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IDENTIFICATION OF LINEAR STOCHASTIC

MODELS WITH COVARIANCE RESTRICTIONS

BY PAUL A. BEKKER1 AND D.S.G. POLLOCKZ

The purpose of this paper is to provide a systematic treatment
of the problem of identification in systems of linear structural
equations where some of the disturbances are uncorrelated.

1. INTRODUCTION

Many of the aspects of the classical linear simultaneous-equations model
of econometrics have been researched in great depth, yet the problem of using
restrictions on the covariances of the structural disturbances to assist in
identifying the structural parameters appears to have received relatively
little attention.

In his seminal book on the identification problem in econometrics, F.M.
Fisher [4] did go some of the way towards presenting an overall account of the
problem; but most of his results have practical applications only in the
rather specialized case of block-recursive systems. It should also be
mentioned that the covariance problem can be accomodated within the framework
for analysing problems of identification that Wegge [12] has provided. Other
authors, including Rothenberg [8] have added to the results, and more
recently, the problem has been considered by Hausman and Taylor (5] in
connection with limited-information estimation by instrumental variables. The
latter have shown that exogeneity relationships induced by covariance

restrictions may find expression in a class of models that is wider than that
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of the block-recursive models which, in its turn, is a generalization of the
class of recursive models analysed by Wold [13]

In this paper, we attempt to analyse, in a systematic manner, a wide
variely of relationships that may be induced by covariance restrictions. We
begin our treatment of particular cases by defining the class of decomposable
covariance restrictions. These are the restrictions that give rise to
relationships of exogeneity; and, therefore, at this stage, we are covering
much the same ground as Hausman and Taylor. However, our treatment of the
problem is quite different from theirs.

By generalizing our definition of decomposability, we then proceed to
introduce the wider class of recursively decomposable restrictions. An
important finding is that, if all the covariance restrictions are recursively
decomposable, then any set of structural parameters that are identifiable are
also globally or uniquely identifiable.

In our final section, we consider covariance restrictions that are
indecomposable. Such restrictions no longer afford an assurance of global
identification. Nevertheless, in the case of one model which we analyse in
detail, we are able to adduce a simple criterion for discriminating amongst
the isolated solutions of the identifying equations.

Our attempt at providing a unified treatment of our topic rests on an
analysis of the structure of the Jacobian matrix associated with the
identifying equations. However, we find that, in many practical cases, our
assesment of whether or not a structural equation is identified can be based
on relatively simple criteria that do not require us to take account of the
Jacobian matrix in its entirety. Nevertheless, there are cases where we do
have to resort to a full system-wide analysis; and we shall describe the

methods of such an analysis in the following section.
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2. A FORMAL ANALYSIS OF THE IDENTIFICATION PROBLEM

2.1 The Model
We shall conduct our analysis in terms of a model comprising m stochastic
equalions in m observable variables and m unobservable disturbances. We can

represent the model by writing

where z' = [z_,...,z ] is an observable row vector, v' = [v_,...,v ] is an
1 m 1 m
unobservable disturbance vector with an expected value of E(v) = 0 and A =

[é ....6m] is a nonsingular m x m matrix whose ith column contains the

1’
coefficients of the ith structural equation.

The dispersion matrices of the vectors z and v are given by
(2.2) D(z) = L 8 D(v) = & = [01....,¢n]

where & is assumed to be positive definite. It follows from (2.1) that

(2.3) A'ZA

"
L]

whence we see that

is also positive definite.
If it is assumed that z is normally distributed, then all the information
that is available from the observations is contained in I which is globally

identified.



2.2 Restrictions on A and &

Given that a value may be attributed to I, we seek to identify the
elements of A and & with the help of prior information represented by linear
restrictions on these matrices.

We shall assume that, apart from the normalization rules which set éii =i}
for all i, A is subject only to exclusion restrictions of the form éij = 0.
We shall also assume that ® is subject to covariance restrictions of the form
¢ij = 0 which are always accompanied by corresponding restrictions of the form
$.

o k!
The restrictions affecting the jth equation may be written as

= 0.

(2.5 R'.§. = . H'.¢. = O
. i £ §j¢3

where R&j and Hsj consist of selections of the rows of the identity matrix of

order m x m. In order to separate the normalization rule from the homogeneous

exclusion restrictions, we may write the restrictions on §. as

b

(2.6) e! | 1
315 =
2
Hps 0

where ej is the jth row of the m x m identity matrix.

Taking all the equations together, we have the restrictions

€2.2) R)A =r

[~

and



(2.8) Hi®

-
]
(=]

where Ac and Qc are long vectors formed by a vertical arrangement of the
columns of A and ® respectively.

In addition to the restrictions in (2.8), we must take account of the
symmetry of . Let us therefore consider the operator (D, called the tensor
commutator, which has the effect thatéipAc = A*C when A is any m x m matrix.
This operator, which plays a fundamental role in the theory of matrix
differential calculus, has been defined by numerous authors including Balestra

[1], Magnus and Neudecker [6] and Pollock [7]. 1In the present context,
o= Y..(e.e! ®e.e:) is a partitioned matrix of order nz x nz whose jith
bl ¥ i e '

block is the matrix eie3 of order m x m which has a unit in the ijth

position and zeros elsewhere. Using the commutator, we can express the

symmetry of & by writing the equations
= Al
(2.9) (I )8 =0

The set of all matrices [A, ®] that obey the restrictions under (2.7),
(2.8) and (2.9), in addition to the restrictions that A is nonsingular and
that & is positive definite, will be called the restricted parameter set.

The symmetry of & can also be expressed by writing the equation

c

& = 1/2(1 4«&:)§c . On substituting this into the equation under (2.8), we

obtain the expression

(2.10)  1/2Hi(1 +ep) 8= 0

These equations are symmetric in the arguments oij and oji' It follows that
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the restriction setting ¢ij to zero is now identical to the restriction
setting ¢ji to zero; and we are free to eliminate one of these.
-1
Given that & = (A'2A)® = (I GyA'£)A® , and that A'f - #A L, it follows

that we can rewrite the equations in (2.10) in the form

(2.11)  V/2H(I + DA ar)a¢

= V/2H(T +@I(T & 887 A% .

