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1. Introduction

In this paper we will analyse the dema~nd of factor inputs in

a dynamic model, assuming profit maximizing firm behaviour, and adjust-

ment costs.
In Section 2 and 3 we will specify the production function,

the revenue function and the adjustment costs function. In Section 4

a long-term adjustment model is constructed, using the specifications

of Section 2 and 3. The influence of èyclical disturbances on the demand

of factor inputs is studied in the context of this long term model.

In Appendix A we will analyse the behaviour of a system of

difference equations with begin and erldpoint conditions and will study

the dependence of the first period decision on the finite time horizon.

The author is grateflzl to Dr. A. Hempenius for mar~y valuable

comments on earlier drafts of this paper.
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2. The production function and the revenue function

2.1. The production function

We assume a production function of the aggregated type, Q- F(X),
where Q is output capacity and X is a vector of aggregated factor inputs,
X-(X1,...,Xn). The factor inputs are measured in efficiency units, so that
aggregation of different vintages of one factor is possible. We shall not
treat in detail the conditions Yor an aggregated p.f. Instead we assume
that for the relevant region of factor inputs, S, the production relations
can adequately be described by the function 1).

(2.1) Q- F(X) X E S, S C R}

which satisfies the following properties for X E S

(i) F(X) ~ 0

(íi) F(X) is continuous and twice differentiable for X E S

3F(iii) Fi(X) - 8X. ' 0 i- 1,...,n
i

~ 0 i~ j i- 1,...,n
(iV) Fij(X) - axa2áx. -~ ~

' ~ i~ j j- t,...,n

(v) F(aX) - av F(X)

1) The function ( 2.1) contains not an explicit technical progress term. For
our theoretical analysis the inclusion of (dísembodied) technical
progress is not essential.
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A function which satisfies assumption ( i) -(v) and has intuïtive
appeal is the generalized Cobb-Douglas p.f., which can be derived as follows.
The total differential of the function Q- F(X) is

n
(2.2) dQ - E Fi dXi

i-1

and after some transformatioas we find2)

(2.3)

or

X. dX.

Q- i Fi ~. Ql ~ Xi

X.
(,2.b) dln Q- E F. 1 d ln X.i Q ii

The term Fi Xi~Qi is the production elasticit.y of factor i; assuming that
for X E S the production elasticities can be reasonable well approximated
by constant elasticities ai we obtain

(2.5) d ln Q s E ai d ln Xi ai ~ 0 , i- 1,....,
i

The corresponding production function (p.f.) cah then be written as

a.
(2.6) Q - A II Xil

Equation (2.6) satisfies assumptions (i) -(v) and the function is homogenous
of degree v- E ai.

2) Unless stated otherwise all summations are taken over i- 1,....,n



2.2. The revenue function

The total net receipts of the firm are Y- P.Qs, where P is the
output price per unit, net of costs of materials, and Qs is the output
which can be sold. In general Qs will depend on P, which can be formally
expressed by an output demand curve (o.d.c). The form of the o.d.c.
depends on the organisation of the output market. If this market is
characterised by perfect competition the o.d.c. is infinitely elastic so
that Qs can freely be changed for a given P which is exogenously determined.
In an output market with.monopolistic competition Qs depends on P and P has
to be set by the firm 3).

Since in a market with monopolistic competition the uncertainties
on firm level are often large it seems preferable to assume a stochastic
o.d.c.

(2.7) Qs - G(P) t U

where U is a random variable with mean 0. A firm confronted with a stochastic
o.d.c. is thus forced to decision making under risk. The price-quantity
determination depends the on the attitude of the firm toward risk. For
the sake of simplicity we assyme that the riak preferences of the firm
are such that he uses an expected o.d.c. 4).

3) If the o.d.c. has a price elasticity ~-1 , the demand ( curve) is called
elastic and if the price elasticity ~-t the demand ( curve) is called
in-elastic. The elasticity of demand depends on the saturation level
of the market, the position of the firm in the market etc. Note that
the elasticity can vary if P changes and can even differfor positive
and negative price changes.

4) For a linear cost-function, C(Qs) - a t b Qs, and linear risk preferences
s sthe maximation of the expected profit function, E(n) ~ FX P Q - C(Q )],

is equivalent to the maximation of the profit function in terms of
expected demand, n~ - P E(Qs) - C(E(Qs)).
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(2.'c3) E(Qs) - G(P)

in the sequel we will omit the expectation operator E and write Qs for

the expected output demand.

We assume that the function Qs - G(P) is defined for P E Sp
so that V P E Sp, G(P) E SQ where

(2.9) SQ -{Q.~Q - F(X)~ X E 8}

and has the following properties 5)

5) Note that we are only interested in a local approximation of the o.d.c.
The o.d.c. in Figure 1 does not satísfy the assymptions ('2.í0) but
can in the region Sp be approximated by a function G(P) which satisfies
(2.10).

SQ

0

G(P)

S
P

F'ióura 1



(2.10) i) G(P) is continuous and twice differentiable

ii) G'(P) ~ 0

iii) G"(P) ~ 0

From (2.10) follows that the inverse function P- H(Qs) exists for all
Qs E SQ and that H(Qs) has the following properties

(2.11) i) H(Qs) is continuous and twice differentiable

ii) H'(Qs) ~ 0

iii) H"(Qs) ~ 0

(2.12)

The revenue function Y- PQs can now be written as

Y - H(Qs).Qs

The marginal revenue is

(2.13) aQs - H' Qs t H- ( 1 t n)P

where n is the price olasticity of the o.d.c. G(P). We find that the
marginal revenue is positive iff . n ~-1. Further we can express the
revenue Y in terms of factor inputs X; if Qs ~ Q marginal changes in X
d~ not affect Y so that 8Y~3Xi - 0, i- 1,...,n. If Qs s Q we can write

(2.14) Y - H(Q).Q - H(F(X)).F(X)

and the marginal factor revenue is defined as

(2.15) ax. -(gQ.Q t H).Fi -(1 t n)P.Fi
i

From (2.13) and (2.1) followsthat 8Y~2Xi is positive iff n ~-1. The
case that Qs ~ Q is not allowed within our model and will therefore not
be analysed. If is of course also possible to obtain expressions for the



secon3 derivatives of Y with respect to Qs and, under the restriction
that Qs - Q, with respect to Xi; without additional assumptions on G(P)

these expressions are difficult to interpret.

A function which satisfies (2.10) and has other convenient

mathematical properties is the constant elasticity demand curve

(2.16) Qs - a Pn n ~ U

We can modify (2.16) so that structural or cyclical changes are e~cplicitly

incorporated, e.g. as follows (t is discrete time):

(2.17) Qt - b Ct ( 1fg)t Pt

where Ct is a cyclical indicator and (1tg) a structural growth factor.

