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Let P be the distribution of a stationary marked point process on R and let Pi be its

Palm distribution with respect to a set L of marks. Starting from P, the probability

measures P;,y, i E Z, arise by shifting the origin to the i'th occurrence with mark in L.

In Nieuwenhuis (1994) it is proved that n-' ~;1 P;,L(B), B a set of realizations, tends

uniformly to Qi(B). Here Qi is a probability measure which equals PL under a weak

ergodicity condition. In the present research this uniform limit theorem is generalized

by replacing 1 B by functions f with ~ f ~ uniformly bounded by a fixed function g. It is

also proved that similar results hold if the starting point P is replaced by Pi,, where L'

is another set of marks with I(1 L' - 0. As a preliminary a theorem is proved which

implies an easy way to express PL,-expectations in terms of Pi-expectations. In a"dualn

theorem the roles of P and P~ are interchanged. Starting from Pi, similar uniform limit

theorems are derived for Cesaro averaged functionals. The limits can be expressed as

expectations under a probability measure Q~ which equals P under a weak ergodicity

condition. In a final section it is shown that uniform approximation of Pi and P is still

possible without ergodicity restraints.

AMS 1980 subject classifications. Primary 60G55; secondary 60G10, 60F15.

I~ey words and phrases. Palm distribution, marked point process, Cesaro convergence,

limit theorems.
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1 Introduction

Many problems in queueing theory concern the relationship between the arrival-
stationary model and the time-stationary model. One way to compare the two mod-
els is to approximate the first when starting from the second, and vice versa. Some
approximations of this type are treated in this research.

The theory of stochastic processes with an embedded marked point process (PEMP;
see Franken, Kónig, Arndt and Schmidt (1982) and Brandt, Franken and Lisek (1990))
seems to be the natural tool for treating such problems. Since, however, a PEMP is
nothing but a marked point process (MPP) with special marks, we will use the theory
of MPP's on R to consider approximations of the type mentioned above. All results
will be stated for MPP's.

Let P be the distribution of a stationary MPP ~ on R and let PL be its Palm
distribution with respect to a set L of marks. A formal definition follows below, but
intuitively Pi is the conditional distribution of 4' given the occurrence of an "L-point"
(an occurrence having its mark in L) in the origin. This intuitive definition is motivated
by the local characterization of the Palm distribution as a limit of conditional probability
measures. See Franken et al. (1982; Th. 1.3.7) or Nieuwenhuis (1994; Th. 10). Inspired

by the definition of P~ in (1.3) and the inversion formula in (1.5), the relationship between
P and P~ could (as in the unmarked case, see Nieuwenhuis (1994)) also be described by
the following intuitive formulations:

P arises from P~ by shiíting thc origin to a time point in (-oo, ~-oo) (1.1)

chosen at random.

Pi arises from P by shifting the origin to an L -point chosen at random. (1.2)

A formalization of the intuitive random procedure in (1.1) is used for the length-biased

sampling (LBS) proce.dure mentioned in Cox and Lewis ( 1966) to derive relations between

P and the Palm distribution. In the present context of MPP's this formalization would

go like this. Starting from an origin in a randomly chosen L-point (i.e. Pi is the ruling

probability measure), the interval up to the r'th L-point is considered. Here r is very

large. In this interval a time point is chosen at random and the origin is moved to it.

It is assumed that ( as r--~ oo) the situation seen from this new position of the origin is

described by P. The heuristic arguments used on page 61 of the last reference depend,

however, heavily on whether a strong law of large numbers with degenerate limit holds
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for t,he sequence of interval lengths between the occurrences. '1'he question arises if the
formalization of (1.1) used in the LBS procedure is also applicable if the limit of the
strong law is nondegerate.

One of the objectives of this research is to clarify the intuitive random procedures (1.1)

and (1.2) for generating P and PL by choosing obvious formalizations. The formalizations
of (1.1) and ( 1.2) are in terms of limit results for Cesaro means. Note that the LBS

procedure motivates the use of such means for (1.1) because of the shift of the origin
to a time point which is chosen at random. In Nieuwenhuis ( 1994) it is proved that
for (unmarked) point processes a formalization of (1.2) with Cesaro means only leads

to thc Palm distribution if a weak ergodicity condition is satisfied. The generalization

to marked poiut processes is, however, straightforward. Relation (54) and Theorem 7

in the above reference can be generalized and read as follows: When starting from P

the distribution of the MPP seen from an L-point, chosen at random among the first

n L-points, tends ( as n--~ oo) uniformly to a probability measure Qi which equals Pi

under a weak ergodicity condition. See Theorem 1.2 below. Since this theorem can

also be formulated as a uniform limit result over all functions f with ~ f I C 1, it is

natural to consider the more general problem of uniform convergence for functions f

with ( f I C g. In Section 4 necessary (and sufficient) conditions on g are derived for

this uniform convergence to hold. See Theorem 4.2 and Corollary 4.3. In Section 5 it

is proved that a similar generalization is valid if the distribution P, the starting point,

is replaced by a Palm distribution PL,, where L' is another nonempty set of marks with

L fl L' - 0. When starting from Pi, the distribution of the MPP seen from an L-point,

chosen at random among the first n L-points, tends uniformly to Pi provided that some

weak ergodicity condition is satisfied.

In Section 3 a formalization of (1.1) is considered, so the roles of P and PL in Theorem

1.2 are interchanged: When starting from Pi the distribution of the MPP seen from a

position chosen at random between 0 and t tends uniformly to a probability measure QL

(as t-~ oo) which equals P if a weak ergodicity condition is satisfied. Things can again

be generalized by replacing the indicator functions by more general íunctions j with III
bounded by a fixed function g. Necessary ( and sufficient) conditions on g are formulated

for the corresponding uniform limit result, see Theorem 3.2 and Corollary 3.3. Relations

between Q~ and P, and between QL and Q~ are derived.

In Section 6 the theorems of Sections 3, 4 and 5 are applied. It ís proved that,

when starting from P~ and P (or Pi,) respectively, P and Pi can still be approximated

uniformly by Cesaro means without assuming any ergodicity condition. Only the weights
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of the realizations of ~ have to be changed.

Our treatment involves conditioning on invariant o-fields. Some preliminary lemmas
are proved in Section 2. In our proofs we have to go from Pi to P or from P to PL,
several times. The method used to bridge these gaps (the"Radon-Nikodym approach",
see Nieuwenhuis (1994; Section 1)), is a consequence of Theorem 1.1.

A theorem closely related to Theorem 3.2 is proved in Glynn and Sigman (1992). In
this paper synchronous processes are considered which are associated with a point process
on [0, oo). In the present research the approach is quite different from the approach in
the above reference. The conditions (and their necessity) are more analyzed, the limits
are characterized.

We next formalize some of the notions mentioned above and give some other defini-
tions and notations. Let K be a complete and separable metric space. A marked point
process on R with mark space lí is a random element ~ in the set of all integer-valued
measures y~ on the Q-field Bor R x Bor lí such that:

cp(A x K) C oo for all bounded A E Bor R.

