

Tilburg University

A simple concept learner and its implementation

Flach, P.A.

Publication date:
1990

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Flach, P. A. (1990). A simple concept learner and its implementation. (ITK Research Report). Institute for
Language Technology and Artifical IntelIigence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/7e0ce561-5bb6-43fd-830a-c72dd4b0a7c5

CBIVI ~~~5~,
~~~---~f , J~. ,- ~.M ~4~ t-

és -~~~.,eso I'~Ill~l~lll lll nlll llhl!~II C~I~I ~N

I~K REPORTCH

INSTITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE



, - i
'~ 1..4~J ~-1 ~ ...~



ITK Research Report No. 9

January 1990

A simple concept learner
and its implementation

Peter A. Flach

Revised version of a paper appearing in
Computing Science tn the Netherlands CSN'89
P.M.G. Apers, D. Bosman, J. van Leeuwen (eds.),
Stichting Mathematisch Centn~m, Amsterdam, 1989, pp. 149-171.

ISS1V 0924-7807

Institute for Language Technology and Artificial Intelligence,
Tilburg University, The Netherlands



A simple concept learner and its implementation
Peter A. Flach

ABSTRACT

An implementation of a simple concept learner is developed, using
Prolog's unification mechanism. A formal, algebraic analysis of the syntax
and semantics of [he representation formalism used precedes and aids in the
derivation of the program. The program can generate various forms of
hypotheses (i.e., most specific, more general, and intermediate), depending on
the interpretation of negative examples.

Contents
Contents .... ...........................................................................................................................1
1. Introduction ........................................................................................................................ 2

1.1 Purpose and scope ..................................................................................................2
1.2 Intensions, extensions, and representations..................................................................2
1.3 Organisation of the paper.........................................................................................2

2. Representing simple concepts ................................................................................................4
2.1 Introduction ..........................................................................................................4
2.2 Representing simple concepts ...................................................................................5
2.3 The lattice of simple terms ......................................................................................6

3. The semantics of simple terms .............................................................................................10
3.1 Introduction ........................................................................................................ ] 0
3.2 An informal semantics .......................................................................................... 10
3.3 The lattice of simple concepts ................................................................................ 11
3.4 Mapping simple terms to simple concepts ................................................................ 13

4. Learning simple concepts .......................................................................................... .......... 15
4.1 Introduction ........................................................................................................ 15
4.2 Learning from positive examples only ..... ................................................................ 16
4.3 Learning from positive and negative examples ........................................................... 16
4.4 Taking negative examples serious ...... ..................................................................... 18

5. A session with the simple concept learner .............................................................................. 20
6. Concluding remarks ........................................................................................................... 22
Acknowledgements ................................................................................................................ 22
References ........................................................................................................................... 23
Appendix ............................................................................................................................. 24

A.1 Simple terms ......................................................................................................24
A.2 Simple concepts ......................................... ......................................................... 24
A.3 Mapping simple terms to simple concepts ............................................................... 26

1



1. Introduction

1.1 Purpose and scope

Machine learning is an important branch of Artifical Intelligence. A form of machine leaming
especially suited for formalisation and automation is inductive learning or learningfrom examples. When
examples are instances and non-instances of a concept to be discovered, we speak of concept learning. This
paper is devoted to the subject of concept learning from examples. The purpose of this paper is twofold:
first, we attempt a deeper analysis of the concept leazning problem. Second, we develop an
implementation for a specific concept learning problem. These goals aze closely related: it is our
conviction, that a formal analysis aids in the development of an implementation. Conversely, we are
aware of the fact that abstract notions often need clarification, which may be provided by examples.

1.2 Intensions, extensions, and representations

A distinction is usually drawn between the intension and the extension of a concept. The extension
of a concept is the set of things associated with it; the intension of a concept is its intended meaning,
which is not solely dependent on whether it corresponds to any existing thing in [he real world. For
instance, as far as we know, there do not exist unicorns, hence the extension of the concept `unicorn' is
the empty set. Yet, the intended meaning of the concept is reasonably cleaz, which has much to do with
the fact that people are generally able to form a`mental image' of a unicorn (see fig. 1). In contrast, the
extension of the concept `square circle' is empty; however, while these two concepts aze extensionally
equal, they do not have the same intension.

Figwe 1. A unicorn

In this text we will use the language of set-theory and lattices when dealing with extensions of
concepts: e.g., the extension of the concept `unicorn' is 0 or 0. Intensions of concepts or concept
descriptions aze described using a logic-based language that will not be defined formally. Sans serif
typefaee is reserved for expressions of this language: e.g., the intension of the concept `squaze circle'
could be shape(X) is square and shape(X) is circle. When dealing with concepts informally, quotes are
used, as above in ~~the concept of `unicorn'~~. In the course of the discussion, it will prove fruitful to
distinguish a third level: the level ofconcept representations. Concept representations are implementations
of concept intensions, and are indicated by the typewriter font. When we discuss our Prolog
implementation of a simple concept learner, we will also use this font.

2



1.3 Organisation of the paper

The paper is organised as follows. In section 2, we present and discuss various ways of
representing concepts. Because thcre are some difficulties associated with learning the general class of
concepts, we limit attention to the more restricted class of simple concepts, and we present a way of
representing simple concepts by Prolog terms called simple terms. It is shown that the set of simple
terms is a Boolean lattice, and a Prolog-implementation of the lattice operations is given. In section 3, we
discuss the semantics of simple terms, first intuitively using set-theory, then formally using abstract
algebra. It appears that there is a mismatch in algebraic structure between the syntactic domain (simple
terms) and the semantic domain (simple concepts), and we show how to map the former to the latter. In
section 4, we address the problem of inductive learning of simple concepts using the representation of
sectíon 2. We finally derive several complete Prolog implementations of a concept learner, for (a) learning
from positive examples only, (b) additionally checking consistency with negative examples, and (c)
generating hypotheses also based on the negative examples. In section 5 we illustrate the operation of
these pmgrams by means of an example.

Most results of the more formal parts of this paper are stated as Theorems. Their proofs are given
in an Appendix.

3



2. Representing simple concepts

2.1 Introduction

Informally, a concept can be defined as any set of objects that can be described by means of
properties and their values. For instance, the concept of `green circles' can be described by an expression
like eolour(X) is green and shape(X) is eirele. A particular instance of this concept can be described by
turning the variable X into a constant, say a, and perhaps adding some peculiarities of that particular
object: colour(a) is green and shape(a) is circle and weight(a) is heavy. The problem of concept
learning from examples is to find a concept description given positive and negative examples (i.e.,
descriptions of instances and non-instances of the concept). E.g., the above concept descripdon can be
induced from the description of instance a and the example colour(b) is green and shape(b) is cirele
and weight(b) is light. From this we see that both instance descriptions and concept descriptions may be
cast into a vector representation such as

[colour(green),shape(circle),weight(heavy)]
for the first example, and

[colour(green),shape(circle),weight( )]
for the induced concept, with the underscore - denoting a DON'T CARE-value for the property weight.

