Tilburg University

A qualification of the dependence in the generalized extreme value choice model

 Jaibi, M.R.Publication date:
1993

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Jaibi, M. R. (1993). A qualification of the dependence in the generalized extreme value choice model. (Research Memorandum FEW). Faculteit der Economische Wetenschappen.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM

R R

1993 619

R II
Chaice thedry
mobelo

A QUALIFICATION OF THE DEPENDENCE IN THE GENERALIZED EXTREME VALUE CHOICE MODEL

M.R. Jaïbi

FEW 619

A Qualification of the Dependence in the Generalized Extreme Value Choice Model

M.R. Jaïbi *

Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.

Abstract

The Generalized Extreme Value model (GEV) of discrete choice theory is shown to be observationally equivalent to a random utility maximization model with independent utilities and type-1 extreme value distributions. The observational equivalence is not only in terms of choice probabilities, but in terms of the entire joint distribution of choice and achieved utility.

1 Introduction

In the random utility maximization model of discrete choice (RUM) a finite number of alternatives is indexed by $i \in \mathcal{A}=\{1, \ldots, m\}$ and the indirect utility of alternative i is given by a random variable, V_{i}. The joint-distribution of $V=\left(V_{1}, \ldots, V_{m}\right)$ summarizes the frequencies of observed utilities and reflects the unobserved attributes of the alternatives and the taste variations among the choice makers (McFadden (1981), Ben Akiva and Lerman (1985)). The choice maker is rational: (s)he selects the alternative with the highest utility. The so achieved utility as well as the selected alternative itself constitute the apparent variables to the observer. These datia are regarded as a sample derived from the distribution of the utility levels. The mathematical form of the latter defines the structural characteristics of the model and

[^0]generates the distributions of the observed variables. It is of practical as well as of theoretical interest to know whether the distribution of the observed variables could be generated by another structural model. If so, it would be impossible to discriminate between the alternative models on the basis of the observed variables and the models are said to be observationally equivalent (Koopmans and Reiersøl (1950)). The main result of this paper is that a prominent random utility model with dependence is observationally equivalent to a simple model with independence.

The most widely used RUM model in empirical work is the Multinomial Logit model (MNL). It is computational feasible, but has a very restrictive pattern of interalternative substitution and is characterized by the Independence of Irrelevant Alternatives axiom (IIA). This axiom states that the relative odds for any two alternatives are independent of the attributes or even the availability of a third alternative and has been subject to serious criticism (Debreu (1960), McFadden (1981)). The MNL model features independent utility levels with type 1 extreme value distributions.

The Generalized Extreme Value model (GEV) has been introduced as an extension of the MNL model (McFadden (1978)). The motivation was to retain the computational feasibility, but to permit more flexible pattern of substitution and to relax the IIA axiom. The utility levels follow a more general multivariate extreme value distribution.

This paper provides an MNL representation of the GEV model. The GEV model is shown to be observationally equivalent to a RUM model with independently distributed utility levels and type 1 extreme value distributions, just as in the MNL model. Since the parameters of these distributions depend on the GEV model, the representation does not satisfy the IIA axiom. The proof is by construction of two utilities' vectors generating the GEV model and the MNL representation, respectively, such that with probability one the observed variables are equal. This equality is, of course, much stronger that the equality of the probabilities that some component of the utility vector is maximum in either case. Thus the observational equivalence occurs in the strong sense that there is a perfect match of the achieved utility realizations in the two models.

2 The MNL and GEV models

The MNL and GEV models belong to the family of RUM models in which the utility levels are assumed to have the additively separable form $V_{i}-c_{i}$ with the first term random and the second deterministic. In the MNL model, the random terms are independent and follow type 1 extreme value distributions with parameters $\left(A_{i}, \mu\right)$:

$$
P\left\{V_{i}<u\right\}=\exp \left(-A_{i} e^{-\mu u}\right)
$$

It follows that $V_{i}-c_{i}, i=1, \ldots, m$, are independent and have type 1 extreme value distributions with parameters $\left(A_{i} e^{-\mu c_{i}}, \mu\right)$, respectively, and generate the choice probabilities

$$
\begin{equation*}
p(i, c)=\frac{A_{i} e^{-\mu c_{i}}}{\sum_{j=1}^{m} A_{j} c^{-\mu c}}, \quad i \in \mathcal{A} . \tag{1}
\end{equation*}
$$

In the GEV model, the random vector $V=\left(V_{1}, \ldots, V_{m}\right)$ has the more general multivariate extreme value distribution, with p.d.f.