Let MK be this set and endow it with the o-field JVíK generated by the sets [~p(A x L) -
k] :- {~p E Mh : cp(A x L) - k}, k E No, L E Bor K and A E Bor R. The distribution
of ~ will be denoted by P, a probability measure on (MK,JNx).

For ep E MK and L E Bor K we define the counting measure cpL on Bor R by epL(A) :-
cp(A x L), A E Bor R, and write ~L :- ~(. x L), a point process on R. Set

ML :- {~p E MK : cpL(-oo,0) - cpL(0, oo) - oo; cpK({s}) C 1 for all s E R},

ML :- {~p E Mi : ~pL({0}) - 1},

~1i :- ML fl Nlx- and .M~ :- ML fl A~th,

L E Bor K. Define ~(L) :- E~L(0, 1], the intensity of the L-points. It will always be
assumed that P(Mh)- 1, and that the intensity ~(K) is finite. We will only consider
L E Bor K with P(Mi)- 1. The atoms of cp E MK are denoted by (X;(cp), k;(ep)) E
R x Ií, i E Z, with the convention

... G X-i(~P) C Xo(~P) C 0 C XI(~P) C Xz(4~) c....
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X;(y~) is mterpreted as the i'th occurrence (or point) of cp, k;(cp) as the accessory mark.
For cp E M~ we write X~(cp) :- X;(y~L), the "i'th L-point of ~p", and o-L(cp) :- X,~1(cp)-

X;'(cp). For a realization cp E M~ and a scalar t E R the element Ttcp - cp(t ~.) of MK
arises from cp by shifting the origin to t and considering the realization from this new
position. So, Ticp can be represented by the set {(X~(cp) - t, k~(y~)) : j E Z} containing
its atoms. The corresponding MPP is denoted by Ti~ - 4í(t -f .). We assume that
~(t f.) -d 4' for all t E R, i.e. that ~ is stationary.

Two types of shifts will be considered. The time shifts Tc : Mj~ -~ Mjf , t E R, are

defined above. For fixed L E Bor K with P(ML)- 1 the point shijt ~9„ L: M~ --~ Mi ,

n E Z, moves the origin to the n'th L-point. It is defined by ~9,,,Lcp :- cp(Xn (cp) -~ .). The

probability measure P,,,L :- P~9;, L, n E Z, on (ML , JVIi ) arises from P by shifting the

origin to the n'th L-point. To illustrate our notation we point out that [~9,,,LCp E B] -

{cpEMi :~9,,,LCpEB}, BENti andnEZ.

For L E Bor K with P(Mi)- 1 the Palm distribution Pi of ~(or rather P) with
respect to L is defined by

~((o,i]Xt,)
Pi(A) :- ~~L)E ~ la(~9;,c~)1 , f1 E M~.i-~ J

Note the di(ference between Pi and Po,~, in notation as well as in interpretation. Sev-
eral probability measures on (Mi ,.M~ ) have been defined so far: P, PL, P,,,L. In this
research expectations with respect to these measures are denoted by E, EL, E,,,L, re-
spectively. When another probability measure Q on (ML ,~li) is considered, we will
write Eq for the corresponding expectation. Expectation with respect to a universal
probability space (ft,~,P) is (as in ( 1.3)) denoted by E. Note that PL(Mi) - 1. The
probability measure Pi has the following properties:

Pi~9;,,'t - PL for all n E Z, (1.4)

P(A) -.~(L) ~~ P~[Xi ( ~P) ~ u; 4~(u f.) E A]du, A E~1~. (1.5)

With the choice A- Mi we obtain Eicró - 1~~(L). See Franken et al. (1982), Matthes,

Kerstan and Mecke (1978), Kallenberg (1983), and Brandt, Franken and Lisek (1990)
for more information.

The inversion jormula (1.5) expresses P in terms of P~; the definition in (1.3) ex-

presses P~ in terms of P. There is another way of going from PL to P (and vice versa).
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The essence oÏ the approach is coniained in ihe next theorem. it is proved in ivieuwen-
huis (1989); the extension to marked point processes is straightforward. First some
notations. Let Q~ and Q2 be probability measures on a common measurable space.
Q1 is dominated by QZ (notation Q1 CC Q,~n~)- if all Qa-null-sets are also Ql-null-sets; a
Radon-Nikodym derivative is denoted by ~. The measures Ql and Q~ are equivalent"""~~s
(notation Q1 ~ Q2) if they have the same null-sets.

Theorem 1.1 Let n E Z and let L E Bor K 6e such that P(ML )- 1. Then

(i) Pn,L ~ Pi,
(ii) dd - ~(L)aL„ Pi-a.s.

Suppose that f: M~ -~ R is P~-integrable. Since Eif- Eo,L( f ~aó)~.~(L) by part
(ii), we obtain:

E~f -~~L) E ~áo f o ~9o L~ .

This relation expresses a transition from P to P~ where Po,L is used as a bridge. At first
the origin is shifted to the last L-point on its left, to Xó . Then the importance of the
realizations is changed by way of the weight function (~(L)aá)-1. See Sections 1 and 2
of Nieuwenhuis (1994) for more information about two-step transitions of this type.

Reversely, if g: M~ ~ R is P-integrable with Eg - Ego~9o,L, then the P-expectation
of g can be transformed into a PL-expectation:

E9 - Eo ,Lg - ~(L)~L(~ó9). (1.7)

For more applications of Theorem 1.1 we refer to Nieuwenhuis (1994). The approach in
(1.6) and (1.7), where Po,~ is used as a bridge between Pi and P, is very common in the
present research.

Consider the following invariant Q-fields:

Z'L:-{AE~1~ti : Tt'A-AforalltER}and
(1.8)

7L :- {A E ~1~1L : ~9;,LA - A}.
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,
lt is well-known that the sequence (ai ) is PL-stationary and that

n
n~ aL -~ áó :- ~(aó ~ZL) PL- and P- a.s.

.-r

See also Nieuwenhuis (1994; Th. 3). 4' is called pseudo-L-ergodic if

~o - ~(L) Pi- a.s.. (1.10)

P (or ~) is ergodic if P(A) E{0, 1} for all A E Zh, and P~ is ergodic if Pi(A) E{0, 1}

for all A E ZL.

We need more probability measures. Let Qi on (M~ ,.Mi) be defined by

Qi(B) ~- E(Ei(la~Zi)), B E Nt~ . (1.11)

This probability measure seems to be more in accordance with the intuitive definition

(1.2) of PL than PL itself. This is expressed in the following theorem, which has been the

inspiration and motivation for the present research. In this result Qi is approximated

when starting from P. For unmarked point processes it is proved in Nieuwenhuis (1994;

Section 4); the generalization to MPP's is straightforward.

Theorem 1.2 Let L E Bor K be such that P(Mi )- 1. Then Q~ is equivalent to PL
and

0

dPi - ~(L)áó PL- a.s.

QL and Pi are equal iff 4' is pseudo- L-ergodic. The supremum

sup
BE~1i

~ JJPI~i,L~ E B~ - Qi(B)
s-1

tends to 0 as n-~ oo.

