Tilburg University

Central limit theorems for sequences with $\mathbf{M}(\mathbf{N})$-dependent main part

Nieuwenhuis, G.

Publication date:
1990

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Nieuwenhuis, G. (1990). Central limit theorems for sequences with M(N)-dependent main part. (Research Memorandum FEW). Faculteit der Economische Wetenschappen.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

7626 1990

CENTRAL LIMIT THEOREMS FOR SEQUENCES WITH M(N)-DEPENDENT MAIN PART

Gert Nieuwenhuis

FEW 430

R81
518.8
518.9

CENTRAL LIMIT THEOREMS FOR SEQUENCES WITH M(N)-DEPENDENT MAIN PART

Gert Nieuwenhuis
Tilburg University, Vakgroep Econometrie, Hogeschoollaan 225, NL-5000 LE Tilburg, The Netherlands

Summary. Let $\left(X_{i}^{(n)} ; n \in N, 1 \leq i \leq h(n)\right)$ be a double sequence of random variables with $h(n) \rightarrow \infty$ as $n \rightarrow \infty$. Suppose that the sequence can be split into two parts: an $m(n)$-dependent sequence $\left(X_{i, m(n)} ; n \in \mathbb{N}, 1 \leq i \leq h(n)\right)$ of main terms and a sequence $\left(\bar{X}_{i, m(n)} ; n \in \mathbb{N}, 1 \leq i \leq h(n)\right)$ of residual terms. Here $(m(n))$ may be unbounded in N. Adding some conditions, especially on the residual terms, we consider central limit theorems for $\left(X_{i}^{(n)}\right)$ based on a theorem for $m(n)$-dependent sequences: The results are of special interest when score functions are involved, for instance in rankbased procedures.

AMS 1980 subject classifications. Primary 60F05; secondary 62M10
Key words and phrases. Central limit theorems, $m(n)$-dependence, decomposable processes

1. Introduction; statement of the model

A (triangular) array $\left(Y_{i}^{(n)}\right)$ in R is a double sequence $\left(Y_{i}^{(n)} ; n \in \mathbb{N}, 1 \leq i \leq h(n)\right.$) of random variable (rv's) in \mathbb{R} with $h(n) \rightarrow \infty$ as $n \rightarrow \infty$. It will be assumed that the rv's which belong to the same row of the triangle are defined on a common probability space. The array is called $m(n)$-dependent if for all $n \in N$ and $k \in\{2, \ldots, h(n)-m(n)\}$ the random vectors $\left(Y_{i}^{(n)} ; 1 \leq i \leq k-1\right)$ and $\left(Y_{j}^{(n)} ; m(n)+k \leq j \leq h(n)\right)$ are independent. Here $(m(n))$ is a sequence in N_{0}.
In Berk (1973) a central limit theorem for $m(n)$-dependent arrays (possibly with $(m(n))$ unbounded) is proved. We are especially interested in the limit behavior of arrays for which only a main part is $m(n)$-dependent.

A triangular array $\left(X_{i}^{(n)}\right)$ is said to have an $m(n)$-dependent main part $\left(X_{i, m(n)}\right)$ and a residual part $\left(\bar{X}_{i, m(n)}\right)$ if
(1.1) $\quad X_{i}^{(n)}=X_{i, m(n)}+\bar{X}_{i, m(n)}$ for all $n \in N$ and $i \in\{1, \ldots, h(n)\}$ and
(1.2) $\quad\left(X_{i, m(n)}\right)$ is $m(n)$-dependent.

If, moreover,
(1.3) $\max _{1 \leq i \leq h(n)} P\left[\left|\bar{X}_{i, m(n)}\right| \geq \varepsilon\right] \rightarrow 0$ for all $\varepsilon>0$,
then the array $\left(X_{i}^{(n)}\right)$ will be called decomposable. In most part of this research it will even be assumed that $\left(X_{i}^{(n)}\right)$ satisfies an $(\varepsilon(n), \delta(n))$ condition, i.e. that $(m(n))$ can be chosen such that (at least for $n \geq n_{0}$)

$$
\begin{equation*}
\max _{1 \leq i \leq h(n)} P\left[\left|\bar{X}_{i, m(n)}\right| \geq \varepsilon(n)\right] \leq \delta(n) \tag{1.4}
\end{equation*}
$$

for some sequences $(\varepsilon(n))$ and $(\delta(n))$ in $(0, \infty)$ tending to 0 as $n \rightarrow \infty$. Decomposability was first introduced in Chanda, Puri \& Ruymgaart (1989). The concept was defined in this reference under the additional condition (not assumed in the present research) that the $X_{i}^{(n)}$, as well as the $X_{i, m(n)}$, are identically distributed.

In the above reference linear processes (e.g. ARMA-processes) and (non-linear) processes with Volterra expansions of a given finite order (Priestley (1981)) are mentioned as examples of decomposable processes which (with certain assumptions) satisfy an $(\varepsilon(n), \delta(n))$-condition. In the next example we will consider special decomposable processes generated by a given decomposable process.

Example 1.1. For each $n \in \mathbb{N}$ let X_{1}, \ldots, X_{n} be n successive observations from a decomposable time series $\left(X_{i}\right)$ satisfying an $(\varepsilon(n), \delta(n))$-condition for some sequences $(\varepsilon(n))$ and $(\delta(n))$. Suppose that the X_{i} are identically distributed with continuously differentiable distribution function F (independent of n) with bounded derivative f. The $r v ' s X_{1, m(n)}, \ldots, X_{n, m(n)}$ have a common d.f. $F_{m(n)}$. Set $\xi_{i, m(n)}:=F\left(X_{i, m(n)}\right)$, i $\in\{1, \ldots, n\}$. By the mean value theorem we obtain:

$$
\xi_{i}=\xi_{i, m(n)}+\bar{X}_{i, m(n)} f\left(X_{i, m(n)}+\theta_{n} \bar{X}_{i, m(n)}\right)
$$

Here $\theta_{n} \in(0,1)$ is random. So, $\left(\xi_{i}\right)$ is also decomposable with residual part given by $\bar{\xi}_{i, m(n)}:=\bar{X}_{i, m(n)} f\left(X_{i, m(n)}+\theta_{n} \bar{X}_{i, m(n)}\right)$. Note that $\left|\bar{\xi}_{i, m(n)}\right| \leq A\left|\bar{X}_{i, m(n)}\right| \quad w . p .1$. Hence, $\left(\xi_{i}\right)$ satisfies the $(\tilde{\varepsilon}(n), \zeta(n))$-condition with $\tilde{\varepsilon}(n):=A \varepsilon(n)$ and $\delta(n):=\delta(n)$.

Let, furthermore, $R_{i, n}$ be the rank of X_{i} in the sample X_{1}, \ldots, X_{n}. Decompose the array $\left(R_{i, n} / n\right)$ as follows:

$$
\hat{\Gamma}_{n}\left(\xi_{i}\right)=\frac{R_{i, n}}{n}=\xi_{i, m(n)}+\left[\frac{R_{i, n}}{n}-\xi_{i, m(n)}\right] .
$$

Here $\hat{\Gamma}_{n}$ is the empirical distribution function of ξ_{1}, \ldots, ξ_{n}. Let U_{n} with $U_{n}(t):=\sqrt{n}\left(\hat{\Gamma}_{n}(t)-t\right), t \in[0,1]$, be the (reduced) empirical process and define

$$
\Omega_{\mathrm{n}}:=\left[\max _{1 \leq \mathrm{i} \leq \mathrm{n}}\left|\bar{x}_{\mathrm{i}, \mathrm{~m}(\mathrm{n})}\right| \leq \varepsilon(\mathrm{n})\right] .
$$

