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PART I

Introduction

A modern and systematic treatment of the theory of cost and
production functions was given by Shephard [4]. In the pre-
sent paper an attempt is made to integrate the Shephardian
productionstructures and the external diseconomies, that
production can cause on consumption.
In part 2 of this paper the conditions for integration are
studied and the construction of productionstructures with
properties similar to that of Shephard's is carried out.
In part 3 the possibility of restricting the level of exter-
nal diseconomies by pricing is paid attention to. Some remarks
will be made on the interpretation of the model in a macro-
as well as in a micro-economic sense. On this point the
introduction of the concept of a social utility function is
inevitable.
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PART 2

Production theory

2.1 Introduction

The reader is assumed to be familiar with the concept of
cost and production theory develloped by Shephard [4].
As a reminder the definitions and properties that play
a major role in this paper are stated below:

(2.1.1) Definition:
A production inputset L(u) of a technology is the set of
all input vectors x yielding at least the outputrate u,
for u E [ O,t ~) .

(2.1.2) Definition:
The efficient subset E(u) of a production inputset L(u)
is given by E(u) -{x ~ x E L(u), y ~ x ~ y~ L(u)}.

(2.1.3) Definition:
A production technology is a family of inputsets T:
L(u), u E [O,t ~) satisfying:

P.1 L(0) - D, 0~ L(u) for u~ 0

P.2 x E L(u) ~ xl ~ x xl E L(u)

P.3 (x~0) ~[(x~0) ~ {3- 3 (ax) E L(u) }]
a~0 u~0

~1 3 a x E L(u)
u~0 a~0

P.4 u2 ~ ul ~ 0 ~ L(u2) C L(ul)

P.5 n L(u) - L(uo) for uo ~ 0
O~u~u- - o

)i D-{x ~ x~ p, x E Rn}

i )
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P. 6 ~ L (u) - ~
u~0

p, ~ .d L( u) is closed
u~0

p,g ~ L(u) is convex
u~0

P,9 ~. E(u) is bounded
u~0

(2.1.4) Proposition:
The production function ~(x) - Max {u ~ x E L(u), u~ 0},

x E D, defined on the inputsets L(u) of a technology

with the properties P.1,...,P.9, has the following pro-
perties:

A. 1 4~ (0) - 0

A.2 ~ : ~(x) is finite
X E D

~ ('X1 ) ~ ~(X)

A.4 ií ~ {K ~ ~(ax) ~ 0} : lim ~(ax) - f ~

( x~0) x~0 a~0 a-'t~

A.5 ~(x) is upper semi-continuous on D.

A.6 ~(x) is quasi-concave on D.

z

z)

The function ~(x) is upper semi-continuous at a point
xo, if and only if for all e~ 0 there exists a neigh-
bourhood Ne(xo) of no such that x E NE(xo) implies
~(x) ~ ~(xo) f e.

) A numerical function ~(x) defined on a convex subset
D c Rn is guasi-concave on D if for all points x and
y of D.
~{(1-0)xt0y} ~ Min [~(x), ~(y)] for all 0 E[0,1]



- 4 -

2.2 External diseconomies---------------------
It is well known that external diseconomies can occur
during the production of a desired commodity. In a techno-
logical sense an external diseconomy is an (adjoining-)
output of a productionprocess. Economically an external
diseconomy should rather be interpreted as use of relati-
vely scarce means and hence be considered as input of a
productionprocess.
Now conditions will be formulated, for which external
diseconomies can be treated as inputs in a production-
structure à la Shephard. Then a"production function" is
introduced, by which the external diseconomies can be
eliminated. The properties of this function will be such
as to enable us to construct a new Shephardian production-
structure with external diseconomies treated as inputs.
Finally a production technology will be considered for
which the external diseconomies are bounded by an upper-
limit.

2.3 The-e.d.g--function

A relation is assumed between the level of the external
diseconomy and the outputrate u of the productionprocess.
There may be several diseconomies involved, so for each
external diseconomy i(i - l...m) an external diseconomy
generating (e.d.g.) function is defined with u as the
independent variable. The properties of these functions
f.(u) are assumed to be:i

f.l Ki : fi(0) - 0

f.2 Fli : u~ 0 ~ fi(u) ~ 0

f.3 á. i . u'' u fi(u') ? fi(u)

f.4 iii : fi(u) is finite for finite u

f.5 Eii : if u-~ ~, then fi(u) i~
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Clearly these properties are not highly restrictive, so
the choisespace for specification of the e.d.g.-function
is relatively large.

2.4 The construction of-L~uL------------------
Summing up the levels of the external diseconomies in the
vector z-( zl...zm) and the levels of the e.d.g.-functions
in the vector F(u) -{fl(u),...fm(u)} the following defini-
tion can be stated:

(2.4.1) Definition:
A vector (x,z) belongs to the productiontechnology L(u),
if x belongs to a technology L(u) with properties P1,...P9
(2.1.3) and if z~ F(u), so:

L(u) -{(x,z) ~ x E L(u), z? F(u)}, (x,z) E Dnfm

Now the proof is given, that L(u) is satisfying the proper-
ties P.1...P.9 of a Shephardian technology.

