Tilburg University

Block-tridiagonal linear systems and branched continued fractions

Cuyt, A.; Verdonk, B.

Publication date:
1987

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Cuyt, A., \& Verdonk, B. (1987). Block-tridiagonal linear systems and branched continued fractions. (Research Memorandum FEW). Faculteit der Economische Wetenschappen.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM

7626
1987
243

KUB. BIELOTHEEK ThBURG

Block-tridiagonal linear systems and branched continued fractions

Annie Cuyt
Brigitte Verdonk
FEW 243

Block-tridiagonal linear systems and branched continued fractions.

Annie Cuyt**• - Brigitte Verdonk ${ }^{*}$

* Department of econometrics

University of Tilburg
Postbus 90153
NL-5000 LE Tilburg
The Netherlands
${ }^{\circ}$ Senior Research Assistant
NFWO

- Department of mathematics and computer science

Universiteit Antwerpen (UIA)
Universiteitsplein 1
B-2610 Wilrijk
Belgium

Abstract

.

The convergent of an ordinary continued fraction can be computed by solving a tridiagonal linear system for its first unknown. In this paper this approach is generalized to branched continued fractions and it is shown how the convergent of a branched continued fraction can be considered as the first unknown of a block-tridiagonal linear system. Hence algorithms for the solution of such systems of equations can be used for the computation of convergents of branched continued fractions, which have applications in approximation theory, systems theory, ... In future research special attention will be paid to the use of parallel algorithms.

Block-tridiagonal linear systems and branched continued fractions.

In the case of ordinary continued fractions

$$
\begin{equation*}
B_{i}=b_{0}^{(i)}+\frac{a_{1}^{(i)}}{\left\lvert\, \frac{b_{1}^{(i)}}{b_{1}}+\frac{a_{2}^{(i)}}{\left\lvert\, \frac{b_{2}^{(i)}}{b_{2}}\right.}+\ldots \quad i=0\right.,1,2, \ldots \quad . \quad . \quad .} \tag{1}
\end{equation*}
$$

forward evaluation of and determinant formulas for

$$
C_{n}^{(i)}=b_{0}^{(i)}+\sum_{j=1}^{n} \frac{a_{j}^{(i)}}{b_{j}^{(i)}}
$$

are well-known. If we denote $C_{n}^{(i)}=P_{n}^{(i)} / Q_{n}^{(i)}$ then $P_{n}^{(i)}$ and $Q_{n}^{(i)}$ can be computed by the following three-term recurrence relation [5]

$$
\left\{\begin{array}{l}
P_{k}^{(i)}=b_{k}^{(i)} P_{k-1}^{(i)}+a_{k}^{(i)} P_{k-2}^{(i)} \tag{2}\\
Q_{k}^{(i)}=b_{k}^{(i)} Q_{k-1}^{(i)}+a_{k}^{(i)} Q_{k-2}^{(i)}
\end{array} \quad k=1, \ldots, n\right.
$$

with $P_{-1}^{(i)}=1=Q_{0}^{(i)}, P_{0}^{(i)}=b_{0}^{(i)}$ and $Q_{-1}^{(i)}=0$. Using this three-term recurrence relation one can prove that $P_{n}^{(i)}$ and $Q_{n}^{(i)}$ are also given by the following determinant formulas [4]

$$
P_{n}^{(i)}=\left|\begin{array}{ccccc}
b_{0}^{(i)} & -1 & & & \tag{3}\\
a_{1}^{(i)} & b_{1}^{(i)} & -1 & & \\
& a_{2}^{(i)} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{n}^{(i)} & b_{n}^{(i)}
\end{array}\right| \quad Q_{n}^{(i)}=\left|\begin{array}{ccccc}
b_{1}^{(i)} & -1 & & & \\
a_{2}^{(i)} & b_{2}^{(i)} & -1 & & \\
& a_{3}^{(i)} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{n}^{(i)} & b_{n}^{(i)}
\end{array}\right|
$$