Then $P\left(\Omega_{n}^{c}\right) \leq n \delta(n)$. If $\varepsilon^{\prime}(n)$ is chosen such that $\varepsilon(n) / \varepsilon^{\prime}(n) \rightarrow 0$, then we have for $n \geq n_{0}$:

$$
\begin{aligned}
& P\left[\left|\frac{R_{i, n}}{n}-\xi_{i, m(n)}\right| \geq \varepsilon^{\prime}(n)\right] s \\
& \leq P\left[\left|\hat{\Gamma}_{n}\left(\xi_{i}\right)-\xi_{i}\right| \geq \frac{1}{2} \varepsilon^{\prime}(n)\right]+P\left[\left|\bar{\xi}_{i, m(n)}\right| \geq \frac{1}{2} \varepsilon^{\prime}(n)\right] \\
& \leq P\left[\sup _{0 \leq t \leq 1}\left|U_{n}(t)\right| \geq \frac{1}{2} \sqrt{n} \varepsilon^{\prime}(n)\right]+\delta(n) \\
& \leq P\left(\Omega_{n} \cap\left[\sup _{0 \leq s<t \leq 1}\left|U_{n}(t)-U_{n}(s)\right| \geq \frac{1}{2} \sqrt{n} \varepsilon^{\prime}(n)\right]+(n+1) \delta(n)\right. \\
& =: \mathscr{P}_{n}+(n+1) \delta_{n} .
\end{aligned}
$$

According to Nieuwenhuis \& Ruymgaart (1989; Th. 2.1) there exists an exponential upper bound for \mathcal{P}_{n}, provided that $\delta(n) / \varepsilon^{\prime}(n) \rightarrow 0, \varepsilon(n) / \varepsilon^{\prime}(n) \rightarrow 0$ and $\left(X_{i}\right)$ is a linear process. The generalization of this theorem to more general decomposable processes is, however, straightforward and will not be proved here. Consequently,

$$
\begin{equation*}
\mathcal{P}_{\mathrm{n}} \leq \mathrm{Cm}(\mathrm{n}) \exp \left(-A \sigma_{\mathrm{n}} \psi\left(\mathrm{~B} \tau_{\mathrm{n}}\right)\right), \tag{1.5}
\end{equation*}
$$

if $\delta(n) / \varepsilon^{\prime}(n) \rightarrow 0$ and $\varepsilon(n) / \varepsilon^{\prime}(n) \rightarrow 0$. Here $\sigma_{n}:=n\left(\varepsilon^{\prime}(n)\right)^{2} / m(n)$, $\tau_{\mathrm{n}}:=\varepsilon^{\prime}(\mathrm{n})$ and ψ is some decreasing and continuous function on $[-1, \infty)$ for which $\psi(x) \downarrow 0$ as $x \uparrow \infty$. (cf. Shorack \& Wellner (1986)). Next assume that $\varepsilon(n)=\theta\left(n^{-\eta}\right), \quad \delta(n)=\sigma\left(n^{-\eta_{1}}\right), \quad \varepsilon^{\prime}(n)=\sigma\left(n^{-\eta^{\prime}}\right), \quad \delta^{\prime}(n)=\theta\left(n^{-\eta_{1}^{\prime}}\right) \quad$ and $m(n)=\left[\mathrm{cn}^{\rho}\right]$ for some $c \in(0, \infty)$ and $p \in(0,1)$. Then the upper bound in (1.5) tends to 0 exponentially fast provided that $0<\eta^{\prime}<\frac{1}{2}-\frac{1}{2} \rho$. Consequently, the array $\left(R_{i, n} / n\right)$ is decomposable and satisfies the $\left(\varepsilon^{\prime}(n)\right.$, $\left.\delta^{\prime}(n)\right)$-condition if η^{\prime} and η_{1}^{\prime} are such that $0<\eta^{\prime}<\min \left\{\eta, \frac{1}{2}-\frac{1}{2} \rho\right\}$ and $0<\eta_{1}^{\prime}<\eta_{1}-1$. It should also be assumed here that $0<\rho<1$ and $\eta_{1}>1$. This decomposability of ($\mathrm{R}_{\mathrm{i}, \mathrm{n}} / \mathrm{n}$) might be interesting. Unfortunately the condition that η^{\prime} should be between 0 and $\frac{1}{2}-\frac{1}{2} \rho$ is rather strong. a

According to Chanda, Puri \& Ruymgaart (1989) decomposability might be an alternative to the classical mixing concepts. The definition in (1.1) - (1.3) is such that it might provide a useful model to many practical situations, especially when (1.4) is also assumed.

That is why it is worthwhile to consider the asymptotic behavior of decomposable processes. In this monograph conditions will be presented which guarantee asymptotic normality of the partial sums (if suitably standardized) of such processes. Berk's theorem for $m(n)$-dependent rv's will be the guide to this research.

In Section 2 some classical results will be generalized. Berk's CLT (central limit theorem) for $m(n)$-dependent $r v^{\prime} s$ and a well-known CLT for linear processes generated by an i.i.d. sequence (cf. e.g. Anderson (1971; Th. 7.7.8)) are generalized to a CLT for arrays with $m(n)$-dependent main part. It is proved that, when compared to the CLT for linear processes, the resulting theorem is an almost generalization, since it is additionally needed that the $(2+\delta)$-th absolute moment of the generating rv's exists.

In Section 3 things are simplified by considering decomposable arrays with bounded residual part satisfying an $(\varepsilon(n), \delta(n))$-condition. A CLT for such arrays is proved. Some remarks are made about asymptotic normality for the partial sums of arrays like $\left(f_{n}\left(X_{i}^{(n)}\right)\right.$) or $\left(f_{n}\left(X_{i}^{(n)}\right) g_{n}\left(Y_{i}^{(n)}\right)\right)$ if $\left(X_{i}^{(n)}\right)$ and $\left(Y_{i}^{(n)}\right)$ are decomposable and satisfy an $(\varepsilon(n), \delta(n))$-condition. Here f_{n} and g_{n} are functions for which Lipschitz-conditions hold.
Some applications are considered in Section 4. The first example is about a stationary, decomposable sequence $\left(X_{i}\right)$ of $\operatorname{Un}(0,1)$ rv's satisfying an $(\varepsilon(n), \delta(n))$-condition. It is assumed that $\left(X_{1}, X_{1+h}\right)$ is positively quadrant dependent in the sense of Lehmann (1966). A central limit result can be derived for the partial sums of an array $\left(J_{n}\left(X_{i}\right)\right)$. Here $\left(J_{n}\right)$ is some sequence of (score) functions. Some special, not strongly mixing, sequence with Un $(0,1)$ marginals is considered, which satisfies the above conditions. In the second example asymptotic normality of a class of serial rank statistics is studied. Result of Nieuwenhuis \& Ruymgaart (1989) are considered within the scope of the present research.

Remark. Throughout this paper $A, A^{\prime}, B, B^{\prime}, C, C^{\prime} \in(0, \infty)$ will be used as generic constants. They are independent of all the relevant parameters (like e.g. the sample size n). Expressions in n are sometimes valid for $n \geq n_{0}$ only, without mention. Here n_{0} does not depend on the relevant parameters either.

2. Generalization of some classical results

Limit theorems for linear processes are classical and well-known (Marsaglia (1954), Parzen (1957), Anderson (1971; Th. 7.7.8), Brockwell \& Davies (1987; Prop. 6.3.10)). They have been a motivation to the present research.

Theorem 2.1. Let $\left(X_{i}\right)$ be the two-sided moving average

$$
\begin{equation*}
X_{i}=\sum_{k \in \mathbb{Z}} g_{k}^{Z} i_{i-k}, \quad i \in \mathbf{Z} \tag{2.1}
\end{equation*}
$$

where $\left(Z_{j}\right)$ is a sequence of independently and identically distributed rv's with $E\left(Z_{j}\right)=0$ and $E\left(Z_{j}^{2}\right)=\sigma^{2}$. Suppose further that $\Sigma_{k \in Z}\left|g_{k}\right|<\infty$. Then $\sum_{i=1}^{n} X_{i} / \sqrt{n}$ has a limiting normal distribution with mean 0 and variance $\Sigma_{k \in Z^{\sigma}}(k)$, where $\sigma(k)=\sigma^{2} \Sigma_{s \in Z^{\prime}} g_{s+k}$.

