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PREFACE

In recent years, economists build more and more complex models.
Finding an equilibrium in these models involves lots of
difficulties. Hence there is an increasing need for a general
method to compute equilibria in mathematical models for complex
systems. In this research memorandum we describe an efficient
algorithm to compute approximated fixed points of vector
functions, based on algebraic topological methods. Our work
has been particularly inspired by a paper of B.C. Eaves [5].
Besides for the equilibria problem mentioned above the
algorithm can be used in other branches of applied
mathematics dealing with highly non-linear equation systems.
The E.I.T., the Katholieke Hogeschool Tilburg and especially
the Computercentre of the K.H.T. made this project possible by
supplying the means.
In addition to these institutes we are much indebted to
Dr. M.H.C. Paardekoper whose help has been indispensable.
The E.I.T. provided secreterial assistence for typing the
manuscript.
Finally we remark that the main lines of this report can be
understood without reading the proofs and the lemmas.

Tilburg, June 1975. Jo Dohmen
Jan Schoeber
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LIST OF SYMBOLS

a Vector with Ei-o ai - 1, defined in 2.3.2.

siJ Elements of B-i

e Small positive real number
T

[E~ (-E1-1Ei,E,E2,...,En)

T
E' (1rErEZ~....en)

a Vector with Eai - 1 and ai ~ 0

p Scalar

a,Q~ Simplexes (in chapter 3 and 4: simplex of some Kd).
al,cr' are faces of a

T,T~ Simplexes of an (ntl)-pseudomanifold. (In chapter 3
of Kd ~{0}; in chapter 4 of T). Ti,T' are faces of T

~ Simplex of K~. ~i,~' are faces of m

B (ntl)x(nfl)-matrix defined in 2.3.2.

C(.) Convex hull

C (nfl)Xn-matrix defined in 3.2.1.

C' (ntl)x(ntl)-matrix [C,-en)

D The set {d~d - 2n, n E N}

F Point to set mapping from S into S~

K Complex, pseudomanifold

Ko The set of vertices of K

Kd Standard subdivision of d~s
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Kd ~ {0} (nfl)-pseudomanifold defined in 3.3.1.

K~ (nfl)-pseudomanifold defined in 4.4.1.

tJ The set of positive integers

Rn n-dimensional real space

S Standard simplex {x~ex - 1, xi ~ 0}~ Rnfl

d.S -{u~u - dx, x E S}

S~ The collection of convex subsets of S

T (ntl)-pseudomanifold defined in 4.2.1.

Z number of iterations

Z(n,o) standard for the expected number of iterations
(5.6.1 )

b, for i- 0,...n: ith column of B; for i- ntl: columni
defined in 2.3.2.

c Z~Z(n,o)

c(i) ith column of C and C'

d positive integer. ( In chapter 4 d is an element of D)

nf 1e sum vector ( 1,1,...,1) E R

el ith unit vector of Rn}~

f continuous function from S into itself

fd perturbed piecewise linear approximation of f

g perturbation of f

hJ bijection from T into a v(otQ)

k index of the vertex to be deleted from i or ~

k labelling
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m array containing integer labels (chapter 3)
index indicating that qm - nfl (chapter 4)

n dimension of S

0 21og d

p permutation of (1,...,n)

q permutation of (1,...,ntl)

r permutation of (1,...,n)

s permutation of (1,...,ntl)

u,ul,u~ vertex of some Q; u~ the vertex added

v,vi,v~ vertex of some T; v~ the vertex added

w vertex of Ko~
x point of S

yi vertex of some Q

zi vertex of some T.
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Chapter 1. INTRODUCTION

According to Brouwer's fixed point theorem a continuous
function F: C~ C from a compact convex subset C of Rn into
itself has a point x E C with f(x) - x, known as a fixed
point. A general method to compute such a fixed point is not
indicated by Brouwer's proof nor by the one based on Sperner's
lemma (see [9], page 127). Shortly however various algorithms
to approximate fixed points have been constructed. These
algorithms generally take place in a simplex. Such a simpl-
ification is allowed since a compact convex set and a simplex
of the same dimension are homeomorphic').

Sperner's lemma states that if a simplex is subdivided into
subsimplexes and, according to certain demands, labels are
assigned to the vertices of these subsimplexes then a sub-
simplex exists with a specific label constellation. Further
on we shall explain the specific properties of such a sub-
simplex and call it complete. By choosing a proper labelling
we can manage this subsimplex to serve as a basis for an
approximation of a fixed point. Furthermore it is possible to
construct a sequence of such simplicial subdivisions with
simplexes of decreasing size. The corresponding sequence of
complete subsimplexes will lead to continually better
approximations of a fixed point and indeed in the limiting
sense yields a fixed point.

From the algorithmic point of view first the problem arises
to find a complete subsimplex, whose existence is stated by
Sperner's lemma. Scarf [6] was the first to describe an
algorithm to apProximate fixed points by solving an analoguous
problem. His idea served as a basis for the other procedures
as well. One of the algorithms to find a complete subsimplex
in a fixed simplicial subdivision Kd is outlined in chapter 3.

1) The condition of convexity is not necessary but can be
replaced by a weakened condition.
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The second problem is the construction of a sequence of
simplicial subdivisions in such a way that the successive
complete subsimplexes can be found recursively. This was
solved by Eaves [5], who united simplicial subdivisions Kd
of the n-dimensional standard simplex into a(nfl)-dimensional
complex K~ and pointed out a pivoting routine to find a
sequence of complete subsimplexes.
To this procedure,that might be called a generalized bisection
algorithm, we shall pay extensive attention in chapter 4. In
chapter 5 this procedure is implemented in a computer program.
Although the search algorithms in a fixed subdivision Kd have
appeared to be inferior to the latter, we have decided to
describe one of them. Not only for historical reasons, but
firm knowledge of Kd is needed anyway for the description of
K~. To obtain a narrow correspondence with chapter 4 the
algorithm of chapter 3 is embedded in a very general theor-
etical environment so that both can be based on the same
fundamental theorems, treated in chapter 2.

Without loss of generality we can confine ourselves to the
standard n-simplex S: - C(eo,...,en), the convex hull of the
unit vectors of Rn}1. So from now we are interested in the
fixed points of the function f: S i S. Except for this S the
word simplex will always indicate a set of vertices and not
the convex hull of these vertices. Further we shall use e for
the row vector (1,...,1) E Rn}1 and for any map F: V ~ W and
any set U c V we shall denote with F(U) the set
tF(u)~u E U} ~ W.
Calling x, obtained by an algorithm, an approximation of a
fixed point z suggests that x is near to x. But this can not
be quaranteed, though it is mostly true. Therefore we shall
speak of an e-approximated fixed point x if ~x-f(x)~ ~ E in
some norm. In fact such an x can be considered as a fixed
point of a function f which approximates f.
A function ~: V;(S-S) is called a Zabelling. A subset U of
V is said to be compZete if 0 E C(Q(U)). An example of a
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proper labelling on S is Q(x) - x-f(x) for x E S. For a given
e this labelling enables a sufficiently small complete sub-
simplex a of S to provide an e-approximated fixed point of f,
as is proved in appendix 1. In other words the linear function
f: C(6) ; S determined by the function values of f on o has a
fixed point x E C(a).
As will be demonstrated at the end of chapter 3, the usual
integer labelling in the proof of Brouwer's theorem by means
of the Sperner lemma can be considered as a short notation
of a special kind of labelling in the sense just defined.
Finally, also Kakutani fixed points can be approximated by the
procedures to be described. For, if F: S~ S~ is a point to
set mapping from S into S~, the collection of convex subsets
of S, this can be done by using the algorithm for the function
f: S~ S with f(x):- any element of F(x) for x E S. This
simple device may lead to some practical problems, to which
we return briefly in section 5.4.



a

Chapter 2. BASIC THEOREMS

2.1. INTRODUCTION

In this chapter we shall treat basic principles of the
algorithms in this report. In addition to the term complete
in connection with labellings we introduce the term very
complete in order to avoid degeneracy just as in linear
programming (see [3]). Theorem 2.3.3. then states the exist-
ence of a sequence of very complete simplexes in a pseudo-
manifold (see figure 1). For the computation of this sequence
we need an iterative procedure, based on theorem 2.3.1.

2.2. DEFINITIONS

Let Ko be a set of objects called vertices and let K be a
collection of nonempty finite subsets of Ko called simpZexas

such that
(1) if u E Ko then {u} E K,

(2) if ~~ a' c Q E K then Q' E K.
We define such a K to be a complex. A simplex a E K containing
exactly qtl vertices is called a q-aimplex and is said to be
q-dimensional. If a' c a then o' is called a face of a, and
more precisely a p-face if Q' is a p-simplex. Two distinct
p-simplexes of K are said to be adjacent if they are faces of
a common simplex. We further say that K is q-dimensíonal and
call it a q-complex if K contains a.q-simplex but no (qfl)-
simplex.
A complex K is said to be a q-dimensional psuedomanifold, or
a q-psuedomanifold, if

(1) each simplex of K is a face of a q-simplex,
(2) each (q-1)-simplex is a face of one or two q-simplexes.
Those (q-1)-simplexes that are in only one q-simplex are
termed boundary. The others are termed interior (8].
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Let K be an (ntl)-psuedomanifold and 1C: Ko -~ S-S. A simplex
Q-{uo,,,,,uk} e K is defined to be very (or nondegenerate)
complete if there is an eQ E R} such that for each e E[O,EO]
there is a a-(ao,...,~k) E Rkfl with ea - 1 and A~ 0 for
which

~ - - z -n~

ul ) - [ E] : -

E

EZ

En

where E1 is the ith power of E.

We can consider [E] as a point on a curve parametrized with
E. Then this last definition implies that a E K is very
complete if there exists a connected piece, containing 0, of
the non-negative part of this curve, that is a subset of
c(k(Q)). Because this curve can only be contained in spaces
of dimension n or higher, only n- and (ntl)-simplexes in K can
be very complete. It follows immediately that an (ntl)-simplex
of K that contains a very complete n-face is very complete
too.

2.3. THE MAIN THEOREMS

THEOREM 2.3.1.

Given an (nfl)-psuedomanifold K and Q: Ko -~ S-S, then a very
complete boundary n-simplex of K is adjacent to exactly one
very complete n-simplex of K and a very complete interior
n-simplex of K is adjacent to exactly two very complete
n-simplexes of K.
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PROOF: Let T-{vo,...,vn}1} E K, Tl: - T`{ul} and
1~1: - ~(vl) - (Ro(vi)....,R.n(vi))T. Suppose
Tnfl -{vo,...~vn} is a very complete n-face of T, i.e.

for all sufficiently small e~ 0 there exists a
a-( a ,..., 7~ ) T E S such that .

o n

n
s ~iJCi - [ el

i-0

T T
or, by defining bi: -(1,Ri,...,1Ci) , e': -(l,e,eZ,...,en)
and B: - ( bo,...,bn) E R(nt1)X(nfn):

for all sufficiently small e~ 0 the system Ba - e' has a
solution a ~ 0.
It follows that B has an inverse and that ~ depends on e, so
we can write a(e) - B-Ie'. Let us define [si l: - B 1, Bi,J
as the ith row of B-1 and B~j as the jth column of B-1
(i,j E {0,...,n}). Then

n
ai(e) - Si,e' - E Sike~ .

j-0
(2.3.1.1 )

ai(e) is a polynomial of degree n of e. So it has at most n
zeroes. Let ei be the smallest positive zero of ai(e). Then
for all e E(0, min {ei~0 ~ i ~ n}) all ai(e) are positive, so
for all sufficiently small e~ 0, a(e) - B-le' ~ 0. Note that
a(a) - s,o.
From JCl E S-S and Tn}1 very complete we derive: T is very
complete too and kn}1 can be written as

n n
1Cn}1 - E a kl with E a. - 1,

i-0 i i-0 1
(2.3.1.2.)

which implies that bn}1 - Ba, with a: -(ao,...,an)T, so
a - B- lbnf 1 .

Now let us examine T~ for j E{0,...,n}. Then there are two
possibilitíes: (i)aj ~ 0 and (ii)aj - 0.
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(i). If aj ~ 0 then R,3 -~nti~aj - Ei-~,i~j(ai,aj)R1.
The very completeness of Tntl implies that Ei-O~i(E)R.l

-

- (a.(E)~a.)~,ntl ~ Ei-~,i~j(~i(E)-(ai~aj)aj(E))~l - [El.
] J

Hence z~ is very complete if and only if the following
holds for all sufficiently small e~ 0:

À . (E)
~- ~ ~a. -

7
(2.3.1.3.)

a.
and ai(E) - al aj(E) ~ 0 for every i,~ j. ( 2.3.1.4.)

