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I. Introduction to both parts

I.1. StatinR the problem

Auditors often use statistical samplíng to confirm their preliminary
assessments of the quality of a population, expressed as the error
fraction in the financial statements to be audited. These assessments
are based on experiences ín the past (previous audíts) and on audit
activities in the present, such as the review of the system of internal
controls, analytical review and compliance tests.

A statistícal sample, however, will not result in the determination of
the exact population error fraction. Instead, an interval is specified
that wíll include the unknown real error fraction up to a certaín ex-
tent: the confidence level. The width of the interval determines its
inaccuracv. Given the sample size, the inaccuracy can only be improved
at the cost of the confidence level, and více versa.

In the last few decades, the sizes of the populations to be audited have
grown, resulting in a necessity to reduce sample inaccuracy of the error
fraction (to keep the inaccuracy in monetary units small enough). On the
other hand, the pressure on audit costs has made a reduction of sample
sizes unavoidable. Therefore, auditors and statisticians have been
(re-)searching for methods that combine confidence levels the statis-
tician can agree with, inaccuracy levels the auditor can depend on, and
sample sizes the client can pay.

These methods can be classified into two categories:

The Audit Assurance Model claims to asses the confidence level
required for a partícular audit sample in order to reach a requí-
red level of overall assurance, and based on specified levels of
inherent assurance, assurance from analytical review and assurance
derived from compliance tests.
The auditor substitutes the statistical 'confidence level' by (the
not very clearly defined) 'overall assurance'. The general idea
behínd overall assurance amounts to the certainty that the auditor
will find any material error, usíng a míxture of his knowledge and
skills and the sample results.

Bayesian statistical methods enable to influence the inaccuracv
level of a statistical test by using existing information.
Prior ínformation and knowledge, resulting from the auditor's
general experience and specific work, is quantified in the form of
a probability distribution of possible error fractions in the
population to be sampled. Assuming the 'correctness' of this in-
formation, the sample síze that is necessary to reach the inaccu-
racy level that was originally requested is smaller than the
'classícally' determined sample size.
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In part two, the authors will discuss their objections against the
Audit Assurance Model, both from an auditor's and from a statistician's
point of view. It is the authors' goal to show that the Audit Assurance
Model is:

formulated in quantities that affect the auditor's confidence
level, but should affect his inaccuracy level;
using statistical assumptions that can not be verified;
giving unacceptable (though methodologically consistent) results
once these assumptions have been dropped.

In part three, the authors present a Bayesian alternative to overcome
these drawbacks. In this method, the auditor uses last year's audit
sample results to specify a probability distribution of the error frac-
tion in last year's audit population. Then, the audítor uses his know-
ledge about inherent quality, accuracy from analytical revíew and accu-
racy derived from compliance tests, to specify to what extent this
probability distribution can be considered as prior information about
this year's error fraction. Thís depends on his assessment of 'the
stability of accounting processes'.

The sample size that finally remains in order to reach the acceptable
inaccuracy level, determíned by the auditor's materiality conditions for
this year's audit population, will often be much smaller than classical
samplíng theory would yield.

First, the 'classical' way in whích auditors determine sample sizes, is
described.

I.2. Discovery sampling

Discovery sampling is a method to derive the size of an audit sample
(n) from population size (N), intolerance fraction (pl, the auditor's
materiality divided by population size) and the maxímally tolerated
probability (B , sampling risk, the complement of confidence level)
that a populatoon with ('intolerable') error fraction pl or more yields
a sample that suggests a lower ('tolerable') error fracfion.
Roberts (1978) defines discovery sampling as: 'a procedure for deter-
mining sample size required to have a stipulated probabílity (- 1-8 ,
aut.) of observing at least one occurrence (- error, aut.) when theo
population occurrence rate is at a designated level (- pl, aut.)'.

Statistically it ís based on the fact that the number of errors in such
a sample, k, (random variables will be underlined in this paper) fol-
lows a hypergeometríc distribution. For relatively large populations
(such as when population and materiality are expressed in monetary
units), this distribution can be approximated by a binomíal distribu-
tion. From the resulting number of errors, the upper limit of a confi-
dence interval for the unknown populatíon error fraction is calculated.
When no errors occur, this upper limit should equal the materiality
fraction. The method by which such an upper limit can be found is ex-
plained, for example, by Blyth (1986). The upper limit is the smallest
value p~ for which:
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P( k-0 I N,n and p~) 5 B .0

This upper limit should equal the auditor's materiality fraction pl when
k-0 in a sample of size n~, Yor which:

P( k-0 ~ N,n~ and pl) ~ Bo'

Using binomial probabilities, the minimal sample size n~ can be found
from:

~
(1-pl)n - Bo so n~ - log(Bo)~log(1-pl).

(To attain an integer value for n~, the numerical result is always
rounded up.)

Further approximation of the binomial probabílity functíon by a Poisson
distribution (often used in Anglo-Saxon oriented audit firms) yields a
very easy rule of thumb for calculating the necessary sample size:

npl-constant (being for example 3 if Bo- 0.05).



