

Tilburg University

The OO-binary relationship model

de Troyer, O.M.F.

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
de Troyer, O. M. F. (1991). The OO-binary relationship model: A truly object-oriented conceptual model. (ITK
Research Report). Institute for Language Technology and Artifical IntelIigence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/33ac95af-e870-4d3e-9324-ece4b75f7fcc

i~~~nui~iqnu~iiuuiii~~m~ ~~ ~~

'~~ IttJtHl~l., l-1

REPORT

INSTITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE

ITK Research Report
May 28, 1991

The 00-Binary Relationship
Model: A Truly Object-Oriented

Conceptual Model
Olga De Troyer

No. 27

This paper has been published in:
Lecture Notes in Computer Science 498, "Advanced Information Systems Engineering",
eds. R. Andersen, J.A. Bubenko jr., A. SQílvberg, Springer-Verlag, 1991.

ISSN 0924-7807

01991. Institute for Language Technology and Artificial Intelligence,
Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The Netherlands
Phone: f3113 663113, Fax: t3113 663110.

1

The 00-Binary Relationship Model :
A Truly Object Oriented Conceptual Model "

O. De Troyer
Tilburg University

Infolab
P.O. Box 90153

5000 LE Tilburg
The Netherlands.

Abstract.

Conventional conceptual models like the Binary Relationship Model
(also known as NIAM) or the Entity-Relationship Model do not fit well with
the promising object oriented database systems. In this paper we show that is
possible to turn such a conventional conceptual model (in particular the
Binary Relationship Model) into a truly object oriented conceptual model
which combines the assets of the conventional model with the advantages
of the object oriented approach.

1. Introduction.

In recent years there has been a substantial influence of object-oriented
(00) programming languages to the Data Base Management System (DBMS)
technology. This has resulted in the development of a number of object-
oriented data models and systems (e.g. 1, 2, 3, 4, 9, 21, 29]. An object-oriented
modelling method offers a number of important advantages, such as:
(1) All information is modelled through a single concept, namely objects.

Each object has its own identity.
(2) The encapsulation mechanism that packs the data (instance variables)

and behaviour (methods) of an object together, protects the data from
corruption by other objects and hide low level implementation details
from the rest of the system (information hiding).

(3) Similar objects are grouped together into classes. All objects belonging to
the same class are described by the same instance variables and methods.

(4) The concept of class allows to define new abstract data types which
enjoys the same rights and privileges of the built-in data types.

(5) Classes may be organized into subclass hierarchies. The instance
variables and the methods specified for a class are inherited by all of its
subclasses. In addition, the subclasses may have properties (instance
variables as well as methods) of their own.
This generalization~specialization mechanism allows to abstract away
the detailed differences of several class descriptions and to factor out the
commonalities as a common superclass. The technique of inheritance
makes it unnecessary to restate the properties of the superclass for the

" This work was supported by the Basic Research Action IS-CORE of the
Commission of the European Communities.

2

subclasses. In addition it will localize modifications due to changing
requirements.

(6) Through the technique of overloading systems are simplified because
the same method name may be used to activate an operation common
to different types of objects but differently implemented for each type of
object. It also makes the system easier to extend; if a new type of object,
also bearing this operation is added, the existing objects are totally
unaffected by this change.
A special case of overloading is overriding. This technique redefines a
method of a class in a subclass. It allows special cases to be handled more
efficiently and easily without having an impact on other objects.

(7) Objects can also contain other objects. Such objects are usually called
composite objects. They are important because they can represent far
more sophisticated structures than simple objects can.