$$
F_{0}\left(u_{1}, \ldots, u_{m}\right)=\exp \left(-H\left(e^{-\mu u_{1}}, \ldots, e^{-\mu u_{m}}\right)\right)
$$

where $\mu>0$ is a parameter and where H is a non-negative, linearly homogeneous function with continuous mixed partial derivatives (non-positive even and non-negative odd mixed partial derivatives) such that $\lim _{x_{j} \rightarrow \infty} H\left(x_{1}, \ldots, x_{m}\right)=$ ∞ for all j. It follows that $\left(V_{1}-c_{1}, \ldots, V_{m}-c_{m}\right)$ has the multivariate extreme value distribution

$$
F\left(u_{1}, \ldots, u_{m}\right)=\exp \left(-H\left(e^{-\mu c_{1}} e^{-\mu u_{1}}, \ldots, e^{-\mu c_{m}} e^{-\mu u_{m}}\right)\right)
$$

which generates the logit-like choice probabilities

$$
\begin{equation*}
p(i, c)=\frac{e^{-\mu c_{i}} H_{i}\left(e^{-\mu c_{1}}, \ldots, e^{-\mu c_{m}}\right)}{H\left(e^{-\mu c_{1}}, \ldots, e^{-\mu c_{m}}\right)}, \quad i \in \mathcal{A} . \tag{2}
\end{equation*}
$$

Here H_{i} is the i-th partial derivative of $I I$. The GEV model reduces to the MNL model when $H\left(x_{1}, \ldots, x_{m}\right)=\sum_{j=1}^{m} A_{j} x_{j}$. It reduces to the Nested Multinomial Logit model (McFadden (1978), Börsch-Supan (1990)) when

$$
H\left(x_{1}, \ldots, x_{m}\right)=\sum_{l=1}^{n}\left(\sum_{j \in \mathcal{A}_{l}} A_{j} x_{j}^{\theta_{l}^{-1}}\right)^{0_{l}}
$$

Here $\left(\mathcal{A}_{l}\right)_{l=1, \ldots, n}$ is a partition of \mathcal{A} and each parameter θ_{l} not equal to one introduces a correlation among the alternatives within \mathcal{A}_{l}. More generally, the GEV model accommodates patterns of dependence between the unobserved attributes of the alternatives.

3 MNL representation of a GEV model

Let \mathcal{M} refer to a RUM model generated by a random utilities' vector $V=$ (V_{1}, \ldots, V_{m}), which now incorporates the deterministic terms (c_{i}), without loss of generality. Associated with V are maximum utility M and best alternative I defined by

$$
\begin{aligned}
M & =\max _{j} V_{j} \\
I & =i \text { if } V_{i}=M .
\end{aligned}
$$

The probability of ties is assumed to be zero so that I is well defined up to a negligible event. M and I constitute the observed variables. Let \mathcal{M}^{*} refer to a second RUM model, generated by $V^{*}=\left(V_{1}^{*}, \ldots, V_{m}^{*}\right)$ with observed variables M^{*} and I^{*}.

Definition (Koopmans and Reiersøl). The models \mathcal{M} and \mathcal{M}^{*} are said to be observationally equivalent if they generate the same joint distribution of the observed variables, that is

$$
(M, I) \stackrel{d}{=}\left(M^{*}, I^{*}\right) .
$$

Remark. The observational equivalence is a strong representational concept for RUM models. Besides the choice probabilities, it compares the distributions of achieved utility. When it holds, it is not possible to discriminate between the alternative models on the basis of the observed variables.

Consider now a GEV model, generated by the multivariate extreme value distribution F. The following spectral representation of F is due to de Ilath (1984).

Theorem (de Haan). There exist m measurable functions g_{i} taking values in $\mathbb{R} \cup\{-\infty\}$, and a finite measure λ on $[0,1]$ such that, if $\left(T_{n}, R_{n}\right)_{n}$ is
an enumeration of points of the Poisson process on $[0,1] \times \mathbb{R}$ with intensity measure $\lambda(d t) e^{-r} d r$, then $V=\left(V_{1}, \ldots, V_{m}\right)$ defined by

$$
V_{k}=\sup _{n}\left(g_{k}\left(T_{n}\right)+\mu^{-1} R_{n}\right), \quad k=1, \ldots, m
$$

has the distribution F.
Remark. In fact, the measure λ is the Lebesgue measure on $[0,1]$ restricted to a σ-field of Borel sets with respect to which the functions g_{i} are measurable.

