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Abstract

Psychometricians working in factor analysis and econometricians working
in regression with measurement error in all variables are both interea-
ted in the rank of dispersion matrices under variation of the diagonal
elements. Psychometricians concentrate on cases ín which low rank can be
attained, preferably rank one, the Spearman case. Econometricians con-
centrate on cases in which the rank cannot be reduced below the number
of variables minus one, the Friach case. In this paper we give an exten-
sive historical diacussion of both fielda, we prove the two key resulte
in a more satisfactory and uniform way, we point out various small
errors and misunderstandings, and we present a methodological comparison
of factor analysis and regression on the basís of out results.

Keywords: factor analysis, errors of ineaeurement, atructural regression,
functíonal models, communalities, errors in variables.
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1. Introduction

Suppose E is a symmetric positive definite matrix of order m. In
this paper we study the function rank (E - R) as S2 varies over the dia-
gonal matrices satisfying 0 t R t E. This inequality notation is com~e-
nient shorthand for the requirement that both S2 and E- St must be poai-
tive semidefinite. More in particular we study:

(1) mr(E) - min {rank(E - S2) I 0 t n~ E; St diagonal}.

Investigation of this matrix function is important in at least
two data analytic fields. The firat field, which is very familiar for
most readers of the psychometric literature, is factor analysis. In this
context mr(E) corresponds to the number of common factors. The older
factor analysis literature concentrated on studying conditions for
mr(E) ~ 1, while later contributions were mainly concerned with finding
bounds or estimates of mr(E). In our first historical section we shall
review the most important algebraic results from the factor analysis
literature.

The second field, which has had far less attention in the psy-
chometric literature, is regression with errors of ineasurement in the
variables. This model has been mainly studied in econometrics, with the
major emphasis on conditions for mr(E) a m- 1. We shall also review the
most important contributions from econometrics. This will also give us
the opportunity to contrast the factor analysis model with the regres--
sion model.

2. The Spearman model

As we remarked in the introduction moet of the early factor ana-
lysis literature concentrated on the characterization of matrices for
which the Spearman model with a single common factor was appropriate. In
the present context we might say that the early literature concentrated
on finding conditions for mr(E) a 1. We briefly review this work which
is riddled with errors and imprecisions.
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In his famous paper on general intelligence Spearman (1904, p.
274) used the hierarchy of correlations as a criterion. Test should have
thc, properCy that, after rearrangement, correlations were decreaeing in
each row, and that rows were proportional. This turned out to be some-
what too subjective and informal.

Krueger and Spearman (1907, p. 84-85) derived a new criterion
from the correction for attenuation formula. It was

(2) (pikpiRPjkPjR)} ~ (Pijp~)~,

which had to hold true for all quadruplea (1 ~ j~ k~ R). Obaerve that
we have formulated the criterion in terms of the correlation matrix R,
with elements pij, which are tacitly assumed to be nonnegative. From the
Krueger and Spearman formula it is easy to derive

(3) pik~piR ~ pjk~pjR'

This formula was published for the first by Burt (1909, p. 159). He did
not publish a proof, but he indicated that he derived it from the
Krueger - Spearman formula, probably with help from Spearman. The actual
(one-line) proof was not published until Spearman (1927, appendix, p.
11). Hart and Spearman (1912, p. 58, footnote) derived (3) from the par-
tial correlation formula of Yule. Garnett (1919a, 1919b) referred to the
conditions as Burt's equations, and he stated that there were only ~m(m
- 3) independent equations among the m!~(m - 4)! possible ones. This was
proved in Garnett (1920, p. 245), where the name he had proposed for the
conditions wae formally withdrawn. Perhaps this was one of the seeds
that grew into Burt's later attempts to rewrite the history of factor
analysis (Hearnshaw, 1981, chapter 9). The conditions (3) were called
the vanishing of the tetrad differences by Spearman and Holzinger (1924,
1925), who also wrote them in the more convenient form

(4) pikpjR - piRpjk ' 0'

It is clear that in the earlier formulations the possibility of
negative and zero correlations was sometimes overlooked. In fact one
often has the impression that positivity of the correlations was treated
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as part of the definition of the Spearman hierarchy. There is a second
imprecision, which is perhaps more serious. If we define