On the other hand, conceptual data models (sometimes also called
semantic models) are used during the information analysis stage in the
development of an information system (IS) to translate the user's
information requirements into a supposedly precise, complete and
unambiguous description, the so-called conceptual schema (CS). One of the
important functions of such a conceptual schema is to serve as a tool to
communicate among all parties involved, the semantics of the Universe of
Discourse (the application domain containing the given situation),
abbreviated UoD. Therefore this description should ideally only deal with
conceptual issues; i.e. the various object types of the UoD, their associations
and the integrity constraints. No representation or implementation oriented
details should be included. Looking too early into problems such as
organization of the UoD objects into records, normalization, access
strategies, representations, etc., distracts the specifiers' attention from
mastering the real UoD problems. Well known examples of early conceptual
models are Entity-Relationship models [e.g. 8], Binary Relationship Model
[e.g. 26, 32], Object-Role Model [e.g. 14], Functional Model [e.g. 28].
Later on in the development of an information system, (at least for
conventional DBMSs) the CS may become input to the design of a data base
schema, which is (was) usually expressed in terms of record types, key fields
and relationships between records. Until now, there is no clear connection
of a conceptual schema to an 00-DBMS. It may even be questioned if a
connection to an 00-system is possible and opportune. Some people will
even argue that 00-data models makes conceptual models completely
redundant .

Although most of the earlier mentioned conceptual models have
already incorporated some of the attractive features of the 00-approach (e.g.
subtype hierarchies together with inheritance of properties and aggregation
hierarchies) [e.g. 18, 35] there is still a big gap between these conceptual
models and 00-models. The main reasons for this are:
(1) Most of these conventional conceptual models do not support the

specification of the behaviour of the IS, and if they support it there is
usually a clear separation between the description of the information

3

structure (the data) and the functionality (behaviour) of the IS. In 00-
approaches specification of data and behaviour is inextricably bound.

(2) Conventional models describe the UoD as a bunch of entities and their
relationships and interactions are described from a 1~ obal viewpoint. The
application programs are described in a top down way. The approach is
usually based on functional decomposition- and modular programming
techniques. This is completely different in the 00-approach. The 00-
approach does not start with the tasks or functions to be performed by
the system, but rather with the objects that are needed in order to
perform the tasks. Once these objects are correctly represented, they can
be used to solve a wide variety of tasks including the original one.
Objects are specified as general-purpose building blocks and their
relationships and interactions with other objects are described locally.
Systems are built by assemble objects. In this sense, the 00-approach is
rather a bottom up approach.

(3) 00-systems usual offers a large range of new data types like e.g. sets,
arrays, bitmaps,... together with the possibility to define others. These are
needed because of the complexity of the data of non-conventional
information systems. Conventional conceptual models are not able to
support the specification (at an abstract level) of the use or definition of
such data types.

Although in a recent paper [20] Maier argues that it is not possible to
define a general object oriented data model because of the diversity of the
features supported by the current available 00-DBMSs, it is our opinion
that even in an 00-DBMS environment a conceptual schema is still
desirable. Its function remains the same as in a conventional environment;
to serve as a specification reference by giving an unambiguous description
of the conceptual issues of the system which can also be understood by non-
technical persons. The graphical representation technique used to represent
the specifications plays an important role in the success of conceptual
models as a communication tool between information analysts , database
experts and non-technical persons.
Only, the earlier mentioned conceptual models as such cannot be combined
with an 00-data model without sacrifying a number of the advantages of
the 00-approach.
In this paper we show that it is possible to turn a conventional conceptual
model (the Binary Relationship Model, also known as NIAM) into an 00-
conceptual model without sacrifying the main assets of the model. The step
from an 00-conceptual schema to an 00-implementation will then be
much easier and the full power of the 00-approach can then be exploited.
We have opted for the Binary Relationship Model (BRM) because it has a
number of abstraction capabilities which are in particular suitable for
conceptual information analysis.

The paper is organized as follows: In section 2 we briefly descríbe the
BR model. Section 3 presents our object oriented version of the BR model
and in section 4 we summarize differences and similarities between the
conventional and the 00-BR model and discuss the difference with other
approaches. The meta-schema of the 00-BR model is given in the appendix.

4

2. The Binary Relationship Model (BR model).

The descriptions of the BR model (under different names) appear in
several forms in the literature ([12, 16, 19, 22, 24, 25, 26, 32, 34 ...]).The Binary
Relationship Model has proven to be successful in several large scale
industrial projects [e.g. 13, 31].