and hence that, if $Q_{n}^{(i)} \neq 0, C_{n}^{(i)}=b_{0}^{(i)}+x_{1}^{(i)}$ where $x_{1}^{(i)}$ is the first unknown of the tridiagonal system

$$
\left(\begin{array}{ccccc}
b_{1}^{(i)} & -1 & & & \tag{4}\\
a_{2}^{(i)} & b_{2}^{(i)} & -1 & & \\
& a_{3}^{(i)} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{n}^{(i)} & b_{n}^{(i)}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{(i)} \\
\vdots \\
\\
x_{n}^{(i)}
\end{array}\right)=\left(\begin{array}{c}
a_{1}^{(i)} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Let us now generalize (3) and (4) for branched continued fractions $[3,6]$

$$
\begin{equation*}
B_{0}+\left\lvert\, \frac{a_{1}}{\mid B_{1}}+\frac{a_{2} \mid}{\left\lvert\, \frac{B_{2}}{B_{2}}\right.}+\ldots\right. \tag{5}
\end{equation*}
$$

where each of the B_{i} is an ordinary continued fraction as in (1). A convergent of (3) is denoted by

$$
\begin{equation*}
C_{n, m_{0}, \ldots, m_{n}}=C_{m_{0}}^{(0)}+\sum_{j=1}^{n} \left\lvert\, \frac{a_{j}}{C_{m_{j}}^{(j)}}\right. \tag{6}
\end{equation*}
$$

where

$$
C_{m_{j}}^{(j)}=b_{0}^{(j)}+\sum_{k=1}^{m_{j}} \frac{a_{k}^{(j)}}{b_{k}^{(j)}}
$$

If we denote $C_{n, m_{0}, \ldots, m_{n}}$ as $P_{n, m_{0}, \ldots, m_{n}} / Q_{n, m_{0}, \ldots, m_{n}}$ then clearly $P_{n, m_{0}, \ldots, m_{n}}$ and $Q_{n, m_{0}, \ldots, m_{n}}$ can be computed by applying the three-term reccurence relation (2) to the expression (6) :

$$
\left\{\begin{array}{l}
P_{k, m_{0}, \ldots, m_{k}}=C_{m_{k}}^{(k)} P_{k-1, m_{0}, \ldots, m_{k-1}}+a_{k} P_{k-2, m_{0}, \ldots, m_{k-2}} \tag{7}\\
Q_{k, m_{0}, \ldots, m_{k}}=C_{m_{k}}^{(k)} Q_{k-1, m_{0}, \ldots, m_{k-1}}+a_{k} Q_{k-2, m_{0}, \ldots, m_{k-2}}
\end{array} \quad k=1, \ldots, n\right.
$$

with $P_{-1}=1=Q_{0, m_{0}}, P_{0, m_{0}}=C_{m_{0}}^{(0)}$ and $Q_{-1}=0$. As an immediate consequence

$$
\begin{aligned}
& P_{n, m_{0}, \ldots, m_{n}}=\left|\begin{array}{ccccc}
C_{m_{0}}^{(0)} & -1 & & & \\
a_{1} & C_{m_{1}}^{(1)} & -1 & & \\
& a_{2} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{n} & C_{m_{n}}^{(n)}
\end{array}\right| \\
& Q_{n, m_{0}, \ldots, m_{n}}=\left|\begin{array}{ccccc}
C_{m_{1}}^{(1)} & -1 & & & \\
a_{2} & C_{m_{2}}^{(2)} & -1 & & \\
& a_{3} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{n} & C_{m_{n}}^{(n)}
\end{array}\right|
\end{aligned}
$$

and $C_{n, m_{0}, \ldots, m_{n}}=C_{m_{0}}^{(0)}+x_{1}$ where x_{1} is the first unknown of the tridiagonal system