This vector representation of concepts and instances indicates, that the induced concept vector may
be considered more general than the given example vectors (in a sense soon to be made precise). In case
negative examples are included, the concept vector should not be more general than any negative example
vector. The above illustration also shows, that there may exist algebraic operators that take
representations of positive examples and return a concept representation that is more general (similarly for
negative examples). In this paper, we adopt this algebraic approach towards representing and learning
concepts. Following this approach, a concept learner can be developed in three steps:

(í) Choose a syntactic representation for concepts and instances and determine the
algebraic properties of this representation;

(ií) Describe the semantics of this representation algebraically;
(iií) Implement the concept learner by means of the syntactic operations defined in step

(i); in case there is a mismatch in algebraic structure between the syntactic domain
and the semantic domain, adjust these opcrations such that they correspond to the
algebraic operations of the semantic domain.

In the case of the vector representation above, this three-step approach works out as follows. It has
already been shown, that two vectors are generalised by matching them, introducing DON'T CAREs for
conflicting property values. Likewise, two vectors can be specialised by a similar matching operation,
whereby a property value overrules a DON'T CARE, and matching fails if two property values conflict.
E.g., specialising

[colour(red),shape(-),weight(heavy)]

yields
[colour(-),shape(circle),weight(heavy)]

[colour(red),shape(circle),weight(heavy));

4



specialisation of
[colour(red),shape(-),weight(heavy)]

and
[colour(blue),shape(circle),weight(heavy)]

fails. If we consider failure to specialise as the zero vector, then the set of vectors forms a complete
latticet. In fact, a vector can be interpreted as a first-order term (with DoN'T CARE denoting an anonymous

variable, as in Prolog), with unification playing the role of specialisation, and its dual operation anti-
unification acting as generalisation.

The second step consists of specifying a semantics for vector representations, and analysing the
algebraic properties of this semantic domain. This step will not be worked out nowz, but if we assume
that properties are independent (i.e., any property can take on any value, regardless of the values of other
properties), then the semantic domain is ísomorphic to the syntactic domain. This means that we can use
the syntactic operations of unification and anti-unification directly to implement a concept learner using
vector representations ( the third step).

2.2 Representing simple concepts

Vector represen[ations as introduced in the preceding paragraph are not very expressive. They can
only represent conjunctive concepts, i.e. concepts described by a logical conjunction (and) of property
values. It would be nice to have a representation for a wider class of concepts, allowing logical disjunction
(or) and negation (not). Such a concept may be described by an ezpression like (colour(X) is green and
shape(X) is square) or weight(X) is not heavy. This has as effect that the most obvious representations
for such Boolean concepts are not isomorphic to the corresponding semantic domain. While this is not
really a problem (it only makes the task of building a concept learner more elaborate), there is a problem
involved with learning such rich concepts. If there is no restriction on the logical form of concept
descriptions, then the logical disjunction of the positive examples is always a valid concept description.
Such a description is nothing more than a complete summary of the positive examples given, while in
learning from examples we expect some generalisation to take place. This is the well-known problem
of disjunction: allowing unrestricted disjunction in concept descriptions degenerates the learning
capabilities of a concept learner.

This problem can be avoided by banning disjunction and complementation altogether from concept
descriptions, as illustrated above. However, a less radical solution is obtained by allowing disjunction and
negation only within one property. E.g., under this regime colour(X) is green or red and shape(X) is
not square is allowed, while colour(X) is green or shape(X) is circle is not allowed. This form of
disjunctíon is sometimes referred to as internal disjunction [Michalski 1980]; we prefer to use the term
simple concept (description), in accordance with [Banerji 1969], who first suggested this solution to the
disjunction problem.

We can adapt the vector representation to account for simple concepts as follows. In a concept
representation, every property is followed by a list of values it may assume for that particular concept. We
suppose that every property allows a fixed, finite number of values, so this list will be finite for every
concept. Furthermore, we assume a fixed ordering on the set of values of each property (just as we
assumed a fixed ordering of properties for vector representations). Finally, every value a property dces not
assume is represented by an underscore (or anonymous variable). So the following representation is valid:

lA lattice is a partially ordered set, where each two elements have unique least upper and greatest
lower bounds; a complete lattice has one greatest and one smallest element.
2This can easily be done by assuming the usual set-theoretical semantics, with properties acting
as partitions on the universe of discourse; see section 3.

5



[colour(-,blue,red,-),shape(-,square,-),weight(light,heavy)]

supposing the possible colours are green, blue, red and black, the possible shapes are triangle, squaze and
circle, and the possible weights aze light and heavy (also indicating the'u order). This list represents the
concept description colour(X) is blue or red and shape(X) is square. Note, that the representation of a
DON'T CARE value for a particular property is the enumeration of every possible value for that property
(as in weight ( light, heavy) ). Furthermore, notice that this representation still facilitates the use of
unification and anti-unification: e.g., the unification of the above tenn and

[colour(-,blue,-,black),shape(-,-,circle),weight(light,-))
is the term

[colour(-,blue,red,black),shape(-,square,circle),weight(light,heavy))

Notice cazefully, that this term represents a more general concept than both original terms! That is,
unification now corresponds to generalisation of concepts, and anti-unification now corresponds to
specialisation of concepts.

We will use the above representation of simple concepts to implement a simple concept learner in
Prolog. Instead of the recursive list functor ( as suggested by the brackets [) above) we will use a fixed
functor st, because the number of azgtunents is fixed (equal to the number of properties involved). The
resulting Prolog terms aze called simple terms, and the set of simple terms is denoted ST. An example of
a simple term is

st(colour(-,blue,-,black),shape(-,-,circle),weight(light,-))

The arguments of the functor st, such as colour (-, blue,-, black) aze called simple disjunctive

terms.

2.3 The lattice of simple terms

It has been noted [Reynolds 1970, Plotkin 1970, 1971, Shapiro 1981], that the set of first-order
terms in clausal logic forms a lattice, with unification and its dual anti-unification as join and meet (or
conversely). In the general case, this lattice is infinite and non-modulaz. However, it is easily
demonstrated that the set of simple terms ST constiwtes a much more restricted lattice.

THEOREM 1. The lattice ST of simple terms is a finite Boolean lattice.

It is evident that a concept learner using simple terms should implement the operations of this Boolean
lattice. It is less evident that this implementation should be based on Prolog terms. The two main reasons
for making this choice have been:

(í) Simple terms in Prolog remain close to concept intensions, as opposed to, say
abstract Boolean algebra;

(ié) Implementalion in Prolog gives us the generalisation operation for free (unification).
Of course, we could have written unification and anti-unification algorithms in, say, Lisp [Luger 8~
Stubblefield 1989]. A third reason for using Prolog was, to see how easy it could be done, and what the
result would look like. Obviously, we are not using Prolog in the standazd sense of declarative logic
programming. In using Prolog's built-in unification mechanism, we have to take Prolog's operational
semantics into account. We were curious whether this would affect the whole program, or just some core
parts of it.

For constructing the most specific generalisation of two simple terms, we may simply unify them.