Its main abstraction capabilities are :

(1) Abstraction from lexical representation.
The objects of the UoD are classified into lexical and non-lexical objects.
Examples of non-lexical objects are employees, departments. The lexical
objects are objects which may be used to represent the non-lexical objects
of the UoD; e.g. employee names, employee numbers, department
names. Although there is an explicit distinction between lexical and
non-lexical objects no decision what so ever is made about which lexical
object (or combination) will be used to represent a non-lexical object.
Only possible lexical representations are identified.

(2) Abstraction from instance level.
This abstraction capability is well known and present in most conceptual
models. It means that the building blocks are the object tyyes (OT)
instead of the individual objects.

(3) Abstraction from aggre ag tion.
All associations between object types are expressed by means of binary
relationships (facts . No fore-ordered data organization is imposed. No
decision has to be taken whether an object is entity or attribute.

(4) Abstraction bv generalization~specialization.
As in the 00-approach, the BR model supports the notion of object type
sub-hierarchy and inheritance of properties along this hierarchy. An
object type sub-hierarchy captures the "is-a" relationship between an
object type and its subtypes. Multiple supertypes for a subtype are
allowed.

In addition to these abstraction capabilities, the BR model explicitly
addresses the issue of constraints. Constraints constitute the semantical
component of the conceptual schema; they ensure that the schema
meaningfully reflects the UoD. A large variety of constraint types are
supported. Other constraints may be expressed in one of the constraint
languages proposed in the literature [36, 32, 11].

We adopt the well known "NIAM" graphical notation [12], [32] for the
BR concepts :

a NOLOT -- (NOn-Lexical Object Type)

5

a
,--., ~

~ ~~ , - ,
a LOT -- (Lexical Object Type). A LOT may be
involved in one fact only, with a NOLOT.

a Fact. The "boxes" are called Roles. Each Fact
involves exactly two Object Types (which may be
the same).

a Sublink - the subtype occurrences implicitly
inherit all properties of the supertype. Subtypes
need not be disjoint and not all of a NOLOT's
occurrences need to be in one of its
subtypes.

Certain constraint types occur so frequently and are so fundamental
that they have a graphical representation as well. We only introduce the
graphical representation of some constraint types:

O-~ O
O~O

The Identifier constraint (simple functional
dependency) is drawn as a line over the key-role.

A Total Role constraint stating that each instance
of an OT should participate in a given Role is
represented by a "V" sign.

A Total Union constraint is a generalization of a
Total Role constraint. Each instance of the OT
should participate in at least one of the indicated
Roles or Sublinks.

The Exclusion constraint expresses the mutually
exclusion of a number of Subtypes.

6

A Uniqueness constraint is a generalization of the
Identifier constraint. An instance of an Object Type
is identified by an instances-combination of the
indicated Object Types.

The classical BR model as such cannot be called object-oriented, because:
(1) Objects do not have an object identity. They only exist through their

properties; objects with the same properties are considered to be the
same.

(2) Behaviour of objects is not specified.
(3) Data cannot be encapsulated into an object.
(4) There is no way to define new abstract data types.
(5) There is no concept such as composite object.

3. An object oriented BR model (00-NIAM).

In this section we introduce an object oriented version of the BR
model. This is not done by simply adding extra features. Instead we build up
the 00-BR model from scratch, but we follow most of the principles of the
classical BR model and combine them with 00-principles.

3.1. Objects, Object Types and Subtypes.

Following the 00-principles, an object is constituted by some
private data (the state) and a set of operations (the behaviour)
inextricably bound to it. In the classical BR model the concept of Object
Type (OT) is only used to classify objects. In our 00 version of the BR
model, the description of state and behaviour of the objects are
encapsulated into the OT. The OT defines the attribute relations,
m e t h o d s and c o n s t r a i n t s of the objects of this type.
Attribute relations describe the state of an object, methods describe the
behaviour of the object and the constraints restrict the possible states
and the behaviour of an object. We use the term pr~erties to denote
attribute relations, methods and constraints.

In addition to the properties of the objects, an OT (which can also
be considered as an object) may also described its own properties; they
are called type-properties (type-attributes, type-methods and type-
constraints).

As in regular NIAM, an OT will be represented by a circle.