Thus we see that the linear restrictions on ’c give rise to a set of bilinear

ristrictions on A

On combining the equations from (2.7) and (2.11), we obtain the system
(2.12) RA e

1/2H(1 +@) (I & A'E) 0

2.3 General Conditions for Identifiability

Equation (2.3) shows that, for a given value of I, the value of & is
uniquely determined by that of A. Therefore the problem of identification
rests with A alone.

The equations (2.12) contain all the information relating to A, and we
shall describe them as the identifying equations. Any value of Ac which
satisfies these equations may be termed an admissible value. The true
parameter value Ao is clearly an admissible value, and our object is to
establish conditions under which it represents a locally isolated solution of
the identifying equations such that, within the set of values of A obeying the

restrictions in (2.7), there exists an open neighbourhood of Ao containing no



other admissible value.

It is well known that a sufficient condition for Ao to be locally isolated

is that the Jacobian matrix of the transformation in (2.12) evaluated at Ao

has full column rank. By differentiating the function with respect to A, we

find that the Jacobian is

(2.13) R}
JE(A; I) =

LM +@II AL

Let ’0 be the true value of . Then, since A'L = 06—1 , it follows that

the matrix function

(2.14) R
I, # =
Hy(T + I 88 h

has the same value at the point [A Qol as the function Jt(n; L) has at the

0'

point A If it can be established that J(A, &) has full rank for almost

0 -
every point in the restricted parameter set, then the fulfillment of the
condition on the rank of JI(A; L) at Ao is virtually assured.

The condition that J(AO. Qo) has full rank, which is sufficient for the
local isolation or identification of Ao , becomes a necessary condition as

well if it is assumed that [A Qol is a regular point of J(A, &) such that

o'

there exists an open neighbourhood of [A iol in the restricted parameter set

ol
for which J(A, &) has constant rank. This is an acceptable assumption since
the set of irregular points is of measure zero; which can be demonstrated by

using a result of Fisher [3, Th. 5.A.2] concerning the roots of analytic

functions. We state the following:



ASSUMPTION 1: The true parameter point [Ao, io] is a regular point of J.

In considering the identification of the parameters of a single structural

equation, we will make a further assumption:

o’ % s L =1,...,m where J! =

J(el X I) is the submatrix of J = [Jl""'J-l corresponding to the derivative

ASSUMPTION 2: [A iol is a regular point of J

taken with respect to the parameters of the th equation.

Rothenberg [8] has used an analogous assumption in his Theorem 8 which
recapitulates on a theorem by Wald [11] which is also proved by Fisher [3].

We shall restate the theorem in the form which best suits our own purposes:

PROPOSITION 1: A necessary and sufficient condition for the parameters of the
first equation to be locally isolated is that Rank(J) = Rank(Jl) 4

Rank(J_,...,J ) and Rank(J_ ) = m .
2 m 1

We can state equivalent conditions for identification in terms of any matrix

that can be derived by postmultiplying J by a nonsingular matrix of order

m2 x m2 . On postmultiplying J by T X A , we obtain
(2.15) Fo RA(I‘%JA)
F = =
0 e 0
F’ H’(I + PIHIE @)
= [Fl' @ & B Fm]

where Fl = F(e‘ & I) . Clearly, we have Rank(F) = Rank(J) and Rank(F!) =

Rank(J‘). Moreover, F and F, have the same regular points as J and J

L L

respectively.
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We may note that Rank(?l) = m is a nesessary condition for the first equation
to be identified; and this corresponds to Fisher's Generalized Rank Condition
(3, Th 4.6.2].

The advantage of using F comes from the fact that it separates the

matrices & and A, which facilitates the assesment of its rank.

2.4 The structure of the Matrix F
We shall now look more closely at the structure of the matrix F.

The submatrix Fo corresponding to the restrictions on A has a relatively

simple structure:

(2.16) Fy = R(I Q@A)

RI-B% O 38 ea 0

Al
i ? 'RAZA B s 9
0 4 W 4 s & « sRL M

= [F R FO-]

If there were no covariance restrictions, then the equation Rank(F) =
ZRank(F!) would always hold. However, the covariance restrictions tie
together the sets of identifying equations, and this is reflected in the
structure of the submatrix F. .

To illustrate the structure of F.. imagine that its rth row f; corresponds

to the restriction &5 - (0369 e;)ic =0 . Then

(2.17) £ = (e} @ eI + @)X ®
= (0369 eii) + (eiC@ ej!)
= [f* £ 1]

2 I A



10
Here we have a 1 x m2 row vector consisting of subvectors f;! s ¥=1,...,m 6f
order 1 x m. These are zeros apart from the ith subvector f;i = ¢j and the
" i = &
jth subvector frj = ¢i
For a complete example, let us consider the case of the model specified by

the matrices:

(2.18) 1 .612. 0 ¢11. [+
a=(0,1,35, . $=10,4,,,0
631. 1 O | 0,0 .¢33
The matrix F is then given by
(2.19) 1 .612, 0 : : 611 =1
B 5 L yliges i 8 =
100 1,8, 822 =
859+ @2 2 832 =
(F.,F..F.] = : s Hoptgey W § dup =0
12" 3 : 5. D .1 _
S 3 By ! 33
0 |¢22v 0 .¢11' o, 0,0,0 012 =
0 ’ 0 v¢33. 0 » O ’ ¢11| 0 ’ 0 ¢13 =
_o » 0 ’ 0 0 ’ 0 |¢33: 0 .¢22l o- ¢23 =

Here the empty blocks signify submatrices containing only zeros. The rows of

F correspond to the restrictions written in the margin.