P.1 For u- 0; à' : x E L(u) See P.1
x E Dn

; F(u) - 0(fl) ~ K : z~ F(u)
z E D -m

For u~ 0; 0~ L(u) See P.1 ~ x~ 0 l

~ (x,z)~0 :.0 ~L(u)
; F(u) ~ 0 (f2)

P.2 ( x, z) E L(u) ~ x E L(u)

(X`,Z~) ? ~X,Z)~ xl ~ x

z ~ 0

~ Y1FT.IIIÍ COG p 7;
~ z1~F(ul

( x, z) E L(u) ~ z~ F(u)

(x',z') ~ ( x,z)~ Z1 -

~ (xl,zl) EL(u)
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P.3 For (x,z) ~ 0; x~ 0 so ~ ~ : al x E L(u). See P.3
u~0 a1~0

; z~ 0 so `d ~ : az z~ F(u) .
u~0 az~0 -

Le~: ao - Max [ alaz] so:

~ ~ : ao x E L(u). See P.2
u~0 ao~0

`d 3 : ao z ~ F(u).
u~0 ao~0 -

Consequently for (x,z) ~ 0:

`d ~ : ~o ( x,z) E L(u)
u~0 ao~0

For (x,z) ~ 0 three cases should be distinguished:

a. x- 0 and z~ 0. This case can be ignored for x- 0~ L(u)
if u~ 0. See P.1

b. x~ 0 and 3 i' zi - 0. This case can be ignored too, for
zi - 0~ fi(u) if u~ 0. See (f2)

c. x~ 0 and z~ 0

if x~ 0 and ~ ~ : á x E L(u)
a~0 u?0

if z ~ 0

then ~ ~ : al x E L(u). P.3
u~0, a1~0

then K ~ : az z~ F(u)u~0, ~z~0 -

Let ao - Max [aiazl so ~ ~ :~1o x E L(u). P.2
u~0, ao~0

K 3 : ao z~ F(u)
u~0. ao~0 -
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Consequently for (x,z) ~ 0 holds:

If ~ ~ :~(x, z) E L(u) , then ti 3 ao (x,z) E L(u)
a~0 u~0 u~Q ~o~Q

P.4 For u2 ~ ul ? 0;

If x E L(u2) then x E L(ul). See P.4

; F(u2) ~ F(ul). See (f3) ~ If z~ F(u2), then z~ F(ul) ~~

If (x,z) E L(u2), then (x,z) E L(ul).

Consea,uently L(u2) C L(ul)

p.5 n L(u) - L(uo). See P.5
O~u~u- - o ~ n L(u)-L(uo)

n {z~z ~ F(u)}-{z~z ~ F(uo)} See (f3)I Q~u~uo
O~u~u )- - o

P.6 n L(u) - ~. See P.6
u~0

n L(u) - (6
n {z~z ~ F(u)}-{z~z ~ ~} - y~ u~0

u~0 - -
- Due to (f3) and (f5)

P.7 ~-: L(u) is closed. See P.7 1
u~0 I

~ ; {z~z ~ F(u)} is closed
u~0 -

~ ~ ~ : L(u) is closed
u~0

P.8 (x,z) E L(u) ~ x E L(u) ii ;~xf(1-a)y E L(u)

~~ ~ E [0,1] See P.8(Y,w) E L(u) ~ Y E L(u)
~

(x,z) E L(u) ~ z~ F(u) ~ : azt(1-a)w ~ F(u)
- ~ a E [Q~1] -

(Y~w) E L(u) ~ w ~ F(u)
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à' : a(x,z) f(1-a) (Y~w) E L(u)a E [ 0,1]

Hence: ~ : L(u) is convex.

(2.4.2) Definition:
The efficient subset E(u) of L(u) is given by
E(u) -{(x.z) ~(x,z) E L(u) ~(Y~w) ~(xrz) ~(Y~w) 4~ L(u) }

Clearly:

E(u) -{(x,z) I x E E(u) , z- F(u) }

P.9 ~ : E(u) is bounded. See P.9
u~0

{z~z - F(u)} is also bounded by (f4)~
~ ~ ~u~~. E(u) is bounded

2.5 The e.d.e.-function-------------------
It is assumed that an external diseconomy can be eliminated
partially or entirely by employing some combination of
productionfactors. Hence for each external diseconomy i
(i - l...m) an external diseconomy eliminating (e.d.e.)
-functíon is defined with x as independent variable. The
properties of these functions gi(x) are assumed to be:

g.l
~i : gi (x) - 0 for x ~ 0

g.2 ~i . gi(x) is finite for finite x

g.3 Fli : xl ~ x ~ g. (xl )~ g. (x)- i i

g.4 `di . if x i~ then g(x) i~i

9.5 Ki : 4i(x) is concave on D.

i

i )

) A numerical function g(x) defined on a convex subsetD~Rn is concave on D~if for all points x and y of D,
g{(1-0)xf0y} ~(1-0)q(x)tOg(y) for all 0 E[0,1].
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The last one of these properties is very restrictive. It
is introduced to prove the convexity of the sets to be
constructed. Economically property 5 restricts the speci-
fication of the e.d.e.-function to the class of production-
functions of non-increasing returns to scale.

