Tilburg University

Productionstructures and external diseconomies

van den Goorbergh, W.M.

Publication date:
1973

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
van den Goorbergh, W. M. (1973). Productionstructures and external diseconomies. (EIT Research Memorandum). Stichting Economisch Instituut Tilburg.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

W. M. van den Goorbergh

Productionstructures and external diseconomies

Research memorandum

TILBURG INSTITUTE OF ECONOMICS

 DEPARTMENT OF ECONOMICS

Productionstructures and External diseconomies
by
W.M. van den Goorbergh

PART I

Introduction

A modern and systematic treatment of the theory of cost and production functions was given by Shephard [4]. In the present paper an attempt is made to integrate the Shephardian productionstructures and the external diseconomies, that production can cause on consumption.
In part 2 of this paper the conditions for integration are studied and the construction of productionstructures with properties similar to that of Shephard's is carried out. In part 3 the possibility of restricting the level of external diseconomies by pricing is paid attention to. Some remarks will be made on the interpretation of the model in a macroas well as in a micro-economic sense. On this point the introduction of the concept of a social utility function is inevitable.

PART 2

Production theory

2.1 Introduction

The reader is assumed to be familiar with the concept of cost and production theory develloped by Shephard [4] . As a reminder the definitions and properties that play a major role in this paper are stated below:
(2.1.1) Definition:

A production inputset $L(u)$ of a technology is the set of all input vectors x yielding at least the outputrate u, for $u \in[0,+\infty)$.
(2.1.2) Definition:

The efficient subset $E(u)$ of a production inputset $L(u)$ is given by $E(u)=\{x \mid x \in L(u), Y \leq x \Rightarrow y \notin L(u)\}$.
(2.1.3) Definition:

A production technology is a family of inputsets T : $L(u), u \in[0,+\infty)$ satisfying:
P. $1 L(0)=D, 0 \notin L(u)$ for $\left.u>0 \quad{ }^{1}\right)$
P. $2 \quad x \in L(u) \wedge x^{1} \geq x \quad \Rightarrow \quad x^{1} \in L(u)$
P. $3(x>0) \vee\left[(x \geq 0) \wedge\left\{_{\bar{\lambda}>0} \bar{G}_{\bar{u}>0}(\bar{\lambda} x) \in L(\bar{u})\right\}\right] \Rightarrow$

P. $4 \quad u_{2} \geq u_{1} \geq 0 \Rightarrow L\left(u_{2}\right) \subset L\left(u_{1}\right)$
P. $5 \underset{0 \leq u_{0} \leq u_{0}}{\cap} L(u)=L\left(u_{0}\right)$ for $u_{0}>0$

1) $D=\left\{x \mid x \geq 0, x \in R^{n}\right\}$
```
P. \(6 \cap L(u)=\varnothing\)
P. \(7 \quad \mathrm{~L}(\mathrm{u})\) is closed
P. \(8 \underset{u \geq 0}{ } \quad L(u)\) is convex
P. \(9 \quad E(u)\) is bounded
```

(2.1.4) Proposition:

The production function $\Phi(x)=\operatorname{Max}\{u \mid x \in L(u), u \geq 0\}$, $x \in D$, defined on the inputsets $L(u)$ of a technology with the properties P.l,...,P.9, has the following properties:
A. $1 \quad \Phi(0)=0$
A. $2 \underset{X \in D}{ } \mathbb{V}: \Phi(\mathrm{x})$ is finite
A. $3 \quad \mathrm{x}^{1} \geq \mathrm{x} \Rightarrow \Phi\left(\mathrm{x}^{1}\right) \geq \Phi(\mathrm{x})$
A. $\left.4\left(\mathbb{V}_{x>0}\right) \vee \underset{x \geq 0}{\left\{\mathcal{V}_{\lambda>0}\right.} \mathrm{G}_{\lambda>0} \Phi(\lambda \mathrm{x})>0\right\}: \lim _{\lambda \rightarrow+\infty} \Phi(\lambda \mathrm{x})=+\infty$
A. 5 (x) is upper semi-continuous on D. 1)
A. $6 \Phi(x)$ is quasi-concave on D.
2)

[^0]
2.2 External_diseconomies

It is well known that external diseconomies can occur during the production of a desired commodity. In a technological sense an external diseconomy is an (adjoining-) output of a productionprocess. Economically an external diseconomy should rather be interpreted as use of relatively scarce means and hence be considered as input of a productionprocess.
Now conditions will be formulated, for which external diseconomies can be treated as inputs in a productionstructure à la Shephard. Then a "production function" is introduced, by which the external diseconomies can be eliminated. The properties of this function will be such as to enable us to construct a new Shephardian productionstructure with external diseconomies treated as inputs. Finally a production technology will be considered for which the external diseconomies are bounded by an upperlimit.

2.3 The_e.d.q.-function

A relation is assumed between the level of the external diseconomy and the outputrate u of the productionprocess. There may be several diseconomies involved, so for each external diseconomy $i(i=1 . . m$) an external diseconomy generating (e.d.g.) function is defined with u as the independent variable. The properties of these functions $f_{i}(u)$ are assumed to be:
f.l $\quad \forall_{i}: f_{i}(0)=0$
f. $2 \quad \mathrm{H}_{\mathrm{i}}: \mathrm{u}>0 \quad \Rightarrow \quad \mathrm{f}_{\mathrm{i}}(\mathrm{u})>0$
f. $3 \quad \forall_{i}: u^{1} \geq u \quad \Rightarrow \quad f_{i}\left(u^{1}\right) \geq f_{i}(u)$
f. $4 \quad \forall_{i}: f_{i}(u)$ is finite for finite u
f. $5 \quad \forall_{i}:$ if $u \rightarrow \infty$, then $f_{i}(u) \rightarrow \infty$

Clearly these properties are not highly restrictive, so the choisespace for specification of the e.d.g.-function is relatively large.

2.4 The_construction_of_L̄(u)

Summing up the levels of the external diseconomies in the vector $z=\left(z_{1} \ldots z_{m}\right)$ and the levels of the e.d.g.-functions in the vector $F(u)=\left\{f_{1}(u), \ldots f_{m}(u)\right\}$ the following definition can be stated:

(2.4.1) Definition:

A vector (x, z) belongs to the productiontechnology $\bar{L}(u)$, if x belongs to a technology $L(u)$ with properties Pl,...P9 (2.1.3) and if $z \geq F(u)$, so:

$$
\bar{L}(u)=\{(x, z) \mid x \in L(u), z \geqq F(u)\},(x, z) \in D_{n+m}
$$

Now the proof is given, that $\overline{\mathrm{L}}(\mathrm{u})$ is satisfying the properties P.l... $\bar{P} .9$ of a Shephardian technology.

$$
\left.\begin{array}{l}
\overline{\text { P. .1 For } u=0 ;} \underset{x \in D_{n}}{U}: x \in L(u) \text { See P.l } \\
\\
; F(u)=0(f 1) \Rightarrow V_{z \in D_{m}}: z \geq F(u)
\end{array}\right\} \Rightarrow \bar{L}(0)=D_{n+m}
$$

$$
\text { For } \left.\begin{array}{rl}
u>0 ; 0 \notin L(u) \quad \text { See P.1 } \Rightarrow & x \geq 0 \\
& ; F(u)>0 \\
(f 2) \quad \Rightarrow \quad z>0
\end{array}\right\} \Rightarrow(x, z) \neq 0 \therefore 0 \notin \bar{L}(u)
$$

$$
\begin{aligned}
& \left.\begin{array}{rl}
\bar{P} .2(x, z) & \in \bar{L}(u) \Rightarrow x \in L(u) \\
\left(x^{1}, z^{1}\right) & \geqq(x, z) \Rightarrow x^{1} \geqq x
\end{array}\right\} \Rightarrow x^{1} \in L(u) \text { See P. } 2 \\
& \left.\left.\begin{array}{l}
(x, z) \in \bar{L}(u) \Rightarrow z \geqq F(u) \\
\left(x^{1}, z^{1}\right) \geqq(x, z) \Rightarrow z^{1} \geqq z
\end{array}\right\} \Rightarrow z^{1} \geq F(u) \quad\left\{\begin{array}{l}
= \\
=
\end{array}\right\}, z^{1}\right) \in \bar{L}(u)
\end{aligned}
$$

$$
\begin{aligned}
\bar{P} .3 \text { FOr }(x, z)>0 ; & x>0 \text { so } v_{u \geq 0}^{a} \lambda_{\lambda_{1} \geq 0}: \lambda_{1} x \in L(u) . \text { See P. } 3 \\
& ; z>0 \text { so } \underbrace{a}_{u \geq 0} \sum_{\lambda_{2} \geq 0}: \lambda_{2} z \geq F(u) .
\end{aligned}
$$

Let: $\lambda_{0}=\operatorname{Max}\left[\lambda_{1} \lambda_{2}\right]$ so:

Consequently for $(x, z)>0$:

$$
\mathrm{v}_{\mathrm{u} \geq 0}{\stackrel{\mathrm{~J}}{\lambda_{0} \geq 0}}: \lambda_{0}(x, z) \in \overline{\mathrm{L}}(\mathrm{u})
$$