Thinking operationally, we need a function returning the unification of two simple terms. However,

6



Prolog's built-in unification mechanism is a two-place predicate un i fy3, resulting in a loss of the two
original arguments. Therefore, these argtunents are copied first by means of the predicate copy term4.

msg(ST1,ST2,ST3) E- ST3 is the most specific generalisation of STI and ST2

msg(ST1,ST2,ST3) :-
copy-term(ST1,ST3),
copy-term(ST2,ST4),
unify(ST3,ST4).

For constructing the most general specialisation of two simple terms, we need the operation of anti-
unification. Our variant of anti-unification, which we will call 'antification', will be implemented by
means of the Boolean operation of complementations, which we will call `complification'. It will prove
fruitful to have complification at our disposal.

mgs(STI ,ST2,ST3) F- ST3 is the most general specialisation of STl and ST2

mgs(ST1,ST2,ST3) :-
antify(ST1,ST2,ST3).

antify(ST1,ST2,ST3) ~ ST3 is the antification of STI and ST2

antify(ST1,ST2,ST3) .-
complify(ST1,ST10),
complify(ST2,ST20),
unify(ST10,ST20),
complify(ST20,ST3).

com(ST1,ST2) ~ ST2 is the complement of STl

com(ST1,ST2) :-
complify(ST1,ST2).

complify(ST1,ST2) E- ST2 is the complif'ication of STI

complify(ST1,ST2) :-
ust(UST),
complify(UST,STI,ST2).

complify(ST1,S"l2,ST3) f- ST3 is the complification of ST2 relative to STl

complify (U, X, Y) : -

var (X) , unify (Y, U) .
complify(U,X,Y) :-

nonvar(X),atomic(X),var(Y).
complify(U,X,Y) :-

nonvar(X),compound(X),term cfy(U,X,Y).

3In fact, unification without occurs check (predicate -) suffices in our case.
4[Sterling 8z Shapiro 1986), p. 180, predicate copy.
STherefore, antification is not equivalent to anti-unification in the general non-Boolean lattice
of first-order terms.

7



term-cfy(U,X,Y) :-
functor(U,F,N),functor(X,F,N),
args-cfy(N,O,U,X,Ys),
Y-..[FIYS].

args-Cfy(N,M,U,X,[ArgY~Ys]) .-
MGN,M1 is Mfl,arg-cfy(M1,U,X,ArgY),
args-cfy(N,M1,U,X,Y3) .

args-cfy (N, N, U, X, [ ] ) .

arg-cfy(N,U,X,ArgY) :-
arg(N,U,ArgU),arg(N,X,ArgX),
complify(ArgU,ArgX,ArgY).

Complification is taken relative to the universal simple tenm, given by the predicate ust. This predicate
is dependent on the specific learning task at hand, and should be user-defined. For the examples we gave in
paragraph 2.2, we have

ust(st(colour(green,blue,red,black),
shape(triangle,square,circle),
weight(light,heavy))).

The three-place predicate complify is, with a few minor modifications, analogous to the explicit
unification algorithm given in [Sterling 8c Shapiro 1986], p. 150.

The declarative meaning of the predicates msg, mgs and com (and, for that matter, ant ify and
complify) corresponds to their operational meaning only for a specific use of arguments. The reason is,
that these predicates in fact play the role of functions. More specifically, each of these predicates (as they
are now) should only be called with all but the last argument instantiated. These restrictions may cause
trouble, if we want to use join, meet and complement to implement partial ordering:

ST1 5 ST2 :- mgs(ST1,ST2,ST1).

or express disjointness:
disjoint(ST1,ST2) .-

ust(UST),complify(UST,NST),mgs(ST1,ST2,NST).

This can be remedied by testing whether the last argument is instantiated, as follows.

msg(ST1,ST2,ST3) :-
copy-term(ST1,ST4),
copy-term(ST2,ST5),
unify(ST4,ST5),
check(ST3,ST4).

mgs(ST1,ST2,ST3) :-
antify(ST1,ST2,ST4),
check(ST3,ST4).

com(ST1,ST2) .-
complify(ST1,ST3),
check(ST2,ST3).

8



check(STI ,ST2) ~- STI and ST2 are equivalcnt simple terms (ST2 should be
instantiated)

check(ST1,ST2) :-
var(ST1),unify(ST1,ST2).

check(ST1,ST2) :-
nonvar(ST1),equiv(ST1,ST2).

equiv(ST1,ST2) E-- STI and ST2 are equivalent simple terms (STI and ST2
should be instantiated)

equiv(X,Y) .-
var (X) , var (Y) .

equiv (X, Y) . -
nonvar(X),atom(X),
nonvar(Y),atom(Y),
unify (X, Y) .

equiv(X,Y) .-
nonvar(X),compound(X),
nonvar(Y),compound(Y),
equiv-terms(X,Y).

equiv terms(X,Y) .-
functor(X,F,N),functor(Y,F,N),
equiv-args (N, X, Y) .

equiv-args (N, X, Y) : -
N~O,equiv-arg(N,X,Y),
N1 is N-l,equiv-args(N1,X,Y).

equiv args(O,X,Y).

equiv arg(N,X,Y) .-
arg(N,X,ArgX),arg(N,Y,ArgY),

equiv(ArgX,ArgY).

If check finds [hat the last argument of msg, mgs and com is not instantiated, it is simply unified with
ihe desired result. If it is instantiated, it is tested for equivalence with the des'ved result by means of the
predicate equiv, which is again defined in rather general terms.

9



3. The semantics of simple terms

3.1 Introduction

In the preceding section, we discussed the issue of how to represent simple concepts. Such a
representation is a purely syntactical matter, and operations on such representations, such as matching and
unification, are purely syntactical operations. Accordingly, representations that aze syntactically different
are really different objects. But do syntactically different representations always represent different things?
And, do syntactic operations like unification and anti-unif'ication always correspond to semantic operations
like generalisation and specialisation?

To answer questions like these, we must turn to the semantics of simple terms, and we will do so
in this section. The semantics will first be described informally, by means of notions from set-theory.
After that, it will be developed more fotmally, in abstract algebraic terms. We will discover a mismatch in
algebraic structure between the syntactic domain of simple tetms and this semantic domain. Subsequently,
in section 4 we will describe ways to accomodate for this mismatch in the concept learner that is being
built.

While syntax has to do with intensions of concepts, semantics concerns extensions. In order to
avoid introducing yet another set of technical [erms, we will henceforth use the term concept as a technical
term, denoting an extension (i.e., a set of objects). Likewise, we will speak about properties, values, and
simple concepts as denoting formal set-theoretical or algebraic objects.

3.2 An informal semantics

In this paragraph, we follow [Banerji 1969] to a large extent. When describing concepts
extensionally, we will only consider objects from a predefined universe U. Thus, any concept is a subset
of U. Moreover, we assume a fixed and finite collection P-(P1,...,PnJ of properties Pl. The basic step
towards a semantics for simple tetms is to consider each properry as a partition on the universe. For
instance, in a universe where each element has exactly one colour, while there are a finite number of
colours, colour in fact fotYrts a partition on the universe, inducing an equivalence relation, i.e. elements
with the same colotu are indiscernible from each other as faz as their colour is concerned. The values of
the property correspond to the blocks of the partition.