$ é =1

The rows of F corresponding to the normalization rules § 22 834

"
are linearly independent of all other rows; for each contains a unit which
falls in a column where all the other elements are zeros. By deleting these

rows and the corresponding columns, we obtain a submatrix which has full

column rank if and only if F has full column rank. By permutating the rows of
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*x
the submatrix in question, we obtain the matrix F which appears in the

following equation (2.20):

(2.20) F;
F*q = « 19
£,
6520 0 1400 04 0L 0T[4y, ) 0 [
0 1433: 0, 0,4,,, 0 11-9,,3,,8, v
o os 1.0, 0], ) 0
0004 0 4833, 0 .0y [| #5585, 2
0,0,0,0,1,8,||6,58,8, 0
_:i':é;;:'é':'é.:.é.:'é; [ #3383, 112782383, %12 |

It is evident that the rows of the matrix F*l , which is in echelon form,

are linearly independent. If 623631612 # 1 , then the vector q , which is

*x x x
orthogonal to the rows of Fl , is not orthogonal to f Therefore, f, cannot

2" 2

x
be a linear combination of the rows of F. and, consequently, F* and F are of

) |
full rank. It follows that the parameters are locally identified. If
623631612 = 1 , then the parameter point is irregular and is therefore
excluded from our analysis. However, the irregular points constitute a set of

measure zero.
3. DECOMPOSABILITY

A covariance term within the dispersion matrix & = A'ZA is a bilinear
function of the parameter vectors of two structural equations. Therefore one
might expect a covariance restriction to have the effect, always, of tying

together the identification problems of two equations. However, it often
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happens, as a result of a particular conjunction of the restrictions on A and
®, that a set of covariance restrictions becomes a set of linear restrictions
on the parameters of the jth equation which makes no reference to the values
of other structural parameters. 1In such cases, we shall say that we have a
set of decomposable restrictions.

When all the available covariance restrictions are decomposable, the
problems of identifying individual equations are separable, and, if the
parameters of an equation are identifiable, then they are uniquely or globally
identifiable.

In our characterization of decomposable covariance restrictions, we shall
make use of the following lemma in which the notation makes allusions to

section 2.4.

LEMMA 1: Consider the matrix

(3.1 . o] [Foi » Fo5 | . o
- f' - f' f' - [ i ’ j_I
1 1 * T1y

i) + Rank(Foj) .  Then

) if and only if fii is linearly dependent on the

A} ’ =
wherein fli' flj are row vectors and Rank(Fo) = Rank(Fo

Rank(F) = Rank(Fi) + Rank(Fj
1
rows of Foi or flj is linearly dependent on the rows of Foj

The proof of this appears in the appendix.
3.1 Decomposable Covariance Restrictions

We may begin our account with the definition of a decomposable covariance

restriction.
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DEFINITION 1: We say that the restriction ¢ij = 0 is decomposable if, for all

points in the restricted parameter set, we have

(3.2) F
Rank

F.. | F
= Rank % + Rank 03
’j ’ ’i ’j 0;

oi * Foj

where F_. and F are defined in (2.16).

0i 0j
LEMMA 2: The restriction ¢ij = 0 is decomposable if and only if (a) for all
points in the restricted parameter set, there exists a vector ki such that ¢j
= A'RAiki or (b) for all points in the restricted parameter set, there exists
a vector kj such that ¢i = A'ijkj.
The proof follows immediately from Lemma 1. If conditions (a) and (b) are
fulfilled at the the same time, then the restriction ¢ij = 0 is of no
assistance in identifying the equations, and we say that it is redundant. If
condition (a) holds together with the condition that Rank(A'RAj, oi) =
Rank(A'RA

) + 1 for all regular points of [A'R,., ¢i]. then the restriction is

3 Aj
said to be assignable to the jth equation, and we call the ith equation the
instrumental equation.

To illustrate the definition and the lemma, we may consider the model

specified by the matrices

(3.3) Lo @ gl B TS N S
- 6° ’ : v : ':24 . s :21"22'°23'°24

i 9 » 1 485 31°%32°%330 ©

0 .8,,, 0,1 0 14,50 O 18,

The restriction 014 = 0 is decomposable. This can be seen by considering

the matrix



(3.8) ' 1,0,8,,0
RAIA elh .6.:.i.:.6.:;;;

o | = el o B

wl brzva

The vector ¢‘ is linearly dependent on the second and third rows of R'_A so

Al
that 04 = A'RAIXI for some vector kl. On the other hand, consideration of the
matrix
€3:5) RAAA 1 50 ,613.
= 0 58,.:, 0 5 1
" 42
¢1 ...............
‘11 "12'¢13l o

shows that Rank(A'RAA. 01) = Rank(A'RAa) + 1 for almost every point in the
restricted parameter set.

As our example suggests, we may replace the matrices R = [ei. Hhil and

Ai

R = [e,, H,,] , wherever they occur in Definition 2 and Lemma 2, by their

Aj i’ A

submatrices HM and HAj

which indicates that the jth column of R'!.A consists of zeros except for the

Aj

unit corresponding to the normalization e'sj =1 . Since ¢i contains a zero

B
in the jth position corresponding to the restriction ¢ij =0, it is clearly

respectively. To confirm this, we may refer to (2.6)

independent of the row esA in which the unit occurs. Therefore

€3.6) ¢i = A'RAjkj implies ¢i = A'HAjrj .

To reveal some further consequences of the condition ¢j = A'H,.x,, let us

Aj i

-1
rewrite it as A' "¢, = H consist of the rows of the identity

3 ai" Ai

matrix that are not included in HAi . Then

i’ and let S
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(3.7 5T 4 Hy Hy ‘o
A ¢j = Ki = H
Bai Saifai 0

and we can see that ¢j A'H,.x, if and only if SA

ai%i A'~1¢j = 0. At the true

i
parameter point, or at any other admissible point where A'—IQ = [A, the latter

becomes s&it‘j = 0 which is a set of linear restrictions on éj. This equation

can also be written as

(3.8) s&ib(z)é = C(8'.z, &lz)

) Ai h]
= C(SAiz. vj) =0

which indicates that the disturbance term ”j is uncorrelated with all the
variables entering the ith equation. We may describe this situation by saying
that the variables entering the ith equation are exogenous relative to the jth
equation; and these variables may be used as instruments for the
identification and estimation of the jth equation.