,l(L) 1 n- 2 Ei ~ ~ ~ ~L;
i-1

crL0

(1.12)

Note that ~L - ao o r9;,L. In view of the intuitive definition (1.2) of PL we might at first

sight expect that
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n ~ E~;' -~ ELaó - ~ 1L
,-i ( )

(1.13)

However, since the limit result in (1.9) holds P- a.s., n-1 ~; 1 EaL will (under weak
additional conditions) tend to EtYÓ . By (1.7) and conditioning on ZL we have:

z
Ec~ó - ~(L)Ei ~aóáó) - ~(L)EL (áá)

1 ,~(L) ( ELiYO)z - 1
- a L '

Equality holds iff áó - 1~~(L) Pi -a.s., i.e. iff ~ is pseudo-L-ergodic. So, the
intuitive limit in (1.13) is not necessarily correct. Note, however, that by (1.7) and
(1.12) Eáó - EQinó. All these arguments make Theorem 1.2 less surprising.

A family (Y)tEl of integrable random variables is called uniformly integrable if
suptEl E~Yt~l~y,~~b -r 0 as b-~ oo, or, equivalently, if

sup E~Y ~- M C oo and for every E~ 0 there exists 6~ 0 (1.14)
tEl

such that for all events A with P(A) G b we have: suptel EIYIIA C E.

For a probability measure Q we will abbreviate "uniformly Q-integrable" to "u.i. under
Q". The following lemma will be applied in Sections 3, 4, and 5. It follows immediately
from Theorem 5.4 in Billingsley (1968).

Lemma 1.3 Let Y,Y1iYz, ... be nonnegative, real-valued, r.v.'s with Y„ ~ Y. Then

(Y„)„~~ is uniformly integrable if and only if

EY C oo, EY„ C oo for all n E N, and EY„ ~ EY.

Let Qr and Qz be probability measures on a common measurable space, both dom-

inated by a v-finite measure ti and having densities hr and hz respectively. The total

variation distance between Q~ and Qz is defined by

d(Qr,Qz) :- f ~h, - hz~dtt.
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ii is weii-known inai

d(Q~,Qx) - 2 suP ~Qt(A) - Q~(A)I - 2(Q~[h~ ) hz~ - Qz[h~ ? hz)). (1.15)
A -

Some final remarks. When talking about Radon-Nikodym derivatives, the attribute a.s.

(almost surely) is often suppressed. Lebesgue measure on ( 0, oo) is denoted by v~; a.e.
means almost everywhcre. We will oftcn make usc of the time parameters t, n, k, i, and

j. The first is a continuous-tirne parameter, the others are discrete-time parameters.

2 Conditioning on invariant a-fields

One of the objectives of the present research is to obtain approximations of the stationary
distribution and the Palm distribution of a marked point process, without assuming

ergodicity. To realize this in this general setting we will condition on invariant Q-fields.

The results in this section are rather technical. They will be applied several times in

Sections 3 to 5.
Recall the definitions of ZL and Z~ in (1.8). The following lemma is a straightforward

generalization of Lemma 2 in Nieuwenhuis (1994).

Lemma 2.1 Let L E Bor K. Then:
(a) If A E ZL, then ~9;;iA - A for all i E Z.

(b) ZL - TL.

Note that as a consequence of Lemma 2.1 every ZL-measurable function f: Mi ~[0, oo)

satisfies

.Í~ o ~9r.L(~P) - f(~P) and f o Tt(~P) - f(~P)

forallcpEM~,iEZ,andtER.

In view of Section 5 we next considcr two disjoint, nonempty sets of marks. So, let

L, U E Bor K and L n L' - 0. Furthermore, set

ML L, .- MG n M~ and ~1~1~~, :- M~L, n J~K,

ZL L~ :- {A E JNL ~~ : 1ir LA - A},

Z'L,L, :- {A E~ti L, : Tt 'A - A for all t E R}.
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In the presence of two sets of marks L and L', the mappings ~9;,L,19;,L~, and T~ will always

be restricted to M~L,. The following relations can easily be proved:

Z'~ n lt'1L - Z'~ L, and Z~ n M~ - Z~,~~;

Z'~,L~ C Z~ and Z~,t~ C Z~.

At first sight the second equality in part (b) of the next lemma seems rather surprising.

Lemma 2.2 Let L, L' E Bor K wilh L n L' -~. Then:

(a) If A E I~,L~, then ~9;:iA - A Jor all i E Z;

(b) Zi,L, - Z~,~, - ZL,,L.

Proof. Since ZL,L~ C ZL, part ( a) follows from Lemma 2.1(a). Part ( b) is an immediate

consequence of Lemma 2.1(b) and (2.2) since

IL,~, - ZL n Mi, - Z'~ n Mi~ - ZL.L' - ZL~.L

- Zi, n Mi - ZL, n Mi - ZL~.L. o

As a consequence of Lemma 2.2 every Z~,L~-measurable function J:ML~, -~ [0, oo) sat-
isfies

J o~~.t(4~) - Ï(~P), .i~ o~9t,v(~P) - Ï(~P), and J o Ti(~P) - J(~P) (2.3)

for all ~p E M~~,, i E Z, and t E R.
Next a stationary point process ~ with distribution P is put upon the stage. Suppose

that P(Mi ) - 1. Since Z'L C Z'K and Z'~ - Zh n~ti , the Q-field Zh in the definition

of ergodicity of P in Section 1 may equivalently be replaced by Zi. As a consequence of

Lemma 2.1(b) we obtain:

P is ergodic t~ P~ is ergodic,

P is ergodic ~ P is pseudo-L-ergodic.

If P is pseudo-L-ergodic, then it is not necessarily ergodic. See Nieuwenhuis (1994;

Example 2).
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In the following lemma some special conditional expectations are comparecl. )!ór t~ U
the random variable NL(t) : M~ --~ No is defined by NL(t, cp) :- ~pL(0, t]. Recall that

~(oóIZL) - ~o.

Lemma 2.3 Let L, L' E Bor K 6e nonempty, L fl L' - ~, and P(MiL,) - 1. The
following relations hold P-a.s. as well as Pi - a.s.

(a) E(áIZL) - E(NL(1)I7L),
a

(b) Ei(~ó~ZL) ~ ~,

(c) E( ó IZL) - EL(~IZ.

Parts (a), (b), and (c) remain valid ij ZL is replaced by ZL,L~. The resulting re[ations
hold Pi,-a.s. as well.

Proof. Let A E ZL. Note that aó - aó o ~9o,G. By (2.1), ( 1.7), and (1.3) we have

E(lAE( ILIZL)) - E(lA 1L) - Eo.L(lA~) -~(L)Pi(A) - E(lANL(1)).ao ao 00

So, part (a) holds P-a.s., Po,~-a.s., and hence PL-a.s. Set B :- [Ei(~ó IZL) C O]. Then

~ ? Eto,(leEi(~ó ~ZL)) - Ei(leaó).

Since Pi[o!ó ~ 0] - 1, we obtain

P~(B`) - 1 and P(B`) - E(1B~ o~o,L) - Po,L(B`) - 1.