An OT may be subtype of one or more supertypes. The properties
of the supertypes are inherited by the subtypes. We keep the strict "is-
a" meaning of the BR-model sublink concept; each object of the
subtype is also an object of the supertype. We also keep the graphical
NIAM representation for a sublink; an arrow pointing from the

7

subtype to the supertype. The BR-model exclusion and totality
constraints expressible on sublinks keep their meaning.

As in Smalltalk [9, 17], we consider a single OT-sub-hierarchy for
the entire schema. All OTs are ultimately subtype of the pre-defined
OT "Object" which capture all objects of the UoD. According to the BR
model principles, objects are classified into lexical and non-lexical
objects. This means that the OT "Object" has two (disjoint) (pre-
defined) subtypes "Lexical Object" and "Non-Lexical Ob~ject". The
lexical objects may be further divided into e.g. "Boolean", "Number",
"String" and "Text". See figure 1.

figure 1: pre-defined OT sub-hierarchy.

Each UoD-specific OT is a subtype of either "Lexical Object" or "Non-
Lexical Object". For example, document numbers are lexical objects while
documents are non-lexical objects (see figure 2).

figure 2: example UoD-specific OTs.

8

We make the convention that UoD-defined OTs which are subtypes of
"Lexical Object" will be represented by a dotted circle and we call them LOTs
(similar as in regular NIAM). UoD-defined OTs which are subtype of "Non-
Lexical Object" will be represented by a solid circle and are called NOLOTs
(also similar as in regular NIAM) . By this convention the sublink arrow to
the respectively supertype "Lexical Object" or "Non-Lexical Object" can be
omitted (see figure 3).

figure 3 : graphical convention for LOTs and NOLOTs.

The (abstract) data type of a LOT may be specified by declaring the LOT a
subtype of one of the pre-defined subtypes of "Lexical Object". For an
example see figure 4; document numbers are defined to be numbers. Note
that it is not necessary to specify the data type of LOT. It may be left
unspecified till the implementation phase.

figure 4: data type for a LOT

By introducing new subtypes of "Lexical Object" new abstract data types
may be defined by the user himself. See for instance figure 5 where two new
lexical types "Name" and "Date" are introduced.

9

figure 5 : example of user defined abstract data types.

Note that in figure 5 we have NOT used the dotted circle convention
for "Name" and "Date" this to indicate that "Name" and "Date" are UoD
independent OTs. This allows the user to extend the pre-defined subtype-
hierarchy without limitations in a UoD independent way. These new
defined subtypes can later be used in different conceptual schemas.

3.2. Object Type Definition.

In the 00-version of the BRM, the OT concept is the mechanism to
hide the description of the properties of the objects of this type. To describe
these properties we will use a graphical representation technique very
similar to the usual representation technique for the BR model.

The OT under description is represented as a circle embedded in a
square. Attribute relations are considered to be special facts; they describe
binary links between the objects of the OT under description and some other
objects. The usual BRM constraints are used to restrict the possible instances
of the attribute relations. For type-attributes the same graphical
representation as for attribute relations is used but the role connected to the
OT under description is labelled with a"T". Figure 6 represent the state part
of the description of the OT "Document". The fact Fl is a type-attribute for
the OT "Document". It specifies the "maximum size" of any document
object. The graphical constraints specified for Fl state that there is only one
maximum size and this value must be known even if there are no
document objects.
The objects of "Size", "Title" and "Doc-Number" are encapsulated in
Document objects; they are called local OTs because no other object has
access to a Document object's Size, Title or poc-Number object.
In addition to local object attributes, an object may also have attributes (or
type-attributes) which refer to global OTs. Global OTs are defined
independently of this OT definition. To distinguish a global OT from a local
OT, we put a dotted square around the global OT. In the example of figure 6,
the OT "Document" has an attribute relation with the global OT "Keyword".

10

figure 6: an OT definition.

The difference between an object of a local OT and a global OT is that a
local object can only be accessed by the objects with which it is involved in
an attribute relation while a global object can be accessed (through its
methods) by other objects as well. For a global object only the attribute
relation is hidden, the objects themselves are not hidden. For instance in
the example of figure 6, it is not possible for some object to access directly the
Keyword objects contained in a given Document object because this link is
hidden in the Document object. However, individual Keyword objects are
accessible by other objects.

