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A model of inductive reasoningt
Peter A. Flach

ABSTRACT

In this paper, we fortnally characterise the process of inductive hypothesis
fotmation. This is achieved by formulating minimal properties for inductive
consequence relations. These properties are justified by the fact that they are
sufficient to allow identification in the limit. By means of stronger sets of
properties, we define both standard and non-standard fonms of inductive
reasoning, and we give an application of the latter.
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1. Introduction

1.1 Motivation and scope

Induction is the process of drawing conclusions about all members of a certain set from knowledge about

specific instances of that set. For example, after observing a number of black crows, we might conclude

inductively that all crows are black. Such a conclusion can never be drawn with absolute certainty, and an

immediate question is: how is our confidence in it affected by observing the next black crow? This

problem is known as the justifecation problem of induction, a problem with which philosophers of all

times have wrestled without finding a satisfactory solution.

In this paper, we are concemed with a different but related problem: the formalisation of the

process of inductive hypothesis formation. Which hypotheses are possible, given the available

information? For instance, in the crows example the hypothesis `all crows are black' is possible, but the

hypothesis `all crows are white' is not: it is refuted as soon as we observe one black crow. Moreover,

once refuted, it will never become a possible hypothesis again, no matter how many crows are observed.

The question is thus: what is the relation between sets of observations and possible hypotheses?

In order to address this question, we need a representa[ion for observations and hypotheses. In our

framework, they aze represented by logical statements. Because of the distinction between instances and

sets, a first-order logic seems most appropriate. However, this is not mandatory, as a simple example

will show. Consider the problem of acquiring a concept from observed instances. Simple concepts and

their instances might be described in a socalled attribute-value language, expressing knowledge about

properties like colour, shape and size. Attribute-value languages have the expressive power of

propositional logic. It follows that the dislinction between instances and sets is not essential for

performing inductionl.

Since observations and hypotheses are logical statements, inductive hypothesis formation can be

declaratively modeled as a consequence relation. We will study the properties of such inductive

consequence relations, thereby applying techniques developed in other fields of non-standazd logic, like

non-monotonic reasoning (Gabbay, 1985; Shoham, 1987; Kraus, Lehmann 8c Magidor, 1990), abduction

(Zadrozny, 1991), and belief revision (G~rdenfors, 1988; 1990). In the spirit of these works, we develop

several systems of properties inductive consequence relations might have. The results aze twofold: our

weakest system I gives necessary conditions for inductíve consequence relations, and the other systems

are grouped together in two main families, modeling different kinds of induction.

1 For simplicity, the framework in this paper will be developed on the basis of propositional
logic; we have no reason to believe, however, tha[ its applicabílity cannot be extended to first-
order logic.
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As a motivating example for this latter point, let the observations be drawn from a database of

facts about different persons, including their fust and last names, and their parents' first and last names. A

typical inductive hypothesis would be `every person's last name equals her fathers' last name'. Such a

hypothesis, if adopted, would yield a procedure for finding a person's last name, given her father's last

name. Now consider the statement `every person has exactly one mother'. It is also an inductive

hypothesis, but of a differen[ kind. Specifically, it dces not give a procedure for finding a person's mother

(such a procedure dces obviously not exist), but merely states her existence and uniqueness. While the

first hypothesis can be seen as a definition of the last name of children, the second is instead a constraint

on possible models of the database. In the sections to follow, we will give practical examples of both

forms of induction.

1.2 Terminology and notation

Suppose P is a computer program that performs inductive reasoning. Tha[ is, P [akes a set of formulas a

in some language L as input, and outputs inductive conclusions ~i. The main idea is to view P as

constituting a consequence relation, i.e. a relation on 2LxL, and to study the properties of this

consequence relation. We will write a K~i whenever ~i is an inductive consequence of the premises a. A

set of premises is often represented by a formula expressing their conjunction. The properties of K will be

expressed by Gentzen-style inference rules in a meta-logic, following (Gabbay, 1985; Kraus, Lehmann 8t

Magidor, 1990).