Part ( b) follows. Let again A E ZL. By (2.1) and ( 1.7) we have

E~IAEL(~Z)~
-E~lAO~9o.LE~(aoIZL)o~o,Ll

- ~(L)EL (4olAEL(~~ÍL))

- ~(L)Pío,(A) - E ~IAZ~ - E ~lAE I Z~ZL)) .
ao ` `~o
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In the third equality we conditioned on ZL. Consequently, part (c) hoids r-a.s., and by
(2.1) also P~-a.s. Since IL,L~ - ZL n M~ and P(MiL,) - 1, it is obvious that (a), (b)
and (c) remain valid if ZL is replaced by ZL,L~. By (2.3) the resulting expressions also
hold under Po,L~, and hence under Pi,. O

In view of Section 5 we need another lemma for the case that two nonempty, disjoint
sets L, L' E Bor K are involved. For i E Z the random variable ~; : MiL, --~ [0, oo) is
defined by

Si(~) .- ~L~(X~(i~),X fl(~)1, ~ E Mj„L,.

So, ~;(~p) is the number of L'-points in the interval (X;'(cp),X~l(cp)]. Note that

~;(~1,LCp) -~;t1(~p) for all y~ E MiL ,. Hence, (~~) is P~-stationary. The following
lemma is a generalization of Baccelli and Brémaud ( 1987; ( 3.4.2)). Recall the definition
of NL(t) preceding Lemma 2.3, and note that E(NL(1)~ZL,L~) 1 0 P-a.s. since (by (1.3))

B :- [E(NL(1)~ZL,t~) G 0] satisfies

fi ~ E(laE(NL(1)IZL.v)) - E(1BNL(1)) - ~(L)Pi(B).

Lemma 2.4 Let L, L' E Bor Ií be nonempty, L fl L' - 0, and P(MLL,) - 1. Then

EL (~o~ZG,L')
E(NL~(1)IZL~L') EL `~~I~L~L~)

- E(NL(1)IzL,L') - Ei~(ap~~ZL,L')
P~-, Pi,-, and P-a.s..

Proof. If 1~,12 1 0 with ti C lz, wc writc N~,~(1~,t2] :- N~,,(t2) - NL~(t~). Note that,

with this notation, ~; - NL~(.~;',.~~i]. Sincc (~;) is f'~-stationary, wc obtain

1NL'(~,Xn] ~ EL(SO~IL,,L,) P~- a.s..
n

(Note that NL~(0, Xn ]-~;ó~; P~-a.s..) Since ~; - {; o ~9o,L, Relation ( 2.6) holds as
well with P instead of P~; cf. Theorem 1.1 (i). As

NL(t) NL~(o~ XNLc~I] 1 NL-(o, XN~c~ltr] NL(t) -~ 1
t NL(t) ~ t NL~(~'t] C NL(t) f 1 t
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on [1VL(t) ~ 0], and

NL(t) --~ E(NL(1)~ZLL-) and NL(t) -~ oo P-as

we obtain

NL~(t)
--~ E(NL(1)IZL,L')EL(SOIZL,L') P-a.S.t

Replacing L by L' in (2.7) yields E(NL~(1)~ZL,L,) as another limit of t-'NL~(t), P-a.s.
Hence,

EL(SO~ZL.L' ) - E(NL (1)~ZL,L' ) p-a.s..
E(NL(1)IZL,L')

By (2.3), Relation (2.9) holds under Po,L or Po,L~ as well. By Theorem 1.1 it also holds
with PL or Pi, instead of P. Lemma 2.3 yields

E(NL(1)IZL,L,) - ~ and E(NL,(1)~ZL,L,) - o L
~ (a0 ~ZL,L') EL'(aO,IZL,L')

Pi-, P~,-, and P-a.s.. Combining the above observations completes the proof. O

Pi,-expectations can directly be expressed in terms of PG-expectations by Neveu's ex-

change formula (or cycle jorrnula)

o ~(L) o Eu
EL,f - ~(L~)EL ~ f otii,L' ~,-i

(2.10)

where f: M~L, -~ [0, oo) ís Pi,-integrable. This can be proved by replacing lA in (1.3)
by ~Eo, f o ~9;,L,; see also Neveu (1977).

3 Approximation of P starting from PL

In Clynn and Sigman ( 1992) convergence is considered for Cesaro means, uniform over

functions f with ~ f ~ bounded by a fixed function g. In the context of synchronous
processes associated with a point process on [0, oo) sufficient conditions are formulated
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in Theorem 3.1 of this reference. In the present section we derive necessary anc! suthcient
conditions for similar results within the framework of marked point processes on R, using
techniques which follow from Theorem 1.1. The Cesaro means t-1 fó Ei(f o Ti)dx and
t-r fó P~[Tscp E B]dx will be considered. The limit QL(B) of the latter is equal to P(B)
under a weak ergodicity condition. The relationship between QL and P, and between
QL and Q~ in ( 1.11) is investigated.

By a generalization to marked point processes of Theorem 3 in Nieuwenhuis (1994)
we have

1 t
t I f o Tsdx -~ E( j~ZL) P- and P~-a.s.

for all functions f: Mi --~ R with E~f ~ G oo. The limit E(f ~ZL) equals Ef if 4' is
ergodic. If (t-1 fo f o T~dx)~~~ is u.i. under PL, then

t Jot E[o,(! o Ts)dx -~ Ei(E(.f ~ZL))-

In this case we obtain for the choice f(cp) - cpL(0,1] :

1 r i
t JO EiNL(x, x-{- 1]dx -~ E~(E(NL(1)~ZL)).

Note that NL(x,x f 1] - NL(1) o Ti. By the intuitive definition (1.1) of P it might

be expected that thc limit in (3.3) is equal to ENL(1) -.1(I,). However, by (1.6),

cor~ditioning on ZL, and [.cmma 2.3 wc obtain:

E~(E(Nc,(1)IZL)) - ~~L)E ~aó E(NL(1)IZL)) - ~~L)E(E(NL(1)IZc,))Z

) ~(L)(ENL(1))2 - ~(L)-

Equality holds iff 4' is pseudo-L-ergodic. We conclude that for a formalization of (1.1)

without any ergodicity restraint, we have to be careful because Ei(E(f ~ZL)) is not

necessarily equal to Ej. It is, however, possible to write E~(E(f ~ZL)) as an expectation

of f. Let thc probability nmasure Q~, on (I11~',~1~) be dcfined by

QL(B) ~- EL[E(1BIZL)]i B E J~~ .
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By Theorem 1.1(ii) and conditioning on ZL we obtain

QL(B) -~~L) E[óE(IB~Zi)] -~(L) E LIBE ló~I`JJ

Since E(l~aó ~Z~) 1 0 P-a.s.,

QL ~ P and
dQL 1 1
dP -~(L) E ao IZL

P-a.s. (3.4)

Consequently, EqL f- E(f E(l~aó ~ZL))~~(L) - Ei(Ef ~ZL)). So, the limit in (3.2) is

equal to EqL f .