This theorem is usually proved by splitting X_{i} into two terms (cf. e.g. Anderson (1971)) :

$$
X_{i}=\sum_{|k| \leq \frac{1}{2} m} g_{k} Z_{i-k}+\sum_{|k|>\frac{1}{2} m} g_{k} Z_{i-k}=: X_{i, m}+\bar{X}_{i, m}, i \in Z,
$$

where $m \in N$ is fixed, i.e. does not depend on n, the number of observations. The resulting sequence $\left(X_{i, m}\right){ }_{i \in Z}$ is m-dependent.
Relation (1.1) is a generalization of this idea, apart from the fact that here m depends on n. So, it is natural to consider the limit behavior of arrays $\left(X_{i}^{(n)}\right)$ with $m(n)$-dependent main part. At first we need a limit theorem for $m(n)$-dependent sequences (Berk (1973)).

Theorem 2.2. Let $\left(Y_{i}^{(n)}\right)$ be a triangular array of random variables with $h(n) \rightarrow \infty$ as $n \rightarrow \infty$. Suppose that this array is $m(n)$-dependent and is standardized such that $\operatorname{Var}\left(\sum_{i=1}^{h(n)} Y_{i}^{(n)}\right) \rightarrow 1$. Assume further that
(a) $\quad \max _{1 \leq i \leq h(n)} \mathbb{E}\left|Y_{i}^{(n)}\right|^{2+\delta}=O\left[\frac{1}{h(n)^{1+\delta / 2}}\right]$ and $\frac{m(n)^{2+2 / \delta}}{h(n)} \rightarrow 0$

```
for some \delta > 0;
```

(b)

$$
\max _{i<j \leq h(n)} \frac{1}{j-i} \operatorname{Var}\left[\sum_{k=i+1}^{j} Y_{k}^{(n)}\right]=\theta\left[\frac{1}{h(n)}\right]
$$

Then

$$
\sum_{i=1}^{n(n)}\left(Y_{i}^{(n)}-\mathbb{E} Y_{i}^{(n)}\right) \rightarrow_{d} N(0,1) \text { as } n \rightarrow \infty .
$$

The above theorem can straightforwardly be extended to a limit theorem for sequences with $m(n)$-dependent main part.

Theorem 2.3. Suppose that the array $\left(X_{i}^{(n)}\right.$) has an $m(n)$-dependent main part $\left(X_{i, m(n)}\right)$ and a residual part $\left(\bar{X}_{i, m(n)}\right)$. Set $b_{n}^{2}:=\operatorname{Var}\left(\sum_{i=1}^{h(n)} X_{i}^{(n)}\right)$. Assume that
(a) $\max _{1 \leq i \leq h(n)} \frac{\mathbb{E}\left|X_{i}^{(n)}\right|^{2+\delta}}{b_{n}^{2+\delta}}=\sigma\left[\frac{1}{n(n)^{1+\delta / 2}}\right]$,

$$
\max _{1 \leq i \leq h(n)} \frac{\mathbb{E}\left|\bar{X}_{i, m(n)}\right|^{2+\delta}}{b_{n}^{2+\delta}}=\theta\left[\frac{1}{h(n)^{1+\delta / 2}}\right] \text {, and }
$$

$$
\frac{m(n)^{2+2 / \delta}}{h(n)} \rightarrow 0 \text { for some } \delta>0
$$

(b) $\quad \max _{i<j \leq h(n)} \frac{1}{(j-i) b_{n}^{2}} \operatorname{Var}\left[\sum_{k=i+1}^{j} X_{k}^{(n)}\right]=O\left[\frac{1}{h(n)}\right]$ and

$$
\max _{i<j \leq h(n)} \frac{1}{(j-i) b_{n}^{2}} \operatorname{Var}\left[\sum_{k=i+1}^{j} \bar{X}_{k, m(n)}\right]=o\left[\frac{1}{h(n)}\right] .
$$

Then
(2.2) $\frac{1}{b_{n}} \sum_{i=1}^{h(n)}\left(X_{i}^{(n)}-\boldsymbol{E X}{ }_{i}^{(n)}\right) \rightarrow_{d} N(0,1)$ as $n \rightarrow \infty$.

Proof. Since
(2.3)

$$
\begin{array}{r}
\frac{1}{b_{n}} \sum_{i=1}^{h(n)}\left(X_{i}^{(n)}-\mathbb{E X}_{i}^{(n)}\right)=\frac{1}{b_{n}} \sum_{i=1}^{h(n)}\left(X_{i, m(n)}-\mathbb{E X}_{i, m(n)}\right)+ \\
\\
\quad+\frac{1}{b_{n}} \sum_{i=1}^{h(n)}\left(\bar{X}_{i, m(n)}-\mathbb{E}_{i, m(n)}\right)
\end{array}
$$

and
a consequence of Assumption (b), we only have to prove the asymptotic normality of the first part on the right in (2.3). So, we want to apply Theorem 2.2 to the double sequence $\left(X_{i, m(n)} / b_{n}\right)$. Note that
(2.4) $\quad \operatorname{Var}\left[\sum_{i=1}^{h(n)} \frac{X_{i, m(n)}}{b_{n}}\right]=\frac{1}{b_{n}^{2}} \operatorname{Var}\left[\sum_{i=1}^{h(n)} X_{i}^{(n)}\right]+o(1)+$

$$
-\frac{2}{b_{n}^{2}} \operatorname{Cov}\left[\sum_{i=1}^{h(n)} X_{i}^{(n)}, \sum_{j=1}^{h(n)} \bar{X}_{j, m(n)}\right)
$$

The absolute value of the covariance-term in (2.4) is dominated by

$$
\left[\frac{\operatorname{Var}\left[\sum_{i=1}^{h(n)} x_{i}^{(n)}\right]}{b_{n}^{2}} \cdot \frac{\operatorname{Var}\left[\sum_{i=1}^{h(n)} \bar{x}_{i, m(n)}\right]}{b_{n}^{2}}\right]^{1 / 2}=\left[\frac{1}{b_{n}^{2}} \operatorname{Var}\left[\sum_{i=1}^{h(n)} \bar{x}_{i, m(n)}\right]\right]^{1 / 2}
$$

which tends to o by Assumption (b). Hence (2.4) tends to 1. Condition (b) in Theorem 2.2 for $Y_{k}^{(n)}=X_{k, m(n)} / b_{n}$ follows by similar arguments, while (a) is an immediate consequence of Minkovski's inequality:

$$
\mathbb{E}\left|x_{i, m(n)} / b_{n}\right|^{2+\delta} \leq\left\{\left(\mathbb{E}\left|x_{i}^{(n)} / b_{n}\right|^{2+\delta}\right)^{1 /(2+\delta)}+\right.
$$

$$
\left.+\left(\mathbb{E}\left|\overline{\mathrm{x}}_{i, \mathrm{~m}(\mathrm{n})} / \mathrm{b}_{\mathrm{n}}\right|^{2+\delta}\right)^{1 /(2+\delta)}\right\}^{2+\delta} .
$$

Application of Theorem 2.2 yields Relation (2.2). व

It would be nice to find out that Theorem 2.3 is indeed a generalization of Theorem 2.1. Unfortunately, it is only an 'almost' generalization. In fact, Theorem 2.1 is a corollary of Theorem 2.3 if it is additionally assumed that $E\left(Z_{1}^{2+\delta}\right)<\infty$ for some $\delta>0$. To prove this observation we choose δ as above and $m(n)$ such that $m(n)^{2+2 / \delta / n \rightarrow 0 \text {. Set } x_{i}^{(n)}:=, ~=~}$ $n^{-1 / 2} x_{i}$, where $\left(X_{i}\right)$ is the observed linear process. Note that $b_{n}^{2}=$ $n^{-1} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$
and that

$$
\frac{1}{j-i} \operatorname{Var}\left[\sum_{k=1}^{j-i} X_{k}\right]=\underset{h=-(j-i-1)}{j-i-1}\left(1-\frac{|h|}{j-i}\right) \sigma(h),
$$

where

$$
\sigma(h):=\operatorname{Cov}\left(X_{1}, X_{1+h}\right)=\sigma_{k \in \mathbb{Z}}^{2} \sum_{k \in h} g_{k+h} .
$$