Combining (2.16) with the p.f. (2.6) , and assuming Qs - Q,..we

fiiid for the revenue function

(2.18)

or

ai( 1t n)
Y- c TiI X i

Yi
(2.19) Y - ~ II Xi

The yi are revenue elasticities of the input factor Xi and are only positive

if n ~-1. Let us assume that 0~ Yi ~ 1 for i- 1,...,n then the ftuiction

Y(X) defined in (2.19) has the following properties for X E S

(2.20) 1) Yi - 8X. ' 0 i- 1,...,n
i

ii) Yij - 2Xi 2Xj
a2Y ~ 0 i- j i- 1,...,n

EYi
iii) Y(aX) - a Y(X)

~ 0 i~ J J- 1,....,n

iv) If EYi ~ 1 the fi~nction Y(X) is a.strictly concave function of X
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The Hessian-matrix I' of the revenue function (2.19) is given by

2
(2.21) r-{axa aX.} -(X 1 G X 1)Y

i ~

where

(2.22) G -

(Y1-1)Y1

Y1 Y2

Y1 Yn

' Y1 Yn

' Y2 Yn

(Yn-1)Yn

X1
~

V

In Section 3 and 4 we will use (2.19), and we will assume that n ~-1,
that 0~ Yi ~ 1 for i~ 1,...,n and that EYi ~ 1. Note that the condition
EYi - 1 does not imply that Eai ~ 1, since EYi -(1 t n)Eai and (1 t n)
is in general smaller than one.



3. The a37ustment process

3.1.1. Introduction

In many neo-classics.l firm behaviour models the factor inputs

(labour and capital) are assumed to be completely variable, i.e. the

factor inputs are adjusted immediately to their (long-run) equilibrium

position. The production decisions of the firm at each point of time

are independent of existing inputs levels; the intertemporal decision

process can be decomposed into separate decisions taking place at distinct

points of time. This assumption is not very realistic and at variance

wi.th the empirical evidence (e.g. the development of factcr-shares

during the cycle). Quasi-fixity of the capital and labour input can be

build in explicítely in the model by introducing external adjustment

costs (e.g. by ass~aming oligopsonistic capital good markets or labour

markets) or internal adjustment costs (installation-costs, learning

costs) in the form of output forgone. In the profit maximizing model the

entrepeiieur will, given the presence of adjustment costs, simultaneously

determine the equilibrium input and output levels and the adjustment

paths of input and output to these equilibrium levels. Pioneering work

in this field has be done by Eisner and Strotz; more general models

are constructed by R.E. Lucas [ 3] , J.P. Gould [ 1] , R. Schramm [ 5] .

A.II. Treadway [ 7] and D.T, Mortensen [ 1~] .

A complication (in neo-classical profit-maximizing models)

arises if one allows for changes in the capacity utilization-rates.

It is intuïtively clear that changes in the capacity utilization-rate

more likely if

(i) adjustment.costs due to changes in the level of factor inputs are

high relative to the costs of changes in the utilization-rate

(ii) the shifts in tt.e output demand curve are transitory (e.g. seasonal

variations).
To avoid very complex models, we would suggest a hierarchy of models
A first model is a long-run model where long-run equilibrium levels of

inputs and output and the adjustment path of inputs and output are jointly

determined, assuming positive (internal) adjustment costs and a

constant capacity utilization-rate. This model is primarily a structural
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model where the optimal changes in factor inputs are determined given

the expected (structural) development on factor and output markets.
In this model the long-run expansíon-path of the firm is determined.

(See Lucas, Treadway, Mortensen). A second model is a short-run model
where the optimal output and the capacity utilization rate is planned

given the existing capital stock and labour input.
For econometric purposes the long-run models can be used to

specify factor demand equations, which explain determinants of invest-
ment and labour-demand of the firm. These equations can be estimated,
using annual data. The short-run models are mostly derived to obtain
forecasting models for industrial activity, and have to be estimated
using monthly or quarterly data. In this study we are mainly interested
in the specification of factor demand equations in a long-run model.
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3.2. The ir.ternal adjustment costs function

Changes in factor inputs bring about adjustment costs. We distinguish
external adjustment costs, arising from oligopsony on the factor markets,
and output reducing or internal adjustment costs. The specification of
the external adjustment costs function depends on the structure of the
factor markets. In anoiher paper a model with oligopsony on the labour
market will be investigated. In this paper ~ we will investigate the proper-
ties of the internal adjustment costs functions. Output reducing adjustment
costs may arise as planning costs, installation costs, learning costs and
other friction costs internal to the firm. The factor services supplied
by the factors labour and capital are used not onl.y to produce the firm's
eutput but also to produce adjustment services, necessary to change the
levels of the factors.Xi d The existence of internal adjustment costs
implies that the (maximum) output produced by the firm depends not only
on the factor inputs, Xi , but also on the relative changes in these
factor inputs.

Following Treadway and Mortensen we can specify a generalized
production function (g.p.f.)

(3.1) Q - f(X,~X) X ? 0

We assume that the g.p.f. is continuous and twice differentiable, increasing
in Xi and decreasing in OXi, i- 1,...,n

(3.2) áx. ' o ~ aox. ~ o~ ~
1'he matrix H of second derivatives can be partitioned in

(3.3) H -
A C

c' B

- I
a2f a2f
ax. ax. ~ a x. aox.

i ~ i ~

a2f - ~ a2f
a~xia xj I a~xi anxj
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Negativ~ definiteness of the submatrix A corresponds with
(strict) concavity of the production function, negative definiteness
of the submatrix B implies increasing margina] internal adjustment costs.
An important case occurs if C- 0, which implies that the generalized
production function can be separated in a standard production function
and an internal adjustment cost function.

(3.4) f(X,4X) - F(X) } A(4X)

If, in addition, we assume that the matrix B is diagonal a furher sepa-
rability of the adjustment cost function is possible, A(4X) - E Ai(4Xi).

i
In the articles of Lucas, Schram, Treadway and Mortensen dif-

ferent assumptions are made with respect tot the seperability properties.
Lucas [3] implicitly assumes that A and B are negative definite, that C
is null and B is diagonál. Assuming that the firm maximizes its present
value it is possible to derive the multivariate flexible accelerator

(3.5~ 4X-M(X-X~)

where X is the vector of actual input levels and X~ the vector of statio-
nary or equilibrium levels and M a matrix of adjustment parameters. The
long-run equilibrium levels X~ can be determined independently of the
adjustment process and are, assuming constant price expectations, equi-
valent to the long-run equilibrium levels derived form traditional
static profit maximization models. These results are obtained using a
continuous time model; in Schramm [5] analogous results are derived using
a discrete time-model.

Mortensen shows for a continuous time model that the results
of Lucas depend on the assumptions with respect B and C. Mortensen shows
that if C is symmetric, which implies a2f~3Xia4Xj - a2f~aXj84Xi, the
results with respect to the adjustment paths are basically the same as
the results found by Lucas. If in addition the matrix C is zero in the
point 4X - 0, the stationary point X~ is likewise independent of the
adjustment process.
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3.3. A new specification of the adjustment costs function

Given the g.p.f. we can measure the internal adjustment costs

in terms of production volume sacrified for the production of adjustment

services. In a perfectly competitive product market the value of the

adjustMent services is easily measured by multiplying the production

volume foregone with the output price P. In the case of imperfect competi-

tion on the product market some modifications are necessary.