$$
\left(\begin{array}{ccccc}
C_{m_{1}}^{(1)} & -1 & & & \\
a_{2} & C_{m_{2}}^{(2)} & -1 & & \\
& a_{3} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{n} & C_{m_{n}}^{(n)}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Note that in the coefficient matrix of this linear system each $C_{m_{i}}^{(i)}$ is itself a quotient of determinants. We shall prove in the next theorem that $C_{n, m_{0}, \ldots, m_{n}}$ is also the first unknown of a block-tridiagonal linear system where now the partial numerators and denominators $a_{j}^{(i)}$ and $b_{j}^{(i)}$ for $j=0, \ldots, m_{i}$ and $i=0, \ldots, n$ of the branched continued fraction (5) appear in the coefficient matrix of the system instead of the $C_{m_{i}}^{(i)}$. To this end we introduce the notations

$$
\begin{aligned}
B_{m_{j}}^{(j)}=\left(\begin{array}{ccccc}
b_{0}^{(j)} & -1 & & & \\
a_{1}^{(j)} & b_{1}^{(j)} & -1 & & \\
& a_{2}^{(j)} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{m_{j}}^{(j)} & b_{m_{j}}^{(j)}
\end{array}\right) \quad\left(m_{j}+1\right) \times\left(m_{j}+1\right) \\
A_{j}=\left(\begin{array}{cccc}
a_{j} & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & 0 & \\
0 & & & \left(m_{j}+1\right) \times\left(m_{j-1}+1\right)
\end{array}\right. \\
I_{j}=\left(\begin{array}{llll}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & 0 & \\
0 & &
\end{array}\right)
\end{aligned}
$$

so that $P_{m_{j}}^{(j)}=\operatorname{det} B_{m_{j}}^{(j)}$.

Theorem.
If $Q_{n, m_{0}, \ldots, m_{n}} \neq 0$ then $C_{n, m_{0}, \ldots, m_{n}}=C_{m_{0}}^{(0)}+x_{0}^{(1)}$ where $x_{0}^{(1)}$ is the first unknown of the block-tridiagonal linear system

$$
\left(\begin{array}{ccccc}
B_{m_{1}}^{(1)} & -I_{1} & & & \tag{8}\\
A_{2} & B_{m_{2}}^{(2)} & -I_{2} & & \\
& A_{3} & \ddots & \ddots & \\
& & \ddots & & -I_{n-1} \\
& & & A_{n} & B_{m_{n}}^{(n)}
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
\vdots \\
\\
X_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

with $X_{j}=\left(x_{0}^{(j)}, \ldots, x_{m_{j}}^{(j)}\right)^{t}$.
For the proof we need the following two lemmas.
Lemma 1.

$$
\left|\begin{array}{ccccc}
B_{m_{1}}^{(1)} & -I_{1} & & & \\
A_{2} & B_{m_{2}}^{(2)} & -I_{2} & & \\
& A_{3} & \ddots & \ddots & \\
& & \ddots & & -I_{n-1} \\
& & & A_{n} & B_{m_{n}}^{(n)}
\end{array}\right|=Q_{n, m_{0}, \ldots, m_{n}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n}}^{(n)}
$$

Proof. For $n=1$ the left hand side reduces to

$$
\operatorname{det} B_{m_{1}}^{(1)}=P_{m_{1}}^{(1)}
$$

We also know from (7) that for $n=1$

$$
Q_{1, m_{0}, m_{1}}=C_{m_{1}}^{(1)}=\frac{P_{m_{1}}^{(1)}}{Q_{m_{1}}^{(1)}}
$$

and hence that

$$
Q_{1, m_{0}, m_{1}} Q_{m_{1}}^{(1)}=P_{m_{1}}^{(1)}=\operatorname{det} B_{m_{1}}^{(1)}
$$