Hence $(j-i)^{-1} \operatorname{Var}\left(\Sigma_{k=1}^{j-i} X_{k}\right) \rightarrow \Sigma_{h \in Z} \sigma(h)=\sigma^{2}\left(\Sigma_{k \in Z^{\prime}} g_{k}\right)^{2}$ as $j-i \rightarrow \infty$.
Write $X_{i}=Y_{i, m(n)}+\bar{Y}_{i, m(n)}$, where

$$
Y_{i, m(n)}:=\Sigma_{|k| \leq m(n) / 2} g_{k} Z_{i-k} \text { and } \bar{Y}_{i, m(n)}:=X_{i}-Y_{i, m(n)} .
$$

Set $\bar{X}_{i, m(n)}:=n^{-1 / 2} \bar{Y}_{i, m(n)}$. Then

$$
\begin{aligned}
\frac{1}{j-i} \operatorname{Var}\left[\sum_{k=1}^{j-i} \bar{Y}_{k, m(n)}\right] & \leq \sum_{h \in Z}^{\sum}\left|\operatorname{Cov}\left(\bar{Y}_{1, m(n)}, \bar{Y}_{1+h, m(n)}\right)\right| \\
& \leq \sigma^{2} \sum_{h \in Z} \sum_{|k|>m(n) / 2}^{\sum|\ell|>m(n) / 2} \underset{l=k+h}{\sum}\left|g_{k}\right|\left|g_{\ell}\right| \\
& =\sigma^{2}\left(\underset{|k|>m(n) / 2}{\sum}\left|g_{k}\right|\right)^{2} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

uniformly in i and j with $i<j s n$.
From these observations it can easily be deduced that ($X_{i}^{(n)}$) and ($\bar{X}_{i, m(n)}$) satisfy Assumption (b) in Theorem 2.3. The relations in (a) are also fulfilled, since $n^{-1} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$ tends to some constant >0 (see above) and since (Minkovski's inequality):

$$
\begin{aligned}
& \mathbb{E}\left|Y_{i, m(n)}\right|^{2+\delta} \leq\left(\underset{|k| \leq m(n) / 2}{\sum}\left|g_{k}\right|\right)^{2+\delta} \mathbb{E}\left|Z_{i}\right|^{2+\delta}, \\
& \mathbb{E}\left|\bar{Y}_{i, m(n)}\right|^{2+\delta} \leq\left[\left(\mathbb{E}\left|X_{i}\right|^{2+\delta}\right)^{1 /(2+\delta)}+\left(\mathbb{E}\left|Y_{i, m(n)}\right|^{2+\delta}\right)^{1 /(2+\delta)}\right]^{2+\delta}
\end{aligned}
$$

and (Fatou's lemma)

$$
\begin{aligned}
\mathbb{E}\left|X_{i}\right|^{2+\delta} & \leq \underset{n \rightarrow \infty}{\liminf } \mathbb{E}\left|Y_{i, m(n)}\right|^{2+\delta} \\
& \leq\left(\sum_{k \in \mathbb{Z}}\left|g_{k}\right|\right)^{2+\delta} \mathbb{E}\left|Z_{1}\right|^{2+\delta}<\infty .
\end{aligned}
$$

3. CLT's for decomposable arrays with bounded residual part

In Section 2 it was not explicitly assumed that $\bar{X}_{i, m(n)} \rightarrow 0$ in probability. From now on we will do so. In fact we even assume that $\left(X_{i}^{(n)}\right)$ is decomposable and that it satisfies an $(\varepsilon(n), \delta(n))$-condition (1.4) for some sequences $(\varepsilon(n))$ and $(\delta(n))$. We intend to simplify Theorem 2.3 under additional assumptions on the process $\left(X_{i}^{(n)}\right)$. At first we assume that $s(n)>0$ exist such that

$$
\begin{equation*}
\max _{1 \leq i \leq h(n)}\left|\bar{x}_{i, m(n)}\right| \leq s(n) \text { wp1. } \tag{3.1}
\end{equation*}
$$

As a consequence of (3.1) we obtain for $\gamma>0$:

$$
\begin{align*}
\mathbb{E}\left|\bar{x}_{i, m(n)}\right|^{\gamma} & \left.=\int_{0}^{\infty} P\left[\left|\bar{x}_{i, m(n)}\right|^{\gamma}\right\rangle x\right] d x=\int_{0}^{\varepsilon(n)}+\int_{\varepsilon(n)^{\gamma}}^{s(n)^{\gamma}} \\
& \leq \varepsilon(n)^{\gamma}+s(n)^{\gamma} \delta(n) . \tag{3.2}
\end{align*}
$$

uniformly in i $\in\{1, \ldots, h(n)\}$.

Theorem 3.1. Suppose that $\left(X_{i}^{(n)}\right)$ is decomposable and satisfies an $(\varepsilon(n), \delta(n))$-condition with
(3.3) $\frac{h(n) \varepsilon(n)}{b_{n}} \rightarrow 0 \quad$ and $\quad \frac{h(n)^{2} s(n)^{2} \delta(n)}{b_{n}^{2}} \rightarrow 0$,
where $b_{n}^{2}:=\operatorname{Var}\left(\sum_{i=1}^{h(n)} X_{i}^{(n)}\right)$. Assume that (3.1) is fulfilled and that
(a) $\max _{1 \leq i \leq h(n)} \frac{\boldsymbol{E}\left|X_{i}^{(n)}\right|^{2+\delta}}{b_{n}^{2+\delta}}=\theta\left[\frac{1}{h(n)^{1+\delta / 2}}\right], \frac{m(n)^{2+2 / \delta}}{h(n)} \rightarrow 0$ and $\frac{h(n) s(n)^{2} \delta(n)^{2 /(2+\delta)}}{\mathrm{b}_{\mathrm{n}}^{2}}=\sigma(1)$ for some $\delta>0$;
(b) $\max _{i<j \leq h(n)} \frac{1}{(j-i) b_{n}^{2}} \operatorname{Var}\left[\sum_{k=i+1}^{j} X_{k}^{(n)}\right]=O\left[\frac{1}{h(n)}\right]$.

Then

$$
\frac{1}{b_{n}} \sum_{i=1}^{n(n)}\left(X_{i}^{(n)}-\operatorname{EX}_{i}^{(n)}\right) \rightarrow_{d} N(0,1) \text { as } n \rightarrow \infty
$$

Proof. By Relation (3.2) we have:

$$
\begin{aligned}
& \frac{h(n)^{1+\delta / 2} \mathbb{E}\left|\bar{x}_{i, m(n)}\right|^{2+\delta}}{b_{n}^{2+\delta}} \leq c \frac{h(n)^{1+\delta / 2}\left(\varepsilon(n)^{2+\delta}+s(n)^{2+\delta} \delta(n)\right)}{b_{n}^{2+\delta}}=\sigma(1), \\
& \frac{h(n)}{(j-i) b_{n}^{2}} \operatorname{Var}\left[\sum_{k=i+1}^{j} \bar{x}_{k, m(n)}\right] \leq \frac{h(n)}{(j-i) b_{n}^{2}} \mathbb{E}\left[\sum_{k=i+1}^{j} \bar{X}_{k, m(n)}\right]^{2}, \\
& \leq \frac{h(n)}{b_{n}^{2}}(j-i)\left(\varepsilon(n)^{2}+s(n)^{2} \delta(n)\right)
\end{aligned}
$$

$$
s c \frac{h(n)^{2}}{b_{n}^{2}}\left(\varepsilon(n)^{2}+s(n)^{2} \delta(n)\right) \rightarrow 0
$$

Apply Theorem 2.3. व

In many relevant cases liminf $\mathrm{b}_{\mathrm{n}}^{2} / \mathrm{h}(\mathrm{n})>0$, cf. Ibragimov \& Linnik (1971; Th. 18.2.1)). Then Condition (3.3) and the last part of (a) are satisfied if $\varepsilon(n)=\theta\left(h(n)^{-\eta}\right)$ and $\delta(n)=\sigma\left(h(n)^{-\eta}\right.$, with $\eta>\frac{1}{2}$ and η_{1} such that $h(n)^{1-\eta_{1}} s(n)^{2} \rightarrow 0$.