We will assume that L is a propositional language, closed under the logical connectives.

Furthermore, we assume a set of models M for L, and the classical satisfaction relation k on MxL. If m

~ a for all me M, we write ka. We can implicitly introduce background knowledge by restriciing M to

a proper subset of all possible models. We will assume that ~ is compact, i.e. an infinite set of formulas

is unsatisfiable if and only if every finite subset is.

In many practical cases premises and hypotheses are drawn from restricted sublanguages of L.

Given a language L, an inductive frame is a triple ~I',K,E~, where I'cL is the set of possible

observations, EcL is the set of possible hypotheses, and K is an inductive consequence relation on 2LxL.

We will assume that I' is at least closed under conjunction.

The fact that in an inductive frame the consequence relation is defined on 2LxL, rather than 2rxE,

reflects an important choice for a certain interpretation of K. Specifically, we chose to interpret a K R not

just as `~i is an inductive consequence of a', but more generally as `~i is a possible hypothesis, given a'.

In this way, our framework allows the study of no[ only inductive reasoning, but hypothetical reasoning

in general.

As an example, take the property of Contraposition (if a K(3, then -,~i K-,a), which we will

encounter later. This property can be understood as follows. Suppose I know that c is a crow (background

knowledge), and the premiss that c is black (a) allows the inductive hypothesis `all crows are black' (~i),

then the premiss that some crows are not black (~(3) allows likewise the hypothesis that c is not black
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(~a). It is quite possible that, in most inductive frames, this hypothesis is excluded from E2. This

prohibits the interpretation of Contraposition as stating `if a K(3 is an inductive argument, then so is --~(3

K-,a'. Rather, it describes a property of hypothesis formation in general: `~a is a possible hypothesis

on the basis of ~(3, just like ~i is a possible hypothesis on the basis of a'.

The plan of the paper is as follows. In section 2, we define a minimal set of properties for

inductive consequence relations, and we show that these properties are sufficient in the sense that they

allow for a very general induction method. In sections 3 and 4, we develop two, more or less

complementary, kinds of inductive reasoning, and we give their main properties. We end the paper with

some concluding remarks.

2. Identification in the limit and I-relations

2.1 Identification in the limit

Inductive arguments are defeasible: an inductive conclusion might be invalidated by future observations.

Thus, the validity of an inductive argument can only be guaranteed when complete information is

available. A possible way to model complete information is by a sequence of formulas (possibly

infinite), such that every inconrect hypothesis is eventually ruled out by a formula in the sequence. If an

inductive reasoner reads in a finite initial segment of this sequence and outputs a correct hypothesis, it is

said to have finitely identified the hypothesis. Since [his is a fairly strong criterion, it is often weakened

as follows: the inductive reasoner is allowed to output as many hypotheses as wanted, but after finitely

many guesses the hypothesis must be correct, and not abandoned afterwards. This is called identification

in the limit. The difference with finite identification is, that the inductive reasoner dces not know when

the correct hypothesis has been attained. Details can be found in (Gold, 1967).

We will redefine identification in the limit in terms of induc[ive consequence relations. Given a set

of hypotheses E, the task is to identify an unknown (3E E from a sequence of observations al,a2,...,

such that (al,a2,... } K(3. The observations must be sufficient in the sense that they eventually rule out

every non-intended hypothesis.

DEFWITION 2.1. Identification in the limit.

Let ~I',K,E~ be an inductive frame. Given a target hypothesis RE E, a presentation for Q is

a(possibly infinite) sequence of observations al,a2,... such that (al,a2,...} K(3. Given

a presentation, an identification algorithm is an algorithm which reads in an observation aj

from the presentation and outputs a hypothesis (3j, for j-1, 2, .... The output sequence

R1,R2,... is said to converge [o ~in if for all k?n, ~i,t~-(3n.

