Tilburg University

Dynamic equilibrium in a competitive credit market

Boot, A.W.A.; Thakor, A.V.

Publication date:
1987

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Boot, A. W. A., \& Thakor, A. V. (1987). Dynamic equilibrium in a competitive credit market: Intertemporal contracting as insurance against rationing (Appendix). (Research Memorandum FEW). Faculteit der Economische Wetenschappen.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

APPENDIX: "DYNAMIC EQUILIBRIUM IN A COMPETITIVE CREDIT MARKET: INTERTEMPORAL CONTRACTING AS INSURANCE AGAINST RATIONING"
Arnoud Boot
Anjan V. Thakor
FEW 281

PROOFS FOR
DYNAMIC EQUILIBRILM IN A COMPETITIVE CREDIT MARKET: INTERTEMPORAL CONTRACTING
AS INSURANCE AGAINST RATIONING
by
Arnoud Boot*)
and
Anjan V. Thakor **)
*) Katholieke Universiteit Brabant, Tilburg, The Netherlands.
**) Professor of Finance, Indiana University and Visiting Professor of Finance. UCLA.

APP-1

APPESDIX

PROOF OF THEOREM 1: Note that each value of z can be viewed as a distinct contract in the Riley (1979) framework. Given this, our definition of a DSINC policy corresponds precisely with the definition of strongly informationally consistent (SINC) policies in the (static) framework of Riley. Now. the only essential difference between the DRE and Riley's reactive equilibrium is the additional subgame perfection requirement in the DRE. However. this requirement appears both in the definition of the DRE and the definition of DSIMC policies. Thus applying Kjley's logic, it must be true that the Pareto dominant DSINC policy is the DRE.
Q.E.D.

PROUF OF LEMMA 1: The proof involves a comparison of the collateral
allocations $\left\{C_{I}^{H}=\hat{C}_{I}^{H}: C_{I I I}^{H}=w\right\}$ and $\left\{C_{I}^{H}=C_{I}^{H}-\phi: C_{I I I}^{H}=w-\Phi\right\}$
$\forall \Phi \in\left(0 . C_{\text {III }}^{\mathrm{H}}\right.$ (opt) $\left.-W\right]$, where $C_{\text {III }}^{\mathrm{H}}$ (opt) is the (optimal) level of collateral needed to avoid rationing and ϕ is a real valued (scalar) perturbation. Note that
$C_{\text {III }}^{\mathrm{H}}$ (opt $)=\delta r\left[\phi \delta^{\mathrm{H}}\right]^{-1}$.
We will prove the lemma for the more restrictive case in which borrowers rationed at $t=0$ get the same second period contracts as the (lucky) good borrowers that obtained credit at $t=0$. As we know. such an assumption improves the attractiveness of rationing at $t=0$. Thus. If the lema holds for this
(overly) restrictive case. it must hold in general. Let single hats on variables denote the original solution with no rationing at $t=0$ and let double hats on variables denote the alternative solution with rationing at $t=0$. Note that the contracts for the borrowers which are bad at $t=0$ are the same in both alternatives. This means

$$
\begin{equation*}
\hat{\mathrm{C}}_{1}\left(\delta^{\mathrm{L}} \mid \delta^{\mathrm{L}}\right)=\hat{\mathrm{C}}_{1}\left(\delta^{\mathrm{L}} \mid \delta^{\mathrm{L}}\right) \tag{A-1}
\end{equation*}
$$

Further, in equilibrium (see (13))

$$
\begin{equation*}
\mathrm{U}_{\mathrm{I}}\left(\delta^{\mathrm{L}} \mid \delta^{\mathrm{L}}\right)=\mathrm{U}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{L}}\right) \tag{A-2}
\end{equation*}
$$

Combining ($A-1$) and ($A-2$) yields

$$
\begin{equation*}
\hat{\mathrm{r}}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{L}}\right)=\hat{\mathrm{u}}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{L}}\right) \tag{A-3}
\end{equation*}
$$

From the definitions under (2)' and the condition (4)' we got

$$
\begin{equation*}
\hat{\mathrm{C}}_{1}\left(\delta^{H}\left(\delta^{L}\right)=\delta^{L} R_{N}^{H}-\phi \hat{C}_{I}^{H}-\delta^{L}\left[\{1-\mu\} \delta^{H}+\mu \delta^{L}\right] R_{X}^{H}-\delta^{-L} \delta^{L} R_{\lambda}^{L} .\right. \tag{A-4}
\end{equation*}
$$

Further.

$$
\begin{equation*}
\hat{\mathrm{L}}_{1}\left(\delta^{H} \mid \delta^{L}\right)=\hat{\pi}_{I}^{H}\left[\delta^{L} R_{N}^{H}-\phi\left\{\bar{C}_{I}^{H}-\Phi\right\}\right]-\delta^{L}\left[\{1-\mu\} \delta^{H}+\mu \delta^{L}\right] R_{N}^{H}-\delta^{L} \delta^{L} R_{N}^{L} \tag{A-5}
\end{equation*}
$$

Substituting $(A-4)$ and $(A-5)$ in $(A-1)$ gives

$$
\begin{equation*}
\hat{\sigma}_{1}^{H}=\left\{\delta^{L} R_{N}^{H}-\phi C_{1}^{H}\right\}\left\{\delta^{L} R_{i}^{H}-\phi\left[C_{I}^{H}-\phi\right]\right\}^{-1} \tag{A-6}
\end{equation*}
$$

From (11). (12). (4) and the definition under (3)' we have

$$
\begin{align*}
& +\bar{\delta}^{H} \nu \delta^{I} R_{i}^{L}-\bar{\delta}^{H}[1-\nu] \stackrel{\sim}{\pi}_{1 I J}^{H}\left\{\delta^{H} R_{i}^{H}-[1-\beta] \bar{\delta}^{-H}[w-\Phi]\right\} \tag{A-7}
\end{align*}
$$

where $\bar{\pi}_{\text {III }}^{H}=\left\{\delta^{L_{R}^{L}}{ }_{N}^{L}\right\}\left\{\delta^{L} R_{N}^{H}-\phi[\boldsymbol{\omega}-\phi]\right\}^{-1}$.
From $(A-7)$. it follows that
$\partial \dot{\mathrm{L}}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right) / \partial \phi$
$=-\left\{\phi\left[\delta^{L_{R}}{ }_{N}^{H}-\phi C_{1}^{H}\right]\right\}\left\{\delta^{L} R_{N}^{H}-\phi\left[\hat{C}_{I}^{H}-\Phi\right]\right\}^{-2}\left\{\delta^{H} R_{N}^{H}-[1-\beta] \delta^{-H}\left[C_{I}^{H}-\Phi\right]\right\}$
$-\left\{\delta^{L} R_{N}^{H}-\phi \hat{C}_{I}^{H}\right\}\left\{[1-\beta] \delta^{-H}\right\}\left\{\delta^{L} R_{N}^{H}-\phi\left[\hat{C}_{I}^{H}-\Phi\right]\right\}^{-1}$
$-\bar{\delta}^{H}[1-\nu] \delta^{L} R_{N}^{L}[1-\beta] \bar{\delta}^{-H}\left(\delta^{L} R_{N}^{H}-\phi[W+\Phi]\right)^{-1}$
$=\delta^{-H}[1-\nu] \phi \delta^{L} R_{N}^{L}\left\{\delta^{H} R_{N}^{H}-[1-\beta] \delta^{-H}[\omega-\Phi]\right\}\left\{\delta^{L} R_{N}^{H}-\phi[\omega-\phi]\right\}^{-1}$
and $\partial^{2} \dot{c}_{1}\left(\delta^{H} \mid \delta^{H}\right) / \partial \Phi^{2}$

$$
\begin{align*}
= & 2 \phi G_{1}\left\{\delta R_{N}^{H}-\delta^{L} \delta^{H}[1-\beta]\left[1-\beta \delta^{-H}\left\{\delta^{H}\right\}^{-1}\right]\left[\hat{C}_{I}^{H}-\phi\right]\right\}\left\{G_{1}+\phi \phi\right\}^{-3} \\
& -2 \phi \delta^{L} \delta R_{:}^{L} R_{:}^{H} \cdot \delta^{H}[1-\nu]\left\{\delta^{L} R_{N}^{H}-\phi[h-\phi]\right\}^{-3} . \tag{A-9}
\end{align*}
$$

where $G_{1} \equiv \delta^{L} R_{N}^{H}-\phi \stackrel{C}{C}_{1}^{H}$.

Note that both terms in (A-9) are strictly positive. Thus, if it is optimal to accept some rationing at $t=0$ (i.e.. the transfer of a small level. Φ. of collateral is positive), then it is always optimal to maximize $\boldsymbol{q}_{\text {(i.e.. }}$ maximize rationing at $t=0$) such that rationing of good borrowers in the contracts node III is completely eliminated. This tells us that rationing will be restricted to one of the contracts -- either contract 1 or contract IIl -and will not occur in both. Thus. it is left to compare the allocation $\left\{\stackrel{C}{C}_{I}^{H}=C_{I}^{H}: C_{\text {III }}^{H}=w\right\}$ with the allocation $\left\{C_{I}^{H}=\bar{C}_{I}^{H}-\Phi_{\max }: C_{I I I}^{H}=w-\Phi_{\text {max }}\right\}$. where $\phi_{\max }=C_{I I I}^{H}$ (opt) - W. The original allocation implies $\hat{\pi}_{1}^{H}=1 \cdot \hat{\pi}_{I I I}^{H}=\delta^{L} R_{N}^{L}\left\{\delta^{L} R_{N}^{H}-\phi W\right\}^{-1}$. (This follows from $(A-6)$ and $(A-7)$ for $\phi=0$.) Note that $\pi_{I I I}^{H}$ equals one for an optimally collaterized contract. Thus. we have
$\left.\pi_{\text {III }}^{H}\right|_{\left.C_{\text {III }}^{H}=C_{\text {III }}^{H} \text { (opt }\right)}=\delta^{L} R_{S}^{L}\left\{\delta_{R}^{L} R_{I}^{H}-\phi C_{\text {III }}^{H}(\text { opt })\right\}^{-1} \quad-1$.
which imp:ies
$\delta^{L} R_{X}^{L}=\delta^{I} R_{Y}^{H}-\phi C_{I I I}^{H}(o p t)$.
This allows us to rewrite the original solution as
$\Pi_{I}^{H}=1 \cdot \tilde{\pi}_{I I I}^{H}=\left\{\delta L_{N}^{H}-\phi C_{I I I}^{H}(\right.$ opt $\left.)\right\}\left\{\delta L_{R}^{H} N_{N}^{H}-\phi h\right\}^{-1}$.
The alternative solution follows directly from ($A-6$) and (A-7) for
$\Phi=\Phi_{\max } \equiv C_{I I I}^{H}$ (opt) $-W$. It follows that

$\hat{\pi}_{1 I I}^{H}=1$.
Now, we want to show that
$\hat{\mathrm{i}}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)-\left.\hat{\mathrm{i}}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)\right|_{\Phi=\mathrm{C}_{\text {III }}^{\mathrm{H}}(\text { opt })-w} ^{\geq 0 .}$