Adding more properties obviously increases the `degree of discernibility': if we add the property
shape to the property colour, we can distinguish between red circles and red squares. In terms of partitions,
this is equivalent to saying that two partitions can be combined to fotm a fïner paztition. All available
properties taken together form a finest partition, i.e. even though the universe may contain an infinite
number of objects, P represents a`grid' of finiteó granularity, and thus some elements of U may remain
indistinguishable from some others. T'he set P is referred to as an environment (U is understood
implicitly).

Concepts aze formed by combining values of properties in several ways: we can speak of objects
that are either green or red, of blue circles (i.e. objects that aze both blue and circles), and of objects that
are not heavy. Following this observation, a concept is defined to be any set that can be construed from
values of properties using the set-theoretical operators union, intersection and complemeni. We can further

6It is also assumed, that each property is a finite partition ( containing a finite number of
blocks).

10



distinguish between arbitrary, conjunctive, and simple concepts. A conjunctive concept can only be
construed from property values using intersection, while a simple concept is equal to the intersection of
some simple disjunctive concepts, where each simple disjunctive concept is the union of some values of
one property. Any set of concepts can be partially ordered by set-inclusion. This ordering corresponds to
the notion of generality: a concept is at least as general as another concept if it contains at least the
same objects.

It is well-known that the powerset (the set of subsets) of any set forms a Boolean algebra. The set
of arbitrary concepts is a subalgebra of the powerset of U, because it is closed under union and
intersection; hence the set of azbitrazy concepts is also a Boolean algebra. The set of simple concepts
(henceforth denoted SC) is not a Boolean algebra, as will be shown in the next paragraph. We will see
that SC `almost looks like' a Boolean algebra in the upward d'uection, while irregularities occur in the
downward direction.

3.3 The lattice of simple concepts

Although the initial definition of concepts was stated in terms of sets, we proceed our exposition
by using more abstract algebraic symbols. In particular, 0 is used for the empty concept, 1 for the
universe concept; a property constitutes the valueset of a multivalued Boolean variable. The usual Boolean
laws for the algebra of subsets of a universe set aze assumed, for example XSY iff XnY-X, XnX'-0,
XvX'-1, etc. In addition, the following abbreviations aze used: niXi forXilnXi2n...nXin, where the
index set [il,i2,...,in} is understood implicitly; likewise, (Xi) stands for {Xi1,Xi2....Xin).

Consider the task of finding a description of a given simple concept S. To accomplish this, we
have to construct a simple disjunctive concept Si for each property Pi, such that the conjunction of these
disjunctions yields the original simple concept: niSi-S. The question now is: is there more than one

way to do this? Unfortunately, the answer to this question is affirmative. Consider for instance the empty
concept 0: as long as at least one simple disjunctive concept Sk-O, their conjunction is equal to 0.

Alternatively, suppose that the properties colour and shape are interrelated in the following sense: every
blue object in the universe is a circle. Put differently: if we know an object is blue, then it is a circle. In
this case, we may say that the property shape is dependent on the property colour. Now suppose that S is
a simple concept containing only blue objects, then we may include any shape besides circle in the
simple disjunctive concept corresponding to the property shape, and still obtain a valid description for S
(augmenting S with an empty set~ yields S).

We must conclude that, in the general case, a given simple concept has several descriptions.
However, each simple concept has a unique minimal description, such that every simple disjunctive
concept in that description is minimal (no property value can be removed from it). The set {Si) such that
for every i, Si is a simple disjunctive concept for property Pi, and niSi-S, is called a decomposition of

S. We thus have the following theorem.

THEOREM 2. Every simple concept has a unique minimal decomposition.

Let {Si} be a minimal decomposition for S, then each simple disjunctive concept Si is called the
projection of S on Pi. The notation Si will be reserved for the projection of S on Pi. E.g., 0,~ for any i

(the projection of the empty concept 0 on any property is 0).
Every property determines a set of simple disjunctive concepts. Each of these sets in fact forms a

Boolean algebra. Decompositions can be seen as the elements of the direct product of the simple

disjunctive concept-algebras. The notion of a minimal decomposition is necessary, because

~Such as the set of blue noncircles.

11



decompositions do not uniquely determine simple concepts. Just as the ordering in factor algebras is
preserved in the d'trect product, the ordering between projections is preserved in SC. This is expressed in
Theorem 3, which will prove instrumental in revealing the structwe of SC. The proof makes repeatedly
use of the fact that, while S-niSi, for all i SSSi. Moreover, if Tk is a simple disjunctive concept for
property Pk and S is a simple concept, TknS-O implies TknSk-O (the values in 7k are not relevant for
S, and are not contained in the projection of S on P,~.

THEOREM 3. For any two simple concepts S and T, Scl' ifffor all i, SiSl'i;

The significance of Theorem 3 is, that (just as in a direct protiuct) join and meet of projections can
be used to construe join and meet of simple concepts.

THEOREM 4. ~SC,S~ is a lattice. Let S and T be simple concepts, their meet is given by
V-ni(SinTi) and their join is given by W-ni(SivTi). For all i, W;-(SivT~), but V~ not
necessarily equals (SinT~).

The join operation for simple concepts will be called simple disjunction, and the meet operation will be
called simple conjunction. When no confusion can possibly arise, the lattice ~SC,S~ will also be denoted
by its carrier set SC. Theorem 4 states, that the operation of simple disjunction has a Boolean nature (it
behaves just like the join operation in the direct product of the simple disjunctive concept algebras), while
Boolean laws are violated in the downward direction (from general to specific) of simple conjunction.
E.g., if SnT-O, then for all i V,-O, but there may be a k for which SknT,~O, which means that the
minimal decomposition of V can not d'uectly be derived from the minimal decompositions of S and T.

It has to be noted that the simple conjunction of disjoint simple concepts is not the only possible
case in which a non-minimal decomposition can arise. We have seen above that properties may be
interrelated, such that some non-empty simple concepts have more than one decomposition. If we do not
want to admit such cases, we may insist that properties are mutual independent (one property can take on
any of its values, regardless of the values for the other properties), resulting in afull environment. There
are several ways to define this notion: here we use the definition, that in a full environment every non-
empty simple concept has exactly one decompositiong. If an environment is not full, additional
information has to be provided, describing the dependencies between properties; this we call background
knowledge9. The concept learner that will be implemented only works for full environments; however,
most of the results in this section are also valid for non-full environments.

We proceed by briefly stating the main properties of the lattice SC. We denote the simple
conjunction of two simple concepts S and T by S~T, and their simple disjunction by S~T.

gAn equivalent definition states, that the number of blocks in the finest partition that can be
built out of properties, is equal to the product of the numbers of values of each property.
9See [Flach á Veelenturf 1989] for a discussion of this kind of background knowledge.

12



THEOREM 5. Let Pbe an environment containing at least two properties, each with at least
two values.