2.6 The construction of L~u~---------------------

(2.6.1) Definition:
A vector (x,z) belongs to a productiontechnology L(u), if

there exists such a(mfl)-partition of x that xo belongs
to a technology L(u) with properties P.1...P.9 (2.1.3)

and if for all i(i - l...m) holds:

zi ~ fi(u) - gi(xl) ? 0, hence

L(u) -{(x,z)~xo E L(u), zl ~ fi(u) - gi(xl),

m
E xl - x, x1 ? 0} ~ Dnfm

i-0

Analogously the reasoning in (2.4) it can be proved that

L(u) is satisfying the properties P.1...P.9 of a Shephar-
dian technology. Only the property of convexity will be
proved here:

P.8 (x,z) E L(u) ~ xo E L(u)
~.d1E[ 0.1]

:axof(1-a)Ya E L(u)

(Y,w) E L(u) ~ yo E L(u) See P.8 (a)

(x,z) E L(u) ~ zi ~ fi(u) - gi(xl)1
w ~

(Y,w) E L(u) ~ wi ~ fi(u) - gi(yl)~

~ d : azit(1-a)wi ~ fi(u) -[ agi(xl)t(1-~)gi(Yl)] 1aE[ 0,1] I
But due to ( g.5) ~ ~

~ : agi(xl)f(1-a)gi(Y1) ~ gi [ ~xlt(1-a)Y11
aE[ 0,1]
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~ tl : azit(1-a)wi ~ fi(u) - gi [axlt(1-a)Yll (b)
aE[ 0, 11

DIOreover :

m
E xl - x

i-0 m
~ E [ axlt (1-a ) Y1] - ~xt (1-a ) y for aE[ 0 ,1]

m i-0
E Y1 - Y

i-0

xlt(1-a)yl ~ 0 for aE[0,1]

~ ~ : a(x,z)t(1-a) (Y,w) E L(u)
(b) aE[ 0,1]

(a)

0
2.7 The construction of L~ulzZ------- ---------

Now we are able to construct a technology, for which the
external diseconomies are bounded by a certain upper-limit.
Let z-(z,...zm) be the vector, summing up the upper-limits
of the external diseconomies.

(2.7.1) Definition:

1. Bz -{(x,z) ~ x E Dn, z- z}

2. B(u,z) - L(u) ~ Bz

3. C(u,z) - B(u,z)-(O,z) i. e. (x,z) EB(u,z) p x E C(u,z)

1

Both Bz and B(u,z) are defined in Rntm, while C(u,z) is
defined in Rn by a minor transformation.
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(2.7.2) Definition: 0
A vector x belongs to a productiontechnology L(u,z) wíth
bounded external diseconomies, if there exists such a
(mtl)-partition of x, that xo belongs to a technology
L(u) with properties P.1...P.9 (2.1.3) and if for all i
(i - l...m) holds:

zi ~ fi(u) - gi(xl) ~ 0, hence:
o - m
L(u,z) -{x~xo E L(u), zi ? fi(u) - gi(xi), E xl - x, xl~o}

i-0

- {x~x E C(u,z)}
0 0

It is easy to see that L(u,z) c L(u). For if x E L(u,z),

then xo E L(u) and as x~ xo, so x E L(u) due to P.2.
- o

Along analogous lines it can be proved that L(u,z) is
0 0

satisfying the properties P.1...P.9 of a Shephardian
technology.

2.8 Linear-homogeneous-productionfunctions:------ ---- - - ------------

A productionstructure is said to be linear homogeneous,
if the productionfunction defined on it is linear homo-
geneous. We will state the conditions, for which the0
constructed technologies L(u), L(u) and L(u,z) are homo-
geneous of degree one. First we state:

(2.8.1) Proposition:
If a productionfunction ~(x) with properties A.1...A.6
is positively linear homogeneous in x, for all a~ 0
holds: if x belongs to the productioninputset L(u), that
is associated with ~(x) i.e. L(u) -{x~~(x) ~ u}, then
ax belongs to L(au).

Proof:

If x E L(u) then ~(x) ~ u. So for all a~ 0: a~(x) ~~u
~(x) is linear homogeneous, hence ~(ax) ~ au so ax E L(au).
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L(u) is linear homogeneous if (x,z) E L(u) implies
a(x,z) E L(au) for a~ 0.

(x,z) E L(u) ~ x E L(u). a x E L(au) for L(u) is linear
homogeneous

~ z~ F(u) . So az ~ a F(u) for a~ 0.

- Hence az ~ F(au) if for all a~ 0:
a F (u) ~ F (au)

Hence L(u) is linear homogeneous for all u~ 0 if:

1. ~ : L(u) is linear homogeneous.
u~0

2. ~ ~ : a F(u) ~ F(au) i.e. a F(u) - F(au).
u~0, a~0 -

Hence all the e.d.g.-functions should be positively linear
homogeneous.

By the same way of reasoning one can state that L(u) is
linear homogeneous for áll u~ 0 if:

1. ~ : L(u) is linear homogeneous.
u~0

2- FI d ~d : a fi(u) ~ fi(au) .'. a fi(u) - fi(au)
u~0, a~0, i

3. Xi,O ~~,0 ~: agi(xl) ~ gi(axl) .'. a gi(xl) - gi(axl)
- ~ - ~

All e.d.g.- and e.d.e.-functions should be positively
linear homogeneous.

Finally it will be proved, that no conditions can be stated0to quarantee L(u,z) to be linear homogeneous.
0

Let x E L(u,z) i.e. zi ~ fi(u) - gi(xl) for all u~ 0.

Consider a~ 1 so zi ~~ fi(u) -~ gi(xl) for all u~ 0
0
L(u,z) to be linear homogeneous, it should hold:

Zi ~ fi(au) - gi(axl)
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~~ fi(u) - fi(au) for all u~ 0. In accordance to (f.3)
and (f.5) these conditions cannot be
satisfied. This completes the proof.

2.9 An alternative e.d.g--function------------------- -----

By assuming the level of the external diseconomies being
determined exclusively by the outputrate u of the produc-
tionprocess, we are neglecting the possible influence of
the specific production method selected from the produc-
tionpossibilities on the level of the external diseconomies.
It can well be imagined, that in a two-factor technology
a more capital intensive productionmethod causes a higher
level of external diseconomies than a more labour intensive
productionmethod, both methods yielding the same output-
rate u.
Now an alternative e.d.g.-function will be defined.