II. Objections to the Audit Assurance Model from audit theory and
statistical methodology

Part two is organized as follows. Section 1 formulates the Audit Assu-
rance Model (AAM from now on) and its influence on the way audítors use
discOvery sampling. In that section, the AAM is criticized from audit
theory and we show our statístical objections against the AAM. In sec-
tion 2 ít is shown, mathematícally and by means of graphs, that the
'statistically improved' AAM wíll give unattractive outcomes to the
auditor. Section 3 concludes.

II.1. The Audit Assurance Model

II.1.1. Description of the model

The AAM has appeared in many dífferent forms. Bailey (1981) presents 4
slightly different models, with the same objective (quoted from Bailey,
page 231): 'the linkage between various compliance and substantíve
tests of details together to render a combined relíabílity measure'.
Each of them can be reformulated into:

OA - 1- Bo(1-A),

in which:

OA: the level of overall assurance to be attained. Overall assurance
is the certainty that the auditor will not miss a material error
(an error which magnitude is at least the intolerance fraction pl)
in his audit;

A- the level of assurance, which means the certainty the auditor has
that material errors will either not be present or will have been
detected before the population is subjected to sampling;

B- the sampling risk: the probability that a population with a mate-
o rial error will give a sample without an error.

In many different versions of the AAM, the assurance (A) is dívided
into a number of different components, such as:

inherent assurance, the measure of certainty the auditor derives
purely from his professional judgement, his knowledge of the firm
and of the assignment;

(for a statistician: the subjective probability that the
client wíll have made no material errors.)

assurance from analvtical review, the measure of certainty that
materíal errors will have been found during the performance of
analytical review;

(the statisticían may wonder: is thís the conditional probabi-
lity of detection if it is present, or is it the joint proba-
bility that an error is present and consequently detected.
Further on, alike questions will be raised about the model as
a whole, but on this point, the reader can get a preview of
what this paper is about.)
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assurance from compliance tests, the measure of certainty that
material errors wíll have been found when testing on the presence
of internal control.
Suwei:iwc~ tiii5 ~i35uïni~Cè in ucfi:,ed ó5 th2 C6rtaiTity ti,a~ ~ï~t8ïï.ni

control itself will have found the errors, sometimes it ís the
auditor who finds them when evaluating internal control.

II.1.2. An example

In almost every application of the AAM, everybody agrees (without any
discussion) that overall assurance should equal 958, or (what amounts
to the same thing) overall audit risk may be 58. Assuming an auditor
specified a materiality fraction of, say, 1~, the sample size now only
depends on the level of A.

A-0 implies that B-0.05, so sample size n-299 (binomial),
A-0.50 Bo-0.10, 230,
A-0.90 Bo-0.50, 69,
A-0.95 Bó1.00, 0,

and values of A~ 0.95 would also render a zero sample size.

Interesting about this formula is that 'the chain can be stronger than
its strongest part': when the auditor decides A to be 508 (508 assu-
rance) and his sample has been performed to reach a B of 108 (908 sam-
pling assurance), the resulting overall assurance is not somewhere
between 508 and 90~, but 958.
Thís example clearly shows that accordíng to the AAM assurance from
different sources can be added, implying that a weak inherent assurance
ís supposed to be compensated by a stronger sampling assurance. We will
come back to this later on.

II.2. Comments on AAM

II.2.1. Audítor's comments

First of all, auditors might object against the choice of variables ín
the model.

Apart from the conviction that, at least in Dutch auditing, inherent
assurance ís not a part of the auditor's tools and techniques, it is
difficult to see how inherent assurance can influence the range of
audit activities. At the most, it could influence the audit's objecti-
ves, not the quantity of audit activities.
At its best, analytical review can lead to an indication of the pre-
sence of potential errors. But it is incorrect to use information about
qualities (error rates) as if it were information about statistical
confidence (the significance level of a statistical test).

Second, the auditor may wonder whether these variables are the kinds of
quantities one can really quantify. When assessing A to be 508, the
result of the model is in terms of assurance, not in terms of financial
units.
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So, prior 'knowledge' cannot be valídated by a statement about the impli-
citly assumed quality. Even a full investígatíon of the population will
nnr validate the chosen level of assurance: afterwards, a material error
was either present (08 assurance) or not present (1008 assurance). It ís
assumed to be a severe handicap of this model that the auditor cannot
validate his assumptions in a way that confírms his ideas about the
quality of the population subject to his audit.

II.2.2. Methodological comments

When the American Institu[e was still in the first stages of discussing
the notion of Audit Assurance, K.A. Smith (1972) already warned:

'No logical basis has been determined for setting the confidence
level correlated with different states of internal control. The
selection of levels to be utílized is completely arbitrary, with-
out any theoretical basis'.

By quantifying all these forms of 'assurances' as variables that affect
(or can be supplemented to) statistical confidence levels, informatíon
about the prevalence of error fractions ís used as information about
confidence levels. In other words: the required confidence level of a
hypothesis to be tested ís influenced by a prior belief about the vali-
dity of the same hypothesis.

Statisticians wíll not lightly support this audítors' habit. Statisti-
cians will argue that the confidence level of a statistical test must
be set before the actual test is performed, and should not be affected
by any prior idea about the trueness of the hypothesis to be tested.

