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1. Introduction

The paper continues the Bayesian analysis of nonlinear regression models,

that is models of known functional form (nonlinear in parameters) and with

an additive error term. In this area of Bayesian research, Zellner (1971,

~6.2), Sankar (1970), H. Tsurumi and Y. Tsurumi (1976), Harkema and Schim

van der Loeff (1977) focus their attention on the estimation of CES pro-

duction functions parameters; Box and Tiao (1973, p. 436) present an ap-

proximate Bayesian approach based on linearization; Eaves (1983) considers

a reference prior - in the sense of Bernando (1979) - and gives an illu-

stration of discrepancies between exact and approximate posterior densi-

ties; Broemeling (1985, p. 104-116) presents general formulae of posterior

and predictive densities and points at some easy special cases and at

useful approximations.
In Osiewalski (1987) and Osiewalski and Goryl (1986, 1988) - all in
Polish - posterior densities and moments for some specific nonlinear mo-
dels (logistic growth function, Ttirnquist-type Engel curves) under
Jeffreys' (or reference) priors are derived.

This paper generalizes the approach adopted previously for the CES func-
tions and deals with Bayesian estimation and prediction for those nonli-

near regression models which are linear in some parameters (say,

Sl,...,sk) given values of the remaining parameters (say, r~l,...,~,q). This

class of nonlinear regression models is worth considering since the exact

Bayesian analysis with an appropriately chosen prior requires only q- or
(qtl)-dimensional numerical integrations, irrespective of k.

The plan of the paper is as follows: some introductory remarks on Bayesian
nonlinear regression are given in Section 2; in Section 3 the class of
"partly linear" nonlinear models is introduced; posterior and predictive
densities and moments under the assumption of improper uniform prior of

~- (Sl,...,~k)' are derived in Section 4, where the correspondence of
this prior with Jeffreys' prior is discussed as well. The use of a finite
mixture of normal or t distributions as a prior of p is considered in
Section 5 and corresponding posterior and predictive densities are derived
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there. Concluding remarks and comments on applications are given in Sec-
tion 6.

1.1. Notation and main identities----------------------------

Throughout the paper p(.) denotes a probability density function (PDF)
with special notation for PDF's of gamma, normal and t distributions. For
x E Rk, pN(xlc,W) denotes a k-variate normal PDF with a mean vector c and
a covariance matrix W, and kps(xlr, c, T) denotes a k-variate Student t PDF
wíth r degrees of freedom, a noncentrality vector c and a precision matrix
T.
For w E R},

a
P~(wla,b) - ~(g) wa-1 exp(-bw),

that is a gamma PDF with parameters a ~ 0, b~ 0. The following identities
are used:

fRk PN(YIQx ' a, S) PNÍxIb.c) dx - PN(YIQb t a, S; QCQ').

PN(xlc. W A-1) P~(wI2.2) -

- P (w atk, 1[b }
y I 2 2 (x-c)' A(x-c)~) Pg(xla. c, b A), (1.2)

and

Ofm PN(xIc W A-1) P~(wI2.Z) dw - PSÍxIa. c. b A), (1.3)

which is an immediate consequence of (1.2).



3

2. A Bayesian approach to nonlinear regression models

Let us consider the nonlinear regression model

yt - h(zt;9) t ut , ut ~ iiN(0,62) (2.1)

where zt is a r x 1 vector of independent variables, 9 is a K X 1 unknown
parameter vector, zt E Rr, 9 E O (O is a full-dimensional subset of Rk),
h: Rr x O~ R is a known function; 62 is an unknown nuisance parameter. We
assume that h(zt; 9) is not linear in 9(given zt) and that this function
(as a function of 9 given zt) is sufficiently well-behaved to insure the
existence of certain derivatives and integrals which appear in Bayesian
analysis. We treat zt as a known nonstochastic vectorl) and assume that
(given zl' "' 'zn' zntl ""'zn.m) one observes y-(yl,...,yn)' and one has
to make inferences about 9 and to forecast Y-{yl "" 'Ym)' -
{Yntl. . .Yn,m)'.
Let

Z-(zl z2 ... zn)', Z- Ízntl ... zn;m)', c~ - 6-2

and let p(y,yIZ,Z,9,c~) denote the joint density of current and future
observations given the values of independent variables and parameters. In
our i.i.d. case

P{Y.YIZ.Z.9.~) - PÍYIZ.9.~) P(YIZ.9.~)

1) Of course, this assumption can be relaxed. If zt is weakly exogenous
for (9,6Z) over the sample period and parameters of the marginal process
generating zt are prior independent of (9,62), then all the posterior
results {obtained in Sections 4, 5) hold. If, additionally, zt is strongly
exogenous for (9,Q~) over the forecast period, then all the predictive
results hold. For definitions of weak and strong exogeneity see Engle,
Hendry and Richard (1983).
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and all the densitíes are densities of appropriate normal distributions:
(ntm)-, n- and m-dimensional, respectively.

In the Bayesian approach, all inferences about 8 are based on the marginal
posterior PDF p(9Iy,Z) obtained from the joint posterior PDF

P(g,~IY,Z) ~ P(g.~).P(YIZ.a.~)

where p(9,c~) is the prior PDF. Bayesian prediction of y is based on the
predictive PDF

P(Y~Y.Z,Z) - f0 Of~ P(YIZ.a,W) P(B.~IY.Z) dc.i d8: (2.2)

see Zellner (19~1, ch. 2). When the prior density of 8 and ~ is composed
of a gamma PDF on u and an independent prior on 9:

P(g.~) a P(S) P~,(~~2, 2), 8 E 0, c.i E R},

then - rewriting Broemeling's formulae (3.81) and (3.77)-(3.80) in our
notation - we have, using the natural-conjugate properties of gamma densi-
ties for our model,

n -2(e`n)
PÍgIY,Z) a P(8)

~f } ~ [y - h(Z ~S)]2~t-1 t t

as the unnormalized posterior PDF of 8 and

(2.3)