In addition to the graphical constraints, text constraints to restrict the
states of an OT may be specified as well. Such a text constraint may access
local objects directly (or through local methods), but properties hidden in
the definition of global OTs should be accessed through proper methods. An
example of a simple text constraint for the OT "Document" would be

ByteSize of Size of a Document is ~- ByteSize of Size max of Document

3.3 Methods. ~

In addition to attribute relations and constraints the definition of an
OT also includes a description of the methods of the objects of this type. The
definition of a method may be given using some 00-language. As for the
constraint language, methods may directly access the attribute relations and
the local objects of the OT under description, all global objects should be
accessed through the proper methods. A description of this language will be
given elsewhere. An example of such a language can be found in e.g. [33, 11].

11

A method will be graphically represented by a rectangle. A fat arrow
points to the OT of which it is a method. The OTs of the in- and return-
objects are specified by connecting the method box and those OTs by in- resp.
out-going arrows. The arrows may be labelled with a name to distinguish
two different in- or return-objects of the same OT. To make the difference
between an object-method and a type-method, we put a dot inside the OT
for an object-method. Figure 7 is an example of the graphical representation
of the object-method "Info" for the OT "Document" Figure 8 is an example
of a type-method for the same OT.

figure 7 : an object-method.

figure 8 : a type-method.

3.4. Fact Types.

In most 00-system, instance variables are the only means for relating
objects. We have chosen to support also explicit relations. Explicit relations
are not encapsulated in some object. We have found that during

12
information analysis the explicit representation of relationships between
objects may be of great value. Very often there is no conceptual reason for
considering one object attribute of the other object or vice versa. Introducing
a new object to represent the relationship between the objects is not always a
desirable conceptual solution. Representing the relationship in both objects
is a kind of redundancy which we want to avoid as much as possible during
conceptual modelling. In our opinion, explicit relations will also meet the
so called "ravioli code" problem [30]. "Ravioli code" is the 00-version of
"spaghetti code", it refers to lots of tiny well structured objects that are easy
to understand in isolation, but whose interactions are nearly impossible to
decipher.

Other 00-approaches which also support explicit relations are e.g.. [5]
and [27].

As in regular NIAM, we use fact types to model explicit relations.
Figure 9 shows an example of an explicit relation between the OTs
"Document" and "Folder"; a Folder object may contain several Document
objects and a Document object may be placed in different Folder objects.

figure 9: example of an explicit relation.

3.5. Inheritance.

A subtype inherits all properties of its supertypes. Contrary to most 00-
systems, we only allow a limited form of overriding of the inherited
properties. Along the subtype hierarchy, inherited attribute relations and
constraints can only become more specific. For attribute relations inherited
by a subtype this means that additional constraints may be specified which
do not apply to the supertype. Also the OT of the attribute may become
more specific; i.e. only a subtype of the original OT may be used.

In this way, at least for the structural part, we avoid problems with
multiple inheritance. Multiple inheritance raises problems if an OT inherits
the same property of two (or more) supertypes and the property is
differently defined for each supertype. Since we only allow specialization,
the subtype inherits the specializations given for each supertype. This will
not cause any problems; in the worst case no object will ever satisfy the
specialization. However, such a situation can be detected by a CASE
(Computer Aided Software Enginieering) tool. For an example of such a tool
see [10,12].

13

An example of inheritance of attribute relations is given in figure 10. In
the graphical representation, the inherited attribute relation are shadowed.
The additional constraints and the more specific OT are drawn in full lines.

Document Reyword

..-.---.. ;

Spríta Decument lncluded-ln Sprite-Reyword

~ : j

SncludingFS
~'' :i.

figure 10 : example of inheritance and specialization of attribute
relations.

Figure 10 shows an example; a Sprite-Document is defined as a
subtype of a Document (see figure 6). They may only include Keywords
which are registrated as Sprite-Keywords (OT-specialization of F5). Each
Sprite-Document must refer to at least one Sprite-Keyword (extra
constraint for F5).