The AAM, though, suggests that a weak inherent assurance can be compen-
sated by a stronger sampling assurance, or a strong inherent assurance
suffices with a weak sampling assurance. The only logical basís behind
this would be that statistical confidence is a statistical varíable,
that could be transferred from 'belief in the trueness of a theory' to
its empirical validation. As if a strongly believed theory only has to
be validated by a weak statistical result, and less strongly believed
theories need more statistical support.
On the contrary: the measure a theory is believed to be true does not
affect the confidence level it ís tested at, although the stronger a
theory is believed to be true, the stronger the expectation of empíri-
cal evidence will be when that belief is tested.

(An elaboration on this statement could even trigger off a vivid
discussion amongst statisticíans, so let's take an example: every-
body knows that personal income is the main variable that affects
individual consumption. When, in a regression analysis on a large
sample, the income coefficient is tested on significance, no eco-
nometrician will use his certainty that income is the main expla-
natory variable to raise (-to weaken) the requested significance
level. Econometricians would even be disappointed when significan-
ce could only be reached at 58, as they expect their ('certain')
theoretical knowledge to become confirmed more firmly.)
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Statistical confidence is not a statistical variable, and an indivídual
value used in an individual application cannot be validated afterwards.
As mentioned above, even a full investigation of an indivídual popula-
tion will not validate the chosen level oi statistícaï confídence;
afterwards, a material error appears to be either present (08 confiden-
ce) or not present (1008 confídence).

II.2.3. Comment on statistical computations

Apart from a discussion about the nature of the variables in the model,
there is a question of statístical independence. Amongst many others,
Roberts (1978) as well as Bailey (1981) mention this question, and both
tend to doubC the presence of independence. Unfortunately, neither of
them draws a conclusion on the validity of the model as a whole.

In the AAM, overall assurance is defined as 1 minus the probability
that neither preceding audit phases, nor subsequent statistical samp-
ling, detects a material error. This probability is derived by multi-
plícatíon of 1 mínus the 'assurance A' wíth the probabilíty of non-
detection of a material error ín the sample.

This multiplication of probabilities is only permitted when the varíab-
les referred to are statistically independent.

Statistical independence would iaply tbat the probability of er-
ror-detection in a statistical saaple is identical for errors that
have already, and errors that have not yet been detected in prece-
díng audit phases.

This notion of statistical independence in fact only makes sense if the
related variables are s[atistical variables, but we already stated that
'assurance' can not be interpreted as such.

However, even if we -just for argumentation- interpret 'assurance' as
the probability of detection of a material error, the assumption of
statistical independence has not yet been proved to be correct.

Therefore, as long as it is not validated, auditors should not rely on
this assumption, but should stay on the safest side. When determining
overall assurance from assurance and sampling assurance (sampling con-
fidence), the auditor has to start from the most unfavorable combina-
tion of both. This is the situation in which audit samplíng renders as
líttle extra information as possible, because detection of errors in
all audit phases overlap as much as possible, resulting in the detec-
tíon of errors in the sample that already were detected in preceding
phases. When sample size is suffícient (large enough) to reach the
required overall assurance ín this situation, it is always sufficient.
When determining overall assurance under the most unfavorable combína-
tion of assurances, the result is as disappointing as it is predicta-
ble: in section 3 it will be shown that overall assurance is equal to
the maximum of the individual assurances. Thís implies:
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the larger inherent assurance, or assurance from analytical re-
view, the larger statistical assurance (and the smaller sampling
risk) must be in order to render a sufficient sample;
only when statistical assurance is chosen equai i.u t'i~e í-equircd
overall assurance, the auditor is sure to have a sample that is
always large enough to meet his requirements.

The more preceeding assurance obtained, the larger sample is required to
validate the auditor's judgements. This conclusion is not very at-
tractive to the auditor, but is not therefore illogical: the stronger a
theory is believed to be true, the stronger empirical valídation ís
necessary to strengthen that belief.

II.3. Mathematical proof and graphical illustration

II.3.1. Mathematical proof

To show that a statistically improved version of AAM gíves the result
we mentioned above, we make a(2X2)-chart of possíble events and their
(assumed) probabilities. (Chart 1)
In the sample, a material error ís detected (regardless of whether it
was already detected by previous audit activities) with probabílity
1-B and not detected with probability B, and the AAM internrets 1-A
to ~e the probability that an error has not been found in previous
stages of the audit and A its complement, the probabilíty that the
error has already been detected.

Overall assurance is now derived by filling in the inner part of the
chart. To reach the expression for overall assurance given in the AAM
the marginal probabilities are multíplied.
As we can see from chart 2, overall assurance, the probability that
either previous activitíes, or sampling, or both, will detect a mate-
rial error, is equal to 1 minus the probability that neither will find
it:

OA- 1- Bo(1-A).

Implicitly, by multiplying these probabilities, independence between
previous sudit activities and sampling has been assumed. What will
happen if we drop this assumption?