The previous representation defines a vector $V=\left(V_{1}, \ldots, V_{m}\right)$ which generates the GEV model. Let it represent the utility levels. Alternative i is chosen on the event

$$
\left\{V_{i}=\max _{j} V_{j}\right\}=\left\{\sup _{n}\left(g_{i}\left(T_{n}\right)+\mu^{-1} R_{n}\right)=\max _{j} \sup _{n}\left(g_{j}\left(T_{n}\right)+\mu^{-1} R_{n}\right)\right\}
$$

It is clear that the points of the Poisson process with low $g_{i}\left(T_{n}\right)$ do not contribute to the realization of this event. If we throw them out, the dependence between the V_{i} 's is eliminated. More precisely, for each i define the set E_{i}^{*} and the random variable V_{i}^{*} by

$$
\begin{align*}
& E_{i}^{*}=\left\{t \in[0,1]: g_{i}(t)>g_{j}(t) \text { for all } j \neq i\right\}, \tag{3}\\
& V_{i}^{*}=\sup _{n: T_{n} \in E_{i} ;}\left(g_{i}\left(T_{n}^{\prime}\right)+\mu^{-1} R_{n}\right) . \tag{4}
\end{align*}
$$

The following lemma is crucial. (Recall that two sets are almost surely equal $(\stackrel{a . s}{=})$ if their symmetric difference has probability zero and that two random variables are almost surely equal if they are equal with probability one.)

Lemma. The random variables $V_{i}^{*}, i=1, \ldots, m$, are independent and have the type 1 extreme value distributions with parameters $\left(A_{i}^{*}, \mu\right)$, respectively, with

$$
\begin{equation*}
A_{i}^{*}=\int_{\left\{t \in[0,1]: g_{i}(t)>g_{j}(t)\right.} \text { for all } j_{j \neq i\}} e^{\mu g_{i}(t)} \lambda(d t) \tag{5}
\end{equation*}
$$

Here the functions g_{i} are defined by the spectral representation of the distribution F and where λ is the Lebesgue measure on $[0,1]$. They are such that

$$
\begin{equation*}
\left\{V_{i}^{*}=\max _{j} V_{j}^{*}\right\} \stackrel{\text { a.s. }}{=}\left\{V_{i}=\max _{j} V_{j}\right\} \quad, \quad i \in \mathcal{A} \text {, } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{j} V_{j}^{*} \stackrel{\text { a.s. }}{=} \max _{j} V_{j} . \tag{7}
\end{equation*}
$$

Proof: See the Appendix.
The main result is the MNL representation of the GEV model:
Theorem. The GEV model is observationally equivalent to a RUM model in which the utilities are independent random variables and have type 1 extreme value distributions. The parameters of the distributions are obtained by (5) from the spectral representation of the multivariate extreme value distribution generating the GEV model.

Proof. Let the GEV model be generated by $V=V_{1}, \ldots, V_{m}$) and let \mathcal{M}^{*} be the RUM model generated by $V^{*}=\left(V_{1}^{*}, \ldots, V_{m}^{*}\right)$ as defined by (4). By Lemma I, V^{*} has independent components with type 1 extreme value distributions. The parameters A_{i}^{*} of these distributions are given by (5) from the spectral representation of F. By (6), with probability one the choices in the GEV model and in \mathcal{M}^{*} coincide. By (7), the maximum utilities are equal with probability one. Thus the observed variables are equal with probability one. Hence they have the same distribution.

Remarks. 1. The MNL representation is based on the stochastic structure of the GEV model. The representation is strong, as discussed in the remark following the definition of observational equivalence. Much weaker is the representation provided by the "universal" logit model. The latter expresses choice probabilities in a "logit form" by an algebraic transformation which does not take into account the stochastic structure and, therefore, may even be inconsistent with the RUM hypothesis (McFadden (1981),p. 227, Train (1986), p.21).
2. The IIA property need not hold for the MNL representation generated by V^{*}. For example, suppose that alternative m is removed from the choice set. In the GEV model, the utility vector is now $\tilde{V}=\left(V_{1}, \ldots, V_{m-1}\right)$. Its distribution \tilde{F} is still multivariate extreme value, and admits the spectral representation defined by the functions $\left(g_{1}, \ldots, g_{m-1}\right)$. Therefore the MNL
representation is generated by $\tilde{V}^{*}=\left(\tilde{V}_{1}^{*}, \ldots, \tilde{V}_{m-1}^{*}\right)$, where

$$
\begin{aligned}
\tilde{E}_{i}^{*} & =\left\{t \in[0,1]: g_{i}(t)>g_{j}(t) \text { for all } j \neq i, j<m\right\} \\
\tilde{V}_{i}^{*} & =\sup _{n: T_{n} \in \tilde{E}_{:}}\left(g_{i}\left(T_{n}\right)+\mu^{-1} R_{n}\right) .
\end{aligned}
$$