P(YjIY.Z,zntj) - JO Ps Yjletn, h(zn}j;8), ne t n

f t ï [yt-h(zt:8)]2
t-1

X P(SIY,Z) d8 (2.4)

as the (marginal) univariate predictive PDF. In this general formulation
of the model, the posterior and predictive PDF's are not tractable and
(generally) require K-dimensional numerical integrations in order to ob-
tain the normalizing constant, moments, univariate posterior densities
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etc. Broemeling (1985, p. 107) writes: "One may sum up the Bayesian analy-

sis of nonlinear regression, when 8 is scalar, by saying a complete analy-

sis is possible (...); however, if 9 is of dimension greater than or equal
to two, a Bayesian analysis becomes more difficult" and when 8 is of di-

mension 3 or greater "the numerical integration problems become impracti-

cal". On the oher hand, Broemeling (1985, p. 108) realizes that "there are

some special cases, where an exact and complete Bayesian analysis is pos-

sible" and gives as an example

h(zt.8) - 82 hl(zt.81). 81 E R, 82 E R.

Let us note, however, that in econometric literature much more complicated
functional forms of h were successfully analyzed, namely the forms ob-
tained by taking logarithms of both sides of different CES production
functions with multiplicative lognormal errors; see Sankar (1970), H.
Tsurumi and Y. Tsurumi (19~6).

Bayesian estimation of 5 or more unkown parameters of CES func-
tions required bivariate or trivariate numerical integration; great analy-
tical simplifications were possible because the models were linear in some
parameters and uniform priors for these parameters led to "partly tract-
able" posteriors. The obvious conclusion is that the Bayesian analysis of
a given nonlinear model should exploit linearities in order to become
"more practical". The aim of this paper is to provide general formulae oF
posterior and predictive densities and moments for the case of a nonlinear
model which is linear in some parameters. The approach, used previously
for some specific cases, is generalized into three main directions:
1) a general - not specific - form of "partly linear" model is considered,
2) not only uniform improper but also some proper informative priors are

allowed,
3) not only posterior, but also predictive PDF's are derived.
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3. Partly linear regression models

Let us restrict our considerations to nonlinear models of the following
functional form:

h(zt.8) - x~(zt,Tt) } ~lxl(zt.n) } .

where 8- (P', Ti')', P- (P1, .,Pk)' E Rk
n-(nl.-..,~,q)' E H C Rq. k t 9- K,

- t Hkxk(zt,Tl) . (3-1)

xi(zt,~,) for i- 0, 1,...,k are known functions (sufficiently well-be-
haved), and H is a(full-dimensional) set of admissible values of n. That
is, we are interested in models where it is possible to divide a parameter
vector (9) into two separate subvectors (p and n) in such a way that - gi-
ven ~, - the model is linear with respect to p. For n observations (t -
1,...,n) and m values to be predicted (t - n t 1,...,n . m) we have

[:l w~ X~ u
i ~ t

w~ X~ u

L u J ~ N(~' c~ lntmu

where
x0(z1,Tt)

x~(zn.Ti) I

fxl(z1.Tt) . . . xk(zl,ri.)

xl(zn.n) . . . xk(zn.n)J



x0(Zntl'~i)1

w -n

x~(zn}m.Ti)~

X -n

~

xl(Zn41,T1) - - . xk(Zntl.Tl)

xl(zn}m.T2) . . . xk(zn,m.n)

, ~ ,u - (ul, .. ,un) . u - (untl, .. ,un;m) .

The data distribution and the distribution of future values are indepen-
dent normal distributions:

P(Y.YIZ.Z.P.R.~) - P(YIZ,A.T2.~) P(YIZ,~.~..~),

P(YIZ,A,7t,~) - PN(YIX~R t w~, o-lIn).

P(YIZ,13,Tl,~) - PN(YIX~iB t w~, ~-lIm).

Let us assume that the nxk matrix X~ is of full column rank (k) for every
~ E H. Now X~X~ is a nonsingular kxk matrix and we can define

b - (X'X)-1X'(Y-w ). s - (Y-w -Xb )' (y-w -Xb ).
n n n ~. n n n n~. n n n

The Following equality holds:

(Y - wn - XnP)' (Y - w~ - xnP) - s~ t(~ - b~)' Xnx~(P - bn).

which enables us to write the data density (or the likelihood function) in
the more convenient form

n n
P(YIZ,P,R,W) - ( zrt)-2 ~2 exP {- 2Cg,~ t (A-bn)'XnX~(s-b~)]}. (3.z)

Except for the dependence of Xn, b~, sn on unknown ~,, the likelihood func-
tion looks like its counterpart for the usual linear model. In order to
take advantage of this similarity, an appropriate class of priors should
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be considered. In the linear case (n known) Jeffreys' improper prior end
proper natural conjugate normal-gamma priors of (g,w) give completely

analytical posterior and predictive results, and independent priors of the
form: Student t(or normal for g and gamma for w lead to univariate nume-
rical integrations only, so these facts suggest the classes of priors
worth considering in our nonlinear - partly linear case. We assume here
that 8-(p'n')' and w are independent a priori:

P(R.n,w) - P(P.n) P(w) (3.3)

ana

e -1
P(w) ~ w2 exP(-2.w)~

e- f- 0 correspond to the improper prior p(w) ~ w-1, if e~ 0 and f~ 0
then P(w) - P~(w~2, 2)-

We will consider three types of priors of (p,n):

P1(~.Ti) a B(T2).

Pi(S,R) - Pi(~ITi) P(n), i- 2.3.

For i- 2,3, p(~,) is some marginal prior density of r~ and pi(p~~,) are
informative conditional priors of p(given n) which are finite mixtures of
normal (i-2) or t (i-3) densities.