For $(x, z) \geq 0$ three cases should be distinguished:
a. $x=0$ and $z \geq 0$. This case can be ignored for $x=0 \notin L(u)$ if $u>0$. See P.l
b. $x \geq 0$ and $a_{i}: z_{i}=0$. This case can be ignored too, for

$$
z_{i}=0 \underline{f_{i}}(u) \text { if } u>0 \text {. See (f2) }
$$

c. $x \geq 0$ and $z>0$

$$
\text { if } z>0 \quad \text { then } \mathrm{v}_{\mathrm{u} \geq 0} \mathrm{~J}_{\lambda_{2} \geq 0}: \lambda_{2} \mathrm{z} \geqq F(u)
$$

$$
\text { Let } \lambda_{0}=\operatorname{Max}\left[\lambda_{1} \lambda_{2}\right] \text { so } \forall_{u \geq 0,}{ }^{\mathrm{I}} \lambda_{0 \geq 0}: \lambda_{0} x \in L(u) . P .2
$$

$$
\mathrm{t}_{\mathrm{u} \geq 0}, \quad \mathrm{a}_{\lambda_{0} \geq 0}: \lambda_{0} \mathrm{z} \geqq F(u)
$$

$$
\begin{aligned}
& \text { if } x \geq 0 \text { and } \exists_{\bar{\lambda}>0} \underset{\bar{u}>0}{ }: \bar{\lambda} x \in L(\bar{u}) \\
& \text { then } \left.V_{u \geq 0}\right]_{\lambda_{1} \geq 0}: \lambda_{1} x \in L(u) \cdot \text { P. } 3
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{U}_{u \geq 0}^{\mathrm{A}} \lambda_{0 \geq 0}: \lambda_{0} x \in L(u) \text {. See P. } 2 \\
& \underset{u \geq 0}{\mathrm{u}} \underset{\lambda_{0} \geq 0}{\mathrm{~J}}: \lambda_{0} \mathrm{z} \geqq \Gamma(\mathrm{u}) .
\end{aligned}
$$

Consequently for $(x, z) \geq 0$ holds:

$\overline{\text { P. }} 4$ For $\mathrm{u}_{2} \geq \mathrm{u}_{1} \geq 0$;
If $x \in L\left(u_{2}\right)$ then $x \in L\left(u_{1}\right)$. See P. 4
$; F\left(u_{2}\right) \geqq F\left(u_{1}\right)$. See $(f 3) \Rightarrow$ If $z \geqq F\left(u_{2}\right)$, then $\left.z \geqq F\left(u_{1}\right)\right\}^{\Rightarrow}$
$\Rightarrow \quad$ If $(x, z) \in \bar{L}\left(u_{2}\right)$, then $(x, z) \in \bar{L}\left(u_{1}\right)$.
Consequently $\bar{L}\left(u_{2}\right) \subset \bar{L}\left(u_{1}\right)$

$$
\left.\begin{array}{l}
\bar{P} \cdot 5 \underset{\substack{n \leq u \leq u_{0}}}{ } L(u)=L\left(u_{0}\right) \cdot \text { See P. } 5 \\
\underset{\substack{0 \leq u \leq u_{0}}}{\cap}\{z \mid z \geq F(u)\}=\left\{z \mid z \geqq F\left(u_{0}\right)\right\} \text { See }(f 3)
\end{array}\right\} \Rightarrow \underset{0 \leq u \leq u_{0}}{\cap} \bar{L}(u)=\bar{L}\left(u_{0}\right)
$$

P. $6 \underset{u \geq 0}{\cap} L(u)=\emptyset$. See P. 6

$\Rightarrow \quad V_{\lambda \in[0,1]}: \lambda(x, z)+(1-\lambda)(y, w) \in \bar{L}(u)$
Hence: $\underset{u \geq 0}{\mathrm{v}_{\mathrm{u}}}: \overline{\mathrm{L}}(\mathrm{u})$ is convex.
(2.4.2) Definition:

The efficient subset $\bar{E}(u)$ of $\bar{L}(u)$ is given by
$\overline{\mathrm{E}}(\mathrm{u})=\{(\mathrm{x}, \mathrm{z}) \mid(\mathrm{x}, \mathrm{z}) \in \overline{\mathrm{L}}(\mathrm{u}) \wedge(\mathrm{y}, \mathrm{w}) \leq(\mathrm{x}, \mathrm{z}) \Rightarrow(\mathrm{y}, \mathrm{w}) \notin \overline{\mathrm{L}}(\mathrm{u})\}$
Clearly:
$\bar{E}(u)=\{(x, z) \mid x \in E(u), z=F(u)\}$
P. $9 \underset{u \geq 0}{V_{U}}: E(u)$ is bounded. See P. 9
$\{z \mid z=F(u)\}$ is also bounded by (f4) $\} \Rightarrow V_{u \geq 0}: \bar{E}(u)$ is bounded
2.5 The_e.d.e.-function

It is assumed that an external diseconomy can be eliminated partially or entirely by employing some combination of productionfactors. Hence for each external diseconomy i (i $=1 . . . m$) an external diseconomy eliminating (e.d.e.) -function is defined with x as independent variable. The properties of these functions $g_{i}(x)$ are assumed to be:
g.1 $\quad \forall_{i}: g_{i}(x)=0$ for $x \leqq 0$
g. $2 \quad V_{i}: g_{i}(x)$ is finite for finite x
g. $3 \quad H_{i}: x^{1} \geq x \Rightarrow g_{i}\left(x^{1}\right) \geq g_{i}(x)$
g. $4 \quad V_{i}:$ if $x \rightarrow \infty$ then $g_{i}(x) \rightarrow \infty$
g. $5 \quad \forall_{i}: g_{i}(x)$ is concave on D.
1)

> 1) \quad A numerical function $g(x)$ defined on a convex subset $D \subset R^{n}$ is concave on $D: i f$ for all points x and y of D, $g\{(1-\theta) x+\theta y\} \geq(1-\theta) g(x)+\theta g(y)$ for all $\theta \in[0,1]$.

The last one of these properties is very restrictive. It is introduced to prove the convexity of the sets to be constructed. Economically property 5 restricts the specification of the e.d.e.-function to the class of productionfunctions of non-increasing returns to scale.

2.6 The_construction_of_($\overline{\overline{\mathrm{L}}}(\underline{u})$

(2.6.1) Definition:

A vector (x, z) belongs to a productiontechnology $\overline{\bar{L}}(u)$, if there exists such a $(m+1)$-partition of x that x^{0} belongs to a technology $L(u)$ with properties P.1...P.9 (2.1.3) and if for all i (i = l...m) holds:

$$
\begin{aligned}
& z_{i} \geq f_{i}(u)-g_{i}\left(x^{i}\right) \geq 0, \text { hence } \\
& \overline{\bar{L}}(u)=\left\{(x, z) \mid x^{0} \in L(u),\right. z_{i} \geq f_{i}(u)-g_{i}\left(x^{i}\right), \\
&\left.\sum_{i=0}^{m} x^{i}=x, x^{i} \geq 0\right\} \cap D_{n+m}
\end{aligned}
$$

Analogously the reasoning in (2.4) it can be proved that $\overline{\overline{\mathrm{L}}}(\mathrm{u})$ is satisfying the properties $\overline{\overline{\mathrm{P}}} .1 \ldots \overline{\overline{\mathrm{P}}} .9$ of a Shephardian technology. Only the property of convexity will be proved here:

$$
\begin{aligned}
& \left.\begin{array}{rl}
\overline{\overline{\mathrm{P}}} .8(x, z) \in \overline{\bar{L}}(u) \Rightarrow x^{0} \in L(u) \\
(y, w) \in \overline{\bar{L}}(u) \Rightarrow y^{0} \in L(u)
\end{array}\right\} \Rightarrow \forall_{\lambda \in[0,1]}: \lambda x^{0}+(1-\lambda) y^{0} \in \operatorname{L}(u) \quad \text { See P. } 8 \text { (a) } \\
& \left.\begin{array}{l}
(x, z) \in \overline{\bar{L}}(u) \Rightarrow z_{i} \geq f_{i}(u)-g_{i}\left(x^{i}\right) \\
(y, w) \in \overline{\bar{L}}(u) \Rightarrow w_{i} \geq f_{i}(u)-g_{i}\left(y^{i}\right)
\end{array}\right\} \Rightarrow \\
& \left.\begin{array}{rl}
\Rightarrow{\underset{\lambda}{\lambda \in[0,1]}}: & \lambda z_{i}+(1-\lambda) w_{i} \geq f_{i}(u)-\left[\lambda g_{i}\left(x^{i}\right)+(1-\lambda) g_{i}\left(y^{i}\right)\right] \\
& \text { But due to }(g .5) \\
V_{i \in[0, ~} \quad & \lambda g_{i}\left(x^{i}\right)+(1-\lambda) g_{i}\left(y^{i}\right) \leq g_{i}\left[\lambda x^{i}+(1-\lambda) y^{i}\right]
\end{array}\right\} \Rightarrow \\
& \mathrm{V}_{\lambda \in[0,1]}:
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow V_{\lambda \in[0,1]}: \lambda z_{i}+(1-\lambda) w_{i} \geq f_{i}(u)-g_{i}\left[\lambda x^{i}+(1-\lambda) y^{i}\right] \tag{b}
\end{equation*}
$$

Moreover:

$$
\begin{aligned}
& \left.\begin{array}{l}
\sum_{i=0}^{m} x^{i}=x \\
\sum_{i=0}^{m} y^{i}=y
\end{array}\right\} \Rightarrow \sum_{i=0}^{m}\left[\lambda x^{i}+(1-\lambda) y^{i}\right]=\lambda x+(1-\lambda) y \text { for } \lambda \in[0,1] \\
& \left.\begin{array}{l}
x^{i} \geq 0 \\
y^{i} \geq 0
\end{array}\right\} \Rightarrow \lambda x^{i}+(1-\lambda) y^{i} \geq 0 \text { for } \lambda \in[0,1] \\
& \left.\begin{array}{l}
\text { (a) } \\
\text { (b) }
\end{array}\right\} \Rightarrow \quad{ }_{\lambda \in[0,1]}: \lambda(x, z)+(1-\lambda)(y, w) \in \overline{\bar{L}}(u)
\end{aligned}
$$

2.7 The_construction_of_L(u\&工)

Now we are able to construct a technology, for which the external diseconomies are bounded by a certain upper-limit. Let $\bar{z}=\left(\bar{z}, \ldots \bar{z}_{m}\right)$ be the vector, summing up the upper-limits of the external diseconomies.
(2.7.1) Definition:

1. $B \bar{z}=\left\{(x, z) \mid x \in D_{n}, z=\bar{z}\right\}$
2. $B(u, \bar{z})=\overline{\bar{L}}(u) \cap B \bar{z}$
3.

$$
C(u, \bar{z})=B(u, \bar{z})-(0, \bar{z}) \text { i.e. }(x, z) \in B(u, \bar{z}) \Leftrightarrow x \in C(u, \bar{z})
$$

Both $B \bar{z}$ and $B(u, \bar{z})$ are defined in R^{n+m}, while $C(u, \bar{z})$ is defined in R^{n} by a minor transformation.

