on mandatory authorization models for object-oriented databases and knowledge bases [Garv

91]. Although our model only deals with discretionary authorizations (as all commercial DBMSs do), it can be seen as

complementary to mandatory authorization models. As pointed out in [Garv 91] within an access class 2 authorizations

can be granted in a discretionary way, and therefore a model like the one defined in [Rabi 91] and here could be used to this

purpose. Moreover, we will see that some conclusions developed in this paper share some ideas developed in [Garv 91].

This important because it shows that discretionary and mandatory authorization models share some fundamental properties,

even though they are defined for different purposes. We will point out similarities within the paper. Finally, no[e that the

model defined in [Garv 91] does not deal with content-dependent au[horization.

The remainder of this paper is organized as follows. Section 2 presents an object-oriented data model that will be used as

reference in describing the authorization model. Section 3 presents the authorization model. Section 4 discusses

2 An access class is a concept of mandatory authorization models and it is deflned as a pair (~sensitivity level, category
seU) [Garv 91], where sensitivity level is ususually one among {TOP-SECRET, SECRET, CONFIDENTIAL,
UNCLASSIFIED}, while a category represents a partition of the overall information space based on what the data deals
with. Examples of categories could be: Navy, Airforce, Army. Therefore, the notion of access class should not be confused
with the notion of class in object-oriented data models.

2

authorization administration; in particular, it presents different policies that are supported by the model in order to

grantjrevoke authorizations on objects. Finally, Section 5 presents some conclusions.

2. Preliminary Definitions

In this section, we first summarize the main features of object-oriented data models by a reference model which will be

used in the rest of the paper for the discussion. This reference model should not be interpreted as a new model. Rather it is

similar to the core model described in [Kim 90], in that has most features commonly found in various object-oriented data

models. The reference model used in this paper also provides the notion of composite objects [Kim 89] and versioned

objects, since the authorization model should account for these semantic modeling concepts as well. Then we present an

overview of a constraint language based on [Wier 91]. This language will be used to express content-dependent

authorization rules on both objects and subjects within the authorization model.

2.1 A Reference Object-Oriented Data Model

In this model a class is defined by specifying its name, its attributes, and the names of its superclass(es). Multiple

inheritance and the existence of a default class, called TOP-CLASS, root of an inheritance hierarchy encompassing the

entire database are assumed. An attribute is defined by specifying its name and its domain. Classes have both the

intensional and extensional meaning and an object can be instance of only one class. An object, however, can be member

of several classes through the inheritance hierarchy. Attributes can be single-valued or multi-valued. In defining multi-

valued attributes, the various object-oriented data models use different constructors such as set, list, tree, array. In the

reference model we will abstract from specific constructors, and we assume that multi-valued attributes are defined by
using a constructor denoted as set-of. The following definitions specify a notation for the Reference Model.

If ai is an attribute name and Ci is a class name then:

(1) Ai - ai : Ci is the definition of a single-valued attribute;

(2) Ai - ai : set-of Ci is the definition of a multi-valued attribute.

A method definition consists of a signature and a body. The signature specifies the method name, and the classes of the

objects that are input and output parameters for the method. The body provides the implementation of the method and

consists in a sequence of statements written in some programming language. If M is a method name, Ini (1 5 i S n) is an

input parameter speciffca[ion and Out is an output parameter specification, M(lnl, In2,, Inn) ~ Out is a method

signature definition. An input parameter specif'ication consists of the parameter name and of the parameter domain. The

parameter domain is a class name or can be defined as a collection of instances of a class, in the same manner as attributes

are specifed. An output parameter is a class name, or a collection of instances of a class. The invocation of a meihod M

on an object O has the form O.M(Ol, 02,....,On) where OI, 02,....,On are objects that are passed as input parameters.

Classes are recursively defined as follows:

~ Integers, floats, strings, text, and Boolean are classes (called primitive classes)

3

~ There is a special class, called TOP-CLASS, which has no superclass; it is

specified

- If A1, A2,.... , An (n ? 1) are attribute definitions, with distinct names;

if Ml, M2,....., Mk (k ? 0) are method definitions, with distinct

and C, Cl, CZ, , Ch (h ? 0) aze distinct class names; then

Class C

Attributes A1; A2; ; An;

Methods M1; M2;; Mk ;

Superclasses C, Cl, C2,, Ch

names;

default for superclass, if no superclasses are

End

is a class.

We assume that system-defined methods are provided (called accessor methods) that allow direct reading~writing of object

attributes. These methods, called Read and Write, aze used to handle the authorizations to read~write an object's attributes

in a consistent way with the overall authorization model. These methods do not need to be implemented as general

methods; they are implemented by the system in an efficient way. The semantics of the read is to simply return the value

of an attribute, while the write simply updates the attribute by assigning to it a new value. In the following, given an

object 0 and an attribute Aj,, the notation OAi will denote ORead(A~). Similar methods aze provided for reading and

modifying a class definition (Read-class, Modify-class). In addition, methods are pmvided for creating and deleting objects,

and classes (respectively Create, Delete, Define-class, Delete-class), and for adding, removing elements from multivalued

attributes (lnsert, Remove).

Composite objects

For composite objects we will use the same model as [Kim 89], since this model is quite general. The model defined in

[Kim 89] distinguishes between two types of references among objects: general, and composite. The latter is used to

model the fact that a referenced object is actually a part of (or component) of a given object. An object and all its

components constitute a composite object. A similar model is also used in [Weig 91]. Moreover, in [Kim 89], composite

references are further refined into sharedlezclusive and dependentlindependent. A shazed composite reference allows the

referenced object to be shared among several composite objects, while an exclusive composite reference constrains an

object to be component of at most one composite object at the time. A dependent (independent) composite reference

models the fact that a component object is dependent (independent) on the existence of the composite object(s) of which is

part. These two dimensions can be orthogonally combined. Therefore, four different types of composite references aze

possible. Details can be found in [Kim 89]. In our reference model, composite references are specified using some special

keyword in attribute definitions. IfAi is an attribute definition, composite attributes aze specified as follows:

Al composite [shared I exclusive] [dependent I independent].

The notion of composite object, in addition [o being important from the semantic point of view, is important from the

performance point of view. For example, the components of a composite object aze very often clustered with the root of

the composite object. Moreover, composite objects can be used as the unit of authorization.

4

Versioned objects

Several versioning models have been proposed in the literature; a survey can be found in (Katz 90). Here, we present some

basic aspects of versioning mechanisms that should be sufficient for discussing the authorization model. In general, a

versioned object can be seen as a hierarchy of objects, called version hierarchy. Each object in a version hierarchy (except

for the root object) is derived from another object in the hierarchy by changing the values of one or more attributes of the

latter object. Objects in a version hierarchy are first-class objects. Therefore, they have their own object-identifier (OIDs).

Information about the version hierazchy aze often stored as part of the root object, called generic object. Two types of

object references aze supported in most version models to denote objects within a version hierazchy. The first is called

dynamic reference and it is a reference to the generic version of a version hierarchy. It is used by users who do not require

any specific version. The system selects a version (default version) to return to users. The default version is in most cases

the most recent stable version. Commands are usually available that allow users to change the default version. The second

type of reference is called static and it is a reference to a specific version within the version hierazchy. Another important

aspect concerns stability of versions in version hierarchies. In most cases, versioned objects are shared among several

users. Mechanisms should be provided so that users receive consistent and stable versions. Most version models

distinguish between transient and stable versions. A transient version can be modified or deleted. However, no versions

can be derived from a transient version. A transient version must first be promoted to a stable version before new versions

can be derived from it. By contrast, a stable version cannot be modified. However, it can be used to generate new versions.

An illustrative example

An example of class definitions is presented in Figure 1.

---Class Document
Attributes

ti[le: string;
authorlist: set-of Employee;
abstract: Paragraph composite exclusive dependent;
content: set-of Section composite shared dependent;
status: string;
project: Project;
status: string;

Methods
Copy Q ~ Document

End

Class Section Class Paragraph Class Project
Attributes Attributes Attributes

title: string; content: text; research~programme: string;
section-authors: set-of Employee; date: string; manager: Employee;
content: set-of Pazagraph; End End
date: string;

End
Figure 1. Examples of class definitions

5

2.2 Constraint Language

The constraint language L is based on [Wier 91] of which we only use the static part. L is a simple first-order language

with the following syntax.

Examples of variables are p, b, There are infinitely many variables.

Constants are A101, 1234 etc. There aze infmitely many constants.

There aze finítely many function symbols, with metavariables f, ...

There are finitely many predicate symbols, and the lettes P,QR aze used as metavariables over predicate symbols. Each

predicate symbol has an arity ~ 0. Two special predica[es aze the binary symmetric predicate -(equality), the binary

predicate 5(subtype - to be defined below) and the binary pnydicate e(membership - to be defined below).