7

For (2.3.1.3.) being true aj needs to be positive,
because aj(E) ~ 0. Then (2.3.1.4.) holds for all i with
ai ~ 0 because for these i ai(E)-(ai~aj)aj(E) ~
~ ai(E) ~ 0. In the other cases, if ai ~ 0 the condition
(2.3.1.4.) can be rewritten as ai(E)~ai-aj(E)~aj ~ 0.
But this occurs for every i with ai ~ 0 iff for all
sufficiently small E ? 0

aj(e) ai(E)
a. a. a. ~ 0, 0 ~ i ~ nt. (2.3.1.5.)i - -

So if aj ~ 0, T3 is very complete if and only if
(2.3.1.5.) is true. Since at least one ai is positive
an index j satisfying (2.3.1.5.) exists.
Now let us demonstrate the uniqueness of this index.
From (2.3.1.1.) we know that aj(E) - Ei-~SjiEi. Now let
Jo be the collection defined by

- min
J

~ ~Sl~l- min a.
a,j ai i

i

~ 0, 0 ~ i

If Jo contains a single element j, then by taking E

sufficiently small this j is the unique index satis-
fying (2.3.1.5.). If Jo contains more than one element
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then we perform the collections J1, J2,..., defined
recursively by

Jm: - ij~sjk~aj - min {Biklai~i E Jm-1}i, m- 1,...,n

until we find a Jm containing one single element, say
,~ -{j}, Then by taking e sufficiently small, this j
is the unique one satisfying ( 2.3.1.5.). The existence
of such a Jm i s easily proved, for suppose Jn contains
more than one element, say g E Jn and h E Jn, then
Sgm~ag - Shm~ah for every m E{0,...,n}. But this means
Sg. -(ag~ah)Bh,, so two rows of B-1 would be linearly
dependent, a contradiction. Hence there is a unique
index k satisfying ( 2.3.1.5.) and consequently among the
T3 with aj ~ 0 there is a unique very complete n-simplex
Tk. Furthermore for this simplex ak is positive.

(ii). If aj - 0 then 1~ is not very complete. To prove this
we assume that T~ is very complete, i.e. for all
sufficiently small E there exists a U(e) E S such that

~i}O,i~jui(E)R1 -(E~. From (2.3.1.2.) and the fact that
a. - 0, we also know that Rnti -~n aikl with7 i-0,i~j
fi-0,i~jai - 1. So from part (i) of this proof it follows
that T3 has a very complete face r~i: - T3`{vl}
(with ai ~ 0). But this T~1 would be a very complete
(n-1)-simplex, which is impossible.

From the parts ( i) and (ii) (note: at least one positive aj
exists) follows the existence of a unique very complete n-face
of T differing from Tn}1. So a very complete n-face of an
(nfl)-simplex is adjacent to just one other very complete
n-face of this ( ntl)-simplex. This exactly states our theorem,
regarding the definitions of boundary and interior n-simplexes
in an ( ntl)-psuedomanifold and the triviality: two (nfl)-
simplexes have at most one n-face in common.O



- 13 -

2.3.2.

For a given k: Ko -~ S-S and a given T-{~o~,,,~~nti} E K with
a very complete face Tntl - T`{vnfl} this theorem indicates
the computation of the other very complete face of T, namely:

1 ..... 1

k (vo) R (vn)i i
Compute B:-

1

R (vnti )
i

and bn}1. -

Rn(vo) ..... Rn(vn)J LRn(~nf1)~

Compute [Sij]: - B-1 and a: - B-lbntl.

Compute for those i with ai ~ 0 the rows Ri,~ai and determine
which rok Rk,~ak ks their lexicographic minimum.
Result T:- T`{V } is the other very complete face of a.

THEOREM 2.3.3.

Given an (nfl)-psuedomanifold K and a labelling R: Ko -~ S-S,
let T be a very complete boundary n-simplex of K. Then there0
ís a unique sequence T,T ,... of distinct very completeo i
consecutively adjacent n-simplexes in K. This sequence
terminates with a very complete boundary n-simplex or is
infinite. (Of course the latter can only occur if K is in-
finite.)

PROOF: According to theorem 2.3.1. the boundary n-simplex T 0
is adjacent to a unique very complete n-simplex, to be
called T1. Now let To,...,Tk be the unique sequence of
kfl dinstinct very complete adjacent n-simplexes in K.
If Tk-1 is the only very complete n-simplex adjacent to
Tk, then rk is a very complete boundary n-simplex,
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terminating our sequence. Else, so Tk being an interior
simplex, except for Tk-1 there is one other very
complete n-simplex adjacent to Tk, say a. If Q- T,0
then Tk - T1, a contradiction. If a- Ti for some
i E{1,...,k-2} then Tk - Ti-1 or Tk - Titl, again a
contradiction. So To,...,Tk,Tk}I (: - a) is again a
sequence of distinct very complete consecutively
adjacent n-simplexes and is the unique sequence con-
sisting of kf2 elements.~

figure 1
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Chapter 3. AN ALGORITHM FOR A FIXED SUBDIVISION

3.1. INTRODUCTION

In this chapter we shall describe the psuedomanifold Kd, that
subdivides the set d.S: -{u~u - d.x, x E S}, where d is a
given positive integer. Our purpose will be to give an
algorithm to find a Very complete simplex in Kd. Of course
this algorithm is based on theorem 2.3.3., indicating an
iterative procedure. Each step of this exchange procedure is
built up of two parts: deleting a Vertex and adding a vertex.
How to delete a vertex has been pointed out in 2.3.2. Adding a

vertex depends of course on the characteristics of the
pseudomanifold and so will be discussed in this chapter.

3.2. THE STANDARD SUBDISIVION

DEFINITION 3.2.1.

Let d be a positive integer and

Ká: -{u E Rnfllul E{O,l,...,d}, eu - d}

Then the standard subdivision Kd of d-S is defined to be the
n-complex containing the faces of all simplexes
Q; -{uo,,,,,un} c Ká that can be described by means of

a Vertex uo and a permutation p: -(pl,...,pn)

of (1,...,n) in such a way that the other Vertices of Q can be

computed recursively from uo by

ui - ui-i t c(pi) i - 1,...,n ,

where c(pi) -(c (pi),...,cn(pi))T is the pith column of the
0

(nfl)xn-matrix
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C: -

-1 0 . . . 0 0
tl -1 . .

0 tl . .

. 0 . .

. . . 0

. . . -1 0

. . . fl -1

0 0 . . . 0 tl

We shall write a~(uo,p). Note that uo,ul,...,un is a
lexicographic decreasing sequence of vertices, and that it
follows that a is uniquely described by (uo,p).

( 5.0,0)

10,5,0) (0,0,5)

figure 2. K {a,b,c} ~ ((2,2,1),(2,1))5
{a,d,c} ~ (( 2,2,1),(1,2))
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Before we prove that this Kd is a pseudomanifold we shall
state first of all

LEMMA 3.2.2.

Let a ti( uo,p) be an n-simplex of Kd, then in each other
n-simplex (yo,r) that contains two successive vertices ui-1

and ul of o, these vertices are successive too.

PROOF: Suppose ul-1 - y~ and ul - yk, then k~ j because both
u~,...,un and yo,...,yn are lexicographic decreasing
sequences. From the definition of simplexes in Kd it
follows that ul - ul-1 - c(pi) and yk - Y~ - Ei-jtlc(ri)'
So c(pi) -~i-jtlc(ri). Then from the linear independen-
cy of the columns of C follows k- jfl and pi - rk.~

THEOREM 3.2.3.

Kd is an n-psuedomanifold.

PROOF: From the definition of Kd it follows that every simplex
in Kd is a face of an n-simplex in Kd. So the first
requirement for a pseudomanifold has been fulfilled and
hence for each (n-1)-simplex a'E Kd an n-simplex
a ti(uo,p) E Kd exists such that a' is a face of a. To
demonstrate that Kd is a pseudomanifold it suffices to
show for given a' the existence of unique u~, yo and r
such that Q~: - Q' v{u~} ti(yo,r) is different from a.
Let {uj} be a`Q'. Then we distinguish three cases.

(1). j- 0. Then o' -{ul,...,un} and lemma 3.2.2. implies two
possibilities with respect to a'. Firstly Q' -

{yl,...,yn} and (rZ,...,rn) - (p2....,pn) im 1 in- ~ P Y~ 9
that a~ is not different from a. Secondly v' -
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i{yo,...,yn- } and (r ,....rn-1) - (pZ....,pn). Theni
rn - pl and u~ - yn - un t c(pl).

(2). 0 ~ j ~ n. Then o' -{uo,...,uJ-1, uJtl,...,un} and
e uals { tl nq yo~.,.~yJ-i~yJ ~...~y }, since every other
configuration clashes with lemma 3.2.2. Then
(r~,...,rj-l,rjt2,....rn) - (p1.....Pj-1,Pjt2,....Pn)
and either rj - pj and rjtl - pjtl, which implies that
u~ - yJ - uJ and o~ is not different from a, or
rj - pjtl and rjtl - pj. Then u~ - yJ - uJ-i t

t c(pjtl) - uJtl - c(pj).

(3). j- n. For reasons of symmetry with case (1) Q' -
{uo,...,un-i} - {yl,...,yn}, (rl,...,rn) -
(pn,p1,....Pn-1) and u~ - yo - uo - c(pn).

So in all three cases there is a unique a~ -
- a' u{u~} ~ a.0

This proof describes the second part of the exchange procedure,
namely adding a vertex u~ to a given (n-1)-face Q' - J`{uJ}
of Q~(uo,p) E Kd, and supplies us with the rules for
the computation of (yo,r) ti a~: - a' u{u~} ~ Q as comprimed in

Table 1.

] Yo r u~

ase 1 j-0 otc(p ) (p ,..,Pn,P ) n-untc(p )l Z I l

case 2 0 ~j~ 0u (p~....Pj-1.Pjt1,Pj,-..Pn) J-uJ-itc( t )pj ~

case 3 j-n o-c(pn) (Pn.p ,...Pn- ) o-uo-c(p )1 1 n
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Obviously Q' is an interior simplex if u~ E Ká, otherwise Q'
is a boundary simplex. Observe that Q' is a boundary simplex
if and only if ui ~ 0 for some i, so, in consequence of the
structure of the matrix C, iff an index i exists such that
ui - 0 for every u E a'.

3.3. ON THE START OF THE ALGORITHM.

In order to obtain a very complete n-simplex in a labelled Kd
we extend Kd to another pseudomanifold in such a way that a
very complete boundary n-simplex of this extended pseudo-
manifold can easily be found. This boundary simplex can serve
as the first element of the sequence of very complete
n-simplexes mentioned in basic theorem 2.3.3.

DEFINITION 3.3.1.

Kd ~{0} denotes the (nfl)-complex defined by

Kd ~{p}; -{T~TEKd, TE{0} or i- Qu{0} with aEKd}

THEOREM 3.2.2.

Kd ~ {0} is an (nfl)-pseudomanifold.

PROOF: Let T' E Kd ~{0}, then either T' E Kd and therefore
a face of an n-simplex a E Kd and so also a face of the
(nfl)-simplex a u{p} E Kd ~{p}, or T' -{0}, so a face
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of every (nfl)-simplex of Kd ~{0}, or there is a
a' E Kd such that T' - Q' u{0}, In the last case an
n-simplex a E Kd exists with a' as a face, and there-
fore T' is a face of the (nfl)-simplex Q u{0} E Kd ~{0}.
So in all possible cases T' is a face of an (nfl)-
simplex T E Kd ~ {p},

Now let T' be an n-simplex of Kd ~{0}. Then either
T' e Kd or there is an (n-1)-simplex Q' E Kd such that
T' - Q'u{0}. If T' E Kd then T' u{0} is the only
(nfl)-simplex of Kd ~{0} containing t' and so r' is a
boundary simplex of Kd ~{0}. In the second case,
T' - Q' u{0}, this a' is either a boundary simplex of
Kd and a face of only one n-simplex a E Kd, implying
that r' is a boundary simplex of Kd ~{0} and a face of
o u{0}, or ct' is an interior simplex and a face of two
n-simplexes al and a2 E Kd. In this case T' is an
interior n-simplex of Kd ~{0} and a face of both
o u{0} and Q u{0},p

~ 2

THEOREM 3.3.3.

Given Kd ~{0} and SC: Kd u{0} } S-S, let Tó be the anly very
complete boundary n-simplex of Kd ~{0} that contains 0, then
there is a unique sequence To, 71,...,ik of distinct
consecutively adjacent very complete n-simplexes in Kd ~{0},
This sequence terminates with a very complete n-simplex of Kd.