(2.7.2) Definition:

A vector x belongs to a productiontechnology $\dot{L}(u, \bar{z})$ with bounded external diseconomies, if there exists such a ($m+1$)-partition of x, that x^{0} belongs to a technology L(u) with properties P.1...P.9 (2.1.3) and if for all i (i $=1 . . . \mathrm{m}$) holds:

$$
\bar{z}_{i} \geq f_{i}(u)-g_{i}\left(x^{i}\right) \geq 0, \text { hence }:
$$

$$
\stackrel{0}{L}(u, z)=\left\{x \mid x^{0} \in L(u), \bar{z}_{i} \geq f_{i}(u)-g_{i}\left(x^{i}\right), \sum_{i=0}^{m} x^{i}=x, x^{i} \geq 0\right\}
$$

$$
=\{x \mid x \in C(u, \bar{z})\}
$$

It is easy to see that $\stackrel{0}{L}(u, \bar{z}) \subset L(u)$. For if $x \in \stackrel{0}{L}(u, \bar{z})$, then $x^{0} \in L(u)$ and as $x \geqq x^{0}$, so $x \in L(u)$ due to P.2. Along analogous lines it can be proved that $\tilde{0}_{0}^{0}(u, \bar{z})$ is satisfying the properties $\stackrel{0}{P} .1 . . \stackrel{\circ}{P} .9$ of a Shephardian technology.

2.8 Linear_homogeneous_productionfunctions:

A productionstructure is said to be linear homogeneous, if the productionfunction defined on it is linear homogeneous. We will state the conditions, for which the constructed technologies $\overline{\mathrm{L}}(u), \overline{\bar{L}}(u)$ and $\stackrel{\circ}{\mathrm{L}}(u, \bar{z})$ are homogeneous of degree one. First we state:
(2.8.1) Proposition:

If a productionfunction $\Phi(x)$ with properties A.l...A. 6 is positively linear homogeneous in x, for all $\lambda \geq 0$ holds: if x belongs to the productioninputset $L(u)$, that is associated with $\Phi(x)$ i.e. $L(u)=\{x \mid \Phi(x) \geq u\}$, then $\lambda \mathrm{x}$ belongs to $\mathrm{L}(\lambda \mathrm{u})$.

Proof:
If $x \in L(u)$ then $\Phi(x) \geq u$. So for all $\lambda \geq 0: \lambda \Phi(x) \geq \lambda u$
$\Phi(x)$ is linear homogeneous, hence $\Phi(\lambda x) \geq \lambda u$ so $\lambda x \in L(\lambda u)$.
$\bar{L}(u)$ is linear homogeneous if $(x, z) \in \bar{L}(u)$ implies $\lambda(x, z) \in \bar{L}(\lambda u)$ for $\lambda \geq 0$.
$(x, z) \in \bar{L}(u) \Rightarrow x \in L(u) . \lambda x \in L(\lambda u)$ for $L(u)$ is linear $\quad \begin{aligned} & \text { homogeneous }\end{aligned}$

$$
\begin{aligned}
\Rightarrow z \geq F(u) . & \text { So } \lambda z \geq \lambda F(u) \text { for } \lambda \geq 0 . \\
& \text { Hence } \lambda z \geqq F(\lambda u) \text { if for all } \lambda \geq 0: \\
& \lambda F(u) \geqq F(\lambda u)
\end{aligned}
$$

Hence $\overline{\mathrm{L}}(\mathrm{u})$ is linear homogeneous for all $u \geq 0$ if:

1. $V_{u \geq 0}$: $L(u)$ is linear homogeneous.
2. $\forall_{u \geq 0} \forall_{\lambda \geq 0}: \lambda F(u) \geqq F(\lambda u)$ i.e. $\lambda F(u)=F(\lambda u)$.

Hence all the e.d.g.-functions should be positively linear homogeneous.

By the same way of reasoning one can state that $\overline{\overline{\mathrm{L}}}(\mathrm{u})$ is linear homogeneous for all $u \geq 0$ if:

1. $\underset{u \geq 0}{\mathrm{u}} \mathrm{L}(\mathrm{u})$ is linear homogeneous.
2. ${ }_{u}^{V} \geq 0,{ }_{\lambda}{ }_{\lambda \geq 0},{ }_{i}: \lambda f_{i}(u) \geq f_{i}(\lambda u) \therefore \quad \lambda f_{i}(u)=f_{i}(\lambda u)$
3. $\quad{\underset{x}{i}}^{i} \geq 0, \quad \underset{\lambda \geq 0,}{\forall} \underset{i}{\forall}: \lambda g_{i}\left(x^{i}\right) \leq g_{i}\left(\lambda x^{i}\right) \quad \therefore \lambda g_{i}\left(x^{i}\right)=g_{i}\left(\lambda x^{i}\right)$

All e.d.g.- and e.d.e.-functions should be positively linear homogeneous.

Finally it will be proved, that no conditions can be stated to quarantee $\dot{L}(u, \bar{z})$ to be linear homogeneous.
Let $x \in L_{(u, \bar{z})}^{0}$ i.e. $\bar{z}_{i} \geq f_{i}(u)-g_{i}\left(x^{i}\right)$ for all $u \geq 0$.
Consider $\lambda>1$ so $\bar{z}_{i} \geq \frac{1}{\lambda} f_{i}(u)-\frac{1}{\lambda} g_{i}\left(x^{i}\right)$ for all $u \geq 0$ $\dot{L}(u, \bar{z})$ to be linear homogeneous, it should hold:

$$
\bar{z}_{i} \geq f_{i}(\lambda u)-g_{i}\left(\lambda x^{i}\right)
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\lambda} f_{i}(u)=f_{i}(\lambda u) \text { for all } u \geq 0 . \text { In accordance to (f.3) } \\
& \text { and (f.5) these conditions cannot be } \\
& \text { satisfied. This completes the proof. }
\end{aligned}
$$

2.9 An_alternative_e.d.g.-function

By assuming the level of the external diseconomies being determined exclusively by the outputrate u of the productionprocess, we are neglecting the possible influence of the specific production method selected from the productionpossibilities on the level of the external diseconomies. It can well be imagined, that in a two-factor technology a more capital intensive productionmethod causes a higher level of external diseconomies than a more labour intensive productionmethod, both methods yielding the same outputrate u.
Now an alternative e.d.g.-function will be defined.

(2.9.1) Definition:

For each external diseconomy i ($i=1 \ldots m$) of a productionprocess an e.d.g.-function $h_{i}(x)$ is defined, x being the (efficient) inputvector of the productionprocess, satisfying the following properties:

$$
\begin{aligned}
& \text { h. } 1 \quad \underset{i}{H_{i}}: \quad h_{i}(0)=0 \\
& \text { h. } 2 \quad \mathrm{H}_{\mathrm{i}}: \mathrm{x} \geq 0 \Rightarrow \mathrm{~h}_{\mathrm{i}}(\mathrm{x})>0 \\
& \text { h. } 3 \quad \mathrm{H}_{\mathrm{i}}: \mathrm{x}^{1} \geq \mathrm{x} \Rightarrow \mathrm{~h}_{\mathrm{i}}\left(\mathrm{x}^{1}\right) \geq \mathrm{h}_{\mathrm{i}}(\mathrm{x}) \\
& \text { h. } 4 \mathrm{~V}_{\mathrm{i}}: \mathrm{h}_{\mathrm{i}}(\mathrm{x}) \text { is finite for finite } \mathrm{x} \\
& \text { h. } 5 \underset{i}{\mathrm{~V}_{i}}: \quad \text { If } \mathrm{x}_{\mathrm{i}} \rightarrow \infty \text {, then } \mathrm{h}_{\mathrm{i}}(\mathrm{x}) \rightarrow \infty
\end{aligned}
$$

h. $6 \underset{i}{\forall}: h_{i}(x)$ is convex on D.

The properties h.l...h. 5 correspond to the five properties of the orginal e.d.g.-function. The last one is introduced to prove to convexity of the sets to be constructed (cfr.2.4). Economically we are dealing with a case of non-decreasing returns to scale.