Terms and formulas are built in the usual way using n,v,-,,~,`d,~, and punctuation symbols (,),(, and]. We use infix

notation for -, ~ and E. Below, we will add one new term type "path".

Let C! be a finite set of constants. The elements of Cl are called class names and 2 is used as a metavariable over Cl. The

predicate ~ defines a partial ordering on Cl. The constraint language L is extended in the following way.

- L contains a special binary predicate class and a set CI of class names. The only well-formed formulas that can be built

with class are of the form class(t,i) for a term t and a class name t.

- We introduce the abbrevations

t~z: t (~(x)) :- b'x (class(x,T) ~ ~(z))

3x:T (~(x)) :- 3x (class(x,i) ~ tp(x))

- L contains two special ternary predicate symbols: ATT, where the first and third azgument is always a class name

(constant or variable), and the second argument an attribute name; and ARITY, where the first argument is a class

name, the second argument an attribute name, and the third argument an arity constant from the set (I ,n}. The set A is

a finite set of constants called attribute names. We also introduce a ternazy predicates VAL where the second argument

is always an attribute name. In this way, we simulate a kind of second-order logic where we can quantify over

attributes.

Examples of well-formed formulas with A7T and VAL:

ATT(document,title,string)

ATT(document,authorlist,employee)

VAL(cl,title,"an approaeh to authorization modelling")

VAL(cl ,authorlist, elisa)

Attributes of arity 1 aze called single-valued, with arity n set-valued. We can use the definitions:

ATTI (t,a,z) a ATT(t,a,z) n ARI7'Y(t,a,l)

A77h(t,a,z) t~ ATT(t,a,z) n ARITY(t,a,n)

a E Attset(t) r~ 3y (A77'(t,a,y))

6

- Auributes are inherited fmm superclass to subclass:

d tl,t2:class, b'a:attribute ((a e Attset(t2) n tl~t2)~ a E Attset(tl))

We isolate a special group of attributes called aggregation attributes, denoted as Agg. Agg ~A. There is one special
aggregation attribute CONTENT, and any aggregation attribute is a kind of content attribute in the following way:
1~ tl ,z: class, b' a:attribute (ATT(x,a,z) n a E Agg) ~ ATT(z,CONTENT,z))

b'tl,z:class, b' a:attribute (VAL(x,a,z) n a e Agg) ~ VAL(x,CONTENT,z))

We define paths in the following way:

- if x is a variable or constant (that is, an atom), and a an attribute name constant, then x.a is a(basic) path.

- if p is a path and a an attribute name constant, then p.a is a path

We say that a path p is single-valued ifT all attributes are single-valued; otherwise the path is set-valued.

Path expressions can occur in equality and membership relations only. First, for basic paths:

x.a - v c~ v- x.a a VAL(x,a,v) for single-valued attributes

v E x.a r~ VAL(x,a,v) for set-valued attributes

where v is a constant or variable. Instead of VAL(x,CONTEN'1',v) we simply write v e x.

The same, recursively, for síngle-valued paths p of length ~ 1:

p.a-v r-~ ~(p-cnc.a-v)

where c is a"new" variable symbol not occurring already in the context of the expression.
For set-valued paths:

v e p.a c~ 3c (c e p n VAL(c,a,v)) when p is a path

v E p.a a VAL(p,a,v) when p is an atom (as above)

For example, the expression y e x.authorlist.name is equivalent to:

3c (cE x.authorlist n VAL(c,name,y)) r~

3c (VAL(x,authorlist,c) n VAL(c,name,y))

An example of a constraint in L is the following:

b'e:Employee, t~d: Docuanent (e e d.authorlist ~ 3n:Manager(e.manager- m n m E d.authorlist))

which says that if an employee is on the authorlist of a document, then his manager is on the authorlist as well.

The second part of this formula can be simplified if we use the expression p.b e d.a as an abbrevation of:

3m(p.b - m n m e d.a)

(so note that the truth-value is false when p.b dces not exist).

1fie example then becomes b'e:Employee, b'd: Document (e E d.authorlist ~ e.manager e d.authorlist))

3. Authorization Model

The authorization model provides both content-independent and content-dependent authorization rules. According to [Fern

81], content-independent rules are authorization rules whose enforcement does not require accessing the object themselves;

7

whereas, the enforcement of content-dependent authorization rules requires accessing the objects. It is important to note

that an authorization model should provide both types of authorization rules to provide adequate flexibility to the

applications. In the remainder of this section, we first provide an overview of the authorization model, with special

emphasis on content-dependent authorizations. Then, we present implication rules for subjects, objects, and authorization

types. These rules aze used here, as in [Rabi 91], to formalize the concept of implicit authorization. Implicit

authorizations aze those that can be derived from other explicit authorizations. Finally, we discuss content-dependent and

content-independent authorizations for additional modeling concepts such as composite objects, versions, inheritance

hierarchies.

3.1 Overview of the Authorization Model

Given S, O, and A being respectively the set of subjects in the system, the set of objects in the system, and a set of

authorization types (that is, the authorization domains), an explicit authorization [Fern 81] consists of a predicate

b auth(s, o, a), where s e S, o e 0, and a e A. The set of all explicit authorizations is called Explicit Authorization Base

(shortly EAB). An example of explicit authorizations is b-auth(ui, d[1], Read), denoting that the user ui can read the

document identified by d[1].

A predicate auth is defined to determine if an authorization (s, o, a) is True or False. Given a triplet (s, o, a), if auth(s, o,

a) is True, then the subject s has an authorization of type a on object o. Therefore, the function of enforcing authorization

can be simply seen as proving a goal in a logic program. In particular, we have that

b's: S, fJo: 0, b'a: A(b auth(s,o,a) ~ auth(s,o,a)) (~`)

that is, a subject s has an authorization of type a on an object o if an explicit authorization exists. In the remainder, we

will use the predicate auth to denote both explicit and implicit authorizations, unless there is the need of distinguishing

them. Moreover, we assume that when the predicate auth(s,o,a) cannot be proved to be True, the authorization function

will return False. That is consistent with the approach taken by most systems. Note that the formalism we will use

within the paper to define authorizations is not meant to be the language used by the end-users. Rather, it can be used as a

language for the implementation of authorization functions, since it can be easily mapped to a logical language, like

Prolog. In Appendix A, we sketch a SQL-like user language for authorization.

In general, a simple way to handle authorization is to explicitly list all authorizations as explicit authorizations. However,

this approach dces not take advantage of the fact that an authorization may imply other authorizations. Therefore, there

would be no need of inserting into the EAB the latter; rather, a better approach is to establish rules that allows the latter

to be derived from the former. An example of derived authorization is that a manager should be able to access any

information that his employees may access. The set of rules used to derive authorizations is called lntensional

Authorization Base (shorthly !AB). The Authorization Base (shortly AB) then consist of EAB and of lAB. Note that

derivation rules can be spec~ed along all the three domains of authorization [Rabi 91].

However, the derivation rules stated in [Rabi 91] are independent of the content of objects and cannot contain user-specified

predicates. An example of user-specified predicate is "An employee can read a document only if the employee is in the list

8

of authors of [he document". Therefore, enforcing this authorization requires looking at the content of the attribu[e

`authorlist' of the given document. A simple way to formalize those predicates is by using the constraint language

outlined in the previous Section. The above example would be formalized by the following rule:

b'e: Employee, b' d: Document (e E d.authorlist ~ auth(e,d,Read)).

We note that content-dependent authorization rules may interfere with content-independent authorization rules. For

example, suppose that a user u has received a Read authorization on document d(iJ from another user (that is, b auth(u,
d[iJ,Read) is True), and suppose that u is not among the list of authors of d[iJ. Then the question is whether u should be
allowed [o read the doctunent or not. The answer is that the u is allowed. In fac[, auth(u,d[iJ,Read) follows d'uectly from
b auth(u,d[iJ, Read) (because of the basic implication (~`)). Therefore when both content-independent and content-dependent

authorization rules exist on an object, a subject may access the object if he verifies at least one of the authorization rules.

In the above example, user u may read the document if either he has been explicitly authorized to reading it (even if he is

not in the author list) or if he is one of the authors (even if he has not been explicitly authorized).

Therefore, the basic policy of this authorization model is that a user is allowed to perform a given action if he has either a

content-independent or a content-dependent authorization to do so. Note that this is in accord with authorization policies

followed in most commercial DBMSs. For example, in SQL~DS [SQL81], a user may receive multiple independent

authorizations on the same relation. Moreover, he may also receive a content-dependent authorization on a relation if he is

granted a privilege on a view defined on this relation.

Content-dependent authorizations can be explicit or implicit. An explicit content-dependent authorization has the same

format of a content-independent authorization and in addition it has a predicate, stating the conditions under which the

subject is authorized to access a given object. Some examples of content-dependent implicit authorization rules will be

presented later on in the paper.