2In fact, it looks more like an abductive hypothesis. We have argued elsewhere (Flach, 1992)
that there are close relations between abduction and induction.
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A presentation al,a2,... for (3 is sufficient if for any hypothesis YE E other than R it

contains a wirness ai such that (at,a2,...,a,} ~ y. An identification algorithm is said to

identify ~3 in the limit if, given any sufficient presentation for (3, the output sequence

converges to (i. An identification algorithm identifies E in the limit, if it is able to identify

any (3E E ln the limit.

Since we place induction in a logical context, it makes sense not to distinguish between logically

equivalent hypotheses. That is, (3 is logically identified in the limit if the output sequence converges to R'

such that ~(3'HR. A presentation for R is logically suffícient if it contains a witness for any y such that

~YHR. In the sequel, we will only consider logical identification, and omit the adjective `logical'.

2.2 I-relations

After having defined identification in the limit in terms of inductive consequence relations, we now turn

to the question: what does it take for inductive consequence relations to behave sensibly? We will first

consider some useful properties, and then combine these properties into formal system I. We consider

this system to be the weakest possible system defining inductive consequence relations.

The first two properties follow from the definition of identification in the limit. Suppose that a~

is a witness for y, i.e. {al,a2,...,ai) ~t Y, then any extended set of observations should still refute y,

i.e. (al,a2,...,ai}~A 1t Y for any Aci'. Conversely, if B K(3 [hen also B' K R for any B'cB.

Assuming that sets of observations can always be represented by their conjunction, this property can be

stated as follows:

~l) ~a~R , a K Y
RKY

Furthermore, observations can not distinguish between logically equivalent hypotheses:

(2)
kRH7,aKR

a K Y

The other two properties are not derived directly from identifica[ion in the limit. Instead, they

describe the relation between observations and the hypotheses they confirm or refute. Here, the basic

assumption is that induction aims to increase knowledge about some unknown intended model mp. The

observations are obtained from a reliable source, and are therefore true in mp. On the other hand,

hypotheses represent assumptions about the intended model. Together, observations and hypotheses can

be used to make predictions about mp. More specifically, suppose we have adopted hypothesis R on the

basis of observations a, and let S be a logical consequence of anR, then we expect S to be true in mp. If

the next observation conforms to our prediction, then we stick to (3; if it contradicts our prediction, ~i

should be refuted. These two principles can be expressed as follows.

~3} kan(3~S , a K (3
anS K (3

{4} ~-anR~S , a K R
an~b jk R

4



Note that the combination of these rules requires that an~i is consistent: otherwise, we would have both

~an~i-~S and kan~3~~S, and thus both anS K(3 (3) and anS l~ ~i (4). For technical reasons, the

inconsistency of an~i is not prohibited a priori. In the presence of the other rules, the application of rule

(4) can be blocked in this case by adding the consistency of (3 as a premiss (theorem 2.4).

Rules (1) and (3) look pretty similaz, and can probably be combined into a single rule. Rule (2) is

clearly independent from the other rules. Rule (4) is not derivable from the other rules, but it may be if

we add a weaker version. These considerations lead to the following system of rules.

DEFINITION 2.2. !-relations.

The system I consists of the following four rules:

~ ~a
~ Conditional Reflexivity:

a K a

{~ ~a
~ Consistency:

~al~a

Right Logical Equivalence: kRH7 , a K~3
~ a K 7

- Convergence:
kan7~(3 , a K 7

RK7
If K is a consequence relation satisfying the rules of I, it is called an 1-relation.

The following lemma gives two useful derived rules in this system.

LEMMA 2.3. The following rules are derived rules in system I:

~ S ~~R , ~R~a
a K Q

.W ~-,R,aKR
kf R~~a

Proof. (S) Suppose ~~(3 and ~~3-~a; by Conditional Reflexivity it follows that (3 K~i, and

we conclude by Convergence.