Let X~` be the part of the factor inputs used for the production of

adjustment services

(3.6) xA - g(4X)

where g is a vector function. The production volume sacrificed for the pro-

duction of adjustment services is

(3.7) F(X) - F(X - X )

The'generalized revenue function" can now be written as

(3.8) Y - P F(X - XA)

where the output price P depends on the production volume. The value of the

internal adjustment services follows from

(3.9) Q(~X} - P(X)F(X) - P(X - XA)F(X - XA)

so that we can write the revenue function as

(3.10) Y - P(X)F(X) -(~(~X)

which is often a convenient specification in the derivatien óf the optimal

factor demand equations. In this section we will derive an internal

adjustment cost function as defined in (3.9).
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The adjustment costs-function defined in this section contains

both the costs of the learning process complementary to the instal-
lation of new capital goods and the introduction of new workers and the
installation or re-installation services necessary if the ratio X.~X.1 J
(i ~ j) changes. As to a reduction in input of factor i, this will not

be followed by an instantaneous adjustment of the production technique.
The substitution-process is a rather slow one, which implies a temporary
under-utilization of all other inputs. This under-utilization is measured,
in our approach in the form of adjustment services.

The magnitudé~ oP the adjustment services depends not only on
the extent of the changes in individusl inputs but also on the direction
of these changes. If all factors change in the same direction (expansion
or reduction of the firm's activity level) the adjustment services will
c.p. be lower than if the changes in the factor inputs show opposite
directions (substitution).

A possiple specification of the adjustment services to be
produced by factor Xi is

n pX. n n pX. ~
{3.11) XA - E T~i)(~-)2 X. t E E T~i)(~-)(~X).X. ;T. - rk

1 j-1 JJ Xj~ i0 k-1 j-1 Jk Xj0 -~c0 1~ Jk J
k~j

where XiO, i- 1,...,n, is a fixed initial factorinput. We can write

(3.11) as

(3.12) XA -(~X' X~1 Ti X~1 ~X)Xi0

where Ti is a nXn symmetric matrix with elements i.k and
J

(3.13) X~ -

From the discussion on adjustment services follows that Ti is a positive
semi definite matrix with main-diagonal elements tjj ~ 0 and off-diagonal
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elements Tjk ~ 0(j ~ k).

The adjustment costs due to internal adjustment services are
measured as (See (3.9))

(3.14) Q.(~X) - Y(X) - Y(X-K )-(~ XO))' XA - YX X

where X- -(xl ,...,n)', and the gradient Yx is measured in XO -

(X10,...,XnO)'. For the revenue function defined in (2.19) we obtain

(3.15) ~(~}C) - Eyi(~X' X~1 Ti X~1 ~X)

- (~X~ X~1(~yi Ti)X01 AX)YO

- (OX' }C~1 T X~1 ~X)YO

where YO - Y(XO) and

(3.16) T - Eyi Ti

T is a symmetric nxn matrix, which is assumed to be positive definite

(so that the adjustment costs are always : 0).

In Section 4 we will need the Hessian matrix

(3.17) A - {a~X(.~(aaX.) - (Xp1 T X~1)YO } (X01 T x01)~YO
i ~

Since T is a symmetric positive definite matrix and X is a positive

definite diagonal matrix, A is a symmetric positive definite matrix.

Further we will need the matrix Á 1 I' where 1' is the Hessian matrix

of Y, defined in (2.21),

2
(3.18) r- iaxa ax.}x -(xól G X~1)Yo

i ~ 0

exaluated in X0. If Y is a strictly concave function of X for X E S, t

is a negative definite matrix. The characteristic values of Á1 P can
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be found from

(3.19) IÁ 1 r- all - o

which is equivalent with

(3.20) lá 1 r- azl - IÁ 11 Ir - aAI - o

From ( 3.20) follows that all roots ~i which satisfy I r- aA I- 0
are negative 1). Further Á 1 r has n linearly independent characteristic
vectors~2 .~

Finally we define the matrix X~1 A-1 r XO which does not

depend on the factor input levels XO nor on the output level Y~ if

we use specification (2.19) for the revenue function. We can write

~3.21) }~~1 Á 1 r XO - X01 XO 2 T 1 XO'X01 G X01 XO'(Y~1.Y0)

- 2 T 1 G

1) Let Ir - aA~ - o since A is positive definite there exists a nonsingular

matrix W such that A- WW' or

~r - aA~ - ~r - aww' ~ - ~wj2lw 1 r W'-1 - a II

where W 1 r W'-1 is a negative definite matrix. From

~r-aa~ -op ~w 1 rw'-1 -a 1~ -o

follows then that all roots ai are real and negative..

?) Let Á 1 t X- aX then since Á1~ W'-1 W1 we obtain W'-1 W 1 r X- aX

c,r W 1 C W'-1 W'X - aW'X or W 1 T W'-1 Y- aY where Y- W'X. Since

W r W'-1 is a symtnetriC negative definite matrix, there exist n linearly
independent char. vector Yi and since W' is a non-.singular matrix n

linearly irrlependent char. vectors Xi .
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;Ln~l ~ T-1 C doe:: not depend on X~ nor on Y~. 3)

Remark 1. This adjustment cost function is based on internal adjust-

ment services which consist of learning costs and (re) -
installation costs. This function is more appropriate to

describe expansion or substitution then to describe reduction'
of the activity level. If the firm reduces its input levels
the internal learning costs have to be replaced by external
costs as premiums for fired workers or capital losses on
sold capital equipment. Since these ccsts can in ger.eral

be described by a concave function, we might expect that
even in these cases the adjustment costs function described

in this section can be seen as a approximation of the

true adjustment costs.

Remark 2. If the government. takes over part of the wage bill in the
case of a temporary shortening of the working-week, this
can be seen as a subsidy of the government in the adjustment
costs (both internal and external) corresponding to a temporary
reduction in the labour-input.

3) In appendix A.2 we will need the characteristic values of the matrix T-1 G.

For the two input case with y1 - y2 - 0.4 and T is a diagonal matrix with

elements y1 and y2 the char. values of T 1 G are - 0.2 and -1. If the

matrix T is a diagonal matrix with elements - 2 y1 and 2 y2 the char.

values of T-1 G are -0.4 and -2. If the matrix T is a diagonal matrix

with elements 2y1 and 2y2 the char. values of T-1 G are -0.1 and -0.5
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4. The long-term adjustment model

4.1. Introduction and assumptions

In this Section we will derive the adjustment process of the
factor inputs to their optimal (equilibrium) values, assuming a profit
maximizing firm behaviour. F~arther assumptions are
(i) the market for investment goods, the labour markets and the

capital market are characterized by perfect competition, i.e.
the prices on these markets are exogenous variables for the
individual firm;

(ii) the product market is characterized by imperfect competition;
the (].ong-run) product demand curve can be described by a
constant elasticity demand function;

(iii) the production function and the revenue funetion are defined
ín Section 2, eq. (2.6) and (2.19);

(iv) the adjustment costs function is defined in (3.5).

4.2. A profit maximizing model in a stationary situation

We ~sume that the firm behves as if maximizing the present
value of cash-flows over an infinite planning horizon under the
condition that for t~ T no further adjustments in output or factor
inputs will be made. F1,trther we assume constant price expectations for
the factor markets and the capital market and a stable long-run
product demand curve. Under these conditions the object function can be
written as

T W
( 4. 1) V- E St ( Yt -Q.( ~}Ct )- w' Xt - q' ~Xt ) t E St ( YT - w' ~C,r )

t'-1 t-Tt 1

where S- 1~(1tr), r being a constant discount rate, w is a vector of
factor
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rewards 1) and q a vector of purchase prices.

We can formulate the following optimization problem. Maximize

(4.2) V- E St(Yt - Q(~Xt)-w'Xt - 4'~Xt) t STtS (Yt - w'XT)
t-1

under the restrictions

(4.3) Xt - Xt-lt ~Xt t- 1,...,T

Xt ~ 0

Using standard optimization techniques the necessary conditions for a

maximum 2), if the maximum lies in the ecanomic relevant region,

Xt ~ 0(t - 1,...,T)3, can be written as

3Yt

aX - w t(1-~)q t A~Xt - RA ~Xttl t- 1,...,T-1
t

8YT
aXT - w t (1-R)q t (1-~)AAXT

We will now assume that for all Xt E S the revenue function Y(X) can be

approximated by a quadratic'function so that we can linearize 8Yt~8Xt as
follows

1) The factor rewards consist of wages for the labour inputs and of deprecia-
tion allowances and maintenance costs for capital goods.

2) These necessary conditions are in our case also sufficient conditions,
since Y(X) is a strictly concave function and Xt E S for t- 1,...,T.

3) In fact we assume that Xt E S ( t - 1,...,T)
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3Yt
(4.5) ~x ~ r( Xt - x~) t w t(1-8)q

t,

wherc ~X ( X~) - w t ( 1-g)q, X~ E S, and r is evaluated in X0.
Substituting (4.5) into (4.4) we obtain

(4.6)
t'(Xt-X~) - A ~Xt - S A AXttl t- 1,2,...,T-1

r(x;r-x~) - (1-s)A ox,r

or written as a; system of difference equations in Xt we obtain

(4.7) sxtt2 t(Á1 r-(1ts)z)xttl t xt -(A-~ r)xx t- 0,1,2,...

with endpoint conditions.

(h.8) (á 1 r - (1-s)I)~ t (j -e)xT-1 - (Á1 r)x~`

and beginpoint conditions Xt - X~ for t- 0.

`?'he system of difference equations (4.'7) -(~~.8) can be solved.

The result. is

2n
(4.9) Xt - E d~ ci ai t X~ t- 0,1,2,...

i-1

where a. are the roots of the characteristic equation of the system of
i

difference equations (4.7), ci are corresponding characteristic

vectors and d~ are constants to be determined from begin- and endpoint

conditions. After some manipulations we find that (see Appendix A.1)

(4.10) . 0 ~ a. ~ 1 i- 1,...,ni

ai ~ 1 i - nt1,...,2n

Usi.ng ( 4.10) we can write (4.9) as
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(4.11) xt -(D1 n~ } D2 n2 t 1)xx

where D1 - I ~31 c ~,...,dl~ cn] , D,, - I dn}1 cnt 1,...,d,~n c2n~ ~

n1 , n2 -

and di - (XZ)-1d~, i - 1,....,2n.
12' 1' -i W we car, proce, s,.e Appendix A, 1, that

(4.12) lim di - 0 i- nf1,...,2n
T~

lim D,, n~ - 0 t- 1,2,...,T
7~

Ftiirther (D~ n~ t I)Xz satisfies the endpoint conditions (4.8) if T-~ W.

Thus we conclude that if T is large we can neglect the unstable part

D2 n2 X~ and write the solution of the system of difference equations

as

(4.13) xt - (D1 n~ f 1)x~

The constants (dl,...,dn) can be determined from the beginpoint condi-

tions. We find

(4.1b) D1 X~ - (XD - X~)

The following results can now be obtained

(4.15) (xt - xt-1) - D1(ni - ni-1)x~

or for t - 1
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(4.16) (x1 - xo) - D1(nl - I)x~`

Since D is a non-singular matrix, see Appendix A-1, we can write,
using (k.14)

(4.17) (X1 - XD) ~ (D1(n1 - I)D~1)(XD - X~)

and

(b.1s) (xt - xt-1 - (D1(n1 - I)ni-1 Di1)(xo - x~)

Defining B- D1(I - n1)D~1 we obtain

(4.t9) ox1 - B(Xx - X~)
and
oxt - B(I-B)t-1(x~ - xo) - B(x~ - xt-1)

which defines a geometric adjustment process.

F~om ( 4.19) follows, premultiplying with the matrix X~1,
defined in ( 3.13),

(4.20) xó1 nx1 -(xó1 B Xo)(xó1 x" - Xó~ xo)
and

Xó1 nxt -(zá1 B xo)(I - xó1 B xo)t-1(XÓl x'` - Xó1 xo)

or defining B- X~1 B XQ,Xt - X~1 Xt, ~Xt - X01 OXt, and i-(1,...,1)'

(4.21 ) OX1 - B(3~ - t )

OXt - B(I - B)t-1(X~ - t)

OX1 and aXt in (4.21) are the solutions of the "rescaled" system of
difference equations (4.7)
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(4.22) s xtt2 t(xó1 á 1 r xo -(1ts)I)Xtt1 } Xt -(xó1 á 1 r xo)~`

with endpoi.nt conditions

(4.23) (XÓ1 A-1 r Xo -(1-s)I)xT t(1-s)~c,I,-1 -(xó1 á 1 r xo)x~`

and beginpoint conditions

(4.24) Xt - i for t- 0

The matrix X~1 Á 1 r XO - 2 T-1 G is defined in (3.21). Since T~ G

does not depend on the (initial) levels of output or factor inputs the

matrix B, corresponding to the system (4.22) -(4.24), does not

depend on XO or YO but only on the discount factor B and the elements

of T 1 G.

In Appendix A.2 the behaviour of ~X1 is analysed as function

of the finite time horizon T. As might be expected, the first period

adjustment in factor inputs for finite T, ~X1(T), converges quite rapid

to the asymptotic solution (for T-~ ~) AX1 in (4.19) if the adjustment

costs are low. If the adjustment costs are high the convergence is

slower. However in most cases a value of T? 10 will be sufficient to

approximate the finite horizon solution ~X1(T) by ~X1 in (4.19).



4.3. A profit maximization model in a situation with cyclical distur-
bance

We assume that the firm behaves as if maximizing the present
value of cash-flows over an infinite horizon under the condition
that for t~ T no further adjustments in output or factor inputs will
be made. Further we assume constant price expectations for the factor
markets and the capital market and a stable long-run product demand
curve except for the first period. In the first period we assume a
temporary shift in the product demand curve so that the revenue function
can be written as

(4.25) YC - n YS

where YS is the stable long-run revenue function, YC the revenue
function in period 1 and n a cyclical indicator.

Further we have to redefine the adjustment costs flznction
in period 1. From (3.9) follows that the internal adjustment costs
in period 1, AC(~X), can be written as

(4.26) AC(~X) - YC(X) - YC(X - XA)

where X-- is defined in (3.6). Combining (4.25) and (4.26) we obtain

(4.27) A~(ox) - n A (ox)

where A(~X) is the internal adjustment costs function corresponding
to the stable long-term revenue revenue YS.

We will now formulate an optimization problem under the
assumption that actual production is equal to the actual production
capacity minus production capacity used for the production of adjustment
services.

For a stable long-run output demand function this assumption is not very
restrictive but if we study the firm behviour with respect to short-run



- 25 -

cyclical di-sturbances this assumption is not always realistic.

However for econometric purposes a distinction between firms and periods

where Q- F(X) and firms andlor periods where Q ~ F(X) is trouble-

some ( aggregation of factor demand equations and a suitable specification

of dynamic behaviour are then practically impossible). The optimization

problem can now be formulated as4), maximize

T
(4.28) V- B(Y~ - Q,(~X1) - w'X1-q'~X1) t E St(Yt-Q(~Xt)-w'Xt-q'~Xt)

t-2

t
(STt1)I(1-B)(Ym - w'Xm)~ ~

under the restrictions

(4.29) Xt - Xt-1 t p}~t

Xt ~ 0

t - 1,...,T

Using standard optimization techniques and supposing that the maximum

lies in the economic relevant region , Xt ~ 0(t - 1,...,T), the

first order conditions can be written as

(~.30)
aYl
axl
aYt
axt

axT

- w t(1-B)q t Ac~XI - BA ~X2

- w t(1-B)9. t A~Xt - SA~Xttl

aYT - w t (1-S)q - (1-S)A~XT

t - 2,...,T-1

1t) In our model the condition that actual production Q equals
actual production capacity minus production capacity used for the
production of adjustment services corresponds to the condition that
the marginal net revenue, aYIaQ, is positive. (Net revenue is defined
as (gross) revenue mirius variable costs as costs of materials etc.)
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where Ac is evaluated in X~.
Linearizing 8Y1~3X~ an3 3Yt~3Xt, t- 2,...,T we obtain

(4.31) r~(x1 - x~`) - A~ nx1 - gA nx2

r(Xt -~) - A 4Xt - SA ~Xttt t- 2,....,T-1

r(XT - X~) - (1-S)A AXT

C
where I'c is evaluated in XD and áX (X~) - w t(1-S)q.

Since from period 2 the firm operates in a stationary situation
the change in factor inputs ~X2 can be found, using the heuristic argu-
ment of the "optimality principle", from the results of Section 4.2.
So we obtain

(4.32) OX2 - B(X~ - X1)

Substituting (4.32) in (4.31) we obtain for period 1

(4.33) r~(x1 - x~`) - A~ ox1 - sA B(x~ - x1)

and for ~X~ we find

( 4. 34 ) [ A~ 1 I'c - I- sA~ 1 A B] AX 1- A~ 1 I'c ( X~-XD )- SA~ 1 A B( X~-X~ )

Since

(4.35) A~~ 1'c - n-1 Á1.n P- A-~ I'

Ac1 A- n-1 A 1 A- n-1

we can write for (4.34)



-~7-

(4.35) [A-~ r- I- sn-i BloXi - À ~ r(x~-xo) - sn-~ B(x~-xo)

Since the matrix [À~ r- I- sn-~ B] is negative definite we can solve
~X~ uniquely from (4.35) and we obtain

( 4 . 26 ) ox ~ - B i ( ~-xo ) t B2 ( ~-xo )

where

B, -[ A~ r- I- sn-~ B] -~ A-i r

(4.37)

B2 -[ A-~ r- 1- sn-' B] -~ .(-sn-~ B)

The matrices B~ and B2 are positive definite. Unfortunately

they depend on the initial input levels XO and on the cyclical

indicator n. Analogous to the derivation in (4.20) -(4.24) we can obtain

a"rescaled" solution by premultiplying (4.35) with Xp~. We obtain

(4.38) (xá~ À~ r x~-I-sn-i Blaxi -(xó~À ~r xG)(x~-t)-an-~s(a~`-~)

where X~~ À~ r XO - 2 T-~ G is defined in (3.21), B, 4X~, X in (4.20).

The matrices X~~ À~ r RG and B do not depend on the (initisl) levels

of output or factor inputs.

We can rewrite (4.38) as

(4.39) aX~ - B~(X~ - i) t B2(x~ - t)
where

B~ - X~~ B~ XO

B2 - XO' B2 XO

The matrices B~ and B2 do not depend on factor input levels or output

level but vary with the cyclical indicator n. From (4.38) follows that
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the elasticity of the elements of B~ with respect to n is positive but
always considerable smaller than one and that the elasticity of the
elements of B2 with respect to n is negative but always larger than
minus one. Thus the behaviour of t31 and B2 is counter-cyclical if
~ ~ 1 but pro-cyclical if n~ 1.

Remark: If the condition Q- F(X) is satisfied in all periods except
in period 1 the first order conditions for period 1 can be
written as

(b.40) -Ac~X1 - w - sA ~X2

where 4X2 is determined in (4.31). Substituting (4.31) in (4.~0) we
obtain

(1t.k1 ) (-Ae - SAB) X1 - w- SA B(X~ - 7C~)

or since (-Ac - sA B) is a negative definite matrix

(4.k2) ~X1 -(-Ac - SA B)-1 w t(Ac t gA B)-1 sA B(X~ - X~).
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APPENDICES

A. Properties of a system of second order difference equation~~ with

begin and endpoint conditions.

A.1. The solution of the system of difference equations

(A.1) SYtt2 t(A-(1f R)I)Ytt1 t Yt - AY~ t- 0,1,2,...

where 0 ~ R ~ 1, A is a non-singular nxn matrix with negative roots and n

linearly independent char. vectors. Further we define the hegir. and endpoint

conditions

(A.2)

Let the system of n difference equations be given by

YO - Y(0)

(A-(1-S)I)YT t (1-S)YT-1 - AYie

Firstly we consider the homogenous part of (A.1)

(A.3) SYtt2 t(A-(1tR)I)Ytt1 t Yt - 0

s solution of the form Yt - at c where c is

Since we are only interested in non-trivial

a vector and a aand try
scalar.

ai and correspondir.g vectors ci can be found from

7,tII t (A-(1ts)I)a t Sa2Il -,0

~tt1l A-YII -0

solutions the roots

where y-(1t8) -Ba - a-1. From the fact that A is a non singular matrix

with negative roots and n linearly independent char, vectors follows that
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all y which satisfy (A.5) are negative and that there exist n linearly
independent vectors ci which are the characteristic vectors of A,
corresponding to the roots yi of (A.5)

For the function f(a) -(ltg) - Sa -~-~ we find

f(a) ~ ~ a ~ 0, 1 ~ a ~ 1~S

f(a) - 0 R- 1, a- 1~~1

f(a) ~ p p ~ a ~ 1, a~ 1~R

and the sign of the first derivative in the relevant region of a is

f'(a) ~ 0 0 ~ a ~ 1

f'(~) ~ 0 a~ l~s

Thus for each yi (yi ~ 0, i- 1,...,n) we find two roots (ai' ~itn)
where

(A.6) o ~ ai ~ i

~itn ' ~,S

Thus we can write the general solution, Yt, of the system
of homogenous difference-equations (A.3) as

n n
(A.7) Yt - lEl ái ai ci t lEl ánti an}i ci - CA~ d~ t CA2 d2

where A~ is a diagonal matrix with elements ai (i - 1,...,n) and

A2 is diagonal matrix with elements anti (i - 1,...,n). C is the matrix
of characteristic vectors ci (i - 1,...,n) and d~, d2 are vectors with
elements ái, ánti (i - 1,...,n) respectívely which are
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con~tants to be determined from the begin and endpoint conditions. A

particular solution of the system (A.1) is given by Y~ so that the solution

of this system is

(A.8) Yt - Yt t Yt

we find

(A.9)

Substituting (A.7) and (A.8) in the begin and endpoint conditions

C(d1 t d2) - Y(0) - Y~

[(A-(1-R)I)CnTt(1-R)CA~-1jd1i-[(A-(1-R)I)Cn2t(1-s)CA2-1]d2 - 0

We can write (A.9) more compactly als

(A.10) C C

T-1 T-1B1 n1 B2 n2

where

(A.11)

d2 0

B1 - A c n1 - c((1-s)n1 -(1-s)I)

B2 - A c n2 - c((1-s)n2 - (1-s)I)

Since A C- C P where I' is a diagonal matrix whose elements yi are the roots
of (A.5) we can write for B1, B2
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(A.12) B1 - c(rn1 - (1-~)n1 } (1-s)I]

B2 - c[rn2 - (1-s)n2 t (1-s)I]

F~om (A.6) and (A.12) follows that B1 and B2 are non-singular matrices:

(A.13) B1 --B C(A~ - 2 A1 t I) --S C(A1 - I)2

B2 --s c(n2 - 2 n2 t I) --s c(n2 - I)2

F~om the non-singularity of B1 and B2 follows that d1 and d2 can be
solved uniquely from (A.10), since the matrix in the left hand side of
(A.10) is non-singular. From the beginpoint conclitions in (A.10)
follows

(A.14) dl - C-1 (Y(0) - Y~) - d2

Substituting (A.14) in the endpoint conditions in (A;10) we find

(A.15) B1 nT-1 C-1 (Y(0)'Y~) f(B2 A2-1 - B1 AT-1)d2 - 0

Since (A.15) holds for all T and since B1 and B2 do not depend
on T we find from (A.15) for T;~

(A.16) lim B2 A2-1 d2 - 0
T~

and thus

(A.17) lim d2 - 0
T-~

Combining (A.17) with (A.14) we find

(A.20) lim d1 - C-1 (Y(0) - Y~)
T~
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Finally it follows from (A.17) that for all t ~ T

(A.21) lim C A2 d2 - 0
`P-~-~

so that

(A.22) lim Yt - C A~ d1
T-~

where d1 is determined in (A.20).

Solution (A.8) with d1 and d2 determined from (A.14) and (A;15)

is an uniquely determined solution of the system of difference equations

(A.1) with boundary conditions (A.2). Thus, using a constructive method,

we have shown that the system (A.1) with boundary conditions (A.2)

has an unique solutionl). Further we have shown that the solution

depends on T and that for T-~ ~ only the stable part of the homogenous

solution Yt is left over.

Remark 1: If the endpoint conditions are gíven by

(A.23) (A-(1ts)I)YT t(1-S)YT-1 - A Y~ t b

we can determine the vectors of constants d1 and d2 from

(A.24) C C

T-1 T-1B1 A1 B2 A2

d1

a2 J

which implies that d1 and d2 can be uniquely solved.

The behaviour of Yt for T-~ ~ follows from the analogon of

(A.16):

1) In fact it, is not true that every system of difference equations
with corresponding boundary equations has an (unique) solution.
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(A.25) lim B2 A2-1 d2 - b
T-~

which implies

(A.26) lim A2-1 d2 -T-~

lim d2 - 0
T~

lim d1 - C-1(Y(0) - Y~)
T-~

For the homogenous solution Yt we can write

(A.27) Yt - C A~ d1 t C A2-T A2 d2

so that if t-; m and T-f m such that (t-T) is a fixed number we find

(A.28) lim Yt - lim C A~ d1 t C A2-T lim A2 d2
t , `i~ t-~ T-~

- C At -T B 1 b2 2

Further we find that if for fixed t, T-~ ~

(A.29) 1~ Yt - C A~ d1 t 1~ C A2-T l~ A2 d2

Thus if T is large we can for small values of t approximate the homo-
genous solution Yt by its stable part.

Remark 2. A slightly different system of difference equations
is given by

(A.1.a) BYtt2 t (AtB-(1ts)1)Ytt1 } Yt - (AtB)Y~
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where A is as defined in (A.1) and B is a metrix with char. roots ~ 0.
Further we have as boundary restrictions

(A.2.a) Y~ - Y(0)

(AtaB-(1-g)I)YT f (1-S)YT-1 - (AtB)3C~ f b

where 0 ~ a ~ 1.
The general solution of (A.1.a) is completely analogous to

the solution (A.7):

(A.7.a) Yt - Ca n1a d1a } Ca n2a d2a t 1~

where Ca is the matrix of char. vectors of the matrix A t B, n1a and

n2a are the matrices of char. roots of the diff.eq. (A.1.a) and d1a
and d2a are the corresponding vectors of constants to be determined

form the begin and endpoint-conditions. The properties of A1a and n2a
are identical to the properties of A1 and n2 in (A..7) and it follows

from the assumptions on A and B that Ca is a non-singular matrix.