(S) mr~(E) - min {rank(E - R) , S2 diagonal},

then the vaniahing of all tetrads (or of ~m(m - 3) independent tetrads)
is necessary and sufficient for mr~(E) c 1. However, in general,

(6) mr~(E) t mr(E),

and there i s no guarantee of equality. Remarks to this effect were al-
ready made by Garnett, but it was pointed out for the first time by
Wilson (1928) and Camp (1932) that the conditions

(~) pjk ~ pikpji

were necessary as well for mr(E) ~ 1.
It is remarkable that the formulation of the conditions for

mr(E) - 1 took about thirty years. In fact, the results can be summari-
zed in a single comprehensive theorem. Once it i s formulated, the proof
is almost immediate. In order to do so we assume, without lose of gene-
rality, that E is irreducible, i.e. E cannot be brought, by permuta-
tions, into block-diagonal form. We also say that E is a Spearman matrix
if mr(E) - 1.

Theorem 1. A positive definite, irreducible matrix E ie a Spearman
matrix if and only if, after sign changes of rows and corresponding co-
lumns, all íts elements are positive and such that

(8) oika~R - aiRa~k ~ 0.

and

(9) oika~i - aiia~k c 0,

for all quadruples (i ~ j~ k~ IC).
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Proof is omitted.
There have been various attempts to generalize the approach of this the-
orem, and the kind of result we have obtained, to various other combina-
tions of m and p(with p~ mr(E): the numbers of common factors). Kelley
(1928), Wilson (1929), Wilson and Worcester (1934, 1939) study special
cases such as (m,p) equal to (4,2), (5,2), or (6,3). Many different ape-
cial cases must be distinguished, and very little ia achieved in terms
of general results.

3. The Ledermann bound

Kelley (1928) also tries to provide much more general results,
which are trué for all (m,p). If we write the factor model as
E- AA' t St, then we find }m(m t 1) equations in m-F mp -}p(p - 1)
unknowns (taking rotational indeterminacy into account). The number of
unknowns exceeds the number of equations if

(10) p~ p(m) e}{2m f 1- (8m f 1)~}.

Kelley (1928), and later Thurstone (1935), therefore suggest that
mr(E) ~ p(m) for all E. This despite a warning from Wilson. 'There is
perhapa no more tricky part of mathematics than that involved in count-
ing equations and variables to determine whether or not the equatíona
can in general be solved. Today this kind of mathematics is, among pure
mathematicians, taboo except as a heuristic device.' (Wilson, 1929, p.
156).

Ledermann ( 1937) has tried to put the bound mr(E) ~ p(m) on a
somewhat more rigorous footing. Not with much succea though. 'Nous
offrons un pétale de rose a quiconque énoncera clairement et démontrera
surement les resultats que Ledermann a voulu nous communiquer.' (Aakim
et al., 1976, part II, p. 2). We shall make an attempt. Ledermann wrítes
mr~(E) ~ p as a system of }(m - p)(m t 1- p) determinantal equationa
with the elements of R as the m unknowns. Of courae each determinant can
be expanded, which gives a syatem of }(m - p)(m f 1- p) polynomial equ-
ations in m unknowns. Again the number of unknowne exceeds the number of
equations if p~ p(m). Ledermann proves, in addition, that at least for
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some choices of E these equations are independent, i.e. none of them is
a consequence of the others. Of course this still does not imply much
about their solvability, or about the number of solutions they have.

Perhaps the most general reault about the Ledermann bound, which
has been proved rigorously, ie due recently to Shapiro (1982a). He pro-
ves that mr~(E) ~ p(m) almost surely, i.e. the dispersion matrices E for
which mr~(E) ~ p(m) form a set of (Lebesque) measure zero. Although this
result is theoretically of some interest, it does not give any valuable
information for specific matrices E.

4. Beyond the Ledermann bound

We first mention, as an important step ahead, the work of Albert
(1944a, 1944b). He defined u(E), the ídeal rank of E, to be the largest
nonsingular square off-diagonal submatrix. Obviously mr~(E) ~ u(E).
Albert gives necessary and sufficient conditions for equality in his
first paper, and he gives a sufficient condition for equality in the
second paper. Tumura and Fukutomi (1968) give another sufficient condi-
tion.