In the case of pl(g,~), g(r~) need not be the marginal prior since we do
not impose the assumption of prior independence between p and ~,, but only
between (g,n) and w. A clarifying example of this is given by Jeffreys'
prior (4.2) in Subsection 4.2.
Of course, the assumption (3.3) will complicate the analysis in the cases
of informative priors of ~. Conditionally on r~, the natural-conjugate
framework would be more convenient. T'hat is, we could assume that p(S,w~~)
is a finite mixture of normal-gamma densities and that p(n) is any given
PDF. Then, the similar lines of reasoning as in subsection 5.2 would lead
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to analytical integrations with respect to p and ca, and only q-dimensional

numerical integration (with respect to ~) would be required. But, as in

the linear case, the dependence between ~ and u in the natural-conjugate

normal-gamma prior may cause some serious problems, e.g. it may require

rather strong prior beliefs about u in order to achieve some preassumed

prior moments of p. The assumption (3.3) enables to avoid such troubles at

the expense of one more dimension in numerical integration. In particular,

this assumption allows for expressing strong beliefs about p and the lack

of opinion about cr simultaneously.
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4. Bayesian analysis with an improper uniform prior density for S

4.1. Posterior and-~redictive PDF's---------- ------

For the likelihood function (3.2) and for the prior density

e -1
P1(H,Tl.~) a g(n) ~2 eXP(-2.~).

gERk, ~EHCRq, uER~,

we obtain the following joint posterior PDF:

etn-k 1 f4s l
P1(R .n.~IY,Z) a g(~t) (f . s~)- 2 I}{~}{nI-2 p~ ~Ief~-k, ~,J x

X PN (SIb~ , W(X~X~)-1J .

Now the joint posterior PDF can easily be represented as a product of
appropriate marginal and conditional PDF's:

P1(P,T1,~IY.Z) - P1(T1IY.Z) P1(~~Y.Z.n) P1(RIY.Z.~,.~).

where

1 etn-k

P1(nIY,Z) a g(n) IX;~X,~I 2(f ~ s~) 2,

e~n-k f;s
P1(~IY.Z.T2) - P~ ~I 2 ~,

P1(PIY .Z.Ti, ~) - PN(AIb~. W(XnX~)-1 J .

Since - according to (1.2) -

fts 1
PN(~Ib~. ~(X~Xn)-11 P~ ~Ie'2-k. '~J -
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- P~(~Ie2n, Z~f t s~ '(R - bn)~XnXn(P - b~)~, PS(Pletn-k. bn,

e4n-k X'Xfts~ n n ~

then the joint posterior PDF can be written equivalently as

P1(~,n,~lY,z) - P1(nlY.z) P1(~IY.z.n) P1(~IY,z,s,n),

where

P1(PIY .Z.ri.) - PSIPIe. bn. f e s XnX~J ,
l n

P1(~IY,Z,A,n) - P~.(~Ie 2 n, 2,,

and

e- e t n- k . d- f t s~ 4(R - bn) ~ X~X~(A - bn) .

For inferences about ~,, the marginal posterior PDF pl(~,Iy,Z) should be
used. This PDF is - in general - intractable and numerical integrations

will usually be required to calculate a normalizing constant, moments and
univariate marginal densities. For inferences about p, the marginal poste-

rior PDF

P1(AIY,Z) - fH P1(nIY.Z) P1(f~IY.Z.~.) dn

is appropriate. Since the conditional posterior PDF, pl(pIY,Z,n), is in

Student t form, we have analytical formulae for conditional posterior
moments and also for univariate PDF's pl(~ily,Z,~,), i- 1,...,k, which are

of univariate Student t form.

Now the marginal posterior moments and densities can be calculated as

El(I~IY,Z) - fH Pl(TlIY,Z) b~dR.
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f . s
E1(~~'IY,Z) - fH P1(nIY,Z) ~(X~X~)-1 } b~.b~ dn,

P1(~iIY,Z) - fH P1(nIY.Z) P1(~iIY.Z,~) dn-

For the calculation of mixed moments one can use the formula

E1(~.~'IY.Z) - fH P1(~IY.Z) b~.~' d~.

In this paper ~ is treated as a nuisance parameter, but if some inferences
about u are necessary then the marginal posterior PDF

P1(~IY.z) - fH P1(nlY.z) P1(~IY.z,n) dn

f t s l
is appropriate and the known properties of pl(~IY,Z,n) - P~ ~IZ, ~Jcan be used.
In order to derive the predictive PDF pl(yly,Z,Z) according to (2.2), let
us notice that in our case we can write

P1(YIY,Z,Z) - fH Ofm f k P(YIZ.~,A,~) P1(~IY,Z.~.~) d~ X
R

x P1(~IY,Z.~) d~ P1(~IY,Z) dR.

Since the first and second densities after the integral signs are normal
and the third density is gamma, then by successive analytical integrations
based on (1.1) and (1.3) one obtains

r 1
P1(YIY.Z,Z) - JH PS YIe, wn; X~b~, f e s~Llm } XR(X~Xn)-1XnJ- , X

x P1(~IY.Z) d~.

Moments and univariate densities of the predictive distribution can be
calculated in the similar way as in the case of marginal posterior distri-
bution of ~. It means that, in the case of improper uniform prior of S,
Bayesian estimation and prediction requires numerical integrations over
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H C Rq, irrespective of k(the dimension of p). Of course, k plays a great
role in calculating values of the integrand, since a kXk matrix (XnX~)
should be inverted for every n.

4.2. Uniform-~rior-of-g-and-Jeffreys'-rule

Since the use of a prior from the class pl(p,~,,~) greatly simplifies the
forms of posterior and predictive PDF's, let us comment on its uniformity
in ~. Intuitively, the uniform prior of p represents vague prior knowledge
about pl,...,pk and indeed it was used as a noninformative prior in the
case of CFS function by H. Tsurumi and Y. Tsurumi (1976)2) and Sankar
(1970).
But does this prior follow from any formal principle ( as it does in the
case of linear model, where the uniform prior can be justified in several
ways)?