Note that
$\dot{i}_{I}\left(\delta^{H} \mid \delta^{H}\right)=\left.\hat{i}_{I}\left(\delta^{H} \mid \delta^{H}\right)\right|_{\Phi=0}$
Csing ($A-8$) gives us
$\hat{\mathrm{c}}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)-\left.\hat{\mathrm{r}}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)\right|_{\left.\phi=c_{\text {III }}^{\mathrm{H}} \text { (opt }\right)-\omega}$
$=\left[\pi_{I}^{H}-\bar{\pi}_{I}^{H}\right]\left[\delta^{H} R_{N}^{H}-\bar{\delta}^{H}\{1-\beta) C_{I}^{H}\right]-\bar{\pi}_{I}^{H} \delta^{H}[1-\beta]\left[C_{I I I}^{H}(o p t)-W\right]$
$-\bar{\delta}^{-H}[1-v][\overbrace{111}^{H}-\hat{\pi}_{111}^{H}]\left[\delta^{H_{R}^{H}}-\{1-\beta\} \delta_{N}^{H} k\right]$
$+\bar{\delta}^{\mathrm{H}}[1-\nu] \hat{\pi}_{I I I}^{\mathrm{H}}[1-\beta] \bar{\delta}^{\mathrm{H}}\left[C_{I I I}^{\mathrm{H}}(\mathrm{opt})-\boldsymbol{w}\right]$.
Making the appropriate substitutions for all of the credit granting probabilities yields
$\hat{\mathrm{u}}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)-\left.\hat{\mathrm{u}}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)\right|_{\phi=C_{\text {III }}^{\mathrm{H}}(\text { opt })-W}$
$=\left[\hat{C}_{I I I}^{H}-W\right] R_{N}^{\mathrm{H}}\left(\phi \delta^{\mathrm{H}}-\delta^{-\mathrm{H}}\{1-\beta) \delta^{\mathrm{L}}\right]\left[\mathrm{G}_{2}^{-1}-\mathrm{G}_{3}\right]$
where $G_{2} \equiv \delta^{L} R_{N}^{H}-\phi C_{I}^{H}-\phi\left[C_{I I I}^{H}(o p t)-w\right]$

$$
G_{3} \equiv \delta^{-H}[1-\nu]\left[\delta^{L_{R}} N_{N}^{H}-\phi u\right]^{-1} .
$$

The expression in $(A-10)$ is positive if

$$
\mathrm{G}_{2}^{-1}>\mathrm{G}_{3} .
$$

which means we need
$\delta^{L_{R}^{H}}{ }_{N}^{H}-\phi W>\bar{\delta}^{-H}[1-\nu]\left[\delta L_{N}^{L_{N}^{H}}-\phi \hat{C}_{I}^{H}-\phi\left\{C_{I I I}^{H}(o p t)-w\right\}\right]$.
or equivalently
$\left[1-\bar{\delta}^{\mathrm{H}}\{1-v\}\right] \delta^{L_{R}} \mathrm{~N}_{\mathrm{N}}^{\mathrm{H}}>\phi\left[1-\bar{\delta}^{\mathrm{H}}\{1-v\}\right] \mathrm{W}+\bar{\delta}^{\mathrm{H}}[1-v] \phi C_{\text {III }}^{\mathrm{H}}$ (opt) $-\bar{\delta}^{\mathrm{H}}[1-v] \phi$.
The above inequality can be made more restrictive by substituting
more restrictive values for R. W and \bar{C}_{I}^{H}.

Take
$R \geq r\left[\delta^{\mathrm{L}}\right]^{-1} . w \leq C_{I I I}^{\mathrm{H}}(o p t)$ and $\bar{C}_{\mathrm{I}}^{\mathrm{H}} \geq \delta r\left[\phi \delta^{\mathrm{H}}\right]^{-1}\left[1+\delta^{\mathrm{L}}\{1-\beta\} \bar{\delta}^{\mathrm{H}} \phi^{-1}\right]$.
where the last inequality follows from (15). Note that if (A-11) holds with the above inequalities substituted in. then it must hold in general (when the above inequalities do not hold). This is because the above inequalities make it more difficult to satisfy $(A-11)$. Also substituting $C_{I I I}^{H}(o p t)=\delta r\left[\phi \delta^{H}\right]^{-1}$ gives us the following version of (A-11)
$\left[1-\delta^{-H}\{1-v\}\right] \delta^{L}\left[r\left\{\delta^{L}\right\}^{-1}-r\left\{\delta^{H}\right\}^{-1}\right]>G_{4}+G_{5}$.
where $G_{4} \equiv\left[1-\delta^{-H}\{1-v\}\right] \delta r\left[\delta^{H}\right]^{-1}$

$$
G_{5} \equiv \bar{\delta}^{-H}[1-\nu] \phi \delta r\left[\phi \delta^{H}\right]^{-1}-\bar{\delta}^{-H}[1-\nu] \phi \delta r\left[1+\delta^{L}\{1-\beta) \delta^{H} \phi^{-1}\right]\left[\phi \delta^{H}\right]^{-1}
$$

Thus, we need
$G_{4}>G_{4}-\bar{\delta}^{-H}[1-\nu] \delta^{L}[1-\beta] \delta^{-H}$.
or
$-\left[\bar{\delta}^{H}\right]^{2}[1-v] \delta^{L}[1-R]<0$.
which is certainly true. Thus. we have shown that
$\dot{\mathrm{i}}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)-\left.\dot{\mathrm{C}}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)\right|_{\phi=C_{I I I}^{\mathrm{H}}(\text { opt })-w}>0$.
implying that rationing at $t=0$ is not optimal. Q.E.D.

PROOF OF THEOREM 2: Obvious, since the theorem is only a collection of results established in the proof of Lemma 1 and elsewhere. Q.E.D.

PROOF OF LEMMA 2: It is sufficient to show that (16) holds for $C_{\text {III }}^{H}=0$ and $C_{\text {III }}^{H}=C_{\text {III }}^{\mathrm{H}}$ (opt). For $C_{\text {III }}^{\mathrm{H}}=0$, (16) becomes $\delta^{H}\left[\delta^{L}\right]^{-1} \geq \delta^{H}\left[\delta^{L}\right]^{-1}$.
and for $C_{\text {III }}^{\mathrm{H}}=\delta r\left[\phi \delta^{\mathrm{H}}\right]^{-1}$. (16) becomes
$\left\{\delta^{H} R-r-[1-\beta] \delta^{-H} \delta r\left[\phi \delta^{H}\right]^{-1}\right\}\left\{\delta^{L} R-\delta^{L} r\left[\delta^{H}\right]^{-1}-\delta r\left[\delta^{H}\right]^{-1}\right\}^{-1} \geq \delta^{H}\left[\delta^{L}\right]^{-1}$.
which holds IfF
$\left\{1+[1-\beta] \delta^{-\mathrm{H}} \delta\left[\phi \delta^{\mathrm{H}}\right]^{-1}\right\} r\left\{\delta^{\mathrm{H}}\left[\delta^{\mathrm{L}}\right]^{-1}\right\}^{-1} \leq 1$.
The above inequality can be written as
$\delta^{\mathrm{L}} \delta^{\mathrm{H}} \phi+[1-\beta] \delta^{-\mathrm{H}} \delta \delta^{\mathrm{L}} \leq\left[\delta^{\mathrm{H}}\right]^{2} \Phi$.
or equivalently
$\delta^{L} \delta^{H} \delta^{L}-\beta\left[\delta^{L}\right]^{2} \delta^{-H}+\bar{\delta}^{H} \delta^{L} \delta-\beta \delta^{-H} \delta^{L} \delta \leq\left[\delta^{H}\right]^{2} \delta^{L}-\beta \delta^{L} \delta^{H} \delta^{H}$.
which holds if
$\beta \delta^{L} \delta^{H} \delta-\beta \delta^{-H} \delta^{L} \delta<\delta^{H-L} \delta-\delta^{L} \delta^{H} \delta$.
or

$$
0<\delta^{2} \text {. }
$$

which is certainly true. This establishes (16). Q.E.D.

PROOF OF THEOREM 3: Note that rationing only occurs in the Contracts II: nodes. We know from our previous analysis that in those nodes the following. equality holds

$$
\mathrm{L}_{111}^{\mathrm{L}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{L}}\right)=\mathrm{L}_{11 I}^{\mathrm{L}}\left(\delta^{\mathrm{L}} \mid \delta^{\mathrm{I}}\right)
$$

In general this implies.
$\pi_{I I I}^{H}\left\{\delta^{L}\left[R-\alpha_{I I I}^{H}\right]-\bar{\delta}^{L} C_{I I I}^{H}\right\}=\pi_{I I I}^{L}\left\{\delta^{L_{R}^{L}}-\bar{\delta}^{-L}[1-\beta] C_{I I I}^{L}\right\}$.
Our equilibrium concept (more specifically, the sub-game perfection requirement) implies that only one of the contracts III may involve collateral and rationing. This is because rationing and collateral involve deadweight costs, and it is only in the interest of bank and borrower to bear those costs if they are necessary for separation. For example. if both contracts involve rationing, the bank and the borrower can increase their payoffs by removing rationing in one of these contracts and reducing it in the other contract.
without losing separation. Note also it is the contract for good borrowers that involves collateral and, if necessary, rationing. Therefore. we may rewrite ($\mathrm{A}-12$) as.

$$
\begin{equation*}
\pi_{I I I}^{H}\left\{\delta^{L}\left[R-\alpha_{I I I}^{H}\right]-\delta^{-L} C_{I I I}^{H}\right\}=\delta^{L}\left[R-\alpha_{I I I}^{L}\right] \tag{A-13}
\end{equation*}
$$

Now, we establish that the contract $\left\{\alpha_{I I I}^{H}, C_{I I I}^{H}, \pi_{I I I}^{H}\right\}$ should always be a zeroprofit contract for the bank. That is. $\delta^{H} \alpha_{I I I}^{H}-\bar{\delta}^{\mathrm{H}} \mathrm{C}_{I I I}^{\mathrm{H}}=r$. Note that if the contract were profitable. an entering (second period) spot market bank would be able to break the "profitable" original contract. Likewise. a more complicated argument asserts that the contract can not impose losses on the bank. We shall present this argument verbally. From figure 1 we see that the first period contracts are also separating. Notice that these contracts take into account the entire two period time horizon. and the second period contracts have an impact on the incentive compatibility of these first period contracts. Incentive compatibility of the first period contract for good borrowers is easier to establish if the contracts III are as unattractive as possible. The reason is that mimicking bad borrowers at $t=0$ are more likely than the good borrowers at $t=0$ to end up in the contracts III nodes. Hence making the contracts III as unattractive as possible "costlessly" resolves part of the incentive compatibility problem at $t=0$. Thus. we have

$$
\begin{equation*}
\tilde{\alpha}_{I I I}^{\mathrm{H}}=r\left[\delta^{\mathrm{H}}\right]^{-1}-\bar{\delta}_{\beta}^{-\mathrm{H}} \tilde{\mathrm{C}}_{\text {III }}^{\mathrm{H}}\left[\delta^{\mathrm{H}}\right]^{-1} \tag{A-14}
\end{equation*}
$$

The intertemporal contract solution to be presented later will indicate that good borrowers in the contracts node III will always use all the collateral they have available. (Note, it is assumed that $W_{0}-\tilde{C}_{I}^{H}<C_{I I I}^{H}$ (opt)). That is.

$$
\begin{equation*}
\tilde{\mathrm{c}}_{I I I}^{\mathrm{H}}=\mathrm{w}_{0}-\tilde{\mathrm{c}}_{I}^{\mathrm{H}} \tag{A-15}
\end{equation*}
$$

The arguments used above to determine $\tilde{\alpha}_{111}^{\mathrm{H}}$ in principle also hold for the determination of $\tilde{\alpha}_{\text {III }}^{L}$. That is. incentive compatibility of $t=0$ contracts ask
for $\alpha_{1 I I}$ to be as high as possible while entering spot market banks at $t=1$ force an upper bound on this interest factor of r / δ^{L}. But look at (A-13). If the equality in ($\mathrm{A}-13$) currently holds for some $\pi_{\text {III }}^{H}<1$ (that is, rationing occurs), then in order to increase $\pi_{I I I}^{H}$ without disturbing the equality, one should reduce $\alpha_{\text {III }}^{L}$ and/or increase $\alpha_{\text {III }}^{H}$ and/or increase $C_{\text {III }}^{H}$. Note that an increase in $C_{\text {III }}^{H}$ is ruled out by $(A-15)$ and an increase in $\alpha_{\text {III }}^{H}$ invites competition from entering spot market banks. Hence, its value is fixed by (A-14). Reducing α_{111}^{L} is a possibility but it will make the incentive compatibility of the contracts at $t=0$ more difficult. In other words once we reduce $\alpha_{\text {III }}$. we have to adjust α_{I}^{H} and C_{I}^{H} in order to preserve incentive compatibility of the first period contracts. By $(A-15)$ this will also affect $C_{\text {III }}^{H}$. Thus. we see that the following variables must be adjusted in order to remove rationing from contracts node III

$$
\begin{equation*}
\left\{\alpha_{1}^{\mathrm{H}} \cdot c_{I}^{\mathrm{H}} \cdot \pi_{I I I}^{\mathrm{H}} \cdot c_{I I I}^{\mathrm{H}} \cdot \alpha_{I I I}^{\mathrm{L}}\right\} \tag{A-16}
\end{equation*}
$$

The variables related to the borrower's contract in node I do not enter this set because the intertemporal contract solution will indicate that these are always first best. The contracts node II variables do not enter the set either because in the intertemporal contract solution a binding constraint will be in effect on those variables.