Guttman (1954, p. 160) obaerved that 'merely studying the minors
outside the main diagonal was not sufficient' for determiníng mr(E), and
he showed that mr(E) ~ m- 1 for correlation matrices with two different
latent roots, the largest of which with a multíplicity of m- 1.

Guttman (1956, theorem 1) argued that mr(E) G m- k if E-1 has a
k x k diagonal principal submatrix. In the same paper he presented an
interesting inequality which may be reformulated as follows:

Theorem 2. If E is irreducible, then

(11) mr(E) f mr(E-1) ~ m.

Proof: (adapted from Guttman (1956)) If 0 c St c E, then it follows that
S2 c DE, where DE is a diagonal matrix with elements as in E. As
0 c R c E implies that St ~ RE-1S2 (cf. Bekker et al., 1984), it alao fol-

lows that S2 c D 1 . Let n(.) denote the number of positive latent(E-1)
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roots, and n~(.) the ninnber of non-negative latent roots, then
0 t Sl ~ E implies that

(12) E- SZ ~ E- D 1
(E-1)

so
(13) rank(E - R) ~ n(E - S2) ~ a(E - D 1-1 ) s n(D~ -1 ED~ -1 - I),

(E ) (E ) (E )

where the last equality foilows from Sylvester's law of inertia. If E is
irreducible, then 0 t St~ ~ E-1, where R~ is diagonal, implies that
S2~ ~ D , so that(E-1)

(14) E-1 - S2~ ~ E-1 - D ,(E-1)
and thus,
(15) rank(E-1 - S2~) - n(E-1 - St~) ~ n~(E-1 - D

~ n~(D(É-1)E-iD ~-1 - I).
(E )

The theorem follows immediately from (13) and (15). Q.E.D.

In order to prove that his inequality was the 'best possible'
one, Guttman provided examples for which the inequality becomes an equa-
lity. Curiously, he didn't use Spearman matrices for this purpose. Ob-
viously, as mr(E) C m- 1 for any E(cf. Guttman, 1954, p. 159), it muet
hold true that (11) becomes an equality if mr(E) a 1, or mr(E-1) ~ 1. As
an interesting consequence of (11) we thus have that mr(E) ~ m- 1 if
E-1 ia an irreducible Spearman matrix.

The fallacy behind interpreting the Ledermann bound as providing
an upper bound to the niunber of common factors was further discussed in
Guttman ( 1958). It was remarked that a symmetric tridiagonal E, with all
subdiagonal elements non-zero, had mr~(E) s m- 1. Guttman was mistaken
in his assertions made in the same paper that for the 'perfect simplex'
mr~(E) ~ m- 2, and for the 'quasi-simplex' mr~(E) ~ m- 3. He tried to
prove that if E-1 is tridiagonal, as is true for the 'perfect simplex',
then mr~(E) - m- 2. This is very strange, since application of the afo-
rementioned theorem 1 in Guttman ( 1956) showa that i f E-~ íe tridiagonal
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then even mr(E) is in general smaller than m- 2.
Tumura and Fukutomi (1968) proved that the tridiagonality of E,

with non-zero subdiagonal elements, is not only sufficient for mr~,(E) ~
m- 1, it is, after permutation, also necessary. Their proof ie diffi-
cult to understand. Hakim et al. (1976, part II) give another proof,
which is more solid but a bit complicated. Fairly simple proofs are
available in Fiedler (1969) and Rheinboldt and Sheperd (1974), who dis-
covered the theorem in an entirely different context.

A slightly more interesting theorem, which was proved by Shapiro
(1982b), implies the existence of a set of non-zero (Lebesque) measure
satisfying mr(E) - m- 1. Let

mr (E)~ - min {rank(E - R) I 52 C E; 12 diagonal},

u(E) c mr~(E) t mr (E)~C mr(E).

Shapiro proved that a necessary and sufficient conditíon for mr (E) -
m- 1 is that all off-diagonal elements of E can be made non-positive by
sign changes of rows and corresponding columns.

So far we have found conditione which can be considered as suf-
ficient conditions for mr(E) 3 m- 1. Neceasary and sufficient condi-
tions are given ín the following theorem, which is similar to a result
that has been proved by Hakim et al. (1976, part I, corollaire 2.4).