Another example is given in figure 11. A Template-Document is a
subtype of Document (see figure 6). A Template-Document includes a
Style-Definition (extra attribute) but has no Keywords (extra constraint for
F5). The latter is graphically represented by putting a vertical bar on the role
connecting the OT "Keyword" to the OT "Template-Document".

ienplate-Document FS

ReyMOrd

figure 11 : example of subtype definition.

The implementation of the methods can be overwritten completely. So
for methods we have to deal with the multiple inheritance problem. For a
possible solution we refer to the literature [6, 7J.

14

3.6. Type constructors.

It is possible to see type constructors such as collection, bag, set, tree,
list,... as objects (see figure 12).

figure 12 : pre-defined type constructors.

The definition of these OTs as pre-defined OTs make it possible for the
user to define UoD-specific subtypes of these OTs which inherit all built-in
methods such as e.g. first~next for "List". Usually, UoD-specific subtypes of
the OTs of the "Collection" family-tree (such as e.g. "Keyword-List",
"Document-Set") only restrict the elements of these collection to a certain
UoD-specific OT. If this is the case, we make the convention that the OT is
not represented as a subtype of "Collection" or one of its subtypes, but the
name of the OT is composed of the name of the chosen type constructor and
the name of the OT of the elements, e.g. "List-of-Keyword" is a List
Collection of Keyword objects.

Of course the user is free to define new UoD independent subtypes of
"Collection" or other type constructors (like e.g. bitmaps) in order to
accommodate his needs.

3.7. Meta Object Types.

Ots, fact types, constraints, methods, etc. may also be considered as
objects of some (meta-)OTs. These meta-OTs together form the meta-schema
which describe the 00-BR model.

We can consider the meta-schema as an integral part of the model,
deriving a self-describing system. This has several advantages, for a detailled
discussion see e.g. [23). One of the advantages is that OTs may then be used

15

as in- and return-objects for methods. In this way objects may be asked for
their type(s) (OTs), OTs may be asked for their subtypes, methods, attribute
relations and so on.

6. Conclusions.

In the previous section we have presented an object oriented version
of the well known Binary Relationship Model (also known as NIAM). The
new model has been built from scratch following most of the principles of
the conventional BRM in combination with 00-principles. The differences
and similarities with the conventional BR model can be summarized as
follows.

In contrast with the conventional BRM, the 00-BRM supports:
(1) encapsulation of properties,
(2) specialization of inherited properties,
(3) specification of (abstract) data types for lexical object types,
(4) definition of new abstract data types,
(5) type constructors as object types,
(6) definition of new type constructors,
(7) specification of the behaviour of objects as an integrated part.

The following BRM characteristics still apply for the 00-BRM:
(1) same graphical representation,
(2) same support for constraint specification (see also below),
(3) distinction between lexical and non-lexical object types,
(4) explicit relationship between object types,
(5) same subtype mechanism.

In principle, for supporting the specification of constraints the 00-
BRM has the same capabilities as the conventional BRM. However because
of the encapsulation principles of the 00-BRM, constraints which involve
properties of multiple object types have to be expressed differently. A
constraint defined in the context of one object type can only access the
properties of an other object type through the methods of this object type. As
a consecluence, it will be less obvious which are all the properties involved
in a certain constraint. On the other hand, the definition of OTs may be
changed without affecting the constraints attached to other OTs. This is not
always the case for the conventional BRM.

Related work can be divided into two groups. To the first group belong
the newly defined object models e.g. [15, 33, 37, 38, 39]. These models are
fully object oriented but have the disadvantage to be new and not be related
with a well-tried and widely accepted model. Therefore it will be hard to
introduce them in the sort term into big companies.

The second group contains work that extends the conventional models
(mainly the E-R model) with 00-features such as complex objects, subtypes,
generalizations and new data types e.g. [18, 35]. Although these extensions

16

are valuable contributions to the models, they do not turn the model into a
real object oriented model. We would rather call them object directed.

We argue that our model is truly object-oriented. Very important in
achieving this goal was the introduction of a single subtype hierarchy,
including type constructors and abstract data types, of which each user-
defined object type is implicitly a subtype.