As argued earlier, rationing might disappear from the model by reducing $\alpha_{\text {III }}^{\mathrm{L}}$ in (A-13). This makes the contracts node III more attractive, which causes incentive compatibility problems because mimicking bad borrowers at $t=0$ are more likely to end up in these contracts. These incentive compatibility problems require an adjustment in $\left(\alpha_{I}^{H}, C_{I}^{H}\right)$, which in itself affects the contract for good borrowers in node III since $C_{I I I}^{H}$ depends on C_{I}^{H} through (A-15). Furthermore, a reduction in $\alpha_{\text {III }}^{L}$ has also a primary effect in that
it causes losses to the bank which must be recouped through an offsetting adjustment in $\left(\alpha_{I}^{H}, C_{I}^{H}\right)$. We can summarize this schematically as follows

where " \approx " distinguishes the effects (A) and (B) :
(A) direct effect: $\approx_{\text {III }}^{H}$ increases by $(A-13)$ and $\tilde{\tilde{\alpha}}_{I}^{H}$ increases by the intertemporal zero expected profit condition for the bank:
(B) indirect effect: C_{I}^{H} increases and α_{1}^{H} decreases. With both adjustments chosen such that it has no effect on the expected profit of the bank. and it makes first period contracts more incentive compatible. The effect of C_{I}^{H} on $C_{\text {III }}^{\mathrm{H}}$ and $\Pi_{\text {III }}^{\mathrm{H}}$ follows directly from (A-15) and (A-13).

Now. we will derive the sufficiency condition for no rationing in contracts node III. It will turn out that this is identical to deriving a condition such that the (positive) direct effect (A) on $\pi_{I I I}^{H}$ exceeds the (negative) indirect effect (B) on $\pi_{\text {III }}^{H}$.
(1) The Direct Effect (A): Substitute (A-14) in (A-13) and rewrite to get.

$$
\begin{equation*}
\pi_{I I I}^{H}=\left\{\delta^{L}\left[R-\alpha_{I I I}^{L}\right]\right\}\left\{\delta^{L} R_{N}^{H}-\phi C_{I I I}^{H}\right\}^{-1} \tag{A-17}
\end{equation*}
$$

Differentiating (A-17) w.r.t. $\alpha_{\text {III }}^{\mathrm{L}}$ gives the direct effect (A) on $\tilde{\pi}_{\text {III }}^{H}$.

$$
\begin{equation*}
-\partial \approx_{I I I}^{H} / \partial \alpha_{I I I}^{L}=\delta^{L}\left\{\delta^{L} R_{i}^{H}-\phi C_{I I I}^{H}\right\}^{-1}>0 . \tag{A-18}
\end{equation*}
$$

The derivative in ($A-18$) implies that decreasing the interest for bad borrowers in the contracts III node increases the credit granting probability for good borrowers in that node. The direct effect on $\tilde{\widetilde{\alpha}}_{I}^{H}$ is to compensate the bank for
the losses it sustains in reducing $\alpha_{1 I I}^{L}$. The zero expected profit condition implies
$\partial\left(\right.$ bank profit)/ $\partial \alpha_{I I I}^{L}+\left[\partial \alpha_{1}^{\mathrm{H}} / \partial \alpha_{\text {III }}^{\mathrm{L}}\right] . \quad \partial\left(\right.$ bank profit) $/ \partial \alpha_{I}^{\mathrm{H}}=0$.
Define profit as expected profit per good borrower at $t=0$. Then
$\partial\left(\right.$ bank profit) $/ \partial \alpha_{\text {III }}^{L}=\bar{\delta}^{H} \nu \delta^{L}$ and $\partial\left(\right.$ bank profit) $/ \partial \alpha_{I}^{H}=\delta^{H}$. Thus. we get

$$
\begin{equation*}
\partial \tilde{\tilde{\alpha}}_{1}^{H} / \partial \alpha_{1 I I}^{\mathrm{L}}=-\bar{\delta}^{H} v \delta^{\mathrm{L}}\left[\delta^{H}\right]^{-1} . \tag{A-19}
\end{equation*}
$$

(2) The Indirect Effect (B): We now examine the first period incentive compatibility effects of the reduction in $\alpha_{I I I}^{L}$. We know from (13) that $\mathrm{U}_{1}\left(\delta^{\mathrm{L}} \mid \delta^{\mathrm{L}}\right)=\mathrm{C}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{L}}\right)$. Note that the variables in $(\mathrm{A}-16)$ have no impact on $\mathrm{L}_{1}\left(\delta^{\mathrm{L}} \mid \delta^{\mathrm{L}}\right)$. Hence, the above equality implies
$-\partial L_{I}\left(\delta^{H} \mid \delta^{L}\right) / \partial \alpha_{I I I}^{L}=0$.
where

$$
\begin{aligned}
\mathrm{L}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{L}}\right)= & \delta^{\mathrm{L}}\left[\mathrm{R}-\alpha_{I}^{\mathrm{H}}\right]-\bar{\delta}^{\mathrm{L}} C_{I}^{H}+\delta^{\mathrm{L}}\left\{[1-\mu] \delta^{H}-\mu \delta^{\mathrm{L}}\right\}\left\{\mathrm{R}-\alpha_{I I}^{H}\right\} \\
& -\bar{\delta}^{\mathrm{L}} \delta^{\mathrm{L}}\left[\mathrm{R}-\alpha_{I I I}^{\mathrm{L}}\right] .
\end{aligned}
$$

Differentiating w.r.t. $\alpha_{\text {III }}^{L}$ gives (constraint on $\alpha_{I I}^{H}$ is binding in the intertemporal solution)

$$
\begin{align*}
-\partial \mathrm{L}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{L}}\right) / \partial \alpha_{I I I}^{\mathrm{L}}=0= & \delta^{\mathrm{L}}\left\{\left[\partial \tilde{\bar{\alpha}}_{\mathrm{I}}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}}\right]-\left[\partial \alpha_{\mathrm{I}}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}}\right]\right\} \\
& -\bar{\delta}^{\mathrm{L}}\left[\partial \mathrm{c}_{\mathrm{I}}^{\mathrm{H}} \partial \alpha_{I I I}^{\mathrm{L}}\right]-\bar{\delta}^{\mathrm{L}} \delta^{\mathrm{L}} . \tag{A-20}
\end{align*}
$$

where $\partial \tilde{\tilde{\alpha}}_{I}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}}$ is given in $(\mathrm{A}-19)$ and $\partial \alpha_{\mathrm{I}}^{\mathrm{L}} / \partial \alpha_{I I I}^{\mathrm{L}}$ and $\partial c_{I}^{\mathrm{H}} / \partial \alpha_{\text {III }}^{\mathrm{L}}$ are such that incentive compatibility is guaranteed and the bank's expected profit stays at zero. The latter requirement implies that

$$
\begin{equation*}
\delta^{\mathrm{H}}\left[\partial \alpha_{\mathrm{I}}^{\mathrm{H}} / \partial \alpha_{\text {III }}^{\mathrm{L}}\right]-\bar{\delta}^{\mathrm{H}} \beta\left[\partial c_{\mathrm{I}}^{\mathrm{H}} / \partial \alpha_{\text {III }}^{\mathrm{L}}\right]=0 . \tag{A-21}
\end{equation*}
$$

Substituting ($A-19$) and ($A-21$) in ($A-20$) and rearranging produces

$$
\begin{align*}
-\partial C_{I}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}} & =\left\{\delta^{\mathrm{L}}\left[\delta^{\mathrm{H}} \delta^{\mathrm{L}}-\nu \delta^{\mathrm{L}} \delta^{\mathrm{H}}\right]\left[\delta^{\mathrm{H}}\right]^{-1}\right\}\left\{\left[\delta^{\mathrm{H}} \delta^{\mathrm{L}}-\beta \delta^{\mathrm{I}} \delta^{\mathrm{H}}\right]\left[\delta^{\mathrm{H}}\right]^{-1}\right\}^{-1} \\
& =\delta^{\mathrm{L}} \xi \phi^{-1} . \tag{A-22}
\end{align*}
$$

where $\xi \equiv\left[\delta^{H-\delta^{L}}-v \delta^{L-H}\right]\left[\delta^{H}\right]^{-1}$.

Substitute ($\mathrm{A}-22$) in ($\mathrm{A}-21$) to get

$$
\begin{equation*}
-\partial \alpha_{I}^{\mathrm{H}} / \partial \alpha_{1 I I}^{\mathrm{L}}=-\left\{\delta^{\mathrm{L}} \delta^{\mathrm{H}} \beta \xi\right\}\left\{\phi \delta^{\mathrm{H}}\right\}^{-1} . \tag{A-23}
\end{equation*}
$$

From (A-22) and (A-23) we see that the incentive compatibility problems which arise from the reduction in $\alpha_{I I I}^{L}$ are resolved by increasing the first period collateral requirement. The reduction in α_{1}^{H} is to preserve zero expected profit for the bank. From $(A-15)$ we see that

$$
\begin{equation*}
-\partial c_{I I I}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}}=-\left[-\partial C_{I}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}}\right] \tag{A-24}
\end{equation*}
$$

Combine $(A-24)$ and $(A-22)$ to obtain

$$
\begin{equation*}
-\partial C_{I I I}^{\mathrm{H}} \partial \alpha_{I I I}^{\mathrm{L}}=-\delta^{\mathrm{L}} \xi \phi^{-1} . \tag{A-25}
\end{equation*}
$$

The change in $C_{\text {III }}^{\mathrm{H}}$ has an effect on $\pi_{\text {III }}^{\mathrm{H}}$. From (A-17) we get
$\partial \pi_{I I I}^{H} / \partial C_{I I I}^{H}=\pi_{I I I}^{H} \phi\left\langle\delta^{L} R_{N}^{H}-\phi C_{I I I}^{H}\right\}^{-1}$.
Combining this with ($\mathrm{A}-25$) we get
$-\partial \pi_{I I I}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}}=-\left[\partial \pi_{I I I}^{\mathrm{H}} / \partial C_{I I I}^{\mathrm{H}}\right] \cdot\left[\partial C_{I I I}^{\mathrm{H}} / \partial \alpha_{I I I}^{\mathrm{L}}\right]$
$=-\pi_{I I I}^{H} \delta^{L} \xi\left\{\delta^{L} R_{N}^{H}-\phi C_{I I I}^{H}\right\}^{-1}$
From ($A-26$) we see that the indirect effect of the reduction in $\alpha_{\text {III }}^{L}$ is to reduce the credit granting probability. The sufficiency condition we will derive guarantees that the indirect effect in (A-26) never offsets the (positive) direct effect in (A-18).