2.10 The_construction_of_ $\overline{\mathrm{I}}_{1}$ (u)

Summing up the levels of the alternative e.d.g.-function in the vector $H(x)=\left\{h_{1}(x), h_{2}(x) \ldots h_{m}(x)\right\}$ we can state the following definition:
(2.10.1) Definition:

A vector (x, z) belongs to a productiontechnology $\bar{L}_{1}(u)$, if x belongs to a technology $L(u)$ with properties P.l...P.9 (2.1.3) and if $z \geqq H\left(x^{1}\right), x^{1} \leqq x$ and $\Phi\left(x^{1}\right) \geq u$. Hence:

$$
\begin{aligned}
\overline{\mathrm{L}}_{1}(u) & =\left\{(x, z) \mid x \geqq x^{1}, \Phi\left(x^{1}\right) \geq u, z \geqq H\left(x^{1}\right)\right\} \quad(x, z) \in D_{n+m} \\
& =\left\{(x, z) \mid x \geqq x, x^{1} \in L(u), z \geqq H\left(x^{1}\right)\right\} \\
& =\left\{(x, z) \mid x \geqq x^{1}, x^{1} \in E(u), z \geqq H\left(x^{1}\right)\right\}
\end{aligned}
$$

Along similar lines of reasoning as before it can be proved that $\bar{L}_{1}(u)$ is satisfying the properties $\overline{\mathrm{P}}_{1} .1 \ldots \overline{\mathrm{P}}_{1} .9$ of a Shephardian technology. Only the property of convexity will be proved here:

$$
\overline{\mathrm{P}}_{1} .8
$$

$$
\left.\begin{array}{l}
(x, z) \in \bar{L}_{1}(u) \Rightarrow x^{1} \in L(u) \\
(y, w) \in \bar{L}_{1}(u) \Rightarrow y^{1} \in L(u)
\end{array}\right\} \Rightarrow \forall_{\lambda \in[0,1]}: \lambda x^{1}+(1-\lambda) y^{1} \in L(u) \text { See P. } 8
$$

[^1]
$$
\Rightarrow \quad \forall_{\lambda \in[0,1]}: \lambda z+(1-\lambda) w \geqq H\left\{\lambda x^{1}+(1-\lambda) y^{1}\right\}
$$

Moreover: $\left.\begin{array}{rl}x^{1} & \leqq x \Rightarrow \lambda x^{1} \leqq \lambda x \\ y^{1} & \leqq y \Rightarrow(1-\lambda) y^{1} \leqq(1-\lambda) y\end{array}\right\} \Rightarrow \lambda x^{1}+(1-\lambda) y^{1} \leqq \lambda x+(1-\lambda) \geq$
Hence: ${\underset{\lambda}{\lambda \in[0,1]}}: \lambda(x, z)+(1-\lambda)(y, w) \in \bar{L}_{1}(u)$
Consequently: $\underset{U \geq 0}{ }: \overline{\mathrm{L}}_{1}(\mathrm{u})$ is convex

Evidently in the same way as constructing an alternative for $\bar{L}(u)$, an alternative definition for $\overline{\bar{L}}(u)$ and $\bar{L}(u, \bar{z})$ can be formulated.
(2.11.1) Definition:

$$
\begin{array}{r}
\overline{\bar{L}}_{1}(u)=\left\{(x, z) \mid y^{0} \leq x^{0}, y^{0} \in L(u), z_{i} \geq h_{i}\left(y^{0}\right)-g_{i}\left(x^{i}\right),\right. \\
\left.\sum_{i=0}^{m} x^{i}=x, x^{i} \geq 0\right\} \cap D_{n+m}
\end{array}
$$

(2.11.2) Definition:

$$
\begin{array}{r}
\stackrel{L}{L}_{1}(u, \bar{z})=\left\{x \mid y^{0} \leq x^{0}, y^{0} \in L(u), \bar{z}_{i} \geq h_{i}\left(y^{0}\right)-g_{i}\left(x^{i}\right),\right. \\
\left.\sum_{i=0}^{m} x^{i}=x, x^{i} \geq 0\right\}
\end{array}
$$

The properties P.l...P.9 of (2.1.3) hold for these technologies too. As far as the linear homogenity of $\overline{\mathrm{L}}_{1}(u)$ is
concerned: this property is satisfied if $(x, z) \in \bar{L}_{1}(u)$ implies $\lambda(x, z) \in \bar{L}_{1}(\lambda u)$ for $\lambda \geq 0$

$$
\begin{aligned}
&(x, z) \in \bar{L}_{1}(u) \quad x^{1} \leq x, x^{1} \in L(u) \\
& \lambda x^{1} \leqq \lambda x, \lambda x^{1} \in L(\lambda u) \text { for } L(u) \text { is linear } \\
& \Rightarrow \quad z \geqq H\left(x^{1}\right) \\
& \lambda z \geqq \lambda H\left(x^{1}\right), \lambda \geq 0 \\
& \lambda z \geq H\left(\lambda x^{1}\right) \text { if for all } \lambda \geq 0: \\
& \lambda H\left(x^{1}\right) \geq H\left(\lambda x^{1}\right)
\end{aligned}
$$

Hence $\bar{L}_{1}(u)$ is linear homogeneous for all $u \geq 0$ if:

1. $V_{u \geq 0}$: L(u) is linear homogeneous
2. $\forall_{u \geq 0} V_{\lambda \geq 0}: \lambda H\left(x^{1}\right) \geq H\left(x^{1}\right)$ i.e. $\lambda H\left(x^{1}\right)=H\left(\lambda x^{1}\right)$.

Hence all the alternative e.d.g.-function should be posivily linear homogeneous.

PART 3

Pricetheory

3.1 Introduction

Now we have studied the conditions for which external diseconomies can be treated as inputs in a productiontechnology, we are heading for the problem of integration in the dual productionstructure, the pricestructure. Considering external diseconomies as utilization of relatively scarce means, the question of their economic evaluation i.e. their pricing can't remain unanswered. In the productionstructures $\overline{\overline{\mathrm{L}}}(\mathrm{u})$ and $\overline{\overline{\mathrm{L}}}_{1}(\mathrm{u})$ the external diseconomies can be considered as inputs of a productionprocess that can be substituted partially or entirely for "common" productionfactors. Clearly there is a factorminimal cost function for the productionstructures mentioned above (See [4] page 79). Hence the economic evaluation of external diseconomies - e.g. expressed in taxation on causing them - together with a given price-vector for the "common" productionfactors, influence the choise of the optimal combination of inputs, "common" factors as well as external diseconomies, for yielding some outputrate of the productionprocess, provided the condition of cost minimizing behaviour.
It will be shown that given some outputrate of the desired commodity such a minimal taxation or price for the external diseconomies can be established, that provided the pricevector for "common" factors and the condition of cost minimizing behaviour, the level of external diseconomies in the optimal inputvector is not exceeding a given maximum.

Some remarks will be made on the relation between the minimal taxation and the outputrate of the production-
process, the maximum that should not be exceeded and the pricevector of the "common" factors.
Finally the interpretation of the model will be discussed. Then we will get in touch with welfare economies by introducing a social utility function.

3.2 A_particular hyperplane

(3.2.1) Proposition:

If $C \subset D_{n+m}$ is a convex, closed set, whose elements are denoted as (x, z) for $x \in D_{n}$ and $z \in D_{m}$ and $\bar{p} \in D_{n}$ is a pricevector and $\bar{z} \in D_{m}$ is a maximumvector, there exist a taxationvector $q \in D_{m}$, an element $(\bar{x}, \bar{z}) \in C$ and a scalar β in such a way that $\bar{p} \bar{x}+q \bar{z}=\beta$

$$
\text { and } \bar{p} x+q z \geq \beta \text { for }(x, z) \in C
$$

Proof:

Let $A=\left\{(x, z) \mid x \in D_{n}, z=\bar{z}\right\} . A$ is convex and closed. Consider $A \cap C$. (See fig.l). $A \cap C$ is convex and closed; hence there exist a point $(\bar{x}, \bar{z}) \in \operatorname{Bnd}(A \cap C)$ and a scalar α in such a way that $\bar{p} \bar{x}=\alpha$

$$
\text { and } \bar{p} \bar{x} \geq \alpha \text { for }(x, z) \in A \cap C .
$$

Let $B=\{(x, z) \mid \bar{p} x=\alpha, z=\bar{z}\}$. B is convex and not empty (fig.l). Let Int C be the set of interior points of C; Int C is convex. Clearly $B \cap$ Int $C=\varnothing$.
Since B and Int C are two convex, disjunct, non-empty sets in R^{n+m}, there is according to the first separationtheorem of Berge [1] a hyperplane V, separating both sets. So there exist $a p \in D_{n}, a q \in D_{m}$ and $a \beta \in \operatorname{Re}$ such that $v=\{(x, z) \mid p x+q z=\beta\}$
$p x+q z \geq \beta$ for $(x, z) \in$ Int C
$p x+q z \leq \beta$ for $(x, z) \in B$

```
CN
    fig l: A\capC = {(x,z)|(x,z) \inC, z = \overline{z}}
    B}={(x,z)|\overline{p}x=\alpha,z=\overline{z}
```


fig 2: $S_{i} \cap T_{i}=$
$\left\{\left(x^{i}, t_{i}\right) \mid x^{i \in D_{n}}, g_{i}\left(x^{i}\right) \geq \bar{t}_{i}\right\}$

fig 3: $S_{i} \cap U_{i}=$ $\left\{\left(\lambda, t_{i}\right) \mid \mathbf{x}^{i}=\lambda \bar{x}^{i}\right.$, $\left.0 \leq t_{i} \leq g_{i}\left(x^{i}\right)\right\}$