PROOF: Since Kd ~{0} is a finite pseudomanifold and Tó the
only very complete boundary n-simplex containing 0,
this follows immediately from theorem 2.3.3.0

We adept from Eaves [4) an example of a labelling that
fullfils the conditions of theorem 3.3.3.
Given a boundary (n-1)-simplex a' of Kd and some interior0



point x of S the labelling

á-f (á) if u ~ 0

R(u) - á- x if u y 0 but u~ 0

-p E(á-x) if u- 0, where p is the largest scalar~
uEaa such that R(0) E C({el-x~i - 0,...n})

effectuates T': - a' u{0} to be the only very complete0 0
boundary simplex of Kd ~{0} containing 0.

eo- x

(S - Sl-plane

e~ - x e2 -x

figure 3. ap -{uo,ul} E Kd

Anyway, once given a labelling and such a unique T', face of0
~, we are able to compute the sequence T',T',...,T' in the0 o i k
sense of theorem 3.3.3. and the corresponding sequence
To,T1,...,Tk-1, where Ti is the (ntl)-simplex of Kd ~{p}

containing i' and T' . In fact by computing in turn T' from1 lt1 1
r' and ~. by means of the method described in 2.3.2.
i- i i- i
(dt~l~~ting a vertex) and ci from Ti- and ii according to table
1(adding a vertex). Flhen in the kt~ iteration of this
procedure Tk does not contain 0, our algorithm terminates and
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Tk is a very complete n-simplex of Kd.

3.4. AN ALGORITHM BASED ON AN INTEGER LABELLING

In this section we shall pay attention to a special labelling
k leading to a great simplification in actual computations. A
computer program for the determination of a very complete
simplex in Kd with this labelling will been given in the next
section.

Let for i- 0,...,n Ri be the given ith column of the
(nfl)x(nfl)-matrix

fl -1 0 .

L: -

OÍ
0 tl -1 .

. 0 fl

. . 0

0 . . -1

L 1 0 0 t 1J

Then Q: Kd u{p} -. S-S is defined by ~.(u) - Ql, where i is the
smallest integer such that

I dl ~ f i(á) if u~ 0
1

lui - 0 if u~ 0

Evidently R.(0) - ko and a simplex i E Kd ~{0} is very
complete if and only if !C(T) -{ko,...,Rn}. Since R,(Kd ~{p})
contains only ntl elements it follows immediately that an
(nfl)-simplex 7 is very complete if and only if there are
unique u and v E T such that R(u) - JC(v). Its very complete
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faces are T`{u} and T`{v}.
The computation of T~ from Ti-Iand Ti-1 can now be simplified.
Instead of applying the method described in 2.3.2. we now only
need to determine u E Ti- with k(u) - R(v), where {v} -

1
- Ti-1`Ti-1'

Then Ti - Ti-i{ll} is the other very complete face

of ~. . This leads to two more simplifications. Firstly,
i-~

since for every i E{O,l,...,k-1} 0 E Ti and 0 E Ti, we only
need to compute the sequences aó,ai,...,ak-1 and
ao,al,...,ak-1 in Kd, where ai: - Ti`{0} and ai: - Ti {0}.
Then Qk-: appears to be Tk, the very complete simplex of Kd we
look for. (See figure 4). Secondly we don't need the use of
9.(u) but can confine ourselves to the function m: Káy{0,...,n}
defined by m(u) - i if R.(u) - kl, or more directly by m(u) - i,
where i is the smallest integer such that

u. - 0 if u y 0
i

ál ~ fi(á) if u~ 0
(3.4.1.1.)

In fact m is the well-known integer labelling that has
hitherto played an important role in proofs of Brouwer's
theorem and in most fixed point algorithms.
These considerations suggest our simplified algorithm:
1. Start with T', u~ and the boundary simplex o' - T'`{u~} as

given below. m(u~) is known.
2. Determine j such that u3 E Q' and m(u3) - m(u~).
3. Compute new T' according to the rules of table 1.
4. Compute new u~ according to table 1 and let Q' be T'`{u~}.
5. Compute m(u~) according to (3.4.1.1.). If m(u~) - 0 then

T' is a very complete simplex of Kd. If m(u~) ~ 0 then
continue with 2.

Clearly we need to specify the initial data. Let uo: -
-(d-nf2,1,1,...,1,0,0) and p: -(n-l,n-2,...1,n), n~ 2. Then

~T' ~(uo,P), u~ - un and m(u )- n-1. In the first iteration
j - 0.
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It is easy to see that Q' is the only boundary simplex of Kd
with m(o') -{1,...,n} and therefore a' u{0} has the required
properties of the starting simplex a of theorem 3.3.3.0

figure 4

T '
0

o'u{0}; T~ - a'u{0}; T' - a'u{0};
0 1 1 2 2

Q'UQ' - ((2,0,0)r(1,2); Q - Q'UQ' - ((1,1,0)r(2,1);i z
a u{0}; T- Q u{0}; T-

0 1 1 2
Q u{0},

2

o t
a - ((1,0,1),(1,2)); T

2 ~
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3.5. AN ALGOL-60 PROGRAM

procedure Apprfp(n,d)Function:(f)
The output parameters are a vertex:(u) and
a permutation:(p);

value n,d;integer n,d;integer array u,p;real procedure f;
begin integer i,nl,oZd,new,pi;real h;

integer arra m[ 0: n] ; real arra x[ D: n] ;
integer procedure Zabel;
begin for i:-0 ste 1 until n do

if x[ i] -0 then c~o to rea~;
~r i:-0 ste 1 until n do
ifx[ i] ~ f n, z, x) then ~oto ready;

ready: ZabeZ:-i -
end of label;
cómment initialisation;
n1:-n-1; h:-1~d; oZd:-O;
for ti:-1 steP 1 until n1 do
begin u[ i] :-1, m i-1 :-p[ t] :-n-i end;

u[ 0] : -d-nt2; u[ n1] : -u[ n] : -0; m[ n1] : -p[ n] : -n; m[ n] : -n1;
start:if oZd-O then

begin comment case 1; ner~: -n; pi :-p[ 1];
u[ pi-1] :-u[ pi-1] -1; u[ pil :-u[ pi] f1;
for i:-1 steP 1 until n1 do
béin p[ i] :-p[ if1 ; m[ i-1] :-m[ i] end;
p[ n] :-pi; m[ n1] :-m[ n] -

end case 1 else
if old~n then
begin comment case 2; ne~:-old; pi:-p[oZd];

p ner~] :-p[ oZdf1]; p[ ner~tl] :-pi
end case 2 else
begin comment case 3; nera: -0; pi: -p[ n] ;

u[ pi-1 ]:-u[ pi-1] t1; u[ pi] :-u[ pi] -1;
for i:-n steP - 1 until 2 do
bégin p[ i] :-p[ i-1~j-i] : -m[ i-1 ] end;
p[ 1 ] : -pi; m[ 1 ] : -m[ 0] -

end case 3;
cómment computation of new x in S;
for i: - 0 step 1 until n do x[ i] :-u[ i] xh;
for i:-1 step 1 until new do
begin pi: -p[ ti] ; x[p-1] :-x[ pi-1] -h; x[ pi] :-x[ pi] fh end;
comment computation and test of the new integer label;
m[ ne~] : - Zabe Z;
if m[ ne~] -0 then cLo to complete;
for oZd:-O ste 1 until n do
ifm[ new] -m,j~]nnew old then cLo to start;

ecmpZete:
end of Apprfp;
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Chapter 4 AN ALGORITHM FOR A SEQUENCE OF SUBDIVISIONS

4.1. ZNTRODUCTION

When the algorithm of the preceeding chapter has provided us
with a very complete simplex in a labelled Kd it enables us
to compute an approximated fixed point, for instance by means
of a linear extension. However the approximation may be less
accurate than wanted. Then we could take a larger d to obtain
a smaller very complete simplex. But there are two
disadvantages. Firstly, we would have to start the algorithm
again at the very beginning, and secondly, the number of
iterations would be considerably larger, especially for large
n, since the number of n-simplexes in Kd is equal to dn.
Fortunately a method exists to use the computed very complete
simplex in Kd in order to obtain another one in KZd.
Furthermore this generally leads to quite a reduction in the
number of iterations to obtain such a simplex, especially for
large n. This method only uses those Kd's with d E D: -
- j2n~n E N u{0}}. In order to link these pseudomanifolds
K,lK ,K ,... we lmake use of the pseudomanifold T.1 2 4

4.2. CONNECTING TWO SUBDIVISIONS INTO A PSEUDOMANIFOLD T

DEFINITION 4.2.1.

We call T the (ntl)-complex containing the faces of all
simplexes

T: -{vo,vl,...,vnfl}~ To; - Ko u Ko
i z

that can be described by means of

a vertex vo and a permutation q-(ql,.-~~qn'qnti)



of (1,...,n,ntl) in such a way that the other vertices of T
can be computed recursively from vo by

- vl-1 t c(a.) i- 1,...,ntl,i

where c(qi) is the qith column of the (nfl)x(nfl)-matrix

r 1 0 . . . 0 01

C' : - I C,-enl -

0

-1 0

0 0 fl -1J

Again we write ~ ti(vo,q). Note that if qm - ntl then vl E KZ
for i- 0,...,m-1 and vl E Ko for i - m,...,nfl.i

I 2,O,o 1

II`
~
~
kl t,(

.í

11,1,01 '~ , ~ (1,0,1)

10,2.01 In,0,2)

figure 5. T for n- 2.

e,q, {(1,1,0),(1,0,1),(0,1,1),(0,1,0)}~((1,1,0),(2,1,3))
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THEOREM 4.2.2.

T is an (nfl)-pseudomanifold.

The proof of this theorem is in analogy with the proof that
each Kd is a pseudomanifold. (Theorem 3.2.3.). If we take an
n-simplex T' E T, being a face of an (ntl)-simplex say
T ti(vo,q) E T, there are also considered three cases for
{Uk}: - T`T'. In each of the three cases the existence of
unique v~,zo and s such that T~: - T' v{v~} ti(zo,s) is
different from T can be shown in a similar way. if v~ E To

then T' is an interior simplex, else a boundary simplex of T.

The rules for the computation of T~ ,~~, ( zo,s) and v~ are
comprimed in

Table 2.

k zo s ~v

k-0 vofc(q ) ,l)...,q( q znf1-~nti,~c(q )1 ntlZ l

~k~n-- vo ( q ~..,q .q .q ~..,q )
k-i ktl k nfl

zk-~k-ltc(q )kfi1

-nt1 vo-c(q ) ( q )'q '~~'q zo-va-c(qnfl)nfi nfi nl

Remembering that Kd is n-dimensional and T is (nfl)-dimensional,
it is clear that this table 2 is exactly the same as table 1.

LEMMA 4.2.3.

Let T~(vo,q) be an (ntl)-simplex of T and Tk: - T{vk}. Then

Tk is a boundary simplex of T if and only if one of the
following statements is true:
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(1) rk E K1.

(2) rk E K .
2

(3) There is a coordinate j such that vj - 0 for all v E kT .

PROOF: First let rk be a boundary simplex of T. Then v~
computed according to table 2 is not in T". This means
that either ev~ ~ 1 or ev~ ~ 2 or 1 ~ ev~ ~ 2 and
v~ ~ 0 for some j. A short look at C' tells that
J
~ev~-ev~ E{0,1} for all v E rk. It follows that if
ev~ ~ 1 then rk E K and if ev~ ~ 2 then Tk E K. Ini z
case 1 ~ ev~ ~ 2 and v~ ~ 0 for some j another look at

k
C' shows that ~v~-vj~ E {0,1} for all v E T. So vj - 0
for all v E rk.