With $(A-19),(A-23),(A-22),(A-18),(A-26)$ and $(A-24)$, the relations between the adjustments in $(A-16)$ are determined. We will now derive a sufficiency condition for the adjustments to have a positive impact on the good borrower's utility. This condition is identical to the sufficiency condition for the suboptimality of rationing. Recall that

$$
\begin{align*}
\mathrm{U}_{I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)= & \delta^{\mathrm{H}}\left[\mathrm{R}-\alpha_{I}^{\mathrm{H}}\right]-\delta^{-{ }^{H}} C_{I}^{H}+\left[\delta^{\mathrm{H}}\right]^{2}\left[\mathrm{R}-\alpha_{I I}^{\mathrm{H}}\right] \\
& +[1-v] \pi_{I I I}^{\mathrm{H}}\left\{\delta^{H_{R}^{H}}-[1-\beta] \bar{\delta}^{H} C_{I I I}^{H}\right\} \\
& -\bar{\delta}^{H} v \delta^{\mathrm{L}}\left[\mathrm{R}-\alpha_{I I I}^{L}\right] . \tag{A-27}
\end{align*}
$$

The reduction in $\alpha_{I I I}^{L}$ has direct and indirect effects on $\mathrm{L}_{\mathrm{I}}^{\mathrm{H}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)$. From (A-27) we get

$$
\begin{aligned}
& -d C_{I}\left(\delta^{H} \mid \delta^{H}\right) / d \alpha_{\text {III }}^{L} \\
& =-\delta^{\mathrm{H}}\left\{\left[-\partial \tilde{\tilde{\alpha}}_{\mathrm{I}}^{\mathrm{H}} / \partial \alpha_{\text {III }}^{\mathrm{L}}\right]+\left[-\partial \alpha_{\mathrm{I}}^{\mathrm{H}} / \partial \alpha_{\text {III }}^{\mathrm{L}}\right]\right\}-\bar{\delta}^{\mathrm{H}}\left[-\partial c_{\mathrm{I}}^{\mathrm{H}} / \partial \alpha_{\text {IIII }}^{\mathrm{L}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\bar{\delta}^{H}[1-\nu] \pi_{I I I}^{H}[1-\beta] \bar{\delta}^{H}\left[-\partial c_{I I I}^{H} / \partial \alpha_{I I I}^{\mathrm{L}}\right]-\bar{\delta}^{H} v \delta^{\mathrm{L}}\left[-\partial \alpha_{I I I}^{\mathrm{L}} / \partial \alpha_{I I I}^{\mathrm{L}}\right]
\end{aligned}
$$

Upon substituting ($A-18),(A-19),(A-22),(A-23),(A-24)$ and $(A-26)$ in the above expressjon, we get
$-\mathrm{dC}{ }_{\mathrm{I}}\left(\delta^{\mathrm{H}}\left(\delta^{\mathrm{H}}\right) / \mathrm{d} \alpha_{\mathrm{I} 1 \mathrm{I}}^{\mathrm{L}}\right.$
$=-\delta^{H}\left\{\bar{\delta} \nu \delta^{L}\left[\delta^{H}\right]^{-1}-\delta^{L} \bar{\delta}^{H} \beta \xi\left[\phi \delta^{H}\right]^{-1}\right\}-\bar{\delta}^{H} \delta^{L} \xi \phi^{-1}$
$-\delta^{H}[1-\nu]\left\{\delta^{L} G_{6}^{-1}-\pi_{I I I}^{H} \delta^{I} \xi G_{6}^{-1}\right\}\left\{\delta^{H} R_{N}^{H}-[1-\beta] \delta^{H} C_{I I I}^{H}\right\}$
$-\bar{\delta}{ }^{H}[1-\nu] \pi_{I I I}^{H}[1-\beta]-\delta^{H} \delta^{L} \phi^{-1}+\bar{\delta}_{\nu} \delta^{L}$.
where $G_{6} \equiv \delta^{L_{R}}{ }_{-}^{H}-\phi C_{\text {III }}^{H}$
Unfortunately, it is not possible to evaluate ($\mathrm{A}-28$). Also. the second derivative of $\mathrm{L}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)$ w.r.t. $\alpha_{\text {III }}^{\mathrm{L}}$ is ambiguous. Hence. we have to look for a sufficiency condition. We want to show that ($A-28$) is positive. First. we note that $\delta^{L}-\pi_{1 I I}^{H} \delta^{L} \xi>0$. Thus. substituting the finding of Lemma 2 in $(A-28)$ will reduce $(A-28)$. That is
$-\mathrm{dC}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right) / \mathrm{d} \alpha_{\text {III }}^{\mathrm{L}}$
$\geq \delta^{L} \delta^{-H} \beta \xi \phi^{-1}-\delta^{L} \delta^{H} \xi \phi^{-1}-\delta^{H}[1-v] \delta^{L}\left[1-\pi_{I I I}^{H} \xi\right] \delta^{H}\left[\delta^{L}\right]^{-1}$
$-\left[\overline{\delta^{H}}\right]^{2}[1-\nu][1-\beta] \pi_{I I I}^{H} \delta^{L} \xi \phi^{-1}$.
(A-29)
Note that the right hand side (RHS) of (A-29) is minimized for $\pi_{I I I}^{H}=1$. To see this, observe that

$$
\begin{aligned}
& \partial\left[d U_{I}\left(\delta^{H} \mid \delta^{H}\right) / d \alpha_{I I I}^{L}\right] / \partial \pi_{I I I}^{H} \\
& =-\delta^{H}[1-\nu] \delta^{H} \xi-\left[\delta^{H}\right]^{2}[1-\nu][1-\beta] \delta^{L} \xi \phi^{-1}<0
\end{aligned}
$$

since $-\delta^{H}, \bar{\delta}^{H}[1-\beta] \delta^{L} \phi^{-1}<0$.

$$
\begin{align*}
& \text { Substituting } \pi_{I I I}^{H}=1 \text { we get } \\
& - \\
& \quad d C_{I}\left(\delta^{H} \mid \delta^{H}\right) / d \alpha_{I I I}^{L} \\
& \geq-[1-\beta] \delta^{L} \delta^{H} \xi \phi^{-1}+\bar{\delta}^{H}[1-\nu] \delta^{L}[1-\xi] \delta^{H}\left[\delta^{L}\right]^{-1} \tag{A-30}\\
& \\
& \quad+\left[\bar{\delta}^{H}\right]^{2}[1-\nu][1-\beta] \delta^{L} \xi \phi^{-1} .
\end{align*}
$$

The RHS of ($\mathrm{A}-30$) is non-negative if
$-[1-\beta] \xi \phi^{-1}+[1-\nu][1-\xi] \delta^{H}\left[\delta^{L}\right]^{-1}+\bar{\delta}^{H}[1-\nu][1-\beta] \xi \phi^{-1} \geq 0$.
This implies that we need

$$
\phi[1-\nu][1-\xi] \delta^{H}\left[\delta^{L}\right]^{-1} \geq[1-\beta] \xi\left[1-\{1-\nu\} \widehat{\delta}^{H}\right] .
$$

Substitute the expressions for $\boldsymbol{\xi}$ and ϕ in the inequality above and note that $1-[1-v] \overline{\delta^{H}}=\delta^{H}-v \bar{\delta}^{H}$, to obtain

$$
\left\{\delta^{H} \delta^{L}-\beta \delta^{L}-\delta^{H}\right\}\left\{\delta^{H}\right\}^{-1}\{1-v\} \delta^{H}\left\{\delta^{L}\right\}^{-1}\left\{\delta^{L}\left[\delta^{H}+v \delta^{H}\right]\left[\delta^{H}\right]^{-1}\right\}
$$

$$
\geq[1-\beta]\left\{\delta^{H}-\delta^{L}-v \delta^{L}-\frac{\delta^{H}}{}\right\}\left\{\delta^{H}\right\}^{-1}\left\{\delta^{H}-\nu \bar{\delta}{ }^{H}\right\} .
$$

which implies
$[1-\nu]\left[\delta^{H}\right]^{-1}\left[\delta^{H-L}-\beta \delta^{L-\delta^{H}}\right] \geq[1-\beta]\left[\delta^{H-L}-\nu \delta^{L}-\delta^{H}\right]\left[\delta^{H}\right]^{-1}$.
which holds if

$$
\nu \leq \beta
$$

Q.E.D.

PROOF OF THEOREM 4: Apply the Simplex algorithm. Take into account only the constraints (19), (21), (24) and (25). First, we add slack variables to these constraints. Substituting (26), we obtain
$-\delta^{H} \alpha_{I}^{H}-\bar{\delta}^{H} C_{I}^{H}-\left[\delta^{H}\right]^{2} \alpha_{I I}^{H}-\bar{\delta}^{H}[1-v] \delta^{H} \alpha_{I I I}^{H}-\bar{\delta}^{H} \nu \delta^{L} \alpha_{I I I}^{L}$

$$
\begin{equation*}
+S_{1}=-2 r+\left[\bar{\delta}^{H}\right]^{2}[1-v] \Theta \beta \delta r\left[\phi \delta^{H}\right]^{-1} \tag{19}
\end{equation*}
$$

$\delta^{H} \alpha_{\text {III }}{ }^{H}$
$-s_{2}=r-\delta^{H} \theta \beta r \delta\left[\phi \delta^{H}\right]^{-1}$.
$-\delta^{L} \alpha_{I I I}^{H}+\delta^{L} \alpha_{I I I}^{L}$
$-s_{3}=\delta^{-L} \operatorname{\theta r} \delta\left[\phi \delta^{H}\right]^{-1}$.
$-\delta^{L} \alpha_{I}^{H}-\delta^{L} C_{I}^{H}-\delta^{L}\left[\delta^{H}-\delta \mu\right] \alpha_{I I}^{H}-\delta^{L} \delta^{L} \alpha_{I I I}^{L}-S_{4}=-2 r$
In the tableaus I through V. we apply the Simplex algorithm. Tableau V is the

D $\varepsilon 1-d d \forall$
tableau I:

(1) Row $4 \rightarrow$ add $-\frac{\delta^{L}}{\delta^{H}} \cdot \frac{1-\delta^{L}}{\delta^{L}}$ (Row 1)
(2) Low $1 \rightarrow$ multiply by $8 \mathrm{~L} / \mathrm{s} \mathrm{H}_{4}$

end-tableau.
[INSERT TABLEALS ABOUT HERE]
Recalling that ξ was defined imediately preceding Lemma 1 and in the proof of Theorem 3. the solution indicates

$$
\tilde{C}_{I}^{H}=\delta r\left[\phi \delta^{H}\right]^{-1}\left\{2-\bar{\delta}^{L} \Theta \xi \phi^{-1}+\left[\bar{\delta}^{H}\right]^{2}[1-v] \delta^{L} \theta \beta\left[\phi \delta^{H}\right]^{-1}-G_{7}+G_{8}\right\}
$$

where $G_{7} \equiv \delta^{L}\left[\delta^{H}+\nu \bar{\delta}^{H}\right]\left[\delta^{H}\right]^{-1}$

$$
G_{8} \equiv \delta^{L}\left[\delta^{H}+v \bar{\delta}^{H}\right] \delta \bar{\delta}^{H} \Theta \beta\left[\phi\left\{\delta^{H}\right\}^{2}\right]^{-1}
$$