3.2 Inference Rules for Authorization Subjects

As in [Rabi 91] and [Wier 91], we organize users into roles. A given user may belong to several roles (or groups). Roles

are often used in authorization models, since they allow a single authorization to be used to assign a privilege to a set of

users, without having to grant specific authorization to each one of those users. In the framework of this authorization

model, we consider the set of all roles to be a partially ordered set R called role graph. Because of the ordering among the

nodes of the role graph, we have the following property holding for mles:
given two roles rt and rk such that rl Srk , b's : S(s e ri ~ s E rk)

that is, if a user belongs to a ro1e, he belongs to all the super-roles of this role. We call this implication rules for roles
(briefly this rule is denoted as Ir). This has an important consequence on authorization, because all authorizations that are

valid on a role are then inherited by its sub-roles. This can be easily shown by observing the following:

1) an authorization of type a on an object o being valid for a role means that belonging to this role is a sufficient

condition for holding this authorization: b's : S(se rk ~ auth(s,o,a))

2) a user belonging to a role also belongs to all its super-roles (for implication rule Ir), that is, given ri Srk

9

b's:S(sEri~ sErk).

By combining (1) and (2) above, we obtain that b's : S(s E ri ~ auth(s,o,a)).

Given an object o and an authorization a, [he abbreviation auth(rk,o,a) will denote b's : S (sE rk ~ auth(s,o,a)).
Employee

Pennanent

Manager

Consultant Accountan[

Chiefaccountant

Director

Figure 2. Example of Role Graph

Note that this implication rule for roles can be used also for content-dependent access rules. As an example, consider the

role graph of Figure 2 and the authorization rule:

b'e: Employee, b'd:Document (e E d.authorlist ~ auth(e,d,Read)) (a).

By using rule Ir, we obtain that also the following authorization holds:

b'm: Manager, b'd:Document (m E d.authorlist ~ auth(m,d,Read)) (b).

Therefore, sub-roles inherit all authorization rules held by their super-roles. This is in accord with the results obtained in

[Wier 91] for the inheritance of constraints along type hierarchies (in particular the results holding for sufficient conditions

of integrity constraints). It is possible for a role to receive multiple authorizations concerning the same authorization type

for the same object. These multiple authorizations may arise either because of multiple inheritance (a role may have

several super-roles), or just because explicit authorizations are directly granted to this role. As an example, suppose that

the following authorization policy is defined:

1) an employee may read a document if the employee is in the author list of the document

2) a manager can read all documents of the project he is managing.

The formalization of the first authorization rule has been shown before (authorization rule (a)). By using implication rule

~r, we obtain that a manager can access a document if the manager is in the author list of the document (derived

authorization rule (b)). This is an example of an implicit content-dependent authorization. The second authorization rule is

expressed as follows:

dm: Manager, b'd:Document (m - d.project.manager ~ auth(m,d,Read)) (c).

10

Therefore the overall authorization rule for manager is obtained as an authorization rule having a sufficient condition
obtained as the disjunction of the sufficient conditions ofrules (b) and (c) above. Therefore:
b'm: Manager, b'd: Document ((m- d.project.manager vm E d.authorlist)~ auth(m,dRead)).

We model user mles, and authorization subjects in general, as ciasses using the model defined in the previous section. The

only difference is that all classes concerning roles belong to an inheritance hierarchy rooted at a special class, called User.
Modelling the authorization subjects as classes is very useful from several point of views. First, we can use those classes

as domains of other classes, and therefore we can define authorization constraints involving both authorization subjects and

authorization objects. Moreover, it is possible to define additional attributes describing users and roles within the system.

This is important since it allows to add application-dependent information about users that can be pertinent to

authorizations. As results, extensibility is achieved.

3.2 Authorization Types

Another dimension for deducing authorizations is represented by the set of authorization types. For example, it would be

useful to model the fact that the authorization to write an object implies the authorization to read the same object. This is

very useful especially when, as in the authorization model we are defining and in the one presented in [Rabi 91],

authorizations can be granted on a single object and, therefore, there could be a large number of authorizations. The usage

of implication rules for authorization types allows a single authorization on a object to be granted to a user and then all

other authorizations to be derived implicítly from it.

Before specifying implication rules for authorization types, we need to define which are the possible authorization types.

These are clearly related to the possible operations (that is, methods) defined for objects in the model. Note that we restrict

our discussion to only system-defined methods (cf. Section 2). We will discuss authorization for user-defined methods in

Section 3.4. Moreover, authorization types concerning composite objects and versions will be discussed in Section 3.4.

Table I presents the possible authorization types. For each authorization type, Table I specifies the sys[em-defined

methods whose executions are enabled by the authorization type. Note from Table I that there are some authorization types

that do not correspond d'uectly to some system-defined methods. However, they are used as shorthand for denoting a set of

authorization types. For example, the Read au~horization type is used to grant the possibility of reading any attribute of a

given object. Similarly, the Read-all authorization type is used to grant the possibility of reading all instances of a given

class, that is, to read all attributes of all instances of a given class. Note that among the authorization types, there are

Read(Ai)-all; and Write(Ai)-all. Those authorization types are actually "parametric" ones, since they depend on the

attributes specified in the class. The meaning of this authorization type is to allow a given subject to read (write) attribute

Al for all instances of the class. An example of the usage of this authorization type is the following:

b auth(Employee, Document, Read(abstract}all)3

3 For content-independent authorizations (both implicit and explicit) we omit the universal quantifications; so this
example is a shorthand for d e: Employee, b' d: Document (b-auth(e, d, Read(Abstract}all)).

11

This authorization states that all employees can read the abstracts of all documents. Note that in expressing the above

authorization we used the shorthand previously defined for implication rules among subjects. Moreover, note that

expressing the formal semantics of the above authorization rule, (that is, the fact that it implies the authorization type

Read(Abstract) for all instances of class Document) we have to wait after we introduce the implica[ion rules for

authorization objects (Subsection 3.3).

Database

Class

Instance

Authorization type ~ Actions allowed

Read
Read-all
Write-all
Create

Read the database defuution
Read all objects within the database
Modify all objects within the database
Create a class

Read Read class definition
Write Modify class defmition
Delete Delete a class
Read-all Read all instances of the class
Write-all Update all instances of the class
Read(Ai)-all Read altribute Ai for all instances of the class
Write(Ai)-a11 Update attribute Ai for all instances of the class
Create Create new instances of the class

Read Read all attributes of the instance
Write Modify all attributes of the instance
Delete Delete the instance
Read(Ai) Read attribute Ai of the instance
Write(Ai) Modify attribute Ai of the instance;

also insert, and remove if Ai is multivalued

Table I. Authorization Types

In defining the implication rules for authorization types, we make the assumption that the set O of all objects is

partitioned into three sets: Database (the set of all databases), Class (the set of all classes), Instance (the set of all

instances of some classes). Note that in the present model, we do not have meta-classes. If we had meta-classes, we should

have added a fourth set. The following implication rules define implicit authorizations for authorization types. We fust list

the implication rules that are common to both classes and instances. Then we present those that are specific to instances

and to classes.

101

102

d s: S, b' Ol : Class vlnstance (auth(s, Oi, Write) ~ auth(s, Ol, Read))

d s: S, b' Ol : Class v Instance (auth(s, Ol, Delete) ~ auth(s, Ol, Read))

Additional implication rules for classes are as follows:

IC1 1~ s: S, b' Cl : Class (auth(s, Ci, Read-all) ~ auth(s, Ci, Read))

This rule states that if a subject can read all instances of a class, then he can read also the class definition. This

implication is quite reasonable, since in order to send messages to instances, a user must know their definition.

Therefore, it does not make sense granting a user the read authorization on all instances of a class and not granting

12

the authorization to read the class definition. A similar conclusion has been reached in [Garv 91], where it is stated
that the security level of an object is higher than the level of its definition.

IC2

IC3

IC4

ICS

IC6

b's: S, b' Cl : Class (auth(s, Cl, Write-all) ~ auth(s, Cl, Read-all))
Note that because of rule ICI, a user receiving the authorization to write all instances of a class, also implicitly
receives the authorization to read the class defuvtion.

b's: S, b' Ci : Class, t~Al : Att-set(CI) auth(s, Cl, Write-all(AÍ)) ~ auth(s, Cl, Read-all(AI)))

b's: S, d Ct : Class, t~Al : Att-set(CI) auth(s, Cl, Write-all) ~ auth(s, Ci, Write-all(Ai)))

b's: S, d CI : Class, b'Ai : Att-set(Cl) auth(s, Ci, Read-all) ~ auth(s, Cl, Read-all(Ai)))

b's: S, b' Ci : Class (auth(s, Ci, Create) ~ auth(s, Cl, Read))
As for implication rule ICl, if a user can create instances, he must be able to read the class defmition.