(W) Suppose ~-,(3 and a K Q; by Consistency it follows that -,(3 it (3. By Convergence, it

follows that ~an(3~~Q, i.e. ~(3~a. ~

Rule S expresses that (3 is an inductive consequence of a if a is deductively entailed by (3; rule W states

that (3 shouldn't deductively entail ~a if it is an inductive consequence of a(~i consistent in both cases).

Rule S hints at the view of induction as reversed deduction, while rule W suggests a connection between

induction and finding consistent extensions of a theory. By strengthening one of these rules, we obtain

systems for one of two different kinds of induction: sirong induction (section 3) and weak induction

(section 4).
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The following theorem shows that system I does what it was intended to do.

THEOREM 2.4. Rules (1}-(4) arederived rules in system I.

Proof. (1) Suppose ~a-~~i, i.e. ~any-ap and a K 7; we have a K Q by Convergence.

(2) Identical to Right Logical Equivalence.

(3) Suppose kan(3--~5, i.e. kan(3~anS and a K(3; by Convergence it follows that anS

K~i. Note that in the presence of rule (1), rule (3) is equivalent to Convergence, since the

latter can also be derived from the former: suppose ~any~(3 and a K y, then by (3) anR

K 7, and since ~an~3-~(3, by (1) (3 K Y. Since we already showed that (1) follows from

Convergence, we conclude that Convergence exactly replaces (1) and (3).

(4) As said earlier, we prove this rule under the assumption that ~i is consistent. Suppose

an-~S K~i, then by rule W~(3-~-,(an~S), i.e. ~an~i-~S. From a K(3 and the consistency

of ~i, it follows that an~i is consistent by rule W, as required. ~

It should be noted that Conditional Reflexivity is nowhere used in the proof of theorem 2.4. This

indicates that it can be removed to ob[ain a truly minimal rule system for induction. However, system I

possesses a nice symmetry, as shown by the next result.

THEOREM 2.5. Define a K~ (3 iff ~a lt ~3, then K is an I-relation iff K~ is an I-relation.

Proof. Using the rewrite rule a K (3 ~~ a lk~ ~i, Conditional Reflexivity rewrites to

Consistency and vice versa, while Right Logical Equivalence and Convergence rewrite to

themselves. Since this rewrite rule is its own inverse, this proves the theorem in both

directions. ~

This duality will reappear later, as it provides the link between weak and strong induction (section 4.2).

System I has been built on the basis of rules (1)-(4), which in tum were derived from the notion

of idcntification in the limit. The following section rounds off this analysis by demonstrating how one

could use inductive consequence relations for performing the perhaps most elementary form of

identification: identification by enumeration.

2.3 Identification by enumeration

If we assume that the set of inductive hypotheses is countable, we can formulate a very simple and

general identification algorithm (Algorithm 2.6). We enumerate all the possible hypotheses, and search

this enumeration for a hypothesis that is an inductive consequence of the premises seen so far. We stick

to this hypothesis until we encounter a new premise which, together with the previous premises,

contradicts it: then we continue searching the enumeration.
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ALGORITHM 2.6. Identifieation by enumeration.
Input: a presentation al,a2,... for a target hypothesis R E E, and an enumeration

R1,R2,-.- of all the formulas in E.
Output: a sequence of formulas in E.
begin

i:-1; k:-1;
repeat

while {aj I j~i) 1~ ~ikdo k:-kt1;
outpat ~ik;
i:-if 1;

forever;
end.

Algorithm 2.6 is very powerful, but it has one serious drawback: the enumeration of hypotheses is

completely unordered. Therefore, there is much duplication of work in checking hypotheses. There exist

more practical versions of this algorithm, that can be applied if the set of hypotheses can be ordered.

However, it is clear that if any search-based identification algorithm can achieve identiCication in the

limit, identification by enumeration can, provided the inductive consequence relation is `well-behaved'.