After considerable algebra. the above expression simplifies to

$$
\tilde{\mathrm{C}}_{1}^{\mathrm{H}}=\delta r[1-\{1-\theta\} \xi]\left[\phi \delta^{\mathrm{H}}\right]^{-1} .
$$

The solution also indicates that

$$
\tilde{\alpha}_{I}^{H}=2 r\left[\delta^{L}\right]^{-1}-2 \bar{\delta}^{L}\left[\delta^{L}\right]^{-1} \delta\left[\phi \delta^{H}\right]^{-1}-G_{9}-G_{10}-G_{11}
$$

where $G_{9} \equiv\left[\bar{\delta}^{H}\right]^{2}[1-\nu] \bar{\delta}^{-L} \theta \beta \delta r\left[\Phi^{2}\left\{\delta^{H}\right\}^{2}\right]^{-1}$

$$
\begin{aligned}
& G_{10} \equiv \bar{\delta}^{H}\left[\bar{\delta}^{L}\right]^{2}[\nu-\beta] \theta \delta r\left[\left\{\delta^{H}\right\}^{2} \phi^{2}\right]^{-1} \\
& G_{11} \equiv \bar{\delta}^{H} \delta^{L}\left[\phi\left\{\delta^{H}\right\}^{2}\right]^{-1}\left[\delta^{H}-\delta^{L} \beta-\delta \nu\right]\left[r-\delta^{H} \theta \beta \delta\left\{\phi \delta^{H}\right\}^{-1}\right]
\end{aligned}
$$

Again. after considerable algebra. we can simplify this expression to

$$
\begin{aligned}
\tilde{\alpha}_{I}^{H}= & {\left[1-\delta^{H}\right] r\left[\delta^{H}\right]^{-1}-\bar{\delta}^{H} \delta r\{\beta[1-\{1-\theta\} \xi]\}\left\{\phi\left[\delta^{H}\right]^{2}\right\}^{-1} } \\
& -\bar{\delta}^{H} \delta r[1-\theta] \cup \Phi\left[\left\{\delta^{H}\right\}^{2} \Phi\right]^{-1}
\end{aligned}
$$

Substituting the solution for $\tilde{\mathrm{C}}_{1}^{\mathrm{H}}$ in the above expression, we get

$$
\tilde{\alpha}_{1}^{H}=\left[1+\delta^{H}\right] r\left[\delta^{H}\right]^{-1}-\bar{\delta}^{H}\left[\delta^{H}\right]^{-1} \beta \tilde{C}_{I}^{H}-\delta^{H} \delta r[1-\theta] \nu \phi\left\{\left[\delta^{H}\right]^{2} \phi\right\}^{-1} .
$$

The solution also indicates that

$$
\tilde{\alpha}_{I I I}^{H}=r\left[\delta^{H}\right]^{-1}-\theta \beta \delta r \bar{\delta}^{H}\left[\phi\left\{\delta^{H}\right\}^{2}\right]^{-1}
$$

lising (26) gives us

$$
\tilde{\alpha}_{\text {III }}^{\mathrm{H}}=r\left[\delta^{\mathrm{H}}\right]^{-1}-\bar{\delta}_{\beta} \tilde{\mathrm{C}}_{\text {IIII }}^{\mathrm{H}}\left[\delta^{\mathrm{H}}\right]^{-1} .
$$

Furthermore.

$$
\begin{aligned}
\tilde{\alpha}_{I I I}^{L} & =r\left[\delta^{H}\right]^{-1}-\left[\delta^{L}\left\{\delta^{L}\right\}^{-1}-\bar{\delta}^{H} \beta\left\{\delta^{H}\right\}^{-1}\right] \ominus \delta r\left[\phi \delta^{H}\right]^{-1} \\
& =r\left[\delta^{H}\right]^{-1}+\phi \theta \delta r\left[\phi \delta^{H} \delta^{L}\right]^{-1}
\end{aligned}
$$

which can be written as

$$
\tilde{\alpha}_{I I I}^{L}=r\left[\delta^{L}\right]^{-1}-\phi[1-\theta] \delta r\left[\phi \delta^{L} \delta^{H}\right]^{-1}
$$

Note also that $\alpha_{\text {III }}^{H}$ is not a basis variable. Thus. the simplex algorithm implies that

$$
\tilde{\alpha}_{I I}^{H}=0 .
$$

Finally, by (26) and our collateral assumption, we obtain

$$
\tilde{\mathrm{C}}_{1 I I}^{\mathrm{H}}=\theta \delta \mathrm{r}\left[\phi \delta^{\mathrm{H}}\right]^{-1}
$$

So. we have determined the intertemporal contract that a good borrower gets at $t=0$. As argued earlier bad borrowers obtain a contract that yields an average expected utility per period equal to the first best for them. Thus. their total expected interest cost is $2 r$. Generally. there is no unique solution However. it is easy to see that the solution $\left\{\tilde{\alpha}_{I}^{\mathrm{L}} \cdot \tilde{\alpha}_{I V}^{\mathrm{H}} \cdot \tilde{\alpha}_{I V}^{\mathrm{L}} \cdot \tilde{\alpha}_{V}^{\mathrm{L}}\right\}$ as stated in the theorem implies an expected interest cost of $2 r$. and cannot be broken by
spot market competitors at $t=1$.
Q.E.D.

PROOF OF LEMMA 3: The proof is by contradiction. Note that $\tilde{C}_{I I I}^{\mathrm{H}}=\theta \delta r\left[\phi \delta^{\mathrm{H}}\right]^{-1}$. If it is optimal not to use all available collateral then reducing θ should increase the welfare of a good borrower at $t=0$. Now

$$
\begin{aligned}
& -\partial \mathrm{u}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right) / \partial \theta \\
= & \delta^{\mathrm{H}}\left[\partial \tilde{\alpha}_{\mathrm{I}}^{\mathrm{H}} / \partial \theta\right]+\bar{\delta}^{\mathrm{H}}\left[\partial \tilde{\mathrm{c}}_{\mathrm{I}}^{\mathrm{H}} / \partial \theta\right]+\bar{\delta}^{\mathrm{H}}[1-\nu]\left[\delta^{\mathrm{H}}\left\{\partial \tilde{\alpha}_{I I I}^{\mathrm{H}} / \partial \theta\right\}+\bar{\delta}^{\mathrm{H}}\left\{\partial \tilde{\mathrm{C}}_{\mathrm{H} I I^{\mathrm{H}}} / \partial \theta\right\}\right] \\
& +\bar{\delta}^{\mathrm{H}} \nu \delta^{\mathrm{L}}\left[\partial \alpha_{I I I}^{\mathrm{L}} / \partial \theta\right] .
\end{aligned}
$$

(For the definition of $\mathrm{C}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)$, see (3). The parametric expressions for the various instruments are defined in Theorem 4). We can thus write

$$
\begin{aligned}
&-\partial u_{I}\left(\delta^{H} \mid \delta^{H}\right) / \partial \theta \\
&=-\delta^{H} \delta \beta r\left\{\phi \delta^{H}\right]^{-1} \ldots \delta^{H} \delta r \nu\left[\delta^{H}\right]^{-1}-\bar{\delta}^{H} \delta r \xi\left[\phi \delta^{H}\right]^{-1} \\
&-\bar{\delta}^{H}[1-\nu]\left\{\delta^{H} \beta \delta r\left[\phi \delta^{H}\right]^{-1}-\bar{\delta}^{H} \delta r\left[\phi \delta^{H}\right]^{-1}\right\}-\bar{\delta}^{H} \nu \delta r\left[\delta^{H}\right]^{-1} .
\end{aligned}
$$

APP-16

Thus.

$$
\begin{aligned}
& -\partial \mathrm{I}_{1}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right) / \partial \theta \\
& =-\bar{\delta}^{H}[1-\beta] \delta r\left[\xi-\bar{\delta}^{H}\{1-\nu\}\right]\left[\phi \delta^{H}\right]^{-1}<0 \text {. since } \xi-\bar{\delta}^{H}[1-\nu]<0 .
\end{aligned}
$$

This means reducing θ worsens the lot of the good borrower.
Q.E.D.

PROOF OF LEMMA 4: From Theorem 2 we know that

$$
\begin{equation*}
\hat{C}_{I}^{H}=\delta r\left[\phi \delta^{H}\right]^{-1}\left[1-\mu \delta^{L}-\{1-\beta\} \delta^{-H} \delta^{L}\{1-\mu\} \phi^{-1}\right] . \tag{A-31}
\end{equation*}
$$

and from Theorem 4 we know that

$$
\begin{equation*}
\tilde{\mathrm{C}}_{\mathrm{I}}^{\mathrm{H}}=\delta \mathrm{r}\left[\phi \delta^{\mathrm{H}}\right]^{-1}[1+(1-\theta) \xi] . \tag{A-32}
\end{equation*}
$$

In both cases we used the assumption that

$$
c_{1}^{H} \leq w_{0}<c_{I}^{H}+c_{1 I I}^{H}(\text { opt }) \text {. where } C_{I I I}^{H}(\text { opt })=\delta r\left[\phi \delta^{H}\right]^{-1} .
$$

In ($A-31$). this assumption becomes

$$
\begin{equation*}
\delta r\left[\phi \delta^{H}\right]^{-1}\left[1-\mu \delta^{L}-G_{12}\right] \leq \omega_{0}<\delta r\left[\phi \delta^{H}\right]^{-1}\left[2-\mu \delta^{L}-G_{12}\right] . \tag{A33}
\end{equation*}
$$

where $G_{12} \equiv\{1-\beta\} \bar{\delta}^{H} \delta^{L}\{1-\mu\} \phi^{-1}$. In (A.32). this assumption becomes (note $\theta \in(0,1)]$

$$
\begin{equation*}
\delta r[1+\xi]\left[\phi \delta^{H}\right]^{-1} \leq W_{0}<2 \delta r\left[\phi \delta^{H}\right]^{-1} . \tag{A-34}
\end{equation*}
$$

We look for levels of collateral. W_{0}. which satisfy (A-33) and (A-34)
simultaneously. It follows directly that the conditions in (27) guarantee
this. (Note that, because $\mu \delta^{L}-G_{12}<1$, the lower bound on W_{0} in $(A-33)$ does not exceed the upper bound in ($A-34$)).