The next proposition indicates a way of determining whether or not a

particular covariance restriction is decomposable.

Ai%i’ relating to the

covariance restriction ¢ij = 0, holds for every point in the restricted

PROPOSITION 2: The decomposability condition ¢j = A'H

parameter set if and only if there exist selection matrices Nq and "m—q

selecting q and m-q different columns respectively, such that

(3.9) N Hp BHg.N =0

The proof appears in the appendix.
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Equation (3.9) shows that the restriction ";»qﬂaiéi = 0 holds not just for
a single equation but for q equations, indexed by i = il.....iq. whose
parameter vectors are selected from the matrix A by the matrix H’qu. Thus

the equation is common to a set of q decomposability conditions ¢j Ai

I
[~
=
=

.,iq relating to a set of q covariance restrictions °ij =0 3 1 =
il""'iq .

We should note that q is also the number of distinct variables entering
the equations indexed by i = il,...,iq. The q variables are not necessarily
present in each of these equations, and so the condition (3.8) may represent
less than the full set of exogeneity relationships affecting the jth equation.

To illustrate the condition (3.9), let us consider again the model

specified under (3.3). Corresponding to the restriction ¢14 = 0 which

satisfies the decomposability condition ¢“ = A'RAIXI. we have the equation

(3.10) 1,0,8,.0 1,0
HAIAH“=[°'1'°'°]°'1'°'624 0,0 =[o.o].
0,0,0,1]18,,,0,1,35,1l0,1 0,0
0.,8,,,0,1 0., O

The equation H& = 0 which corresponds to the restriction ¢34 =0 is

3854

identical to the above. Thus the two variables z_ and z

1 3 entering the

equations 1 and 3 are exogenous relative to equation 4; and both can be used
as instruments.

In order to deal with cases where there are a number of decomposable
restrictions relating to different equations and, also, to provide a basis for
dealing, in the next section, with recursively decomposable restrictions, it

is helpful to generalize Lemma 1 to obtain the following:
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LEMMA 3: Consider the matrix

(3.11) E F.

r-1 =1,1* ° * ° r-1,m
F['= =

£ Bl iy 8 & g B

r rl rm

- [
wherein Rank(Fr_l) = Z‘Rank(Fr_l.t). and assume that frl =0 if L # i and L #
j. Then Rank(Ft) = X‘Rank(Fr l) if and only if't‘:_i is dependent on the rows

of F or f*
r

is dependent on the rows of F
r-1,i r

j "lrj.

We may apply this lemma repeatedly to show how the row vectors
corresponding to n decomposable covariance restrictions may be added in any
order to the matrix Fo = R&(I ¥ A) to create a matrix F“ with the property
that Rank(F ) = Zannk(Fn!). Thus

LEMMA 4: Let N; be the matrix which selects from H! the rows corresponding to

®
a set of n decomposable restrictions °ij =0 5 (1433 = (i.j)l.....(i.j)n. Then

(3.12) Fo F
Rank = ilkank

We now assert that, if a sufficient number of decomposable covariance
restrictions are assignable to the jth equation, then this equation is

globally identifiable:

PROPOSITION 3: Let N; be the matrix which selects from H; the rows
corresponding to a set of decomposable restrictions ¢ij 204 4= il,....i
relating to the jth equation. Then a sufficient condition for the jth

equation to be globally identified is that
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(3.13) F
Rank 03 =m
NoFaj
If every covariance restriction which references the jth equation belongs to
this set of n decomposable restrictions, then this condition is necessary as

well.

Here local identification follows from Proposition 1 and Lemma 4. Global
identification follows from the fact that decomposable covariance restrictions
give rise to linear restrictions on A.

We can also represent the condition (3.13) by writing

(3.14) R!.A
Rank L Aj

N;Hiji

®j

To illustrate this condition, we return again to our example under (3.3).

where ﬁ; is the appropriate selection matrix operating on H

We see that a necessary and sufficient condition for the fourth equation to be

identified is that the matrix

(3.15) 1,0,8,,0
Riaf] | 048, 0.1

Ut $1109120%30 ©
3718501055, 0

is nonsingular. The condition will be satisfied by every regular point in the
restricted parameter set; and, according to Assumption 2, these are the only

points we need consider.
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4., RECURSIVE DECOMPOSABILITY
We begin with a general definition of recursively decomposable restrictions
DEFINITION 2: Let ¢ij =0 5 €13) = (i.j)l,...,(i.j)n be a set of covariance

restrictions corresponding to the rows fi...‘,f; of the matrix F’ , and let us

define, for r = 1,...,n , the matrices

(4.1) Fr—l Fr—l,l' 'Fr-l.m
th =
£ £ % & 2« 5 B
r rl rm

with Fo = RA(IQ@ A). Then, if, at every regular point of F. y within the

restricted parameter set, we have

(4.2) Rank(Fr) = ZlRank(Fr.l)

for all r, we say that the covariance restrictions are recursively

decomposable.

It is clear that the first in a sequence of recursively decomposable
restrictions must be a decomposable restriction according to Definition 2.

Moreover all decomposable restrictions are also recursively decomposable.

LEMMA 6: If the first r - 1 restrictions are recursively decomposable, then

the rth restriction ¢ij = 0 is recursively decomposable if and only if (a) for

= F!
all regular points of Fr—l' there exists a vector ki such that ¢j = Ft-l,ili
or (b) for all regular points of Fr—l' there exists a vector xj such that ¢i =

1
Fr~1,j1j'

The proof of this follows directly from Lemma 3. If the condition (a)



20

holds together with the condition that Rank(F = Rank(Fr .) + 1 for all

r.j) -1,3

regular points of Fr i then the restriction is said to be assignable to the

jth equation, and the ith equation is said to be the instrumental equation.