(2.9.1) Definition:
For each external diseconomy i(i - l...m) of a production-
process an e.d.g.-function hi(x) is defined, x being the
(efficient) inputvector of the productionprocess, satis-
fying the following properties:

h.l ~ : hi(0) - 0
i

h.2 ~: x~ 0 ~ hi (x) ~ 0
i

xl ~ x ~ hi (xl ) ~ hi (x)

h.4 ~: hi(x) is finite for finite x
i

h. 5 ~: If xi -~ ~, then hi (x) -~ ~
i
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h. 6 EI : hi ( x) is convex on D.
i

The propertíes h.l...h.5 correspond to the five properties
of the orginal e.d.g.-function. The last one is introduced
to prove to convexity of the sets to be constructed (cfr.2.4).
Economically we are dealing with a case of non-decreasing
returns to scale.

2.10 The-construction-of-L1(u)--- ----- - ---- -- -

Summing up the levels of the alternative e.d.g.-function
in the vector H(x) -{hl(x), h2(x)...hm(x)} we can state
the following definition:

(2.10.1) Definition:
A vector (x,z) belongs to a productiontechnology L1(u),
if x belongs to a technology L(u) with properties P.1...P.9
(2.1.3) and if z~ H(xl), x~ ~ x and ~(xl) ~ u. Hence:

L1(u) -{(x,z) ~ x~ xl~ ~(xl) ? u, .z ~ H(xl)} (x,z) EDntm
-{(x,z) I x ~ x, xl E L(u), z~ H(xl)}

-{(x,z) I x~ xl, xl E E(u), z ~ H(xl)}

Along similar lines of reasoning as before it can be proved
that L1(u) is satisfying the properties P1.1...P1.9 of a
Shephardian technology. Only the property of convexity
will be proved here:

P1'8

(x,z) E L1 (u) ~ x1E L(u) ~

(Y,w) E L1(u) ~ YIE L(u) ~~~E[ 0,1]
. x f(1- )Y L(u) See P.8

i ) The function h(x) is convex on D if for all points
x and y of D, h{(1-0)xt0y} ~(1-0) h(x) t 0 h(y) for
all 0 E[ 0,1] . -
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(x,z) E L1(u) ~ z~ H(xl)
azt(1-a)w~aH(xl)t(1-~)

(Y,w) E L1(u) ~ w~ H(Y1) ~E[0,1]. - H(Y1)~ ~ I

But due to (h.6) á' : H{~xlt(1-a)yl}~~H(xl)t
aE[0,1] (1-a)H(Y1)

~ ~ : azt(1-a)w ~ H{~xlt(1-a)yl}
~E[ Q, 1] -

Moreover: xl ~ x~ axl ~ ax
- - ~ ~xlt(1-a)Y1 ~ ~xt(1-a)~~

yl ~ y ~ (1-a)yl ~ (1-a)y -

Hence: ~ : a(x,z) f(1-a)(Y,w) E L1(u)
aE[ 0,1]

Consequently: F~ : L1(u) is convex
u~0

0
2.11 The construction of-Ll~u) and L1SulzZ------------------ - --------

Evidently in the same way as constructing an alternative0
for L(u), an alternative definition for L(u) and L(u,z)
can be formulated.

(2.11.1) Definition:

L1(u) -{(x,z) ~ Yo~xo, YoE L(u), zi?hi(yo) - gi(xl).

m
E xl - x, x1~0} ~ Dntmi-0

(2.11.2) Definition:
o - -
L1(u.z) -{x ~ yo~xo, yoE L(u). zi?hi(Yo) - gi(xl).

m
E xl - x, x1~0}

i-0 -

M

The properties P.1...P.9 of (2.1.3) hold for these techno-
logies too. As far as the linear homogenity of L1(u) is
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concerned: this property is satisfied if (x,z) E L1(u)
implies a(x,z) E L1(au) for a~ 0

(x,z) E L1(u) ~ xl ~ x, xl E L(u)

axl ~~x, axl E L(~u) for L(u) is linear
homogeneous

az ~ aH(xl), a ~ p

az ~ H(axl) if for all a~ 0:
- aH(xl) ~ H(axi)

Hence L1(u) is linear homogeneous for all u~ 0 if:

1. il : L(u) is linear homogeneous
u~0

2- ~í `i : aH(xl) ~ H(xl) i.e. aH(xl) - H(axl).
u~0, a~0 -

Hence all the alternative e.d.g.-function should be
posivily linear homogeneous.
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PART 3

Pricetheory

3.1 Introduction

Now we have studied the conditions for which external
diseconomies can be treated as inputs in a production-
technology, we are heading for the problem of integration
in the dual productionstructure, the pricestructure.
Considering external diseconomies as utilization of
relatively scarce means, the question of their economic
evaluation i.e. their pricing can't remain unanswered.
In the productionstructures L(u) and L1(u) the external
diseconomies can be considered as inputs of a production-
process that can be substituted partially or entirely
for "common" productionfactors.
Clearly there is a factorminimal cost function for the
productionstructures mentioned above (See [4] page 79).
Hence the economic evaluation of external diseconomies
- e.g. expressed in taxation on causing them - together
with a given price-vector for the "common" production-
factors, influence the choise of the optimal combination
of inputs, "common" factors as well as external disecono-
mies, for yielding some outputrate of the production-
process, provided the condition of cost minimizing behavi-
our.
It will be shown that given some outputrate of the desired
commodity such a minimal taxation or price for the exter-
nal diseconomies can be established, that provided the
pricevector for "common" factors and the condition of
cost minimizing behaviour, the level of external disecono-
mies in the optimal inputvector is not exceeding a given
maximum.
Some remarks will be made on the relation between the
minimal taxation and the outputrate of the production-
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process, the maximum that should not be exceeded and the
pricevector of the "common" factors.
Finally the interpretation of the model will be discussed.
Then we will get in touch with welfare economies by intro-
ducing a social utility function.