Suppose the lemma is valid for $Q_{k, m_{0}, \ldots, m_{k}}(k=1, \ldots, n)$. We shall prove it then for $Q_{n+1, m_{0}, \ldots, m_{n+1}}$. A Laplacian expansion [1] of

$$
\left|\begin{array}{ccccc}
B_{m_{1}}^{(1)} & -I_{1} & & & \\
A_{2} & B_{m_{2}}^{(2)} & -I_{2} & & \\
& A_{3} & \ddots & \ddots & \\
& & \ddots & & -I_{n} \\
& & & A_{n+1} & B_{m_{n+1}}^{(n+1)}
\end{array}\right|
$$

along the last $\left(m_{n+1}+1\right)$ rows reveals that the above determinant equals

where

$$
Z=\left(\begin{array}{ccccc}
-1 & & & & -1 \\
b_{1}^{(n)} & \ddots & & & 0 \\
a_{2}^{(n)} & \ddots & & & \vdots \\
& \ddots & & -1 & \\
& & a_{m_{n}}^{(n)} & b_{m_{n}}^{(n)} & 0
\end{array}\right)
$$

This expression can immediately be simplified as

By making a Laplacian expansion along the columns of Z and using the fact that $\operatorname{det} Z=(-1)^{1+m_{n}} Q_{m_{n}}^{(n)}$ it can further be simplified as

$$
P_{m_{n+1}}^{(n+1)} Q_{n, m_{0}, \ldots, m_{n}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n}}^{(n)}+a_{n+1} Q_{m_{n+1}}^{(n+1)} Q_{m_{n}}^{(n)} Q_{n-1, m_{0}, \ldots, m_{n-1}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n-1}}^{(n-1)}
$$

On the other hand we can write from (7)

$$
Q_{n+1, m_{0}, \ldots, m_{n+1}}=\frac{P_{m_{n+1}}^{(n+1)}}{Q_{m_{n+1}}^{(n+1)}} Q_{n, n_{0}, \ldots, m_{n}}+a_{n+1} Q_{n-1, m_{0}, \ldots, m_{n-1}}
$$

from which we obtain

$$
\begin{aligned}
& Q_{n+1, m_{0}, \ldots, m_{n+1}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n+1}}^{(n+1)}= \\
& \quad P_{m_{n+1}}^{(n+1)} Q_{n, m_{0}, \ldots, m_{n}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n}}^{(n)}+a_{n+1} Q_{m_{n+1}}^{(n+1)} Q_{n-1, m_{0}, \ldots, m_{n-1}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n}}^{(n)}
\end{aligned}
$$

Since this right hand side coincides with a Laplacian expansion for

$$
\left|\begin{array}{ccccc}
B_{m_{1}}^{(1)} & -I_{1} & & & \\
A_{2} & B_{m_{2}}^{(2)} & -I_{2} & & \\
& A_{3} & \ddots & \ddots & \\
& & \ddots & & -I_{n} \\
& & & A_{n+1} & B_{m_{n+1}}^{(n+1)}
\end{array}\right|
$$

our lemma is proved.

Lemma 2.

$$
\left|\begin{array}{ccccc}
B_{m_{0}}^{(0)} & -I_{0} & & & \\
A_{1} & B_{m_{1}}^{(1)} & -I_{1} & & \\
& A_{2} & \ddots & \ddots & \\
& & \ddots & & -I_{n-1} \\
& & & A_{n} & B_{m_{n}}^{(n)}
\end{array}\right|=P_{n, m_{0}, \ldots, m_{n}} Q_{m_{0}}^{(0)} \ldots Q_{m_{n}}^{(n)}
$$

Proof. For $n=0$ we know from (7) that

$$
P_{0, m_{0}}=C_{m_{0}}^{(0)}=\frac{P_{m_{0}}^{(0)}}{Q_{m_{0}}^{(0)}}
$$

and hence

$$
P_{0, m_{0}} Q_{m_{0}}^{(0)}=P_{m_{0}}^{(0)}=\operatorname{det} B_{m_{0}}^{(0)}
$$

The rest of the inductive proof is completely analogous to that of lemma 1 and is left to the reader.

Let us now try to prove our main result.