Note from the above implication rules that the Read authorization type for classes is implied by all other authorization
types. Similaz additional implication rules are derived for instances. They are listed below:

!II

I12

1!3

N s: S, b' II : Instance , b'A1 : Att-set(Ii)(auth(s, Il, Write) ~ auth(s, Il, Write(Ai)))

t~ s: S, b' Il : Instance , b'A1 : Att-set(Ii)(auth(s, I1, Read) ~ auth(s, Il, Read(Ai)))

b's: S, b'll : Instance , dAi : Atr-set(Ii)(auth(s, li, Write(Ai))~ auth(s, li, Read(Ai)).

Note that when a user receives the authorization to read an attribute of an object, and the value of this attribute is a
reference to another object, this authorization dces not imply in general that the user can read any attribute of the
referenced object. He only reads the object-identifier of the referenced object.

Finally, note that we have also authorization types for databases. For completeness, we make the assumption that several

databases may exist in the same system. In particular, the authorization type Read for databases allows users to read the

database directory. T'hat is, users can see the names of all classes within the database, and the inheritance hierarchies.

However, this authorization type does not allow users to see the definition of specific classes. The reason for this is that

in many applications, like CAD, often there is no much difference between classes and instances. Therefore, even a class

definition may carry sensitive information which need to be protected. Note, instead, that the Read-all authorization type

allows a user to read all objects within the database. This means that the user can read both class definitions and instances.

We do not list here implication rules for database authorization types, since they aze straightforwazd (and similaz to the

ones akeady defuied for classes).

We remark now some differences with respect to the authorization model defined in [Rabi 91]. The model defined in [Rabi
91] seeks to minimize the number of authorization types. Therefore, only four authorization types were used in [Rabi 91].
This approach has two major disadvantages. The fust is that a number of objects (called authorization objects) not
corresponding to any real database object had to be introduced in the model. For example, in [Rabi 91] there is no
authorization type Read-all. T'herefore, in order to grant a user the right to read all instances of a given class, a special
authorization object is introduced in [Rabi 91], called setof-instances, (there is one of such object for each class in the

13

schema). A Read authorization granted on this object simulates the authorization of reading all instances. In general this

approach is quite unnatural, since it overloads the authorization types. As matter of fact, the end-user authorization

language defined for the model of [Rabi 91] contains additional authorization types that aze then mapped to the model by

introducing those authorization objects. By contrast, in the approach proposed here we have extended the number of

authorization types and reduced the number of object types, so that the objects used in authorizations correspond to real

database objects. The major disadvantage of the approach proposed here is that we have a larger number of implication

rules among authorization types. However, note that the number of implication rules is still quite small. For example, we

have 8 implication rules for classes, while in [Rabi 91] this number is 4. However, the complexity due to these additional

rules can be simply handled by implementing the authorization mechanism (or part of it) in Prolog (or other logical

language).

Another difference is that in our model the authorization of modifying a class definition does not imply the authorization

of modifying instances of the class, while in the model of [Rabi 91] it dces so. The motivations for our approach are

based on the fact that many class modification operations (such as adding or removing or changing methods) do not impact

instances. Moreover, class modification operations that impact the instances (such as dropping or adding an attribute) do

actually modify the instance structures, not their contents. Therefore, since the Write authorization type in our model

means updating the contents of all attributes of an instance (not the instance stnuctures), there should be no logical

implication between the authorization to modify the definition of a class and to update its instances. Finally, another

difference is that our model has provision for authorization types allowing reading~writing selected attributes for all

instances of a class. T'his authorization type is not provided in the model defined in [Rabi 91]. It is, however, very useful;

for example SQL~DS [SQL 81] allows update authorizations to be granted on selected columns of tables.

3.3 Authorization Objects

A third dimension along which authorizations can be propagated is along authorization objects. From authorization point

of view, it is useful to see authorization objects organized into an object authorization granulariry hierarchy. A node in

the object authorization granularity hierazchy corresponds to a database object. Each node has associated authorization

information about itself, and moreover it may have authorization information about a set of lower level nodes. For

example, a class may have authorization information about reading or writing the class definition, but also authorization

about reading or writing its instances. In some situations, it may be useful to factorize in the class an authorization

holding on all instances of a class. The organization of objects into a granularity hierarchy allows authorizations

associated with a node to be propagated to lower level nodes.

We start with a simple granularity hierarchy consisting of only three levels, corresponding respectively to databases (the

topmost level), classes, and instances. Therefore, a database is seen as a set of classes, each class in turn is seen as a set of

instances. This granularity hierarchy will be extended later when dealing with the additional modeling constnucts such as

versions. An example of granularity hierarchy is illustrated in Figure 3 for the classes defined in Figure 1. Note that with

14

respect to the object gr~anularity hierarchy presented in [Rabi 91], the hierarchy presented here is simpler. This is due to the
approach we took of increasing the set of authorization types. This resulted in a granularity hierarchy with less levels.

system

database esearch] database[CAD].....

class[Employee]...... class[Document] class[Project].....

d[1] d[2] d[3]d[1000]
Figure 3. Example of object authorization granularity hierarchy

We now present the implication rules for objects. In the remainder of the discussion, given two object oi and oj, we use
the notation oi E oj, to indicate that oi is an immediate descendant of oj in the object granularity hierazchy. The
notation means that ol belongs to the set of objects represented by oj. In presenting the implica[ion rules, we fust present
those holding between the database level and the class level, and then between the class level and the instance level.

Implication rules between databases and classes

IDCl d s: S, b'Di : Database, 1~Ci : Class ((auth(s, Di, Read-all) n Ci EDi) ~ auth(s, Ci, Read-all))

(Note that this rule together with nile ICl for authorization types implies that a user holding the authorization to

read all instances in the database may also read the definitions ofall classes in the database.)

IDCZ

IDC3

IDC4

IDCS

t~s: S, b'Di : Database, b'Ci : Class ((auth(s, Di, Write-all) n Ci EDi)~ auth(s, Ci, Write-all))

b's: S, dDi : Database, b'Ci : Class ((auth(s, Di, Write-all) n Cl EDi) ~ auth(s, Ci, Delete))

b's: S, b'Di : Database, b'Ci : Class ((auth(s, Di, Write-all) n Ci EDi)~ auth(s, Ci, Write))

t~s: S, b'Di : Database, b'Ci : Class ((auth(s, Di, Write-all) nCi EDi) ~ auth(s, Ci, Create))

Note from the above rules that the Write-all authorization type for databases is quite powerful, since it allows a user
holding an authorization of this type to perform all possible actions on the database objects. Therefore, this authorization
type is suitable mainly for users like database administrators. It can be seen as an authorization like to DBA authorization
of SQL~DS [SQL 91].

Implication rules between classes and instances

ICII

ICI2

ICI3

IC14

t~ s: S, b' Ci : Class, b'll : Instance ((auth(s, Ci, Read-all) nti ECi)~ auth(s, Ii, Read))
b's: S, b' Cl : Class, t~li : Instance ((auth(s, Cl, Write-all) nli ECi)~ auth{s, li, Write))
b's: S, b' Ci : Class, b'li : Instance, b'Al : Att-set(Ci)

((auth(s, Ci, Read-all(Ai)) nIi ECi)~ auth(s, li, Read(Ai)))

d s: S, b' Ci : Class, dIi : Instance, b'Ai : Att-set(Ci)

15

((auth(s, Ci, Write-all(Ai)) nIi ECi) ~ auth(s, li, Write(Ai)))

Note that in rules ICI3 and ICl4 we do not need to state the constraint that attribute Ai be a valid attribute for instance

li since ti is an instance of class Ci and therefore all instance attributes defined by the class are valid attributes for the

instances. However, some data models, like for example 02 [Deux 90], allow instances to have additional attributes (and

methods) with respect to those defined by their class. Authorizations on these additional attributes cannot be granted at

class level (unless the authorization types Read-all or Write-all are used), since they are not common to all the instances

of the class. Authorizations on them may only be granted at instance level. Implications rules holding for authorization

types defined for instances (cf. Subsection 3.2) still apply to these exceptional attributes. Therefore, in ihe rules defined in

Subsection 3.2, the attribute set of an instance li (denoted as Att-set(li)) includes the attributes defined by the class of li

and additional attributes defined for li at instance level. Note that to deal with these additional attributes, we might have

to introduce additional authorization types. For example, how is a user authorized to extend an instance by introducing

additional attributes or methods? However, in order to keep the model simple, we make the assumption that the

authorization type Write for instances also allow a user to addhemove additional attributes and methods.

All previous implication rules allow authorizations to be propagated top-down. We introduce now an implication rule that

propagates bottom-up.

ICIS d s: S, d Cl : Class, b'li : Instance, dAi : Att-set(Ci)((auth(s, li, Read(Ai)) n1i ECi) ~ auth(s, Ci, Read))

This implication rule states that if a user has the Read authorization on an attribute of an instance, then he can read the

class definition. The reason for this is that in order for a user to read an attribute of an instance, he must know the

definition of the attribute. Therefore, he must be able to read the class definition, that contains the definition of the

attribute. Note that we could further refine the model by introducing authorization types for reading~writing the defmition

of a single attribute. However, we do not think that such a fine level of granularity is really necessary.