For an example, let us consider the model specified by the matrices

(4.3) 1,0 .8, 0 3,10 0 16,5, O
oo 6° ' : ’ : ':24 & ¢° ':zz'zzs' z

g O a2 oatyy 31'%32° %33
0 ,8,,. 0,1 0,0,0 .0,

which may be obtained from the model specified in (3.3) by setting ¢42' ¢21 =

0. The corresponding matrix F is given by

(4.4) 'ialn. 0 w0 &0
0 ,R;,8,0 ,0
0 ,0 ,R'.A,
Fo o ,0 83“ a? A
N (o .
Pl %8 o0 s8] Brdy =0
0,0 , .. 9 £5, 1 &y, = 0
0 L4 0 ey | £, =0
_¢5 v &) o ,0 | f; K 0

We already know, from the analysis of section 3, that the restrictions
¢1A' 034 = 0 are decomposable; and in the present example, they represent the
first two restrictions in a recursively decomposable sequence. The

restriction ¢42 = 0 is the third in the sequence; for consideration of the

matrix
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(4.5) k8 : .50 .6;3. :’
o -
o |~ ®1 0 1955 0
® 3193709330 ©
| O +9p509530 O |

A, for all regular points of F and of F_.

- ]
shows that ¢2 = F2,4 4 2.4 2

Finally, the restriction 021 = 0 is also recursively decomposable; for

consideration of the matrix

(4.6) Y, 0 18140 0]
R, 65 Lol

% 1= %1 ¥ 2oty

* 0,0,0.9,

[#11° 0 #3530 O |

shows that ¢1 = Fé zxz for all regular points of F3 2 and F3'

It is easy to see that, as was the case with decomposable restrictions, we

can rewrite Definition 3 and Lemma 6 in terms of the matrix Fs = HA(I X A)

which omits the rows of Fo corresponding to the normalization rules. In place

of the matrices Ft—l,i and Fr—l.j

Let us also note that, for the true parameter point, or for any other

of Lemma 6, we then have FX and F;_

r-1,1i B

g g * e s "
admissible point, we can write Fr—l.l Jr—l.!A where Jr—l.l is a submatrix of
Jg(A, &) from which the row corresponding to the normalization rule has been

deleted. At such points, the decomposability condition (a) in Lemma 6 can be

written in the form

I *
(4.7) T8 = AL % s

In section 3.1, we showed that each decomposable covariance restriction

corresponds to a set of linear restrictions on structural parameters. We
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shall now show, more generally, that each recursively decomposable restriction
corresponds to a set of linear restrictions.

Let us therefore consider a full system of restrictions where the first p
covariance restrictions form a recursively decomposable sequence. Then we

have the following conditions:

(4.8) HA!‘! =0 3 E LyueonM 5
éi Ié =0 =1, s1 3
r
Zéj = J:ll.i < B2 Vsanssip
r | <

We can demonstrate that these are equivalent to the conditions

(4.9) H' § =0 s v =1,...,m .

AL %

B' Ié =10 s B2 10 P »
LIS MR I

éi Ié =0 :° =ptl,.c.., N i
r r

wherein the matrices Br j depend only on I.
*oe
The matrices Br j may be defined recursively. When r =1, B1 j is a
Ete e |
matrix of linearly independent columns that are orthogonal and complementary to

. B 3 g g

those of Hnil such that Bl.jIHAil = 0 whilst [HAil' Bl.jll is nonsingular. 1In

addition, we define a set of matrices B1 g L =1,...,m of the same order as

Bl j but consisting of zeros when % # j. For other values of r not exceeding
"1

P, we define Br j to be a matrix whose columns are orthogonal and complementary
e
to those of the matrix

Wy « BBy 4 o By g sneasBy g 4 W3
| o r r r

and we also define the matrices Br i 0 for % # jr which are of the same order.
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We use the principle of induction to demonstrate the equivalence of (4.8)

and (4.9). Let r = 1. Then the restriction 6; téj = 0 is decomposable such
) § 1
that I8, = H,. x. and, consequently, B! . L& = 0. Conversely, as §
3y 8, Ly 5y o
is a vector in the null space of H&i , and as 81 3 forms a basis of that space,
1 |
it follows that § =B, . w, for some y,; and, therefore, the condition
i1 1.31 1 1
£d, =0 implies the condition & I& = 0. Since H,., forms a basis
41 Ly —r
of the null space of B! . , the condition B! Ié
“ 14, % M 18 1y
L for some ki which is the decomposability condition. Thus the first
11 b
covariance restriction and its associated decomposability condition are equivalent

B: .
1lJ1
= 0 also implies that &

= H
Ai

to the linear restrictions Bi = 0 and may be replaced by the latter.

. L&
o PR Y

Now assume that the replacement is valid for the first r - 1 recursively
decomposable restrictions. Then, for the rth restriction, the decomposability

condition Ié = JXx! K may be written as

jr r-l.xr ir
taj = [HAi ' E(Bl.x i ’Br—l.l "r—l)lti
(5 C r
so that Br'jrtéjr = 0. Conversely, since 6ir= Br,jr"r for some Moo it follows
that the linear restrictions B Lé = 0 imply 8] Id = 0 together with
t’jr jr ir jr

its associated decomposability condition. Thus the rth covariance restriction
may be replaced by a set of linear restrictions.