Proof of the theorem. Remark that for $n=1$ (6) reduces to

$$
C_{1, m_{0}, m_{1}}=C_{m_{0}}^{(0)}+\frac{a_{1}}{b_{0}^{(1)}+\sum_{k=1}^{m_{1}} \frac{a_{k}^{(1)}}{b_{k}^{(1)}}}
$$

where $C_{1, m_{0}, m_{1}}-C_{m_{0}}^{(0)}$ is the first unknown $x_{0}^{(1)}$ of the tridiagonal linear system

$$
\left(\begin{array}{ccccc}
b_{0}^{(1)} & -1 & & & \\
a_{1}^{(1)} & b_{1}^{(1)} & -1 & & \\
& a_{2}^{(1)} & \ddots & \ddots & \\
& & \ddots & & -1 \\
& & & a_{n}^{(1)} & b_{n}^{(1)}
\end{array}\right)\left(\begin{array}{c}
x_{0}^{(1)} \\
\vdots \\
x_{m_{1}}^{(1)}
\end{array}\right)=B_{m_{1}}^{(1)}\left(\begin{array}{c}
x_{0}^{(1)} \\
\vdots \\
x_{m_{1}}^{(1)}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

More generally, a Laplacian expansion of

$$
P_{n, m_{0}, \ldots, m_{n}} Q_{m_{0}}^{(0)} \ldots Q_{m_{n}}^{(n)}=\left|\begin{array}{ccccc}
B_{m_{0}}^{(0)} & -I_{0} & & & \\
A_{1} & B_{m_{1}}^{(1)} & -I_{1} & & \\
& A_{2} & \ddots & \ddots & \\
& & \ddots & & -I_{n-1} \\
& & & A_{n} & B_{m_{n}}^{(n)}
\end{array}\right|
$$

along the first $\left(m_{0}+1\right)$ rows learns us that this determinant also equals $\left(\operatorname{det} B_{m_{0}}^{(0)}\right) \cdot Q_{n, m_{0}, \ldots, m_{n}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n}}^{(n)}+$

$$
(-1)^{1+m_{0}}\left|\begin{array}{ccccc}
-1 & & & & -1 \\
b_{1}^{(0)} & \ddots & & & 0 \\
a_{2}^{(0)} & \ddots & & & \vdots \\
& \ddots & & -1 & \\
& & a_{m_{0}}^{(0)} & b_{m_{0}}^{(0)} & 0
\end{array}\right| \cdot\left|\begin{array}{ccccc}
Y & -I_{1} & & \\
& & & \\
0 & B_{m_{2}}^{(2)} & \ddots & \\
\vdots & A_{3} & \ddots & \\
& & \ddots & & -I_{n-1} \\
0 & & & A_{n} & B_{m_{n}}^{(n)}
\end{array}\right|
$$

where

$$
Y=\left(\begin{array}{ccccc}
a_{1} & -1 & & & \\
0 & b_{1}^{(1)} & \ddots & & \\
\vdots & a_{2}^{(1)} & \ddots & & \\
& & \ddots & & -1 \\
0 & & & a_{m_{1}}^{(1)} & b_{m_{1}}^{(1)}
\end{array}\right)
$$

This expression can immediately be simplified as
$P_{n, m_{0}, \ldots, m_{n}} Q_{m_{0}}^{(0)} \ldots Q_{m_{n}}^{(n)}=$

$$
P_{m_{0}}^{(0)} Q_{n, m_{0}, \ldots, m_{n}} Q_{m_{1}}^{(1)} \ldots Q_{m_{n}}^{(n)}+Q_{m_{0}}^{(0)}\left|\begin{array}{ccccc}
Y & -I_{1} & & & \\
& B_{m_{2}}^{(2)} & \ddots & & \\
\vdots & A_{3} & \ddots & & \\
& & \ddots & & -I_{n-1} \\
0 & & & A_{n} & B_{m_{n}}^{(n)}
\end{array}\right|
$$