PROOF OF LEMMA 5: The variables in contracts node Ill in the single period contract solution are

$$
\begin{align*}
& \hat{\alpha}_{I I I}^{H}=r\left[\delta^{H}\right]^{-1}-\bar{\delta}^{H} \hat{C}_{I I I}^{H}\left[\delta^{H}\right]^{-1} \cdot \hat{c}_{I I I}^{H}=w . \tag{A-35}\\
& \hat{\pi}_{I I I}^{H}=\delta^{L}\left[R-\hat{\alpha}_{I I I}^{L}\right]\left\{\delta^{L}\left[R-\alpha_{I I I}^{H}\right]-\bar{\delta}_{W\}^{-1}}^{\mathrm{L}}:\right.
\end{align*}
$$

$$
\begin{equation*}
\alpha_{I I I}^{L}=r\left[\delta^{L}\right]^{-1} \cdot \hat{c}_{I I I}^{L}=0 \cdot \pi_{I I I}^{L}=1 \tag{A-36}
\end{equation*}
$$

Instead, the bank could have offered a pooling contract, taking into account the proportions ν and $1-\nu$ of bad and good borrowers, respectively. The zero expected profit condition for the bank dictates that $\bar{\alpha}_{\text {III }}$ should satisfy

$$
v \delta^{L}\left[\bar{\alpha}_{I I I}\right]+[1-\nu] \delta^{H}\left[\bar{\alpha}_{I I I}\right]=r
$$

which implies

$$
\begin{equation*}
\bar{\alpha}_{I I I}=r\left\{\nu \delta^{L}-[1-\nu] \delta^{H}\right\}^{-1} . \tag{A-37}
\end{equation*}
$$

Existence of equilibrium is guaranteed if good borrowers prefer the contract in ($A-35$) to the pooling contract in $(A-37)$. Thus, we need

$$
\left.\mathrm{c}_{I I I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)\right|_{\left\{\alpha_{I I I}^{\mathrm{H}}, \hat{c}_{I I I}^{H}, \hat{\pi}_{I I I}^{\mathrm{H}}\right\}} \geq\left.\mathrm{u}_{I I I}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)\right|_{\bar{\alpha}_{I I I}}
$$

This means we need

$$
\dot{\pi}_{I I I}^{H}\left[\delta^{H}\left\{R-\bar{\alpha}_{I I I}^{H}\right\}-\bar{\delta}^{H} C_{I I I}^{H}\right] \geq \delta^{H}\left[R-\bar{\alpha}_{I I I}\right]
$$

Upon substituting $(A-35)$ and $(A-37)$. the above inequality becomes
$\left\{\delta^{H} R_{N}^{H}-\delta^{H}[1-\beta] \omega\right\}\left\{\delta^{L} R_{N}^{H}-\phi \omega\right\}^{-1} \geq\left\{\delta^{H}\left[R-r\left\{\nu \delta^{L}-[1-\nu] \delta^{H}\right\}^{-1}\right]\left[\delta^{L} R_{N}^{L}\right\}^{-1}\right.$.
For the purpose of this proof we can make the existence restriction (A-38) less
restrictive by substituting $W=C_{\text {III }}$ (opt). This gives (after rearranging)

$$
\begin{equation*}
\delta^{H}[1-\beta]\left[\phi \delta^{H}\right]^{-1} \leq \nu\left[\{1-\nu\} \delta^{H}+\nu \delta^{L}\right]^{-1} \tag{A-39}
\end{equation*}
$$

This is the existence restriction for an optimally collateralized single period separating contract. It is identical to the condition in footnote 12 in $B-T$ (1987). Recall that $(A-39)$ is less restrictive then $(A-38)$ which is the 'real' existence restriction for the separating contracts III. Hence. if we prove that the existence restriction for separating contracts in the second period pool of borrowers with bad first period realizations is less restrictive than (A-39). then one may conclude that it is also less restrictive than (A-38). The intertemporal pooling contract restriction. to be presented in Theorem 5.
indicates that the second period contracts to borrowers with bad first period realizations will be as bad as feasibility permits. This means that these contracts will be the same as spot market contracts. We will now derive the existence restriction for the optimality of separating second period contracts in the pool of borrowers with bad first period realizations. So, the pooling alternative is not pure pooling but is as follows.

It will be apparent later that. except for the original separating solution. no other (pooling/separating) alternatives exist. Since this will cause no confusion. we will refer to the mixed pooling/separating alternative as the pooling contract alternative. The separating contracts are optimally collateralized (notice that no collateral is lost in the pooling contract at $t=0)$. Parametrically, the contracts are identica: to the single period contract IV solution presented earlier. The optimal contracts are ('-'s indicate optimal values in the pooling contract solution),

$$
\begin{align*}
& \bar{\alpha}_{B}^{H}=r\left[\delta^{H}\right]^{-1}-\bar{\delta}_{B}^{H} \bar{C}_{B}^{H}\left[\delta^{H}\right]^{-1} \cdot \bar{C}_{B}^{H}=\delta r\left[\phi \delta^{H}\right]^{-1} \cdot \bar{\pi}_{B}^{H}=1: \\
& \alpha_{B}^{L}=r\left[\delta^{L}\right]^{-1} \cdot \bar{C}_{B}^{L}=0, \bar{\pi}_{B}^{L}=1 . \tag{A-40}
\end{align*}
$$

From Figure 1, we see that the pool of borrowers with bad first period realizations has a fraction Ω of borrowers that are bad in the second period (the rest are good), where

$$
\begin{equation*}
\Omega \equiv\left\{[1-\gamma] \bar{\delta} \nu \nu \gamma \bar{\delta}^{L}\right\}\left\{[1-\gamma] \bar{\delta}+\gamma \bar{\delta}^{-L}\right\}^{-1} \tag{A-41}
\end{equation*}
$$

In a manner analogous to (A-37), we can now design a pooling contract based on the proportions Ω and $1-\Omega$. The pooling interest factor is

$$
\begin{equation*}
\bar{\alpha}_{2}^{B}=r\left\{\Omega \delta^{L}+(1-\Omega] \delta^{H}\right)^{-1} . \tag{A-42}
\end{equation*}
$$

Again. existence is guaranteed if

$$
\begin{equation*}
\left.\mathrm{v}_{\mathrm{B}}\left(\delta^{H}\right)\right|_{\left\{\overrightarrow{a_{B}}, \overrightarrow{c_{B}^{H}}, \overrightarrow{\Pi_{B}}\right\}} \geq\left.\mathrm{c}_{\mathrm{B}}\left(\delta^{H}\right)\right|_{\bar{\alpha}_{2}^{B}} . \tag{A-43}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{B}}\left(\delta^{\mathrm{H}}\right)$ is the expected second period utility of a good borrower in the pool of borrowers with bad first period realizations. That is.

$$
\mathrm{U}_{B}\left(\delta^{\mathrm{H}}\right)=\pi_{B}^{\mathrm{H}}\left\{\delta^{\mathrm{H}}\left[R-\alpha_{B}^{\mathrm{H}}\right]-\delta^{H} C_{B}^{H}\right\}
$$

lpon substituting $(A-40)$ and $(A-42)$ in $(A-43)$, we obtain

$$
\begin{equation*}
\delta^{H}[1-\beta]\left[\phi \delta^{H}\right]^{-1} \leq \Omega\left\{[1-\Omega] \delta^{H}-\Omega \delta^{L}\right\}^{-1} . \tag{A-44}
\end{equation*}
$$

See that $(A-44)$ is similar to ($A-39$). We will now prove that ($A-44$) is less restrictive than ($A-39$). The RHS of (A-39) is strictly increasing in v.
whereas that of ($\mathrm{A}-44$) is strictly increasing in Ω. Hence. it is sufficient to show that $\Omega>\nu$. or equivalently. that

$$
\left\{[1-\gamma] \bar{\delta}^{H} v+\gamma \bar{\delta}^{L}\right\}\left\{[1-\gamma] \bar{\delta}^{-H}-\gamma \bar{\delta}^{L}\right\}^{-1}>v .
$$

But this is certainly true.
Q.E.D.

PROOF OF THEOREM 5: Apply the Simplex algorithm. Take into account only the constraints (29), (30), (32), (33) and (35). First. we add slack variables to these constraints to obtain

$$
\begin{array}{ll}
-\left[\{1-\gamma\} \delta^{H}+\gamma \delta^{L}\right] \alpha_{1}-G_{13} \alpha_{2}^{G}-G_{14} \delta^{H} \alpha_{B}^{H}-G_{14} \delta^{-H} \beta C_{B}^{H}-G_{15} \delta^{L} \alpha_{B}^{L} \\
& +S_{1}=-2 r \\
\delta^{L} \alpha_{1}+\delta^{L}\left[\{1-\mu\} \delta^{H}+\mu \delta^{L}\right] \alpha_{2}^{G}+\delta^{L} \delta^{L} \alpha_{B}^{L}-S_{2}=2 r \\
\delta^{H} \alpha_{B}^{H}-\delta^{H} \beta C_{B}^{H} & -S_{3}=r \\
-\delta^{L} \alpha_{B}^{H}-\delta^{L} C_{B}^{H}+\delta^{L} \alpha_{B}^{L} & +S_{4}=0 \\
\delta^{L} \alpha_{B}^{L} & -S_{5}=r \\
\text { where } G_{13} \equiv[1-\gamma]\left[\delta^{H}\right]^{2}+\gamma \delta^{L}[1-\mu] \delta^{H}-\gamma \delta^{L} \mu \delta^{L}
\end{array}
$$

$$
G_{14} \equiv[1-\gamma] \frac{\delta^{H}}{[1-v]}
$$

taglkau 3:

basis	c_{j}	$\begin{gathered} a_{1} \\ -\Delta H \end{gathered}$	$\begin{gathered} a_{2}^{6} \\ -\mathrm{H}_{8} \mathrm{H} \end{gathered}$	$\underset{-\left(1-\delta^{H}\right)(1-v) \delta^{H}}{a_{v}^{H}}$	$\begin{gathered} c_{B}^{H} \\ -\left(1 \cdot \delta^{H}\right)^{2}(1-v) \end{gathered}$	$\begin{gathered} a_{B}^{L} \\ -\left(1 \cdot 8^{H}\right) \cdots d^{L} \end{gathered}$	s_{1}	s_{2}	s_{3}	s_{4}	ss	
${ }^{\text {a }}$	$-6^{\text {H }}$	1		$\begin{aligned} & \frac{(1-\gamma)\left(1 \cdot d^{H}\right)(1-v) d^{H}}{(1-\gamma) d^{H}+\gamma^{d L}} \\ & \frac{1\left(1-\gamma\left(1 d^{H}\right)\right.}{(1-\gamma) d^{H}+\gamma^{d L}} \end{aligned}$	$\begin{aligned} & \frac{(1-\gamma)\left(1 \cdot \delta^{H}\right)^{2}(1-v) B}{(1-\gamma) d^{H}+\gamma^{L}}+ \\ & \frac{(1-\gamma)(1 d \delta) v+\gamma(1-\delta L) \mid(1-d L)}{(1-\gamma) d^{H}+\gamma^{L}} \end{aligned}$	0	$\frac{-1}{(1-y)^{H_{+}+\gamma^{6 L}}}$	0	0	$-\frac{(1-\gamma)(1-\Delta H) v+\gamma(1-\Delta L)}{(1-\gamma) \Delta{ }^{H}+\gamma^{d L}}$	0	$\frac{2 r}{(1-y) d H^{H} y^{d L}}$

\mathbf{s}_{2}	0	0				0	$\frac{\Delta L}{(a-\gamma) d^{H}+\gamma \gamma^{L}}$	1	0	$\begin{aligned} & -(1-\delta L) \\ & (1(1-\gamma(1) \\ & \left.+\gamma(1-\delta L) \\|^{H}\right) \\ & \hline(1-\gamma) d^{H+}+\gamma^{2 L} \end{aligned}$	0	$\frac{\begin{array}{c} 2 c- \\ 2 d L_{r} \end{array}}{(1 r)^{H_{+}}+\gamma^{d L}}$
				$(1-y) d^{+}+8^{\text {d }}$	$(1-\gamma) d^{+}+\gamma^{\text {d }}$							
s3	0	0	0	$8^{\text {H }}$	$\left(1-6^{\text {H }}\right)^{8}$	0	0	0	1	0	0	r
a_{b}^{L}	$-(1-6 \mathrm{H}) \mathrm{ud} \mathrm{L}^{\text {L }}$	0	0	-1	$-(1-8 L) /$ / ${ }^{\text {L }}$	1	0	0	0	1/8L	0	0
Ss	0	0	0	8	1-d ${ }^{2}$	0	0	0	0	-1	1	r

${ }^{2}$

Alt-ige
Theleans:

$G_{15} \equiv[1-\gamma] \bar{\delta} \nu+\gamma \bar{\delta}^{L}$.
We now present the successive Simplex tableaus.
[INSERT TABLEAUS ABOUT HERE]
Tableau 5 is the end-tableau if all values in the last colum are non-negative and if all $C_{j}-Z_{j}$ values are non-negative. Except for the $c_{j}-z_{j}$ value in the S_{5} column, these are easy to verify. From Tableau 5, we get
$\left[C_{j}-Z_{j}\right]_{j=S_{5}}=\left\{\delta^{L}\right\}^{-1}\left\{-G_{15} \delta^{L} \delta^{H}\left[\{1-\gamma\} \delta^{H}+\gamma \delta^{L}\right]^{-1}+G_{16}+\delta^{H} \nu \delta^{L}\right\} \quad(A-45)$. where $G_{16} \equiv\left[\bar{\delta}^{\mathrm{H}}\right]^{2}[1-\nu][1-\beta] \delta^{\mathrm{L}} \phi^{-1}$.
The expression in (A-45) can be positive or negative. Before writing down a parametric restriction that fixes the sign of ($A-45$), we will give a derivation which will result in ($\mathrm{A}-45$) and has a significant economic meaning. First. note that the solution in Tableau 5 indicates that bad borrowers at $t=0$ get a better than first best contract over their credit horizon (the expression for S_{2} in Tableau 5 is non-negative: see also (30) and (30)'). This better-than-first-best contract is at the expense of good borrowers at $t=0$. Thus. we can interpret the maximization procedure stated above as searching for the solution that minimizes the premium bad borrowers at $t=0$ get over their first best contract. Therefore, in an optimal solution one tries to give the maximum feasible reward to borrowers with good first period realizations (see the result $\alpha_{2}^{G}=0$), and impose the maximum feasible penalty on borrowers with bad first period realizations (see the result that they get spot market separating contracts). This is the solution characterized in Tableau 5. However, one other solution exists. That is because the contracts offered to unsuccessful first period types are separating (see Figure 2), which implies that some deadweight costs, related to collateral. are associated with those contracts.