Our argument has served to demonstrate the following:

PROPOSITION 4: If the first p covariance restrictions are recursively
decomposable, then a sufficient condition for the jth equation to be globally

identifiable is that

4 Rank(F =
(4.9) ank( p.j) m

If all the covariance restrictions which reference the jth equation are in

this set of p restrictions, then the condition is necessary as well.
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5. THE CLASSICAL MODEL

The classical simultaneous-equations system of econometrics is a special
case of our model which can be written in the form of (2.1) as a

block-recursive system:

The vector x contains K variables that are exogenous relative to the G jointly
dependent variables in y . The dispersion matrices for z' = [y', x'] and »' =

[e', E'] take the forms of

(5.2) I ¥,o0
o | Wy . $ -
R 0,86

The nondiagonal blocks of & are set to zero by the covariance restrictions
¢ij' ¢ji = 0 where j = 1,...,6 and i = G+1,...,G+K. These restrictions are

all decomposable as can be seen by considering

(5.3) HAiA i I ., 0
. L] s o
* -
where H&i is the matrix associated with the restrictions ali""'éci = 0

relating to any column of the zero matrix in (5.1). Since I is nonsingular,

(5.3) shows that ¢3 = [13. 0] is dependent on the rows of H&ih = [l 0] : In

fact, the zero block of [I, 0] corresponds to the matrix selected in (3.9).
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In treating the identification problem of the classical system, we shall
confine our attention to cases where the restrictions on ¥ are recursively
decomposable. The identification of the jth equation, where j £ G, may then
be assessed by considering the matrix consisting of the nonzero row vectors of

F.:

I
(5.4) [, 1
®riz ¥ [r.o] LI
Rt'sjA v '“l'sj Bk HéjB. HéjA
Hsji [H,;j. 0 [! . o] Hi,j!. 0
o, 1]Lo,® o , ©

A necessary and sufficient conditon for the identifiability of the jth
equation is that this matrix has a rank of m = G + K. However, since the K x K

matrix 6 = A'txxA is nonsingular, this is equivalent to the condition that

(5.5) RFjF

Rank HéjB =G
Hys¥

In the absence of restrictions on ¥ , the term H' ¥ in (5.5) is

¥i
suppressed, and we obtain the conventional rank condition which is stated by
Schmidt [9, p.134] amongst others.

As a corollary to Lemma 6, we have the following statement which is

analogous to Lemma 2:
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COROLLARY 1: 1In the classical simultaneous-equations system, the restrictions
on ¥ are recursively decomposable only if there exists a covariance

B*H...1;

restriction *ij = 0 such that (a) at every regular point of [r'Rri, Bi

we have *j = [F'Rri. B'HBi]Xi for some vector ki or (b) at every regular point

of [['R 'HBj]. we have *i = [T Rrj' B Hlekj for some lj'

rj* B

ol

Of course, we can replace the matrices R = [ei, Hri] and Rrj = [ej. HrJ

ri

wherever they occur in this statement by their submatrices Hri and Hrj
respectively.

We should note that, if *i or 05 are linear combinations of the rows of I
alone, then the covariance restriction *ij = 0 is, in fact, decomposable; and
we are back in the world of section 3. This corresponds to the context in
which Hausman and Taylor [5] have derived their propositions; for they have
confined their attention to cases where the covariance restrictions on ¥ are
conjoined only with restrictions on ' (which they denote by B).

The following is analogous to Proposition 2°

PROPOSITION 6. The condition *j = [F'Hri. B'H lxi relating to the

Bi
recursively decomposable restriction ’ij = 0 holds for all regular points of
(r'uri. B'HBil in the restricted parameter set if and only if there exist

selection matrices Nq and N ' q such that

G
(5.6) R.. T H..T
N’ r H’ N =0 and Rank (N’ s =G -gq
G-q H'.B ia G-q H'.B
Bi Bi

The proof, which is analogous to that of Proposition 2, is given in the
appendix

For an example, let us consider the model specified by the matrices
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_ _
(5.7) L Hgge @ 5 W _
0 51 i¥yap © ¥11°%12°%13° %14

I Won s¥ace O 5 0

I LS FOTIR IS P9 ' v - | 21 52

B 0,0 ¥4 1 ¥310 0 o¥33.9,,

15eegarestiians Bye B Wiy
%1225 ¥ » ¥ |

The conventional rank condition shows that the first and fourth equations
are identified in the absence of any restrictions on ¥.

Given that the fourth equation is identified, it follows that the
covariance restriction *42 = 0 is recursively decomposable. Although the
third equation is not identified, the restriction 032 = 0 is also recursively

decomposable; for the matrix

.

(5.8) Hp,r '__[o.o]
2 =
L]
H83B 0,0
fulfills the condition in (5.6).
Given the recursively decomposable nature of the restrictions 032. *42 =

0, it follows that a necessary and sufficient condition for the global

identifiability of the second equation is that the matrix

(5.9) R, 0,1 ¥, 0
g2 U0 0 aWyye 3
¥ | |¥arr O ¥a3e¥a,
¥ Ya1' O ¥a3o¥aq

is nonsingular. The condition will be satisfied at every regular point in the
restricted parameter set.

What is notable about this example is that the identification of the
second equation is achieved with the assistance of two covariance
restrictions, neither of which is decomposable and one of which, namely '32 =

0, relates to an instrumental equation which is unidentified.
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6. TINDECOMPOSABLE RESTRICTIONS

We define an indecomposable covariance restriction to be any covariance
restriction that cannot be subsumed under Definition 2 of recursively
decomposable restrictions.

The effectiveness of an indecomposable restriction in assisting the
identification of a particular equation depends crucially on the way in which
other indecomposable restrictions are distributed throughout the system. 1In

the appendix, we prove

PROPOSITION 7: An indecomposable covariance restriction can be of assistance
in identifying equations which it references only if it belongs to a set of s
indecomposable restrictions which reference no more than s equations.( ¢ij =0

is said to reference the ith and jth equations).
As a corollary to the proposition we have

COROLLARY 2: 1In a classical system with exogenous variables where all the
restrictions on ¥ reference the jth equation - that is, where the restrictions
are confined to the jth row and column of ¥ - the restriction *ij = 0 can be

useful for identification if and only if it is recursively decomposable.

6.1 An Indecomposable System
The simplest case of an indecomposable system which is locally identified

is provided by the model in section 2.4 which is specified by the matrices
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(6.1) 1 .612. 0 011' 0,0
A=]|0,1 .523 . ®=1|0 1$,,0 O
83,0 0,1 0,0 ,9,,

We may recall that & = A'IA , whilst I loij] has a fixed value. By
analysing the associated F matrix, we have established that the identifying
equations yield isolated solutions; but this does not exclude the possibility
of multiple solutions.