Now let ( 1), (2) or ( 3) be true.
If (1) holds then ik -{eo,...,en}, the only n-simplex
of K. By simple reasoning one finds vo - eo t en,

i
q-(nfl,l,...,n) and k- 0 to be the only possibility
for rk c r ti(vo,q) E T, since computing v~ according to
table 2 leads to v~ - vn}1 t c(ntl) - en-en - 0~ To.
If (2) holds then T k can be represented as (uo,p),
where uo E KZ and p -( p1,....Pn) a permutation of
(1,...,n). Furthermore ev - 2 for every v E Tk.
vo - uo, q -( pl,...,pn,ntl) and k - ntl fullfil
Tk c r ti(vo,q) E T and computing v~ according to table
2 leads to v~ - vo-c(ntl) ~ To since ev~ -
- evo-e.c(ntl) - 3.
If (3) holds then v~ ~ 0, for from C' we see that no

coordinate has the same value for all vertices of an

(ntl)-simplex of T. From the fact that v~ - 0 for i~ k

and vk ~ 0 we conclude:
7

if k- 0, so vk - vo - vl-c(q ), then q - jfl and
i

computation of v~ leads to v~ - vnfc(ql) -
- vnfc(jtl) ~ To since v~ - v~ - 1 ~ 0.

if 1 ~ k ~ n, so vk - vk}l~c(qkfl), the~n qkk11- jfl and
computation of v leads to v- v }c(qktl) -
- vk-ltc(jfl) ~ To since v~ - v~-1 - 1 ~ 0.
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if k- nfl, so vk - vn} 1- vnfc (qnf 1) , then qnf 1- 3
and computation of v~ leads to v~ -

- vo-c(qntl) - vo-c(j) ~ To since v~ -
0- v.-1 ~ 0.
J

Hence if (1), (2) or (3) hold T is the only (nfl)-
simplex of T containing rk and so Tk is a boundary
simplex of T.O

From this proof we derive:

rv~ - 0 M Tk E K
I i

ev~ - 3 p T k E K 2 (4.2.3.1.)

v~ --1 ~ vj - 0 for all v E.~k

Furthermore it is easily seen that no other case occurs with
respect to boundary simplexes and that the three cases in
(4.2.3.1.) exclude each other.

4.3. THE CONSTRUCTION OF NEW PSEUDOMANIFOLDS BY MEANS OF A MAP
ON THE VERTICES OF T.

In the preceeding section we have introduced the pseudomanifold
T in order to link the pseudomanifolds Kd(dED). To use this T
to combine the Kd's of this sequence K1,K2,K4,... into a new
pseudomanifold K~ we need the notion of a map hQ for a given o
of some Kd.

DEFINITION 4.3.1.

Let d E D and a ti(uo,p) E Kd then we define the map

n
hQ: To -~ a v(afv) bY hQ(v) - E viui.

i-o
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THEOREM 4.3.2.

h: To -~ o u(afQ) is a bijection.Q

PROOF: Assume vl and vz E To such that hQ(vl) - hQ(vz). Then
n
E(v~-vi)ul - 0. In consequence of the structure of

i-a
the matrix C the vertices uo,...,un are linearly
independent; hence vl - vz. So hQ is injective. To
prove that hQ is also surjective, let w E Q u(6ta). If

n
w E a, say w- ul, then w- E viul with v-

i-o
- el E K c To. If w E af6, say w- ulfu~, then w-i
- E v.ul with v- elfe~ E K c To.~i zi-o

n

DEFINITION 4.3.3.

hQ(T) de.notes the (ntl)-complex defined by

hQ(T): - {hQ(T)~T E T}.

THEOREM 4.3.4.

hQ(T) is an (ntl)-pseudomanifold.

PROOF: Follows immediately from theorems 4.2.2. and 4.3.2.0

Since h6 is a bijection the properties like dimension, face,
adjacent, boundary or interior, are lifted from T to hc(T).

LEMMA 4.3.5.

Let T E T and let J be the collection of all indexes j such
that there is a v E T with v. ~ 0. Further let d E D,

7~
o L(uo,p) E Kd and o': -{u~~j E J}.
Then
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hQ(T) ~ a' u(Q'fa')

and

hQ(T) ~ a~~ U(Q~~.~a~~) ~ Q~~ ~ Q'(Q"EK ).
d

(Verbally: in Kd a' is the minimal set with this inclusion
property).

PROOF: Let w E hQ(T). Then there is a v E T such that w-n- Ej-ovju3. If j~ J then vj - 0, so w-
- EjEJvju~ E Q' u(Q'ta').
Now assume Q" E Kd is such that hQ(r) c a" u(a"tQ")
and uk E a', then k E J and there is a v E T with
vk ~ 0. Then either ( if ev - 1) ha(v) - uk and, since
hv(v) E a" u(a"ta"), uk E o", or (i f ev - 2) a
ul E o' exists such that h(v) - ukful. ButQ
ha (v) E Q " u (a "ta" ) , so ukful E (a "ta " ) . This means
that there are wa and wb E a" such that ukful - wafwb.
Without loss of generality we may assume that wa is
lexicographically smaller than wb and that k ~ 1. Then
there are P and Q c{p~,,,,n} such that ul - uk E c(i)

lE Pand wb - waf E c(i). So 2ukt E c(i) - 2wat E c(i). Then
iE Q iEPk iEQ

g: - E c(i) - E c(i) - 2(wa-u ) has only even
iEP iEQ

coordínates. Suppose g~ 0 then R: - ( PUQ)`(pnQ) ~~,
Let i~: - min R, then the (i~-1)th coordinate of all
c(i) with i E R except c(i~) is equal to zero. There-
fore gi -1 --1 or tl. A contradiction, since g. isieven for all i. So g- 0 and uk - wa E a". Conclusion:
a' ' ~ a' . O

COROLLARY 4.3.6.

If J-{0,...,n} only one ~ E Kd exists for which
hQ(i) E h~(T), namely a itself. It can easily be verified that
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J-{0,...,n} if and only if T is either an (ntl)-simplex or
an interior n-simplex or an n-simplex of K v K.

1 2

4.4. CONNECTING A SEQUENCE OF SUBDIVISIONS

DEFINZTION 4.4.1.

K~ is defined to be the (ntl)-complex containing all simplexes
~- h(T), where Q is an n-simplex in ~1 K and T E T. Its
set of vertices is K~:- v Ká. dED d

dED

figure 6. K~ for n- 1.
e.g. T ti((2,0),(1,2)), a~((2,2),(1)) then

h~(T) - ((4,4),(3,5),(2,2)).
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Lemma 4.3.5. implies that for an (ntl)-simplex ~ E K~ its
representation ho(T) is unique. For firstly T is an (nfl)-
simplex too and secondly the (nfl)-simplex ~ has vertices at
two levels, say Kd and K2d, so only Kd contains such a unique
a with ~ r a u(ato). But then T is also unique because hQ is a
bijection.

THEOREM 4.4.2.

K~ is a pseudomanifold.

PROOF: Let ~' - hQ(T') be a simplex of K~, then T' is a face
of an (nfl)-simplex T E T and so ~' is a face of the
(nfl)-simplex hQ(T) E K~.
Now let ~ be an (ntl)-simplex of K~. Then there are
unique d E D, T ti(vo,q) E T and o ti(uo,p) E Kd such
that ~- hQ(T). Let Tk: - T`{vk}, ~k: - hQ(Tk) and
a3: - o`{uj} for j- 0,...,n. We will demonstrate that,
except of ~, ~k is a face of at most one other (ntl)-
simplex of K~.

A. First let ~k be an interior simplex of ho(T), and so Tk an
interior simplex of T. Then, since some vertices of Tk are
in Ko and others in Ko, there is only one K. that contains
simplexes ~ such thatZ~k C~ u(~f~) - h~(To). According to
corollary 4.3.6. this ~ is unique and evidently equal to v.
So every (ntl)-simplex of K~ with ~k as a face is in hQ(T).
In ha(T) there are two of them, ~ and one other, say
ho(T~). So ~k is an interior simplex of K~. Needless to say

B. Secondly ~k can be a boundary simplex of hQ(T). Then in
hQ(T) it is a face of only ~. But there may be (nfl)-
simplexes ~~ - ha (T~) with ~k as a face in other
pseudomanifolds hQ (T). In that case a face T~ of T~ exists

~
such that ~k - hQ (T~). If ~k is a boundary simplex of
hQ(T) then rk is óne of T and in consequence of lemma 4.2.3.
we consider three cases:

that T~ can be computed according to table 2.
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B.1. Tk E K~, so ~k E Kd. Since eu - d for every u E Kd, for
~k being hQ (t~) there are only two possibilities:

~
either T~ E K and Q~ E Kd, in which case Q~ - a in view

i
of corollary 4.3.6., or T~ e KZ and a~ E K~d. We see that
if d- 1~k is a boundary simplex of K~. If d~ 1 then
corollary 4.3.6. implies that there is only one a~ E K~d
such that ~k E hQ (T). Further T~ E KZ is a face of only
one (nfl)-simplex~of T, say T~. So except ~ there is only
one (ntl)-simplex hQ (r~) E K~ with ~k as a face. The

~
existence of such a simplex and even more how to compute
this simplex is shown after the proof of this theorem.
So, if d~ 1 then ~k is an interior simplex of K~.

B.2. Tk E KZ, so ~k E KZd. Now either T~ E KZ and Q~ E Kd, in
which case a~ - Q, or T~ E K1 and a~ E K2d. As in case 1,

B.3. There is an index j with vj - 0 for every v E Tk. It can
be proved that j is unique, for suppose 1~ j and vl -
- v. - 0 for all v E Tk. Then from the structure of the

J
matrix C' it follows that no coordinate has the same value
for all vertices of an (nfl)-simplex of T, so vk ~ v. - 0

] J
and vi ~ vl - 0 for all v E Tk. But, if k- 0 then vk -
- vl-c(q ) in contradiction with vk ~ vl and vi ~ vi, and
if k~ Olthen vk - vk-1 f c(qk) inJcontradiction with
vk ~ vk-1 and vi ~ vi-1. So indeed j is unique.
J 7

Further we note that, since some vertices of Tk are in

Ko and others in Ka, there is no other Ki than Kd

containing simplexes ~ such that ~k c~ u(~f~). Then in

consequence of lemma 4.3.5. ~k c aJ u(aJtQJ) and all

other simplexes ~ for which ~k c~ u(~f~) contain aJ as a

face.
If aJ is a boundary simplex of Kd then o is the only

n-simplex of Kd containing QJ, which implies that no

other a~ ~ a exists such that ~k E h (T). So, if aJ is aa~
boundary simplex of Kd, ~k is one of K~. If otherwise oJ

a~ and T~ are unique. Their existence and how to compute
them is also shown after the proof of this theorem. So
again ~k is an interior simplex of K~.
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is an interíor simplex of Kd, then it is a face of one other
n-simplex o~ ~ a. So ~k E ha (T), say mk - ha (T~). T~ is not

~ ~an interior simplex of T, for in analogy with part A of this
of this proof this assumption would imply a~ - Q, a
contradiction. So z~ is a boundary n-simplex of T and a face
of only one (nfl)-simplex T~ E T. Therefore ~k is a face of
hQ (T~) ~~ and is an interior simplex of K~. The computation
of~o~ and T~ is given below.0

4.4.3.

In order to construct a sequence of n-simplexes in K~ we make
use of an exchange procedure. The first part of each iteration
in this procedure is the computation of the index k of the
vertex to be deleted from the (nfl)-simplex
~- hi7(T) (a ti(uo~P) E Kd. T,~~, (vo,q) E T, Tk: - T`{vk}, C~k: -
- hQ(Tk) c~). This is described in 2.3.2. The second part of
each iteration, i.e. the construction of the other (nfl)-
simplex ~~ - h6 (T~)(6~ ti(yo,r), T~ ~(zo,s)) that contains
~k, will be described below.

First compute v~ according to table 2(page 28).
A. If v~ E To then ~k is an interior simplex of ho(T), and

~~ - hQ (i~) where Q~ - a and T~ is as given in table 2.
~ ~ o kB. If v~ T then ~ is a boundary simplex of hQ(T) and there

are three cases as seen in the proof of theorem 4.4.2.
Which of them is actual tells v~ (see (4.2.3.1.)).

B.1. v~ - 0. Then Tk E K so ~k - a, k- 0, and q- ntl. If
d- 1~~ does not exist. If d~ 1 compute o~Iti (yo,r) and
T~ ti(zo,s) according to the following scheme:
Define a sequence {wo,...,wn} by
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wo. - uo

iw :
wl-1 if wi-i is even

1- 1

hQ (zm-1)
~

Then wn has only even coordinates, so
Define R and R byi z

1 E

~R if wi - wi-1-c(i)i

R if wi - wi-1
z

wl-1-c(i) if w1-1 is odd

yo,

i - 1, . ,n.

- wn~2 is in K~d.

i - 1,.. ,n.

Let j be the number of elements in R, so n-j the number of,
elements in R. Now define the permutation r: -

z
- (rl,...,rj,rj}1,...,rn) with {rl,...,rj} - R1
{rj}i,,..,rn} - Rz both having the same order
Define zo: - eofe~ and s: (s ,...,sn}1) where

i
pi - rm for i- 1,...,n and sntl - nfl.

and
as in p.
si - m if

Then ~~ - hQ (T~), with a~ ti(yo,r) and T~ ti(zo,s), is the
unique (ntl)~simplex in K~ containing ~k and

n w
PROOF: hQ (zo) - E ziYl - YofY~ - 2

~ i-o

- wn f E c(i) - wo - uo.
iERI

By induction for m- 1,...,n:
n n

h(zm) - E zMyl - E zm-iyi
i i`~~ i-o i-o

wn
2f

differing from

j
t E c (ri) -

i-i

n .yif E ci(sm) -
i-o

sm sm i
f y -y

- um-i~c(pm) - um.