Look at (35) to see that reducing α_{B}^{L} enables the banks to decrease C_{B}^{H}. The following diagram of perturbations is feasible.

It follows from the binding constraints (29). (32), (33), and (35) that for all
ε sufficiently small, the following set of perturbations hold

$$
\begin{align*}
& \Delta \alpha_{B}^{L}=-\varepsilon \cdot \Delta \alpha_{1}=G 15^{L} \varepsilon\left[\{1-\gamma\} \delta^{H}-\gamma \delta^{L}\right]^{-1} . \tag{A-46}\\
& \Delta C_{B}^{H}=-\delta^{L} \varepsilon \phi^{-1} \cdot \Delta \alpha_{B}^{H}=\delta^{H} \delta^{L} \beta \varepsilon\left[\Phi \delta^{H}\right]^{-1} .
\end{align*}
$$

The effect of this set of perturbations on the objective function (28) is

$$
\begin{aligned}
& \Delta F=\varepsilon\left\{-G_{15} \delta^{L} \delta^{H}\left\{[1-\gamma] \delta^{H}-\gamma \delta^{L}\right\}^{-1}+G_{16}-\delta^{H} v \delta^{L}\right\} . \\
& \text { are (A-47) with }(A-45) \text { to see that our assumption } C_{j}-\left.Z_{j}\right|_{j=S_{5}} \leq 0 \text { in }
\end{aligned}
$$

Tableaus 1 through 5 is identical to assuming that it is not optimal to give unsecured loans in the second period to borrowers with bad first period realizations. We can now distinguish two solutions. The first solution holds when we assume that the expression for $C_{j}-\left.Z_{j}\right|_{j=S_{j}}$ given in $(A-45)$ is non-positive. This solution can be found in Tableau 5. The alternative solution is based on the assumption that $C_{j}-\left.Z_{j}\right|_{j=S_{5}}$ is positive. Note that, since the model is linear, $\varepsilon w i l l$ be chosen such that the perturbations in (A-46) completely eliminate collateral. This implies

$$
\overline{\mathrm{C}}_{\mathrm{B}}^{\mathrm{H}}=\overline{\mathrm{C}}_{\mathrm{B}}^{\mathrm{H}}+\Delta C_{B}^{\mathrm{H}^{*}}=0
$$

or equivalently.

$$
\delta r\left[\phi \delta^{H}\right]^{-1}-\delta^{L} \varepsilon^{*} \phi^{-1}=0
$$

which means

$$
\varepsilon^{*}=\delta r\left[\delta^{H} \delta^{L}\right]^{-1} .
$$

This gives us
$\Delta \alpha_{1}^{*}=G_{15} \delta r\left\{\delta^{H}\left[\{1-\gamma\} \delta^{H}+\gamma \delta^{L}\right]\right\}^{-1}$.
$\Delta \alpha_{B}^{L^{*}}=\delta r\left[\delta^{H} \delta^{L}\right]^{-1}$
$\Delta a_{B}^{H^{*}}=\bar{\delta}^{H} \delta \beta r\left[\phi\left\{\delta^{H}\right\}^{2}\right]^{-1}$.
H^{*}
$\Delta C_{B}=0$.
Subtract the perturbations listed above from the single bar. "-", solution in
Tableau 5 (or in the theorem), to get the double bar. " $=$ ". solution also given in the theorem.
Q.E.D.

PROOF OF THEOREM 6: -cf(A). The (separating) spot market equilibrium exists if it can not be broken by a pooling alternative. The pooling alternative consists also of single period contracts. As in the intertemporal market equilibrium case (see Figure 2) it is also partly separating. As a matter of fact. the pool of successful borrowers as well as the pool of unsuccessful borrowers can be offered separating contracts. In that case these contracts are optimally collateralized contracts. Schematically we get.

Note that $\left\{\alpha_{G}^{H} \cdot C_{G}^{H} \cdot \alpha_{G}^{L}\right\}$ is separating if

$$
\begin{equation*}
\bar{\delta}^{H}[1-\beta]\left[\phi \delta^{H}\right]^{-1} \leq \tau\left\{[1-\tau] \delta^{H}+\tau \delta^{L}\right\}^{-1} . \tag{A-48}
\end{equation*}
$$

where $\tau \equiv \gamma \delta^{L} \mu\left\{\gamma \delta^{L}+[1-\gamma] \delta^{H}\right\}^{-1}$.
The expression in (A-48) is a standard single period existence restriction.
Proofs can be found in Lemma 5. The derivation for τ follows from Figure 2. The existence restriction for the contract $\left\{\alpha_{B}^{H}, C_{B}^{H} \cdot \alpha_{B}^{L}\right\}$ is derived in lemma 5. However, the proof in Lemma 5 indicates that this restriction will not be binding if the spot market Nash equilibrjum exists. Proving existence requires showing that the utility of a good borrower under the single period contract solution in Theorem 2 exceeds its utility under the pooling contract solution above. Substitute the Theorem 2 solution in the definition of $\mathrm{L}_{\mathrm{I}}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right)$ and use (3) to get

$$
\begin{align*}
\mathrm{C}_{I}\left(\delta^{H} \mid \delta^{H}\right)= & \delta^{H} R_{:}^{\mathrm{H}}-[1-\beta] \delta^{H} \mathrm{C}_{I}^{H}-\left[\delta^{H}\right]^{2} R_{N}^{H} \\
& -\delta^{H}[1-\nu] \pi_{I I I}^{H}\left[\delta^{H} R_{N}^{H}-\delta^{H}\{1-\beta\} w\right]-\delta^{H} \nu \delta^{L_{R}} R_{\Sigma}^{L} \tag{A-49}
\end{align*}
$$

The pooling alternative in the diagram above leads to.

$$
\begin{align*}
\overline{\mathrm{L}}_{1}\left(\delta^{H}\right)= & \delta^{H}\left[R-r\{\bar{\delta}\}^{-1}\right]+\left\{\delta^{H}+\bar{\delta}^{H}[1-\nu]\right\}\left\{\delta^{H} R_{N}^{H}-[1-\beta] \delta^{H} \delta r\left[\phi \delta^{H}\right]^{-1}\right\} \\
& -\bar{\delta}^{H} \nu \delta^{L} R_{N}^{L} \tag{A-50}
\end{align*}
$$

Existence is guaranteed if $\mathrm{C}_{1}\left(\delta^{\mathrm{H}} \mid \delta^{\mathrm{H}}\right) \geq \overline{\mathrm{U}}_{\mathrm{I}}\left(\delta^{\mathrm{H}}\right)$. This results directly in condition (38). Condition (39) is straightforward. This condition guarantees the existence of the separating contracts in the contract III nodes. The LHS is the borrower's utility under the pooling contract. The RHS gives the borrower's utility under the separating contract. Condition (40) is a similar condition for the contract IV nodes. For its derivation. see Lemma 5 . -cf(B). The good borrower's utility under the intertemporal market equilibrium in Theorem 4 should exceed its utility under the pooling contract equilibrium in Theorem 5. Given risk neutrality and the absence of rationing, this is the
same as requiring the borrowing cost for a good borrower to be lower in the intertemporal contract solution in Theorem 4 than in the pooling solution in Theorem 5. The borrowing cost in Theorem 4 is

$$
\begin{equation*}
\delta^{H} \tilde{\alpha}_{1}^{H}+\bar{\delta}^{H} \tilde{C}_{I}^{H}+\bar{\delta}^{H}[1-v]\left[\delta^{H} \tilde{\alpha}_{I I I}^{H}+\bar{\delta}^{H} \tilde{c}_{I I I}^{H}\right]+\bar{\delta}^{H} v \delta^{L} \tilde{\alpha}_{I I I}^{L} \tag{A-51}
\end{equation*}
$$

The borrowing cost in Theorem 5 is

$$
\begin{equation*}
\delta^{H} \alpha_{1}+\bar{\delta}^{H}[1-v]\left[\delta^{H-\alpha_{B}^{H}}+\delta^{H} C_{B}^{H}\right]-\hat{\delta}^{H} \nu \delta^{L} \alpha_{B}^{H} . \tag{A-52}
\end{equation*}
$$

Existence is guaranteed if $(A-51) \leq(A-52)$. This results directly in condition (41). Condition (42) is derived in Theorem 3. and explicitly assumed in Theorem 4. The assumption (43) is of no special value. It is just to indicate that we focus on the pooling contract solution in (36).

All that remains is to show that the set of parameter values for which (38) - (43) and (A-48) are satisfied is non-empty. It can be easily verified that the following parameter values achieve this.
$\delta^{H}=.75$
$\delta^{L}=.5$
$\gamma=\nu=\mu=.5$
$\beta=.9$
$r=1.1$
$R=4$
$\omega_{0}=2.08$