SC is atomic.
SC is complemented, although not uniquely.
SC is non-modular.
SC is not semi-modular.
SC is not distributive.
SC is not relatively complemented.

There seems to be an obvious way to define a special unique simple complement T of a simple
concep[ S, such that for all i, (1) SinTi-O, and (ii) SivTi-1, i.e. T-ni(Si)'. Things are, however, not as
simple as it may seem, because if some Sk-1, then (Sk)'~, hence T-O, contradicting S~T-1 if S~1.
Hence, the simple complement of any simple concept S is defined as 9S-ni~(Si), where -,X-X' if X~1,
and -,X-1 otherwise. Again, we can only be sure that ~(Si) denotes a projection of 9S if the environment
is full.

In the Appendix, some additional properties of the lattice SC are given. Now that we have analysed
the semantic domain algebraically, we can define the relation between the syntactic domain of simple
terms and the semantic domain of simple concepts.

3.4 Mapping simple terms to simple concepts

The mapping m(for meaning) from simple terms to simple concepts should satisfy some
requirements. First of all, m shou(d be such that every simple term represents at most one simple
concept, and every simple concept is represented by at least one simple term (the mapping m is a
surjective function). Additionally, it may be required that

(t) there is a quasi-ordering on the set of simple terms, corresponding to the partial
generality ordering 5 on SC;

(it) every simple term represents exactly one simple concept;
(iit) every simple concept is represented by exactly one simple term.

If (i) is valid, m is called an order homomorphism; if additionally (ii) is valid, m is an order quasi-
isomorphism; if additionally (iii) is valid (hence, m is a bijection), m is an order isomorphism [Laird
1988]. Requirement (í) is very important, for it allows a learner to utilise the seman[ic generality ordering
when manipulating simple tenns, by means of the syntactic quasi-ordering, as will be explained below.

The definition of m is not difficult to state. Each simple disjunctive term in a simple term
corresponds to the simple disjunctive concept of the property values occurring as constants in the simple
disjunctive term. Consequently, a simple term can be interpreted as the decomposition of a simple
concept. We now have the following Theorem.

THEOREM 6. The meaning function m ts an order quasi-isomorphism. ln particular, if ST3
is the unification of STI and ST2, then m(STI)~m(ST2)-m(ST3); and if ST4 is the
antification of STl and ST2, then m(STI)~m(ST2j-m(ST4).

The fact that m is not an order isomorphism means, that one simple concept may be represented by
several simple terms. Conversely, several simple terms may have the same meaning (image under m).
Thus, ST can be partitioned into equivalence classes, each element of an equivalence class having the
same meaning; moreover, these equivalence classes can be partiaily ordered, according to the ordering 5 on
SC. Each equivalence class contains exactly one member cotresponding to a minimal decomposition: this
simple tetm will be called the correct representarion of the simple concept that is its meaning.

13



COROLLARY 7. If STI is a correct representation for m(STI ), and ST2 is a correct
representation jor m(STL), then the unification of STI and ST2 is a correct representation
of m(S7'1)[~m(S7~), but the antif'ication of S7'1 and ST2 is po.ssibly not a correct
representation of m(S'I'1)~m(STZ).

In the following section, we will show how to change the Prolog predicates in order to account for this
problem.

14



4. Learning simple concepts

4.1 Introduction

In this section, we restríct ourselves to full env'tronments. In this way, we can be sure that every
representation for a non-empty simple concept is a correct representation. Consequently, we will only
have to bother about simple terms whose meaning is 0. Anyhow, this problem will only be encountered
when proceeding from general concepts to specific concepts. It will not occur if we are leazning from
positive examples only, because in this case only the operation of generalisation is needed. Indeed, within
the framework outlined in the previous sections, a very simple implementation of learning from positive
examples is possible.

Let us start by outlining the simple concept learning problem in somewhat more detail. A simple
concept learner is given positive and negative examples of the simple concept to be learned; its task is to
determine the tazget simple concept. Now, any simple concept which is to be considered a candidate target
simple concept, should satisfy the consistency conditions. A simple concept is consistent with the
examples if, for every positive example PE, S~.-PE, and for every negative example NE, S is disjoint from
NE or S~NE-O. Suppose we have a set of examples SE and a simple concept S consistent with these
examples. If we encounter a new example E such that S is not consistent with SE~ (E}, then we must
change our cturent hypothesis S. If E is a positive example, it follows that not S?E, and we must find a
T such that T?E and T is consistent with SE. Choosing T?S will guarantee that T is consistent with
every positive example in SE; choosing the smallest T possible will guarantee that if there exist simple
concepts consistent with SE~(E), T will be one of them. But the smallest T such that 7?S and 7?-E is
given by T-S~E: thus, the operation of simple disjunction of the lattice SC can be used to generalise a
hypothesis found to be not consistent with a new positive example.

Likewise, if E is a negative example, it follows that S~E~O and we must find a V such that
V~E-O and V is consistent with SE. Choosing VSS will guarantee that V is consistent with every
negative example in SE; choosing the lazgest V possible will guarantee that if there exist simple concepts
consistent with SEv{E}, V will be one of them. The largest V such that V5S and V~E-O is given by
V-St~W, where W is some maximal complement of E. Thus, the operation of simple conjunction of the
lattice SC, in cooperation with any operation of simple maximal complementation, can be used to
specialise a hypothesis found to be not consistent with a new negative example.

As a result of the foregoing observations, there exists a unique simple concept S, such that every
consistent simple concept T?S: S is the simple disjunction of all positive examples. In general, there
dces not exist a unique simple concept G such that every consistent simple concept TSG. Such a G might
be construed by taking the simple conjunction of one maximal complement of each negative examplel0
Because complements are not unique, there will be several such G's. As in the general case of Version
Spaces [Mitchell 1982], S and the G's are bounds on the set of consistent hypotheses, and characterise
this set completely, together with the ordering of the hypothesis space.

lOAdditionally, we have to check that G2S (which is not necessazily the case).

IS



4.2 Learning from positive examples only

Suppose we want to learn a simple concept from positive examples only; that is, there are no
negative examples available to prevent overgeneralisation. It can be seen, that the consistency condition
formulated above is not enough: the universal simple concept 1 will be consistent with any set of
positive examples. Therefore, we should also consider measures of convergence (this can be formalised by
the model of identification in the limit [Gold 1967]). In such a model a cautious learning strategy is
required, generalising the current hypothesis only when forced to by a new example. That is, at every
moment the hypothesis is the most specific one, i.e. S.

Within our current framework, the following very simple implementation of a simple concept
learner using positive examples only is obtained. We assume that representations for positive examples
are given by means of the predicate pos-ex.

learn(H) F- H is a solution to the learning problem

learn (H) . -

mshyp(H).

mshyp(H) E- H is the most specific hypothesis

mshyp(H) :-
setof (PE, pos ex (PE) , L) ,

msg-list(L,H).

msg-list(L,G) F- G is the most specific generalisation of the simple terms in
the list L

msg-list([EIEs],G) :-
msg list(Es,G2),
msg (E, G2, G) .