Next consider a sequence of functions (f_{n}) for which $\sigma \in R$ exists such that

$$
\begin{equation*}
\left|f_{n}(x)-f_{n}(y)\right| \leq \operatorname{Ah}(n)^{\sigma}|x-y| \tag{3.4}
\end{equation*}
$$

uniformly in $x, y \in R$. Note that this inequality is a Lipschitz condition. Continuously differentiable functions f_{n} with derivative bounded by $A h(n){ }^{\sigma}$ satisfy this condition.
Suppose that $\left(X_{i}^{(n)}\right)$ is decomposable with $X_{i}^{(n)}=X_{\left(\frac{i}{n}\right) m(n)}+\bar{X}_{i, m(n)}$ and satisfies the $(\varepsilon(n), \delta(n))$-condition. The array $\left(f_{n}\left(X_{i}^{\left(\frac{1}{n}\right)}\right)\right)$) can be decomposed as follows:

$$
f_{n}\left(X_{i}^{(n)}\right)=f_{n}\left(X_{i, m(n)}\right)+\bar{Y}_{i, m(n)}
$$

where $\bar{Y}_{i, m(n)}:=f_{n}\left(X_{i}^{(n)}\right)-f_{n}\left(X_{i, m(n)}\right)$. By (3.4) we obtain:

$$
\begin{aligned}
P\left[\left|\bar{Y}_{i, m(n)}\right| \geq \tilde{\varepsilon}(n)\right] & \leq P\left[\left|\bar{X}_{i, m(n)}\right| \geq A^{-1} h(n)^{-\sigma \tilde{\varepsilon}(n)]}\right. \\
& \leq \delta(n)=\zeta(n),
\end{aligned}
$$

if $\tilde{\varepsilon}(n):=A \varepsilon(n) h(n)^{\sigma}$ and $\zeta(n):=\delta(n)$. So, $\left(f_{n}\left(X_{i}^{(n)}\right)\right)$ is decomposable and satisfies the $(\tilde{\varepsilon}(n), \zeta(n))$-condition if $(\varepsilon(n))$ and σ are such that $\varepsilon(\mathrm{n}) \mathrm{h}(\mathrm{n})^{\sigma} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.
The following corollary follows immediately from Theorem 3.1.

Corollary 3.2. Let (f_{n}) be a sequence of functions for which (3.4) holds. Let $\left(X_{i}^{(n)}\right.$) be decomposable, satisfying an $(\varepsilon(n), \delta(n))$-condition with $(\varepsilon(n))$ and $(\delta(n))$ such that $h(n)^{\sigma} \varepsilon(n) \rightarrow 0$,

$$
\begin{equation*}
\frac{h(n)^{1+\sigma} \varepsilon(n)}{b_{n}} \rightarrow 0 \quad \text { and } \quad \frac{h(n)^{2} t(n)^{2} \delta(n)}{b_{n}^{2}} \rightarrow 0 \tag{3.5}
\end{equation*}
$$

where $b_{n}^{2}:=\operatorname{Var}\left(\sum_{i=1}^{h(n)} f_{n}\left(X_{i}^{(n)}\right)\right.$ and $(t(n))$ is such that

$$
\begin{equation*}
\left|f_{n}\left(X_{i}^{(n)}\right)-f_{n}\left(X_{i, m(n)}\right)\right| \leq t(n) \omega p 1 . \tag{3.6}
\end{equation*}
$$

Assume also that
(a) $\max _{1 \leq i \leq h(n)} \frac{\boldsymbol{E}\left|\rho_{n}\left(X_{i}^{(n)}\right)\right|^{2+\delta}}{b_{n}^{2+\delta}}=\sigma\left[\frac{1}{h(n)^{1+\delta / 2}}\right], \quad \frac{m(n)^{2+2 / \delta}}{h(n)} \rightarrow 0$ and

$$
\frac{h(n) t(n)^{2} \delta(n)^{2 /(2+\delta)}}{b_{n}^{2}}=\sigma(1) \text { for some } \delta>0
$$

(b) $\quad \max _{i<j \leq h(n)} \frac{1}{(j-i) b_{n}^{2}} \operatorname{Var}\left[\sum_{k=i+1}^{j} f_{n}\left(X_{k}^{(n)}\right)\right]=\theta\left[\frac{1}{h(n)}\right]$.

Then

$$
\frac{1}{b_{n}} \sum_{i=1}^{h(n)}\left(f_{n}\left(X_{i}^{(n)}\right)-\mathbb{E} f_{n}\left(X_{i}^{(n)}\right)\right) \rightarrow_{d} N(0,1) \text { as } n \rightarrow \infty .
$$

In view of Condition (3.5) and the last part of (a) it is desirable to choose σ and $t(n)$ as small as possible.
If the residual part of $\left(X_{i}^{(n)}\right)$ satisfies (3.1), then (3.6) is fulfilled with $t(n)=\operatorname{Ah}(n)^{\sigma} s(n)$. If each of the functions $\left|f_{n}\right|$ is bounded by a positive number v_{n}, then (3.6) is also fulfilled (with $t(n)=2 v_{n}$).

Theorem 3.2 can be generalized in several ways by considering more decomposable arrays and/or more sequences of functions satisfying (3.4). For instance, suppose that apart from $\left(\mathrm{f}_{\mathrm{n}}\right)$ there is another sequence $\left(\mathrm{g}_{\mathrm{n}}\right)$ of functions satisfying (3.4) (with σ and A replaced by τ and A^{\prime}). Suppose
also that $\left|f_{n}(x)\right| \leq B h(n){ }^{\sigma_{0}}$ and $\left|g_{n}(y)\right| \leq B^{\prime} h(n){ }^{\tau_{0}}$ for all $x, y \in R$. Then we have for $x, y, a, b \in R$:

$$
\begin{align*}
\left|f_{n}(x) g_{n}(y)-f_{n}(a) g_{n}(b)\right| & \leq\left|f_{n}(x) g_{n}(y)-f_{n}(x) g_{n}(b)\right|+ \tag{3.7}\\
& +\left|f_{n}(x) g_{n}(b)-f_{n}(a) g_{n}(b)\right| \\
& \leq \operatorname{Ch}(n)^{\mu}(|y-b|+|x-a|),
\end{align*}
$$

where $\mu:=\max \left\{\sigma_{0}+\tau, \tau_{0}+\sigma\right\}$. Consequently, $\left(f_{n}\left(X_{i}^{(n)}\right) g_{n}\left(X_{i+l}^{(n)}\right)\right)$ is again decomposable, and satisfies (3.1) and an $(\tilde{\varepsilon}(n), \zeta(n))$-condition if $h(n)^{\mu} \varepsilon(n) \rightarrow 0$. Here $\ell \in \mathbb{N}$ is fixed. Set

$$
b_{n}^{2}:=\operatorname{Var}\left(\sum_{i=1}^{h(n)}-\ell_{f_{n}}\left(x_{i}^{(n)}\right) g_{n}\left(x_{i+l}^{(n)}\right)\right)
$$

Application of Theorem 3.1 yields a CLT for $\left(f_{n}\left(X_{i}^{(n)}\right) g_{n}\left(X_{i+l}^{(n)}\right)\right.$), provided that Condition (b) and the moment condition of (a) in Theorem 3.1 are satisfied with $\left(X_{i}^{(n)}\right)$ replaced by $\left(f_{n}\left(X_{i}^{(n)}\right) g_{n}\left(X_{i+l}^{(n)}\right)\right.$), and

$$
\begin{aligned}
& \frac{h(n)^{1+\mu} \varepsilon(n)}{b_{n}} \rightarrow 0, \quad \frac{h(n)^{2+2\left(\sigma_{0}+\tau_{0}\right)} \delta(n)}{b_{n}^{2}} \rightarrow 0 \\
& \frac{h(n)^{1+2\left(\sigma_{0}+\tau_{0}\right)} \delta(n)^{2 /(2+\delta)}}{b_{n}^{2}} \rightarrow 0
\end{aligned}
$$

Similar results can be obtained if more decomposable arrays are involved. Asymptotic normality is always derived as a corollary of Theorem 3.1 .