The value $C_{n, m_{0}, \ldots, m_{n}}$ we are interested in is thus given by

$$
\begin{aligned}
C_{n, m_{0}, \ldots, m_{n}} & =\frac{P_{n, m_{0}, \ldots, m_{n}}}{Q_{n, m_{0}, \ldots, m_{n}}} \\
& =\frac{P_{n, m_{0}, \ldots, m_{n}} Q_{m_{0}}^{(0)} \ldots Q_{m_{n}}^{(n)}}{Q_{n, m_{0}, \ldots, m_{n}} Q_{m_{0}}^{(0)} \ldots Q_{m_{n}}^{(0)}}
\end{aligned}
$$

From lemma 2 and the last Laplacian expansion we know that this quotient equals

Using lemma 1 the second term in this expression is apparently the first unknown $x_{0}^{(1)}$ of our block-tridiagonal linear system.

If we try to describe the result of the theorem we can look upon it as follows. Formula (4) for ordinary continued fractions (1) generalizes to formula (8) for branched continued fractions (5) by replacing

$$
\begin{aligned}
b_{j}^{(i)} & \rightarrow B_{m_{j}}^{(j)} \\
a_{j}^{(i)} & \rightarrow A_{j} \\
-1 & \rightarrow-I_{j}
\end{aligned}
$$

Continuing this idea it is easy to see that for two-branched continued fractions

$$
B_{0}^{(0)}+\sum_{j=1}^{\infty}\left|\frac{a_{j}^{(0)}}{B_{j}^{(0)}}+\sum_{i=1}^{\infty}\right| \frac{a_{i}}{\left.\left|B_{0}^{(i)}+\sum_{j=1}^{\infty}\right| \frac{a_{j}^{(i)}}{B_{j}^{(i)}} \right\rvert\,}
$$

with

$$
B_{j}^{(i)}=b_{j 0}^{(i)}+\sum_{k=1}^{\infty} \frac{a_{j k}^{(i)} \mid}{b_{j k}^{(i)}}
$$

which result by inserting an ordinary continued fraction for each denominator $b_{j}^{(i)}$ in (5), a formula similar to (8) can be proved where now within $B_{m_{i}}^{(i)}$ each $b_{j}^{(i)}$ is in its turn replaced by a block of the form

$$
\left(\begin{array}{ccc}
b_{j 0}^{(i)} & -1 & \\
a_{j 1}^{(i)} & b_{j 1}^{(i)} & \ddots \\
& \ddots & \ddots
\end{array}\right)
$$

This procedure can be repeated k times and so a general determinant representation can be given for the convergent of a k-branched continued fraction. It is our purpose to discuss parallel algorithms for the computation of (6) by introducing parallel algorithms for the solution of block-tridiagonal linear systems like (8). The computation of this type of convergents arises in approximation theory [2], systems theory, and other applications which are under investigation [3].

References

1. A. C. Aitken, "Determinants and matrices", Oliver \& Boyd, Edinburgh, 1967.
2. A. Cuyt, A recursive computation scheme for multivariate rational interpolants, SIAM J. Num. Anal. (to appear).
3. A. Cuyt and B. Verdonk, A review of branched continued fraction theory for the construction of multivariate rational approximants, J. Appl. Numer. Math., submitted.
4. J. Mikloško, Investigation of algorithms for numerical computation of continued fractions, USSR Comp. Math. and Math. Phys. 16 (1976), 1-12.
5. O. Perron, "Die Lehre von den Kettenbruchen I", Teubner, Stuttgart, 1977.
6. V. Skorobogatko, "Branched continued fractions and their applications in mathematics", (in Russian), Nauka, Moscow, 1983.