msg-list([],NST) :-
nst(NST).

nst(NST) E-- NST is the null simple term

nst (NST) . -
ust(UST),COm(UST,NST).

To repeat: this simple program works, because the lattice SC `resembles' the Boolean algebra ST in the
`upwazd' direction of generalisation.

4.3 Learning from positive and negative examples

Things get more delicate when we take negative examples into consideration. However, note that it
is still safe to guess the most specific hypothesis: the cautious strategy is still guazanteed to identify the
tazget simple concept in the limit. We only have to add a test, that this hypothesis indeed satisfies the
negative examples (if not, the learning problem is unsolvable). This method may seem a bit crude,
because the information hidden in the negative examples is completely ignored (for instance, they might
be `near misses'). We will shoNy consider methods to overcome this objection.

The top-level predicate learn is redefined as

learn(H) .- mshyp(H),testneg(H).

16



The predicate testneg (H) is we if H is consistent with every representation of a negative example;
that is, for each negative example representation NE, m(H)~m(NE)-0. Consider the following definition
of testneg:

testneg(H) ~ H is consistent with the negative examples

testneg(H) .-

nst(NST),

forall(neg-ex(NE),mgs(H,NE,NST)).

The problem here is, that the current implementation of mgs is not guaranteed to result in a correct
representation, when the result represents 0, and that is exactly what is tested here. Therefore, the predicate
mgs should be changed as follows.

mgs(ST1,ST2,ST3) :-
antify(ST1,ST2,ST4),
cr-mgs(ST4,ST5),
check(ST3,ST5).

cr-mgs(ST1,ST2) E- STI is a correct representation, unless it represents 0; STZ is
a correct representation for the same simple concept

cr mgs(ST1,ST2) :-
is null(ST1),nst(ST2).

cr mgs(ST,ST) .-
not is null(ST).

is-null(ST) ~ ST represents 0

is null(ST) .-

functor(ST,st,N),is-null-sdts(ST,N).

is null sdts(ST,N) .-
is-null-sdt(ST,N).

is null sdts(ST,N) .-
not is-null-sdt(ST,N),N~O,N1 is N-1,
is-null-sdts(ST,N1).

is-null-sdt(ST,N) .-
arg(N,ST,SDT),is-null-vals(SDT,N).

is-null-vals(SDT,O).
is null vals(SDT,N) :-

N~O,arg(N,SDT,Val),var(Val),N1 is N-1,

is-null-vals(SDT,N1).

We now have a simple concept leatner for positive as well as negative examples, that finds a solution
based on the positive examples only; negative examples are used only to check consistency of the
solution.

17



4.4 Taking negative examples serious

Next, we consider an approach that is expectcd to be more faithful lo thc information contained in
negative examples. The idea is, to take the simple complement of a negative example as a candidate
hypothesis. The more the negative ezample differs from Ihe target concept, the more its complement will
agree with it; the more specific the negative example, the more general its complement. Note, that this
approach interprets negative examples as `far misses' rather than as `near misses' (Winston 1975]. Because
it is not guaranteed, that such a hypothesis is indeed consistent with the other examples, it is joined with
the positive examples; therefore, we expect to get a more general hypothesis this way. As before,
consistency with the remaining negative examples also has to be tested.

The following clause for learn is added:

learn(H) :- mghyp(H),testneg(H).

mghyp(H) F- H is a more general hypothesis

mghyp(H) :-

neg-ex(NE),com(NE,Hneg),

mshyp(Hpos),msg(Hpos,Hneg,H).

If we assume, that examples are given by most specific conjunctive concepts, listing exactly one value for
each property, then the predicate com works correct. However, we still have to consider the case that some
simple disjunctive term contains all values of a property, because in this case its simple complement has
to contain the same simple disjunctive term (and not its complification). Therefore, we change the
definition of com as follows.

com(ST1,ST2) :-
complify(ST1,ST3),
cr-com(ST1,ST3,ST4),
check(ST2,ST4).

cr-com(STI,ST2,ST3) f-- ST2 is a correct representation for 9m(STl), unless
m(STZ)-0 while m(STI)~1; ST3 is a corcect representation
for the same simple concept 6m(ST1) (STl and ST2 should
be instantiated)

cr com(ST1,ST2,ST2) :-
not is null(ST2).

cr com(ST1,ST2,ST2) :-
is null(ST2),ust(ST1).

cr com(ST1,ST2,ST3) .-
is-null(ST2),not ust(ST1),
functor(ST1,st,N),functor(ST2,st,N),
cr-com sdts(N,O,STI,ST2,SDT3s),
ST3 -.. [stISDT3s].

cr-com sdts(N,M,STI,ST2,[SDTIISDT3s]) :-
M~N,M1 is Mfl,
arg(M1,ST2,SDT2),is null sdt(SDT2),
arg(M1,STI,SDT1),
cr com sdts(N,M1,ST1,ST2,SDT3s).

18



cr-COm sdts(N,M,STI,ST2,[SDT2~SDT3s]) :-
M~N,M1 is Mfl,
arg(M1ST2,SDT2),not is-null-sdt(SDT2),
cr-com sdts(N,M1,ST1,ST2,SDT3s).

cr-COm sdts(N,N,STI,ST2,[]).

With this enhanced version of com, we can finally introduce a third, medium fonm of hypothesis:
the simple complement of the simple disjunction of all negative examples. This hypothesis may be
interpreted as a summary of all the negative examples. On the other hand, it is not a most general
hypothesis, because the simple disjunction of all negative examples is at least as general as each negative
example; consequently, the simple complement of this simple disjunction is at most as general as the
simple complement of each negative example (the more general hypotheses introduced earlier). For
guaranteeing concistency with the positive examples, this hypothesis has to be joined with the positive
examples. Because this operation in turn might introduce an inconsistency with a negative example, it has
to be tested again for consistency with the negative examples.

A third clause for learn is added:

learn(H) :- medhyp(H),testneg(H).

medhyp(H) ~-- H is a medium hypothesis

medhyp (H) : -
setof(NE,neg-ex(NE),L),
msg-list(L,G),com(G,Hneg),
mshyp(Hpos),msg(Hpos,Hneg,H).

Calling lea rn ( H) will now result in one most specific solution, as many more general solutions as
there are negative examples, and one medium solution (some of these may not really exist).

19



5. A session with the simple concept learner
The operation of the simple concept learner just described is illusvated with an example. An

environment {colour,shape,size) is assumed, consisting of the properties colour-{red,green,blue,black},
shape-{circle,oval,rectangle,triangle}, size-(big,small}. This environment is described by means of the
predicate ust, as follows.

ust(st(colour(red,green,blue,black),
shape(circle,oval,rectangle,triangle),
size(big,small)).

As positive examples, we take a big red circle and a big green rectangle; as negative examples, we take a
small blue circle and a small black oval. The examples are specified by means of the predicates pos ex
and neg ex. -

pos-ex(st(colour(red,-,-,-),
shape(circle, , , ),
size(big, )).