The sets B and C have (\bar{x}, \bar{z}) in common, so certainly $(\bar{x}, \bar{z}) \in V$.
Let $\mathrm{V}^{1}=\mathrm{V} \cap \mathrm{A}$ i.e. $\mathrm{V}^{1}=\{(\mathrm{x}, \mathrm{z}) \mid \mathrm{p} \mathrm{x}+\mathrm{q} \overline{\mathrm{z}}=\beta\}$. V and V^{1} are invariable for scalar multiplication of p, q and β, so V^{1} is always reducible to $V^{1}=\{(x, z) \mid p x=\alpha\}$. There is left to prove that $p=\bar{p}$ i.e. $B=V^{1} . B$ and V^{1} both being ($n+m-1$)-dimensional hyperplanes in P^{n+m}, it is sufficient to prove: $B \subset V^{1}$.
Suppose $(x, z) \in B$ i.e. $\bar{p} x=\alpha, z=\bar{z}$.
Let $\mathrm{x}=\overline{\mathrm{x}}+\mathrm{x}_{\mathrm{r}}$. Hence $\overline{\mathrm{p}} \mathrm{x}=\overline{\mathrm{p}} \overline{\mathrm{x}}+\overline{\mathrm{p}} \mathrm{x}_{\mathrm{r}} \Rightarrow \alpha=\alpha+\overline{\mathrm{p}} \mathrm{x}_{\mathrm{r}} \Rightarrow$

$$
\Rightarrow \bar{p} x_{r}=0
$$

It holds that $(y, z)=\left(\bar{x}-x_{r}, \bar{z}\right) \in B$, for $\bar{p} y=\bar{p} \bar{x}-\bar{p} x_{r}=\alpha$ If $\left.\begin{array}{rl}(x, z) \in B \text { then } p x \leq \alpha \Rightarrow p \bar{x}+p x_{r} \leq \alpha \Rightarrow p x_{r} \leq 0 \\ (y, z) \in B \text { then } p y \leq \alpha \Rightarrow p \bar{x}-p x_{r} \leq \alpha \Rightarrow p x_{r} \geq 0\end{array}\right\} \Rightarrow p x_{r}=0$

Hence $p x=p y=\alpha$.
So $(x, z) \in B$ implies $(x, z) \in V^{1}$. This completes the proof.
3.3 The_construction_of_the_taxationvector_at_充(u)

Since $\overline{\bar{L}}(u)$ is a convex closed set in D_{n+m} (See 2.6), now we can state that given $\bar{p} \in D_{n}$ and $\bar{z} \in D_{m}$ there exist an element $(\bar{x}, \bar{z}) \in \overline{\bar{L}}(u)$, a vector $q \in D_{m}$ and a scalar β in such a way that:

$$
\begin{aligned}
& \bar{p} \bar{x}+q \bar{z}=\beta \\
& \bar{p} \bar{x}+q z \geq \beta
\end{aligned}
$$

It will be shown how to construct q and β. For all i $(i=l \ldots m) f_{i}(u)-g_{i}\left(x^{i}\right) \leq \bar{z}_{i}$ should hold. For every $u f_{i}(u)$ is uniquely determined, hence $\bar{t}_{i}=f_{i}(u)-\bar{z}_{i}$ is uniquely determined, so $g_{i}\left(x^{i}\right) \geq \bar{t}_{i}$ should hold.

Consider $S_{i}=\left\{\left(x^{i}, t_{i}\right) \mid x^{i} \in D_{n}, 0 \leq t_{i} \leq g_{i}\left(x^{i}\right)\right\}$. Since function $g_{i}($.$) is concave, S_{i}$ is convex. Let $T_{i}=\left\{\left(x^{i}, t_{i}\right) \mid x^{i} \in D_{n}, t_{i}=\bar{t}_{i}\right\}$. Also T_{i} is convex. Hence $S_{i} \cap T_{i}=\left\{\left(x^{i}, t_{i}\right) \mid x^{i} \in D_{n}, g_{i}\left(x^{i}\right) \geq \bar{t}_{i}\right\}$ is convex (fig.2).
So given $\bar{p} \in D_{n}$ there exist a point $\left(\bar{x}^{i}, \bar{t}_{i}\right) \in$ Bnd $\left(S_{i} \cap T_{i}\right)$ and a scalar α_{i} in such a way that:

$$
\overline{\mathrm{p}} \overline{\mathrm{x}}^{\mathrm{i}}=\alpha_{i}
$$

and $\bar{p} x^{i} \geq \alpha_{i}$ for $\left(x^{i}, t_{i}\right) \in S_{i} \cap T_{i}$.
Construct $U_{i}=\left\{\left(x^{i}, t_{i}\right) \mid a_{\lambda \geq 0}: x^{i}=\lambda \bar{x}^{i}, t_{i} \geq 0\right\}$. U_{i} is convex.
Hence $S_{i} \cap U_{i}=\left\{\left(x^{i}, t_{i}\right) \mid a_{\lambda \geq 0}: x^{i}=\lambda \bar{x}^{i}, 0 \leq t_{i} \leq g_{i}\left(x^{i}\right)\right\}$
is convex.
In two dimensions one can reformalate $S_{i} \cap U_{i}$ as:
$S_{i} \cap U_{i}=\left\{\left(\lambda, t_{i}\right) \mid x^{i}=\lambda \bar{x}^{i}, 0 \leq t_{i} \leq g_{i}\left(x^{i}\right)\right\} \quad$ (Fig. 3)
Since $S_{i} \cap U_{i}$ is convex, a scalar b_{i} exists in such a way that $t_{i}=\left(\bar{t}_{i}-b_{i}\right) \lambda+b_{i}$ is a tangent line of $s_{i} \cap U_{i}$ in $\left(\bar{x}^{i}, \bar{t}_{i}\right)$ and $t_{i} \leq\left(\bar{t}_{i}-b_{i}\right) \lambda+b_{i}$ for $\left(x^{i}, t_{i}\right) \in S_{i} \cap U_{i}$.
We search for the supporting hyperplane ($\bar{p} x^{i}+q_{i}^{1} t_{i}=\beta_{i}$), spanned by the hyperplane $\bar{p} x^{i}=\alpha_{i}$ and the line $t_{i}=\left(\bar{t}_{i}-b_{i}\right) \lambda+b_{i}$.

$$
\Rightarrow \quad q_{i}^{1}=\frac{\alpha_{i}}{b_{i}-\bar{t}_{i}} \text { and } \beta_{i}=\frac{\alpha_{i} b_{i}}{b_{i}-\bar{t}_{i}}
$$

Moreover the convexity of $L(u)$ implies, given \bar{p}, the existence of a point \bar{x}^{0} and a scalar α_{0} in such a way that $\bar{p} \bar{x}^{0}=\alpha_{0}$ and $\bar{p} x^{0} \geq \alpha_{0}$ for $x^{0} \in L(u)$.
The final equation of the supporting hyperplane of $\overline{\bar{L}}(u)$ at (\bar{x}, \bar{z}) can be deduced as follows:
For all $i(i \neq 0)$ holds: $\bar{p} x^{i}+\frac{\alpha_{i}}{b_{i}-\bar{t}_{i}} t_{i}=\frac{\alpha_{i} b_{i}}{b_{i}-\bar{t}_{i}}$
For $i=0 \quad$ holds $: \bar{p} x^{0} \quad=\alpha_{0}$
Since $\sum_{i=0}^{m} x_{i}=x$ and $t_{i}=f_{i}(u)-z_{i} c . q . t=F(u)-z$ one can state:

$$
\bar{p} x+q^{1}(F(u)-z]=\alpha_{0}+\sum_{i=1}^{m} \frac{\alpha_{i} b_{i}}{b_{i}-f_{i}(u)+\bar{z}_{i}}
$$

Let $q=-q^{1}$; hence

$$
\bar{p} x+q z=\alpha_{0}+\sum_{i=1}^{m} \frac{\alpha_{i}}{b_{i}-f_{i}(u)+\bar{z}_{i}}\left[b_{i}-f_{i}(u)\right]
$$

with $q=\left[\frac{\alpha_{1}}{f_{1}(u)-\bar{z}_{1}-b_{1}}, \frac{\alpha_{2}}{f_{2}(u)-\bar{z}_{2}-b_{2}}--\frac{\alpha_{m}}{f_{m}(u)-\bar{z}_{m}-b_{m}}\right]$

(3.3.1) Remark:

There may be circumstances that the concavity of the e.d.e.- function can be restricted to a subset of D_{n}. Then the reasoning is not carried out, based on $S_{i}=\left\{\left(x^{i}, t_{i}\right) \mid x^{i} \in D_{n}, 0 \leq t_{i} \leq g_{i}\left(x^{i}\right)\right\}$, but based on the convex hull of S_{i}. If the hyperplane to be constructed is supporting this convex hull at a point also belonging to S_{i}, the taxationvector is suitable to restrict the external diseconomies to the fixed maximum. See fig. 4.