Let us return to the general model (2.1), that is

yt - h(zt,8) ' ut , ut -- iiN(0,~2),

and denote by D the nXK matrix of first-order partial derivatives

~h(z S)
dti - ~t~ (t - 1, .. ,n , i - 1, .. ,K).

i

We can write the information matrix (based on n observations) as

a-2 D'D ~ 0
I(8.6) - ----------1-------- ,~

0 ; 2n6-2

so an application of Jeffrey's rule separately for 9 and for Q gives

2) In fact, they assumed the uniform prior of all structucal parameters.
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and

1
PJ(g) ~ ~D~D~2 . PJ(6) a o-1.

1
PJ(a.~) - PJ(g) PJ(6) a cf-1ID,DI2

or, equivalently, in terms of w- 6-2

1
PJ(e.w) a w-lID'D~2.

As Eaves (1983) pointed out, pJ(8,a) is also a reference prior in the
sense of Bernardo (19~9), assuming that 8 is a parameter of interest and 6
is a nuisance parameter.

For the partly linear model:

h(zt;e) - h(zt; s.n) - Xo(zt.n) t~lXl(zt.n) t. . t ~k~(zt,n) ,

D can be partitioned as D-[D1 D2], where D1 is nxk and consists of the
following derivatives:

that is D1 - Xn, and DZ is nxq and consists of the following derivatives

ah(zt; ~.n) ~Xo(zt.n) ~xl(zt.~) ~~(zt,n). p . . . . { s
~nJ - ~nJ 1 ~nJ k DnJ

(t - 1. .. .n; J - 1. .. .9);

~h(zt; R,~) t - 1, ...,n

D2 can be presented as D2 - Iw1tXlp ... wqtXqg~, where w~ is a nxl vec-



~xo(zt.n) -
tor consisting of ~n (t - 1,...,n) and X~ is a nxk matrix consist-

~xi(zt.~) ~
ing of ( t - 1,...,n; i- 1,...,k). Thus in the case of the part-

~~J
ly linear model we obtain

PJ(g) - PJ(~~n) a
XnX~ XnD2
D2X~ D2D2

1
2

and Jeffreys' (or Bernardo's reference) prior may depend on ~ since D2

depends on ~ for nonzero X1,...,Xq. This leads to the following conclu-
sion: for the special subclass of partly linear models where xl, ...,xk do
not depend on ~, that is for

h(zt: ~.n) - xo(zt,n) t ~lxl(zt) t . . t SkxkÍzt)~

Jeffreys' ( or reference) prior takes the form3)

PJ(~. n~ ~) a W-1 gJ(~)~

where

1
X'X X'W 2 .

gJ(~) a n n n W- [wl ... wq~.
W'X W'W

R

for other cases Jeffreys' prior usually depends on ~.

(4.1)

(4.2)

It should be noticed, however, that there are other models (functional
forms) which lead to reference priors not as convenient as (4.2) but still

3) Note that gJ(~) is not a marginal prior, but a way of notation indi-
cating that pJ(S,~) does not depend on ~.
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allowing for analytical integrations with respect to g. Let us consider
the following functional form:

h(zt; ~.n) - Rlxl(zt,Ti) t P2x2(zt) t.. . ' ~kxk(zt), 4.3)

where xG(zt,~,) : 0 and only one xi (say, xl) depends on ~,. In this case

only first columns of X1, .. , Xq are nonzero, so D2 can be presented as

D2 - p1G, where G consists of those nonzero columns of X1, ... , Xq. Now
Jeffreys' prior takes the form

PJ(P.n.~) a ~-lIP1Iq BJ(n),

BJ(~.) a
X'X X'G~ n n
G'X G'G

I n I

and the corresponding joint posterior PDF takes the form

n-k 1

(4.4)

PJ(~.n,~~Y.Z) a gJ(n) s,~- 2 ~X;~X,~~-2 ~~l~q PN(~~b,~. ~(xnxn)-1, x

x pD~ l~ I n2k ~~J ~

Now it is obvious that

PJ(A,~1.~Y.Z) ~ BJ(n) s~ 2 ~X~Xn~ 2 ~Rl~q pSIR~n-k, bn, S~k XnXTtI

and that posterior analysis involves higher-order moments of t distribu-
tion; see Osiewalski (198~) and Osiewalski and Goryl (1988) for detailed
derivations (as well as examples) in some specific cases with k- 1 and
q 5 2.

n-k 1

Obviously, even in the relatively simple situations described
above, the form of pJ(~,) may be so complicated that we do not expect



Jeffreys' prior to become widely used. The practice of using uniform

priors for all structural parameters4), like in H. Tsurumi and Y. Tsurumi

(1976), could be justified by Savage's "precise measurement" (or "stable

estimation") principle - see DeGroot (19~0) - but only when the number of

observations is "reasonably large"; now the problem of the form of the

prior is replaced by the question whether our sample is large enough to

rely on inferences corresponding to the uniform prior. It should be stres-

sed that the choice of some simple prior of the form pl(~, ~,, ~) as a

"noninformative" one may have only practical (convenience) and intuitive

justifications.

4) When assuming such a prior for one specific parameterization of a
given nonlinear model one should be aware of the consequences of reparame-
terization. For example, if e(e ) 0) is the elasticity-of-substitution
parameter in the CFS function (see Subsection 6.2), then the notationally
most convenient (and usually used) parameterization is in terms of p-(1-

E)~e - E-1 - 1. If we assume, like in Tsurumi and Tsurumi (19~6), p(p) -
const as a"noninformative" prior, we obtain a rather strange-looking form

-2p(e) a E , which gives an infinite prior probability that e~ a, but a
finite prior probability that E~ a(a ) 0, say: a- 1). Parameterizing
directly in terms of E and assuming p(e) a E-1 like in Sankar (1970),
gives much more reasonable expression of prior~ignorance; it is equivalent
to p(p) a(1 } p)-1, which is nonuniform in p. This difference in "nonin-
formative" priors may lead to different posterior results in small
samples.
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5. Posterior and predictive PDF's corresponding to priors in the form of
finite mixtures