To answer this question, we make 4 different charts out of chart 1. Re-
strícted by the marginal probabilities, we can investigate the extreme
values of the probability not to find a material error.
In each chart, a(dífferent) corner is filled by the lowest possible
probability, zero. The rest of the chart is completed using the known
marginal probabilities. In this way, we can see between which lower-
and upper limits the value of the Overall Assurance, 1 minus the proba-
bilíty in the lower-right corner, líes.
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sample result:
result of previous activities:

error found error not found

error is
detected 1-B0

error ís not
detected B0
chart 1 A 1-A 1

sample result:
result of previous activities:

error found error not found

error ís
detected A(1-Bo) (1-A)(1-Bo) 1-Bo

error is not
detected AB B (1-A) B0 0 0

chart 2 A 1-A 1

Charts 3 and 4 result in an upper límít for OA. This upper limit of OA
is 1 when chart 4 is accurate, that is, when A-B ~ 0, and it is
1-(Bo-A)- lt(A-So) when A-Bo c 0. In the latter case, OA is G1. There-
fore, we can conclude:

The upper limit of OA, the maximum value that can be reached, ís
the mínimum of 1 and 1-(Bo-A).

Charts S and 6 give information about the minimum value of OA. Chart 6
shows that OA - 1-B when 1-B -A 1 0, so when 1-B ~ A, and Chart 5
shows that OA-A when 1-Bo-A CoO, so when A~ 1-Boo Conclusion is:

The lower limit of OA, the minimum value that will be reached, is
the maximum of A and 1-S .0

Together:

max (A,1-B ) 5 OA 5 min {1,1-B tA).0 0
Translated for auditors: overall assurance can not be calculated, be-
cause it is not known how previous audit activities affect the probabi-
lity that a material error will be discovered in the sample.
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result of previous activity: error
found not found

result of previous activity: error
found not found

sample sample
result: result:
error error
detected 0 1-B detected 0 1-B 1-B
NOT o NOT o 0
detected B detected A B-A B0 0 0
chart 3 A 1-A 1 A 1-A 1

result of previous activíty: error
found not found

result of previous activity: error
found not found

sample sample
result: result:
error error
detected 1-S detected A-B 1-A 1-B
NOT o NOT o 0
detected 0 B detected B 0 Bo o o

chart 4 A 1-A 1 A 1-A 1

result of previous activity: error
found not found

result of previous activity: error
found not found

sample sample
result: result:
error error
detected 0 1-B detected 1-B 0 1-B
NOT o NOT o 0
detected B detected A-1tB 1-A B0 0 0

chart 5 A 1-A 1 A 1-A 1

result of previous activity: error
found not found

result of previous activity: error
found not found

sample sample
result: result:
error error
detected 1-B detected A 1-S -A 1-S
NOT o NOT o 0

detected 0 B detected 0 B Bo o o

chart 6 A 1-A 1 A 1-A 1
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There is only a minimum and a maximum value of overall assurance; the
auditor might aim at maximizing the minimum value. When he assesses a
value for his 'assurance', A, he can decíde whether this value would
already be sufficient. In that case, no sample is necessary. If not, hís
sample assurance should equal the value of overall assurance required:

1-B - OA.0
Consequently, the higher value of A, the smaller B must be chosen to
render a sample that provídes a gain in assurance óver A. In other
words: the more favorable prior knowledge, the larger the sample must
be, before it is of use. This conclusion is more than just a
tendentious remark: it is completely coherent with our methodological
point of view from section 3.2.2.

II.3.2. Graphical illustration

Users of the AAM often use this example to explain their method. In a
circus, we want to prevent the trapezists from falling on the floor by
stretching several rope nettings. The first netting has already been
hung; this plays the part of (ínherent) assurance (on internal control
etc.). When we require a certaín overall assurance OA (or an Audit Risk
AR), how large must our second netting (the auditor's sample) be?

Next, there appears a drawíng (figure 1) of the two nettings. As we can
see, both nettings together do yield the required probabílity of
intercepting the trapezist.
But, we wonder, why is there an overlap ? Isn't that inefficient ? Why
not hang our second netting like (1) in figure 2? Then, a much smaller
netting (- sample size) would be sufficient ! Or even, why not use a
bit larger netting, like (2), and attain 1008 assurance !

The problem ís that we can choose the length of the netting (sample
size), but we cannot set the measure of overlapping between both
nettings, the dependency between previous audit actívities and
samplíng. The only way to be sure that the netting is large enough even
when it hangs in the worst place, is to take a netting that is as large
as the overall assurance required.

Again, we come to the conclusion that droppíng the independence
assumption from the AAM, and assuming that A G OA, results in a
sampling risk B equal to 1 minus overall assurance: the stronger a
theory is believed to be true, the stronger empirical validation is
necessary to strengthen that belief.
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(fig. 1) assurance A

samplinR assurance 1-B

(fig. 2)

(fig. 3)

Overall Assurance

assurance A

Audit
Risk

~
sampling~ assurance 1-B

I o I(1)
I I

(2)I I-
I
I

Overall Assurance Audit
Risk

assurance A

sampling assurance 1-Bo

Overall Assurance

II.4. Conclusion to part II

Audit
Risk

The AAM has been shown to be a statistically doubtful formula, contai-
ning variables that should not be in it, with numerical values that can
not be validated, and giving results that are methodologically not
valid.
And, what i s even worse, many auditors claim not to use it (because
they know the model is wrong), but in spite of that, let depend the
value of B to be used on their subjective j udgement on internal con-0trol.
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That too ís a mistake. Statistical sampling is like the thermostat of
your heater in winter time: no matter how the weather is outside, the
thermostat guarantees you that the temperature you choose will be rea-
ched in your room. When you assume it will be cold outsíde, you should
not put the thermostat up, nor should one put the thermostat down when
it ís warm outside.

Of course, auditor's knowledge and experience, and the results of pre-
vious audit activities, may not get wasted when the auditor comes to
his audit sample. Some variables in the AAM are good ways to quantify
'professional judgement'.
The only problem is that they do not, and therefore may not, affect the
confidence level used to test on a specific error fraction. They are all
factors that should influence the distribution of the error fraction
itself.

In a Bayesian model, (e.g. Kriens, 1963, Veenstra and van Batenburg,
1989, van Batenburg and Kriens, 1989) the same factors can be incorpo-
rated wíthout methodological drawbacks, and in a way that the auditor
can validate his professional judgement in monetary dimensions.
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III Bayesian Discovery Sampling, a better method to utilize the audi-
tor's 'professional judgement' ín sampling

Part three is organized as follows. In sectíon 1, the notion of tsaye-
sian statistics is explained, in order to show the difference between
'classical' probabilities and Bayesian probabilities. As an introduc-
tíon, section 2 presents a naive model of Bayesian sudit sampling. In
section 3 the way is made for a less naive model, by showing the rela-
tion between interval estimation and Bayesian inference. Section 4 pre-
sents our model of Bayesian Discovery Sampling, and section 5 is about
the practical application in Touche Ross Nederland audíts. Fínally,
section 6 concludes.

III.1. Bayesian inference

Reverend Thomas Bayes (1702-1761), in his search for methods to design
experiments that proved Newton's ideas about the laws of nature (see K.
Pearson, 1978), gave name to a whole new way of looking at probabili-
ties. Bayes showed how probabilitíes can be (re-)defined using both
prior knowledge about the event itself and empirícal evidence from
sample results.

Beginning students ín statistícs are often confronted wíth the standard
Bayes-problem: two vases, labeled 1 and 2, contain, in dífferent but
known proportions, red and white chips. First a lot is drawn in order
to decide randomly which vase is used, and from that vase one chip is
drawn at random. The probability dístríbution of the color of the chip
is now dependent on the label of the vase. Bayes showed how - vice
versa - the color of the drawn chip affects the probability that vase
1, or vase 2, has been chosen.

Say, for example, that vase 1 contains 6 red and 4 white chips, and
vase 2 contaíns 3 red and 7 white chips, and vases are drawn each with
50~ probability. Now if the drawn chip is red, according to Bayes'
theorem, there is a posterior probability of 2~3 that vase 1 has been
chosen, and 1~3 that it was vase 2.

The modern versíon of Bayesian ínference says that the probability
distribution of possible events (the colors of the chips) depends on
unknown parameters (the labels of the vases). These parameters themsel-
ves have (subjective) probabilities, which are defined in a probability
distribution (in the example 508 for each vase). This distribution is
the prior distribution of the parameters, quantífying the probabilities
of the possible parameter values prior to empirícal investigation.
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When the experiment is completed, and empirícal results have become
known, we can formulate a posterior distribution, 'updating' the
probabilities of these parameters in the light of the empírical results.

Translated to auditing, the same example can be used referring to an
auditor who wants to evaluate a population. He lays down a standard for
what is 'good' and what is 'bad' (the labels of the vases) and speci-
fies his subjective príor probabilitíes of 'good' and 'bad'. (This
prior dístribution in general will of course not be 50~ for each alter-
natíve.) The conditional distribution of the possible sample results,
that is the number of errors in the sample (the colors of the chips)
can be derived for both the 'good' and the 'bad' population, respecti-
vely.

After the sample has been drawn and audited, we can, retrospectively,
calculate the posterior probabilitíes of a'good' or a'bad' popula-
tion, given the objective sample results and taking into account the
original subjective ideas about the probabilities of a'good' and of a
'bad' populatíon.

In this way, the auditor evaluates the population, not only by the
objective sample results, but also by his prior professíonal judgement.

III.2. A naive Bayesian model

Suppose an auditor knows a priori that the population to be audited is
either 'good' (p, the population error fractíon, is 0), or 'bad' (it
contaíns a certain fraction of, pl). Furthermore, the auditor assigns a
príor probability of 1-q to p-0 and, thus, q to p-pl. Thinking in Baye-
sian terms, we can say that without any additional information (e.g.
sample results) the posteríor probabilities are equal to the prior
probabilities, so also 1-q for p-0 and q for p-pl.

When a sample of size n is sudited, every 'good' item will increase the
posteríor probabilíty of a'good' population, whereas a'bad' item (an
error) decreases this probabílíty (and increases the posteríor pro-
babílity of a 'bad' population).

It ís not that difficult to calculate the sample size n, that, with n
'good' items and zero errors, increases the posterior probability of a
'good' population to a level that is sufficient for the auditor to base
his (positive) final judgement upon.

Chart 7 gives the prior probabilities, and in chart 8 these have been
combined with the conditional probabílities of the sample results.
Chart 8 ís derived from the fact that if p-0, the probabilit~ of a
perfect sample ís 1, and if p-pl, this probabilíty is (1-pl) .
From the first row of chart 8, we can calculate the posterior probabi-
lity of p-pl, given a perfect sample (k-0). We can see that the fact
that k-0 has decreased the probability for p-pl from q to:



17

PI p:pl Ik-0 )-
9(1-P1)n -

(1-q) t 9(1-pl)n

We can calculate the minimum sample size n for whích this posterior
probabílity of wrongly acceptíng the 'bad' population, given k~0, is
less than, or equal to Bo. From that calculation follows:

sample result:
prior knowledge:

ps0 p~pl

no errors
detected

1 or more
detected

chart 7 1-q q 1

sample result:
prior knowledge:

p-0 pspl

no errors ndetected (1-q)~lal-q q(1-pl)

1 or more ndetected ](1-q)~0~0 q[1-(1-pl)

chart 8 1-q q '

n- log ((Bo(1-q))~((1-Bo)9))~log (1-pl).

Compared to the sample size in 'classical' Discovery Sampling (n~), we
expect the above sampie size to be smaller as long as our prior
knowledge is in favor of the population being 'good', so as long as q
is less than 50~.

(Exact calculation gíves: nCn~ iff qC 1~(2-B ) , which is a little
more than 508, but the rationale for this negligible difference is
beyond the purpose of this paper.)

Before going in to the naivety of this model, we gíve one numerical
example.
Discovery Sampling with B-0.05 and p 18 gives a classical sample of
299. Suppose the auditor os 758 sure óf a perfect population (and thus
assigns a 258 probabilíty to the population containing a materíal er-
ror). If he aims at a posterior probability of 0.05 (corresponding to
Bo-0.05) for the population being 'bad', sample size reduces to 184 !
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In a graph (Fígure 3), we can illustrate this method as follows. Before
sampling, there is a prior probability dístribution wíth density 1-q on
p-0. When the sample consists of n'good' and 0'bad' items, enough
probability has been moved from p-pl to p-0, to make the posterior
density of p-0 equal to 1-Bo.

(Fígure 3)
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Of course, this model is too naíve to use ín auditing.
The population error fraction is not either 0 or p, but has a value in
a range that is theoretically bounded by 0 and 100~. In our real model,
we wíll use the assumption that the auditor 'knows' (wíth a specífíc
certainty) that this range will not be 0-100~, but, say, 0-758.
But still, as will be explained in section 6, that model works with the
same basic idea (like ín Moors, 1983) that the auditor specifies his
prior knowledge, and that a sample in which no errors occur yields a
particular posterior probability of wrongly acceptíng the (bad) popula-
tíon. Sample size is, just as above, calculated from the restriction
the auditor imposes on this posterior probability.

III.3. On interval estimation and Bayesian reasoníng

As we saw in section 2, Díscovery Sampling ié based on the calculatíon
of the upper limít of a(in our case) 958 confidence interval for the
population error fraction p, when no errors have been found ín the
sample. The size of thís sample must be sufficient to make this upper
limit not to exceed the designated materiality fraction.

When calculating such an interval, the statistician wíll start by for-
mulatíng the possíble values of p, and consequently reduces the width
of that interval on the basís of the empirical results.
So, before a sample is taken, the possíble values of p are 0-1008. Any
additional sample outcome result will result in a somewhat smaller
interval. Furthermore, a'good' result shifts the interval towards pa0,
and a'bad' result shífts ít away from p-0. Sampling can be stopped
when the upper limit has descended from 1008 to pl.

The number of good items it takes to bring the upper limit down to pl
does not only depend on pl, but also on the location of this upper
limit at the start of this procedure. Is it really true that without
sampling the upper limit is theoretically equal to 1008?. In classical
statistical theory, yes, but supported by Bayesian statístics we can
start from a subjectively chosen upper limit, resulting from professio-
nal judgement and prior knowledge.

The model described in the next section therefore starts by formulating
that subjectively chosen upper limit. From that point, the sample size
is calculated to derive the upper límít aimed at by the auditor. In
fígure 4 is shown what will be mathematically formulated in Section 4.

III.4. Bayesian Discovery Sampling

(1) As prior probability function for the unknown error fraction in
the population we choose:

Pr(p) - s(1-p)s-1 for 05p51 and s~0.

This very simple prior has only one parameter, s, so ít takes only
one result to find a value for it. Furthermore, it has its mode in
p-0, which is consistent with the auditor's expectatíon that the
population contains very few errors.
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The parameter s is chosen in accordance to the evaluation of last
year's audit sample. We suppose that in the previous year, dísco-
very sampling has been performed with parameters S~ and p~ and
that no errors have been found. Thís implies that the upper límit
of the 100(1-B~)8 confídence interval for p was p~. (If errors
have been found, a value of p~ can be calculated that is larger
than the materiality fraction in that audít, but it does not chan-
ge our model.) So, s can be set at that value that results in a
probability B~ for p exceedíng this upper limit p~:

(Strictly speaking, thís probability míght even be taken equal to
B~(1-p~), but for simplicity we have ignored this subtlety.)

P[ P ~ P~)- g~
1 1

f 1
P( P~ P~)- Pr(P) dp - J s(1-p)s-1 dP - ~-(1-P)s) -(1-p~)s;

sp~ p~t p~t
from ( 1-p~) - B~ ít follows that s- log B~~log(1-p~).

(2) The probability of an errorless sample of size n from a population
of size N with error fraction p can be approximated by:

L(1~ -0 Ip, n, N ) - (1-p)n.
Of course, we could have used the fact that the sample is taken
without replacement. On the other hand, as seen in sectíon 2, ít
is quite common to disregard this fact. We even intentionally
chose our príor to have a general form that is mathematically easy
to combine with this sample likelihood. ( In statistical handbooks,
e.g. Zellner, 1971, the term 'natural conjugate prior', is used
for a general form that simplifies the calculation of the
posterior.)

(3) The posterior probability function for p is derived from (1) and
(2). Mathematically it is a bit more dífficult but actually not
different from the way the posteríor probability was derived in
section 2:

Po( k-0, n, N nts-1pl )- (nts)(1-p) for 05p51, nts~0.

(4) This posterior function has to meet the auditor's requirements for
discovery sampling in this year. That means, that the parameter
(nts) has to reconcíle the information that would have resulted
from the upper limit of a 100(1-B )8 confidence interval, and that
this upper limit should equal p.oThis means (apart from the
subtlety just mentioned when discussíng the prior):

P[ P1p }-B11 0 1

P J J nts-1 nfsl „ ,nts(P~Pl)- Po(P)dp - (nfs)(1-P) dP-~-(1-p) )
pl pl pl
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from (1-p )nts
1 - Bo it follows that nts- log Bo~log(1-pl).

(S) Combiníng the expressíons for s in (1) and nts in (4), we get a
sample size n that is suffícient for Bayesian Discovery Sampling
with parameteBs Bo and pl, based on prior knowledge incorporated
in B~ and p~:

nB - log Bo~log(1-pl) - log B~~log(1-p~).

(6) In practice, it will be rather unrealístic for the auditor to
state that last year's audit sample evaluation is fully giving the
right prior information for thís year's prior probability
function. Therefore, we incorporate a weight funetion f:

n- f~ nB f(1-f) ~ nC

In this function, nC is the classically determíned sample size and
f is the weight (0 5 f 5 1) the auditor gives to his príor ínfor-
mation, that ís the extent to which he 'dares' to lean on hís
subjective prior knowledge. The size of the sample to perform is
thus a weighted average between the Bayesian sample size n and
the classically determined sample size nC (which equals log
Bo~log(1-pl)).

A líttle substitution gives:

n- log Bo~log(1-pl) - f. log B~~log(1-p~)

It is easy to see that an auditor who does not want to use his
knowledge based on last year's sample and sets f at 0, gets n-
nC: On the other hand, when an auditor completely leans on his
prior knowledge (that is, on last year's errorless sample), and
his audit parameters have not changed sínce last year (so B-R~
and pl- p~), the above calculations will result in a zero sámple
size.
The latter is not a problem from a statistical point of view, but
it may be undesirable from the point of view of an auditor or an
auditor's firm.

Before we give some details, in the next section, as to how f is chosen
in Touche Ross Nederland practice, we will present some numerical exam-
ples. Suppose that last year, an auditor has audited a sample of 59
items when performing discovery sampling with B~-0.05 and p~-58, and
that no errors were found. In this year he once again chooses B-0.05
and p1-58. Using classical theory, a new sample of 59 would be requi-
red.

However, the audítor uses his prior knowledge (and everything else he
is used to do when applying the Audit Assurance Model) and decides that
f is 708. He can now choose between:

performing a sample of 19, which is sufficíent for R -0.05 and
p-58, because n - 59 - 0.7 ~ 59 - 19; o1
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- performing a sample of 59, which is sufficient for B c0.05 and
p1:38, because n- 99 - 0.7 ~ 59 - 59. o

(Actually, these calculations lead to 18 and 58, but 0.7 tímes 59 ís
rounded down, and the final result ís rounded up, just for precaution.
Also in the examples comíng ahead, we have not always been consistent in
our rounding-offs and rounding-ups. We have been consistent in
precaution.)

Another numerical example, which will be referred to in the next
section, is an audítor who decídes to use this year B~0.05 and p g0.58
(classical sample size 598), whíle last years' samplé was 299 wi~h
B~s0.05 and p~-18. (Let us not go ínto reasons why the audítor suddenly
halves his materiality, these figures are just handy to explain the
model.)
Assume the auditor has taken fa408. The sample size will be:

p 30.5~
1

f~0.40, p~ a18
B -0.05 B~: 0.050
n~ 598 - 0.4 ~ 299 a 598 - 119 z 479

III.S. Practícal application and implementation

III.5.1. Assigning a value to f

After accepting a first report explaining the statistical method, the
Board of Governors of Touche Ross Nederland has granted a budget to a
committee of audítors with the task to design a method by which the
auditor, in a specific audit, can assign a specifíc value to the factor f.

Because of the preliminary status of their results, we will not go into
detail on this subject. Headline of their conclusion will be ín
conformity with the results of the Touche Ross Nederland audit process
UNICON and its computer assisted audit planning system COCON.

In the audit approach UNICON, three phases can be distinguíshed:

I Audít planning, leading to an evaluation of internal controls, a
design of the audit approach and an audit program;

II Interim-audit, an analy[ical review to decide on a choice between
a compliance approach and a substantive approach to the audit;

III Financial statements audit, consisting of substantive testing,
balance sheet revíew and evaluation of audit results.

In the expert system COCON, for each audít cycle potential errors have
been adapted in a database. All possible measures of internal control
are specified, and the audítor can evaluate their design, their pre-
sence and their functioning. Not every measure of internal control is
necessary, but the combination of individual measures should be suffi-
cíent to give the audítor an opinion on the reliance on internal control.
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In COCON is a database with audit expert's opinions on how to
weígh these measures, which we could call (internal) Control Evaluation
Model-scores (CEM-scores).

These CEM-scores from COCON will also be the mainstay for the factor f
that an auditor can assign to hís specífic application of Bayesian
Discovery Sampling.

III.5.2. Validatíon of one specific applicatíon for the auditor

When performing an audít and deciding on the factor f, the auditor
needs an ínstrument to validate the a priori added subjective informa-
tion, which wíll reduce the necessary sample size. Of course, it is
impossible to validate the notion of 'weíght given to príor knowledge'
or 'weight given to last year's audit sampling results'. What can be
done, is validating the consequences of a specific choice of the factor
f. To show this, we use the second example in section 6:

p -0.58
1

f-0.40, p~ -18
B a0.05 b~a 0.050
n- 598 - 0.4 ~ 299 ~ 598 - 119 a 479

(The reader may assign a monetary value to the audited population,
if that clears hís view on the practical consequences. We did not,
because every result presented here is mathematically independent
of population size.)

As we can see, the consequence of choosing f-0.40 is that the auditor
has implicitly decided that a sample of 119 items is errorless, wíthout
having actually audited these items this year. In other words, last
year's audit sample, internal control (and all the other elements that
built up 'assurance' when the Audit Assurance Model would have been
used) have gíven the auditor a'professíonal judgement' that makes him
almost sure (958) that the error fraction ín this year's populatíon
will not exceed 2.58.

(Remember the rule of thumb in section I.2.: an errorless sample of 120
items is sufficíent for a 958-upper limit of 2.58, as 120~0.025:3.
Exact calculation gives 119 instead of 120.)

In this case, the audítor, applying some statistical calculations, can
validate his choice of the factor f by asking himself:

'if I want to know (with 958 certaínty) whether the error fractíon
is below 0.58, may I lean on my prior professional judgement that
it is (with 958 certainty) below 2.58 ?'

Of course, a specific f will not always result in the same implicítly
chosen upper limit for p: this upper limit not only depends on f, but
also on last year's sample size.
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III.5.3. Validation of varíous applications for the auditor's firm

Apart from the individual auditor, other parties are concerned in the
validatíon of the use of prior information. One of those is the audi-
tor's firm that carries out mutual quality control on the performances
of individual auditors. In retrospect, the method can be validated by
the following reasoning. In the example already mentioned, the auditor
has taken a sample of 479 items, and evaluated it as if it were 598
ítems. If one wants to know whether this decision has been made on
justífied grounds, the obvious thíng one can do is to audit as yet
those lacking 119 items!

In fact, there are two ways of reasoning, both leading to the same
result. First one can state that the prior assumption p 5 2.5~ has to
be tested, for which an errorless sample of 119 items is sufficient.
The second manner is to state that the overall evaluation p ~ 0.58 must
be investigated, for which an errorless sample of 479 is not, but an
additional errorless sample of 119 again is sufficíent.

In order to make such a validation possible, a sample of 598 items will
be drawn, of which 479 are randomly selected to be audited. The remai-
ning 119 will also be audited in case the auditor decides not to use
his prior information (the auditor decides to lower f to 0), or when
this is required for the purpose of validation.

III.6. Conclusíon to part three

In thís paper, we offered a fírst look on the results of a project that
started about 3 years ago, based on a paper that was written 25 years
ago (Kriens, 1963). We ourselves are quite sure that it will take at
least another 3 years before our auditors can apply this method, but
less than 25 years before it is really optimally applied by every audi-
tor in Touche Ross Nederland.

Our goal was to give an alternative for the Audit Assurance Model,
about which almost every auditor knows 'it is not perfect', but only
few auditors realize how misleading ít ís. The Bayesian approach is
there as an alternative, and maybe its best characteristic is that
audítors can use their habitual methods, the audit program they were
used to in the Audit Assurance approach, in this Bayesian alternative.
The only dífference, some stubborn auditors might say, between the
'old' and the 'new' approach is that it is based on (in-)accuracies,
and not on confidence levels: it implies only a change in statistics,
not in auditing.

Statistícians wíll answer this is a slight - but most significant-
understatement.
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