pos-ex(st(colour(-,green,-,-),
shape(-,-,rectangle,-),
size(big,-)).

neg-ex(st(colour(-,-,blue,-),
shape(circle,-,-,-),
size ( , small) ) .

neg-ex(st(colour(-,-,-,black),
shape(-,oval,-,-),
size ( , small) ) .

The goal ?-learn ( H) will result in the following answers:

H - st(colour(red,green,-3177,-3178),
shape(circle,-3182,rectangle, 3184),
size(big, 3188));

H - st(colour(red,green,-4124,black),
shape(circle,oval,rectangle,triangle),
size(big, 4135));

H - st(colour(red,green,blue, 4125),
shape(circle,-4129,rectangle,triangle),
size(big,-4135));

H - st(colour(red,green,-6321,-6322),
shape(circle,-6326,rectangle,triangle),
size(big, 6332));

20



No more solutions

Let us trace these resulu in somewhat more detail.
The fust solu[ion, `big circles or rectangles that are green or red', is the most specific one, and is

readily obtained from the positive examples alone, by means of the predicate mshyp. The second solution
states that anything that is not blue and is big belongs to the target simple concept. It is obtained from
the first negative example, of which the complementation yields

st(colour(red,green, ,black),
shape(-,oval,rectangle,triangle),
size(big, ))

Unifying this term with the join of the positive examples (the fust solution) yields the second solution.
The third solution is likewise obtained from the second negative example on backtracking (hence the
recurrence of the variable -4135). Complementation of the second negative example yields

st(colour(red,green,blue, ),
shape(circle,-,rectangle,triangle),
size(big, ))

Notice, that this term subsumes the join of the positive examples; hence, unifying it with the latter dces
not add anything new. Finally, the fourth solution is obtained from all four examples, by means of the
predicate medhyp. Complementation of the join of the negative examples yields

st(colour(red,green, , ),
shape(-,-,rectangle,triangle),
size(big,-))

Unification of this term with the first solution yields the fourth solution, which is (in this case) the meet
of the second and the third. On a future occasion, we will report on the different uses that can be made of
negative examples, and the relations between these uses.

21



6. Concluding remarks
A simple concept learner has been developed, implemented in Prolog. We arrived at this perhaps

somewhat unusual program by means of a thorough formal investigation of the algebraic structures
involved. Nevertheless, we are confident that this approach has revealed some difficulties involved with
inductive leaming.

Our choice for Prolog has been motivated by the need for lattice operations, one of which was
implemented by unification. The dual operation of anti-unification had to be programmed explicitly, a
task for which Prolog is not especially suited (though it can easily be done). Another drawback of this
approach is, that the declarative meaning of some predicates is readily destroyed by calling them with
some variables instantiated. A large pant of our efforts has been devoted to the repair of such phenomena.
As a result, the non-declarative parts of the program are limited in number, and more or less hidden from
the higher levels.

It would perhaps be more convenient, to implement a system with unification and anti-unification
in a lower-level language, and to use this system to implement our concept learner. Of course, there are
several other efficient implementations of lattice operations [Ait-Kaci er al. 1989). Nevertheless, we think
the implementation presented here has some elegance, perhaps illustrated best by the way it has been
developed (by means of formal methods), and by the fact that a complete listing has been given in this
paper.

Finally, we mention an interesting extension of the current work by means of `I'-terms (Ait-Kaci
8t Nasr 1986]. This formalism permits the unification of terms with different functors, if one functor is
declared to be more general than the other by means of a hierarchy. The relevance of this idea to the field
of Machine Learníng is even more obvious, if we recall that a predicate can be viewed as a functor on the
meta-level.

Acknowledgements

The use of unification and anti-unification was suggested to the author by Rene Ahn.

22



References

[Ait-Kaci 8c Nasr 1986] H. ATT-KACI 8t R. NASR, `LOGIN: A logic programming language with built-
in inheritance', Journal of Logic Programming 1986:3, 185-215.

[Ait-Kaci et al. 1989] H. A1T-KACI, R. BOYER, P. LINCOLN Bi R. NASR, ` Efficient implementation of
la[tice operations', ACM Transactions on Programming Languages and Systems 11:1, 115-146.

[Banerji 1969] R.B. BANERJI, Theory of problem solving: an approach to Artificial lntelligence,
Elsevier, New York.

[F1ach 8c Veelen[urf 1989] P.A. FLACH 8c L.P.J. VEELENTURF, Concept learningfrom ezamples:
theoretical foundations, ITK Research Report 2, Institute for Language Technology and
Artificial Intelligence, Tilburg University, Tilburg, the Netherlands.

[Gold 1967] E.M. GOLD, `Language identification in the limit', Information and Control 10, 447-474.

[L.aird 1988] P.D. LAIRD, Learningfrom good and bad data, Kluwer.

[Luger 8c Stubblefield 1989] G.F. LUGER 8c W.A. STUBBLEFIELD, Artificial lntelligence and the
Design of Expert Systems, Benjamin~Cummings.

[Michalski 1980] R.S. MICHALSKI, 'Pattern recognition as rule-guided inductive inference', IEEE
Transactions on Scene Analysis and Machine Intelligence 2:4, pp. 349-361.

[Mitchell 1982] T.M. MTTCHELL, `Generalization as search', Artiftcial lntelligence 18, 203-226.

[Plotkin 1970] G.D. PLOTKIN, `A note on induetive generalisation', in Machine Intelligence 5, B.
Meltzer 8z D. Michie (eds.), Edinburgh Universi[y Press, pp. 153-163.

[Plotkin 1971] G.D. PLOTKIN, `A further note on inductive generalisation', in Machine Intelligence 6,
B. Meltzer 8c D. Michie (eds.), Edinburgh University Press, pp. 101-124.

[Reynolds 1970] J.C. REYNOLDS, 'Transformational systems and the algebraic swcture of atomic
formulas', in Machine lntelligence S, B. Meltzer 8r D. Michie (eds.), Edinburgh University
Press, pp. 135-151.

[Shapiro 1981] E.Y. SHAPIRO, lnductive inference of theories from facts, Technical Report 192, Yale
University.

[Sterling 8i Shapiro 1986] L. STERLIIVG 8c E.Y. SHAPIRO, The art of Prolog, MIT Press, Cambridge,
MA.

[Winston 1975] P.H. WINSTON, `Learning swctural descriptions from examples', in The psychology of
computer vision, P.H. Winston (ed.), McGraw-Hill.

23



Appendix

A.1 Simple terms

THEOREM 1. The lattice ST of simple terms is a ftnite Boolean lattice.
Proof. Let v denote any property value, and consider the set Val(v)-{v,-). Treating v as a
constant symbol and - as a variable symbol, it is easily established that Val(v) constitutes
a Boolean lattice, with unification as join and anti-unification as meet (or vice versa). For
any property P , assume some fixed ordering of its values, and let Prop(P) be the Cartesian
product of the sets Val(v), in that order, for every value v of P. Writing P(...) for
elements of Prop(P) instead of ~...~, we immediately recognise Prop(P) as the set of simple
disjunctive terms associated with property P. Prop(P) is again a Boolean lattice, equal to the
d'uect product of the Boolean lattices Val(v), with again unification as join and anti-
unification as meet, applied to an element of Prop(P) by applying it to each coordinate
separately. Finally, assuming some fixed ordering of properties, we can construe the direct
product of the Boolean lattices Prop(P), again yielding a Boolean lattice. This lattice is
finite, provided both the number of properties and the number of values is finite. t!