5.1. Advanta~es-of-finite-mixture-~riors

In this section we allow for expressing prior beliefs about S in such a
way that still enables analytical integrations of posterior PDF with re-
spect to S. Of course, normal or t priors of ~ are the most convenient
informative priors from the analytical and numerical point of view. On the
other hand, they can prove too restrictive in practice because of their
symmetry and unimodality. In order to obtain more flexible (but still
convenient) classes of priors, finite mixtures of normal or t distribu-
tions seem worth considering.5) As simple examples show, finite mixtures
of univariate normal distributions can produce priors of quite different
shapes: multimodal, asymmetric, phatykurtic - even if the number of compo-
nents of the mixture is very small; some preliminary work on expressing
prior beliefs in the form of such mixtures was done by Bijak (1987), but
elicitation problems are outside the scope of this paper and need separate
considerations. Here we are interested in the form snd tractability of
posterior and predictive PDF's corresponding to finite-mixture priors. Let
us consider the general case first; 1(bldata) denotes the likelihood func-
tion, where á E e is a vector of parameters, and p(yldata, b) denotes the
conditional PDF of future observations (y) given data and parameters. If
pg(b) is the prior density then, obviously, the posterior and predicitve
densities are given by

pg(bldata) - Kgl pg(b) 1(bldata),

pg(Yldata) - IQ p(Yldata, b) pg(Sldata) dó,

where Kg - JD pg(b) 1(bldata) dá.

-------------------------------------------------------
5) The idea of taking mixtures as priors comes from Dalal and Hall
(1983).
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But when the prior is represented by a finite mixture of such pg(b) for
g- 1,...,G (with weights cg which are positive and sum up to 1), that is
when

G
P(b) - F cg Pg(b),

g-1

then

p(Sldata) - b 1 b data -
o p(b) 1(b data)db -

E~cg pg(b) 1(bldata)

ï cg Kg
g

- ï cg pg(bldata),
g

where

cg - cg Kg~ï cg Kg,
g

and

P(Yldata) - f~ P(yldata, b) p(bldata) -

- F cg Pg(Yldata),
g

thus the "overall" posterior and predictive PDF's are in the form of fi-
nite mixtures of "individual" posterior and predictive PDF's. If, for
every g, there exist posterior and predictive moments about 0, then the
corresponding "overall" moments about 0 are simply weighted averages of
"individual" ones; the same property holds for marginal densities. And,
what is most important for our purposes, if all "individual" posterior
densities are analytically tractable (with respect to some bi) then the
"overall" posterior is tractable (with respect to this bi). In the case
considered in the paper we insist on taking advantages of partial lineari-
ty of the model, thus we insist on analytical integrability of the poste-
rior PDF with respect to ~. This is the reason of our special interest in
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mixtures of normal or t distributions of ~. Assuming mixtures, we can
proceed in two equivalent ways: to sum up "individual" results (weighted
appropriately) or to derive directly "overall" results (which in the case
of G- 1 are the same as "individual" ones). We adopt the second approach
in the rest of this section.

Finite-mixture priors could be interpreted as representing prior informa-
tion coming from several different (jointly exhaustive and mutually exclu-
sive) sources. But generally mixtures can be treated merely as an useful
approximation of some preassigned shape of prior density. Such an attitude
was adopted by Dalal and Hall (1983) and is adopted here as well.

5.2. Mixtures of normal distributions--------------------------------

We assume the following conditional prior density6) of S given ~:

G
p2(~In) - ï cg pN(~~ag. Agl,.

g-1

where G z 1, cg ) 0, i cg - 1, ag E Rk and Ag are PDS of order k.
g

The joint prior density for all parameters takes the form

p2Í~. R. ~) - p2(~In) p(n) p(~) a

e-1 1
a p(~) ~2 exp(-2.~) L cg~Agl2 eXp[- 2(~ - ag)' AgÍ~ - ag) J .

g

For this prior and the likelihood given by (3.2), Bayes' theorem leads to
the following joint posterior PDF:

-------------------------------------------------------
6) Our analysis here, as well as in Subsection 5.3, allows for prior
dependence between ~ and n; parameters of pi(~~n), i- 2, 3, can be some
functions of n. Obviously, the special case: pi(~~n) - pi(S) seems the
most convenient one in practice.
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p2(~.n.w~Y.Z) a p2(~.n.w) P(Y~Z.~.n.w) a

e2n -1 rI fts 2 1
a P(n) w expl- ~.w~.E cg~Ag~ exp{-2~(P-ag)' Ag(A-ag) }lll B

t w(H-bn)' X~Xn(A-bn)7}.

For À- A t wX'X and a- À-1(A a ~ wX'X b) we have
s g nn a a as nnn

(s - ag)' Ag(~ - ag) ~ w(~ - bn)'X~Xn(~ - bn) -

-(A - ag)' Ag(1~ - ag) t dg.

where

d- a'A a t wb'X'X b- a'À s; d Z 0.s ssa nnnn gas s

Now the joint posterior PDF can be written as

p2(~,n,w~Y.Z) a

e4n2-1 r fts l -1 2 d k -1a P(n) w expl- 2.wJ ï cg Ag.Ag - exPf- ~, PN(RIag.Ag ).
l B

Let us denote

1 d

CB - cSIAB~A-ll2 eXP~- ~, .

C- L Cg , cg - C-1Cg;
B

now

etn
P2(P.n.w.~Y,Z) ~ p(n) w 2 -1 expl-f-~.wJ C E cg pNlP~ag, Ag1 J .

lll 8 l



zz

Since cg ~ 0 and i cg - 1, then
g

fRk ~ cg PN (A I ag. Agl, dR -~ cg IRk PN (~ I ag. Agl, dJ~ - 1.