Uniform integrability will be the main condition to obtain limit results as in (3.2).
For nonnegative functions f we can transform uniform Pi-integrability of the family
(t-1 fó f o Tidx)t~l into uniform P-integrability for a similar family of r.v.'s.

Lemma 3.1 Let g: M~ -~ (0, oo) be P-integrable. Then:

1 rt
~- J g o Txdx~ u.i. under P~
`t o e~1

~
r e

áL ~ J g o Tidx~ u.i. under P
0 U1C 1 t 1 dx I u.i. under P.

g t~ Q~ O Tx J t11

Proof. It is an easy exercise to prove that under Pi uniform integrability of
the family (t-1 fo g o Tidx)t~l is equivalent to uniform integrability of the sequence

(n-1 fó g o Tldx)„EN. By Lemma 1.3, (3.1) with f replaced by g, and (1.6) we obtain:

(~ fó 9 o Txdx)t~l u.i. under P~

L
Ei(E(g~Z~)) G oo, E ná fXó }n g o Tidx C oo for all n E N,

~ ! o

na1L E I ófóL }n g o T~dx~ -~ E~(E(9~Z~)).
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Note that

n~1L E I? fxi }n 9 o Txd.z -~ fó 9 o Trdxl G
0 0

1 1 1 0
C na L l E ó fxó g o TxdxllXó fn~o] -F E~ó fxo ~n 9 o TxdxllXó tn~o]

-hE áfxó g o Tzd21]Xo }n~0] f E ~ó fxo ~n9 o TsdxllXó tn~ol0 1 r
i 1 Xi tn 1C n~l L E ó fXo g o Tidx J f E I ó fXó ~n g o Txdx J }

-t1-i,{EL.loo9oTsdx-FEGfoo9oTnloTydx}-n~1L {EgfEgoTn}
2 1

- n~ L Eg'

Since Eg G oo it follows that the right-hand part of the above equivalence is in turn
equivalent to

E~(E(g~ZL)) G oo, E~n~ ffó" g o Trda I G oo for all n E N,
o j

na1L E(ófó 9 o Tyd~) --, Ei(E(gIZL)).

By Lemma 1.3 the first equivalence of the theorem follows immediately. Since

1 j` 9~d~ ~ E(gILc.) and 1 f~ ~ g dx ~ gE 1~ ~Z~ P- a.s.,
t fo ao ~o t o ao o T s cYo

the second equivalence is also a consequence of Lemma 1.3 (use Fubini's theorem, sta-
tionarity of P, and conditioning on ZL). D

In the following theorem supl~~~9 means the supremum over all measurable functions

f: M~ -~ R with ~ f ~ G g, Recall the definition of pseudo-L-ergodicity in (1.10).

Theorem 3.2 l,et g: M~ -~ (0, oo) he P-inlr.g~able. Then (t-' f~ g o Tid~)i~~ is uni-

fomcly I'~-integrable i,(j Is~(Is(y~Z~)) G oo, Is'~(9 o IÍ) G oo vf-a.e., and -

i
suP I- f Ei(Ï o Ts)dx - E4Lf -~ 0 as t -, oo. (3.5)
IIISs t o

If ~ is pseudo-L-ergodic, then the limits EqL f are equal to Ef.



17

Proof. First the only if-part of the iff statement. '1'he hniteness of ihe expectatívu~
follows from Lemma 1.3 and Fubini's theorem. By Theorem 1.1 we have

1 ~ t 1 ~ ~ 1
t Jo ~(j o TS)dx -,1(L)t Jo E(n~j

o TI o ~9o,L)dz.
0

So, to prove (3.5) it is sufficient to prove that (3.6) and (3.7) below are satisfied:

1
sup ( )
IIISs ~ L t

sup
IIISs

f~ E(af o Tr o ~9o,L)dx - f t E(~L f o Tr)dxl -i
0 0

~i

a(L)t Jo
E(aL j o Tx)dx - E4ij

0
-~ 0, (3.7)

as t-~ oo. By considering the expression below sucessively on [Xó f n C 0] and

[Xó f n~ 0] as in the proof oí Lemma 3.1, we obtain:

1 ~~ ~ 1 rXi Xi f~ l
a(L)taó IJO j o Tx o ~9o.~dx - f f o Txdxl C

.1(L)taó ,Ixó g o Tidx f fXó }~ g o TIdx 1
for all functions j: ML -~ [0, oo) with ~ j~ G g. This upper bound does not depend on

j. So, the supremum in (3.6) is bounded from above by

J~ L t E( cxó fo0 9 o Tx o ~9o,Ldx) f~ L t E( ~ fio}t 9 o TZ o ~9o,Ldx)
-.1 L t Eg'

Again arguments as in the proof of Lemma 3.1 are used here. Relation (3.6) follows
immediately. Next (3.7). By Theorem 1.1 and stationarity of P we have

a L t fo E( Ój o Tz)dx - EQLjI -~ L ~ jó E( j~o-L óT ) dx - E(Í~E(ó ~Zc,))

c~ L E L9I~ fó Q,oóTdx - E(ó ~ZL)I .

This upper bound tends to zero because of the second equivalence in Lemma 3.1. Relation

(3.7) follows.

The if-part of the i(í statement follows immediately from (3.1) (with j replaced by g)

and Lemma 1.3. The last part of the theorem is a consequence of (3.4). o



~~
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Let g: ML -~ [O,oo) be I'-integrable. liy (1.14) and Lemma 3.1 the tollowing implica-

tions are obvious:

(g o Tr)r~o u.i. under P~

C~g o Tr~ u.i. under P
0 r~0

Note also that

supr~o E óg o Trl~ ] 90 ~~6~
cr~oL

C

~

( 1 2
EIZI 1 z ~~`~o iii [(~.l ,6]

`~0 I

Consequently,

~

~

(t-1 jó g o Txdz) u.i. under Pi,i~i

(t-1 jó 9 o Trdx)t~l u.i. under Pi.
(3.8)

Corollary 3.3 Suppose that E(l~aó )2 C oo. Let g: M~ ~[0, oo) 6e such that
Eg2 C oo. Then

r e
sup I- J E~(f o Tr)dx - EqL f I -~ 0 as t ~ oo.
UK9 t o

When starting from P~, we can consider QL as the uniform limit (as t--~ oo) of the

distribution of the M PP secn from a position chosen at random in the interval (0, t).

The limit QL is equal to P if n-1 ~; 1 a~ -~ 1~.~(L) P~-a.s.. These assertions are

expressed in the following corollary. It is an immediate consequence of Theorem 3.2.

Corollary 3.4 The convergence

1 ~ ,o . ,t~ I ~[Ir~p E I3]dz ---~ Q~(13) (3.9)

holds unáformly over B E JVI~ . Q~ - P iff ~ ás pseudo-L-ergodic.