3.2 A-particular-hyperplane

(3.2.1) Proposition:
If C E Dn}m is a convex, closed set, whose elements are
denoted as (x,z) for x E Dn and z E Dm and p E Dn is a
pricevector and z E Dm is a maximumvector, there exist
a taxationvector q E Dm, an element (x,z) E C and a scalar
R in such a way that p x t q z- S

and p x t q z ? 6 for ( x,z) E C.

Proof :

Let A-{(x,z) ~ x E Dn, z- z}. A is convex and closed.
Consider A n C. (See fig.l). A ~ C is convex and closed;
hence there exist a point (x,z) E Bnd (A~C) and a scalar
a in such a way that p x- a

and p x~ a for (x,z) E A ~ C.

Let B-{(x,z) ~ p x- a,-z - z}. B is convex and not
empty (fig.l). Let Int C be the set of interior points
of C; Int C is convex. Clearly B n Int C-~D.
Since B and Int C are two convex, disjunct, non-empty
sets in Rn}m, there is according to the first separation-
theorem of Berge [1] a hyperplane V, separating both sets.
So there exist a p E Dn, a q E Dm and a S E Re such that

V-{(x,z) ~ p x f q z- g}

p x t q z ~ s for ( x,z) E Int C

p x f q z ~ s for (x,z) E B
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The sets B and C have (x,z) in common, so certainly
(X,Z) E V.
Let V1 - V ~ A i.e. V1 -{(x,z) ~ p x t q z- S},

V and V1 are invariable for scalar multiplication of p,
a and S, so V1 is always reducible to V1 -{(x,z) ~ px - a}.
There is left to prove that p- p i.e. B- V1. B and V'
both being (nfm-1)-dimensional hyperplanes in P.n}m, it is
sufficient to prove: B c V1.
Suppose (x,z) E B i.e. p x- a, z- z.

Let x- x f xr. Hence p x- p x f p xr ~ a- a t p xr ~

It holds that ( y,z) -(x-xr, z) E B, for p y - p x- p xr - a

If (x,z) E B then px~a ~ pxfpxr~a ~ pxr~0
} ~ pxr - 0

(y,z) E B then py~a ~ px-pxr~a ~ pxr?0 I

Hence px - py - a.
So (x,z) E B implies (x,z) E V1. This completes the proof.

3.3 The construction of the taxationvector at LSuZ-------------------------------------------

Since ~(u) is a convex closed set in Dntm (See 2.6), now
we can state that given p E Dn and z E Dm there exist an
element (x,z) E L(u), a vector q E Dm and a scalar S in
such a wav that:

p x t q z- S

It will be shown how to construct q and s. For all i
(i - l...m) fi(u) - gi(xl) ~ zi should hold. For every
u fi(u) is uniquely determined, hence ti - fi(u) - zi
is uniquely dPtermined, so gi(xl) ~ ti should hold.
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Consider Si -{(xi, ti) ~ xi E Dn, 0 ~ ti ~ gi(xl)}.
Since function gi(.) is concave, Si is convex. Let
Ti -{(x1, ti) ~ xl E Dn, ti - ti}. Also Ti is convex.
Hence Si n Ti -{(xi, ti) ~ xl E Dn, gi(xl) ? ti} is
convex (fig.2).
So given p E Dn there exist a point (xi, ti) E Bnd
(Si n Ti) and a scalar ai in such a way that:

P xl - ai

and p xl ~ ai for (xl, ti) E Si n:'i.

Construct Ui -{(xl, ti) ~ 3 : xl - axl, ti ? 0}.
a~0

Ui is convex.
xence Si n Ui- {(xl~ ti) ~ 3 - xl - axi, 0 ~ ti ~ gi(xi)}
is convex.
In two dimensions one can reformalate Si n Ui as:

Si n Ui -{(~,ti) ~ xl -~xl, 0 ~ ti ~ gi(xl)} (Fig.3)

Since Si n Ui is convex, a scalar bi exists in such a
way that ti -(ti - bi) a t bi is a tangent line of
Si n Ui in ( xi, ti) and ti ~(ti - bi) a t bi for
(xi, ti) E Si n Ui.

We search for the supporting hyperplane (p xi t qiti - Si),
spanned by the hyperplane pxi - ai and the line
ti -(ti- bi) a t bi.

(xl,ti) E hyperplane, so Pxi t qiti - Si ~ ai f 4iti - Si

(O,bi) E hyperplane, so qlb. - s ~~i i i

a. a.b
~ qi - 1 and S, - i i

bi-ti 1 bi-ti



P4oreover the convexity of L(u) implies, given p, the
existence of a point xo and a scalar ao in such a way that
p xo - ao and p xo ~ ao for xo E L(u).
The final equation of the supporting hyperplane of L(u)
at (x,z) can be deduced as follows:

a. a.b.
For all i(i ~ 0) holds: p xl t 1 t- 1 1

b.-t. 1 b.-t.i i i i
For i- 0 holds: p xo - ao

m
Since E xi - x and ti - fi(u) - zi c.q. t- F(u) - z

i-0
one can state:

m a.b.
p x f q' (F (u) - z] - ao f E 1 1 -

i-1 bi-fi(u) f zi

Let q - -ql; hence
m a.

p x f q z- a f E 1 - [ b.-f .(u)]
o i-1 bi-fi(u) f zi i i

a a am1 2 --- ~
f (u)-z -b f (u)-z -b fm(u)-zm-bmi i i 2 z z

(3.3.1) Remark:

There may be circumstances that the concavity of the
e.d.e.- function can be restricted to a subset of D.n
Then the reasoning is not carried out, based on
Si -{(xl,ti) ~ xi E Dn, 0 ~ ti ~ gi(xl)}, but based on
the convex hull of Si. If the hyperplane to be constructed
is supporting this convex hull at a point also belonging
to Si, the taxationvector is suitable to restrict the
external diseconomies to the fixed maximum. See fig.4.