The following theorem states that I-relations aze well-behaved in this sense.

THEOREM 2.7. Algorithm 2.6 performs identifieation in the limit if K is an I-relation.

Proof. Let a denote the en[ire presentation, and let (i be the target hypothesis, i.e. a K R.

Furthermore, let (3n be the first formula in the enumeration, such ihat ~~i„H~i. We will

show that the output sequence converges to ~in if a is sufficient for (3.

Suppose Qk,k~n precedes j3n in the presentation. By assumption, ~~ikH~i; if the

presentation is sufficient, there will be a witness ai such that (al,a2,...,ai} 1~ Rk, so Rk

will be discarded.

Since k ~inH(i and a K (3, it follows by Right Logical Equivalence that a K~i,,. By

Convergence, á K(3n for every initial segment á. Therefore (3n is never discarded. ~

Note that this proof only mentions the rules Right Logical Equivalence and Convergence. As said before,

Consistency is needed to ensure that the presentation and the hypothesis can be combined in a meaningful

way, and Conditional Reflexivity is not strictly needed.

Induction would be infeasible if it could only be achieved by enumerating hypotheses. Likewise,

inductive consequence relations would be useless if nothing stronger than I-relations would exist. In the

following two sections, we present two families of inductive consequence relations, the first based on a

view of induction as reversed deduction, and the second based on a view of induction as trying to extend

the observations consistently. We will thereby adopt a terminology that is more familiar in the field of

Machine Learning: observations aze called examples, and inductive hypotheses are also called explanarions

of the examples.
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3. Strong induction

A strong inductive conseyuence relation is an I-relation that satisfies the following rule:

~ S' k ~a
a K R

This is a strengthening of the derived rule S in system I(lemma 2.3). The idea of strong induction is,

that it equals reversed deduction in some underlying logic or base logic. Rule S' states, that this base

logic should allow all valid classical deductions. The base logic might also allow deductions that are

classically invalid, but (for instance) plausible. Rule S' is a strengthening of S, because it doesn't require

(3 to be consistent. In general, inconsistent inductive hypotheses are not very interesting; they arise as a

borderline case, similar to tautologies that are deductive consequences of any set of premises. In the

present context, this borderline case is instrumental in distinguishing strong induction from weak

induction, as we will see in section 4.

Rule S' can be derived if we strengthen Conditional Reflexivity to

. Reflexivity: a K a

Thus, an I-relation is a strong inductive consequence relation iff it satisfies Reflexivity.

3.1 The system SC

The weakest system of rules for strong induction is called SC, which stands for Strong induction with a

Cumulative base logic. For inductive consequence relations, cumulativity means that if (3 K Y, the

hypotheses Y and ~inY inductively explain exactly the same facts. This principle can be expressed by two

rules: Right Cut and Right Extension.

DEFINITION 3.1. The system SC.

The system SC consists of the following six rules:

~ Reflexivity:

. Consistency:

~ Right Logical Equivalence:

~ Convergence:

~ Right Cut:

~ Right Extension:

~RHY,aK(3
a K Y

~anY~(3 , a K Y
RKY

aK(3nY,~i KY
a K Y

a K Y. R K Y
a K (3nY

Right Cut expresses that a part of an inductive hypothesis, which inductively explains another part, may

be cut away from the hypothesis. In the presence of rule S', it is a strengthening of Convergence. Right

Extension states that an inductive hypothesis may be extended by some of the things it explains.
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These latter two rules may look suspicious, because (3 takes the role of both example and

hypothesis. For instance, Right Extension might not be applicable in a particular inductive frame,

because (3~ E. The reader will recall the discussion in section 1.2, where it was argued that even if this is

so, such rules may describe useful properties of the process of (inductive) hypothesis formation. Here we

encounter a case in point, because the two new rules interact to produce a rule that is satisfied in any

inductive frame of which the consequence relation satisfies the rules of SC.

LEMMA 3.2. In SC, the following rule can be derived:

. Compositionality: a K Y~ R K Y
an~i K Y

Proof. Suppose a K Y and (3 K Y; by Right Extension we have a K(3nY. Also, because

an(3nYk an~3, we have an(3 K an~inY by rule S'. Using Right Cut gives anp K~i~Y~

and since by assumption (3 K Y, we can cut away ~i from the righthand side to get an~i K

Y. ~

Compositionality states that if an inductive hypothesis explains two examples separately, it also explains

them jointly. It can be employed to speed up enumerative identification algorithms. Recall that in

Algorithm 2.6 a new hypothesis must be checked against the complete set of previously seen examples.

If we already know that the new hypothesis inductively explains some subset of those examples, then by

Compositionality the remaining examples can be tested in isolation.

Furthermore, if the search strategy guarantees that the new hypothesis explains all the examples

explained by the previous hypothesis, then we only need to test it against the last example which refuted

the previous hypothesis. This requires an ordering of the hypothesis space, which in turn requires

monotonicity of the base logic. This results in the following stronger system.

3.2 The system SM

There are several ways to define monotonicity of the base logic, for instance by adopting transitivity or

contraposition.

DEFIMTION 3.3. 7'he system SM.

The system SM consists of the rules of SC plus the following rule:

Contraposition:
a K (3

~(3 K ~a

As the following lemma shows, this results in a considerably more powerful system.
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LEMMA 3.4. In SM, the following rules can be derived:

f-y~R,aKR~ Explanat~on Strengthen~ng. a K y

Explanation Updating: ky~~y ~ a K y, R K y~.
anR K y.

Proof. (Explanalion Strengthening) Suppose ky-~R and a K R; by Contraposition, it

follows that ~R K-~a. Convergence gives ~y K~a, which finally results in a K y by

Contraposition.

(Explanation Updating) Suppose ~~-~y and a K y; by Explanation Strengthening we

have a K y. Assuming R K ~(, this gives anR K Y by Compositionality. ~

Explanation Strengthening expresses that any y logically implying some inductive explanation R

of a set of examples a is also an explanation of a. Consequently, the set of inductive explanations of a

given set of examples is completely determined by its weakest elements according to logical implication.

Since logical implication is reflexive and transi[ive, it is a quasi-ordering on E, which can be turned into

a partial ordering by considering equivalence classes of logically equivalent formulas (in other words, the

Lindenbaum algebra of E).

Explanation Updating is a combination of Explanation Strengthening and Compositionality,

which shows how to employ this ordering in identification algorithms. It states that if y is a hypothesis

explaining the examples seen so far a but not the next example R, it can be replaced by some y which

(i) logically implies y and (ii) explains R. This clearly shows that we don't need to test the new

hypothesis y against the previous examples a.

The properties expressed by these rules have been used in many AI-approaches to inductive

reasoning (Mitchell, 1982; Shapiro, 1983). Thc results in this section have bcen presented to show how

they can be derived systematically within our framework. For instance, we have shown that an important

property like Explanation Streng~hening rcquires monotonicity of the base logic.

4. Weak induction

The ideas described in this section have been the main motivating force for the research reported in this

paper. While induction and deduction are closely related, they can bc related in more than one way. Weak

induction provides an alternative for strong induction, which only considers inductive hypotheses from

which the examples are provable. Weak induction aims at supplementing the examples with knowledge

which is only implicitly contained in those examples.

In section 1.1, we provided an example of weak induction: inferring `every person has exactly one

mother' from a collection of facts. This is not a strong inductive argument, since the induced rule does

10



not entail the facts (regardless of the base logic). Rather, the rule dces not contradict the facts: it should

not entail their negation. That is, weak inductive consequence relations satisfy the following rule:

~ W, a K
k;c R-~~a

Note that this disallows the possibility that (3 is inconsistent, showing that some strong inductive

consequence relations are not weak inductive consequence relations.

Rule W' is a strengthening of rule W, that can be obtained by strengthening Consistency to

~ Weak Reflexivity: ~a 1t a

Weak Reflexivity expresses that an inductive hypothesis never explains its negation.

4.1 The system WC

The weakest system for weak inductive reasoning is called WC. It models weak induction with a

cumulative base logic. The principle of cumulativity for weak inductive consequence relations is stated as

follows: if ~(3 l~ Y, then (3 can be added to the inductive hypothesis Y without changing the set of

examples it explains. This principle requires weak counterparts of [he corresponding rules in SC.

DEFIMTION 4.1. The system WC.

The system WC consists of the following six rules:

~ Conditional Reflexivity:

~ Weak Reflexivity:

. Right Logical Equivalence:

k~ ~a
a K a

~a lt a

~(3HY,aK(3
a K Y

~anY-~~i , a K Y
. Convergence:

~ Weak Right Cut:

. Weak Rïght F,xtension:

RKY
a K (3nY . ~R I~ Y

a K Y
a KY, ~R I~Y

a K (3nY

In this system, we could derive a weak counterpart to Compositionality. expressing that an example, of

which the negation is not explained, can be addcd to the prc~nises. However, this does not express a very

useful property. In general, Compositionality itself does not apply to wcak inductive reasoning.

Consequently, we must always store all previously seen examples, and check thcm each timc we switch

to a new inductive hypothesis (an ilh;stration of this will be. provided in section 4.3}.

4.2 The system WN1

In a monotonic base logic, (3 does not entail ~a if and only if a does not entail -,(3. This property means

that a weak inductive consequence relation based on a monotonic base logic is symmetiic. Again, we
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stress that although Symmetry is obviously not a property of any form of inductive reasoning, it may be

a useful property of the inductive consequence relation involved in weak inductive reasoning.

DEFIMTION 4.2. The system WM.

The system WM consists of the rules of WC plus the following rule:

Symmetry:
a K

~ RKa

Similar to SM, WM induces an ordering of the hypothesis space that can be exploited in enumerative

identification algorithms. Search will however proceed in the opposite direction of logically weaker

formulas.

LEMMA 4.3. In WM, the following rule can 6e derived:

~ Explanation Weakening: ~R~Y , a K (3
a K Y

Proof. Suppose ~(3~y and a K Q; by Symmetry, it follows that ~i K a. Convergence

gives y K a, which finally results in a K Y by Symmetry. ~

In fact, SM and WM are interdefinable in the following sense.

LEMMA 4.4. Defene a K~ R iff - ,a If (3, then K satisfies the rules of SM iff K~ satisfies

the rules of WM.

Proof. Using the rewrite rule a K (3 ~~a It~ ~i, each rule of SM rewrites ( after re-

arranging) to a rule of WM: Reflexivity rewrites to Weak Reflexivity, Consistency

rewrites to Conditional Reflexivity, Convergence and Right Logical Equivalence rewrite to

themselves, Right Cut to Weak Right Extension, Right Extension to Weak Right Cut,

and Contraposition rewrites to Symmetry. ~

We encountered this transformation before, when we noted that it leaves system I invariant (theorem 2.5).

4.3 An application of weak induction

In this section, we will illustrate the usefulness of weak induction by applying it to the problem of

inducing integrity constraints in a deductive database. The induction algorithm is fully described in

(Flach, 1990), and has also been implemented. Tuples of a database relation (i.e., ground Cacts) play the

role of examples, and hypotheses are integrity constraints on this relation. In the current implementation,

hypotheses are restricted to functional and multivalued dependencies between attributes.

12



Let child be a relation with five attributes: child's first name, father's first and last name, and

mother's first and last name. Of this relation, the following tuples are given.

child(john,frank,johnson,mary,peterson).
child(peter,frank,johnson,mary,peterson).
child(john,robert,miller,gwen,mcintyre).
child(ann,john,miller,dolly,parton).
child(millie,frank,miller,dolly,mcintyre).

Table 1. A database relation.

Suppose that we are interested in the attributes that functionally determine the mother's last name (a

socalled functional dependency). Two such dependencies that are satisfied in table 1 are:

child (N, , FL, , ML1) n child (N, , FL, , ML2 )~ ML1-ML2

child (, FF, FL, , ML1) n child (, FF, FL, , ML2 )~ ML1-ML2

(we follow the Prolog conventions: all variables are universally quantified, and the underscores denote

unique variables). The first formula states that child's first name and father's last name determine

mother's last name, and the second formula says that father's first and last names determine mother's last

name. Note that these formulas are not logical consequences of the tuples, nor are the tuples logical

consequences of the formulas.

How would we induce these dependencies? According to Explanation Weakening, we can start with

the strongest hypothesis: all mothers have the same last name (it is determined by the empty set of

at[ributes). This is expressed by the following formula:

child ( , , , , ML1) n child ( , , , , ML2 ) -~ ML1-ML2

Since this formula is inconsistent with the [uples in table 1, we will make minimal changes in order to

get wcaker constraints, which is done by unifying variables on the lefthand side.

For instance, the first and third tuple lead to the following false formula:

child(john,frank,johnson,mary,peterson) n

child(john,robert,miller,gwen,mcintyre)---~peterson-mcintyre

The formula is false because - is interpreted as syntactical identity. lt shows how we can make minimal

changes to the original formula: by unifying variables in those positions for which the tuples have

different valucs. This leads to the following three hypotheses:

child ( , FF, , , ML1) n child ( , FF, , , ML2 ) ~ ML1-ML2

child ( , , FL, , ML1) n child ( , , FL, , ML2 ) ~ ML1-ML2

child ( , , , MF, ML1) n child ( , , , MF, ML2 ) -) ML1-ML2

Each of these hypotheses is again tested for consistency with the data.

13



If we seazch in a breadth-first fashion, we will eventually encounter all sets of attributes that

determine the mother's last name. Note that, any time we switch to a new hypothesis, we have to check
it against the complete set of tuples (Compositionality docs not hold).

In this setting, there are rather strong restrictions on both I' ( the tuples) and E ( the functional

dependencies). They aze needed to ensure convergence of the induction process, and also block properties
like Symmetry. On the other hand, T' should be rich enough to allow sufficient presentations for any
hypothesis in E(they should form what Shapiro (1983) calls an admissible pair). For instance, let E be
the set of multivalued dependencies that hold for a given database relation. An example of such a
dependency is

child ( N1, FF1, FL1, MF, ML) n child (N2, FF2, FL2, MF, ML) ~

Child(N1,FF2,FL2,MF,ML)

which states that children have all the fathers of any child of a certain mother. Such dependencies can be
learned in exactly the same way as funetional dependencies. The point is, that I' should now contain
positive and negative ground facts, since a givcn multivalued dependency can only be refuted by two
tuples in the relation and one tuple known to be not in the relation.

5. Conclusion and future work

The contributions presented in this paper are twofold. First of all, we have given minimal conditions for

inductive consequence relations, which are powerful enough to allow identification in the limit. On the
other hand, these conditions are liberal enough as to leave room for `non-s[andard' forms of inductive
reasoning. Our second contribution lies in identifying weak induction as such a non-standard form of
induction. We have illustrated the usefulness of weak induction by an examplc.

As it stands, the framcwork is far from complete. In particular, a model-theoretic account of
induction should accompany our proof-theoretic characterisation. Furthermore, we could study induction
with respect to other base logics, such as modal, temporal and inluitionistic logics. Finally, we could
investigate system I in ordcr to see whether it leaves room for yet another type of induction.
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