Because the function g_{m}, associated with alternative m, does not intervene any more, the stochastic structure is changed and the relative odds of the remaining alternatives are affected. The removal of alternative m is formally equivalent to putting $c_{m}=\infty$. The same break-down of the IIA property holds for more general changes of the systematic costs. Thus, let the utilities be endowed with the additively separable form. The systematic parts of the utilities are considered exogenous. They will enter the MNL representation as follows. The GEV model is now generated by ($V_{1}-c_{1}, \ldots, V_{m}-c_{m}$) defined by the functions $g_{i}-c_{i}$ of the spectral representation. The MNL representation is therefore generated by

$$
V_{c, i}^{*}=\sup _{n: T_{n} \in E_{c, 0}}\left(g_{i}\left(T_{n}\right)-c_{i}+\mu^{-1} R_{n}\right)
$$

where

$$
E_{r, i}=\left\{t \in[0,1]: g_{i}(t)-c_{i}>g_{j}(t)-c_{j} \text { for all } j \neq i\right\} .
$$

The random variables $V_{c, i}^{*}$ are independent and follow type 1 extreme value distribution with parameters $\left(A_{c, i}^{*}, \mu\right)$, where

$$
A_{c, i}^{*}=e^{-\mu c_{1}} \int_{t \in E_{c, i}} e^{\mu g_{i}(t)} \lambda(d t) .
$$

The IIA axiom is violated since the costs influence the region of integration.

4 Conclusion

The dependence of utilities across alternatives accommodated by the GEV model of discrete choice theory has been qualified. More precisely the model is observationally equivalent to an MNL representation. The observational equivalence is not limited to choice probabilities, but holds for the entire distributions of choice and of achieved utility in the two models.

Appendix

Proof of the Lemma. Our proof relies on the spectral representation for the distribution F (see also Dagsvik (1989)). Let $\left(T_{n}^{i}, R_{n}^{i}\right)_{n}$ be an enumeration of the points of the Poisson process which are in $E_{i} \times \mathbb{R}$. For each $i,\left(T_{n}^{i}, R_{n}^{i}\right)_{n}$ constitutes a Poisson process with intensity measure $I_{E,}(t) \lambda(d t) e^{-r} d r$. Because the sets E_{i} are disjoint, these i Poisson processes are independent. Thus the random variables $V_{i}^{*}, \ldots, V_{m}^{*}$, are independent. On the other hand

$$
\begin{aligned}
P\left\{V_{i}^{*} \leq y\right\} & =P\left\{\sup _{n: T_{n} \in E_{i}^{*}} g_{i}\left(T_{n}\right)+\mu^{-1} R_{n}<y\right\} \\
& =P\left\{\forall n\left(T_{n}, R_{n}\right) \notin\left\{(t, r): t \in E_{i}^{*}, g_{i}(t)+\mu^{-1} r>y\right\}\right\} \\
& =\exp \left(-\int_{t, r: t \in E_{i}, g_{i}(t)+\mu^{-1 r}>y} \lambda(d t) e^{-r} d r\right) \\
& =\exp \left(-e^{-\mu y} \int_{t \in E_{i}^{*}} e^{\mu g_{i}(t)} \lambda(d t)\right) .
\end{aligned}
$$

after straightforward integration. Thus V_{i}^{*} follows the type 1 extreme value distribution with parameters μ and A_{i}^{*}, with

$$
A_{i}^{*}=\int_{t \in E_{:}} e^{\mu g_{i}(t)} \lambda(d t) .
$$

Here, according to the remark following de Haan's theorem, the measure λ can be taken to be the Lebesgue measure on $[0,1]$. For ease of notation, define

$$
h_{i}\left(T_{n}, R_{n}\right)=g_{i}\left(T_{n}\right)+\mu^{-1} R_{n} .
$$

Let

$$
V_{i}^{\circ}=\sup _{n: T_{n} \sharp E_{i}} h_{i}\left(T_{n}, R_{n}\right)
$$

so that

$$
V_{i}=\max \left(V_{i}^{*}, V_{i}^{\circ}\right)
$$

By definition, if $T_{n} \notin E_{i}$ then

$$
h_{\mathrm{i}}\left(T_{n}, R_{n}, c\right) \leq \max _{j \neq i} h_{j}\left(T_{n}, R_{n}\right) .
$$