(3.3.2) Remark:

The existence of a taxationvector does not necessarily imply its uniqueness. In fig. 5 you see a situation of a infinite number of supporting hyperplane of $S_{i} \cap T_{i}$

fig 5: more tangentlines at

$$
S_{i} \cap T_{i} \text { in }\left(\bar{x}^{i}, \bar{t}_{i}\right)
$$

fig 6: $S_{i} \cap_{i}$ not strictly convex in (\bar{x}^{i}, \bar{t}^{i})
at $\left(\bar{x}^{i}, \bar{t}_{i}\right)$. Evidently a closed interval $\left[b_{i}^{1}, b_{i}^{2}\right] \subset\left[0, \bar{t}_{i}\right]$ can be found to quarantee for $a l l b_{i} \in\left[b_{i}^{1}, b_{i}^{2}\right]$ the existence of a suitable taxation. We remind you that we were looking for a minimal taxation, suited to restrict the external diseconomies. Clearly the choise of b_{i}^{1} as smallest in the interval $\left[b_{i}^{1}, b_{i}^{2}\right]$ implies a minimal value of the taxation q_{i}.

(3.3.3) Remark:

The set $S_{i} \cap T_{i}$ may not be strict convex in (\bar{x}^{i}, \bar{t}_{i}) i.e. $\left(\bar{x}^{i}, \bar{t}_{i}\right)$ is not an extreme point of $S_{i} \cap T_{i}$. Fig. 6 . The points on the linesegment $P Q$ are indifferent for the costminimizing producer. So only an elimination $\overline{\bar{t}}_{i}<\overline{\mathrm{t}}_{\mathrm{i}}$ may occur. If $\left(\bar{x}^{i}, \bar{t}_{i}\right)$ coincides with P, b_{i} can be maintained for the construction of the taxation, but for all other positions of (\bar{x}^{i}, \bar{t}_{i}) on the linesegment $P Q$ a very small increase of b_{i} to $b_{i}+\varepsilon(\varepsilon>0)$ will enlarge the elimination of the external diseconomie to $\bar{t}_{i} \geq \bar{t}_{i}$. In such a situation a minimal taxation can't be found, merely its infimum or greatest lower bound.
3.4 The_properties_of the taxationvector. The relation existing between the level of the minimal resp. infimal taxation and on the other hand the pricevector of the "common" factors, the outputrate of the productionprocess and the upperlimit of the external diseconomy, can easily be deduced from the method of construction in the preceeding paragraph. Since according to the e.d.g.-function the outputrate and the established maximum are uniquely determining the necessary level of elimination, it is sufficient to consider the convex graph S_{i} of the e.d.e.-function to study the taxationproblem, like we did in the preceeding paragraph. That constructionmethod shows that for each combination
of u, \bar{z} and \bar{p}, provided $u \geq 0, \bar{z} \geq 0$ and $\bar{p} \in D_{n}$, a minimal or infimal taxation q_{i} can be found uniquely.
Hence q_{i} is a function of each combination ($\left.u, \bar{z}, \bar{p}\right)$ and a fortiori a function of each of the elements of this combination, both others fixed.
Evidently the specification of this function depends on the concrete formulation of the relevant e.d.g.- and e.d.e.-function. Nevertheless some properties of this function can be stated.

Provided $u \geq 0$ and $\bar{z} \geq 0, q$ is a function of $p \in D$ satisfying:

$$
\begin{aligned}
& \text { p.l If } p=0 \Rightarrow \text { For } \forall_{i}: f_{i}(u) \leq \bar{z}_{i} \quad q_{i}=0 \text { (minimum) } \\
& \text { For } \forall_{i}: f_{i}(u)>\bar{z}_{i} \quad q_{i}=0 \quad \text { (infimum) } \\
& \text { p. } 2 \text { If } p>0 \Rightarrow \text { For } \psi_{i}: f_{i}(u) \leq \bar{z}_{i} \quad q_{i}=0 \text { (minimum) } \\
& \text { For } \mathrm{H}_{\mathrm{i}}: \mathrm{f}_{\mathrm{i}}(\mathrm{u})>\overline{\mathrm{z}}_{\mathrm{i}} \quad \mathrm{q}_{\mathrm{i}}>0 \text { (min. or inf.) } \\
& \text { This is necessarily implied by the proper- } \\
& \text { ties (f.4) and (f.5) of the e.d.e.-func- } \\
& \text { tion. } \\
& \text { p. } 3 \text { If } p \geq 0 \Rightarrow \text { For } \forall_{i}: f_{i}(u) \leq \bar{z}_{i} \quad q_{i}=0 \quad \text { (minimum) } \\
& \text { For } V_{i}: f_{i}(u)>\bar{z}_{i} \text { and } p_{j}=0 \text { for every } \\
& \text { essential productionfactor } x_{j} \text {, then } q_{i}=0 \\
& \text { (inf.) } \\
& \text { For } X_{i}: f_{i}(u)>\bar{z}_{i} \text { and an essential pro- } \\
& \text { ductionfactor } x_{j} \text { exists with } p_{j}>0 \text { then } \\
& q_{i}>0 \text { (min. or inf.) }
\end{aligned}
$$


```
                                    p}\mp@subsup{\mp@code{x}}{}{\mp@subsup{x}{}{i}}=\mp@subsup{\alpha}{i}{}=>(\lambda\mp@subsup{p}{1}{})\mp@subsup{\overline{x}}{}{i}=\lambda\mp@subsup{\alpha}{i}{}=>\mp@subsup{q}{2}{}=\lambda\mp@subsup{q}{1}{
                                since both b}\mp@subsup{b}{i}{}\mathrm{ and }\mp@subsup{\overline{t}}{i}{}\mathrm{ remain unchanged.
p.5 If p }->+\infty>q|+\infty. For all i (i = 1...m) holds
                                    p > > 人 \alpha i
                                    finite, hence q }->\infty\mathrm{ .
        If ppit+\infty for }\mp@subsup{\textrm{x}}{j}{i}\mathrm{ is essential }=>\mp@subsup{q}{i}{}->+\infty\mathrm{ . The proof
p.6 If p is finite, then q is finite. For all i (i = l...m)
                                    holds that, for finite u, \alpha i is finite,
                                    ( }\mp@subsup{\overline{t}}{i}{}-\mp@subsup{b}{i}{}) is always finite, so q is finite
        Provided p}\in\mp@subsup{D}{n}{}\mathrm{ and }\overline{z}\geq0,q\mathrm{ is a function of }u\geq
        satisfying.
u.l If u = 0 m q = 0 (minimum)
u.2 If }u>0=>\mathrm{ For }\mp@subsup{v}{i}{}:\mp@subsup{f}{i}{}(u)\leq\mp@subsup{\overline{z}}{i}{}\quad\mp@subsup{q}{i}{}=0 (minimum
                            For }\mp@subsup{v}{i}{}:\mp@subsup{f}{i}{}(u)>\mp@subsup{\overline{z}}{i}{}\mathrm{ and an essential pro-
                            ductionfactor }\mp@subsup{x}{j}{}\mathrm{ exists with }\mp@subsup{p}{j}{}>>0\mathrm{ then
                            q}\mp@subsup{\textrm{i}}{}{>}0\mathrm{ (min. or inf.).
                            For }\mp@subsup{v}{i}{}:\mp@subsup{f}{i}{}(u)>\mp@subsup{\overline{z}}{i}{}\mathrm{ and }\mp@subsup{p}{j}{}=0\mathrm{ for every
                                    essential productionfactor }\mp@subsup{x}{j}{}\mathrm{ , then }\mp@subsup{q}{i}{}=
                                    (inf.)
u.3 If u }u+\infty=\infty\mathrm{ If }\mp@subsup{p}{j}{}=0\mathrm{ for every essential production-
    factor }\mp@subsup{x}{j}{}\mathrm{ then }\mp@subsup{q}{i}{}=0(inf.). If an essen-
    tial productionfactor }\mp@subsup{\textrm{x}}{\textrm{j}}{}\mathrm{ exists with
    pj}>0\mathrm{ then }\mp@subsup{q}{i}{}->+\infty
u.4 If u is finite, q is finite too. fi
    f.4), hence according to (g.2) \alpha i is finite
```

too and so q_{i} is finite. This reasoning holds for all i (i = l...m).

Provided $p \in D_{n}$ and $u \geq 0, q$ is a function of $\bar{z} \geq 0$ satisfying:
z.1 If $\bar{z}_{i}=0 \Rightarrow$ If $u=0$ then $q_{i}=0$ (minimum).

If $u>0$ and an essential factor x_{j}
exists with $p_{j}>0$ then $q_{i}>0$ (min. or
inf.), since $W_{i}: f_{i}(u)>0$ (See f.2).
If $u>0$ and $p_{j}=0$ for every essential
factor x_{j}, then $q_{i}=0$ (inf.).
z.2 If $\bar{z}_{i}>0 \Rightarrow$ If $f_{i}(u) \leq \bar{z}_{i}$ then $q_{i}=0$ (minimum).

If $f_{i}(u)>\bar{z}_{i}$ and an essential factor x_{j} exists with $\mathrm{p}_{\mathrm{j}}>0$ then $\mathrm{q}_{\mathrm{i}}>0$ (min. or inf.).