The existence of the limit in (3.9) was already proved in Nawrotzki ( 1978; Satz 2.1).
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Note that by stationarity of r and the righi-hanà part of (2.ï),

QL~Ta~P E B~ - a L E LE `óI ZLI 1B o TaJ

-~ L E I E I~~Zc,~ le J - QL(B)L ` o

for all B E~t~ and a E R. Hence, QL is also stationary. Since QL - P and Qi - Pi
(see (1.12)) provided that ~ is pseudo-L-ergodic, one might wonder if Qi is the Palm
distribution with respect to L associated with QL. To prove that this is usually not the
case, let QL be this Palm distribution associated with QL and let ~(L) be the intensity
of the L-points under QL. Recall the definition of NL(1) preceding Lemma 2.3. By (3.4),
conditioning on ZL, Theorem 1.1, and Lemma 2.3 we have

~(L) - EQ~NL(1) -~ 1L E I óE(NL(1)IZL)) -

- ~L(L(NL(1~IZL)) - ~̀ L ~q~ ,
` 0

provided that this expectation is finite. By applying Theorem 1.1 also to ( QL, Qi) we
obtain

Qi(B) -~~L)EvL (óla o do,L~ -~(L~~(L)E ~óE(~

1 0 ( 1 E~ 1B~~ó

- ~(L)EL ` ó 1B~ - Ei l~~á

for all B E.M~ . Consequently,

QL~P~ and dQi - l~áó
dP~ - EL(lláó)

ZLI 1B o do'LI

(3.10)

Hence (cf. (1.12)),

dQi dQ~ dPi 1 r'(áá )~
dQL - dPL dQL - ~(L)EL(1,aÓ )
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anà

Qi - Qi ~ff ~ is pseudo-L-ergodic.

This last result ensures that Qi is the Palm distribution with respect to L associated
with QL iff ~ is pseudo-L-ergodic.

ForAEZLwehave(see(3.4)and(1.12))

~lL(A) - a L E(ln~(~ IZL)) -~ L E(1Aaó ),
QL(A) - ~(L)EL(lA~(aoIZL)) - ~(L)EL(lAaO).

By Theorem 1.1(ii) we conclude,

QLIZy - PLI ZL
and Qilzy - PIZL. (3.11)

4 Approximation of PL starting from P

When starting from P, the distribution of ~ seen from an L-point chosen at random from

the first n L-points tends uniformly to Qi as n--~ oo; see Theorem 1.2. In the present

section we generalize this result to a uniform limit theorem for averaged functionals

(n-1 ~i 1 Ef ~ ~i,t)nEN'
For all functions f: ML -~ R with E~I f I C~ we have

n

1 JJf o 7i~,L -~ LL(IIZL) I'~ - and P -a.s.,
n i-i

cf. Nieuwenhuis (1994; Th. 3). Note that the limit is equal to E~f if ~ is ergodic. If

(n-~ ~" ~!sf o ~9;,L)n~~ is u.i. under P, then

n~ Ef o ~9;,L -. E(E~(f IZL)).
~-i

Because of ( 1.12) and ( 1.7) it is an easy exercise to prove that the limit in ( 4.2) is equal

to EqoL f .
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'1'he main condióion in ihcorern ~i.`~ bciow is aboui uniform r-iniegrabiiiiy of

(n-~ ~; 1 g o~;,L)n~l. In the following lemma this is characterized. It will be applied in

the proof of the theorem.

Lemma 4.1 Let g: Mi -i [0, oo) 6e P~-integraóle. Then

1 nn~g o ~9;.L u.i. under P
:-1 n~l

~ I ~ó n~g o 19~.t~
` :-1 n~l

n
1 ['~QL ~

gnL.i .
~-1 n~l

Proof. By (4.1) and Lemma 1.3, (1.7), and (1.4) we obtain:

1 n
(n ~,-1 g ~ ~~,L)n~l u.i. under P

u.i. under PL

u.i, under P~.

~( E(E~(g~ZL)) c oo, Eg o~9;,L C oo for all i E N, and

St ji ~i-1 E9 0~i,L ~ E(Eco,(g~TL))

J E[o, (ao ~L(gI~L)) C~, l,'~ (a~g o ~9;,L) C oo for all i E N, and
~~

ll n~;` 1 Ei (aó9 0 ~;.L) ~ EG ~aó Ei(gIZL))

( Ei(gáo ) C oo, Ei(ga~;) G oo for all i E N, and

~ Sl 1~" Eo( a~. -~ Eo( aL).n ,-1 L 9 ,) L 9 0

Note that

1 n 1 n
cxon ~g o ~9;,L --~ aóE~(gIZL) and gn ~ a~; -~ gáó PL- a.s.. (4.3)

,-1 .-1

So, by Lemma 1.3 the right-hand parts of the second and third equivalences above

are in turn equivalent to liniform Po-integrability of (crón-1 ~; 1 g o~9;,L)n~l and

~gn-1 ~~ 1 aL;) , respectively. - on~l

n

The following theorem is a generalization of a part of Theorem 1.2. Here supUlSs
means the supremum over all measurable functions f: ML ~ R with If I c 9.
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rn r !1 ~ r r mr i -1 n n ~ineorern Y.2 i.ei y: ivi~- -~ w, vo) ve P~-ai~íeyruv~e. ~ ncn lTi L;-19 ~ v;,LJn~I ~
unijormly P-integrable iff E(FL(g~Z~)) C oo, Eg o ~9;,~ C oo for all i E N, and

sup
1115g

1 "
n~ Ef o ~9;.L - Eqi.Í~

.-i
-. 0.

If 4' is pseudo-L-ergodic, then lhe limits Eqo f are equal to Eif.
L

Proof. The last part follows immediately, since Eqif-~(G)E~ ~áóf). Suppose that
(n-~ ~i 1 g o t9;,L) is u.i. under P. By (4.1) and Lemma 1.3 the finiteness of E(Ei(g~Z~))
and Eg o ~9;,L, i E N, is obvious. By Theorem 1.1 we obtain

1 n
-~ Ef o ~9;,L - Eq~ f
n i-1

1 "-
~ E~.~f - Eqifn ;-,

c a(L)ELIg~1~ aL;-áo~JL n t-i

,a
~(G) ~( 1 ~faL;) - Eío,(.Ïáó)n ~-~

for all measurable functions f: Mi ~ R with ~f ~ G g. This upper bound does not
depend on f, and tends to zero because of the last equivalence in Lemma 4.1. Relation
(4.4) follows. The reversed implication of the iff statement is an immediate consequence
of (4.1) and Lemma 1.3. o

Remark. In view of Section 6 slight generalizations of Lemma 4.1 and Theorem 4.2
are of interest. Apart from g: Mi -. [0, oo) with ELg G oo, an arbitrary (but fixed)
Z~-measurable function p: ML --~ [0, oo) is considered. Since Qn-' ~;i9 0 ~9;,t ~
QE~(9~Z~) P-a.s., it is an easy exercise to prove that the conclusions of Lemma 4.1

and Theorem 4.2 remain valid if g is replaced by Qg and f by ~3f; suplll~r remains

unchanged. By these replacements (4.4) turns into (cf. (2.1)):

sup
IIISs

1 "
n~ E (QI o ~~,t ) - Eei (Qf )

,-i
~ 0.