4. Some applications

In this section we will apply the results of Section 3 when some special decomposable processes are considered.

Example 4.1. Let $\left(X_{i}\right)$ be a stationary, decomposable sequence of $\operatorname{Un}(0,1)$ rv's satisfying an $(\varepsilon(n), \delta(n))$-condition with $m(n)=\left[\mathrm{cn}^{\rho}\right], \varepsilon(n)=\sigma\left(n^{-\eta}\right)$
and $\delta(n)=\theta\left(n^{-\eta_{1}}\right)$. Here $c \in(0, \infty), \rho \in(0,1 / 2)$ and $\eta, \eta_{1}>0$. It is assumed that for all $h \in N\left(X_{1}, X_{1+h}\right)$ is positively quadrant dependent, i.e.,

$$
G(x, y):=P\left[X_{1} \leq x ; X_{1+h} \leq y\right]-P\left[X_{1} \leq x\right] P\left[x_{1+h} \leq y\right] \geq 0
$$

for all $x, y \in(0,1)$ (cf. Lehmann (1966; p. 1137)). The score function J is defined by
(4.1) $J(x):=\frac{1}{(1-x)^{\alpha}}, \quad x \in(0,1)$,
where $0<\alpha<\frac{1}{2}$. Since $\mathbb{E J} J^{\prime}\left(X_{i}\right)$ does not exist, we will consider ($\left.J_{n}\left(X_{i}\right)\right)$ instead of $\left(J\left(X_{i}\right)\right)$, where
(4.2) $J_{n}(t):=J\left(\ell_{n}(t)\right)$ and $\ell_{n}(t):=n^{-\zeta}+\left(1-2 n^{-\zeta}\right) t, \quad t \in[0,1]$, for $\zeta>0$. We want to apply Corollary 3.2 to $\left(J_{n}\left(X_{i}\right)\right)$. First we note that (4.3) $\mathrm{J}_{\mathrm{n}}^{\prime}(\mathrm{t}) \leq \mathrm{Cn}^{\zeta(\alpha+1)}, \quad \mathrm{t} \in[0,1]$.

By the mean value theorem it is clear that $\left(J_{n}\right)$ satisfies (3.4) with $\sigma=\zeta(\alpha+1)$. Set $b_{n}^{2}:=\operatorname{Var}\left(\Sigma_{i=1}^{n} J_{n}\left(X_{i}\right)\right)$ and $\sigma_{n}(h):=\operatorname{Cov}\left(J_{n}\left(X_{1}\right), J_{n}\left(X_{1+h}\right)\right)$, $h \in\{1, \ldots, n-1\}$. Because of stationarity we have:

$$
b_{n}^{2}=n \operatorname{Var} J_{n}\left(X_{1}\right)+2 \sum_{h=1}^{n-1}(n-h) \sigma_{n}(h)
$$

Since J_{n} is non-decreasing, $\left(J_{n}\left(X_{1}\right), J_{n}\left(X_{1+h}\right)\right)$ is also positively quadrant dependent. By Relation (3.1) of Lehmann (1966) we obtain:

$$
\sigma_{n}(h)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) d x d y
$$

Consequently, $\sigma_{n}(h) \geq 0$ and
(4.4) $\quad \frac{b_{n}^{2}}{n} \geq \operatorname{Var} J_{n}\left(X_{1}\right)$.

Since $1-\ell_{n}\left(X_{1}\right) \sim \operatorname{Un}\left[n^{-\zeta}, 1-n^{-\zeta}\right]$, we obtain for $o<\gamma<1 / \alpha$:

$$
\begin{aligned}
E J_{n}^{\gamma}\left(x_{1}\right) & =\left(1-2 n^{-\zeta}\right)^{-1} \int_{n^{-\zeta}}^{1-n^{-\zeta}} y^{-\alpha \gamma} d y \\
& =\frac{1}{\left(1-2 n^{-\zeta}\right)(1-\alpha \gamma)}\left(\left(1-n^{-\zeta}\right)^{1-\alpha \gamma}-n^{-\zeta(1-\alpha \gamma)}\right) .
\end{aligned}
$$

Hence

$$
\operatorname{Var} J_{n}\left(X_{1}\right) \rightarrow \frac{1}{1-2 \alpha}-\frac{1}{(1-\alpha)^{2}} \quad \text { as } n \rightarrow \infty
$$

and (cf. Relation (4.4)) $b_{n}^{2} \geq n C>0$ for $n \geq n_{0}$. We need a further assumption about the parameters. Suppose that ρ, ζ, η and η_{1} can be chosen such that
(4.6) $0<\rho<\frac{1}{2}-\frac{1}{2} \frac{\alpha}{1-\alpha}, \quad \eta>\frac{1}{2}+\zeta(\alpha+1) \quad$ and

$$
\eta_{1}>\max \left\{1+2 \zeta \alpha, \zeta \alpha \frac{2-2 \rho}{1-2 p}\right\}
$$

Then (3.5) and (3.6) are fulfilled (note that $\sigma=\zeta(\alpha+1)$, that $\mathrm{t}(\mathrm{n})=\mathrm{Cn}^{\zeta \alpha}$, and that $\left.\mathrm{h}(\mathrm{n})=\mathrm{n}\right)$. Choose δ such that

$$
\frac{2 p}{1-2 p}<\delta<\min \left\{\frac{1}{\alpha}-2, \frac{\eta_{1}-2 \zeta \alpha}{\zeta \alpha}\right\} .
$$

Then

$$
n^{1+\delta / 2} \frac{\mathbf{E}\left(J_{n}\left(X_{1}\right)\right)^{2+\delta}}{b_{n}^{2+\delta}} \leq C \mathbb{E}\left(J_{n}\left(X_{1}\right)\right)^{2+\delta} \leq C^{\prime}
$$

since (4.5) holds for $\gamma=2+\delta$ as well. So, the conditions in (a) of Corotleary 3.2 are also satisfied. Further we note that for $1 \leq i<j \leq n$:

$$
\frac{1}{j-i} \operatorname{Var}\left[\sum_{k=i+1}^{j} J_{n}\left(X_{k}\right)\right]=\operatorname{Var} J_{n}\left(X_{1}\right)+2 \sum_{h=1}^{j-i-1}\left(1-\frac{h}{j-i}\right) \sigma_{n}(h)
$$

$$
\leq \operatorname{Var} J_{n}\left(X_{1}\right)+2 \sum_{h=1}^{n-1}\left(1-\frac{h}{n}\right) \sigma_{n}(h)=\frac{b_{n}^{2}}{n},
$$

which implies (b). Consequently,

$$
\begin{equation*}
\frac{1}{b_{n}} \sum_{i=1}^{n}\left(J_{n}\left(X_{i}\right)-\mathbb{E} J_{n}\left(X_{1}\right)\right) \rightarrow_{d} N(0,1) \quad \text { as } \quad n \rightarrow \infty . \tag{4.7}
\end{equation*}
$$