IN 1986 REEDS VERSCHENEN
202 J.H.F. Schilderinck \quad Interregional Structure of the European Community. Part III

203 Antoon van den Elzen and Dolf Talman
A new strategy-adjustment process for computing a Nash equilibrium in
a noncooperative more-person game
204 Jan Vingerhoets
Fabrication of copper and copper semis in developing countries. A review of evidence and opportunities

205 R. Heuts, J. van Lieshout, K. Baken
An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. van Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior
207 F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development. A view to the consequences of technological change

208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn
Estimation of the error components model with incomplete panels
210 A.L. Hempenius
The relation between dividends and profits
211 J. Kriens, J.Th. van Lieshout A generalisation and some properties of Markowitz' portfolio selection method

212 Jack P.C. Kleijnen and Charles R. Standridge Experimental design and regression analysis in simulation: an FMS case study

213 T.M. Doup, A.H. van den Elzen and A.J.J. Talman
Simplicial algorithms for solving the non-linear complementarity problem on the simplotope

214 A.J.W. van de Gevel
The theory of wage differentials: a correction
215 J.P.C. Kleijnen, W. van Groenendaal Regression analysis of factorial designs with sequential replication

216 T.E. Nijman and F.C. Palm Consistent estimation of rational expectations models

```
217 P.M. Kort
    The firm's investment policy under a concave adjustment cost function
218 J.P.C. Kleijnen
    Decision Support Systems (DSS), en de kleren van de keizer ...
219 T.M. Doup and A.J.J. Talman
    A continuous deformation algorithm on the product space of unit
    simplices
220 T.M. Doup and A.J.J. Talman
    The 2-ray algorithm for solving equilibrium problems on the unit
    simplex
221 Th. van de Klundert, P. Peters
    Price Inertia in a Macroeconomic Model of Monopolistic Competition
222 Christian Mulder
    Testing Korteweg's rational expectations model for a small open
    economy
223 A.C. Meijdam, J.E.J. Plasmans
    Maximum Likelihood Estimation of Econometric Models with Rational
    Expectations of Current Endogenous Variables
224 Arie Kapteyn, Peter Kooreman, Arthur van Soest
    Non-convex budget sets, institutional constraints and imposition of
    concavity in a flexible household labor supply model
225 R.J. de Groof
    Internationale coorrdinatie van economische politiek in een twee-
    regio-twee-sectoren model
226 Arthur van Soest, Peter Kooreman
    Comment on 'Microeconometric Demand Systems with Binding Non-Ne-
    gativity Constraints: The Dual Approach'
227 A.J.J. Talman and Y. Yamamoto
    A globally convergent simplicial algorithm for stationary point
    problems on polytopes
228 Jack P.C. Kleijnen, Peter C.A. Karremans, Wim K. Oortwijn, Willem
    J.H. van Groenendaal
    Jackknifing estimated weighted least squares
229 A.H. van den Elzen and G. van der Laan
    A price adjustment for an economy with a block-diagonal pattern
230 M.H.C. Paardekooper
    Jacobi-type algorithms for eigenvalues on vector- and parallel compu-
    ter
231 J.P.C. Kleijnen Analyzing simulation experiments with common random numbers
```

232 A.B.T.M. van Schaik, R.J. Mulder On Superimposed Recurrent Cycles

233 M.H.C. Paardekooper Sameh's parallel eigenvalue algorithm revisited

234 Pieter H.M. Ruys and Ton J.A. Storcken Preferences revealed by the choice of friends

235 C.J.J. Huys en E.N. Kertzman Effectieve belastingtarieven en kapitaalkosten

236 A.M.H. Gerards An extension of König's theorem to graphs with no odd $-\mathrm{K}_{4}$

237 A.M.H. Gerards and A. Schrijver Signed Graphs - Regular Matroids - Grafts

238 Rob J.M. Alessie and Arie Kapteyn Consumption, Savings and Demography

239 A.J. van Reeken Begrippen rondom "kwaliteit"

240 Th.E. Nijman and F.C. Palmer Efficiency gains due to using missing data. Procedures in regression models

241 Dr. S.C.W. Eijffinger The determinants of the currencies within the European Monetary System

IN 1987 REEDS VERSCHENEN

242 Gerard van den Berg
Nonstationarity in job search theory

Bibliotheek K. U. Brabant

17000010599786

