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3AYESIAN ANALYSIS OF HETEROSCEDASTICITY

IN

REGRESSION MODELS

BY

S. R.CHOWDHURY AND W. VANDAELE

1. Introduction

In this paper we will try to examine heteroscedasti-
city in the regression model with Bayesian analysis. We will
set up two types of models, one linear and the other ratio,

and examine the posterior distributions of the unknown vari-

ances.

If the form of heteroscedasticity is completely
known we can by Aitken's generalised least squares method
find out the best linear unbiased estimates of the parame-
ters. But before applying such a method we should first of

all be able to test the presence of heteroscedasticity in
the orginal model. TYíe usual Bartlett's t test of homogeneity

of variances cannot be applied because we have only one sam-
ple at our disposal.

Goldfeld, M. and R.E. Quandt { 5}, have also tack-
led this problem and have given a parametric and a nonparame-
tric test to compare the ratio and linear models.

t BARTLETT, M.S. "The Problem in Statistics of Testing Seve-
ral Variances", Proceedings of the Cambridge Philosophical
Society. Vol. 30, 1934.
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2. TheorY

where:

Let us consider the regression model:

~~, ... ,Tyt - Slxlt t SZx2t t... f Bnxnt } ut

- yt - observation of the dependent variable at

(1)

time t;

- xlt' "' ' xnt' are the observations on the n
explanatcry variables at time t; these va-
lues are nonstochastic and identical in re-
peated samples; the first variable is the
usual constant and takes the value 1;

- ut : is the disturbance at time t;

- There are T independent observations on the depen-
dent and explanatory variables;

- T , n.

It is assumed that

- E (ut) - 0 ;

F11~...,T
t,t~

- E (utut, ) - 0 , t ~ t' ;

- E(ut) -~t a2 , where cr2 is unknown, but ~2t
is known ;

(2)

(3a)

(3b)

- that the error terms are normally and independent-
ly distributed. (4)

Bayesian analysis.

To apply the Bayesian analysis, we first make a
transformation of (1) .

1,...,T yt x'-t ~-t f .Flt ~t - S1 ~~ t SZ ~t .
} Sn ~nt ~ ~t (5)

t t
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Model (5) may be called a ratio model.

Now ~1~...,T
t

ut
E( ~ ) - 0 , because of (2) (6)

t

2
E( ~2 ) - Q2 , because of (3b) (7)

t

Because of (7), the model (5) is a homoscedastic
one.
For simplicity, we write the ratiomodel (5) as

1,...,T - glxltl~ f S2x2t ~ f... f S x f
~t Yt,~ , n nt,~

t ut~~ (8)

Under the assumption (4), the likelihood function

of the sample is given by

T
~(B ,...,8 ,aly) '- 1 eXP {- ~ E (yt ~ -

1 n QT 2a2 t-1 '

- Blxlt~~ -

Or in matrix notation,

. - Bnxnt ~)2}

R(B,Q~Y) a T exp {- ~2 (y~ - X~B)'(y~ - X~B)}(9)
a 2a

where

a' - csi..-.,an)
y~ - (yl.~' y2.~'..., yn ~)
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xll,r~ x21,~... x~I,~

... xnT,~

Throughout this paper we shall use the symbol
Q(;', 1, A) to denote a quadratic form in variables ~á centred
at ~ and with matrix A, namely

4(S, a, A) -(~ - a) ' A(I~ - a)

where

We can now write (9) as .

R,(;~,o~y) a T exp [- ~[Q(~3.á,Z) t v Sz] } (~p).
a 2~2

Z - (X~ X~)

á - Z-1 X~ y~
v - T - n

S2 - (y~ - x~~)';y~ - X~..)

v

It can be seen that S, and ~~ are ~ize usual least squares es-
timates of B and a2.

Using the Bayes's theorem, the likelihcod function
in (~~~' is combined with a prior distribution p(a,a) of the
paramet~~rs ~ and a to yield a joïnt posterior distribution
p(S,~~y) for these parameters, that is

p(B.Q~Y) - Kp(B.a),L(í3.6ÍY) (~~)
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where :

-I
K - !R p(S.a)R(B.a~y)dBda

Clearly the form of our posterior distribution g
and a will depend on what prior distribution we adopt.