(3.3.2) Remark:

The existence of a taxationvector does not necessarily
imply its uniqueness. In fig. S you see a situation of a
infinite number of supporting hyperplane of Si ~ Ti
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at (xl,ti). Evidently a closed interval [bi,bi] ~(O,ti]
can be found to quarantee for all bi E[bi,bi] the exi-
stence of a suitable taxation. We remind you that we
were looking for a minimal taxation, suited to restrict
the external diseconomies--Clearly the choise of bi as
smallest in the interval [bi,bi] implies a minimal value
of the taxation qi.

(3.3.3) Remark:

The set Si n Ti may not be strict convex in (xl,ti) i.e.
-i(x ,ti) is not an extreme point of Si ~ Ti. Fig. 6.

The points on the linesegment PQ are indifferent for the
costminimizing producer. So only an elimination ti ~ ti
may occur. If (xl,ti) coincides with P, bi can be main-
tained for the construction of ~he taxation, but for
all other positions of (xl,ti) on the linesegment PQ a
very small increase of bi to bi f e(e~0) will enlarge
the elimination of the external diseconomie to ti ? ti'
In such a situation a minimal taxation can't be found,
merely its infimum or greatest lower bound.

3.4 The ro erties of the taxationvector.----P--P----------------------------
The relation existing between the level of the minimal
resp. infimal taxation and on the other hand the price-
vector of the '~common" factors, the outputrate of the
productionprocess and the upperlimit of the external
diseconomy, can easily be deduced from the method of
construction in the preceeding paragraph. Since accor-
ding to the e.d.g.-function the outputrate and the esta-
blished maximum are uniquely determining the necessary
level of elimination, it is sufficient to consider the
convex graph Si of the e.d.e.-function to study the
taxationproblem, like we did in the preceeding paragraph.
That constructionmethod shows that for each combination
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of u, z and p, provided u~ 0, z~ 0 and p E Dn, a mini-
mal or infimal taxation qi can be found uniquely.
Hence qi is a function of each combination (u,z,p) and
a fortiori a function of each of the elements of this
combination, both others fixed.
Evidently the specification of this function depends on
the concrete formulation of the relevant e.d.g.- and
e.d.e.-function. Nevertheless some properties of this
function can be stated.

Provided u~ 0 and z~ 0, q is a function of p E D satis-
fying:

p. l If p- 0

p.2 If p ~ 0

For ~ : fi(u) ~ zi
i

qi - 0 (minimum)

For ~ : fi.(u) ~ zii
qi - 0 (infimum)

For ~,: fi(u) ~ zi qi - 0(minimum)i

For ~: fi(u) ~ zi qi ~ 0(min. or inf.)i
This is necessarily implied by the proper-
ties (f.4) and (f.5) of the e.d.e.-func-
tion.

p.3 If p~ 0 ~ For ~: fi(u) ~ zi
i

For ~ : f i (u) ~ zii

qi - 0 (minimum)

and p~ - 0 for every

essential productionfactor x~, then qi - 0
(inf.)

For y: fi(u) ~ zi and an essential pro-
i

ductionfactor x~ exists with p~ ~ 0 then
qi ~ 0 (min. or inf.)
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p.4 If p2 - ~pl q2 -~ql. For all i(i - l...m) holds

p xl - ai ~(~pl) xl - aai ~ q2 -~qti
since both bi and ti remain unchanged.

p.5 If p ~ f ~ q~ t W. For all i(i - l...m) holds:

p -. ~ ~ ai ~ ~; (ti-bi) is always

finite, hence q -~ ~.

If p. i-~ ~ for xl is essential ~ q. -~ }~. The proof
J 7 1

is analogous.

p.6 If p is finite, then q is finite. For all i(i - l...m)
holds that, for finíte u, ai is finite,
(ti-bi) is always finite, so q is finite.

Provided p E Dn and z~ 0, q is a function of u~ 0
satisfying. -

u.l If u- 0 ~ q- 0 ( minimum)

u. 2 If u~ 0 For ~i: fi(u) ~ zi qi - 0(minimum)

For ~: fi(u) ~ zi and an essential pro-
i

ductionfactor x~ exists with p~ ~ 0 then
qi ~ 0 (min. or inf.).

For ~ : fi(u) ~ zi and p~ - 0 for every
i

essential productionfactor x~, then qi - 0
(inf.)

u.3 If u i f m ~ If p~ - 0 for every essential production-
factor x~ then qi - 0(inf.). If an essen-
tial productionfactor x exists with

]
p. ~ 0 then qi i f~.J

u.4 If u is finite, q is finite too. fi(u) is finite. (See
f.4), hence according to (g.2) ai is finite
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too and so qi is finite. This reasoning
holds for all i (i - l...m).

Provided p E Dn and u~ 0, q is a function of z~ 0
satisfying:

z.l If z. - 0 ~i

z.2 If z. ~ 0i

z.3 If z. -~ t ~i

If u- 0 then qi - 0(minimum).

If u~ 0 and an essential factor x~
exists with p~ ~ 0 then qi ~ 0(min. or
inf.), since ~,: fi(u) ~ 0(See f.2).

i
If u~ 0 and p~ - 0 for every essential
factor x~, then qi - 0(inf.).

If fi(u) ~ zi then qi - 0(minimum).

If fi(u) ~ zi and an essential factor x~
exists with p~ ~ 0 then qi ~ 0(min. or
inf.).

If f.(u) ~ z. and p. - 0 for every essen-i i ~
tial factor x~, then qi - 0(inf.).

~ qi -~ 0. This is necessarily implied by z.2.

z.4 If zi is finite, qi is finite too. This is necessarily
implied by z.2 and (g.2).

(3.4.1) Remark:

If the e.d.e.-function is positively homogeneous of degree
one i.e. `~~~0 gi(axl) - agi(xl), the set Si -{(xl,ti) ~
i - ix E Dn, 0 ~ ti ~ gi(x )} is a convex cone, Nence the inter-

section Si ~ Ti is a convex cone, spanned by the vectors
(x1,0) and (xl,ti). See fig. 7. The slope y depends on p.

ai
Clearly bi - 0, hence qi - .

t.i
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Provided p, qi is identical for all ti ~ 0. Choose arbit-
rarely ti ~ 0. Let ti - uti(u~0). According to the homo-
genity of the e.d.e.-function one can state xl - Uxl

and ái - uai'
ái ai

Hence qi - - - -.
t. t.i i

This value of qi is the infimal taxation. Fstablishing
the taxation on qi t e(e~0) implies the complete elimi-
nation {fi(u)} of the external diseconomy.

3.5 The-taxationvector-at-L1(u).--- ------ ------- -- -
Since L1(u) is a convex closed set in Dn~m (See 2.11),
we can state too, that provided p E Dn and z E Dm there
ex.ist an element (x,z) E L1(u), a vector q E Dm and a scalar
(3 in such a way that:

p x f q z~ B for ( x,z) E Í:1 (u)

Hence there is no doubt that for the productionstructure
L1(u) too a minimal resp. infimal taxationvector can be
found to restrict the level of external diseconomies.
But unfortunately, in this alternative situati~n a simi-
lar constructionmethod as in paragraph 3.3 is not avai-
lable. There we could study separately the pricesystems,
belonging to the technology of the desired commodity,
L(u), and the distinct eliminationprocesses, and by summa-
tion integrate them in the final dual structure.
But now it is not impossible, that a inputvector xo, yiel-
ding minimal costs p xo- ao for some pricevector p with
respect to L(u), causes a high level of external disecono-
mies 4~ith high elimination costs So, while a suboptimal
inputvector xa with costs p xo ~ p xo ~ ao,
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can cause a relatively low level of external diseconomies
with eliminationcosts lower than Bo. In the latter situa-
tion total costs may be lower.
Although it is possible to find a minimal costprice
p x f q z- R, a constructionmethod based on a separate
treatment of the productiontechnology L(u) and the several
eliminating processes cannot be applied here.

3.6 The interpretation-of-the-model-~micro-economicallyZ--------- --------------
To avoid situations, mentioned in remarks (3.3.2) and
(3.3.3), we suppose strict convexity of the production-
structure. Moreover we restrict the story to L(u), since
all remarks hold for Ll(u) too, but according to the
preceeding paragraph in a more complex manner.
If the taxationvector q is established as z not to be
exceeded, the producer is facing the following costs:

m
p x t q z- p xa f p E xl t q z

i-1

p xo : the minimal costs of producing outputrate u
of the desired commodity.

m
p E xl : minimal costs of eliminating the external

i-1 -diseconomies to z.

q z : additional charge for the level of external
diseconomies.

Now we compare the situations before and after the intro-
duction of the taxationvector q.
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before -
P1 - ~

factorpayments p xo sales plu - u

after (Case I)

factorpayments p x
tax q z

sales pZu
taxrepayment qz

after (Case II)

factorpayments p x ~ --'-- -3-- u

tax q z I

We assume these confrontations to balance, e.g. due to
competitive market conditions. For the moment we also
assume the outputrate being fixed on the level u; i.e.
demand is inelastic.
Before the introduction of the taxation the production-
costs amount to p xo, while by setting the sellingprice
to pl the turnover just equals the costs.
The situation afterwards can be considered in two differ-
ent ways.
First one can say that - provided a maximum level of
external diseconomies established and not exceeded by the
producer - it is unreasonable to charge him with an addi-
tional amount q z. This amount should be repaid by the
taxreceiver (Case I). Then the sellingprice p2 yields a
turnover equal to the production- and eliminationcosts.
The amount q z may however be considered as compensation
for causing external diseconomies; it is true the maxi-
mum level is not exceeded, but nevertheless relatively
scarce means are used and that should be paid for.

p3 - p x f q z
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In the latter case (II) the sellingprice p3 should be
higher to cover this compensation too.
In this case the taxation q is not only an instrument
to avoid too much pollution etc., but also an instrument
to fill the public treasury.