Let us next construct a sequence which satisfies the conditions of Example 4.1. Let $\left(Z_{k}\right)_{k \in Z}$ be an iid sequence with $P\left[Z_{k}=0\right]=P\left[Z_{k}=1\right]=\frac{1}{2}$. Consider the sequence $\left(X_{i}\right)_{i \in Z}$ defined by

$$
x_{i}:=\sum_{k=0}^{\infty} 2^{-(k+1)} Z_{i-k}, \quad i \in Z,
$$

cf. Bradley (1986; p. 180) and Nieuwenhuis \& Ruymgaart (1990). This sequence is a, not strongly mixing, strictly stationary $\operatorname{AR}(1)$ process with Un (0,1) marignals. Let $\left(X_{j}\right)_{j=1}^{n}$ be n subsequent observations from this time series. Define

$$
X_{j, m(n)}:=\sum_{k=0}^{m(n)} 2^{-(k+1)} Z_{j-k} \quad \text { and } \quad \bar{X}_{j, m(n)}:=\sum_{k=m(n)+1}^{\infty} 2^{-(k+1)} Z_{j-k} \text {, }
$$

$j \in\{1, \ldots, n\}$, where $m(n)=\left[c^{\rho}\right]$ for some $c \in(0, \infty)$ and $0<\rho<\frac{1}{2}$. Then $X_{j}=X_{j, m(n)}+\bar{X}_{j, m(n)}$ and $\left(X_{j, m(n)}\right)$ is $m(n)$-dependent. For $\varepsilon(n)=\sigma\left(n^{-\eta}\right)$ and $\delta(n)=\theta\left(n^{-\eta_{1}}\right), \eta$ and η_{1} arbitrary but positive, we have:

$$
P\left[\left|\bar{x}_{i, m(n)}\right| \geq \varepsilon(n)\right]=0 \leq \delta(n) \text { for } n \geq n_{0} .
$$

Hence the sequence $\left(X_{i}\right)$ is decomposable and satisfies an $(\varepsilon(n), \delta(n))$ condition. So, the parameters ρ, ζ, η and η_{1} can be chosen as in (4.6). Since

$$
x_{1+h}=2^{-h} X_{1}+\sum_{k=0}^{h-1} 2^{-(k+1)} z_{1+h-k}=: 2^{-h} X_{1}+U_{h}
$$

and X_{1} and U_{h} are independent, it can easily be proved that (X_{1}, X_{1+h}) is positively quadrant dependent. Consequently, Relation (4.7) follows.

Another sequence with Un $(0,1)$ marginals was already mentioned in Example 1.1. Some additional conditions can be formulated such that (4.7) is valid.

The approach presented in Sections 2 and 3 can be used to prove central limit theorems for a special type of serial rank statistics. The next example reflects the ideas of Nieuwenhuis \& Ruymgaart (1989), now presented in the light of the results of the present research.

Example 4.2. Consider the following statistic:

$$
T_{n}:=\frac{1}{n-h} \sum_{i=1}^{n-h} J_{n}\left[\frac{R_{i, n}}{n}\right] K_{n}\left[\frac{R_{i+h, n}}{n}\right] .
$$

Here $R_{1, n}, \ldots, R_{n, n}$ are the ranks of a sample X_{1}, \ldots, X_{n} of n successive observations from a general linear process. So, $\left(X_{i}\right)$ has the form (2.1) and is decomposable. It is assumed that it satisfies an $(\varepsilon(n), \delta(n))$-condition for some $(\varepsilon(n))$ and $(\delta(n))$. For J_{n} and K_{n} we assume that $J_{n}(t):=$ $J\left(\ell_{n}(t)\right)$ and $K_{n}(t):=K\left(\ell_{n}(t)\right), t \in[0,1]$, with $\ell_{n}(t)$ as in (4.2) and $J, K:(0,1) \rightarrow R$ twice continuously differentiable functions such that

$$
\left|J^{(i)}(x)\right| \leq \frac{C}{(x(1-x))^{\alpha+i}} \quad \text { and } \quad\left|K^{(i)}(x)\right| \leq \frac{C}{(x(1-x))^{\tilde{\alpha}+i}} \text {, }
$$

$x \in(0,1)$, $i \in\{0,1,2\}$. Here $\alpha, \tilde{\alpha}>0$. In the above reference it is observed that T_{n} is a natural rank estimator of $\tau_{n}:=\mathbb{E}\left[J_{n}\left(\xi_{1}\right) K_{n}\left(\xi_{1+h}\right)\right]$, where $\xi_{i}:=F\left(X_{i}\right)$ with F the distribution function of X_{i} which is assumed to be continuously differentiable with bounded derivative.
From the arguments of the authors it can be derived that

$$
\begin{equation*}
\sqrt{n}\left(T_{n}-\tau_{n}\right)=A_{n}+B_{n} \text {, } \tag{4.8}
\end{equation*}
$$

where B_{n} is some residual term tending to 0 if some conditions about $m(n)$, $\varepsilon(n), \delta(n), \alpha, \tilde{\alpha}$ and ζ are fulfilled. The main term A_{n} equals

$$
\sqrt{n} \Sigma_{i=1}^{n-h}\left(\psi_{n}\left(\xi_{i}, \xi_{i+h}\right)-\tau_{n}\right) /(n-h),
$$

where

$$
\psi_{n}\left(\xi_{i}, \xi_{i+h}\right):=J_{n}\left(\xi_{i}\right) K_{n}\left(\xi_{i+h}\right)+\frac{n-h}{n} \varphi_{n}\left(\xi_{i}\right) .
$$

Here φ_{n} is the sum of the functions $\varphi_{1, \mathrm{n}}$ and $\varphi_{2, \mathrm{n}}$ mentioned in the reference; $\mathbb{E} \varphi_{n}\left(\xi_{i}\right)=0$. Although φ_{n} is not differentiable it can be proved that it satisfies (3.4) with $\sigma=\zeta(\alpha+\tilde{\alpha}+1)$. Relation (3.4) is also valid for $J_{n}(w i t h ~ \sigma=\zeta(\alpha+1))$ and $K_{n}($ with $\sigma=\zeta(\tilde{\alpha}+1))$.
We want to apply Theorem 3.1 to $\left(\psi_{n}\left(\xi_{i}, \xi_{i+h}\right)\right.$). The sequence (ξ_{i}) is decomposable and satisfies an $(\varepsilon(n), \delta(n))$-condition, see Example 1.1.

By arguments as in (3.7) it can be proved easily that $\left(\psi_{n}\left(\xi_{i}, \xi_{i+h}\right)\right)$ is also decomposable and satisfies the $(\tilde{\varepsilon}(n), \zeta(n))$-condition with

$$
\tilde{\varepsilon}(n):=\mathrm{Cn}^{\zeta(\alpha+\tilde{\alpha}+1)} \varepsilon(n) \quad \text { and } \quad \zeta(n):=C^{\prime} \delta(n) \text {, }
$$

if $\varepsilon(n) \rightarrow 0$ fast enough. Hence, the assumptions in Theorem 3.1 can be formulated in terms of $\left(\psi_{n}\left(\xi_{i}, \xi_{i+h}\right)\right)$ such that as a conclusion:
(4.9) $\quad \frac{1}{b_{n}} \sum_{i=1}^{n-h}\left(\psi_{n}\left(\xi_{i}, \xi_{i+h}\right)-\tau_{n}\right) \rightarrow_{d} N(0,1)$,
provided that the resulting conditions are fulfilled. Here $b_{n}^{2}:=$ $\operatorname{Var}\left(\sum_{i=1}^{n-h} \psi_{n}\left(\xi_{i}, \xi_{i+h}\right)\right)$. If, moreover, $\sqrt{n} B_{n} / b_{n} \rightarrow 0$ with B_{n} as in (4.8), then (4.9) is equivalent to

$$
\frac{\sqrt{n}\left(T_{n}-\tau_{n}\right)}{b_{n} / \sqrt{n}} \rightarrow_{d} N(0,1) \text { as } n \rightarrow \infty
$$