- um-i}c(rs ) -
m
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n n n
h6 (znti) -~ zitiyi - E ziyl f E ci(sn~-i)'yl -~ i-o i-o i-o

n
- ha (zn) - ynfl - un-ynfi - uof E c(pi)-yn -

~ i-o
n

- uo f E c(ri)-Yn - uo-yo - y~.
i-o

This y3 is an element of K~ since from the computation
of the sequence {wo,...,wn} it can be seen that yi ~ ui
for every coordinate i.
So ~,~ - {ho (zo),...,hQ (znfi)} - {uo,...,un.Y~} -

- ~k t~{y3} i~ ~ and ~~ E~K~.~

B.2. ev~ - 3. Then Tk E K2, ~k E K2d' K t qn}1 - ntl.
Define
yo: - hQ(vo), r: - (Pq ,...,Pq ),

1 nand
zo: - (1,0,...,0,1), s: - (nfl,l,...,n).
Then m~ - hQ (T~), with o~ ti(yo,r) and T~ ti(zo,s), is

~
the unique (nfl)-simplex in K~ containing ~k and
differing from ~.

n
PROOF: hQ (zl) - E ziyl - yo - hQ(vo)

~ i-o

and by induction for m - 1,...,n:

hQ (zm;-i)
- E zi}lyl - ym - ym-1 f c(rm) -

~ i-o

qm qm i- ym-i ~ c(Pq )- hQ(vm-1) t u - u
m

n n n
- E vi-iul f E ci(qm).ul - E viul - hQ(vm).

i-o i-o i-o
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n
hQ (z o) - E ziYl

~ i- o

So ~~: -

- yo f yn E K4d C K~.

hQ~(T~) - {yotyn,Yo,...,yn}

and ~~ E K~.O

B.3. v~ - -1 for a
First compute
Then compute
such that qm

TABLE 3.

{yotyn}u ~k ~ ~

unique index j. Then vj - 0 for all v E Tk.
6~ ti(yo,r) according to table 1 ( pag. 18)-

T~ ti(zo,s) according to table 3, where m is
- nfl.

j zo s

j-0 (vl,..vn.~) -1,...qm-i-l~n,qm,qm~l-1,..,qn}1-1)(qi z

O~j~ vo q

j-n (1,~0-1,~0.--~~0 1 )
n- (1.q fl..-~qk-1}1,nt1.~Iktz}1,..,qn}1-1)o i i

Observe that if j- 0 then q- 1 and k- 0. If j- n then
i

gk - n, qk}1 - nfl, k~ 0 and k~ ntl. Some computations will
show that ~~: - hQ (r~) - ~k u{r,~~`} ~ ~, where

~

i h ( zm-1
6~

~h6 (zo)
~

)

and that ~ E K if ~k is an interior simplex of K~.~ ~

As is seen in the proof of theorem 4.4.2. there are two cases
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in which an n-simplex ~k - ho(Tk) may be a boundary simplex of
K~. Firstly in case B.1., namely if d- 1. Then v}k -
-{eo,...,en}. Secondly in case B.3., namely if a~ is a
boundary simplex of Kd. Then an index i exists such that
ui - 0 for every u E a3, implying that wi - 0 for every w E~k.

4.5. THE ALGORITHM

Since we now have at our disposal a pseudomanifold, K~, again
we apply theorem 2.3.3. to state

THEOREM 4.5.1.

Given the (nfl)-pseudomanifold K~ and a labelling R.: K~ -~ S-S,
let q5ó be the only very complete boundary n-simplex of K~.
Then there is a unqiue sequence ~ó,~i,... of distinct very
complete consecutively adjacent n-simplexes in K~. This
sequence is infinite.

PROOF: follows immediately from theorem 2.3.3. O

Now, if we have a labelling and know the unigue v}', a face of0
~o, then we can compute the sequences v}ó,~i,... and ~~ .o. 1.. .,where ~i -~i v~ifl, as far as we want to. This indeed can be
done by computing in turn ~i from ~i-1 and ~i-1 according to
2.3.2., and ~i from ~1-1 and v)i by the rules given in 4.4.3.
It is obvious that we would like to start the algorithm with
~' - {eo,...,en}. Then ~ - h (T ), where a ti (uo,p): -0 o Qo 0 0
- ((1,0,...,0)~(1,...,n)) and To ,~ (vo.q): -
-((1,0,...,0,1),(nfl,l,...,n)). Hence we need a labelling
such that this ~' is the only very complete boundary simplex0
of K~. Such a labelling k: K~ ~ S-S is given by
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x-f(x) if x~ 0 or f(x) ~ 00 0
R(w): -

x-g(x,d) if x- f(x) - 00 0

, (4.5.2.1.)

where d- ew, x- á E S and g(x,d) - f(x) t á(eo-f(x)), a
perturbation of f(x). (p is a small positive number).
Given this labelling no boundary n-simplex ~' E K~ with wj - 0
for all w E~' is very complete. For if j- 0 then R(w) ~ 00
for all w E~' and if j~ 0 then fCj(w) ~ 0 ~ E~ for all w E~'
and all e~ 0. Contrary {eo,...,en} is very complete, as is
proved in appendix 2. There are no other types of boundary
simplexes in K~.
Hence in view of theorem 4.5.1. we conclude to the existence
of a unique infinite sequence v)ó,~i,... of distinct very
complete consecutively adjacent n-simplexes in K~. From this
sequence we now select a sub-sequence {~d} -~1,V'2,~4,~e'..~
with ~d E Kd and define a corresponding sequence
{~d} -~l,~Z,~4,... by ~d: -{xl~xl - ui~d and ul E ~yd}. These
sequences are also infinite since every Kd is a finite
pseudomanifold. Now for every d E D there is a ad E S such
that En aa R(ul) - 0, where {uo,...,un} -~. We even might
infer thatlxd: -~i-o~ixl({xo' "''xn} -~d) an fact is a fixed
point of the continuous piecewise linear function fd: S-S,
where

x-R (dx) if dx E Ká

n ui o o E
1-o a E S such that dx -

n
- E a iul .( see [ 7] .

i-o
page 179).

E a~fd(~) if dx ~ Kd, where ( u ,p) Kd and

Since lim fd - f, uniform on S, the cluster points of the
sequence~R',RZ,x4,... are fixed points of f.
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Chapter 5. AN ALGOL PROGRAM

5.1. INTRODUCTION

In this chapter a computer implementation of the algorithm of
the preceeding chapter will be given. Since it is based
particularly on 2.3.2. and 4.4.3. we only have to explain the
symbols used in this program. However beforehand we should
remark that numerical perfection has not been our prime intent-
ion. Suggestions for possible improvements will be treated in
section 5.4.

5.2. THE SYMBOLS

Input parameters:

n : dimension of S-{x~xi ~ O,Ei-oxi - 1}CRnfl.

LABEL : procedure which maps a point x of S into a point
R: - x-f(x) of S-S. In the program this procedure is
called by LABEL (x,R) where x and R are real arrays
with nfl components.

INVERT: a procedure, called by INVERT (B,INVB), which maps the
(nfl)x(nfl)-matrix B into its inverse INVB.

eps : the e-criterion; the program stops if a point of S
with label Q is computed such that Ri ~ e for
i- 0,...,n. Such a point is called an e-approximated
fixed point.

limit : iteration limit; the program stops if after this
number of iterations an e-approximated fixed point is
not found yet. This stopcriterion is necessary since
by inaccurate computation of INVB we may encounter an
n-simplex that is not very complete, in which case
there is a theoretical chance of cycling.
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Output parameters:

approx : a boolean variable which is set to true if an
e-approximated fixed point is computed or is set to
false if the iteration limit is reached.

app : if approx is true then app is an e-approximated fixed
point in S, else app is the last computed
approximation.

d : indicates that app has been computed by means of an
n-simplex in kd.

iter : the number of iterations executed. In each iteration
one vertex ís exchanged.

The correspondence between the most important symbols used in
the preceeding chapter and those in the program is given in
table 4.

TABLE 4

single variables vectors matrices

k old uo, yo u B B
alph, alphia vo, zo v B-1 INVBi

~m m v vx
d d p,r p,r
p~d pert q,s q

x x
Q (x) ~.

dX aPP

The symbol new denotes the number of the vertex (the vertices
of a simplex taken in a lexicographical order) to be deleted.
p is given the value 0.01.

Finally we explain the behavior of the process in front of a
pathological situation. Caused by rounding errors, par example
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in the computation of INVB, a boundary simplex of K~ may be
reached in contrast with the theoretical result about the
uniqueness of a very complete boundary simplex. This may occur
only in case B3. In this pathological situation the procedure
FLIP is used in order to perform the computation of this
iteration once again for an other value of old. Once again we
mention the possibility of cycling caused by rounding errors.

5.3. THE PROGRAM

procedure FIXED POINT(n,LABEL,INVERT,eps,limit)
output:(approx,app,d,iter);

value n,eps,limit;
in~er n, Zimit, d, iter; real epa; arra app; boolean approx;
Pro~re invert,ZabeZ;
begin integer i,j,k,m,nl,pi,qi,ne~,old,jold;

real appi,pert,min,alph,alphti,ratio,d2;
integer array u, v; p, aid, pos[ 0: n] , vx, q[ 0: nf 1];
real array x, fC[ 0: n] , B, BX, INVB[ 0: n, 0: n] ; boolean admin;

procedure FLIP;
be in pos[ jo Zd] :-o ld; INVB[ j o Zd, 0] :-INVB[ j o Zd, 0) -1 0 1 0;

~o to search
end FLIP;

procedure RECUR(fZb,fub,sZb,sub,sn);
comment recursive computation of vx,see table 2;
value flb,fub,slb,sub,sn; integer fZb,fub,sZb,sub,sn;
begin for i:-0 step 1 until n do vx[ i] :-v[ i]; vx[ n1] :-0;

for i:-fZb step 1 until fub,slb steP 1 until sub do
béin qi: -q z~] ; vx[ qi-1] :-vx( qi-1] -sn; -

vx[ qi] : -vx[ qi] tsn
end

end RECUR;

~ro~c ~e~ dure WHICH CASE;
be in i~ oZd-O then

begin if m-1 then begin CASE B1; c~o to ready end;
RECUR(1, 1, 1, 0, 1); vx[ 0) :-vx[ 0] -1 -

end else
if old~nl then REC'UR(Z,oZd-1,oZdtl,oldfl,l)
- else
begin comment old-ntl;

íf m-n1 then be in CASE B2; qo to ready end;
RECUR(1,O,n1,n1,-1) - -

end of test on old;
for j:-0 steP 1 until n do if vx[j]~0 then
- begin CASE B3; c~o to ready end;
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CASE A;
ready:
end WHICH CASE;

procedure CASE A;
begin if oZd-O then

begin ner~:-n1; qi:-q[ 1];
v[ qi-1] :-v[ 4i-1] - 1; v[ 4i] :-v[ qil f1;
for i:-1 steP 1 until n do q[ i] :-q[ it1] ;
Q~11 . -qi; m: -m-1; -

for i:-0 step 1 until n do pos[ i] :-pos[ i] -1
end -else -
if oZd~n1 then
begin nerv:-oZd; qi:-q[oZd];

q[ neu:] :-q[ oZdt1] ; q( ne~f1] :-qi;
if m-old then m:-oldtl else
if m-oZdf1 then m:-oZd

end - else
béin comment old-nl; nera:-0; qi:-q(n1];

v qi-1] :-v[ qi-1] t1; v[ 4z] :-v[ qil -1;
for i:-n steP -1 until 1 do q[ if1] :-q[ i] ;
q~] . -qi; m: -mt1; -
for i:-0 steP 1 until n do pos( i] :-pos[ i] t1

end
end CASE A;

procedure CASE B1;
begin integer iu,irl,ir2; integer array r[I:n];

d:-d:2; j:-0;
for i:-0 steP 1 until n do if u[ i] ~u[ i] :2x2 then
begin ,j:-,jf1; r[ J] .-if1; u[ it1] .-u[ it1] -1;

u[ i] : -u[ i] : 2t1
end else u[ i] :-u[ i] : 2;
zu:-1; ir2:-,jt1;
for i:-1 steP 1 until n do
bégin for 2r1:-1 steP 1 until j do

begin if p[ z] -r[ ir1] then -
begin P[ iu] :-r[ irll ; q[ z ] :-zu;