P2(T1,w~Y,Z) - f k P2(P,n.wly,Z)dA a
R

etn -1 ( f.s 1
a P(n) w 2 exPl- 2~`.wJ C,

and P2(f~IY,Z.n,w) - ï cg pNISIag, Ag1 J .g lll

The joint posterior PDF is now expressed as a product of the marginal
posterior PDF of (~,,w):

P2(~.T2.wIY,Z) - P2(T2,wIY,Z) P2(AIY,Z,n.w).

the latter density being the mixture of k-dimensional normal PDF's. Infe-
rences about ~, (and w, if necessary) will be based on the marginal poste-
rior of (~,w); in order to calculate its normalizing constant, moments and
univariate marginal densities numerical integrations will be required. For
inferences about p, its marginal posterior is appropriate. The marginal
posterior PDF of S can be expressed as the following integral

P2(HIY.Z) - JH Df0 P2(n,wIY,Z) P2(f1IY,Z.n.w) dw d~,.

Since conditional moments and univariate densities are given by known
analytical formulae then marginal moments and univariate densities can be
calculated as follows:

E2(filY.z) - fH ofm P2(n.wlY.z) E egág aw a,~.
g

E2(PP~~Y,Z) - tH Dtm P2(Tt.w~Y.Z) ï cglAgl t ag.agJ dw d~.
B ll
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p2(~i~Y.Z) - fH Df~ p2(n.~~Y.Z) F
cg pNl~il lagJi' (Agl,ii,

d~ dn:

g

similarly for mixed moments of p and n:

E2(Tt-~~ ~Y.Z) - fH Df~ p2(~l.~~Y.Z).q.E cgag dc.~ d~,.
8

In order to derive the predictive PDF p2(y~y,Z,Z) according to (2.2), let
us write is as

P2(Y~Y.Z,Z) - IH ~fm f k p(YIZ.~.n.~) P2(18~Y.Z,T1.~) d~ X
R

X ?2(Tt.~~Y.Z) dc.i d~,.

By analytical integration with respect to p- on the basis of (1.1) - we
obtain

p2(YIY.Z,Z) - fH ~f0 P2(~i,~~Y,Z) F cg PN~Y~wnt X~ag,
g

Xn Ágl X~ t~ ImJ du dr~,

and it is easy to deduce the formulae for moments and univariate densities
of the predictive distribution.

In the case of the prior considered here, Bayesian estimation and predic-
tion requires (qtl)-dimensional numerical integrations, irrespective of k.
For practical reasons, only mixtures of a small number of terms are at-
tractive. Let us note that there is no special advantage of the type of
prior assumed here over any other type of informative prior if k- 1(g is
a scalar parameter). For any p(p,~), p E Rk and r~ E Rq, we can always
integrate u out analytically and then the dimension of integrals to be
calculated is K- k 4 q(see Section 2); in the case of p2(~B,n), conside-
red here, we integrate ~3 out analytically and then (q}1)-dimensional nume-
rical integration (over n and u) remains. When k- 1, both approaches lead
to different, but (qfl)-dimensional integrals.
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5.3. Mixtures of t distributions---------------------------

Finite mixtures of normal distributions are quíte flexible, except for
their tail behaviour which is essentially the same as in the case of one
normal distribution. In order to obtain fatter tails of the prior distri-
bution of p given ~,, a finite mixture of k-variate Student t distributions
can be applied. This mixture can formally be treated as a marginal distri-
bution from the following mixture of normal-gamma distributions of p and
an additional parameter T~ 0:

P3(f~~T~~i) - F cg PNf~~ag. (TAg)-1, P~fT~~~ ~,,
g-1

since the integration with respect to z leads to

P3(~I~,) - ofm P3(s.Tln)dT - i cg pslg~lg, ag, ~ Agl.
g-1 l g J

(5.1)

We adopt ( 5.1) as a starting point for the derivation of posterior and
predictive results corresponding to the prior p3(5~~,).~) The joint prior
density of p, r~, c~ and the additional parameter T is as follows:

e -1 r 1
P3(P ,n~~,T) a P(n) u2 exp(-2.~) ï cg pNl~~ag.(TAg)-1 J X

B lll

x pór I T I~' ~J .

For this prior and the likelihood given by (3.2) one obtains the following
joint posterior PDF:

7) Multiplying p3(p,n,W) - p(g~~) p(~) p(u) by the likelihood (3.2) and
integrating u out, we would o~tain a finite mixture of double-t (2-0 poly-
t) densities as a conditional posterior PDF of p given n(and some margi-
nal posterior PDF of ~,). Thus (5.1) enables us to perform analytical inte-
grations with respect to g in the same way as in Dickey (1968).
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P3(s.n.~.T~y.z) a P3(A.n.~.~) P(y~z.s,n.~) a P(n) ~
e}n -12 x

rI fts 1I rI 1 v l k 1
x expl-~.uJ ï cg pY1T~~, ~J T2~Ag~2 exP {-2L(A-ag)~Ag(A-ag) '

lll
B

lll

4 T (P-bn)~ x~Xn(I~-bn)~}.

Let us denote a- 2 and define matrices Ag, vectors ag and scalars dg
similarly as in the previous subsection (merely replacing c~ by ~):

Ag - Ag t~ X~Xn , ag - Agl(Agag t a xnXnbn),

dg - agAgag t a bnXnXnbn - agÀgag (always dg Z 0).

Now we can present the joint posterior PDF in the following form:

P3(s.n.~.T~y.z) ~

e~n r-1 I fts 1 v
a P(n) c~ 2 expl-~.c.i~ ï

cBIAgA81 2 pX~~l~~ ~~ Xlll g

X eXP ~-2 dg~
PN (A ~ ag, ( TAg) -1 J .

After the transformation: (w,T) -~ (~,T), with the Jacobian equal to T,
one obtains

e2n -1 e2n fts
P3(A,n.~.T~Y.Z) ~ P(n) a 2 exp~-~ aT~ X

1

x g cg I AgAgl I Z PX lT I~~ ~J exP l-2 dBJ
PN (P ~ ag. I TÀgJ -1 !.