Hence

$$
\begin{aligned}
V_{i}^{\circ} & \leq \sup _{n: T_{n} \& E_{i},} \max _{j \neq i} h_{j}\left(T_{n}, R_{n}\right) \\
& =\max _{j \neq i} \sup _{n: T_{n} \& E_{i},} h_{j}\left(T_{n}, R_{n}\right) \\
& \leq \max _{j \neq i} \sup _{n} h_{j}\left(T_{n}, R_{n}\right) \\
& =\max _{j \neq i} V_{j} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\{V_{i}>\max _{j \neq i} V_{j}\right\} & =\left\{V_{i}^{*}>\max _{j \neq i} V_{j}\right\} \\
& \subseteq\left\{V_{i}^{*}>\max _{j \neq i} V_{j}^{*}\right\}
\end{aligned}
$$

because $V_{i}^{*} \leq V_{j}$. On the other hand

$$
U_{i}\left\{V_{i}>\max _{j \neq i} V_{j}\right\} \stackrel{\text { a.s. }}{=} \Omega .
$$

It follows that

$$
\left\{V_{i}>\max _{j \neq i} V_{j}\right\}^{\text {a.s. }}\left\{V_{i}^{*}>\max _{j \neq i} V_{j}^{*}\right\}
$$

because the sets $\left\{V_{i}^{*}>\max _{j \neq i} V_{j}^{*}\right\}$ are disjoint. Finally, (6) follows because ties are negligible. Furthermore, $\max _{i} V_{i}^{*} \leq \max _{i} V_{i}$. Since

$$
\begin{aligned}
P\left\{\max _{i} V_{i}>\max _{i} V_{i}^{*}\right\} & \leq \sum_{j} P\left\{\max _{i} V_{i}=V_{j}^{\circ}, V_{j}^{\circ}>V_{i}^{*}\right\} \\
& \leq \sum_{j} P\left\{\max _{i \neq j} V_{i}=V_{j}^{\circ}, V_{j}=V_{j}^{\circ}\right\} \\
& \leq \sum_{j} P\left\{\max _{i \neq j} V_{i}=V_{j}\right\} \\
& =0,
\end{aligned}
$$

strict inequality occurs with probability zero. Consequently, $\max _{i} V_{i} \stackrel{\text { a.s. }}{=}$ $\max _{i} V_{i}^{*}$.

REFERENCES

Ben Akiva, M., and S.R. Lerman (1985), Discrete Choice Analysis-Theory and Application to Travel Demand, MIT Press Transportation Studies.
Börsch-Supan, A. (1990), On the Compatibility of Nested Logit Models with Utility Maximization, Journal of Econometrics 43, 373-388.
Dagsvik, J.K. (1989), The Generalized Extreme Value Random Utility Model For Continuous Choice, Center Discussion Paper N. 8941, Tilburg University, The Netherlands.
Debreu, G. (1960), Review of R. Luce: Individual Choice Behavior, American Economic Review 50, 186-188.
De Haan, L. (1984, A Spectral Representation for Max-Stable Processes, Annals of Probability 12, 1194-1204.
Koopmans, T.C., and Reiersøl, O. (1950), "The Identification of Structural Characteristics," Annals of Mathematical Statistics 21, 165-181.
Luce, R.D. (1959), Individual Choice Behavior: A Theoretical Analysis Wiley, New York.
MeFadden, D. (1978), Modelling the Choice of Residential Location, in: A. Karlgvist, ed., Spatial Interaction Theory and Residential Location, North Holland, Amsterdam, 75-96.
(1981), Econometric Models of Probabilistic Choice, in: C.F. Manski and D. McFadden, eds., Structural Analysis of Discrete Data, MIT Press, Cambridge, MA, 198-272.
Train, K. (1986), Qualitative Choice Analysis-Theory, Econometrics, and an Application to Automobile Demand, MIT Press Transportation Studies.