zu:-iuf1; c~o to go
end

end .
r[ ir2] :-p[ i] ; q[ i] :-ir2; ir2: -ir2t1;

go.
end;
for i:-jf1 step 1 until n do p[ i] :-r[ i];
fór i:-0 steP 1 until n dó
béin vx[ i] :-v( i] :-0; po~i] :-pos[ i] -1 end;
vx[.7] .-v[ J] .-v[ ~] .- 1; q[ n1] .-m:-new:-n1-

end CASE B1;

procedure CASE B2;
begin approx:-true; d:-dfd; nem:-0;

if v[ 0] -1 then for i:-1, it1 while v[ i-1] -0 do
bégin pi : -p[iT; ázd[ pi-1 ] : -a2 pi-1 ] -1; -

azd[ pi] : -aid[ pi] f1
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end;
for i:-0 ~ste~ 1 until n do
t~egin u[ i] :-2xu[ z tazd[ i~ aid[ il :-P[ q[ i] ]; v[ i] :-0
~en~;~
v[ 0] : -v[ n] : -m: -1;
for i:-0 ~ste1 until n do
bégin p[ i] :-aid[ z; aid[ z]:-0; pos( i] :-pos[ i] f1;

q[ if1 ]:-i; vx[ i] :-v[ i]
end;
~ 1] :-n1

end CASE B2;

procedure CASE B3;
begin comment if the computed n-simplex is a boundary

simplex then the procedure FLIP is called;
if ,j-0 then
begin if u p[ 1] -1 ]-0 v(u[ 0] -1 ~ p[ 1] -1 ) then FLIP;

new: -m-1; v[ O] .-v[ 1] t1;
pi: -P[ I] ; u[ Pi-1] :-u[ Pi-1] -1; u[ Pi] :-u[ pi] t1;
for i:-1 ~step 1 until n-1 do
béin v[ i] :-v[ ifl~pi:-p[ it1] end;
v n] . -0; p[ n] . -pi; -
for i:-1 step 1 until m-2 do q[ i] :-q[ if1] -1;
Tm-1] -n; -
for í:-mt1 step 1 until n1 do q( i] :-q[ i] -1;
fór i:-0 steP 1 until n do -
if pos[ i] ~ ner~ then pos~] :-pos[ i] -1;
RECUR(I,new, 1, 0, 1 )

end else
if ,j~n then
bégin if u p[ ,j] ]-0 n p[ jt1] -p[ ,j] -1 then FIIP;

new:-old; Pi:-P[J] ; P[ J] .-p[ Jf1l ; P[ Jf1] .-pi;
vx[~l :-1; vx[ j-1] :-vx[ J-1]-I;vx[,~t1] :-vx[~t1]-1

end else
~eg~in comment j-n; if u[ p( n] ]-0 then FLIP;

new:-0; -
Pi:-P[ n] ; u[ Pi-1] :-uI Pi-1] f1; u[ pi] :-u[ pi] -1;
for i:-n ste -1 until 2 do
béin vx[ í~:~--v[ i] :-v z-1 ];p[ i] :-p[ i-1] end;
vx 1 . -v[ 1 ] . -v[ 0] -1 ; vx[ 0] . -v[ O] . -1; p[ I~pi;
for i:-old step -1 until 1 do q[ it1] :-q[ i] t1;
411:-1; m:-oZdf1; -
for i:-oldt2 step 1 until n1 do q[ i] :-q[ i] f1;
fór i:-0 ste 1 until n do -
i~pos[ i]~o d then poa[ i] :-pos( it1]

end
end CASÉB3;

comment initialisation, see Part I, page 40;
for i;-p step 1 until n do
be in aid[ i] :-u[ i] :-v[ í] :-o; x[ i] :-0;

p[ i] . -q[ if1 ] . -i; pos[ i] . -if1
end;
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for j:-0 ~ste~ 1 until n do
begin x[ j] :-1; LABEL x, QT BX[ 0, jJ :-0; B[ 0, j] :-1;

for i:-1 steP 1 until n do
bé~~in B[ i, j] :-k[ i] ; BX[ i, j] :-0 end;
x[ j] :-0; BX[ j, j] :-Z -

end;
net~: -0; u[ 0] . -v[ 0] . -v[ n] -m: -d: -1; q[ 1] . -n1 : -nt1;
x[ 0] :-x( n] :-. 5; approx: -admin: -true; iter: --1;

start:iter:-iterfl;
if iter~limit then begin approx:-false; go to finish end;
cómment first part of the exchange proceduré: determinátion

of the index old of the vertex to be deleted;
INVERT(B,INVB);
if approx then
begin comment if the new simplex is in Kd an approximation

app is computed and tested on the
eps-criterion;

for i:-0 steP 1 until n do
béin appi:-0; for ,j--0 step 1 until n do

appi: -appafBX[ i, j] XINVB[ j, 0] ; -
app[ i] : -appi

end;
LÁBEL(app,R);
for i:-0,ít1 while approx n i~n1 do
if ABS(R[i])~eps then approx:-falsé;
'if approx then cLo to finish

end ofápproximation; -
LÁBEL (x, R ) ;
if x[ 0] -0 n R[ 0] -p then
begin pert:-1~(100.xd); R[OJ:--pert;

for i:-1 step 1 until n do
R[z] :-R[ i] fpertx(R,[ i] -x[ i] )

end of perturbation;
search-

jo Zd: --1;
for j:-0 steP 1 until n do
begin aZph:-INVB[j,0]; -

for i: -1 steP 1 until n do aZph: -aZphfINVB[ i, j] xk[ i] ;
if aZph~O then -
begin if joZd~O then begin joZd:-j; alphi:-alph end

- else -
for i:-0,it1 while ratio-min do
béin ratio:-FNVB j,i]~alph; -

min:-INVB[ jnld,i]~alphi;
if ratio~min then
bégin ,joZd:-j; aZphi:-aZph end

end -
end

end;
ÍZc:-pos[~old]; pos[ joZd] :-ner~;
comment second part of the exchange procedure:

determination of the vertex to be added;
jump: WFIICFI CASE;

if admin then
bé in comment updating B and BX; BX[ 0, j o Zd] :-x[ o] ;
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for i:-1 step 1 until n do
béin B[ i, jold] :-R z; BTí, jold] :-x[ í] end

end else admin:-true;
~or j:-0 step 1 until n do if vx[j]~0 then
béin if vx[ j] -2 then --

be in comment the new vertex and its label
are already known;

old:-n1;
for joZd:-O ~ste~ 1 until n do
if pos[jold]-old then
bégin pos[jold]:-ne~; admín:-false;

end
iter:-iterfl; ~o to jump

end;
fór i:-1 step 1 until j do
begin pi: -p-[-z']; az pi-1~-aid[ pi-1] -2;

aid[ pi] : -aid[ pi] f2
end;
if ner~~m then
~r i:-jtlT1 while i~n1 n vx[i-1]-0 do
bégin pi: -p[ i] ; aid[ pi-1] :-aid[pi-1] -1;

aid[ pi] : -aid[ pi] f1
end;
~dtd;
for k:-0 steP 1 until n do
bégin x[ k] :-(2xu[ k] faid[ kj)~d2; aid[ k] : -0 end;
cZo to start -

end;
finish-
end FIXED POINT;
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5.4. COMMENTARY ON THE PROGRAM

5.4.1. For most problems the program will yield a satisfying
result with a relatively small d. But for some problems d, and
therefore also u, whose components sum to d, may become larger
than the integer capacity of the computer permits.

5.4.2. An other dífficulty can be the inversion of the matrix
B. In many inversion procedures information is given about the
possible smallness of pivots in a decomposition.

5.4.3. Inaccurracies made in the procedure INVERT may put the
program on the wrong track. However the computer program has
shown that this procedure is in practice selfcorrecting:
dealing with simplexes that are not very complete it still
tends to regain a very complete one. Also from practical
experience we know that the chance of cycling can be neglected
since the procedure tends to enlarge d continually without ever
returning ín the neighbourhood of an "old" simplex.

5.4.4. In the program the user is assumed to invert the matrix
B anew at each iteration of the algorithm. However, since at
each iteration only one column of B is changed, the inversion
can also be carried out recursively. (See [ 1] ,[ 2] ). On the
other hand we do not yet oversee the consequences of
inaccuracies that undoubtedly will be made then.

5.4.5. Since generally there is only one index k such that
Sko~ak - min{Bio~ai~ 0 ~ i ~ n} (see 2.3.1.) it will be
sufficient to compute the fírst column B,o of INVB and the
array a immediately from the linear equation systems BR,o - eo
and Ba - bn}' (see 2.3.1.). Only if there are two or more such
indexes k then the system BR,1 - el should be solved too.
Etc....

5.4.6. By introduction of some small changes several facilities

can be provided by the program:
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5.4.6.1. There is a possibility to continue the procedure if
after all the e-approximated fixed point does not satisfy other
criteria we may have. For this purpose one should conserve the
variables v, u, p, q, and new by making them global or own
parameters.
5.4.6.2. Each time d is increased a linear approximation is
computed. If the user is interested in the sequence of
approximations, the heading of the procedure LABEL can be
extended with a Boolean variable indicating whether the
supplied point of S is an approximation or not. In that case
the procedure LABEL should be called for instance by
LABEL(x, k, approx).
5.4.6.3. The program can also be used to compute Kakutani
fixed points of a point to set mapping F: S-~S~ by means of the
labelling R(u) - x-y where x- eiu.u and y is some element of
F(x). However the e-criterion may not work effectively, so
that a different stopcriterion has to be used. (see [7], page
85-93).

5.4.7. All the problems arising from the inversion of the
matrix B can just as in 3.4. be avoided by defining the
labelling R(u): - kl where ki is the ith column of the matrix
L(see part I, p. 22) and i is the smallest integer such that

x. ~ 0 and x.-f.(x) - max (x.-f.(x)), Ix - u J .i i i O~j~n J J l eu

Then B will remain constant during the whole program, differing
from L only in the first row. (Of course the procedure can also
bè rewritten for integer labels as in 3.4.). Since the
e-criterion will fail to work with this labelling a different
test is necessary.
Though this method has yielded rather nice results it still
has appeared to be inferior to the one implemented in the
program of 5.3., because we observed that the computertime
saved per iteration is swept by a considerable increase in the
number of iterations.
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5.5. EXAMPLES

In this section we want to illustrate the algorithm with two
examples, both concerning continuous not differentiable
functions on S. (As in example 5.5.1. even discontinuities of
f may occur at the boundary of S). In both examples the
function has a fixed point x in which at least one of the
derivatives afi(z)~8xj does not exist.

EXAMPLE 5.5.1. This example shows the application of the
algorithm to compute equilibrium prices in a Walrasian model
of exchange. It has also been used by Scarf to illustrate his
algorithm (see [ 6] , example 3 and [ 7] , section 3.2.) . A
detailed description of its economical foundation is also
given by Scarf (see [ 6] , section 6 and [ 7] , sections 1.2.,
2.1. and 3.2.) and will just briefly be indicated here.
Let m and ntl respectively be the number of agents and the
number of commodities in an economy. Agent j(j - 1,...,m) owns
an initial stock of commodity i(i - 0,...,n) given by wji. For
every vector of prices x-(x ,...,xn)r he can sell his whole

0
initial stock and take in the total amount of Ei-o wjixi to be
spend to buy commodities according to his demand functions:

j aji ~k-o `ajkxkhi(x): - bj n i-bj (5.5.1.1.),

xi ~k-o ajkxk

aji and bj being utility parameters. At prices x-(xo,...,xn)r
the total excess demand in the market for commodity i is then
given by

gi(x): - E~-1 gi(x): - E~-1(hi(x)-wji) (5.5.1.2.).

The economy is in equilibrium at a price vector x if at these
prices the market excess demand gi(x) is zero for commodities

with a positive price and non-positive for commodities with a
price equal to zero.
Since the demand functions are homogeneous of degree 0,
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implying that demand reacts on relative prices rather than on
its absolute values, we may restrict our attention to price
vectors x on S. The mapping

xi f a.max{0, gi(x)}
(i - 0,...,n) (5.5.1.3.),

1 t a.Ek-o max{0, gk(x)}

where ~ is a small positive number, can serve as a continuous
function on S(- at least at the interior of S; for complicat-
ions at the boundary of S see below -), taking S into itself.
It can be proved that this function has a fixed point and that
a fixed point x of f is indeed an equilibrium price vector.
In our program the problems of possible discontinuities at the
boundary of S are avoided by the following procedure: if x is
a boundary vector of S the function value of a vector y very
near to x(the distance between y and x being much smaller
than the smallest possible grid of Kd on the computer) is
associated to x. Note that, as far as a discontinuity does
not, in contradiction with the facts, suggest a fixed point at
this discontinuity, a discontinuity yields no problem for the
algorithm. The only problem is, as in the present case, the
possible non-existence of the function value at such a point
of discontinuity.
In the present example n- g, m- 5 and a- 1. The parameters
W, A and b are as given in appendix 3, table A1. Thus this
example is exactly the same as the one used by Scarf ([6],
example 3 and [7], section 3.2.). Succesively e-approximated
fixed points were computed for e- 10-2, 10-3, 10-4 and 10-5.
The total number of iterations was respectively 471, 598, 763
and 892. Detailed results are given in appendix 3, table A2.