Consider, for example, the matrix

(6.2) 171, -11 , 16

(6.3) i, 2, @ 45 , 0, o
27
2 el @ B, = : # .| o, 25. o ,
81
. B, 0, 1] | 9, o, 5.
(6.4) T 14 3, 0 - 95 ; ©0,; @7
38 2
A2 0. 1. -2 ) 2 _ 0, 25, o )
76
19 5 @, 1 0, 0, 10
L 2 4 = =

In order to analyse the model further, we may consider the equations

(6.5) 5 o e

From these, we may derive the expression
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= | =
(6.6) B0,y = 8508y

For any two solutions, we must have

-1,(1) -1,(2)

(6.7) (631¢11) = (631¢11)

We also have 61t61 = 011 s Or

2
(6.8) ot 2031631 + 533631 = ¢11

Together, (6.7) and (6.8) yield

(2) (1) (1) . (2) (2) (1)

(6.9) 011(631 - 631 ) = 631 631 033(631 - 631 )
(1) (2)
Therefore, if 631 # 631 , we have
o ey My
(6.10) 631 631 = ;3—3— s

from which it follows that there can be no more than two solutions. Analogous
expressions hold for the other parameters; and thus we find that
(1) 1

(6.11) (8,.8..8,.) =

3112723 (2)

(8318:12%23?

In interpreting this result, we may recall the opinion that has been
stated by F.M. Fisher [4] and, more recently, by Bentler and Freeman [2] that
simultaneous-equations models should be regarded as limiting approximations to
dynamic non-simultaneous models in which certain time lags approach zero. The
requirement that the non-simultaneous model should be dynamically stable leads
to restrictions on the matrix of parameters associated with the endogenous

variables. 1In particular, it is required of the classical model in (5.1) that
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the matrix (I-T) should be convergent in the sense that

(6.12) (1-N" 2 0asn -+

A necessary and sufficient condition for (6.12) to hold is that the absolute

value of the largest latent root of (I-T') is less than one. 1In the present

case, we have

(6.13) 5508108530 O . 0O
3
BBy = = 0 L 8y8,8,,, O
A Rt

and thus, for the system in (6.1) to be stable, we require that

(6.14) |8 <1

31812823/
This result is readily intelligible since it concerns the product of the
coefficients that describe a circular path linking the variables of our model.

According to (6.11), the condition (6.14) can only hold for one of the two
solutions of the identifying equations; and, in this sense, the model is
globally identified. In our numerical example, it is the solution under (6.3)
that satisfies the criterion of stability.

It is an attractive speculation to suppose that similar criteria of
stability may be available for discriminating amongst the solutions of the
identifying equations of other more complicated models that give rise to

indecomposable problems of identification.
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APPENDIX
LEMMA 1: Consider the matrix
(i) Fo l"o.1 ’ Foj
F = = = [Fi . Fj]
£ £ El:
1 & '® =1y
wherein fii‘ fij are row vectors and Rank(Fo) = Rank(FOi) + Rank(Foj). Then
we have
(ii) Rank(F) = Rank(Fi) + Rank(Fj)

if and only if fii is linearly dependent on the rows of Foi or fij is linearly

dependent on the rows of FOj

PROOF: (Necessity). Imagine that, contrary to the condition, and fi

.
f11 j
are linearly independent of the rows of FOi and FOj respectively. Then we
have Rank(F) = Rank(Fo) % Rank(Fi) = Rank(FOi) + 1 and Rank(Fj) = Rank(Foj)
+ 1 ; and so the equality under (ii) cannot hold.

(Sufficiency). Now imagine that fii is linearly dependent on the rows of

of F such that f!, = p'F for some vector p. For there to be linear

0i 1i 0i
dependence between the columns of Fi and the columns of Fj , there must exist
vectors b, c¢ such that
Fo;P ) Fo3¢ , [o] .
flib fljc 0

But, by assumption, we must have Foib = Fojc = 0 and, therefore, we must also

have p'FOib = fab = fljc = 0 . Therefore there exist no vectors b, ¢

1i

satisfying the requirements; and so the columns of Fi and Fj are mutually
independent. Hence the equality under (ii) must hold. We may repeat

g 5 $ . 2
this analysis after interchanging FOj and flj with Fo

i and f1i respectively.
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PROPOSITION 2: The condition °j = A'HMKi

restricted parameter set if and only if there exist selection matrices N_ and

holds for every point in the

] L} ==
"m»q such that "m—qHAiAH¢j"q = 0.

PROOF: (Sufficiency). The m x (m-q) matrix A = A'HAi

matrix B = H¢qu both have full column rank. Imagine that they obey the

condition A'B

N and the m x q
m-q

I

' ' = 0. i
Nm—qHAiAHQqu 0 Then, since by assumption, Oj obeys the

condition ¢'B = ¢'H N = 0, it follows that we must have = & =

*58% = %55 b el

A HAiNm»q"i for some vector My That is to say, we must have ¢j = & HMxi
where Ki = "m—q“i'

(Necessity). For the converse, let (Ao. Qo) be any point in the
restricted parameter set, and let A = A.HAi"m~q consist of the fewest columns
of A for which ¢j = A"i for all points in an open neighbourhood of (AO. Qo).
Since the columns of Ao = AOHAiNm-q are linearly independent, there exists a
selection matrix Pé’q. comprising m-q rows of the identity matrix, such that
pl:l-qAO

in an open neighbourhood 0O

is nonsingular. Consequently (cf. Shapiro [10]), PéﬁqA is nonsingular
o of (Ao. 60); and, for each point in Oo, the value

of vy is completely determined by the equation

(i) Paq® = PmqMi

Let Pé comprise the rows of the identity matrix not included in P;_q.
Then, given that the equation (i) determines My the condition ¢j = A"i can
hold for every point in 0o only if

ii P' = P'Ay, = 0
(ii) q¢j q h

(For, otherwise, we could find another point in 00. differing only with
respect to the elements in Pa¢j, for which there exists no ¥y such that ¢j =

Ap.,). By the same token, the condition PaA"i = 0 can hold for every point

i
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only if P;A = 0 identically (For, otherwise, we could always find a point in

00 generating a nonzero column corresponding to a nonzero element of pi).