Defining

lg-lg4etn , ~g-~gtdg} Íf asn)~.
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~ -~
cg -

cg I ABABl I 2 Lr l~J J-1 r l~J V g2 Vg 2'

c- c(n,a) - F cg ' ~g - c-1 csg
one can write

etn2-1 1 v k 1l
P3(f~.n.~.T~Y.Z) a P(n) ~ ï Cg P~ T~~. ~ PN~~~ag. (TAg)- JB

or

P3(~,n,a,TlY.z) - P3(n.~lY.z) P3(~.TIY.z.n,a),

e`n -1
P3(n,a~Y,z) a P(n) ~ 2 c(n.~),

P3(~,T~Y,Z,n.a) - F cg P~(T~~. ~~ PN(~~ag. ( TAg)-1,.
B

Since integrations with respect to ~ and T can be performed analytically,
the above-presented forms of the joint posterior PDF seem relatively con-
venient. For estimation purposes, T should be integrated out in order to
obtain

1
P3(PIY,z,n,a) - o.fm P3(s,TIY.z.n,a)aT - F ~g PS ~lig. àg. ~ Ág

g "g
and then

P3(A,n,a~Y,z) - P3(P~Y.z.n.a) P3(n.~~Y.z).

Calculation of the normalizing constant of p3(n,a~y,Z) as well as inferen-
ces about ~ and n(in terms of posterior first- and second-order moments
and univariate marginal densities) require numerical integrations in the



(n,a)-space; for p, the appropriate formulae can be easily derived on the
basis of known properties of t distributions.
In order to obtain and analyse the predíctive distribution corresponding
to t-mixture prior one can rewrite p(y~Z,p,n,~) in terms of ~ and Y(in-
stead of u):

P(YIZ,P.n,~.T) - P(Y~Z.R,n.~ -~T) - PN(Y~wn t Xn~. ~T lm,

and then derive analytically, according to (1.1) and (1.3),

P3(YIY.z,z.R.a) - ~I~ f k P(YIZ.f~.Ti,~.2) P3(~,T~Y.Z.Tt.~) d~ dT -
R

- F cB Df~ Pà'(2~~. ~, .Í k PN(Y~wn ` X~A, ~~ Im) PN(P~ag,
g R

1 1 r
(2Ag)-1Jdp dT - ï cg PS Y~lg. w~ t X~ag, -~ IX~Ág1X~ t~ Iml-1

g vg lll J

Now it is obvious that the analysis of the predictive PDF

P3(ylY,z,z) -.fH ofm P3(ylY,z.z.n.a) P3(~,alY.z) aa d~

exploits known properties of t distributions and requires (qtl)-dimensio-
nal numerical integrations, irrespective of k and m(the dimensions of g

and y, respectively).



28

6. Concluding remarks and comments on applications

6.1. Discussion of the results-------------------------

Let us treat the model under consideration, that is

Yt - xC(zt.n) }~lxl(zt,n) f... t~kxk(zt.R) t ut.

ut ~ iiN(O,o2), n E H C Rq ,~'(~1,...,~k)' E Rk,

not as a special case of the nonlinear regression, but as an useful gene-
ral representation of linear and nonlinear regression models. In order to
achieve this generality, we allow for q- 0(~ does not exist) or k- 0(~
does not exist), but with obvious restriction that k 4 q 2 1(there exists
at least one unknown parameter). The following situations are possible:

(i) q- 0; the model is linear in all its parameters. From Subsections
4.1, 5.2 and 5.3, conditional posterior and predictive results (gi-
ven n) remain valid; of course part of them (Subsection 4.1) are
standard and well-known, but the use of finite-mixture priors seems
new even in the linear context.

(ii) k- 0; there is no possibility to represent a given nonlinear model
in the "partly linear" form. We have a"completely nonlinear" model:
8- n, h(zt,8) - xC(zt,n), and we are back in Section 2 with
Bayesian estimation and prediction based on (2.3) and (2.4).

(iii) k~ 0 and q~ 0; we have the partly linear regression model conside-
red in Sections 3-5.

The main conclusion is that exact Bayesian analysis is possible if q is
small, irrespective of k; of course the meaning of "small" is not precise
and depends on computer facilities.
If, additionally, k- 0 or k- 1, then at most (q41)-dimensional numerical
integrations are required irrespective of the choice of the prior density
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p(S,~). However, if k~ 1, then the classes of prior densities adopted in
the paper seem specially attractive, since they are flexible and always
lead to at most (q~l)-dimensional numerical integration.
If q is large (too large to perform integrations numerically) then inte-
gration by Monte Carlo methods or approximations are required. But - if
only k ~ 0- there are still some advantages of the proposed classes of
priors, since we have exact analytical posterior and predictive results
conditionally on n or (~,w) or (~,~).

6.2. Applications-to-CES-Qroduction functions---- ----------

Let us point at some new possibilities in this case, where the model under
consideration takes the form

r (E-1)~E (E-1)~E LE~(E-1)
Vt - LbCt t(1-b)Lt , exP(~2xt2 t... t~kxtk t

xt2, .. , xtk can be dummy, time or other variables. Taking the logarithms
of both sides, we obtain the partly linear regression model

Yt - Slxtl(n) a ~2xt2 }... } Skxtk 4 ut.

where

yt - ln vt. ~1 - v, n-(~ E)' E(o.l) x(o, tm).

EE1 1n Lb CtE-1)~Et (1-b) L~E-1)~E1 E~ 1,

b in Ct f(1-b) ln Lt , E- 1;

(6.1)

the Cobb-Douglas case (E - 1) is included in order to preserve continuity
with respect to E, the elasticity-of-substitution parameter. First, it is
possible to incorporate prior knowledge in the forms proposed in Section 5
and trivariate numerical integration is sufficient to obtain exact
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Bayesian results; previous Bayesian analyses of CES functions used only
simple priors, uniform in ~.
Second, (6.1) is in the form (4.3), so Jeffreys' (reference) prior is

PJ(~.n,o) a o-1 ~1 BJ(~) - 6-1 y2 BJ(n)~

where gJ(n) is in the form (4.4). Now it is possible to make comparisons
between results corresponding to Jeffreys' prior and to simpler (intuiti-
vely noninformative) prior used in the literature.

