

Tilburg University

Recognition for acyclic context-sensitive grammars is NP-complete

Aarts, H.M.F.M.

Publication date:
1991

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Aarts, H. M. F. M. (1991). Recognition for acyclic context-sensitive grammars is NP-complete. (ITK Research
Report). Institute for Language Technology and Artifical IntelIigence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/6f2edd5f-1d15-4c8c-bd89-bf5e68fb706a

~BM

CBM
R

8409
1991

29

,~~~~ ~~, r~~ ~ P~~ I'~IIIIIIIIIIIIIIIII~I~NI~1~1~~

i~EJ~r-~i~L.n

REPORT

STITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE

~ti ~~,.~I.c?. I
I~7~tJ.`1~ (-. i-LfC ~

Ti ~.. i ~~~ r-~ ta
I

ITK Research Report
August 8, 1991

Recognition for Acyclic
Context-Sensitive Grammars

is NP-complete
Erik Aarts

No. 29

ISSN 0924-7807

01991. Institute for Language Technology and Artificial Intelligence,
Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The Netherlands
Phone: f3113 663113, Fax: f3113 663110.

Abstract

Context-sensitive grammars in which each rule is of the form
~ZA -~ ary~3 are acyclic iï the associated context-free grammar with
the rules Z~ ry is acyclic. The problem whether an input atring is
in the language generated by an acyclic context-sensitive grammar is
NP-complete.

Introduction

One of the most well-known classifications of rewrite grammars is the Chom-
sky hierarchy. Grammars and languages are of type 0(unrestricted), type
1(context-sensitive), type 2(context-free) or of type 3(regular). Much re-
seazch has been done involving regulaz and context-free grammazs. Context-
free languages can be recognized in a time that is polynomial in the length
of the input and the length of the grammar [Eazley, 1970]. Recognition of
type 0 languages is undecidable. We see two majors tracks for the reseazch
on grammazs which lie between these two grammaz classes.

First, people have tried to put restrictions on context-sensitive grammazs
in order to generate context-free languages. Among them are Book [1972],
Hibbard [1974] and Ginsburg and Greibach [1966]. Baker [1974] has shown
that these attacks come down to the same more or less. They all block the
use of context to pass information through the string. Book [1973] gives an
overview of attempts to generate context-free languages with non-context-
free grammazs. How to restrict permutative grammars in order to generate
context-free languages is described in Malckinen [1985].

The other track is the track of complexity of recognition. One of the best
introductions to complexity theory is Gazey and Johnson [1979]. They state
that recognition for context-sensitive grammazs is PSPACE-complete (re-
ferring to [Kuroda, 1964] and [Karp, 1972]). Some people have tried to put
restrictions on CSG's so that recognition lies somewhere between PSPACE
and P. Book [1978] has shown that for linear time CSG's recognition is NP-
complete even for (some) fixed grammars. Furthermore there is a result that
recognition for gmwing CSG's is polynomial for fixed grammazs [Dahlhaus
and Wazmuth, 1986]. This is the line I am following.

In this azticle I will consider one type of restricted context-sensitive gram-
mars, the acyclic context sensitive grammars. The complexity of recognition
is lower than in the unrestricted case because we restrict the amount of in-
formation that can be sent (and we do not block it by bazriers!). In the
unrestricted case we can send messages that leave no trace. After a message

2

that changes 0's into 1's e.g. we can send a message that does the reverse.
In sending a message from one position in the sentence to another, the inter-
mediate symbols are not changed. In fact they are changed twice: back and
forth. With acyclic csg's, this is not possible and the amount of information
that can be sent is restricted by the grammar.

Definitions

A grammar is a 4-tuple, G- (V, E, R, S), where
V is a set of symbols, E C V is the set of terminal symbols.
R C Vt x V' is a relation defined on strings. Elements of R are called rules.
S E V`E is the staztsymbol.

A grammaz is context-aenaitive if each rule is of the form
aZp~ary~3whereZEV`E;a„O,ryEV';ry~e.
A grammaz is context- free if each rule is of the form
Z~rywhereZEV`E;ryEV';ry~e.

Derivability (~) between strings is defined as follows:
uav ~ u~3v (u, v, a,p E V') iff (a,,0) E R.
The transitive closure of ~ is denoted by ~. The transitive reflexive closure
of ~ is denoted by ~. The language generated by G is defined as
L(G) - {w E E' ~ S~ w}.