EXAMPLE 5.5.2. This second example concerns the function,
whose only fixed point is the barycenter of S, described by

f.(x) - max{xiti' xitz~(itl)}
i

Ek-o max{xkti' xkf2~(kfl)}
(i - 0,.. ,n)

(5.5.2.1.),
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where xn}1: - xo and xnt2: - xl.
For n- 6, 12 and 18 and E- 10-2, 10-3,...,10-e successively
E-approximated fixed points were computed. The results are
comprimed in appendix 3, table A3, where b is the barycenter
(1~(ntl),...,1~(nfl))T, and the norm ~y~ is taken to be
max{~yo~,...,~yn~}. After respectively 260, 888 and 2112
iterations for n- 6, 12 and 18 both ~x-f(x)~ and ~x-b~ were
less than 10-8.

5.6. NUMERICAL RESULTS.

In this last section we intend to provide some information
about the practical experience with the program and to give
some indication of its efficiency. This could be done by
estimating the number of iterations or the computing time
required to reach an e-approximated fixed point in terms of n,
the dimension of the problem, and E, the desired accuracy. But,
since the computing time depends highly on the function f and
the type of computer used, we chose to give an estimation of
the number of iterations. Such an estimation in terms of e,
however, would also depend on the function f. To illustrate
this: if in example 5.5.1. a equals .001 in stead of 1, the
algorithm goes along the same path through the complex K~,
while in exactly the same number of iterations a thousand times
better accuracy would be achieved. Since such changes in the
functíon f don't influence the number of iterations required
to reach an approximated fixed point in a certain Kd, the
presumption is justifieci that a reliable estimation of the
number of iterations in terms of n and d is possible.
But beforehand we shall discuss some prior information in order
to comparise the results of such an estimation and some
standard indicating to what extend the algorithm can be called
efficient. Here we should take into account that it is
impossible to compute-the minímum number of iterations required
to reach an arbitrary n-simplex in a given Kd since it
depends on which simplex is reached. This is why we use the
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standard denoted as Z(n, o) which is obtained as follows: for
each of the 2n n-simplexes in the n-complex K the shortest2
path to reach it starting from K is computed and the acquired

i
2n minima of numbers of iterations are averaged. This averaged
minimum turns out to be 8n2 t 8n f 1-: Z(n, 1). Since for
every a of every Kd hQ(T) is homeomorf with T, Z(n, 1) also is
the (averaged) minimum number of iterations to reach a simplex
of KZd starting from a in Kd and staying within hQ(T).
Consequently the averaged minimum number of iterations to
reach a simplex in a certain Kd is then given by

Z(n, o) - o.Z(n, 1) - 21og d(Sn2f8nf1), (5.6.1 )

where o is the number of times d is doubled. (This formula
neglects the fact that sometimes a shorter path can be obtain-
ed by leaving ho(T) not on the upper side (CASE B2), but going
sideways (CASE B3) to another hQ,(T) and from there going
upwards and sooner or later sideways again, which at first
sight seems to be a roundabout way).
In order to illustrate the behavior of the algorithm and to
give some evidence for the relationship between the number of
iterations and the parameters n and d the algorithm has been
applied to a set of functions given by

fi(x) -((1fE~-o akjxj) ~ ~k-o(1fE~-o akjxj)-i)-1. ( 5.6.2.)

where akj are the elements of a square matrix A. For four
different matrices A of size 19 x 19 and for n- 3, 6, 9, 12,
15 and 18 the first ntl columns and rows of these matrices
were used to obtain 4 problems for each size of n. The results
are comprimed in appendix 3, table A4, where o- 21og d, Z is
the number of iterations required to reach the corresponding
E-approximated fixed point in Kd and c: - Z~Z(n, o), the
number of iterations related to the standard. For this set of
functions and an accuracy of 10-o c varies from 0.89 to 1.16,
so the required number of iterations is about the same as the
standard Z(n, o). There is substantial evidence that these
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results are fairly normal for rather uncomplicated functions.
For more complicated functions c can be higher. For the three
examples of 5.5.2. c was respectively 1.01, 1.25 and 1.42, and
c turned out to be 2.04 for example 5.5.1. Our experience is
that in virtually all cases no more than two or three times
the (averaged) minimum number of iterations is required.
The second, perhaps most important conclusion of these examples
examples, which also holds for most other examples, is that c
is very stable during the course of the algorithm. This
implies that a linear increase in the number of iterations
corresponds with a linear increase of o, and so with an
exponential increase of d, mostly causing an exponential
increase of the accuracy ( at least as soon as a minimal
accuracy, in these examples of about 10-2, is reached).
Besides the fact that the algorithn continuous until a a
priori accuracy is reached, it is this result, following from
the structure of the complex K~, which is the great advantage
of the present algorithm in comparison with all algorithms for
a fixed Kd. For a rough comparison of the algorithm of chapter
3 for a fixed Kd and the one of chapter 4 for K~ the standard
Z also applies to Kd. If each n-simplex of Kd is given an
equal chance to be reached as a very complete one terminating
the algorithm, the "averaged minimum number of iterations" is
about n}1 Z(n-1, d-1)(~ d.(8n2t2n-4)). Although this formula
again neglects some complications, it is nevertheless useful
for a rough comparison.
This standard also fits for the algorithms used in Scarf's
book "The computation of economic equilibria" [7]. These
algorithms also proceed in a fixed Kd and of the 27 numerical
examples given in his book one needed 5.41 times the standard,
another one took 0.71 times, again another one (the same as in
5.5.1.) terminated after only 0.12 times as much iterations,
and all the other 24 examples needed a number of iterations
between 0.98 and 1.98 times this standard.

nSince n}1 Z(n-1, d-1) is linearly proportíonal to d, a linear
increase of the number of iterations leads to a linear increase
of the accuracy, while in case of the algorithm for K~ this
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would lead to an exponential increase of the accuracy. A
comparison of the two standards makes clear that the expected
numbers of iterations for the two algorithms to obtain the
same accuracy are roughly in the proportion of 20: o. This
shows the superiority of the algorithm for K~ compared to
those for a fixed Kd at least if a high accuracy is wanted. For
instance, using the algorithm for a fixed Kd, the expected
number of iterations to reach an accuracy less than 10-5 for
the average of the four examples of this section would be
about 130, 600, 1800, 7600 and 11000 for n- 3 up to 18, and an
accuracy less than 10-e would take about 6,000, 20,000,
100,000, 140,000, 290,000 and 240,000 iterations respectively.
An extreme example like 5.5.2., where for n- 18 an accuracy
of 10-8 was reached in 2112 iterations at a d of 226, shows the
impossibilities of the algorithm for a fixed Kd, since this
would take some 3 billions of iterations.

However, the weak spot in the algorithm is the first part of
the exchange procedure, especially the operations with the
matrix B and its inverse. Of course the possibility exists that
round-off errors cause an incorrect exchange of vertices, but,
which counts more, is the fact that the inversion of the
matrix B requires an order of (ntl)3 arithmetical operations
and is therefore, besides the function computations, the most
time-spending procedure in the program. Although for instance
in example 5.3.1., where n- 9, about 6 of the total comput-
ation time was consumed by the function evaluations and only
1 was used by the rest of the procedure, including a matrix6
inversion at each iteration, for large n the time needed for
the inversion of an (ntl)x(nfl) matrix becomes prohibitively
large. We think this to be one of the main subjects for
improving the algorithm.
First, strictly speaking the computation of the inverse of the
matrix B is not necessary; at nearly all iterations only two
systems of equations need to be solved: B.a - bn}1 and
B.S.o - eo. Very seldom B.S.i - el for i- 1,...,j (j ~ n)
should be solved too. Moreover, if these equations are solved
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by LU-decomposition computer time can be saved by reversing the
order of the rows of B. This reduces the number of operations
since in that case the system L.U.S.o - en instead of
L.U.S - eo has to be solved. But computing the LU-decompos-.o
ition of B still takes an order of 3(ntl)3 arithmetical

operations at each iteration. Since B changes in only one
column, however, this much work is not needed. As shown by
Bartels [2], a stable procedure exists to compute at each
iteration the changes in the LU-decomposition, which only
takes an order of 2(nfl)2 f k(ntl) operations (where k is the
number of iterations). Although this procedure implies that
the LU-decomposition has to be computed anew from time to
time, and so in the context of the fixed point algorithm then
also the present simplex should be tested on its very
completeness, we think Bartels' results justify further
research on the utility of his procedure for the fixed point
algorithm.
Another possible improvement is the computation of B-1 at each
iteration from B-1 of the proceeding iteration and the changed
column of B. This takes only an order of 2(nfl)2 arithmetic
operations. Although, as shown by Bartels [2], in general the
round-off errors of this procedure can not be bounded a

priori, from experiments with the examples of this section we

obtained hopeful results. During the whole course of the

algorithm B-' has been computed recursively in normal
precision floating-point arithmetic without any reinversion

and this we compared with B-1 computed by inverting B at each
iteration. The relative dífferences between the elements of

the two computed inverses turned out to remain stable during
the course of the algorithm at a few orders of magnitude

larger than the normal precision accuracy of the computing
machine. We believe that further research on this subject will
surely lead to improvements of the program.



- 58 -

APPENDIX 1.

Here we shall prove that a sufficiently small complete sub-
simplex a-{uo,...,un} of S enables us to compute an
approximated fixed point with predicted accuracy.
The completeness of Q states that there is an a E S such that
En a.(ul-f(ul)) - 0. Further, since f is continuous on S, fori-o i
each e~ 0 there will be a ó~ 0 such that ~f(x)-f(y)~ ~ e
whenever ~x-y~ ~ S. Now let us suppose that indeed every two
points of o have a distance of at most ó. Then
~Ei-oai(u~-f(ui))I - ~Ei-oai(ul-f(ul))tu~-ul~ -

~i-oai(ul-f(ul))t~u~-ul~ ~ d and ~Ei-oai(f(ul)-f(u~))~ ~

~ Ei-oai~f(ul)-f(u~)~ ~ e. So ~u~-f(u~)I ' ~Ei-oai(u~-f(u~))~ ~

~ ~Ei-oai(u~-f(ul))I t ~Ei-oai(f(ul)-f(u~))~ ~ e f d for every
j. And it follows that for each point x E C(a) ~x-f(x)~ ~
~ ~x-u~~ t ~u~-f(u~)~ t ~f(u~)-f(x)~ ~ 2(etó). So in fact
every point x of C(a) is a 2(efd)-approximated fixed point.O
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APPENDIX 2.