Combining this rule with rules defined in Subsection 3.2 for authorization types of instances, we obtain that a user who

can read an instance is also able to read the class definition. Note that the above rule ICIS is quite useful, since it allows

the authorization model to present a concise interface to the user. In this case, a user wishing to grant another user the

authorization to read an object does not need to also grant the authorization to read the definition of the class, since this is

automatically deduced by the syst~em.

Content-dependent authorizations

In addition to the previous implication rules for content-independent authorizations, an objec[may factorize content-

dependent authorizations for the set of its lower level objects in the granularity hierazchy. In other words, content-

dependent authorizations can be expressed intensionally over a set of objects, rather than expressing them explicitly for

each object. Content-dependent authorizations are expressed using the constraint language defined in Section 2.

In general, given an object O, these constraints contain a quantification of the fonm: b~ Oi: O . This quantification states

that the conditions contained in the constraint apply to all objects belonging to O. Note that O can be a class, the most
common case, or also a database (later on, we will see that this applies to versioned objects as well). When the content-

16

dependent authorization is associated with a database node, then it applies to all classes that are part of the database. In
this case, the conditions must be expressed in terms of class-attributes that are common to all classes in the database.
Class-attributes are those attributes that characterize the classes themselves as objects and are not inherited by the class
instances. In our reference model, we do not include class-attributes. However, as an example, suppose that each class has
a class-attribute called `definition-date': this attribute contains the date when the class was defined. An example ofcontent-
dependent authorization associated with a database would be the following:

dm: Manager, b'Ci : Database[Research] (Cl .definition-date ~'10-10-91' ~ auth(m, Ci, Write)).

This content-dependent authorization states that a manager can modify the class definition only for classes defined later

ihan the specif'ied date. However, more signif'icant content-dependent authorizations are defined on classes.

Content-dependent authorization can be combined with implication rules for content-independent authorizations. Thus,

implicit content-dependent authorizations are derived. As an example, consider the content-dependent authorization:

b'm: Manager, b'd: Document (m E d.authorlist ~ auth(m,d,Write)) (i).

By applying implication rules for authorization types holding for instances, we derive from (i) the following:

b'm: Manager, b'd : Document (m E d.authorlist ~ auth(m,d,Read)).

Moreover, by applying implication rule ICIS holding between instances and their class, we obtain the following implicit

content-based authorization:

b'm: Manager, b'd : Document (m E d.authorlist ~ auth(m, Document, Read)).

It is also possible to specify a content-dependent authorization for a specific instance. This is mainly useful when the

instance changes content very often. Suppose that there is a project which is confidential and therefore the authorization

policy is that authorizations for all documents related to that project must be explici[ly stated using explicit authorizations

(that is, authorizations must be decided case by case). However, suppose that a specific document, say d[3], is an overview

of the project, reporting the main results every month, and must be made available for reading to all employees whenever

the status is `released'. A possible solution is to grant an explicit authorization to the role Employee each time d[3] is

released and revoking this authorization each time the status is different from `released'. This approach is quite

cumbersome. A simpler solution is to define a conten[-dependent authorization of the form:

t~e: Employee (d[3J.status-`released' ~auth(e, d[3J,Read)).

Therefore, content-dependent suthorization provides a simple and effective solution to handle situations like the above one.

3.4 Additional Authorization Rules for Object-Oriented Data Models

We now describe how authorization is handled for additional modeling constructs. We will consider the cases of composite
objects and versions. The authorization model should allow them to be handled as authorization units. For example, an
authorization on the root of a version hierarchy should propagate to all versions. As we will see this is easily supported
by the authorization model we have defined. Moreover, we briefly discuss authorization issues concerning user-defined
methods.

17

Composite Objects

In general, when dealing with composite objects it is convenient handling them as an authorization unit. This allows a

single authorization granted on the root of a composite object to be propagated to all components, without any additional

explicit authorization. Before introducing the authorization approach used for composite objects, we need to introduce

some additional notation. Given an instance I, comp-set(1) denotes the set of all instances that are components of 1.

Figure 4 presents some example of composite objects from the Document class of Figure 1. In Figure 4, there are two

documents, identified respectively by d[1] and d[15]. They share a section identified by s[14].

d[1] d[15]

s[15]

p[1] p[20] p[21] p[30] p[45] p[46] p[50]

Figure 4. Composite object examples

In order to handle authorizations on composite objects, few authorization types and implication rules are added. They are as

follows:

ICompl b' s: S, d li , b' I~ : Instance

IComp2

((auth(s, I{, Read-composite) nl~ eeomp-set(li)) ~ auth(s, l~, Read-composite))

b's: S, I~Ii , dl~ : Instance

((auth(s, Ii, Write-composite) nI~ ecomp-set(li)) ~ auth(s, l~, Write-composite))

By applying those two rules recursively we have that authorization on the root of a composite object is propagated to all

instances that are direct or indirect components of the root object. Note that the Read (Write) authorization type on an

instance is different from the Read-composite (Write-composite). In the iu-st case, a user can only read (write) all

attributes of an object, including composite attributes. However, he cannot read (write) the content of referenced objects,

even those that are referenced through composite attributes. In the second case, a user can read all attributes of an object

and (recursively) all attributes of objects that are referenced through composite references. Therefore, the Read-composite

(Write-composite) authorization type is stronger than the Read (Write) authorization type. This is formalized by the

following implication rules among authorization types for instances:

I16 b's: S, t~Ii ; Instanee (auth(s,li, Write-composite) ~ auth(s, li, Write))

I17 b' s: S, d li : Instance (auth(s, li, Read-composite) ~ auth(s, Ii, Read)).

Similarly to the case of authorization types Read and Write, we establish an implication rule stating that a user who can
modify a composite object is also able to read it:
IIg t~ s: S, b' 11 : Instance (auth(s, li, Write-composite) ~ auth(s, li, Read-composite)).

18

Combining the rules for composite objects with the rules defíned for classes and instances, we obtain that an authorization

to read (write) a composite object implies the authorization to read the class definitions of all the component instances.

However, no implicit authorizations are derived on instances of component classes that are not used as components of the

composite object. As an example consider the composite objects of Figure 4. Suppose that the following explicit

authorization is entered: (si, d[1], Read-composite). From this authorization, the following implicit Read authorizations

are derived:

(si, s[12J, Read), (si, s[14J,Read), (si, p[1], Read), (sl, p[20J,Read),

(si, p[21J, Read), (si, p[30J,Read), (si, p[45], Read).

Moreover, the following authorization on classes Section and Paragraph are derived:

(si, Section, Read), (si, Paragraph,Read).

However, no authorizations aze implied on instance s[15] of class Section and on instances p[46] and p(50] of class

Pazagraph. The above approach for composite objects is in some way similar to the approach used in [Garv 91], where it

is stated that the access class of an object dominates that of its components.

In addition to grant authorizations on a single composite object, it may useful to grant authorizations for composite

objects at class level. Therefore, we introduce also for classes two new authorization types, Read-composite-all and Write-

composite-all. Their meaning is explained by the two following implication rules that we add to the set of implication

rules between classes and instances stated in Subsection 3.3.

ICI6 d s: S, t~ Ci : Class, b'!i : Instance ((auth(s, Ci, Read-composite-all) ~ Ii ECi) ~ auth(s, li, Read-composite))

!C!7 b's: S, t~Ci : Class, 1~li : Instance ((auth(s, Ci, Write-composite-all) n Ii ECi)~auth(s, Ii, Write-composite)).

An additional implication rule holding between Read-composite-all and Write-composite-all states that the second

authorization type implies the first. We do not formalize it, since it is quite similaz to the one stated for authorization

types Read-all and Write-all.

Since a composite object represents also a set of components in the object granularity hierarchy, it would be possible in

principle to associate with the root of the composite objects content-dependent authorizations for the components, as we

do for classes and instances. Here, however, the situation is different since component objects may be of different classes,

and therefore their types may be different. Therefore, it is difficult to devise situations when this may arise in practice. As

an example, suppose that a date is associated with each component of documents. Then a possible content-dependent

authorization would be that an employee can read all components ofdocument d[20] if their date is lower than `27-March-

91'. This authorization could be modeled as follows:
b' e: Employee, b'li: comp-set(d[20J) (li.date ~'27-03-91' ~ auth(e,li,Read-composite)) .

Consider now the following authorization policy:

An employee can reada section of document d[20] only if the date of the section is earlier than '27-March-91'.

The difference with the previous authorization is that here only the components that are sections aze considered (that is, the

authorization does not apply to the abstract). This authorization is expressed as follows:

b' e: Employee, b's: Section ((sECOmp-set(d[20J) n s.date ~'27-03-91')~ auth(e,s,Read-composite)) .