Theorem 3. mr(E) - m- 1 if an only if for each vector Y' m(Y1'~~.'Ym)
~ 0 such that (E - n)y ~ 0, where n is diagonal and 0 C S2 t E,
Yi ~ 0 for all i~ 1,...,m.

Proof is omitted.
Of course, the conditions in this theorem are not very satisfactory.
However, it ís an important step towards the formulation of simple ne-
cessary and sufficient conditions for mr(E) ~ m- 1. These conditions,
and also the theorem (cf. Reiersbl, 1941, theorem 12), have been derived
in an entirely different tradition, which we will now review.
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5. Structural regression

Consider the following 'errors-in-variables model'

(18) ~'y ~ 0,

(19) X - ~ f E,

where the m variables in ~ are not observed, instead the m variables
in x are observed. It is assumed that the disturbances, or measurement
errors, in E are mutually independent and also independent of the syste-
matic parts in ~. The (fixed) m-vector y is called the atructural vec-
tor.

Obviously, the model can be considered as a regression model
where all variables are subject to measurement error. Indeed, if only
one of the errors in E has a non-zero variance, eo that m - 1 errors
equal zero identically, then the model represents an elementary regres-
sion, where one of the variables i s regressed on the other variables. As
we can do this for each variable, we can also find m different elemen-
tary regression vectors y.

If we assume that x- N(O,E), and e ~ N(O,n), where E is nonsin-
gular and S2 is diagonal positive semidefinite. Then, of course,
~- N(O,E - S2), so that also E- SZ must be positive definite:

(20) 0 c S2 c E.

Furthermore, ( 18) and ( 19) may be replaced by the moment equations

(21) (E - St)Y - 0.

~If S2 is known up to a proportionality factor, i.e. St ~ utt , whe-sre St is some known fixed positive semidefinite matrix, then the equati-
ons in (20) and (21) can be used for estimation purposes. That is to
say, E should be replaced by its sample estimate E, u ahould be set
equal to the smallest root u of the determinantal equation g- un~ ~
0, and y may be estimated b n -~ nY(E - un )Y ~ 0. This gives consistent es-
timates, even if the variables are not normally distributed. Aa an ex-
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~ample we may consider 'orthogonal regression', where S2 s I, which was
introduced by Pearson in 1901, or we may consider the m different ele-
mentary regressions, where each time S2 has only one non-zero diagonal
element. I[ follows immediately from (21) that the ith elementary re-
ression vector y must be -1g proportional to the ith col~mn of E; the

estimate of the ith elementary regression vector is thus proportional to
the ith column of
~-1.

However, in general, the disperaion matrix of the measurement
errors is not known up to a proportionality factor, and many diagonal
matrices S2 and vectors y satisfy both (20) and (21). In other words, the
model is not identified; which corresponds to the underidentification of
a factor model with m- 1 factors.

Another problem is that there may exist diagonal matrices St sa-
tisfying (20) such that rank (E - S2) ~ m- 1. In that case one may not
exclude the possibility that there exist two, or even more, linear rela-
tions between the systematic parts in ~. Consequently, as has been noted
by Frisch (1934, p. 191), it would be sheer nonsense, in such cases, to
look for significant elementary regression coefficients.

Frisch (1934) was the first to study these problems in some
depth in his 'confluence analysis'. In particular he proved that for two
observed variables, as in simple regression, the structural regreasion
vector must be a convex linear combination of the two elementary regres-
sion vectors. As a result the correct regression line is located between
the two elementary regression lines.

Although Frisch conjectured that similar conditions held in the
general m-variables case, Koopmans (1937, p. 98-101) was the first to
present an m-varíable analog of Frisch's result. It says that the struc-
tural regression vector is a convex linear combination of the elementary
regreasion vectors, subject to the condition that all elements of E-1
are strictly positive. It is clear that, as the colimmns of E-1 are pro-
portional to the elementary regression vectors, the condition in the
theorem can be satisfied, after sign changes, if all elementary regres-
sion vectors are located in the same orthant.

Koopmans' proof is complicated. Reiersbl (1941, p. 8) noted the
applicability of a theorem by Frobenius, and all later proofs given by
Reiersbl (1945), Dhondt (1960), Patefield (1981), Kalman ( 1982a) and
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Klepper and Leamer (1984) make use of the Perron-Frobenius theorem, just
as Shapiro (1982b) did when proving his result on mr~(E) ~ m- 1.