Jeffreys, H. ({ 6}, pp. 179-192), Savage, L.J.t
and Box, G.E.P. 8~ G.C. Tiaott suggested that in situations
where little is known about g and a, the prior distributions
of g and log a should be taken as locally independent and
uniform. In the literature this type of prior is usually
known as an "Noninformative prior".

In our case, we also adopt such prior distributionsttt ,

that is :

p(B) a kl - m c S c~

p(log a) a k2 or p(a) a 1ra

0 c 6 c ~

the joint prior distribution of S and a is

P(B,a) - p(B)P(a)

P(8.a) a 1ra 0 c a c~ (12)

t SAVAGE, L.J. "Bayesian Statistics". In Decision and
Information Processes. New York, Macmillan and Co., 1952.

tt BOX, G.E.P. and G.C. TIAO. "A further look at robust-
ness via Bayes theorem", Biometrika. Vol. 49, 1962, nr
3~4, pp. 419-433.

ttt The case where g has an informative prior e.g. a mul--
tivariate normal dístribution, will be examined in fu-
ture.
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Substituting (10) and (12) in (11), the joint pos-
terior distribution of B and a is :

p(S'a~y) 6 QTf1 eXp {- 2a2 ~ 4(B.S.Z) f v SZ ]}

Integrating this joint density function over B, by the pro-
perties of multivariate normal distribution, we get the mar-
ginal posterior distribution of a.

p(a~y) - I}~ p(S~a~y)ds

~.,~~i ~ 1 -~, Q a-(vt1)exp{-~ vS2} (13)
~ 2a2

It is to be noted that the expression v S2 is just the resi-
dual sum of squares in the least squares regression.

It can be seen that the marginal posterior distri-
bution of a, i.e., p(Q~y) in (13) is an Inverted-gamma-2
normalized density function (Raiffa, H. and R. Schlaiffer
{ 9 } p. 228) :

2 e-~vS2,o2 (~vS2ra2)~v}~
f(a~S,v), - o '- 0 (1 4 )

r (~v) (~vs2)~ s,v ~ o

Its first two moments are ~.

Mean . ui - S ,~ r (~v-~)
r(2v)

Variance . u2 - S2 v-2 ~ 1
v

The mode is : 5~~~

v Z- u

, v ~ 1 (15)

, v ~ 2 (16)

(1~')

The theory that is given in the previous sections
will now be applied to analyse the heteroscedasticity.



In most of the econometric problems heteroscedasti-
city is usually due to the variances of the disturbance
terms being dependent on the explanatory variables. The most
frequent form of heteroscedasticity results from standard
deviation being proportional to the values of one of the ex-
planatory variables (Fisher, G. { 2}, p. 156; Glejser, H.
{ 3}, p. 3; Goldberger, A. { 4}, p. 245; Johnston, J. { 7}
p. 210) .

In view of the above, we take for ~t's in (5) the
values of one of the n explanatory variables.t The posterior
distribution of a, its mean and variance are calculated.
This procedure is repeated for all the explanatory variables.
The n posterior distributions, their means and variances can
be analysed from the point of heteroscedasticity. Theoreti-
cally, we can conclude that the model with the sharpest pos-
terior distribution p(a~y) is the least heteroscedastic in
comparison to the other n-1 posterior distributions, and one
will naturally choose that one if the criterion is homosce-
dasticity. It is to be noted that our oriainal model is ob-
tained by taking each of the ~t's equal to unity, and is in-
cluded within the n models. In the next section, as illustra-
tions, we will analyse two numerical examples.

t Of course the ratic model is meaningless if any xnt-value is zero.
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3. Illustrations

3.1 As a first illustration, we choose a Rate of inventory
formation, equation based on United Kingdom figures from
1 951 -1 966 :

ti ti ti
Nt - 81 t s2(N-1~V'1)t t S3 Ht f S4 Vt t S5 Kt t ut

Explanation of Symbolst

N
ti ti

- o N~V'1 . the dependent variable represents
the inventory changes, their rate
of change being expressed as a
percentage of lagged total expen-
diture less inventory changes and
net invisibles ;ti

N - inventory changes ;
H- labour cost per unit ;
V' - total expenditure less inventory changes and

net invisibles ;
ti
K- gross profits per unit of output ;ti
K - 4 K x 100.