In K~ with labelling SC: K~ -~ S-S as given in (4.5.2.1.) the
boundary simplex {eo,...,en} is very complete.
PROOF: Let L be the (nfl)x(ntl)-matrix containing the elements
Rij: - Ri(eJ) and B: -[bij] with bij: - 2ij for all j and all
i~ 0, and b j is 1 for all j. Then from (4.5.2.1.) it follows0
that Q ~ 0, R ~ 0 for j~ 0, R.. ~ 0 for i~ 0 and R. ~ 000 oj ii ij -
for i~ 0 and j~ i. So the matrix L has the following
structure, the unequalities refferring to zero:

Remind that En ~.. - 0, so -En R. ~ R., for j~ 0.i-o ij-i 1- i,i~j iJ 7J
We can prove that B exists by showing that the rows of B are
linearly independent. To prove this let the vector a be a root
of the equality BTa - 0, and let ap: - min{ai~l ~ i ~ n} and
aq: - max{ai~l ~ i ~ n}.

nSince ~.. a.b. - 0, En a.b. --a b --a for all j, andi-o i ij i-1 i ij o oj no
since bij ~ 0 for i~ j it follows that aqEi-1biq ~
~ En a.b. --a - En a.b. ~ a En b. . So, since both
- i-1 i iq o i-i i ip - p i-i ip
E1-1biq and Ei-~bip are positive, ap and aq and with them all
ai(i ~ 0) have the same sign.
Now suppose that a ~ 0, then En a.b. ~ 0, so a~ 0 andn p i-i i ip o
therefore ao t E1-1aibio ~ 0, a contradiction. In the same way
the supposition aq ~ 0 leads to a contradiction with
a f En a,b. - 0. So a- min{a.~l ~ i ~ n} ~ 0 and

o i-i i io p i - - -
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a- max{ai~l ~ i ~ n} ~ 0. Clearly ai - 0 for all i~ 0. Then
q - - -

also aa --Ei-1aibi - 0. So a- 0, the rows of B are linearly
independent, and B-~ exists.
Now observe the function g defined by g(x) -(I-L)x for x E S.

g is a continuous map from S into itself and therefore has a
fixed point in S. This means that there is a a(0) E S such
that (I-L)a(0) - a(0), and so La(0) - 0. Note that ao(0) ~ 0,

since E~-oaj(0).Roj - 0, aj(0) ~ 0 for all j and Roj ~ 0 for
all j~ 0. Further from La(0) - 0 and E~-oaj(0) - 1 it follows

that Ba(0) - eo.
Next observe the system Ba(E) - e' with solutíon a(e) - B-'e',

T
where e' -(1,e,e;...,En) and E~ 0. Then, since ao(0) ~ 0,
a(e) ~ 0 for sufficiently small e. Now suppose that

o -
J(e): -{j~a.(e) ~ 0} ~ 0 for certain e. Since Ba(e) - e',

7
En a.(e).b - el ~ 0 for all i, so the more for all
~-o ~ ij -

i E J(e). But, since for all i E J(e) and all j~ J(e) it
holds that bij ~ 0 and aj ~ 0, Ej~J(E)~1j(E).bij ~ 0 and
therefore also EjEJ(E)~j(E).bij ? 0 for all i E J(e). So

~jEJ(E)(~j(~)~iEJ(e)bij) - EiEJ(e)~JEJ(e)~j(e).bij ~ 0 in
contradiction with the fact that aj(E) ~ 0 and

~ En b ~ 0 for all j E J(E). So J(E) -~ for all
~iEJ(e)bij - i-i ij
e for which a(e) ~ 0:o -
So we conclude that the system Ba(e) - e' has a solution
a(e) ~ 0 for all sufficíently small e~ 0, which in other

words-means that {eo,...,en} is very complete.O
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APPENDIX 3.

TABLE A1. Data for example 5.5.1.

nfl, number of commodities: LO
m, number of agents in the economy: 5
i , commodity index: 0,...,9
j , agent index: 1,...,5
wji, initial stock of commodities:

0.6 0.2 0.2 20.0 0.1 2.0 9.0 5.0 5.0 15.0
0.2 11.0 12.0 13.0 14.0 15.0 16.0 5.0 5.0 9.0
0.4 9.0 8.0 7.0 6.0 5.0 4.0 5.0 7.0 12.0
1.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 3.0 17.0
8.0 1.0 22.0 10.0 0.3 0.9 5.1 0.1 6.2 11.0

a.i, utility parameters:
J

1.0 1.0 3.0 0.1 0.1 1.2 2.0 1.0 1.0 0.7
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

9.9 0.1 5.0 0.2 6.0 0.2 8.0 1.0 1.0 0.2
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
1.0 13.0 11.0 9.0 4.0 0.9 8.0 1.0 2.0 10.0

bj , utility parameters: 2.0 1.3 3.0 0.2 0.6
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TABL,E A2. Results of example 5.5.1.

e: accuracy
Z: total number of iterations
g: excess demand function ( 5.5.1.2.)
f: continuous function from S into S(5.5.1.3.)
tix: E-approximated fixed point of f.

tie, z i xi fi(x) xi-fi(x) gi(x)

0 .187170 .191928 -.004758 .011335
1 .109363 .112132 -.002770 .006612
2 .098920 .095642 .003277 -.009081

.O1 3 .043210 .041779 .001432 -.021972
4 .116861 .118577 -.001716 .005779
5 .077000 .074448 .002551 -.005668

471 6 .116976 .114366 .002611 .001308
7 .102384 .102181 .000203 .003298
8 .098686 .101153 -.002467 .005934
9 .049431 .047793 .001638 -.046776

0 .187252 .187747 -.000495 .001306
1 .109378 .109418 -.000040 .000512
2 .098898 .098473 .000425 -.000797

.001 3 .043197 .043011 .000186 -.007588
4 .116865 .117164 -.000298 .000804
5 .076977 .076646 .000331 -.000649

598 6 .116965 .117275 -.000310 .000816
7 .102381 .102442 -.000061 .000503
8 .098691 .098642 .000049 .000377
9 .049395 .049182 .000212 -.002476
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e, z i xi fi(x) xi-fi(x) gi(x)

0 .187261 .187349 -.000088 .000179
1 .109379 .109393 -.000014 .000067
2 .098897 .098848 .000048 -.000179

.0001 3 .043192 .043171 .000021 -.000635
4 .116867 .116859 .000008 .000050
5 .076975 .076937 .000038 -.000061

763 6 .116966 .116909 .000057 -.000000
7 .102381 .102429 -.000048 .000098
8 .098691 .098737 -.000046 .000095
9 .049393 .049369 .000024 -.000329

0 .187262 .187268 -.000006 .000015
1 .109379 .109381 -.000002 .000007
2 .098896 .098891 .000005 -.000028

.00001 3 .043191 .043189 .000002 -.000083
4 .116867 .116861 .000006 -.000001
5 .076974 .076977 -.000002 .000006

892 6 .116966 .116969 -.000003 .000009
7 .102381 .102380 .000001 .000004
8 .098691 .098694 -.000003 .000008
9 .049392 .049390 .000002 -.000001

TABLE A3. Results of example 5.5.2.

n : dimension of S
E : accuracy
Z: total number of iterations
x: e-approximated fixed point of f

f: continuous function from S into S(5.5.2.1.)

b : barycenter of S

IYI- max{IYo~~-..~~Yn~}
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n e z x f(x) ~x-f(x)~ ~x-b~

6 10-Z 36 .137-.148 .139-.148 .00868205 .00634398
10-3 100 .143 .143 .00015905 .00009310
10-4 132 .143 .143 .00001992 .00001163
10-5 164 .14286 .14286 .00000249 .00000146
10-6 196 .142857 .142857 .00000031 .00000018
10-' 228 .142857 .142857 .00000004 .00000003
10-8 260 .14285714 .14285714 .00000000 .00000000

12 10-Z 150 .072-.082 .073-.081 .00835578 .00488917
10-3 332 .077 .077 .00046169 .00025041
10-4 453 .0769 .0769 .00001155 .00000726
10-5 585 .07692 .07692 .00000217 .00000118
10-6 651 .076923 .076923 .00000046 .00000025
10-' 798 .076923 .076923 .00000009 .0000000~5
10-8 888 .07692308 .07692308 .00000000 .00000000

18 10-Z 283 .049-.060 .049-.060 .00423262 .00786243
10-3 757 .053 .053 .00017529 .00009252
10-4 986 .053 .053 .00008927 .00004713
10-5 1357 .05263 .05263 .00000254 .00000134
10-6 1522 .052632 .052632 .00000013 .00000007
10-' 1761 .0526316 .0526316 .00000006 .00000003
10-8 2112 .05263158 .05263158 .00000000 .00000000

TABLE A4. Results of four examples of section 5.6.

n: dimension of S
e: accuracy
o: 21og d, number of times d is doubled
Z: total number of iterations
c: Z~Z(n,o)



example 1 example 2 example 3 example 4 average 4 examples

E O Z C O Z C O Z C O Z C O Z C

~ 10-2 2 10 1.05 0 0 1.00 1 6 1.26 2 8 0.84 1.25 6.00 1.01
u 10-3 4 20 1.05 1 6 1.26 3 15 1.05 3 12 0.84 2.75 13.25 1.01
,~ 10-4 4 20 1.05 4 22 1.16 4 19 1.00 5 20 0.84 4.25 20.25 1.00
~ 10-5 6 28 0.98 5 28 1.18 6 27 0.95 6 24 0.84 5.75 26.75 0.98
IN

10-6 9 44 1.03 7 37 1.11 8 38 1.00 8 34 0.89 8.00 38.25 1.01
M
„ 10-' 10 50 1.05 9 45 1.05 10 46 0.97 9 39 0.91 9.50 45.00 1.00
~ 10-8 12 59 1.04 10 49 1.03 12 56 0.98 11 48 0.92 11.25 53.00 0.99

~
u
G

10-Z 3 38 1.18 1 15 1.40 3 34 1.05 1 10 0.93 2.00 24.25 1.13
10-3 4 47 1.09 3 45 1.40 4 44 1.02 3 31 0.96 3.50 41.75 1.11
10-" 6 67 1.04 4 52 1.21 6 68 1.05 4 38 0.88 5.00 56.25 1.05
10-5 7 76 1.01 6 77 1.19 7 80 1.06 6 61 0.95 6.50 73.50 1.05
10-6 9 98 1.01 8 97 1.13 9 107 1.11 7 75 1.00 8.25 94.25 1.06
10-' 10 106 0.99 10 122 1.13 10 119 1.11 9 99 1.02 9.75 111.50 1.06
10-8 12 129 1.00 11 137 1.16 12 145 1.12 11 122 1.03 11.50 133.25 1.08

a, 10-z 3 67 1.18 2 40 1.05 4 73 0.96 2 35 0.92 2.75 53.75 1.03
~ 10-3 4 83 1.09 4 73 0.96 5 95 1.00 4 71 0.93 4.25 80.50 1.00
~ 10-" 6 115 1.01 6 116 1.02 7 121 0.91 4 71 0.93 5.75 105.75 0.97
~ 10-5 7 138 1.04 7 132 0.99 7 121 0.91 7 125 0.94 7.00 129.00 0.97
IN 10-6 9 179 1.05 9 177 1.04 9 170 0.99 8 137 0.90 8.75 165.75 1.00

10 11 223 1.07 11 214 1.02 12 244 1.07 10 173 0.91 11.00 213.50 1.02
~ 10-8 13 269 1.09 12 233 1.02 14 272 1.02 12 207 0.91 12.75 245.25 1.01



N
~

~~
I
c

example 1 example 2 example 3 example 4 average 4 examples
e o Z c o Z c o Z c o Z c o Z c

10-Z 4 146 1.24 2 60 1.02 3 89 1.01 2 55 0.93 2.75 87.50 1.08
10-3 5 171 1.16 4 140 1.19 4 119 1.01 4 119 1.01 4.25 137.25 1.09
10-" 6 195 1.10 6 197 1.11 6 178 1.01 5 142 0.96 5.75 178.00 1.05
10-5 8 262 1.11 7 234 1.13 8 246 1.04 7 207 1.00 7.50 237.25 1.07
10-6 9 301 1.13 8 267 1.13 9 282 1.06 8 235 1.00 8.50 271.25 1.08
10-~ 11 358 1.10 10 335 1.14 11 352 1.08 10 285 0.97 10.50 332.50 1.07
10-8 13 423 1.10 12 403 1.14 13 407 1.06 12 316 0.89 12.50 387.25 1.05

10-2 2 107 1.27 2 83 0.98 2 91 1.08 2 79 0.93 2.00 90.00 1.07

10-3 5 236 1.12 5 211 1.00 4 183 1.08 4 173 1.02 4.50 200.75 1.06
10-" 6 276 1.09 6 250 0.99 6 269 1.06 6 266 1.05 6.00 265.25 1.05
10-5 8 373 1.10 8 335 0.99 7 317 1.07 8 342 1.01 7.75 341.75 1.04
10-6 9 413 1.09 9 374 0.98 9 410 1.08 9 380 1.00 9.00 394.25 1.04
10-' 11 502 1.08 11 433 0.93 11 489 1.05 11 473 1.02 11.00 474.25 1.02
10-8 13 581 1.06 13 501 0.91 13 600 1.09 13 570 1.04 13.00 563.00 1.03

10-2 2 125 1.09 3 154 0.90 2 127 1.11 3 189 1.10 2.50 148.75 1.04
10-3 4 248 1.08 4 222 0.97 4 257 1.12 4 257 1.12 4.00 246.00 1.07
10-" 6 369 1.07 6 333 0.97 6 385 1.12 5 332 1.16 5.75 354.75 1.08
10-5 8 499 1.09 8 482 1.05 7 439 1.10 8 513 1.12 7.75 483.25 1.09
10-5 9 525 1.02 10 600 1.05 9 516 1.00 10 629 1.10 9.50 567.50 1.04
10-' 11 675 1.07 11 666 1.06 11 622 0.99 11 688 1.09 11.00 662.75 1.05
10-Q 12 741 1.G8 13 773 1.04 12 673 0.98 12 732 1.07 12.25 729.75 1.04
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