IN 1992 REEDS VERSCHENEN

532 F.G. van den Heuvel en M.R.M. Turlings
Privatisering van arbeidsongeschiktheidsregelingen
Refereed by Prof.Dr. H. Verbon

533 J.C. Engwerda, L.G. van Willigenburg
LQ-control of sampled continuous-time systems
Refereed by Prof.dr. J.M. Schumacher
534 J.C. Engwerda, A.C.M. Ran \& A.L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive definite solution
of the matrix equation $X+A^{*} X \quad A=0$.
Refereed by Prof.dr. J.M. Schumacher
535 Jacob C. Engwerda
The indefinite LQ-problem: the finite planning horizon case
Refereed by Prof.dr. J.M. Schumacher
536 Gert-Jan Otten, Peter Borm, Ton Storcken, Stef Tijs
Effectivity functions and associated claim game correspondences
Refereed by Prof.dr. P.H.M. Ruys
537 Jack P.C. Kleijnen, Gustav A. Alink
Validation of simulation models: mine-hunting case-study
Refereed by Prof.dr.ir. C.A.T. Takkenberg
538 V. Feltkamp and A. van den Nouweland $\begin{aligned} & \text { Controlled Communication Networks } \\ & \text { Refereed by Prof.dr. S.H. Tijs }\end{aligned}$
539 A. van Schaik
Productivity, Labour Force Participation and the Solow Growth Model
Refereed by Prof.dr. Th.C.M.J. van de Klundert
540 J.J.G. Lemmen and S.C.W. Eijffinger
The Degree of Financial Integration in the European Community
Refereed by Prof.dr. A.B.T.M. van Schaik
541 J. Bell, P.K. Jagersma
Internationale Joint Ventures
Refereed by Prof.dr. H.G. Barkema

542 Jack P.C. Kleijnen
Verification and validation of simulation models
Refereed by Prof.dr.ir. C.A.T. Takkenberg

543 Gert Nieuwenhuis
Uniform Approximations of the Stationary and Palm Distributions of Marked Point Processes
Refereed by Prof.dr. B.B. van der Genugten

544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen
Multi-Product Cycling with Packaging in the Process Industry
Refereed by Prof.dr. F.A. van der Duyn Schouten
545 J.C. Engwerda
Calculation of an approximate solution of the infinite time-varying LQ-problem
Refereed by Prof.dr. J.M. Schumacher
546 Raymond H.J.M. Gradus and Peter M. Kort
On time-inconsistency and pollution control: a macroeconomic approach
Refereed by Prof.dr. A.J. de Zeeuw
547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir
De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen
Refereed by Prof.dr. P.W. Moerland
548 Sylvester Eijffinger and Eric Schaling
Central bank independence: criteria and indices
Refereed by Prof.dr. J.J. Sijben
549 Drs. A. Schmeits
Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy
Refereed by Prof.dr. F.A. van der Duyn Schouten
551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations
Refereed by Prof.dr. S.W. Douma
\section*{552 Ton Storcken and Harrie de Swart

Towards an axiomatization of orderings

Refereed by Prof.dr. P.H.M. Ruys}
553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger
Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance
Tale in DM/\$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik

555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas
"Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie
Refereed by Prof.dr. Th.M.M. Verhallen

556 Ton Geerts

Regularity and singularity in linear-quadratic control subject to implicit continu-ous-time systems
Communicated by Prof.dr. J. Schumacher

557 Ton Geerts

Invariant subspaces and invertibility properties for singular systems: the general case
Communicated by Prof.dr. J. Schumacher
558 Ton Geerts
Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case
Communicated by Prof.dr. J. Schumacher
559 C. Fricker and M.R. Jaïbi
Monotonicity and stability of periodic polling models
Communicated by Prof.dr.ir. O.J. Boxma
560 Ton Geerts
Free end-point linear-quadratic control subject to implicit continuous-time systems: necessary and sufficient conditions for solvability
Communicated by Prof.dr. J. Schumacher
561 Paul G.H. Mulder and Anton L. Hempenius
Expected Utility of Life Time in the Presence of a Chronic Noncommunicable Disease State
Communicated by Frof.dr. B.B. van der Genugten
562 Jan van der Leeuw
The covariance matrix of ARMA-errors in closed form
Communicated by Dr. H.H. Tigelaar
563 J.P.C. Blanc and R.D. van der Mei
Optimization of polling systems with Bernoulli schedules
Communicated by Prof.dr.ir. O.J. Boxma
564 B.B. van der Genugten
Density of the least squares estimator in the multivariate linear model with arbitrarily normal variables
Communicated by Prof.dr. M.H.C. Paardekooper