The analogon of (A.11) is

(A.11.a) B1a - (A } aB)Ca n1a - (1-s)ca(n1a - I)

B2a -(A t aB)ca n2a -(1-s)ca(n2g - I)

Since a and S vary independently from each other the matrices B1a
and B2a are in general non singular so that the vector (d1a' d2a)~
can be solved uniquely from the analogon of (A.24). F~zrther we find as

analogon of (A.25)

(A.25.a) lim B2a n2a1 d2a - b t(1-a)BY
T-~

which implies



-36-

(A.26.e..) lim AT-~ d2 - B2Á b t B~á (1-a)BY~~~

lim d2 - 0
T-~

and together with the analogon of (A.14)

lim d~ - Ca~ (Y(C) - Yz)
T-wo

For Yt we obtain results completely analogous to (A.28) and (A.29)

so that for large values of T and small values of t the homogénous

solution Yt can be approximated by its stable part: Ca A1a d1a'
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A.2. The dependence of the first period decision on the finite~time

horizon..

The system of difference equations (A.1) with boundary conditions

(A.2) can be rewritten in a cumulative fashion as

(A.30)

I-A -sI 0 0 ... 0 0

-A I-A -SI

-A -A I-A -SI

-A -A -A -A I-A -BI

-A -A -A -A -A ( 1-s ) I-l~l

GYT-1

QYT .

-..

~A ~ 0 ) -Y~ )

A(Y(0)-Y~)

A(Y(0)-Y~)

I ~,. ~-~
H`1(0)- I

A(Y(0)-Y~`)

where A is the matrix defined in A.1. Since the matrix in the left hand

side of (A.30) is a non-singular matríx for any T the vector (DY1,....,~Yq,)

can be solved from (A.30) uniquely.

A simple algorithm to solve ~Y1 from (A.30) consists of combining

the rows of the matrix in (A.30) so that all elements in the last row vanish

éxeept ïhe first element:

(A.31) D1T ~Y1 - D2T(YO - Y~)

where D1T and D2T depend on T. For ~Y2,...,~YT a solution can be obtained

in a similar way.

To analyse the behaviour of D1T and D2T if T varies we formulate
the following lemma which can be proved by using the complete induction.

theorem.

Lemma
Let k-T-2, then ~Y1 can be solved from the following matrix

expression

(A.32) D2kt2 ~Y1 - D2kt1 (YO - Y~)
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where

D2kt1 - D2k-1 t l,s D2k'A D2kt2 - 1~R D2k - D2kt1

with starting matrices

D1 - A t 1~S ((1-s)I-A)A D2 - 1~R ((1-S)I-A)-D1

Further, since A- C I' C-1 where P is a diagonal matrix with
negative elements, the following results can be obtained

(A.33) D2kt1 - C L2k.f1(r)C-1

-1D2kt2 - C L2kt2(I')C

where L2kt1(r) is a polynomial expression in the diagonal matrix I' and
is a diagonal matrix with negative elements and L2kt2(r) is also a
polynomial expression in the diagonal matrix 1' and is a diagonal matrix
wíth positive elements.

From the lemma and (A.33) follows that ~Y1 can be obtained from

(A.34) DY1 - C(L2kt2(t))-1 L2kt1(r)C-1 ( YC - Y~)

Since L2kt2 and L2kt1 are both diagonal matrices we can restrict our
investigation of the behaviour of the matrix product in (A.34) as function
of k to an investigation of the behaviour of the elements of the product
L?lct2 L2kt1 as function of k.

Let ~k be a diagonal element of L corresponding to the root2kt1
y of A(element Y of 1') and let Xk be the corresponding element of
L2i~t2, for k- 0,1,....,T-2. From (A.32) and (A.33) we then obtain

(A.35) Vkt1 - vk t 1~S Y Xk

kt 1- 1 ~ s Xk - llkt 1

with initial conditions

k - 0,1,2,...
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(A.36) VO - Y t YIB (1-R-Y)

XO - 1I6 (1-Y)2 -1

In (A.35) and (A.36) we have defined a system of first order difference
equations with initial conditions, This system

using standard techniques.

We can rewrite (A.35) to

vktll 1 YIB - ~~k
- 0

1-

can be analysed

Y
~ ~it~-1 ~ -1 IB Xk

The roots of this system can be found from solving the characteristic

equation

(A.37) 1 -a YIB
- 0

or

(A.38)
or

so that

(1-a)(~ - a) t S - 0

a2- (1 t S)at S-0

(A.40) a1~2- 2 (1 t S) t 2 r(1 t s)2 - S

Since (St(1-y))2 -~~ 0 for all Y ~ 0 and 0 ~ s ~ 1, both rootss a
are real and further we find

(A.41) 0 ~ a2 ~ al and a1
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The solution of the system (A.36) can be written as

ti
(A.41) k - a1 a~ Z1 t a2 a2 Z2

k

k - 0,1,2,...

where Z1, Z2 are the characteristic vectors corresponding to a1 and a2.
These characteristic vectors can be solved from

l 1-ai Y~B I I Zi1

which yields

(A.43) Zi~ - 1

Zi2 - - ~ (1-ai)

~ Zi2 J
- 0

i - 1,2,...

The constants a1 and a2 can be obtained from the initial conditions (A.36).
For the analysis of L2kt2 L2kt1 we are interested inthe behaviour

of

vk a1 ak } a2 a2(A.44) - -Y
Xlc a1(1-a1)akfa2(1-a2)a2 ~ B

or

V al } a2(á2)k

(A.45) k - 1
~

1

If T-i ~ and thus k-; ~ we obtain for the quotient Vk~X

a1(1-a1)ta2(1-a2)(a2)k

V
(A.46) lim -k -

k~ ~ S-1-a1
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Using (A.46) we can obtain a solution for AY1 if T-~ W. Combining

(A.3~i) and (A.46) we obtain

(A.47) lim AY1 - C F C-1 (YO - Y~)
T-~

and F is a diagonal matrix with element fii~

(A.48) -yi
fii - R(1-ai1

where yi is the i-th root of A and ail is defined in (A:40).

An analytic analysis of the behaviour of Yki~ is extremcly 3if-

~ ficult and not very promising so that we will confine ourselves to a numerical
analysis for y--0.5, B- 0.9. For y--0.5 and R - 0.9 we find for a1

and a2, Z1, Z2 and a1, a2:

a1 - 2.15 ~ Z11 - 1 ; Z21 - 1 ; a1 --1.48 Oj.67

a2 - 0.52 ; Z12 - -2.07

and for k- 0 we find 2)

0.83Z22 - 0.864 ; a2 - -0.15 1.67

~0 at t a2XO - a1(1-a1)ta2(1-a2) . S - -0.5556

V1 al a1 } a2 a2 -Y - -0.50X1 - al 1-a1)a1ta2 1-a2)a2 ' R

V
2

X2
a1 a? } a2 a2 ~ - -.487
al ( 1-al~,ita2( 1-a2)a2 ~ R

2) In fact the same results can be obtained by solving the algorithm (A.32),
(A.33) directly for k - 0,1,2,3,...
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V
-3 - -0.484X3

V
lim Xk - -0.4783
k-~ k

In this example the convergence of Vk~Xk to its limit is quite rapid.