There are in this equation five explanatory varia-
bles ( constant included). So there will be five posterior
distributions which are indexed by positive integers 1.1 to
1.5. The posterior distribution indexed by 1.1 is based on
the orginal equation ( ~t's - 1). Other posterior distribu-
tions are derived by dividing by the values of the explana-
tory variables e.g. the posterior distribution indexed by
1.2, is derived from the ratio model where ~t's take the va-

ti tilues of (N-1~V'1)t , at different time periods.

t Symbols without special indication refer to relative
changes. Absolute quantities are indicated by ti.
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The calculated results are given in table 1.

The values of the Poisson distributions are used to

determine the posterior density functions p(a~y). This was

possible because cumulative Inverted gamma-2 distribution is

related to cumulated Poisson distribution (Raiffa, H. and
R. Schlaifer { 9}, p. 228). The whole work has been done

on a IBP.1 1620II computer.

From table 1. it is seen that the posterior distri-

bution nr 1.4 has the lowest variance (posterior variance).

In figure 1. the graphs of the posterior distribu-
tions are given. From the fiqure we see that the posterior
distribution nr 1.4 is the sharpest one, which as we expec-
ted.

The posterior variance of the orginal model is 38
times the variance of the sharpest distribution :

posterior variance of p(a~y) nr 1.1 .0106551

posterior variance of p(a~y) nr 1.4 .0002805
- 37.986.

We can safely infer from the above that the o~gi-
nal model is significantly heteroscedastic in comparison
with the model with the sharpest distribution. We note
that, it may also turn out by the above kind of analysis,
that our orginal model is the least heteroscedastic in com-
parison to the other ratio models.

We may also presume that the 6 coefficients in the
least heteroscedastic model are more accurately estimated.



Table 1.

iorP t Disturbanee Values of the re ression coeffícientsos er Mean Variance R t
distribution variance S2 g Q 63 S4 QS

a

example 1: Rate of inventory formation

Nr. 1.1 .4323 .0106 .9763 .1616 1.1008 -1.5007 .1876 .3584 .6304

1.2 .6070 .0210 .9503 .3186 1.6772 -1.3304 .2631 .3969 .6345

1.3 .1926 .0021 .8981 .0321 1.7023 -1.6460 .4197 .3780 1.1690

1.4 .0701 .0002 .9554 .0042 1.2344 -1.5450 .2346 .3655 .7546

1.5 1.1982 .0818 .9760 1.2417 1.9477 -1.4946 .3339 .4019 .8810

example 2: Induced investment I

2.1 2.8434 .4138 .8634 7.0823 15.5816 -1.1585 .2732 -.1220 -1.0369

2.2 .5455 .0152 .9798 .2606 17.5651 -1.4527 .3168 -.1304 -1.3249

2.3
2.4 .1767 .0015 .9789 .0273 14.7125 - .8898 .2916 -.0363 -1.1560

2.5 1.4530 .1080 .9882 1.8495 12.0189 - .6294 .2336 -.1478 - .3059 j
~

I
t Multiple correlation coefficient, adjusted for deqrees of freedom. I

~
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3.2 Induced investment equation.

This equation is based on United Kingdom figures
from 1950-1966 :

It - S1 } s2(Z-1 - Tz)t } S3 r-1~2,t } S 4 Wt } S5 Pai-1,t } ut

Explanation of Symbolst

I - induced investment ;
Z - non-labour income ;

TZ - p(T~Z) . change of tax rate on non-labour income ;
(Z-1 - TZ) - difference in change of tax rate on non-la-

bour income and the change in lagged non-
labour income itself ;

r - Bank rate ,
W - registered ~.~hol1~. unemployed ;

Pai - Price index of autenomous investment.

In this example the posterior distribution indexed by
2.3, cannot be derived because one of the values of r-1~2
is exactly zero.

The results of the calculations are also given in abo-
ve table 1., and the posterior distributions are plotted in
figure 2.

Here we find that the p(a~y) indexed by 2.4 is the
sharpest.

The posterior variance of the orginal model is now
259 times the variance of the sharpest distribution.

t Same remarks as with the symbols in the first example.
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4. Conclusion

The analysis given in the preceding pages is a sim-

ple way of detecting and correcting heteroscedasticity where
heteroscedasticity is in the form of standard deviations be-

ing proportional to one of the explanatory variables.

It is a comparative procedure based on the posteri-
or distributions, and not a direct test. Nevertheless it is
quite reasonable to make such analysis for heteroscedasti-
city. With high-speed computer this type of analysis will
not involve much additional work.
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