Note that the PL-integrability of g(and not of ~3g) remains the only condition for the
validity of the equivalence in Theorem 4.2 when generalized as above.
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By (1.14) it is obvious that

n

(g o ~9,,L)~~i u.i. under P~ 1~g o ~9;,~ u.i. under P. (4.5)
n ~-~ n~i

Note also that

E(9 0 ~;,t1~o,v~,L~e]) - ~(L)Ei(aL;91[~~n]) C ~(L) Ei(~ó )ZEL9~1(~~6],

which tends to zero as b-, oo, provided that Ei(aó)2 and E~g2 (or, equivalently, E~ó
and E(g2 0 ~9o,L~~ó )) are finite. We conclude:

Corollary 4.3 Suppose that E~(aó )Z C oo. Let g: ML -~ [0, oo) 6e such that ELg~ C

oo. Then

1 n
sup -~ Ej o~9;,L - EQo f

LIIISs n ;-i
--~0 asn-~oo.

5 Approximation of PL starting from PL,

In this section two nonempty, disjoint sets of marks, L and L', are considered. For the

case that P is replaced by P~, results similar to the results of Section 4 are derived.

Let L, L' E Bor K be such that L fl L' - 0 and P(M~L,) - 1. Since ZL,t~ - ZL~,t
(cf. Lemma 2.2(b)), we will omit the subscripts and write Z for both invariant Q-fields.

When two sets of marks are involved, we will always restrict ~9;,L,~9;,t,, and Tt to MLL'-
We will prove a theorem similar to Theorem 4.2 in the case that P is replaced by Pi,.

Some preliminaries are needed first. Random variables ~;, i E Z, are defined by

~;(~P) :- ~Pc,~(X~(~P),X t~(~P)~, ~P E Mic,~, (5.1)

the number of L'-points between the i'th and the (i f 1)'th L-point. Note that

~; o ~9;,~(~P) - ~;fi(~G)
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for all ~p E M~L,, i E Z, and j E Z. The following theorem is the analogue of Theorem
1.1 for the case that P is replaced by P~,.

Theorem 5.1 Let n E Z. Then

o -i o
(') Pi~dn,L cc PL,

d(P~,,9n ~) - a L
(") dP~- - a G ~-n P~-a.s.

L

Proof. By (2.10) we obtain

fo
PU[~n.L4~ E A] -~~L ~Ei ~ lq O 7i,,,L O 19i,~,~J

i-1

- ~~L~Ei(f0(lA o ~n,L)) - ~~L ~EL(~-n1A).

The last equality is a consequence of (1.4) and (5.2). The theorem follows immediately. O

For a stationary marked point process with a~ - 2 and aL~ - 6 P-a.s. (and hence PL

- and PL, - a.s., cf. Theorems 1.1(i) and 5.1(i)), i E Z, we have

2
Pi~~-n - 0] - 3 and Pi~]~n.L~P E ~~-n - 0]] - PL~[~o - O] - 0.

So, Pi and P~,~9n i are not necessarily equivalent. As an immediate consequence of

Theorem 5.1 (take A- M~L, in the proof) we obtain

Eif-n - ~~L~~ , n E Z.

See also Baccelli and Brémaud ( 1987; (3.4.2)).

Recall ( 4.1). Since P~,~9o.~ GC Pi it is obvious that the convergence holds PL,-a.s. as

well:

[n~
n jJ f O Iii.L ~ EL(fIZ) P~, -a.s.

,-i
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for all Pi-integrable functions f: M~L, --~ R. If (n-1 ~" r j o r9;,t)„~r is u.i. under P~,,
then

1 ~ E~,f o,9;,L -~ Ei,(Ei(fIZ))-
n :-1

'1'he IirniL in (5.5) can be written as an expcxtation of f. Let the probability measure

Q~,L, be defined by

QL.L'(B) -- EL'(EL(1B~Z))~ B E JVi~,,L,. (5.Ó)

Set Mo :- M~ fl Mi . Note that PL[EG(l,yo~ Z) - 1] - 1. Since PL,r9ói GC Pi, we

obtain by (2.3) that P~,[E~(1~yo~Z) - 1] - 1. Hence, Qi,L,(Mo) - 1. By Theorem 5.1

and Lemma 2.4 we have

Qi.L'(B) - Ei~(~(1B~Z) o ~o.L) - ~~L~Ei(~(1B~Z)~o)

o t
- ~~L~Ei(1BEi(folZ)) - ~~L jE~(1BE~ (aól~z)),

B E ~ti~,. Consequently, on (Mi.t'~~i,[,')~

0 o dQi.L' ~lL) o ~(L)Ei(aó ~I)
QL,L, ~ PL and d~,L - ~(~,)EL(fo~Z) -

~(L~)Ei (aL~~Z)~0

Note also that Q~,L, - QL rf ~ is pseudo-L'-ergodic; cf. (1.12). By Theorem 5.1 and

(5.7) the limit E~,(E~( f ~Z)) in (5.5) is equal to

~~L~Ei(~oEi(IIZ)) - a~L,~Ei(IE~(~o~z)) - EviL'f'

Next we state the analogue of Lemma 4.1. Apart from replacing P by Pi,, and aó

by ~o, its proof is similar to the proof of Lemma 4.1. Theorem 5.1 and, again, Lemma

1.3 supply important ingredients.
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Lemma 5.2 Let g: Mi~, --~ [0, oo) be I'~-inteyraóle. Then:

n

n ~g o ,9;,~~ u.i. underP~,
t-i n~i

~ ln~on~9 0 ~t,t~ u.i. underPL
~-1 n~i

1 ng n~~-; u.i. under PL.
~-1 nn

The following theorem is the analogue of Theorem 4.2; sup~~~~e means the supremum
over all measurable functions f: M~L, -i R with ~f ~ C g.

Theorem 5.3 Let g : M~~, -~ [0, oo) be P~-integrable. Then (n-~ ~;~ g o ~9;,~) is
uniformly P~,-integrable i,[j' E~,(E~(g~Z)) C oo, E~,g o ~9;,~ G oo for all i E N, and