19

Note that in the above example, the authorization is really associated with the Section class. The constraint that this

authorization only holds for components of document d[20] is simply expressed as a set-membership predicate. If however

this policy were to be applied to each Section, independently on the document where it is contained, then it would simply

be expressed as:

t~e: Employee, b's: Section (s.date ~`27-March-91' ~ auth(e,s,Read-composite)) .

Finally, we present another example showing an authorization based on the content of both the root object and on the
components. Consider the following authorization policy:

An employee can read a section of a document only if the employee is in the authorlist of the section and the document is

related to an ESPRIT project.

This policy would be formulated as follows:

b'e:Employee, b's: Section, dd: Document ((sECOmp-set(d) n

e e s.section-aurhors n d.project.research~rogramme -'ESPRIT) ~ auth(e, s, Read-composite)).

The above examples show the flezibility of the constraint language for handling a large variety of applicative situations.

Versions

A versioned object may potentially have a large number of versions. Therefore, as for composite objects, it should be

possible to handle versioned objects as authorization units. For ezample, it should be possible to grant a single read on a

versioned object allowing users to read all versions of this object without any additional explicit authorization. As for

composite objects, given a generic instance I version-set(I) denotes the set of all instances that are versions of I. Therefore,

version-set(I) includes all objects that belong to the version hierarchy rooted at I. To handle authorizations on versioned

objects additional implication rules aze introduced. Note that those implication rules are simply formulated using a

membership predicate to test whether an instance belongs to a version hierazchy of a generic instance. The implication

rules for versions are as follows:

IVersl

IVers2

b' s: S, b' li , Ij:Instance ((auth(s, li, Read) nIj Eversion-set(Ii)) ~ auth(s, Ij, Read))

1~ s: S, l~li , Ij : Instance ((auth(s, Ii, Write) nIj Eversion-set(li)) ~ auth(s, Ij, Write)).

Similar implication rules aze derived for authorization to read or write specific attributes in all versions of a given version

hierarchy:

IVers3 b's: S, b' li ,Ij : Instance, NAi : Att-set(li)

((auth(s, li, Read(Ai)) nIj Eversion-set(li)) ~ auth(s, Ij, Read(Ai)))

IVers4 b's: S, b'li ,!j : Instance, b'Ai : Att-set(Ii)

((auth(s, li, Write(Ai)) nIj eversion-set(Ii)) ~ auth(s, Ij, Write(Ai))).

An important question for versioned objects concems authorization for modifying version hierazchies. Several operations,
such as promoting a transient version or changing the default, modify the version hierarchy. One possibility is to
introduce new authorization types, specific for those operations. However, this solution seems unnecessarily complex. A

20

simpler solution is to use the Write authorization on the generic instance to this purpose as well. This approach is very

simple and it is consistent with the fact that the generic instance in a version hierazchy stores all information about the

version hierarchy. Therefore, a Write authorization on the generic instance of a version object allows users to perform all

"administration" functions conceming the version hierazchy.

Another question related to version hierarchies is the authorization to derive a new version within a given version

hierarchy. A possible solution is to use the same approach we used for operations concerning the version hierarchy

administration. Under this approach a user would have to receive the Write authorization on the generic object in order to

be able to create a new version. This approach has the main disadvantage that then that user would be able to write all

versions in the version hierarchy (remember from implication rule IVers2 a Write authorization on the generic instance

is implicitly propagated to all versions). However, a main reason for giving a user the possibility of creating a new

version is to prevent the user from directly modifying some existing objects. Another possibility is to requ've that a user

has the Create authorization type on the class in order to derive a new version. Again this solution is not completely

satisfactory because this would allow a user to create new version hierarchies. In applications where there aze a lot of

objects, each with many versions, it may be important to control the proliferation of version hierarchies.

The approach we take consists of introducing a Create authorization type for instances as well. A Create authorization

type must be associated with instances that belong to version hierarchies. The semantics of this authorization type for an

instance I is to allow a user to create a new version within the version hierarchy rooted at I. Note that I can be a generic

instance (that is, the root) of a version hierarchy or can be a specific version. The fact that I can also be a specific version

is quite importan[since it allows the user to create versions only from I, or from versions derived from I. In this way it is

possible to limit the user action to only a specific subhierarchy within an entire version hierarchy. Note that versions can

only be derived from stable versions. Therefore a restriction is that I must be a stable version. Moreover, the user can

create versions only from the stable versions that belong to the version subhierarchy rooted at I. We note that our

approach is quite different in this respect from [Rabi 91), where the approach is taken that user must possess the Write

authorization type on the generic instance in order to create new instances.

v[0]

v[1] v[2] v[3]
~

LEGENDA

T
v[i] vU) v[kl
~ ~ ~

Figure 5. Version hierarchy example

As an example consider the version hierazchy in Figure 5 and the authorizations

Q transient version

~ stable version

21

auth(si, v[0], Create) auth(s~, v[iJ, Create).

Under the previous authorizations, the first subject, sl, is a authorized to create new versions from the versions v[0], v(1],

v[2], v[i]; the second subject, sj, can only derive versions from v[i]. Finally, we note that a user receiving the

authorization to create a new version from a given object, or from versions of this object, must be able [o read the object

from which the version is to be derived. Therefore, an additional implicaton rule for versioned objects is added:

IVersS d s: S, b' li : Instance ((auth(s, li, Create) ~ auth(s, li, Read)).

Since a versioned object represents a set of instances, it is possible to also specify content-dependent authorizations that

are applied to all versions in a given version hierarchy. In addition, the special predicate Is Stable is introduced to test

whether a version is stable or still transient. For example, suppose that the we wish to enforce that only stable versions of

document d[3] can be read by the role Chiefaccountant (cf. Figure 2). This authorization can be simply specified as

b'c: Chiefaeeountant, b'd: Document ((dEVersion-set(d[3J) n Is-Stable(d)) ~ auth(e,d,Read)) .

Inheritance hierarchies

Inheritance is a basic concept in many advanced data models. It provides several important functions, such reusability and

conceptual modeling [Bert 91]. An important question concerning inheritance hierarchies is whether authorizations on a

class should be inherited by its subclasses. An approach in which authorizations are automatically propagated to the

subclasses has the advantage that a single authorization on the root of an ínheritance hierarchy is sufficient for all classes

in this hierarchy. Moreover, this approach is more efficient for queries applying to the members of a class, and not only to

its instances (cf. Section 2.1 for the difference between an instance and a member of a class). However, as pointed out in

[Rabi 91), this approach has a major disadvantage in that it discourages the usage of inheritance for re-usability. A user

wishing to create a class re-using another class definition would hesitate in doing so, since all authorizations holding on

the superclass would automatically hold on his~her class. Moreover, this approach dces not allow to increase the

protection of subclasses with respect to superclasses. Therefore, the approach adopted in [Rabi 91) and in here is that

authorizations are not automatically inherited along class inheritance hierarchy. However, in some situations it may be

useful to allow inheritance of authorizations. To this purpose, we introduce the relationship of authorization inheritance

among classes. This relationship is denoted as S; given two classes C and C' such that C is a subclass of C', C SC'

indicates that all authorizations holding on C' automatically hold on C. This relationship is entered by the user, and by

default does not hold among classes (we present user interface statements for this in Appendix A). We refine this

relationship by distinguishing among inheritance of content-independent authorizations (denoted as~1) and inheritance

of content-dependent authorizations (denoted as ~D). The reason for distinguishing them is that content-dependent

authorizations may not be valid on a subclass, because of overriding and multiple inheritance. As discussed in (Bert 91],

depending on the specific object-oriented data model overriding and multiple inheritance may cause an attribute of a

subclass to have a definition which is different from the attribute with the same name of the superclass. In this situation,

content-dependent authorizations involving this attribute may not be valid any more because of type mismatch. This

means that they have to be redefined in the subclass. In such cases, it may be useful to only inherit content-independent

authorizations. When the relationship S holds between two classes, both content-dependent and content-independent

authorizations are inherited.

22

To model the inheritance of authorizations, we intn~duce two additional implication rules:

flnherl ds: S, b'C, C': Class, b'a: A((b-auth(s,C',a) n C SCl C') ~auth(s,C,a))

IIny~2 b's: S, dC, C': Class, b'a: A((X(C') n CSCD C') 1-X(C))

Note that first implication rule, combined with the implication rules introduced eazlier, allows several implicit
authorizations to be derived. In the second implication X(C') (X(C)) denotes a content-dependent authori7ation expressed
in terms of class C' (C). We now present some examples with respect to the inheritance hierarchy of Figure 6.

Document

Memo ResearchReport Paper

Figure 6. Inheritance hierarchy example

Suppose that the authorization inheritance relationship MemoSDocument holds. Moreover, suppose that the following

authorizations hold on class Document:

b auth(Manager,Document, Read-all))

t~e: Employee, b'd: Document (e e d.authorlist ~ auth(e,d,Read)).