Assuming the taxreceíver to repay the amount q z is
equivalent with assuming the producer to face the produc-

0
tionstructure L(u,z). By confronting the productionstruc-

0
tures L(u) and L(u,z) the increase of costs due to the
obliged elimination of external diseconomies can be shown
by a simple geometric relation (fig. 8). For L(u) as well

0
as for L(u,z) a factor minimal costfunction exists satis-
fying:

Q(u,p) - G Y1 II . N p II for p~ 0

0
~(u,p,Z) - II y2 N . II p N for p~ 0 See ([ 4] , page 81)

Hence the increase of costs, expressed in orginal costs,
equals:

o -
Q(u~P~z) - Q(u.P) - tl Yz M-

4(u,P) ~ - p Yi Y
1

0
Since L(u,z) C L(u), II Y2 II ~ p Y1 II is true.

Note that not only the concrete specification of L(u)0
and L(u,z), but also the pricevector p E Dn influence
the relation between 1 Y2 1 and p Y1 ~'

The assumption of inelastic demand is clearly very un-
realistic. The preceeding argument is still valid, if
more realistic assumptions on demand are established.
Assume the existence of a normal i.e. decreasing demand-
function. On L(u) a f actor minimal costfunction Q(u,p)
is defined. A supply-function for u is easily deduced
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by assigning to each u~ 0 the value of Q(u,p)~u.
Under conditions of non-increasing returns to scale the
supply-function is non-decreasíng. See ([4], page 83, Q12).
The intersection of these functions determines the output-
rate ui and the price pl (fig. 9).
In (3.4) we showed, that, provided z E Dm and p E Dn, q is
a function of u. So for each u~ 0 a relevant q can be
found, hence a supply-function for u can be deduced from
the factor minimal costfunction Q(u,p,q) on L(u) by assig-
ning to each u~ 0 the value of Q(u,p,q)~u.
The intersection of this function and the demandfunction
determines the outputrate u2, the price p2 and moreover
the taxationvector q. (fig. 9)
The confrontation of proceeds and expenditures have to be
constructed now with respect to ul and u2. The discussion
about the repayment of q z remains unchanged.
Under assumption of inelastic demand more "common"
productionfactors have to be assigned to the production-
process than needed for the mere production of outputrate
u. It is reasonable to suppose an upper-limit to the
availability of the "common" productionfactors like capi-
tal and labour. Hence if all these factors were employed,
the shift of a certain amount of the factors to our
productionprocess necessarily reduces the aggregate
output in society. This statement holds clearly also for
situations of more elastic demand. In general one can state
that a decrease of the maximum level of external disecono-
mies is associated with a decrease of aggregate output. Now
the problem is, which combination of material output and
external diseconomies is optimal, and optimal in which way.
To give an answer to this question we interprete our model
in a macro-economic sense.

3.7 The-social utility-function
0The productiontechnologies L(u), L(u), L(u), L(u,z), L1(u),
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0
L(u) and L1(u,z) may be interpreted as blueprints ofi
technical possibilities of a macro-system. The problem of
aggregating the several outputs is ignored here; we are
dealing with one aggregate output which level is denoted
by u .
Consider Graph A-{(x,z,u) ~ u~ 0, (x,z) E L(u)}. The
closedness of L(u) implies the closeness of Graph A.
Let N-{(x,z,u) ~ u~ 0, z~ 0, x- x}. N is a closed set.
Consider M- Graph A ~ N-{(x,z,u) ~ u~ 0, x- x,
(x,z) E L(u)}.

M is the set of all those combinations of u and z that
are feasible with respect to the limited available fac-
tors (x - x). It will be shown that M is a compact set.

1) M is not empty. ( x,0,0) E Graph A; (x,0,0) E N;
hence ( x,0,0) E M.

2) ti is closed. Since Graph A and N are closed sets,
their intersection is also closed.

3) M is bounded. On L(u) a productionfunction F(x,z)
is defined. Choose arbitrarely (x,z,u)
E M. Hence 0 ~ u ~ F(x,z) i.e. ~(xo) ~ u

i - l...m zi ~ fi(u) -

~i, i - O...m xl ~ 0
m
E X

1-~

i X

i

Since xo ~ x, xo is finite and hence ~(xo) is finite (A.2)
en therefore u is bounded. Since 0 ~ zi ~ fi(u) and fi(u)
is finite for finite u, hence zi is bounded. So M is bounded.
Hence M is a compact set.

It is worth mentioning that the compactness of M has nothing
to do with the concavity of the e.d.g.-function. Substituting
L1(u) for L(u) doesn't alter the reasoning and an alternative
compact set can be found.
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The convexity of the alternative e.d.g.-function nor the
concavity of the e.d.e.-function are necessary.
Now that we have found the feasible set M, we have to
choose an optimum in it. So we need an objectfunction
to maximize.
We assume the existence of a social utility function.
According to the Weierstrass's Theorem the condition
of continuity of the social utility function is suffi-
cient to find at least once a maximum over the set M.
Moreover this maximum is a boundary point of the set M,
if some condition of monotonicity is satisfied i.e. the
combination (ulzl) is at least as preferable as the
combination (u2z2) with u2 ~ ul and z2 ~ zl.
Now that we have found a social optimum (u,z) for x- x,
we wish to inquire if this optimum is sustained by a
pricesystem with respect to L(u). Clearly the point (x,z)
is a boundary point of the set L(u). The convexity of
L(u) implies the existence of a pricevector (p,q) and a
scalar g in such a way that:

and p x t q z~ S for (x,z) E L(u)

So if this price- and taxation system is established, the
cost minimizing behaviour of the producers quarantees the
attainment of the social optimum.

(3.7.1) Remark:

The social utility function may attain a maximum more
than once over the set M. Hence the social optimum is
not necessarily unique. Therefore the sustaining price-
and taxation system is not unique too.
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