Finally, since H;jOj = 0 comprises all the zero restrictions on ¢j' we

must have P' = “é“oj; and so the condition PéA = 0 is the condition that

N'H' . A'H .M = 0.
q ¢ Ai m-q

PROPOSITION 6: The condition ¢3 = [r'uri. B'HBi]xi relating to the
recursively decomposable restriction *ij = 0 holds for all regular points of

(r B'HBi] in the restricted parameter set if and only if there exist

"Hrge

selection matrices Nq and NG—q such that

H;ir H}ir
N’ H’ N =0 and Rank/N’ =G -gq
G-qf., iq G-qf,,

HaiB o

PROOF: (Sufficiency). The proof is analogous to that of Proposition 2.

(Necessity). Let (Ao. Qo) be any regular point of [['H B'HBi] within

ri®

the restricted parameter set, and let A = [r'uri. B'HBi]NG_q consist of the

fewest columns for which *j = Aui holds in an open neighbourhood of (Ao. 90)

in which A has constant rank. Then, at the point (A io). the matrix A = A

o’ (o}
must have full column rank. For let us write A = [al. Azl and let us assume,

to the contrary, that a_ is dependent on A Then, in each neighbourhood of

1 E 2
0* 90). we could find a point (A,, &,) for which a

for otherwise the matrix A would not consist of the fewest columns. But this

(a is independent of A2 =

1
would imply that

Rank(Az)o = Rank(A)o = Rank(A), = Rank(Az)* + 1
or simply Rank(Az)o > Rank(AZ)*, which cannot be true since, by virtue of the
semicontinuity of rank (cf. Shapiro [10]), a matrix sufficiently close to (A2)°
must have Rank(Az)‘ % Rank(Az)o. Thus it is established that A has full

column rank at (A §°); and the proof may now proceed along the lines of the

oi

proof of Proposition 2.



35
PROPOSITION 7: An indecomposable covariance reslriction can be of assistance
in identifying equations only if it belongs to a set of s indecomposable
restrictions which reference no more that s equationms. (¢i = 0 is said to

J
reference the ith and jth equations).

PROOF: Tmagine that, for every subset of the indecomposable restrictions, the
number t of equations that are referenced is greater than the number s of
restrictions. Select any restriction ¢pq = 0, and let the pth and gqth
equations be the first and second in a renumbered sequence of equations
indexed by j = 1,...,t. We can construct this sequence in such a way that, if
all the restrictions are written in the form °ij = 0 with i < j, then there is
no more than one such restriction for every j.

Now consider the matrix

Fr Frl' ’Frt'Fr,t+1' e 'Fr-
F = =
l?s Fsl' 'Fst' ¥ » . » O
=[F1""'Ft"?t+1""'l'-]
where Fr comprises Fo = R&(Icﬁ A) and the rows corresponding to r recursively

decomposable restrictions, whilst Fs is a matrix in lower echelon form
comprising the rows corresponding to the indecomposable restrictions ¢ij = 03
i < j ordered according the index j. Then, for j =1,...,t ,we can find
vectors lj such Frjkj = 0 whilst stxj # 0. The matrix [Fszx

in lower echelon form and is, consequently, of full row rank. Hence there

2""'Fstktl is

exists a vector p such that Fslll = [Fsz....,Fst]u whilst Frlkl =

[ Frt]" = 0 ; and, therefore, the condition Rank(F) = Rank(?l) +

Frz.....
Rank(Fz,....Fm). which is necessary for the identification of the first

equation, cannot hold.



36

REFERENCES
[1] BALESTRA, P.: La Derivation Matricielle. Paris: Sirey, 1976.

[2] BENTLER, P. M. and E. H. FREEMAN: "Tests for Stability in Linear
Structural Equation Systems,” Psychometrica, 48(1983), 143-145.

[3] FISHER, F. M.: The ldentification Problem in Econometrics. New York:
McGraw-Hill, 1966.

[4) FISHER, F. M.: "A Correspondence Principle for Simultaneous Models,"
Econometrica, 38(1970), 73-145.

[S] HAUSMAN, J. A. and W. E. TAYLOR: "Identification in Linear Simultaneous
Equations Models with Covariance Restrictions: An Instrumental Variables
Interpretation,” Econometrica 51(1983), 1527-1549.

[6] MAGNUS, J. R. and H. NEUDECKER: "The Commutation Matrix: Some Properties
and Applications,” Annals of Mathematical Statistics, 7(1979), 381-394.

[7) POLLOCK, D. S. G.: The Algebra of Econometrics. Chichester: John Wiley
and Sons, 1979.

[8] ROTHENBERG, T. J.: "Identification in Parametric Models," Econometrica,
39(1971), 577-579.

[9] SCHMIDT, P.: Econometrics. New York: Marcel Dekker, 1976.

[10] SHAPIRO, A.: "On Local Identifiability in the Analysis of Moment
Structures,” unpublished paper. The Department of Mathematics of the
University of South Africa.

[11] WALD, A.: "Note on the Identification of Economic Relations,” in
Statistical Inference in Dynamic Economic Models. New York: John Wiley
and Sons, 1950.

[12] WEGGE, L.: "Identifiability Criteria for a System of Equations as a
Whole,”" The Australian Journal of Statistics, 7(1965), 67-77.

[13] woLD, H., in association with L. Jureen: Demand Analysis: A Study in
Econometrics. New York: John Wiley and Sons, 1953.



Bibliotheek K. U. Brabant

17 OO0 01059814 3




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40