The second part of Koopmane' theorem eays tYhat if all elements
of E-1 are strictly positive, then each vector in the convex hull of the
elementary regression vectors is a structural vector for some diagonal
error dispersion matrix S2 satisfying both (20) and (21). Koopmans (1937,
p. 103) also claimed to have proved this second part of the theorem.
However, as has been pointed out by Kalman (1982a, p. 152), Koopmana'
proof was wrong. Later proofs were given by Reiersbl (1945), Kalman
(1982a) and Klepper and Leamer (1984); again all authors use the Perron-
Frobenius theorem.

Here a formulation of the theorem will be preaented which is
slightly more general than previous formulations. The theorem will be
proved without using the Perron-Frobenius theorem. Furthermore, the two
parts of the theorem will be proved almoat simultaneoualy, thereby em-
phasizing the if and only if argument in the theorem.

It will be convenient to use the following lemma. Let A be a
symmetric matrix with strictly positive off-diagonal elements, Aij ~ 0
if i~ j. Let A be a diagonal matrix, A a diag(a), and let u be a vector
of ones, u'- (1,...,1), q is an arbitrary vector.

Lemma 1. diag(AAAu) ~ AAA if and only if aiaj ~ 0 for all i,j.

Proof: q'{diag(AAAu) - AAA}q ~ Fi ~ AijAi~j(qi - qíqj) ~

g 23 i~~ Aij7~iaj(qi - qj)