References

[1] ANDERSON, T.W. (1971): The Statistical Analysis of Time Series. Wiley.
[2] BERK, K.N. (1973): A central limit theorem for m-dependent random variables with unbounded m. Ann. Probab. 2, 352-354.
[3] BRADLEY, R.C. (1986): Basic properties of strong mixing conditions. In: Dependence in Probability and Statistics (eds. Eberlein \& Taqqu) p. 165-192, Birkhäuser, Boston.
[4] BROCKWELL, P.J. \& R.A. DAVIES (1987): Time Series: Theory and Methods. Springer.
[5] CHANDA, K.C., M.L. PURI \& F.H. RUYMGAART (1989) : Asymptotic normality of L-statistics based on decomposable time series. Report 8922. Dep. of Math., Catholic University of Nijmegen.
[6] IBRAGIMOV, I.A. \& YU.V. LINNIK (1971): Independent and Stationary Sequences of Random Variables. Wolters-Noordhof.
[7] LEHMANN, E.L. (1966): Some concepts of dependence. Ann. Math. Stat. II, 1137-1153.
[8] MARSAGLIA, G. (1954): Iterated limits and the central limit theorem for dependent variables. Proc. Amer. Math. Soc. 5, 987-991.
[9] NIEUWENHUIS, G. \& F.H. RUYMGAART (1989): Some stochastic inequalities and asymptotic normality of serial rank statistics in general linear processes. J. Stat. Planning and Inf. To appear.
[10] PARZEN, E. (1957): A central limit theorem for multilinear stochastic processes. Ann. Math. Stat. 28, 252-256.
[11] PRIESTLEY, M.B. (1981): Spectral Analysis and Time Series. Vol. 1, Ac. Press, New York.
[12] SHORACK, G.R. \& J.A. WELLNER (1986): Empirical Processes with Applications in Statistics. Wiley, New York.

IN 1989 REEDS VERSCHENEN

368 Ed Nijssen, Will Reijnders
"Macht als strategisch en tactisch marketinginstrument binnen de distributieketen"

369 Raymond Gradus
Optimal dynamic taxation with respect to firms
370 Theo Nijman
The optimal choice of controls and pre-experimental observations
371 Robert P. Gilles, Pieter H.M. Ruys
Relational constraints in coalition formation
372 F.A. van der Duyn Schouten, S.G. Vanneste Analysis and computation of (n, N)-strategies for maintenance of a two-component system

373 Drs. R. Hamers, Drs. P. Verstappen
Het company ranking model: a means for evaluating the competition
374 Rommert J. Casimir
Infogame Final Report
375 Christian B. Mulder
Efficient and inefficient institutional arrangements between governments and trade unions; an explanation of high unemployment, corporatism and union bashing

376 Marno Verbeek
On the estimation of a fixed effects model with selective nonresponse

377 J. Engwerda
Admissible target paths in economic models
378 Jack P.C. Kleijnen and Nabil Adams
Pseudorandom number generation on supercomputers
379 J.P.C. Blanc
The power-series algorithm applied to the shortest-queue model
380 Prof. Dr. Robert Bannink
Management's information needs and the definition of costs,
with special regard to the cost of interest
381 Bert Bettonvil
Sequential bifurcation: the design of a factor screening method
382 Bert Bettonvil
Sequential bifurcation for observations with random errors

383 Harold Houba and Hans Kremers
Correction of the material balance equation in dynamic input-output models

384 T.M. Doup, A.H. van den Elzen, A.J.J. Talman
Homotopy interpretation of price adjustment processes
385 Drs. R.T. Frambach, Prof. Dr. W.H.J. de Freytas
Technologische ontwikkeling en marketing. Een oriënterende beschouwing

386 A.L.P.M. Hendrikx, R.M.J. Heuts, L. G. Hoving
Comparison of automatic monitoring systems in automatic forecasting
387 Drs. J.G.L.M. Willems
Enkele opmerkingen over het inversificerend gedrag van multinationale ondernemingen

388 Jack P.C. Kleijnen and Ben Annink Pseudorandom number generators revisited

389 Dr. G.W.J. Hendrikse
Speltheorie en strategisch management
390 Dr. A.W.A. Boot en Dr. M.F.C.M. Wijn Liquiditeit, insolventie en vermogensstructuur

391 Antoon van den Elzen, Gerard van der Laan Price adjustment in a two-country model

392 Martin F.C.M. Wijn, Emanuel J. Bijnen Prediction of failure in industry An analysis of income statements

393 Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters On the short term objectives of daily intervention by the Deutsche Bundesbank and the Federal Reserve System in the U.S. Dollar Deutsche Mark exchange market

394 Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters On the effectiveness of daily interventions by the Deutsche Bundesbank and the Federal Reserve System in the U.S. Dollar - Deutsche Mark exchange market

395 A.E.M. Meijer and J.W.A. Vingerhoets Structural adjustment and diversification in mineral exporting developing countries

396 R. Gradus
About Tobin's marginal and average q A Note

397 Jacob C. Engwerda On the existençe of a positive definite solution of the matrix equation $X+A^{\top} X^{-1} A=I$

398 Paul C. van Batenburg and J. Kriens
Bayesian discovery sampling: a simple model of Bayesian inference in auditing

399 Hans Kremers and Dolf Talman Solving the nonlinear complementarity problem

400 Raymond Gradus
Optimal dynamic taxation, savings and investment
401 W.H. Haemers
Regular two-graphs and extensions of partial geometries
402 Jack P.C. Kleijnen, Ben Annink
Supercomputers, Monte Carlo simulation and regression analysis
403 Ruud T. Frambach, Ed J. Nijssen, William H.J. Freytas Technologie, Strategisch management en marketing

404 Theo Nijman
A natural approach to optimal forecasting in case of preliminary observations

405 Harry Barkema
An empirical test of Holmström's principal-agent model that tax and signally hypotheses explicitly into account

406 Drs. W.J. van Braband
De begrotingsvoorbereiding bij het Rijk
407 Marco Wilke
Societal bargaining and stability
408 Willem van Groenendaal and Aart de Zeeuw Control, coordination and conflict on international commodity markets

409 Prof. Dr. W. de Freytas, Drs. L. Arts Tourism to Curacao: a new deal based on visitors' experiences

410 Drs. C.H. Veld
The use of the implied standard deviation as a predictor of future stock price variability: a review of empirical tests

411 Drs. J.C. Caanen en Dr. E.N. Kertzman Inflatieneutrale belastingheffing van ondernemingen

412 Prof. Dr. B.B. van der Genugten
A weak law of large numbers for m-dependent random variables with unbounded m

413 R.M.J. Heuts, H.P. Seidel, W.J. Selen A comparison of two lot sizing-sequencing heuristics for the process industry

414 C.B. Mulder en A.B.T.M. van Schaik
Een nieuwe kijk op structuurwerkloosheid
415 Drs. Ch. Caanen
De hefboomwerking en de vermogens- en voorraadaftrek
416 Guido W. Imbens
Duration models with time-varying coefficients
417 Guido W. Imbens
Efficient estimation of choice-based sample models with the method of moments

418 Harry H. Tigelaar
On monotone linear operators on linear spaces of square matrices

IN 1990 REEDS VERSCHENEN

419 Bertrand Melenberg, Rob Alessie
A method to construct moments in the multi-good life cycle consumption model

420 J. Kriens
On the differentiability of the set of efficient $\left(\mu, \sigma^{2}\right)$ combinations in the Markowitz portfolio selection method

421 Steffen Jørgensen, Peter M. Kort
Optimal dynamic investment policies under concave-convex adjustment costs

422 J.P.C. Blanc
Cyclic polling systems: limited service versus Bernoulli schedules
423 M.H.C. Paardekooper
Parallel normreducing transformations for the algebraic eigenvalue problem

424 Hans Gremmen
On the political (ir)relevance of classical customs union theory
425 Ed Nijssen
Marketingstrategie in Machtsperspectief
426 Jack P.C. Kleijnen
Regression Metamodels for Simulation with Common Random Numbers: Comparison of Techniques

427 Harry H. Tigelaar
The correlation structure of stationary bilinear processes
428 Drs. C.H. Veld en Drs. A.H.F. Verboven
De waardering van aandelenwarrants en langlopende call-opties
429 Theo van de Klundert en Anton B. van Schaik Liquidity Constraints and the Keynesian Corridor

Bibliotheek K. U. Brabant

17000010663996