If $f_{i}(u)>\bar{z}_{i}$ and $p_{j}=0$ for every essential factor x_{j}, then $q_{i}=0$ (inf.).
z. 3 If $\bar{z}_{i} \rightarrow+\infty \Rightarrow q_{i} \rightarrow 0$. This is necessarily implied by $z .2$.
z. 4 If \bar{z}_{i} is finite, q_{i} is finite too. This is necessarily implied by z.2 and (g.2).
(3.4.1) Remark:

If the e.d.e.-function is positively homogeneous of degree one i.e. ${ }^{\forall}{ }_{\lambda \geq 0} g_{i}\left(\lambda x^{i}\right)=\lambda g_{i}\left(x^{i}\right)$, the set $S_{i}=\left\{\left(x^{i}, t_{i}\right) \mid\right.$ $\left.x^{i} \in D_{n}, 0 \leq t_{i} \leq g_{i}\left(x^{i}\right)\right\}$ is a convex cone, Hence the intersection $S_{i} \cap T_{i}$ is a convex cone, spanned by the vectors $\left(\bar{x}^{i}, 0\right)$ and $\left(\bar{x}^{i}, \bar{t}_{i}\right)$. See fig. 7. The slope γ depends on p. Clearly $b_{i}=0$, hence $q_{i}=\frac{\alpha_{i}}{\bar{t}_{i}}$.

Provided p, q_{i} is identical for all $\overline{\bar{t}}_{i}>0$. Choose arbitrarely $\overline{\bar{t}}_{i}>0$. Let $\overline{\bar{t}}_{i}=\mu \bar{t}_{i}(\mu>0)$. According to the homogenity of the e.d.e.-function one can state $\overline{\bar{x}}^{i}=\mu \bar{x}^{i}$ and $\overline{\bar{\alpha}}_{i}=\mu \alpha_{i}$.
Hence $q_{i}=\frac{\overline{\bar{\alpha}}_{i}}{\overline{\bar{t}}_{i}}=\frac{\alpha_{i}}{\bar{t}_{i}}$.
This value of q_{i} is the infimal taxation. Fstablishing the taxation on $q_{i}+\varepsilon(\varepsilon>0)$ implies the complete elimination $\left\{\mathrm{f}_{\mathrm{i}}(\mathrm{u})\right\}$ of the external diseconomy.
3.5 The taxationvector_at_ $\overline{\overline{\mathrm{I}}}_{1}$ (u).

Since $\overline{\bar{L}}_{1}(u)$ is a convex closed set in D_{n+m} (See 2.11), we can state too, that provided $\bar{p} \in D_{n}$ and $\bar{z} \in D_{m}$ there exist an element $(\bar{x}, \bar{z}) \in \overline{\bar{L}}_{1}(u)$, a vector $q \in D_{m}$ and a scalar β in such a way that:

$$
\begin{aligned}
& \bar{p} \bar{x}+q \bar{z}=\beta \\
& \bar{p} x+q z \geq \beta \text { for }(x, z) \in \overline{\bar{L}}_{1}(u)
\end{aligned}
$$

Hence there is no doubt that for the productionstructure $\overline{\bar{L}}_{1}(u)$ too a minimal resp. infimal taxationvector can be found to restrict the level of external diseconomies. But unfortunately, in this alternative situation a similar constructionmethod as in paragraph 3.3 is not available. There we could study separately the pricesystems, belonging to the technology of the desired commodity, $\mathrm{L}(\mathrm{u})$, and the distinct eliminationprocesses, and by summation integrate them in the final dual structure.
But now it is not impossible, that a inputvector x^{0}, yielding minimal costs $\bar{p} x^{0}=\alpha_{0}$ for some pricevector \bar{p} with respect to $L(u)$, causes a high level of external diseconomies with high elimination costs β_{0}, while a suboptimal inputvector $\overline{\mathrm{x}}^{0}$ with $\operatorname{costs} \overline{\mathrm{p}} \overline{\mathrm{x}}^{0}>\overline{\mathrm{p}}^{0} \overline{\mathrm{x}}^{0}>\alpha_{\mathrm{O}}$,
$-26^{\mathrm{a}}-$

fig 7: $S_{i} \cap T_{i}$ for a positively linear homogeneous
e.d.e.-function

fig 9: The situation of elastic demand

fig 8: The confrontation of $L(u)$ and $L(u, \bar{z})$
can cause a relatively low level of external diseconomies with eliminationcosts lower than β_{0}. In the latter situation total costs may be lower.
Although it is possible to find a minimal costprice $\bar{p} \bar{x}+q \bar{z}=\beta$, a constructionmethod based on a separate treatment of the productiontechnology $L(u)$ and the several eliminating processes cannot be applied here.
3.6 The_interpretation_of the_model_(microzeconomically) To avoid situations, mentioned in remarks (3.3.2) and (3.3.3), we suppose strict convexity of the productionstructure. Moreover we restrict the story to $\overline{\bar{L}}(u)$, since all remarks hold for $\overline{\bar{L}}_{1}(u)$ too, but according to the preceeding paragraph in a more complex manner. If the taxationvector q is established as \bar{z} not to be exceeded, the producer is facing the following costs:

$$
\bar{p} \bar{x}+q \bar{z}=\bar{p} \bar{x}^{0}+\bar{p} \sum_{i=1}^{m} \bar{x}^{i}+q \bar{z}^{m}
$$

$\overline{\mathrm{p}} \overline{\mathrm{x}}^{0} \quad: \quad$ the minimal costs of producing outputrate u of the desired commodity.

```
p}\mp@subsup{\sum}{|}{m}\mp@subsup{\overline{x}}{}{i}\mathrm{ : minimal costs of eliminating the external diseconomies to \(\bar{z}\).
```

$q \bar{z} \quad:$ additional charge for the level of external diseconomies.

Now we compare the situations before and after the introduction of the taxationvector q.

after (Case I)			
factorpayments \bar{p} \bar{x} sales tax $p^{2}=\frac{\bar{p} \bar{x}}{u}$ q $p^{2} u$ taxrepayment $q \bar{z}$			

after (Case II)			
factorpayments	\bar{p}	\bar{x}	sales
tax	$\mathrm{p}^{3} u$	$p^{3}=\frac{\bar{p} \bar{x}+q \bar{z}}{u}$	

We assume these confrontations to balance, e.g. due to competitive market conditions. For the moment we also assume the outputrate being fixed on the level u; i.e. demand is inelastic.

Before the introduction of the taxation the productioncosts amount to $\overline{\mathrm{p}} \overline{\mathrm{x}}^{0}$, while by setting the sellingprice to p^{1} the turnover just equals the costs. The situation afterwards can be considered in two different ways.
First one can say that - provided a maximum level of external diseconomies established and not exceeded by the producer - it is unreasonable to charge him with an additional amount $q \bar{z}$. This amount should be repaid by the taxreceiver (Case I). Then the sellingprice p^{2} yields a turnover equal to the production- and eliminationcosts. The amount $q \bar{z}$ may however be considered as compensation for causing external diseconomies; it is true the maximum level is not exceeded, but nevertheless relatively scarce means are used and that should be paid for.

In the latter case (II) the sellingprice p^{3} should be higher to cover this compensation too.
In this case the taxation q is not only an instrument to avoid too much pollution etc., but also an instrument to fill the public treasury.

Assuming the taxreceiver to repay the amount $q \bar{z}$ is equivalent with assuming the producer to face the productionstructure $\stackrel{0}{L}(u, \bar{z})$. By confronting the productionstructures $L(u)$ and $\stackrel{0}{L}(u, \bar{z})$ the increase of costs due to the obliged elimination of external diseconomies can be shown by a simple geometric relation (fig. 8). For $L(u)$ as well as for $\mathcal{L}^{(}(u, \bar{z})$ a factor minimal costfunction exists satisfying:

$$
\begin{aligned}
& Q(u, p)=\left\|\gamma_{1}\right\| \text {. }\|p\| \text { for } p \neq 0 \\
& \dot{Q}(u, p, \bar{z})=\left\|\gamma_{2}\right\| \text {. }\|p\| \text { for } p \neq 0 \text { See }([4] \text {, page 81) }
\end{aligned}
$$

Hence the increase of costs, expressed in orginal costs, equals:

$$
\frac{\varrho(u, p, \bar{z})-Q(u, p)}{Q(u, p)}=\frac{\left\|\gamma_{2}\right\|}{\left\|\gamma_{1}\right\|}-1
$$

Since $\tilde{L}(u, \bar{z}) \subset L(u),\left\|\gamma_{2}\right\| \geq\left\|\gamma_{1}\right\|$ is true.
Note that not only the concrete specification of $L(u)$ and $\stackrel{0}{L}(u, \bar{z})$, but also the pricevector $\bar{p} \in D_{n}$ influence the relation between $\left\|\gamma_{2}\right\|$ and $\left\|\gamma_{1}\right\|$.

The assumption of inelastic demand is clearly very unrealistic. The preceeding argument is still valid, if more realistic assumptions on demand are established. Assume the existence of a normal i.e. decreasing demandfunction. On $L(u)$ a factor minimal costfunction $Q(u, p)$ is defined. A supply-function for u is easily deduced
by assigning to each $u \geq 0$ the value of $Q(u, p) / u$. Under conditions of non-increasing returns to scale the supply-function is non-decreasing. See ([4], page 83, Q12). The intersection of these functions determines the outputrate u_{1} and the price p_{1} (fig. 9).
In (3.4) we showed, that, provided $\bar{z} \in D_{m}$ and $\bar{p} \in D_{n}$, q is a function of u. So for each $u \geq 0$ a relevant q can be found, hence a supply-function for u can be deduced from the factor minimal costfunction $Q(u, p, q)$ on $\overline{\bar{L}}(u)$ by assigning to each $u \geq 0$ the value of $Q(u, p, q) / u$. The intersection of this function and the demandfunction determines the outputrate u_{2}, the price p_{2} and moreover the taxationvector q. (fig. 9)
The confrontation of proceeds and expenditures have to be constructed now with respect to u_{1} and u_{2}. The discussion about the repayment of $q \bar{z}$ remains unchanged.

Under assumption of inelastic demand more "common" productionfactors have to be assigned to the productionprocess than needed for the mere production of outputrate u. It is reasonable to suppose an upper-limit to the availability of the "common" productionfactors like capital and labour. Hence if all these factors were employed, the shift of a certain amount of the factors to our productionprocess necessarily reduces the aggregate output in society. This statement holds clearly also for situations of more elastic demand. In general one can state that a decrease of the maximum level of external diseconomies is associated with a decrease of aggregate output. Now the problem is, which combination of material output and external diseconomies is optimal, and optimal in which way. To give an answer to this question we interprete our model in a macro-economic sense.

3.7 The_social_utility_function

The productiontechnologies $L(u), \bar{L}(u), \overline{\bar{L}}(u), \stackrel{0}{L}(u, \bar{z}), \bar{L}_{1}(u)$,
$\overline{\bar{L}}_{1}(u)$ and $\dot{L}_{1}(u, \bar{z})$ may be interpreted as blueprints of technical possibilities of a macro-system. The problem of aggregating the several outputs is ignored here; we are dealing with one aggregate output which level is denoted by u.
Consider Graph $A=\{(x, z, u) \mid u \geq 0,(x, z) \in \overline{\bar{L}}(u)\}$. The closedness of $\overline{\overline{\mathrm{L}}}(\mathrm{u})$ implies the closeness of Graph A. Let $N=\{(x, z, u) \mid u \geq 0, z \geqq 0, x=\bar{x}\}$. N is a closed set. Consider $\mathrm{M}=$ Graph $\mathrm{A} \cap \mathrm{N}=\{(\mathrm{x}, \mathrm{z}, \mathrm{u}) \mid \mathrm{u} \geq 0, \mathrm{x}=\overline{\mathrm{x}}$, $(x, z) \in \overline{\bar{L}}(u)\}$.
M is the set of all those combinations of u and z that are feasible with respect to the limited available factors $(x=\bar{x})$. It will be shown that M is a compact set.

1) M is not empty. $(\bar{x}, 0,0) \in \operatorname{Graph} A ;(\bar{x}, 0,0) \in N$; hence $(\bar{x}, 0,0) \in M$.
2) M is closed. Since Graph A and N are closed sets, their intersection is also closed.
3) M is bounded. On $\overline{\bar{L}}(u)$ a productionfunction $F(x, z)$ is defined. Choose arbitrarely (x, z, u) $\in M$. Hence $0 \leq u \leq F(\bar{x}, z)$ i.e. $\Phi\left(x^{0}\right) \geq u$

$$
\begin{aligned}
H_{i}, i=1 \ldots m & z_{i} \geq f_{i}(u)-g_{i}\left(x^{i}\right) \geq 0 \\
H_{i}, i=0 \ldots m & x^{i} \geq 0 \\
\sum_{i=0}^{m} & x^{i}=\bar{x}
\end{aligned}
$$

Since $\mathrm{x}^{0} \leqq \overline{\mathrm{x}}, \mathrm{x}^{0}$ is finite and hence $\Phi\left(\mathrm{x}^{0}\right)$ is finite (A.2) en therefore u is bounded. Since $0 \leq z_{i} \leq f_{i}(u)$ and $f_{i}(u)$ is finite for finite u, hence z_{i} is bounded. So M is bounded. Hence M is a compact set.

It is worth mentioning that the compactness of M has nothing to do with the concavity of the e.d.g.-function. Substituting $\overline{\bar{L}}_{1}(u)$ for $\overline{\bar{L}}(u)$ doesn't alter the reasoning and an alternative compact set can be found.

The convexity of the alternative e.d.g.-function nor the concavity of the e.d.e.-function are necessary.

Now that we have found the feasible set M, we have to choose an optimum in it. So we need an objectfunction to maximize.
We assume the existence of a social utility function. According to the Weierstrass's Theorem the condition of continuity of the social utility function is sufficient to find at least once a maximum over the set M. Moreover this maximum is a boundary point of the set M, if some condition of monotonicity is satisfied i.e. the combination $\left(u_{1} z_{1}\right)$ is at least as preferable as the combination $\left(u_{2} z_{2}\right)$ with $u_{2} \leq u_{1}$ and $z_{2} \geq z_{1}$.
Now that we have found a social optimum (\bar{u}, \bar{z}) for $x=\bar{x}$, we wish to inquire if this optimum is sustained by a pricesystem with respect to $\overline{\bar{L}}(u)$. Clearly the point (\bar{x}, \bar{z}) is a boundary point of the set $\overline{\bar{L}}(\bar{u})$. The convexity of $\overline{\bar{L}}(\bar{u})$ implies the existence of a pricevector (p, q) and a scalar β in such a way that:

$$
\begin{aligned}
& p \bar{x}+q \bar{z}=\beta \\
& \text { and } p x+q z \geq \beta \text { for }(x, z) \in \overline{\bar{L}}(\bar{u})
\end{aligned}
$$

So if this price- and taxation system is established, the cost minimizing behaviour of the producers quarantees the attainment of the social optimum.

(3.7.1) Remark:

The social utility function may attain a maximum more than once over the set M. Hence the social optimum is not necessarily unique. Therefore the sustaining priceand taxation system is not unique too.

References

[1] Berge, C.	: Espaces topologiques, fonctions multivoques, Paris: Dunod, 1966.
[2] Debreu, G.	: Theory of value, New York: Wiley, 1959.
[3] Nikaido, H.	```: Convex structures and economic theory, New York: Academic Press, 1968.```
[4] Shephard, R.W.	: Theory of cost and production functions, Princeton: Princeton University Press, 1970.
[5] Valentine, F.A.	: Convex sets, New York: Mc Graw-Hill, 1964.

[6] Van den Goorbergh, W.M. : Productiestructuren en externe effecten, Tilburg, 1971 (unpublished)
[7] Weddepohl, H.N. Axiomatic choise models and duality: Rotterdam University Press, 1970.
[8] Weddepohl, H.N.
: Duality and Equilibrium, Research memorandum No. 30 , Tilburg Institute of Economies, 1971.

PREVIOUS NUMBERS:

EIT 1	J. Kriens *) .	Het verdelen van steekproeven over subpopulaties bij accountantscontroles.
EIT 2	J. P. C. Kleynen *)	Een toepassing van ,"importance sampling".
EIT 3	S. R. Chowdhury and W. Vandaele	A bayesian analysis of heteroscedasticity in regression models.
EIT 4	Prof. drs. J. Kriens .	De besliskunde en haar toepassingen.
EIT 5	Prof. dr. C. F. Scheffer *)	Winstkapitalisatie versus dividendkapitalisatie bij het waarderen van aandelen.
EIT 6	S. R. Chowdhury *) .	A bayesian approach in multiple regression analysis with inequality constraints.
EIT 7	P. A. Verheyen *)	Investeren en onzekerheid.
EIT 8	R. M. J. Heuts en Walter A. Vandaele *)	Problemen rond niet-lineaire regressie.
EIT 9	S. R. Chowdhury ${ }^{\text {() }}$.	Bayesian analysis in linear regression with different priors.
EIT 10	A. J. van Reeken*) .	The effect of truncation in statistical computation.
EIT 11	W. H. Vandaele and S. R. Chowdhury *) .	A revised method of scoring.
EIT 12	J. de Blok *)	Reclame-uitgaven in Nederland.
EIT 13	Walter A. Vandaele*)	Mødsce, a computer programm for the revised method of scoring.
EIT 14	J. Plasmans *)	Alternative production models. (Some empirical relevance for postwar Belgian Economy)
EIT 15	D. Neeleman *) .	Multiple regression and serially correlated errors.
EIT 16	H. N. Weddepohl	Vector representation of majority voting.
EIT 17		
EIT 18	J. Plasmans *) . .	The general linear seemingly unrclated regression problem. I. Models and Inference.
EIT 19	J. Plasmans and R. Van Straelen *)	The general linear seemingly unrelated regression problem. II. Feasible statistical estimation and an application.
EIT 20	Pieter H. M. Rays	A procedure for an economy with collective goods only.
EIT 21	D. Neeleman *) . -	An alternative derivation of the k-class estimators.
EIT 22	R. M. J. Heuts ${ }^{\text {) }}$.	Parameter estimation in the exponential distribution, confidence intervals and a Monte Carlo study for some goodness of fit tests.

| EIT 23 | D. Neeleman *) |
| :--- | :--- | :--- | :--- | :--- | :--- | The classical multivariate regression model with

[^0]: ${ }^{1}$) The function $\Phi(x)$ is upper semi-continuous at a point x^{0}, if and only if for all $\varepsilon>0$ there exists a neighbourhood $N_{\varepsilon}\left(x^{0}\right)$ of n^{0} such that $x \in N_{\varepsilon}\left(x^{0}\right)$ implies $\Phi(\mathrm{x})<\Phi\left(\mathrm{x}^{0}\right)+\varepsilon$.
 2) A numerical function $\Phi(x)$ defined on a convex subset $D \subset R^{n}$ is quasi-concave on D if for all points x and Y of D . $\Phi\{(1-\Theta) x+\Theta y\} \geq \operatorname{Min}[\Phi(x), \Phi(y)]$ for all $\theta \in[0,1]$

[^1]: ${ }^{1}$) The function $h(x)$ is convex on D if for all points x and y of $D, h\{(1-\theta) x+\theta y\} \leq(1-\theta) h(x)+\theta h(y)$ for all $\Theta \in[0,1]$.