sup
~~~C9

1 "
-~ EG, f o t9;,L - EQo f

L,L~n ~-1
~ 0. (5.8)

If ~ is pseudo-G-ergodic and pseudo-L'-ergodác, then the limits EQi L f are equal to Eif.

Proof. The last part is a consequence of (5.7). Suppose that (n-' ~; 1 g o ~9;,~)„~~ is
u.i. under Pi,. For all measurable f: Mi~, ~ R with ~J~ C g we have (cf. Theorem
5.1 and (2.3)),

1 "-~ EL, f o ~9;,~ - EQo f
L.L~n i-1

n

- ~~L~ n ~E~(f~-~) - Ei(fEi(fo~Z))I

n

c ~~G~Eto, 9 n ~~-~ - E~(~o~Z)IJ
~

This upper bound does not depend on f and tends to zero (as n --~ oo) because of
Lemma 5.2, which proves (5.8). The reversed implication follows from (5.4) and Lemma
1.3. o

Remark. Lemma 5.2 and Theorem 5.3 can be generalized slightly by considering,

aparL from the P~-integrable, nonnegative function g, a fixed Z-measurable function

~i : MiL, --~ [0, oo). 'I'he conclusions of the Icmma and the theorem remain valid if g

and f are replaced by ,Qg and ~if. Relation (5.8) turns into (cf. (2.3))

su n E, 019, E o -~ 0.p I'- ~ L(QI , ~) - Q,(af)
ins9 n :-, L.L
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Again Eig C oo remains the only assumption.

Note that

E~,(9 0~9:,~1~oe,,L~al) - ~~L ~ E~(~-r91~~e1) C~~L~ Ei~ó~921~~e1

for all i E Z. The hypothesis about uniform integrability in Theorem 5.3 is satisfied if

(9 o d;,L);~1 is u.i. under Pi,, and hence if EL(~o) G oo (or, equivalently, EL,~o G oo)
and EL(g2) C oo.

In Konstantopoulos and Walrand (1988; Th.3) weak convergence of the sequence

(Pi,[~,,,L~p E .])„~i of probability measures is considered under some additional mixing
condition. See also Kónig and Schmidt (1986). The following corollary of Theorem 5.3
concerns uniform convergence of the sequence (n-1 ~~1~,[d,,,t~p E .])„~1 without any
additional condition. It expresses that starting with PL, we can (as n-~ oo) consider

QL,L, as the distribution of tk~e MPP seen from an L-point chosen at random among

the first n L-points.

Corollary 5.4 Let L, L' E Bor K be such that L fl L' - 0 and P(M~~,) - 1. Then

BE~p L, ~ n,~ P~-[~,,t~v E B] - Q~.~-(B) - 2a(L)) EiI n ,~ f-~ - Ei(~o~z)~-

This supremum tends to 0 as n-~ oo.

Proof. By Theorem 5.1 the probability measures n-1 ~; 1 Pi,~;,i, n E Z, are all dom-
inated by P~ with Radon-Nikodym derivatives (a(G)~,~(L'))n-' ~"~ e;-;. The equality
is an immediate consequence of (1.15) and (5.7). The convergence to 0 follows from
Theorem 5.3 with the choice g- 1. 0

6 Approximations without ergodicity restraints

The intuitive random procedures (1.2) and (1.1) for generating P~ and P were formalized

in Theorem 1.2 and Corollary 3.4. For a direct approximation of these probability
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measures a weak ergodicity condition was needed. In this section the results of Sections
3 to 5 will be applied to derive approximations of PL and P without assuming ergodicity

properties.
The limits in Theorem 1.2, Corollary 3.4, and Corollary 5.4 are not Pi, P, and Pi,

but Qi, QL, and Qi L,, respectively. The pairwise relationships between corresponding
probability measures were described by Radon-Nikodym derivatives, which are repeated
here:

dQi - L dQz. - 1 dQi.L~ ~(L) o
dP~ - ~(L)cxo, dP .~(L)áó ' dPi - ~(L~) EL(~o~I).

For approximation of Pi, starting from P and Pi, respectively, choices for g and Q in
the remarks following Theorem 4.2 and 5.3 are suggested by (6.1). Choose, respectively,

9-1andQ- 1 L, 9-1and~3-a(L~)
0 1

~(L)áo ~(L) EL(~o~Z)~

For g in Theorem 3.2 we take .~(L)áó.

Theorem 6.1

(a) sup In~E ~~(~1B o ~9, ~~ - Pi(B)I -~ 0 as n-~ oo.
BEMy ~-1 0

(b) suP n[Ln~ Ei~ ~ L' ~̀ 1B o~;.~ - Pi B-~ 0 as n
BEMiL, ~-1 ~~ L EL(SO~I) ~ ( )I

-~ 00.

(c) If E~ró G oo, then sup I~f tEL(.~(L)áo 1B o Tx)da - P(B)I ~ 0 as t-~ oo.
BEMi 0

Proof. For (a) and (b) we choose g and Q as suggested in (6.2). By Theorems 1.1 and

5.1 we have:

t ~~
E á - ~(L)Ei ~ - a(L) and Ei, (EL~) - ~ L E[, (EL(~~o~Z)I - .1 L '

So, the hypotheses about uniform integrability are satisfied since the corresponding se-

quences contain only one integrable element. By reducing the sets of functions f to

the functions 1B with B E ML and B E MiL,, respectively, the parts (a) and (b) are

immediate consequences of the remarks following Theorems 4.2 and 5.3.
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For (c) we apply Theorem 3.2 with g -~(G)áo. The condition that Eg is finite
causes the hypothesis in (c). p

Remarks. By (6.1) the summed expectations in (a) and the integrands in (c) are equal
to EQL(1B o ~9;,L) and EQi(1B o Ts), respectively. Let i;o be originated from ~o in (5.1)
by intcrchanging L and L'. By Lcmmas 2.2 (b) and 2.4 it is obvious that

Ei, (~ó ~Z) - ~( ~o ~Z)
PL,-a.s..

By interchanging L and L' in the right-hand relation in (6.1), it follows that the summed

expectations in (b) are equal to EQo (1B o ~9;,L).
L~,L

The finiteness of Eáá is equivalent to the finiteness of Ei(áó)Z. By Jensen's inequality
we have:

~aó ) 2 G Ei((~ó )2 ~IL) P~ - a.s. and EL ~áó) 2 G Ei (a!o) 2.

So, the hypothesis in (c) is satisfied if EL(aó )2 G oo. All parts of Theorem 6.1 can be
generalized to uniform limit results for functions f with ~f ~ G g, similar to Theorems
4.2, 5.3, and 3.2.

At the end of this section we give interpretations of the results in Theorem 6.1. Note
that by Jensen's inequality,

E (~(L)~ó) - (~(L))2 Ei (~ó)2 ~ 1 - E~ ~~(L)áó~

(a strict inequality holds in the non-pseude-L-ergodic case). So, in a transition from P

to PL the importance of realizations c~ for which ,~(L)~ó (cp) is relatively large, should be
reconsidered. We conclude that (a) and (c) in Theorem 6.1 can be interpreted as follows:

P~ arises from P by first changing the weights of the realizations by way of
the weight function 1~(~(L)áó), followed by shifting the origin to an L-point

chosen at random from the first n L-points and letting n tend to infinity.
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P arises from P~ by first changing the weights of the realizations by way of
the weight function .~(L)áó, followed by shifting the origin to a time point
chosen at random in ( 0, t) and letting t tend to infinity.

By (5.3) and Jensen's inequality, we have:

Ei- (~~L~~ (~o~z)I - ~~(L)1 ~ Ei (Ei (~o ~I))~ ? 1- Ei(~~L ~~(~o ~Z)).

A strict inequality holds if ~ is not pseudo-L-ergodic, or not pseudo-L'-ergodic. So,
in a transition from P~, to P~ the importance of realizations for which

~(L)EL(~o~Z)~~(L') is relatively large, should be reconsidered:

Pi arises from Pi, by first changing the weights of the realizations by way of
the weight function ~(L')~(~(L)EL(~o~Z)), followed by shifting the origin to an
L-point chosen at random from the first n L-points and letting n tend to infinity.
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