565 René van den Brink, Robert P. Gilles
Measuring Domination in Directed Graphs
Communicated by Prof.dr. P.H.M. Ruys

566 Harry G. Barkema
The significance of work incentives from bonuses: some new evidence Communicated by Dr. Th.E. Nijman
567 Rob de Groof and Martin van Tuijl
Commercial integration and fiscal policy in interdependent, financially integrated two-sector economies with real and nominal wage rigidity.
Communicated by Prof.dr. A.L. Bovenberg
568 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts
The value of information in a fixed order quantity inventory system
Communicated by Prof.dr. A.J.J. Talman
569 E.N. Kertzman
Begrotingsnormering en EMU
Communicated by Prof.dr. J.W. van der Dussen
570 A. van den Elzen, D. TalmanFinding a Nash-equilibrium in noncooperative N -person games by solving asequence of linear stationary point problemsCommunicated by Prof.dr. S.H. Tijs
571 Jack P.C. Kleijnen
Verification and validation of models
Communicated by Prof.dr. F.A. van der Duyn Schouten
572 Jack P.C. Kleijnen and Willem van Groenendaal
Two-stage versus sequential sample-size determination in regression analysis of simulation experiments
Communicated by Prof.Dr. F.A. van der Duyn Schouten
573 Pieter K. Jagersma
Het management van multinationale ondernemingen: de concernstructuur Communicated by Prof.Dr. S.W. Douma
574 A.L. Hempenius
Explaining Changes in External Funds. Part One: Theory
Communicated by Prof.Dr.Ir. A. Kapteyn
575 J.P.C. Blanc, R.D. van der Mei
Optimization of Polling Systems by Means of Gradient Methods and the Power-Se- ries Algorithm
Communicated by Prof.dr.ir. O.J. Boxma
576 Herbert HamersA silent duel over a cakeCommunicated by Prof.dr. S.H. Tijs

577 Gerard van der Laan, Dolf Taiman, Hans Kremers
On the existence and computation of an equilibrium in an economy with constant returns to scale production
Communicated by Prof.dr. P.H.M. Ruys

578 R.Th.A. Wagemakers, J.J.A. Moors, M.J.B.T. Janssens
Characterizing distributions by quantile measures
Communicated by Dr. R.M.J. Heuts
579 J. Ashayeri, W.H.L. van Esch, R.M.J. Heuts
Amendment of Heuts-Selen's Lotsizing and Sequencing Heuristic for Single Stage
Process Manufacturing Systems
Communicated by Prof.dr. F.A. van der Duyn Schouten

580 H.G. Barkema
The Impact of Top Management Compensation Structure on Strategy
Communicated by Prof.dr. S.W. Douma
581 Jos Benders en Freek Aertsen
Aan de lijn of aan het lijntje: wordt slank produceren de mode?
Communicated by Prof.dr. S.W. Douma
582 Willem Haemers
Distance Regularity and the Spectrum of Graphs
Communicated by Prof.dr. M.H.C. Paardekooper
583 Jalal Ashayeri, Behnam Pourbabai, Luk van Wassenhove
Strategic Marketing, Production, and Distribution Planning of an Integrated Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten

584 J. Ashayeri, F.H.P. Driessen
Integration of Demand Management and Production Planning in a Batch Process
Manufacturing System: Case Study
Communicated by Prof.dr. F.A. van der Duyn Schouten

585 J. Ashayeri, A.G.M. van Eijs, P. Nederstigt
Blending Modelling in a Process Manufacturing System
Communicated by Prof.dr. F.A. van der Duyn Schouten

586 J. Ashayeri, A.J. Westerhof, P.H.E.L. van Alst Application of Mixed Integer Programming to A Large Scale Logistics Problem Communicated by Prof.dr. F.A. van der Duyn Schouten

587 P. Jean-Jacques Herings
On the Structure of Constrained Equilibria
Communicated by Prof.dr. A.J.J. Talman

IN 1993 REEDS VERSCHENEN

588 Rob de Groof and Martin van Tuijl
The Twin-Debt Problem in an Interdependent World
Communicated by Prof.dr. Th. van de Klundert
589 Harry H. Tigelaar
A useful fourth moment matrix of a random vector
Communicated by Prof.dr. B.B. van der Genugten
590 Niels G. Noorderhaven
Trust and transactions; transaction cost analysis with a differential behavioral assumption
Communicated by Prof.dr. S.W. Douma
591 Henk Roest and Kitty Koelemeijer
Framing perceived service quality and related constructs A multilevel approach Communicated by Prof.dr. Th.M.M. Verhallen

592 Jacob C. Engwerda

The Square Indefinite LQ-Problem: Existence of a Unique Solution
Communicated by Prof.dr. J. Schumacher