We believe that the proposed 00-BR model is a valuable contribution
in order to reduce the gap between conventional conceptual models and the
promising 00-DBMSs. In conventional environments the BR model has
proven to be successful. By turning it into a truly 00 model without actually
affecting its main characteristics, it will also be possible to benefit from the
advantages offered by the 00-approach when it is used in a non-
conventional environment which demands for an 00 solution.

17

Bibliography and References.

[1] Andrews T., Harris C., "Combing Language and Database Advances in
an Object-Oriented Development Environment". In Proceedings 2nd
ACM OOPSLA Conf. Oct 1987.

[2] Atwood T.M., "An Object-Oriented DBMS for Design Support
Applications". In Proceedings IEEE COMPINT 85, Montreal Canada,
pp. 299 - 307.

[3] Bancilhon, et al., "The Design an Implementation of 02, an Object
Oriented Database System". In Advances in Object Oriented Database
Systems, proceedings 2nd Intl workshop on 00 Database Systems. Ed.
Dittrich K., Sept 1988. Lecture Notes in Computer Science 334, Springer
Verlag.

[4] Banerjee J., Chou H.T., Garza J.F. , Kim W., Woelk D., Ballou N., Kim
H.J., "Data Model Issues for Object-Oriented Applications". In ACM
Trans. On Office Information Systems, Vol 5, N 1, 1987.

[5] Bratsberg S.E., "FOOD: Supporting Explicit Relations in a Fully Object
Oriented Database". In proc. Object Oriented Databases (DS-4) North-
Holland, 1990.

[6] Cardelli L., "A Semantics of multiple inheritance". In Intl Symposium
on Semantics of Data Types, Sophie-Antipolis, France 1984. Lecture
Notes in Computer Science 173, Springer Verlag.

[7] Cardelli L., Wegner P.,"On understanding types, data abstraction and
polymorphism". In ACM Computing Surveys 17:4, 1985.

[8] Chen P.P., "The Entity-Relationship Model - Towards a Unified View
of Data". In ACM trans. on Database Systems 1(1) pp.9-36 (1976).

[9] Copeland G., Maier D., "Making Smalltalk a Database System". In Proc.
ACM SIGMOD Intl. Conf. on Management of Data, Boston, Mass., June
1984.

[10] De Troyer O., "RIDL~: A Tool for the Computer-Assisted Engineering
of Large Databases in the Presence of Integrity Constraints". In
Proceedings of the ACM-SIGMOD "International Conference on
Management of Data", Oregon 1989.

[ll] De Troyer O., Meersman R., Ponsaert F., "RIDL User Guide", Control
Data DMRL Research Memorandum (1983) [available from the
authors].

[12] De Troyer O., Meersman R., Verlinden P., "RIDL~ on the CRIS Case: A
Workbench for NIAM". In "Computerized Assistance During the

18
Information System Life Cycle". Proceedings IFIP CRIS-88 Conference,
eds. Olle T.W., Verrijn-Stuart A.A., Bhabuta L., North-Holland (1988).

[13] Dijkstra J, De Troyer O., Meersman R., Weigand H, "RIDL~ as a
software engineering aid - some practical results". In Proc. 4th Filin
Conf of inethods and tools as aids to design information systems. Ed.
Habrias, Nantes Sept 1990.

[14] Falkenberg E., "Concepts for Modelling Information". In "Modelling in
Data Base Management Systems", Proceedings of IFIP TC-2 Conference,
North Holland, 1976.

[15] Fishman D., et al., "IRIS: an Object-Oriented Database Management
System". In ACM Trans. on Office Information Systems, Vol. 5, N. 1,
1987.

[16] Gadre S., "The Enterprise and Information Model". In "Database
Programming and Design", Volume 1(1), 1987.

(17] Goldberg A., Robson D"Smalltalk-80: The Language and its
implementation". Addison-Wesley, Reading, Mass. 1983.

(18] Hohenstein U., Gogolla M., "A Calculus for an Extended Entity-
Relationship Model Incorporating Arbitrary Data Operations and
Aggregate Functions". In "Entity-Relationship Approach", ed. C.
Batini, Elsevier Science Publ. (North Holland), 1989.