Though this approach is more adequate to analyse numerically the
behaviour of ~Y1 if T varies then the approach in Section A.1, we have
not been able to obtain general statements based on an analytical analysis
of expression (A.45). In Table 1 we wil.l give additional numerical results
for s~veral y. Finally we will show in Section A.3 that the approach
in this Section is basically the same as the approach in Section A.1.

Table 1 shows the results for y--0.1 and S- 0.9 (corresponding

to very high adjustment costs and thus to a low adjustment speed of Yt

to Y~~ and y--2 (corresponding to low adjustment costs and thus to a high
adjustment speed of Yt to Y~). 3)

3) See footnote 3 in Section 3.3.
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Y - -0.1 S - 0.9

al - 1.46 a2 - 0.76

Z11 - 1 Z21 - 1

Z12 - -4.14 Z22 - 2.16

al - 0.38 a2 - -0.54

vo
~ - -2.67

0
vl~xi - -0.684

v2~x2 - -0.418

v3~X3 - -0.323

v4~x4 - -0.282

v5~x5 - -0.262

lim ~1k~Xk - -0.24
k-~

Table 1

y - -2 s - 0.9

al - 4.055 a2 - 0.275

Z11 - 1 Z21 - 1

Z12 - -1.375 Z22 - 0.326

al - -6.76 a2 - -0.098

vo
- -0.74x~

vl
X - -0.728

1

Ii
~ V

lim ~ - -0.7274

~
~-- - .-. ------- --- ----- f



A.3. A comparison of the results of Section A.1 and A.2.

In Section A.1. we obtained an expression for Y1 for T -~ ~, see
A.22.

(A.1~9) Y1 - C A1 d1 t Y

where d1 - C-1(Y(0) - Y~) so that since YO - Y(0)

(A.50) Y1-YO - C A1 C-1 (YO-Y~) - (YO-Y~)

or

(A.51) ~Y1 - C(A1 - I)C-1 (YO - Y~)

where A1 is the matrix of stable roots of the homogenous system of difference

equations (A.3) and C is the matrix of corresponding characteristic vectors.
In Section A.2 we obtained for AY1 and T i W the expression,

See (A.47)

(A.52) ~Y1 - C F C-1(YO - Y~)

where F is defined in (A.48).
Since both methods are equivalent the following result must

hold

(A.53) C(A1-I)C-1 - C F C-1

or

(A.S~) A1 - I - F

Since both matrices are diagonal matrices we can redefine (A.54) in terms
of its diagonal elements as
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(A.55) ai - 1- fii i- t,....,n

or

-Yi
(A,56) ai - 1- S ~-all i- 1,....,n

where a.i is defir.ed in (A.6); yi is a characteristic root of A and ai1

is defined in (A.40).
Expressing yi and ai~ in terms of ai we find, dropping the suffix i

a1 - 2 (~ } ~S) } 2I~ - aBl

For ~a- ~s~ we can write, since 0 ~ a ~ 1 and 0 ~ S ~ 1,

~ - 1 1I asl - as -

so that

a

For (A.56) we find

or

or

~ - ~ - - (1tR)- Ra -a-1
a-a-'

(~-~)(8-~-~) - R7~ - S ~ a-~ - 1

(a-i) (a-a-~) - s(a-i) - a-~ (a-~)

Si.nce this derivation holds for every i - 1,....,n we have shown that
(A.54) holds.
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A.~. The existence of an optimal solution for an infinite horizon model

In Section 4 and in Section A.1, A.2 and A.3 we have analys~ed
the behaviour of the adjustment process if T-~ m. Implicitly it was
assumed that the optimization problem defined in (4.2) is well defined for
T-~ m. In this Section we will show that this assumption is satisfied.

Define the optimization problem (4.2) as

Maximize

T Tt1
(A.57) E B t NR (xt) t~-S NFtT(XT)

t-1

under the restrictions

Xt - Xt-1 f ~Xt

XtES

where S is a compact subset 1) of R n and NRt(Xt) is defined as

(A.58) NR(Xt) - Yt - Q,(~Xt) - w'Xt - q'~Xt t- 1,....,T

~T( XZ, ) - YT - w' XT

From (A.58) and the definitions of the funetion Y, Q(~Xt) given in Secton 3
follows that the (net revenue) functions NR and NRT are uniform continuous
differentiable.functions for Xt E S. This implies that NR and NRT are
bounded for all Xt E S, and that the discounted net revenue

T Tf 1
(A.59) E st ~(Xt) t í~-B ~T(XT) Xt E S

t-1

1) The restriction Xt E S is not very restrictive, given the strict concavity
of Yt the set of Xt's which yield a non-negative discounted net.revenu is
for all T a compact subset C R n
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is bounded for all T~ 0.
We now define the vector (X) as the vector (X1,X2,....,}Ct,...)

so that Xt E S for all t? 1. An optimal solution for the infinite horizon
problem is defined as the vector (A) such that

(A.60) tl(X), ti e~ 0, tl T~ 0, HT ? T:

T - Ttl - T Tfl

E st Nx(xt) t~ riRT(xT) ? E st NR(xt) t s-s ~T(xT) - E
t-1 t-1

For a similar definition for a continuous time model see Halkin [9, p. 269].

Further we define the sequence of vectors (X)T (X1T;X2,~;...'Xt,T'" ')
as the sequence of optimal solutions of the finite horizon problems. Now

suppose that there exists a vector (X) such that

(A.61) lim (X)T - (X)
T-~

in the sence that

(A.62) tl n~ 0, S T~ 0:

tlt~T Ixt-XtT~ ~n
.

Let (X) satisfy (A.61) and (A.62) then follows from the uniform continuity
of NR and NR,r

(A.63) tl e1 ~ 0, de 2~ 0 S T~ 0:

d t ~ T I NR(Xt) - NR(Xt~T)~ ~ e1

and ~~T(~) - --'1'(~,T)I ~ E2

From (A.63) follows that (X) defined in (A.61) and (A.62) satis-
fies the definition (A.60) so that (X) is an optimal solution of the
infinite horizon problem.
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That (X) defined in (A.61) and (A.62) satisfies (A.60) follows
from: choose an (Y.), then for each T~ 0

T Tt1 T Ct1
(A.64) E Bt NR(Xt~T) t s-s NRT(XT~T) ? E St NR(Xt) ts NRT(XTJ

t-1 t-1

where (X)T -(X1 T, X2 T,....,Xt T,...) is the optimal solution for the~ ~ ~
problem with horizon T. Further follows from (A.61) and (A.63) that for
all e~ 0 and for all T~ 0, ~ T~ T:

Ttl Tt1
(A.65) ~(F.BtNR(Xt)t SRT(XT))-(EStNR(Xt~T)f '~-~RT(XT~T))~ ~ e

Combining (A.64) and (A.6j) we conclude that (X) -(X1, X2,...,Xt,...)
satisfies (A.,60).
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