A derivation of a string b is a sequence of strings xl, xZ, ..., x„ with
S-xl,foralli(1CiGn)x;~x;~l andx„-b.

A context-free grammaz is acyclic if there is no Z E V` E such that
Z~ Z. This implies that there is no string a E V' such that a~ a.

We can map a context-sensitive grammar G onto its associated context-free
grammaz G' as follows: If G is (V, E, R, S) then G' is (V, E, R~, S) where for
every rule aZ,l3 --~ aryA E R there is a rule Z-~ ry E R'. There aze no other
rules in R~.

We call G acyclic iff the associated context-free grammaz G' is acyclic.

The notation we use for context-sensitive rules is as follows: the rule

3

aZp -. ay~i is written as Z -~ [al][aa] . . . [a;] 7 [f~l][AZ] . . , [A~] with
a - [ai][aa] . . . [a:] and A - [Ai][Aa] . . . [Ai], with
ak,AtE V(1GkGi,1G1G j).

Recognition is NP-complete

In this section we prove that the recognition problem for acyclic context-
sensitive grammars is NP-complete. Acyclic CSG will be abbreviated as
ACSG.

RECOGNITION FOR ACYCLIC CSG
INSTANCE: An acyclic context-sensitive grammaz G- (V, E, R, S) and a
string w E E'.
QUESTION: Is w in the language generated by G?

Before we prove that RECOGNITION FOR ACYCLIC CSG is NP-complete,
we first prove some theorems and lemmas.

The function ld(G", n) is the length of the longest derivation from any
input word with length n using grammar G". Suppose G' - (V', E', R', S')
is an acyclic cfg.

Lemma 1.11: ld(G', n) C 2 ~R'~n(n f 1) ~- 1

Proo~ With induction to n.

Basic step: n- 1. In the worst case we can apply all rules once. The
length of this derivation is ~R'~ ~- 1. So !d(G',1) - ~R'~ f 1.

Induciion step. We have an input word with length n~- 1. We will try
to derive the startsymbol by bottom-up application of rules on it.
There must be a branching rule. In the worst case we can apply all (maximal
~R'~ - 1) non-branching rules once to all symbols of an input with length
n~{-1. This means that we have ((~R'~ -1)(nf 1)) applications of rules. When
we apply a branching rule we get a word with length n(or smaller). The

1With eome more effort we can prove the linear bound !d(G',n) G(2n - 1)~R'~ -~ n.
We are only intereated in a polynomial bound, however.

4

length of any derivation of this word is maximal Id(G', n). For ld(G', n-{- 1)
we have:

ld(G',n ~- 1) C Id(G',n) -~ ((~R'~ - 1)(n ~- 1) f 1)
- á ~R'~n(n f 1) ~ 1 f((~R'~ - 1)(n ~- 1) -~ 1)
C s ~R'~n(n ~- 1) -}- 1~- ~R'~(n -}- 1)
- z ~R'~n(n f 1) -~ 1 f 22~R'~(n f 1)

- á ~R'~(n ~- 2)(n f 1) -}- 1
- s ~R'~(n .{- 1)(n f 2) ~- 1. t]

Lemma 1.2: ld(G,n) C Z~R~n(n -~ 1) f 1. (G is the acyclic csg earlier
mentioned).

Proo~ Every derivation in an acyclic csg is a derivation in the associated
cfg. The number of rules in the associated cfg equals the number of rules in
the acyclic csga. o

Theorem 1: RECOGNITION FOR ACYCLIC CSG is in NP

Proof. A nondeterministic algorithm can guess every (bottom-up) re-
placement of some substring until the staztsymbol has been found. This
process will not take more steps than the length of the longest derivation.
The longest derivation in an acyclic csg has polynomial length. Therefore,
this nondeterministic algorithm runs in polynomial time and it recognizes
exactly L(G). ~

Theorem 2: There is a transformation f of 3SAT to RECOGNITION
FOR ACYCLIC CSG.

Proof: First we transform the instances of 3SAT to those of RECOGNI-
TION FOR ACYCLIC CSG. An example of this transformation is:

(~ u3 V uZ V~ ul) n(u3 V~ u2 V ul), a 3-SAT instance, is transformed
into "vl v2 v3 not u3 uZ not ui u3 not uz ul".

~This is not quite true. Two context-sensitive rulea can be mapped on the same context-
ïree rule. The asaocisted cfg can have leas rules than the acyclic csg. In thia case, lemma
1.2 is atill true, of course.

5

vi ... v„~ and ul ... u,,, are boolean vaziables. For all i(1 G i G m) the
value of v; must be equal to the value of u;. We "extract" the vaziables from
the formula.

"V", "A" and brackets "(" and ")" aze left out of the new formula in
order to keep the grammaz smaller. "~" is replaced by "not". When n is
the length of the original formula the length of the new input is smaller than
2n . This length differs only lineazly in the length n of the original input.

In Appendix A the grammars for all different m can be found. The
terminal symbols are: E - {v;,u;,not} (1 G i G m). The startsymbol S
is "s". It can best be seen how these grammars recognize the satisfiable
formulas of 3-SAT by applying the grammar rules bottom-up.

The values of all v; are initialised and sent through the formula from left
to right. The corresponding u; get the same value as v; when the information
about the instantiation of the value of v; arrives.

Most of the nonterminal symbols have two subpazts: the original termi-
nal symbol and the value that is passed. The symbol "u3uat" means: I was
originally uy and I am passing the information that v2 has been made true.

When the value of v; crosses u;, u; is turned into true or false (t or f).
When u3 "hears" frorn its left neighbour that v3 has been initialized as false,
"u3u2t" will be replaced by "fu3fs3.

We end up with a sequence of initialised v's followed by a sequence of t's
and f's. These sequences together form an"s" in case there are no clusters
of three f's. The values of the v; can only be sent in a fixed order: first vl ,
then v2 etc. When not all values are sent, the u's aze not made t or f. For
every vaziable we can send only one value. Hence only satisfiable formula's
can form an "s". The grammars recognize exactly all satisfiable formulas.0
Appendix B contains an example of a derivation for m- 3 of the formula
"vl v2 v3 u2 not u3 ul".

Theorem 3: f is polynomially computable.

Proo~ The transformation of instances is polynomial. The number of
grammaz rules is cubic in m, the number of vaziables. o

Theorem 4: RECOGNITION FOR ACYCLIC CSG is NP-complete.

Proo~ Follows from Theorems 1, 2 and 3. t]

~"notu~f u~u~t" will be replaced by "tu~f"

6

Recognizing Power

ACSG's recognize all context-free languages. Any context-free grammar
can be transformed into an acyclic context-free grammar without loss of
recognizing power. Any acyclic context-free grammar is an acyclic context-
sensitive grammar.

Furthermore, ACSG's recognize languages that are not context-free. One
example is the language

{anó~"cn ~ n ~ 1}

This language is recognized by the grammaz ("x" is a nonterminal):

x--~ [a] a b b [b] b-. [aJ x[x] s-. a b b c
x~[x] b b[b] b-~ [b] x[x]
x~[x]bbc[c] b--~[b]x[c]

A derivation of " a a b b b b c c":

s~abbc~abxc~axxc~axbbcc~aabbbbcc.

With the pumping lemma one can prove that the language is not context-
free.

Conclusions

We have proved that recognition for ACSG is NP-complete. It turns out to
be very important for complexity of recognition with csg's whether sending
information leaves a trace.

Restricting the amount of information that can be sent seems an ap-
proach that comes closer to models of human language than blocking the
sending of information by bazriers. In natural languages one finds unbounded
dependencies which aze dependencies over an unbounded distance. The
number of unbounded dependencies in natural language are (almost) always
restricted. The polynomial bound would be an explanation of the fact that
humans can process language efficiently. Humans have a fixed grammaz in
mind which does not change. So the complexity of recognition with a fixed
grammaz should be compazed with the speed of human language processing.

7

We have encoded 3-SAT in vazious acyclic context-sensitive grammazs
now. I think it is not possible to write an acyclic context-sensitive grammaz
that recognizes all 3-SAT formulas. We cannot encode 3-SAT in the input
sentence (when the csg is acyclic). Therefore I think that the recognition
problem for any fixed grammar is polynomial. The proof of this has not
been found yet (nor a proof of the counterpart). It is the subject of ongoing
research.

References

Baker, B. S., Non-context-Free Grammazs Generating Context-Free Lan-
guages, Inform. and Control, 24, 231-246, 1974.

Barton Jr., G. E., R. C. Berwick and E. S. Ristad, Computational complexity
and natural language, MIT Press, Cambridge, MA, 1987.

Book, R. V., Terminal context in context-sensitive grammazs, SIAM J. Com-
put., 1, 20-30, 1972.

Book, R. V., On the Structure of Context-Sensitive Grammars, Internat. J.
Comput. Inform. Sci., 2, 129-139, 1973.

Book, R. V., On the Complexity of Formal Grammazs, Acta Inform., 9,
171-181, 1978.

Dahlhaus, E. and M. K. Warmuth, Membership for Growing Context-Sensitive
GrammazsIs Polynomial,Internat. J. Comput. Inform. Sci., 33, 456-
472, 1986.

Earley, J., An Efficient Context-Free Parsing Algorithm, Comm. ACM,
13(2), 94-102, Feb. 1970.

Gazey, M. R. and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. ~reeman and Company,
San Francisco, CA, 1979.

Ginsburg, S. and S. A. Greibach, Mappings which Preserve Context Sensitive
Languages, Inform. and Control, 9, 563-582, 1966.

Hibbazd, T. N., Context-Limited Grammazs, J. Assoc. Comput. Mach.,
21(3), 446-453, July 1974.

Kazp, R. M., Reducibility among combinatorial problems, in Complexity of
Computer Computations, edited by R. E. Miller and J. W. Thatcher,
pp. 85-103, Plenum Press, New York, 1972.

8

Kuroda, S. -Y., Classes of Languages and Lineaz-Bounded Automata, In-
form. and Control, 7, 207-223, 1964.

M~lckinen, E., On Permutative Grammazs Generating Context-F~ee Lan-
guages, BIT, 25, 604-610, 1985.

9

Appendix A

The grammar contains variables
which range over (m is the number
of variables in the formula):

i,j E {1,...,m- 1}
k,l E {1,...,m}
tv, tv', tv", tv"' E{t, f}
tv is the negated value of tv
and is E {t, f}

Initialise ul:

vlultv ~ vl

Pass the value of ul through
the whole string:

v;~lultv --~ [viultv] v;{.1

notultv ~ [v,nultv] not
notultv -~ [ui~lultv] not
notultv -~ [tv'ultv] not

u;flultv --i [v,nultv] u;fl

uiflultv ~ [u7flultv] uifl
u;~.l ul tv -i [tv'ul tv] u;~l

uiflultv -r [notultv] u;fl

ul is turned into true or false
while passing its value:

tvultv -~ [v,nultv] ul

tvultv -~ [u~~lultv] ul

tvultv --~ [tv'ultv] ul

not disappears when the related
variable is made true or false:

tvul tv ~ notultv ul

Initialise uifl:

Vitlui{.ltv ~ Vifluitv'
Pass its value through the
sequence of v's:

Viflu7fltv ~ [Viu~fltv] Vi-Flujtv~
i1j

Pass the value through the formula
across not's:

notu~~ltv -~ [v,nu~~ltv] notu~tv'
notu~~ltv -a [u~u~fltv] notu~tv'
jGk-1
notu~tltv -~ [tv"u~~ltv] notu~tv'

Pass the value through the formula
across t's and f's:

tv"u~~ltv -~ [v,nu~~ltv] tv"u~tv'

tv"u~tltv
jGk-1

-~ luku7~ltV] tv"11~t41'

tv"u~~ltv --~ [tv"'u~~ltv] tv"u~tv'

10

Across u's which should not be
made true or false:

uiui~itv --~ [vmuifltv] u~uitv'
jGl-1
uiui~ltv -. [ukuifltv] u~uitv'
jGl-1,jGk-1
uluifltv ~ [tv"ui~ltv] u~uitv'
jGl-1
uiu~tltv --~ [notui~ltv] u~u~tv'
jGl-1

These u's must be made true or false:

tvll{-1-1 tv ~ [Vmui~-1 tv] uii-luitv'
tvuifltv --~ [ukui~ltfl] 11i~1llitV'
iGk-1
tvui~ltv -. [tv"u;titv] u;~lu;tv'

not's disappear again:

tvu;tltv ~ notu;~ltv u;~lu;tv'

All values have been passed now,
start building an S:

tv -. tvu,,, tv'

Qm ~ vmumtV

Qm ~Qm ttt

Qm ~Qm ttf

Qm ~ Qm tft

Qm ~Qmftt
Qm~Qm fft
Qm~Qmftf
Qm~Qm tff

Qi --i v;uitv Qitl

s -~ Q1

11

Appendix B

A possible derivation:

vl v2 v3 u2 not u3 ui
vluit v2 v3 u2 not u3 ui
viuit v2uit v3 u2 not u3 ui

viuit v2uit v3uit u2 not u3 ui
viuit v2u2t v3uit u2 not u3 ui
viuit v2u2t v3uit u2uit not u3 ui

viuit v2u2t v3u2t u2uit not u3 ui
viuit v2u2t v3u2t u2uit notuit u3 ul
viuit v2u2t v3u2t tu2t notuit u3 ui

viuit v2u2t v3u3f tu2t notuit u3 ui
viuit v2u2t v3u3f tu2t notuit u3uit ul
viuit v2u2t v3u3f tu2t notu2t u3uit ul

viuit v2u2t v3u3f tu3i notu2t u3uit ui

viuit v2u2t v3u3f tu3t notu2t u3uit tult
viuit v2u2t v3u3f tu3f notu2t u3u2t tuit
viuit v2u2t v3u3t tu3t notu3f u3u2t tuit
viuit v2u2t v3u3i tu3f notu3t u3u2t tu2t

viuit v2u2t v3u3f tu3f tu3f tu2t
viuit v2u2t v3u3f tu3~ tu3t tu3í

viuit v2u2t v3u3f t tu3i tu3f
viuit v2u2t v3u3i t t tu3t
viuit v2u2t v3u3t t t t
vluit v2u2t q3 t t t
viuit v2u2t q3
viuit q2

qi
s

12

I)atum nr. auteur

17-01-1989 1 H.C. Bunt

17-01-1989 2 P.A. Flach

07-03-1989 3 O. De Troyer

U7-03-1989 4 E.T. Thijsse

28-04-1989 5 H.C. Bunt

16-OG-1989 6 E.J. vd. Linden

27-06-1989 7 H.C. Bunt

titel

On-line Interpretation in Speech Understanding
and Dialogue Systems

Concept Learning from Examples Theoretical
Foundations

RIDL~: A Tool for the Computer-Assisted
Engineering of Large Databases in the Presence of
Integrity Constraints

Something you might want to know about
"wanting to know"

A Model-theoretic Approach to Multi-Database
Knowledge Representation

Lambek theorem proving and feature
unification

DPSG
and its use in sentence generation form meaning
representations

17-11-1989 8 R. Berndsen, Qualitative Economics in Prolog
H. Daniëls

25-01-1990 9 P. Flach A simple concept learner and its implementa-
tion

25-01-1990 10 P. Flach Second-order inductive learning

25-01-1990 11 E. Thijsse Partical logic and modal logic: a systematic
survey

07-02-1990 12 F. Dols The Representation of Definite Descriptions

08-03-1990 13 R.J. Beun T'he Recognition of Declarative Questions in
Information Dialogues

13-03-1990 14 H.C. Bunt Language Understanding by Computer:
Developments on the Theoretical Side

19-03-1990 15 H.C. Bunt DIT
Dynamic Interpretation in Text and dialogue

13

Datum nr. auteur

04-04-1990 16 R. Ahn,
H. Kolb

17-04-1990 17 G. Minnen,
E.J. vd. Linden

29-06-1990 18 H.C. Bunt
17-07-1990 19 H. Kolb

27-07-1990 20 H.C. Bunt

23-08-1990 21 F. Dols

23-08-1990 22 F. Dols

14-11-1990 23 P. Flach

06-12-1990 24 E. Thijsse

21-OS-1990 25 H. Weigand

21-OS-1991 26 O. Troyer

28-OS-1991 27 O. Troyer

03-07-1991 28 E. Thijsse

08-08-1991 29 E. Aarts

titel

Discourse Representation meets Constructive
Mathematics

Algorithmen for generation in lambek
theorem proving

DPSG and its use in parsing

Levels and Empty? Categories in a Principles
and Parameters Approach to Parsing

Modular Incremental Modelling Belief and
Intention

Nog niet verschenen

Nog niet verschenen

Inductive characterisation of database relations

Definability in partial logic: the propositional part

Modelling Documents

Object Oriented methods in data engineering

The O-O Binary Relationship Model

On total awareness logics

Recognition for Acyclic Context
Sensitive Grammars is NP-complete

14

~ I II IIÁIÍI~IÍÍII I~I IÍI ÍÍI~IÍI I

ITK: P.O. BOX 90153 5000 LE TILBURG THE NETHERLANDS

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