(i) íf aiaj ~ 0, for all i,j, then Aij~i~j(qi - qj)2 ~ 0, for all i,j,

(11) if for some i,j J~iaj C 0, then choose qi - sign(ai), so that
~~~ Aijaiaj(91 - qj)2 ~ 0. Q.F..D.

We will also uae the result that 0 t n t E is equivalent to S2 ~ StE-1S2
if E is positive definite. The proof is aimple as both matrices can be
diagonalized simultaneously (cf. Bekker et al., 1984).

Contrary to most other proofs we do not asaume that the error
dispersion matrix i2 is nonsingular. Without loas of generality we assume
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St 0
(22) S2 - 1 ,

0 0

where S21 is a k x k diagonal matrix, k t m. E and E-1 are partitioned
analogously, i.e.

-1 -1
(23) E - E11 E12- ~ E-1 - (E )11 (E )12 - (E-1, E 1).-1 -1 1 2

E21 E22 (E )21 (E )22

and also the vector y has a corresponding partitioning y' a(yi, Y2).

Theorem 4. Let (E-1)11 have strictly positive elements and let
(E - St)Y - 0, where S2 is as in (22);
(i) if 0 t S2 G E, then Y lies in the convex hull of E11,
(ii) for each y in the convex hull of E11 there exists one and only one

S21 such that 0 G S2 G E.

Proof:-Define ,~ - S21y1, A- diag(a),1C - diag(yl), so that
y- E1 a, A~ S21C, and C ~ diag((E ) 11Au).
(i)

( 24) 0 t St t E

(25) S21 ~ gl(E-1)11~1

(26) cs~lc ~ cs~l(E-1)llnlc

(27) diag(A(E-1)11Au) ~ A(E-1)11A

(28) aia~ ~ 0, i,j - 1,...,k,

thus y- Ella lies in the convex hull of E11.
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(ii) If y lies in the convex hull of E11, then yl must have strictly
positive elements, so C is nonsingular. Hence R1 a AC 1 is unique
and (25) and (26) are equivalent, so that ( 28) impliea (24). Q.E.D.

Thus we have proved that if (E-1)11 hae atrictly positive elemente and
only the first k variables are subject to measurement error, then the
set of all structural vectors is the convex hull of the first k elemen-
tary regression vectors.
This important theorem can be used to derive necessary and sufficient
conditions for mr(E) s m- 1.

Theorem 5. mr(E) - m- 1 if and only if E-1 has strictly positive ele-
ments, possibly after sign changes of rows and correaponding colimns.

Proof: (i) If E-1 has strictly posítive elements, then, by theorem
4(i), the null-space of E- i2 ís contained within the convex hull of
E-1. Consequently, this null-space can be at most one-dimensional.

(ii) If not all elements of E-1 have compatible signa, then the-
re are two colimmns of E-1, the ith and jth say, such that the (ij)th
element of E-1 is positive, possibly after sign changes of rows and co-
lumns, while the ith and jth colimmns do not lie in the same orthant.
That is to say that in the convex hull of these columns there is a vec-
tor y with a zero element. According to theorem 4(ii) this vector y is
a vector in the null-space of E- R for some diagonal S2 satisfying (20).
Then, according to theorem 3, mr(E) ~ m- 1. Q.E.D.

The result in this theorem has been proved before by Reiersbl
(1941, theorem 14) and by Kalman (1982a). However, Reierbl's proof is
not very transparant; Kalman simply postulates an R such that rank
(E - S2) ~ m- 1 in order to prove the second part of the theorem.
Klepper and Leamer (1984) presented theorem 5 in a disguised form. They
stated that the coefficients in the normalized structural vector are
bounded if and only if all elementary regression vectors lie ín the same
orthant. Their proof is by reducing the m-variable problem to a 3-varia-
ble problem.
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Using [heorem 4(i) it is easy to derive two different generali-
zations of theorem S(i). Again, let E11 be a k x k principal submatrix
of E, and let (E-1)11 be the corresponding k x k submatrix of E-l,ktm.

Theorem 6. (i) If (E-1)11 has strictly positive elements then
mr(E) ~ k - 1.

11) If ( E11)-1 has strictly positive elements then
mr(E) ~ k - 1.

Proof is omitted.

6. Discussion
Both factor analysis and structural regreasion analysis are ex-

tremes of a common model which simply says that, apart from unique com-
ponents or error components, the variables in the analysis are linearly
related. In other words, the model says that the covariance matrix
E- S2 has a deficient rank. In factor analysis attention centres round
the low-dimensional range-space of E- S2 s AA'. In atructural regression
the model i s formulated in terms of the one-dimensional null-space:
(E - S2)y ~ 0.

Evaluation of. mr(E), or m- mr(E), is ímportant in both fields.
In fact, the n~ber mr(E) tells us whether the common model should be
considered as a factor analysis model or as a structural regression mo-
del, or even, as some model in between. Consequently, if a structural
regression model is j ustified, i.e. if the necessary and sufficient con-
ditions for mr(E) - m- 1 are satisfied, then applying a factor model to
the data would be nonsense. Just as Frisch thought it nonsense to look
for a single linear relation in case there are two or more linear rela-
tions between the variables.

These latter models, where there exist a nianber, albeit a small
n~nnber, of linear relations between the variables, have had relatively
little attention in the Literature. It is only recently that Kalman
(1982a, 1982b, 1983, 1984) discussed these models in some detail. In his
1983 paper ( p. 119) he claims that 'It is impossible to avoid the con-
clusion that the lack of progress on and the present confusion surroun-
ding Frisch's ideas are due to mathematical rather than conceptual dif-
ficulties.' Indeed, as we have seen, there are neceseary and sufficient
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conditions for mr(E) s 1 and mr(E) ~ m- 1, however, no such conditions
are available for intermediate values of mr(E).

Although no complete solutions are known for intermediate values
of mr(E), there are sufficient conditions. For example, using theorems 5
and 6, it is easy to derive sufficient conditíons for mr(E) ~ m- 2. On
the other hand, there does exist a neceasary and sufficient condition
for an intermediate value of mr(E) in case m is small. Clearly if m- 3,
then necessary and sufficient conditions are available for all values
of mr(E). If m a 4, then mr(E) s 1 and mr(E) z 3 are completely charac-
terized by application of theorems 1 and 5 respectively. Consequently,
if m- 4, also mr(E) ~ 2 ia completely characterized, since all (non-
diagonal) matrices E that do not satisfy the neceasary and sufficient
conditions for mr(E) ~ 1 or mr(E) s 3, and only those matrices E, must
have mr(E) - 2.

Kalman (1984, p. 118) also claims that `it is possible to given
a(rigorous) closed-fo rnn solution' for the case m 3 5 and mr(E) a 3. As
we have difficulty in arríving at this closed-form solution, we would
like to offer a'pétale de rose' to anyone who is able to produce that
solution.
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