[19] International Standards Organisation, "Concepts and Terminology for
the Conceptual Schema and the Information Base". ISO TR~9007 (also
as: N695; Ed. J.J. van Griethuysen) (1982).

[20] Maier D., "Why isn't there an object oriented Data Model", In
Information Processing 1989. Ed. G.X. Ritter, Elsevier Science Publisher
IFIP 1989.

[21] Maier D, Stein J., Otis A., Purdy A., "Development of an Object
Oriented DBMS", Proc. of the ACM OOPSLA Conf., Portland Oregon
Sep t 1986.

[22] Mark L., "What is the Binary Relationship Approach?". In "Entity-
Relationship Approach to Software Engineering", Ed. Davis, North
Holland 1983.

[23] Mark L., Roussopoulos N. "Integration of Data, Schema and Meta-
schema in the Context of Self-Documenting Data Models". In "Entity-
Relationship Approach to Software Engineering", Ed. Davis, North
Holland 1983.

[24] Meersman R., "Towards Formal Models for Reasoning abou t
Conceptual Database Design". In "Data and Knowledge", Proceedings of

19

the IFIP Working Conference DS-2, Eds: R. Meersman, A. Sernadas,
North Holland (1988).

(25] Nijssen G.M., "A Gross Architecture for the Next Generation Database
Management Systems". In Modelling in Database Managernent
Systems; proceedings of the IFIP TC-2 Conference, Ed. G.M. Nijssen.
North Holland (1976).

[26] Nijssen G.M., Halpin T.A., "Conceptual Schema and Relational
Database Design", Prentice Hall 1989.

[27] Rumbaugh J., "Relations as Semantic Constructs in an Object Oriented
Language". In Proc. of OOPSLA 1987.

[28] Shipman D.W., "The Functional Data Model and the Data Language
DAPLEX". In ACM trans. on Database Systems 6(1), pp. 140-173, March
1981.

[29] Stonebraker M., Rowe L., "The Design of POSTGRES". In Proc ACM
SIGMOD Intl. Conf. on Management of Data, Washingthon D.C., May
1986.

[30] Taylor David, "Object Oriented Technology: A Manager's Guide".
Servio Corporation 1990.

[31] Vanparys R., "Modulaire decompositie van informatiestructuren". In
Informatie Vol. 29, No. 6 pp.493-568, 1987.

[32] Verheijen G., van Bekkum J., "NIAM: An Information Analysis
Method". In Proceedings of IFIP TC-8 Conference on Comparative
Review of Information Systems Methodologies (CRIS-1), Eds. Verrijn-
Stuart A., Olle T.W., Sol H., North Holland (1982).

[33] Weigand H., "An Object Oriented Approach in a Multi Media Database
Project". In Proc. Object Oriented Databases (DS-4), Eds. Kent W.,
Meersman R., North Holland 1990.

[34] Wintraecken J.J. "NIAM in Theorie en Praktijk", Academic Service,
1986 (Book in Dutch).

[35] Lipeck U., Neuman K. "Modelling and manipulating objects in geo
scientific databases". In E-R approach, ed. Spaccapietra S. Elsevier
(North Holland) 1987.

[36] Nienhuys-Cheng "Classification and Syntax of Constraints in Binary
Semantical Networks". In Information Systems Vol 15, No 5, pp497-
513,1990.

[37] Su S.Y.W. "An Object-Oriented Semantic Association Model
(OSAM~)". In AI in Industrial Engineering and Manifacturing:

zo
Theoretical Issues and Applications", eds. Kumara, Kashuap, Soyster.
American Institute of Industrial Engineers 1988.

[38] Costa J.-F., Sernadas A., Sernadas C. "Oblog: User's Manual", Technical
Report INESC 1989.

[39] Sernadas C., Fiadeiro J., Sernadas A. "Object-Oriented Conceptual
Modelling From Law". In The Role of AI in Databases and Information
Systems, eds. C.-H. Kung and R. Meersman, North-Holland 1990.

Bibliotheek K. U. Brabantai ~ i~~~ ~~~ ~ ~~~ im~u

ITK: P.O. BOX 90153 5000 LE TILBURG THE NETHERLANDS

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