593 Jacob C. Engwerda

Output Deadbeat Control of Discrete-Time Multivariable Systems
Communicated by Prof.dr. J. Schumacher
594 Chris Veld and Adri Verboven
An Empirical Analysis of Warrant Prices versus Long Term Call Option Prices
Communicated by Prof.dr. P.W. Moerland
595 A.A. Jeunink en M.R. Kabir
De relatie tussen aandeelhoudersstructuur en beschermingsconstructies
Communicated by Prof.dr. P.W. Moerland

596 M.J. Coster and W.H. Haemers
Quasi-symmetric designs related to the triangular graph
Communicated by Prof.dr. M.H.C. Paardekooper

597 Noud Gruijters
De liberalisering van het internationale kapitaalverkeer in historisch-institutioneel perspectief
Communicated by Dr. H.G. van Gemert
598 John Görtzen en Remco Zwetheul
Weekend-effect en dag-van-de-week-effect op de Amsterdamse effectenbeurs?
Communicated by Prof.dr. P.W. Moerland
599 Philip Hans Franses and H. Peter Boswijk
Temporal aggregration in a periodically integrated autoregressive process
Communicated by Prof.dr. Th.E. Nijman
600 René PeetersOn the p-ranks of Latin Square GraphsCommunicated by Prof.dr. M.H.C. Paardekooper
601 Peter E.M. Borm, Ricardo Cao, Ignacio García-JuradoMaximum Likelihood Equilibria of Random GamesCommunicated by Prof.dr. B.B. van der Genugten
602 Prof.dr. Robert BanninkSize and timing of profits for insurance companies. Cost assignment for productswith multiple deliveries.Communicated by Prof.dr. W. van Hulst
603 M.J. CosterAn Algorithm on Addition Chains with Restricted MemoryCommunicated by Prof.dr. M.H.C. Paardekooper
604 Ton Geerts
Coordinate-free interpretations of the optimal costs for LQ-problems subject to implicit systems
Communicated by Prof.dr. J.M. Schumacher
605 B.B. van der Genugten
Beat the Dealer in Holland Casino's Black Jack
Communicated by Dr. P.E.M. Borm
606 Gert Nieuwenhuis
Uniform Limit Theorems for Marked Point Processes
Communicated by Dr. M.R. Jaïbi
607 Dr. G.P.L. van Roij
Effectisering op internationale financiële markten en enkele gevolgen voor banken
Communicated by Prof.dr. J. Sijben
608 R.A.M.G. Joosten, A.J.J. TalmanA simplicial variable dimension restart algorithm to find economic equilibria on theunit simplex using $n(n+1)$ raysCommunicated by Prof.Dr. P.H.M. Ruys
609 Dr. A.J.W. van de Gevel
The Elimination of Technical Barriers to Trade in the European Community Communicated by Prof.dr. H. Huizinga
610 Dr. A.J.W. van de Gevel
Effective Protection: a Survey
Communicated by Prof.dr. H. Huizinga
611 Jan van der Leeuw
First order conditions for the maximum likelihood estimation of an exact ARMA modei
Communicated by Prof.dr. B.B. van der Genugten

612 Tom P. Faith
 Bertrand-Edgeworth Competition with Sequential Capacity Choice
 Communicated by Prof.Dr. S.W. Douma

613 Ton Geerts

The algebraic Riccati equation and singular optimal control: The discrete-time case Communicated by Prof.dr. J.M. Schumacher

614 Ton Geerts
Output consistency and weak output consistency for continuous-time implicit systems
Communicated by Prof.dr. J.M. Schumacher
615 Stef Tijs, Gert-Jan Otten
Compromise Values in Cooperative Game Theory
Communicated by Dr. P.E.M. Borm

616 Dr. Pieter J.F.G. Meulendijks and Prof.Dr. Dick B.J. Schouten
Exchange Rates and the European Business Cycle: an application of a 'quasiempirical' two-country model
Communicated by Prof.Dr. A.H.J.J. Kolnaar

617 Niels G. Noorderhaven
The argumentational texture of transaction cost economics
Communicated by Prof.Dr. S.W. Douma
618 Dr. M.R. Jaïbi
Frequent Sampling in Discrete Choice
Communicated by Dr. M.H. ten Raa

Bibliotheek K. U. Brabant

17000011339117

[^0]: *I am grateful to Thijs ten Raa for valuable discussions and comments. The research is supported by a Fellowship of the Economics Research Foundation (ECOZOEK), the Netherlands Organization for Scientific Research (NWO).