Because of the implications for inheritance hierarchies, we obtain that the following authorizations hold on class Memo:
auth(Manager, Memo, Read-all)

b'e: Employee, dd: Memo (e e d.authorlist ~ auth(e,d,Read)).

However, no similaz implications are deduced for the subclasses ReseazchReport and Paper since no authorization
inheritance rela[ionship has been entered for them.

A final question concerns authorizations to create a subclass of one or more classes. The approach taken in [Rabi 91] is to
introduce a special authorization type. A user who has been granted this authorization type on a class C is able to create
subclasses of it. We take a different approach in that no new authorization types aze introduced. Rather, the already
existing authorization types aze used. A user can create a subclass from classes C1,C2,....,Ci (i ? 1) if he has the

authorization to create a class and moreover he has the authorization to read the definitions of these classes. Note that in
order to create a subclass, two different types of authorizations aze needed. The first one is an authorization to occupy
storage space and to add a new class to the database. This authorization is usually managed by some administrators (In
SQL~DS for example, a user can create a table only if he has the resource authority which can be granted only by DBAs.)
The second type of authorization is the authorization to read the det`mitions of superclasses. This authorizations are usually
managed by the creators of classes, who are not however concemed in most cases with storage space administration.

Authorization for user-defined methods

In the previous discussion we have only considered authorizations for system defined methods. An important question is

how authorization is dealt with for user-defined methods. A discussion of issues concerning this question can be found in

[Bert 92]. Basically, in [Bert 92] two possible approaches aze devised. Under the first approach, when a user-defined method

is executed, all accesses performed by this method are checked for authorization against the user on behalf of whom the

23

method is being executed. In other words, in order to execute a method a user must possess all authorizations needed by

the method during its execution. If we consider the class Document of Figure 1 and the method Copy, under this approach

a user will need the authorization to read the document which is being copied and the authorization to create a new instance

of the class Document. This approach is used in the model defined in [Rabi 91]. The main problem of this approach is
that it dces not exploit the potential of inethods for authorization. In certain situations, it may be useful that a user be
able to execute a method, without having direct access to the object the method accesses. This approach is called in [Bert
92] execution under protection mode. All authorizations needed during method executions aze checked against a user
different from the user u who started the method execution. The user against whom authorizations are checked is the user
who granted u the authorization to execute the method. Usually, that user is one of the owners of the object on which the
method has been invoked. This protection mechanism is quite important and it is used, under different forms, in relational
DBMSs, file systems, and operating systems. Note that the authorization mechanisms should support both ways of
method execution (non-protection and protection made).

An important advantage of using methods for authorizations is that it is possible to embed into methods authorization
checkings. Since methods are expressed in computationally complete languages it is possible to encode whatever complex
authorization rules. This feature coupled with the possibility of running methods under protection mode allows objects to
be encapsulated with methods enforcing authorizations.

An important issue, that we leave open, is whether the content-dependent authorization mechanism defined here is
redundant when user-defíned methods implement authorization rules as part of their execution. Note that it is possible to
implement content-dependent authorization using methods. A main difference between the two is that content-dependent
authorization rules defined by the constraint language aze declarative, while authorization rules defined as part of inethods
are expressed in an imperative language. The usage of the constraint language simplifies the definition of authorization
rules by users, and saves the users from writing several methods. However, the expressive power of the constraint
language is limited with respect to the power of a general programming language. Therefore, both declarative content-
dependent and procedural content-dependent authorization seem to be useful. However, more investigations are needed on
this question. Related to this there is the definition of inethodological guidances supporting the authorization
administrators and database designers in the task of designing authorization rules for a given database.

4. Authorization Administration

To be complete an authorization model must include policies and mechanisms for adminstration of authorizations. An
administration policy states which users are able to perform authorization operations, such as grant and revoke. Different
policies are implemented by different systems. An approach ís to rely on the database administrator (DBA) for granting and
revoking authoriza[ions (we call this approach centralized administration). Under this approach, a user who has created an
object is not able to autonomously managing authorizations on his own objects. This problem is solved by the ownership
approach. Under this approach, the owner of an object is the only user able to granthevoke authorizations on his own
objects. The owner of an object is usually the user who has created the object. The ownership approach is very often

24

extended with the possibility of delegating the administration of authorizations, that is, the owner of an object may allow
other users to granVrevoke authorizations on this object. This approach has been used by various relational systems, such
as System R[Grif 76], and has many advantages.

In the ownership approach the unit of ownership is the relation. In object-oriented databases, however, the unit of
ownership cannot be the entire extension of a class. Rather, it should be possible that different instances of the same class
have different owners. This requirement is motivated by the fact that the class often represents just a template from which

several users derive their own instances. In this case, it may quite restrictive to impose a single user as the owner of all

instances of a class. Therefore, in object-oriented databases there is the need of further decentralization allowing class

instances be independently administrated. If [he authorization model were not to allow single instances to be independently

administrated, in some siwations users would have to create subclasses only for the purpose of being able to administrate

their own instances. The model presented in the previous sections is then extended by associating an owner to each object.

Then it is possible to apply mechanisms, like those defined in [Grif 76], for the delegation of administration functions.

For example, the owner of an object may grant another user an authorization with grant option, thereby allowing this user

to grant this authorization to other users. A main difference, however, between the model of [Grif 76] and the model

presented here and in [Bert 92], is that we allow the owner of an object to change4. This is very useful in applications

dealing with cooperative work and long-lived objects. As in [Grif 76], the owner of an object is the user who initially

created the object. However, in our model this owner may change later on.

We note, however, that the decentralization at instance level may sometimes be inconvenient for perfomance and also

conciseness. We discussed eazlier that different granularity levels should be supported by the authorization mechanism. We

have shown that it is possible to grant the same authorization on all instances of a class; examples are the Read-all and

Write-all authorization types. However, when each instance of a class is independently administrated, it is not cleaz which

user can grant such an authorization. Also, the capability of inheriting authorizations from superclasses may cause

problems since it is not clear which user can issue such command. However, authorization types holding on all instances
of a class are very important for performance, since in the case of queries a single authorization check is sufficient, and for
conciseness, since a single authorization command from the user is needed. To solve this problem, we introduce the
possibility for classes of being centrally administrated. This approach consists of having a single owner of all instances of
a class (called class administrator). Therefore, instances of a class may be created by different users, but authorizations are
centrally managed by the class administrator. In our model, the administration modality (decentralized vs centralized) for a
class is declared when the class is defined. It is, however, possible to change the administration modalities later on. In

particulaz, when the class is centrally administrated, the class administrator can change the administration from centralized

4 Note that one reason why in the authorization model defined in [Grif 76], the owner of a table cannot change is because
full names for tables include the owner name. This problem dces not hold in OODBMSs where objects have unique OIDs,
which do not include the name of the owner.

25

to decen[ralized. Changing the class administration from decentralized to centralized requires the authority of a database
administrator (DBA) that can name the proper class administrators.

5. Conclusions

In this paper we have presented an authorization model for object-oriented databases. A major difference of our model,

compared to other models like the one presented in [Rabi 91J, is that our model provides also content-dependent

authorization. The possibility of establishing authorization rules based on object contents has several advantages. First, it

is easier for the users to formulate authorization rules, since these can be directly derived from the overall organization

authorization policies. Therefore, the authorization rules are strictly related to the application semantics. Moreover, they

do not require the users to grant and~or revoke authorizations when objects change their status, since authorizations hold as

long as objects verify authorization predicates. If an object has changed its status and verifies an authorization predicate,

the system automatically allows authorized users to access the object. Similazly, if an object does not verify an

authorization predicate, accesses to this object under this authorization predicate aze not any longer possible. In both

situations, there is no need of explicit grant or revoke operations. Finally, content-dependent authorization is more

efficient with respect to query execution, since authorization predicates can be merged with predicates in queries, as done

for views in relational systems. Within the paper we have shown several examples of the flexibility provided by content-

dependent authorization for semantic modeling concepts such as versions and composite objects.

In addition, the model presented in this paper differs from the model defined in [Rabi 91] in a number of other aspects.
First, we took the approach of increasing the authorization types of the model and reducing the number of authorization
objects, while in [Rabi 91] only four authorization types are used while the number of authorization objects is quite high.

The main drawback of the model in [Rabi 91] is that authorization objects are introduced that do not always correspond to
real database objects. The model presented here is therefore more natural and can be easily mapped onto a user language.
Moreover, our model allows a more detailed modeling of implications among authorization types. Second, we have
introduced a more sophisticated authorization model for versions and for inheritance hierarchies. Third, we have presented
two possible complementary approaches to authorization administration. It is our opinion that both are needed to provide a
high degree of flexibility.

References

[Andr 87] Andrews, T., Harris, C. "Combining language and database advances in an object-oriented development

environment" Proc. Second International Conference on Object-Oriented Programming System.s, Languages, and

Applications (OOPSLA), Orlando, Florida, Oct. 1987.

5 Another possibility to be explored is to have both a class administrator able to grant authorization types such as Read-
a11 and Write-all, and able to issue authorization inheritance commands, and different owners for instances; therefore,
combining the two approaches.

26

[Atki 89] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich., K., Maier, D., Zdonik, S. "The object-oriented database

system manifesto" Proc. FirstInternational Conference on Deductive and Object-Oriented Databases, Kyoto (Japan),

Dec. 4-6, 1989.

[Bert 88] Bertino, E., Haas, L.M. "Views and security in distributed database management systems" Advances in Database

Technology, Proc. FirstInternational Conference on Extending Database Technology (EDBT), Venice (Italy), March
14-18, 1988, Lecture Notes in Computer Science 303, Springer-Verlag.

[Bert 91] Bertino, E., Martino, L. "Object-oriented database management systems: concepts and issues" Computer (IEEE
Computer Society), Vo1.24, No.4 (1991), 33-47.

[Bert 92] Bertino, E. "Data hiding and security in object-orien[ed databases" accepted to the Eighth IEEE International

Conference on Data Engineering, Phcenix (Ariz.), Feb. 3-7, 1992.

[Bret 89] Breitl, R., et Al. "The GemStone data management system" Object-Oriented Concepts, Databases, and

Applications, W. Kim, and F. Lochovsky, eds., Addison-Wesley (1989), 283-308.
[Deux 90] Deux, O. et Al. "The story of 02" IEEE Trans. on Knowledge and Data Engineering, Vol. 2, N. 1(1990), 91-

108.

[Fish 87] Fishman, D.H., et Al. "IRIS: an object-oriented database management system" ACM Trans. on Office

Information Systems, Vol. 5, N. 1(1987).

[Fern 81] Fernandez, E., Summers, R.C., Wood, C. Database security and integrity. Addison-Wesley, Reading (Mass.),

1981.

[Garv 91] Garvey, T.D., and Lunt, T.F. "Multilevel Security for Knowledge Based Systems" Technical Report SRI-CSL-

91-01, Computer Science Laboratory, SRI International, Menlo Park, CA, February 1991.

[Gass 88] Gasser, M. Building a secure computer. Van Nstrand Reinhold, New York, 1988.
[Grif 76] Griffiths, P.P., and Wade, B.W. "An authorization mechanism for a relational database system" ACM Trans, on

Database Systems, Vol.l, No.3 (1976), 242-255.

[Jajo 91] Jajodia, S., and Sandhu, R. "Towazd a multilevel secure relational model", Proc. ACM-SIGMOD International
Conference on the Management of Data, Denver (Color.), May 29-31,1991.

[Katz 90] Katz, R. "Towazd a unified framework for version modeling in engineering databases", ACM Computing
Surveys, Vo1.22, No.4 (1990), 375-408.

[Keef 89] Keefe, T.F., Tsai, W.T., and Thuraisingham, M.B. "SODA: a secure object-oriented database system"
Computer ci~ Security, Vo1.8 (1991), 517-533.

[Kim 89] Kim, W., Bertino, E., Garza, J.F. "Composite objects revisited" Proceedings ACM-SIGMOD International
Conference on the Management ofData,Portland (Or.), May-June 1989.

[Kim 90] Kim, W. "Object-oriented databases: definitions and reseazch d'uections" IEEE Trans. on Knowledge and Data

Engineering, Vol. 2, N.3, (1990), 327-341.

[Rabi 91] Rabitti, F., Bertino, E., Kim, W., Wcelk, D. "A model of authorization for next-genera[ion database systems"

ACM Trans. on Database Systems, Vol. 16, No.l (1991), 88-131.

[SQL 81] IBM Corporation. SQL~Data System: Application Programming, SH24-5018 (1981).
[Weig 91] Weigand, H. "An object-oriented approach in a multimedia database project" Kent, W., Meersman, R. (eds.),

Object-oriented databases(DS-4), W. Kent, and R. Meersman, eds., North-Holland, Amsterdam, 1991.
27

[Wier 91] Wieringa, R.J., Weigand, H., Meyer, J.-J.Ch, Dignum, F.P.M. "The inheritance of dynamic and deontic

integrity constraints" Annals of Mathematics and Artif cial Intelligence, Vol. 3(1991), 393-428.

Appendix A - Authorization language

Here we sketch an SQL-like language for authorization operations grant and revoke. The basic format of the grant

command is:

GRANT ~authorization~ ON ~objecb [WHERE ~qualification-clause~] TO ~subjecb

In the previous command, the possible authori7ation types are:

READ, READ-ALL, WRITE, WRITE-ALL, DELETE, CREATE, READ-COMPOSITE, WRITE-COMPOSITE,

READ-COMPOSITE-ALL, WRITE-COMPOSITE-ALL

~objecb can be a database name, a class name, an instance name, a class name followed by a set of column names, an

instance name followed by a set of column name;

~qualification-clause~ is a SQL-like formulation for the constraint language presented in the paper; it is used to

express content-dependent authorizations;

~subjecb can be role or a single user.

REVOKE ~authorization~ ON ~objecb FROM ~subjecb

In addition to this basic format, we have some special formats for [he grant and revoke commands that have been

introduced to deal with authorization aspects that are peculiar to our model. They are as follows:

GRANT ALL I BASE I CONTENT ON Class-name-1 AS Class-name-2

This format ofgrant command allows the inheritance of authorizations from the class with name Class-name-2 [o the

class with name Class-name-1. It is possible to inherit all authorizations (option ALL), or only the content-

independent authorizations (option BASE), or only the content-dependent authorizations (option CONTENI). It is

possible to revoke the inheritance by using the following format of the revoke command:

REVOKE ALL I BASE I CONTENT ON Class name 1 FROM Class name 2

This command has the effect of suppressing the inheritance of authorizations from the class with name Class-name-2

to the class with name Class-name-1. It is possible to selectively suppress the inheritance of only ihe content-
independent authorizations, or of only the content-dependent authorizations.

Other commands that we do not present here include commands for ownership and class administration, and for role

management.

28

OVERVIEW OF ITK RESEARCH REPORTS

No Author Title

1 H.C. Bunt On-line Interpretation in Speech
Understanding and Dialogue Sytems

2 P.A. Flach Concept Learning from Examples
Theoretical Foundations

3 O. De Troyer RIDL~: A Tool for the Computer-
Assisted Engineering of Large
Databases in the Presence of In-
tegrity Constraints

4 E. Thijsse Something you might want to know
about "wanting to know"

5 H.C. Bunt A Model-theoretic Approach to
Multi-Database Knowledge Repre-
sentation

6 E.J. v.d. Linden Lambek theorem proving and fea-
ture unification

7 H.C. Bunt DPSG and its use in sentence ge-
neration from meaning represen-
tations

8 R. Berndsen en Qualitative Economics in Prolog
H. Daniels

9 P.A. Flach A simple concept learner and its
implementation

10 P.A. Flach Second-order inductive learning
11 E. Thijsse Partical logic and modal logic:

a systematic survey
12 F. Dols The Representation of Definite

Description
13 R.J. Beun The recognition of Declarative

~uestions in Information Dia-
logues

14 H.C. Bunt Language Understanding by Compu-
ter: Developments on the Theore-
tical Side

15 H.C. Bunt DIT Dynamic Interpretation in Text
and dialogue

16 R. Ahn en Discourse Representation meets
H.P. Kolb Constructive Mathematics

No Author Title

17 G. Minnen en Algorithmen for generation in
E.J. v.d. Linden lambek theorem proving

18 H.C. Bunt DPSG and its use in parsing

19 H.P. Kolb Levels and Empty? Categories in
a Principles and Parameters Ap-
proach to Parsing

20 H.C. Bunt Modular Incremental Modelling Be-
lief and Intention

21 F. Dols en Nog niet verschenen
H. Daniels

22 F. Dols Nog niet verschenen

23 P.A. Flach Inductive characterisation of da-
tabase relations

24 E. Thijsse Definability in partial logic: the
H. Daniels propositional part

25 H. Weigand Modelling Documents

26 O. De Troyer Object Orientèd methods in data
engineering

27 O. De Troyer The O-O Binary Relationship Model

28 E. Thijsse On total awareness logics

29 E. Aarts Recognition for Acyclic Context
Sensitive Grammars is NP-complete

30 P.A. Flach The role of explanations in in-
ductive learning

31 W. Daelemans, Default inheritance in an object-
K. De Smedt en oriented representation of lin-
J. de Graaf guistic categories

32 E. Bertino An Approach to Authorization Mo-
H. Weigand deling in Object-Oriented Data-

base Systems

~ u~Mïiinii Ni iiii~~iin n i i i

ITK: P.O. BOX 90153 5000 LE TILBURG THE NETHERLANDS

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