6.3. Logistic-curves

The approach developed in the paper enables the exact Bayesian analysis of
the following generalizations of the logistic growth curve:

exP(~lxtl . ... } ~kxtk)
Yt - 1 t~2 exp(-nl.vt) eXP(ut),

or

Y } ~lxtl 4 ... y ~kxtk }
t-~0 1 t n2 exp(-nl.vt) ut'

(6.2)

(6.3)

where ~1, n2 ~ 0, ut ~ iiN(O,o2) and xtl' "' xtk' vt are some explanato-
ry variables. The simplest special cases of (6.2) and (6.3), that is

exP(~1)
Yt - 1 t n2 exp(-nl.t) exP(ut) .

sl
t ut- 1 ~ R2 exp(-nl.t) t

(6.4)

(6.5)

were analyzed under Jeffreys' prior by Osiewalski and Goryl (1986,1988).
For (6.4) and several sets of data, two other priors (intuitively "nonin-
formative") were also adopted and led to almost the same posteriors as
Jeffreys' prior did; marginal posterior densities were always unimodal,
almost symmetric or slightly asymmetric and exact Bayesian results were
close to ML (that is, to Bayesian approximate large-sample) results. On
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the other hand, another example - with (6.5) and Jeffreys' prior - re-
vealed large discrepancies between the exact posterior mean and standard
deviation of r~2 and their approximate (ML) counterparts. Since the margi-
nal posterior density of n2 had a lognormal-like shape, it was easy to
propose a"better" parameterization of (6.5), namely in terms of
~,~ - ln ~,2, which led to closer exact and approximate (ML) results. For a
Bayesian, if only an exact analysis is possible - and it is possible for
such models as (6.2) and (6.3) - then there is no fundamental need to seek
such a"better" parameterization, even when it is easy to find by inspec-
tion of marginal posterior densities. This contrasts with the classical
approach to nonlinear regression models, where a"good" parameterization
is crucial to rely on ML results in a small sample, and it proves diffi-
cult to find such a parameterization; see Ratkowsky (1983), where the
classical estimation of logistic functions and many other nonlinear models
is presented.

6.4. A-~eneralization to nonscalar error covariance matrices---------------------------------------

Let us consider the case when the disturbances of our partly linear model
have a nonscalar covariance matrix.
We assume the following model:

r y 1 - w X u '

y w~ X~ uLJ ~} ~~}

~, 1 V~ V~ ,
~ V' V~ ~

where 9~ E~ is an additional unknown parameter (vector) and V~, V~, V~ are
known functions of ~. For example, when the disturbances are described by
the normal stationary AR(1) process

ut - P ut-1 4 et , Et ~ iiN(~, ~-1),
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then g~ is a scalar parameter, 9o E(-1,1) and the covariance matrix of
(u'u')' takes the well-known form, namely

cov(ut,ut.) - ~-1(1-~2)-1 ~It-t'I.

t, t' - 1, .. , n, n t 1, .. , n t m.

Now, under a nonscalar covariance matrix, y and y may be stochastically
dependent (if V~ ~ 0) and the following factorization holds

P(Y,YIZ.Z,R.n,~.4~) - P(YIZ.Í3,n.~,~) P(YIY,Z,Z.R,Tt,~,~).

where

P(YIZ.s.n,~, ~) - PN(YI w,~ t xnP, „-1 V~) -

n n 1
- (2rt)-2 ~2 IV~I-2 exp{-2[s~.~ ` (~ - b~t.P)' x~V~ixn(P - b~i,9~)] 'lll ~

P(Y~Y,Z,Z.~.T2,w.~) -
PNIYI~n.FP ' V~V~1(Y-wn) t wn, ~-lS~l

and

b~..~ - (xr},V'P1xRJ -1 xT1.V~1(Y - wn) .

Sn.~ -(Y - w~ - xnbn.~)' V~1(Y - wn - x~bn.~).

Qn.9~ - Xn - V~V~iX~ , S~ - V~ - V~V~iV~.

Assuming the following prior structure

P(I~.TI.~,p) - P(P.Tt) P(~) P(4~), P E Rk. T2 E H, ~ E~, u E R4,

where p(q~) is a marginal prior of y~ and, as previously,

e -1
P ( ~ ) ~ w2 exP (-2 . W) ,
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we can proceed in a similar way as in Subsections 4.1, 5.2, 5.3. For exam-
ple, when the prior is uniform in p, that is when

P(f3,~2) - P1(~,Tt) a g(R),

we obtain

-1 2 -Z(etn-k)
P1(~..~IY,z) a g(n) P(~) (Ivy~l.~xnv~ x~~l-- (f t

s~.~)

P(A~Y.Z,n,~) -
Pklsle

~ n- k, b e t n- k X,V-1X
J

1 s n,9~' f} sn.~ n 9~ n'

P1(YIY.z.Z) - f t P(Ti PIY Z) PIYIe t n- k, Q b t

( 1 1 1~ ~, V-1(y-w )} W e t n- k rQ I X' V-1X I-1 Q' t S
J

- d~, d~:~~ Tt rl' f' s~2 , 9~ L ri , P` Tt ~ TTTiiiJJJ n.~ ~

numerical integrations with respect to ~ and ~ will usually be needed in
order to obtain a normalizing constant, first- and second - order moments
and univariate marginal densities of the posterior and predictive distri-
butions. This increase in dimensionality of calculated integrals consti-
tutes the price for unknown ~ in the error covariance matrix.8) Of
course, this exact Bayesian approach is applicable when the matrix V~1 has
known analytical form (as a function of 9~), since numerical inversions oF
the nXn matrix V~ for every ~o seem impractical.

~ x 1 . . S n.~ ~..~

8) See also Richard (19~~) where the case of the linear model with suto-
regressive disturbances is considered. Richard's approach ( allowing for
nonstationary processes) can be easily generalized to partly linear mo-
dels.
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