A.2 Simple concepts

THEOREM 2 . Every simple concept has a unique minimal decomposition.
Proof. Every simple concept has at leas[ one decomposition. Any non-minimal
decomposition can be turned into a minimal one by repeatedly removing values from
simple disjunctive concepts until any further removal would imply that it is no longer a
decomposition for the intended simple concept. Suppose that there are two minimal
decompositions (SI) and (Tl} for a simple concept S, i.e. S-n~S1-nIT1; it follows that
S-nl(SlnTl), and hence {SinTi) is also a decomposition of S. From the minimality of
(Si) and (TI) it follows that Si-Ti for all i, hence {Si} and {Tl} are identical. ~

THEOREM 3. For any hvo simple concepts S and T, SSI' Iff for all i, SiSI'~.
Proof. The if pazt is obvious. For the only if part, suppose not SkSTk for some k,
implying (S,trTk)~0. But it is always the case that (Sk-Tk)nTk-O; because TsTk, SST
implies that (S,~Tk)nS-O. But then (S,f~Tk) can be removed from Sk, convadicting the
fact that Sk is the projection of S on Pk. ~

THEOREM 4. ~SC,~i is a lattice. Let S and T 6e simple concepts, their meet is given by
V-nl(SlnTl) and their join is given by W-nl(SivTl). For all i, W;-(S;vT~), but V; not
necessarily equals (S;nT~.

24



Proof. First, it is noted that V and W are conjunctions of simple disjunctive concepts,
proving that they are simple conceptsi l.

(meet) V-ni(SinTi)-(niSi)n(niTi)-SnT, which is ~he lazgest concept contained by both
S and T; hence, V is thc greatest lower bound of S and T.
(join) W-ni(SivTi)?(niSi)v(I~iTi)-SvT. If there is a simple concept X such that SSX
and TSX, T'heorem 3 states that for all i, St~i and TiSJfi, hence (SivTi)~Xi. Therefore,
W-ni(StvTi)sniXi-X, and W is the least upper bound of S and T.
Assume there is a k such that Wk~(SkvTk), i.e. ve Pk and vnW-O while vnS~O or vnT~O;
but then vn(SvT)~0, contradicting (SvT)5W.
If SnT-O, then for all i V~-0, but there may be a k for which SknT,rc~O. ~

THEOREM 5. Let Pbe an environment containing at least nvo properties, each with at least
two values.

(a)
(b)

(c)
(d)
(e)

(1~

SC is atomic.
SC is complemented, although not uniquely.
SC is non-modular.
SC is not semi-modular.
SC is not distributive.
SC is not relatively eomplemented.

Proof. (a) Obvious: SC is finite.
(b) SC is complemented iff for any simple concept S, there is a simple concept T such that
(i) S~T-O and ( it) S~T-1. (i) is satisfied if there is a k such that SknTk-O; ( ii) requires
that for all i, SivTi-1. For any S, there is more than one way to choose T.
(c) Letp and q be two different values of one property, and let r and s be two different values
of another property, then SC contains the following `pentagonal' sublattice:

(p v q)n (rv s)

qn s

0

Figure2. A non-modular pentagonal sublattice

(d) In the pentagonal sublattice of fig. 2, there does not exist an element X with OcY~qns,
which is a necessary condition for semi-modularity of a non-modular lattice.
(e) and (f) Immediate from (c).

Note, that if the only pentagonal sublattices of SC are like the one in fig. 2, containing 0, then SC is
dually semi-modulaz: just add the elements s and pns.

11~ fact, this is enough proof for the first part of the Theorem, together with Theorem 3.

25



Just to achieve some degree of completeness, we consider covers, chains, and lengths of intervals.
The covering relation is easily stated in terms of projections.

THEOREM. In any environment, a simple concept S covers a simple concept T iff either:
(i) T-O, andfor all i, SiePi;

(ii) T~O, andfor some k, Sk-Tk-vePk, andfor all i~k, Sl-Ti.
Proof. ( t) Every projection of S equals a value of a property, hence S~O-T. Now suppose
S?V?T, then for all i Si?Vi?Ti; if for some k Vk-Tk~, then V-T-O; otherwise, because
each Sl consists of one single value, for all i Vi-Si, and thusV-S. Thus, S covers T.
(it) According to Theorem 3, S~T. Suppose S?V?T, then for all i Si?Vi?Ti; hence, for all
i~k SI-VI-Ti, and either Vk-Tk or V,~.-Sk, implying either V-T orV-S. Thus, S covers
T. ~

The atoms of the lattice aze the covers of 0 as specified in the above Theorem (i). Because the
lattice is non-modulaz, it is not true that every simple concept is the join of a fixed number of atoms.
There is a notion of height, however, expressed by the Jordan-Dedekind conditíon, stating that for each
pair of simple concepts S and T with SST, (i) all chains from S to T are finite, and (ii) all maximal
chains from S to T are of the same length.

THEOREM. In any environment, SC satisfies the Jordan-Dedekind condition.
Proof. (i) SC is finite.
(ii) The height of a simple concept can be defined inductively as follows: h(0)-0, and
h(S)~ntl, where p is the total number of property values in the minimal decomposition
of S, and n is the number of properties. We proceed by proving that all maximal chains
from S to T are of length h(S)-h(T), and this is established by proving that S covers T
only if h(S)-h(T)f 1.
(a) L,et T-O. For any atom A, the number of values in its minimal decomposition is n,
hence h(Ak1-h(0)fl;
(b) If 750, h(S)-h(T)f 1 follows immediately from the preceding Theorem (ií). ~

A.3 Mapping simple terms to simple concepts

THEOREM 6. The meaning function m is an order quasi-isomorphism. In particular, if ST3
is the unification of STl and ST2, then m(STl)~m(STZ)-m(ST3); and if ST4 is the
antification of STI and ST2, then m(STl)~m(ST2)-m(ST4).
Sketch of proof. Requirement (t) and (ii) aze satisfied 1~ecause of the isomorphism between
ST and the d'uect product of the simple disjunctive concept algebras. Requirement (iii) is
not satisfied, because 0 has several representations. ~

COROLLARY 7. If STl is a correct representation for m(STl ), and ST2 is a correct
representation for m(ST2), then the unification of STl and ST2 is a correet representation
of m(STl)~m(ST2), but the antif:cation of STl and ST2 is possibly not a correet
representation of m(STl)~m(ST2).

Proof. This follows directly from the defmition of m, and the second part of Theorem 4. ~

26



I II W q~N IÍBnIÍI~ÍI~ÍIVIÍ~ VIn

ITK: F0. BOX 90153 5000 LE TILBURG THE NETHERLANDS


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