LIST OF KEY SYMBOLS

```
\(\delta^{L}=\) the success probability for a bad borrower:
\(\delta^{H}=\) the success probability for a good borrower;
\(\pi_{j}^{i}=\) the credit granting probability in the set of contracts \(j\) for borrower
    type \(i(i \in\{L, H\}, j \in\{I, I I\), III, IV, V\}):
\(\alpha_{j}^{i}=\) the interest factor \((=\) one plus the interest rate) in the set of contracts
    \(j\) for borrower type \(i(i \in\{L, H\}, j \in\{I, I I, I I I, I V, V\})\);
\(\beta=\) measure of the bank's evaluation of a borrower's collateral. That is. S1
    collateral has a value of \(\beta\) to the bank:
\(\gamma(1-\gamma)=\) the proportion of bad (good) borrowers at \(t=0\);
\(\begin{array}{lllllll}\eta(1-\eta)= & " & " & " & \text { in the set of nodes II: } \\ \nu(1-\nu)= & " & " & " & " & \text { III: } \\ \mu(1-\mu)= & " & " & " & " & \text { IV: } \\ \sigma(1-\sigma)= & \cdots & " & " & " & V:\end{array}\)
\(\Psi(1-\Psi)=\) the proportion of bad (good) borrowers at \(t=1\) within the pool of
                        borrowers rationed at \(t=0\) :
\(\Omega(1-\Omega)=\) the proportion of bad (good) borrowers within the pool of borrowers
    with bad first period realizations:
\(\tau(1-\tau)=\) the proportion of bad (good) borrowers within the pool of borrowers
    with good first period realizations;
\(\lambda=\) Lagrange multiplier:
\(\rho=\) decay parameter for delayed investment projects;
\(\theta=\) the shortage of collateral parameter, \(\theta \in[0,1)\); if \(\theta=1\), no shortage
    applies;
\(\delta^{G} \equiv[1-\tau] \delta^{H}+\delta^{L}\)
\(\bar{\delta} \equiv[1-\gamma] \delta^{H}+\gamma \delta^{L}\)
\(\phi \equiv\left\{\delta^{H}\left[1-\delta^{L}\right]-\beta \delta^{L}\left[1-\delta^{H}\right]\right\}\left\{\delta^{H}\right\}^{-1}\)
\(\xi \equiv\left\{\delta^{H}\left[1-\delta^{L}\right]-\nu \delta^{L}\left[1-\delta^{H}\right]\right\}\left\{\delta^{H}\right)^{-1}\)
\(C_{\text {III }}^{\mathrm{H}}\) (opt) \(\equiv\left[\delta^{\mathrm{H}}-\delta^{\mathrm{L}}\right] r\left[\phi \delta^{\mathrm{H}}\right]^{-1}=\) the level of collateral in an optimally
```

```
collateralized single period contract;
R = the return on the investment project if successful:
r = the risk free interest factor (= one plus the risk free interest rate):
W
    borrower:
W\equiv\mp@subsup{W}{0}{}-\mp@subsup{C}{I}{}= the available collateral in the second period if
    C C has been lost in the first period;
C
        (i \in{L, H}: \gamma \in{I, II, III. IV, V});
C ( 
\mp@subsup{\alpha}{1}{}}=\mathrm{ the first period pooling interest rate:
\alpha
    period realization:
\delta\equiv\mp@subsup{\delta}{}{H}-\mp@subsup{\delta}{}{L}
\mp@subsup{\delta}{}{i}}\equiv1-\mp@subsup{\delta}{}{j}.i\in{H,L
RN
\mp@subsup{\mathbb{E}}{}{i}\equivdynamic strategic credit policy of bank i
\mp@subsup{E}{1}{}}\equiv\mp@code{first period credit policy
\mp@subsup{\mathscr{E}}{2}{\prime}}(\mp@subsup{y}{1}{},\mp@subsup{x}{1}{})\equiv\mathrm{ second period credit policy applicable to borrower with first
    period contract choice }\mp@subsup{y}{1}{}\mathrm{ and first period realization }\mp@subsup{X}{1}{}\mathrm{ .
N}\equiv\mathrm{ set of all possible competing banks (there are n banks)
\zeta}\mp@subsup{i}{i}{}\equiv\mathrm{ net expected profit of bank i
k
k
```



```
y
F}\equivbank's objective functio
P \equiv Lagrangian
```

```
\alpha
                        realization:
In Lemma 5 it is established that the bad return pool within an intertemporal pooling contract gets a separating contact. The following variables are defined for that case.
\(\alpha_{B}^{L}=\) second period interest factor for bad types in the pool of unsuccessful first period borrowers:
\(\alpha_{B}^{H}=\) second period interest factor for good types in the pool of unsuccessful first period borrowers;
\(C_{B}=\) second period collateral asked from a good types in the pool of unsuccessful first period borrowers:
Some additional symbols:
"-" on top of variables indicates the (separating) single-period-contract solution:
"~" on top of variables indicates the (separating) intertemporal contract solution:
"-" or " \(=\) " on top of variables indicates the (intertemporal) pooling contract solution.
```


IN 1986 REEDS VERSCHENEN

202 J.H.F. Schilderinck
Interregional Structure of the European Community. Part III
203 Antoon van den Elzen and Dolf Talman
A new strategy-adjustment process for computing a Nash equilibrium in a noncooperative more-person game

204 Jan Vingerhoets
Fabrication of copper and copper semis in developing countries. A review of evidence and opportunities

205 R. Heuts, J. van Lieshout, K. Baken
An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. van Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior
207 F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development. A view to the consequences of technological change

208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn
Estimation of the error components model with incomplete panels
210 A.L. Hempenius
The relation between dividends and profits
211 J. Kriens, J.Th. van Lieshout
A generalisation and some properties of Markowitz' portfolio selection method

212 Jack P.C. Kleijnen and Charles R. Standridge
Experimental design and regression analysis in simulation: an FMS case study

213 T.M. Doup, A.H. van den Elzen and A.J.J. Talman
Simplicial algorithms for solving the non-linear complementarity problem on the simplotope

214 A.J.W. van de Gevel
The theory of wage differentials: a correction
215 J.P.C. Kleijnen, W. van Groenendaal
Regression analysis of factorial designs with sequential replication
216 T.E. Nijman and F.C. Palm
Consistent estimation of rational expectations models

```
217 P.M. Kort
    The firm's investment policy under a concave adjustment cost function
218 J.P.C. Kleijnen
    Decision Support Systems (DSS), en de kleren van de keizer ...
219 T.M. Doup and A.J.J. Talman
    A continuous deformation algorithm on the product space of unit
    simplices
220 T.M. Doup and A.J.J. Talman
    The 2-ray algorithm for solving equilibrium problems on the unit
    simplex
221 Th. van de Klundert, P. Peters
    Price Inertia in a Macroeconomic Model of Monopolistic Competition
222 Christian Mulder
    Testing Korteweg's rational expectations model for a small open
    economy
223 A.C. Meijdam, J.E.J. Plasmans
        Maximum Likelihood Estimation of Econometric Models with Rational
        Expectations of Current Endogenous Variables
224 Arie Kapteyn, Peter Kooreman, Arthur van Soest
        Non-convex budget sets, institutional constraints and imposition of
        concavity in a flexible household labor supply model
225 R.J. de Groof
    Internationale coördinatie van economische politiek in een twee-
    regio-twee-sectoren model
226 Arthur van Soest, Peter Kooreman
    Comment on 'Microeconometric Demand Systems with Binding Non-Ne-
    gativity Constraints: The Dual Approach'
227 A.J.J. Talman and Y. Yamamoto
    A globally convergent simplicial algorithm for stationary point
    problems on polytopes
228 Jack P.C. Kleijnen, Peter C.A. Karremans, Wim K. Oortwijn, Willem
    J.H. van Groenendaal
    Jackknifing estimated weighted least squares
229 A.H. van den Elzen and G. van der Laan
    A price adjustment for an economy with a block-diagonal pattern
230 M.H.C. Paardekooper
    Jacobi-type algorithms for eigenvalues on vector- and parallel compu-
    ter
231 J.P.C. Kleijnen
    Analyzing simulation experiments with common random numbers
```

232 A.B.T.M. van Schaik, R.J. Mulder On Superimposed Recurrent Cycles

233 M.H.C. Paardekooper
Sameh's parallel eigenvalue algorithm revisited
234 Pieter H.M. Ruys and Ton J.A. Storcken
Preferences revealed by the choice of friends
235 C.J.J. Huys en E.N. Kertzman Effectieve belastingtarieven en kapitaalkosten

236 A.M.H. Gerards An extension of Konig's theorem to graphs with no odd- K_{4}

237 A.M.H. Gerards and A. Schrijver Signed Graphs - Regular Matroids - Grafts

238 Rob J.M. Alessie and Arie Kapteyn Consumption, Savings and Demography

239 A.J. van Reeken
Begrippen rondom "kwaliteit"
240 Th.E. Nijman and F.C. Palmer Efficiency gains due to using missing data. Procedures in regression models

241 S.C.W. Eijffinger The determinants of the currencies within the European Monetary System

IN 1987 REEDS VERSCHENEN

```
242 Gerard van den Berg
    Nonstationarity in job search theory
243 Annie Cuyt, Brigitte Verdonk
    Block-tridiagonal linear systems and branched continued fractions
244 J.C. de Vos, W. Vervaat
    Local Times of Bernoulli Walk
245 Arie Kapteyn, Peter Kooreman, Rob Willemse
    Some methodological issues in the implementation
    of subjective poverty definitions
246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel
        Sampling for Quality Inspection and Correction: AOQL Performance
        Criteria
247 D.B.J. Schouten
    Algemene theorie van de internationale conjuncturele en strukturele
    afhankelijkheden
248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence
    On (v,k,\lambda) graphs and designs with trivial automorphism group
249 Peter M. Kort
    The Influence of a Stochastic Environment on the Firm's Optimal Dyna-
    mic Investment Policy
250 R.H.J.M. Gradus
    Preliminary version
    The reaction of the firm on governmental policy: a game-theoretical
    approach
251 J.G. de Gooijer, R.M.J. Heuts
        Higher order moments of bilinear time series processes with symmetri-
        cally distributed errors
252 P.H. Stevers, P.A.M. Versteijne
    Evaluatie van marketing-activiteiten
253 H.P.A. Mulders, A.J. van Reeken
    DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen
254 P. Kooreman, A. Kapteyn
        On the identifiability of household production functions with joint
        products: A comment
255 B. van Riel
        Was er een profit-squeeze in de Nederlandse industrie?
256 R.P. Gilles
    Economies with coalitional structures and core-like equilibrium con-
    cepts
```

```
257 P.H.M. Ruys, G. van der Laan
    Computation of an industrial equilibrium
258 W.H. Haemers, A.E. Brouwer
    Association schemes
259 G.J.M. van den Boom
    Some modifications and applications of Rubinstein's perfect equili-
    brium model of bargaining
260 A.W.A. Boot, A.V. Thakor, G.F. Udell
    Competition, Risk Neutrality and Loan Commitments
261 A.W.A. Boot, A.V. Thakor, G.F. Udell
    Collateral and Borrower Risk
262 A. Kapteyn, I. Woittiez
    Preference Interdependence and Habit Formation in Family Labor Supply
263 B. Bettonvil
        A formal description of discrete event dynamic systems including
        perturbation analysis
264 Dr. Sylvester C.W. Eijffinger
    A monthly model for the monetary policy in the Netherlands
265 F. van der Ploeg, A.J. de Zeeuw
    Conflict over arms accumulation in market and command economies
266 F. van der Ploeg, A.J. de Zeeuw
    Perfect equilibrium in a model of competitive arms accumulation
267 Aart de Zeeuw
    Inflation and reputation: comment
268 A.J. de Zeeuw, F. van der Ploeg
    Difference games and policy evaluation: a conceptual framework
269 Frederick van der Ploeg
    Rationing in open economy and dynamic macroeconomics: a survey
270 G. van der Laan and A.J.J. Talman
    Computing economic equilibria by variable dimension algorithms: state
    of the art
271 C.A.J.M. Dirven and A.J.J. Talman
    A simplicial algorithm for finding equilibria in economies with
    linear production technologies
272 Th.E. Nijman and F.C. Palm
    Consistent estimation of regression models with incompletely observed
    exogenous variables
273 Th.E. Nijman and F.C. Palm
    Predictive accuracy gain from disaggregate sampling in arima - models
```

[^0]

[^0]: 274 Raymond H.J.M. Gradus The net present value of governmental policy: a possible way to find the Stackelberg solutions

 275 Jack P.C. Kleijnen
 A DSS for production planning: a case study including simulation and optimization

 276 A.M.H. Gerards
 A short proof of Tutte's characterization of totally unimodular matrices

 277 Th. van de Klundert and F. van der Ploeg Wage rigidity and capital mobility in an optimizing model of a small open economy

 278 Peter M. Kort
 The net present value in dynamic models of the firm
 279 Th. van de Klundert
 A Macroeconomic Two-Country Model with Price-Discriminating Monopolists

 280 Arnoud Boot and Anjan V. Thakor Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing

