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A VECTOR REPRESENTATION OF MAJORITY VOTING.

(PEVISED VERSION)
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A VECTOR REPRESENTATION OF MAJORITY VOTING.*)

1. INTRODUCTION.

In a number of articles [2,3,4,5] different conditions were
presented that guarantee the consistency of the majority
decision rule, i.e. these conditions ensure that a social
preference relation derived by the majority decision rule
from individual transitive preferences, is also transitive.
It was pointed out by Sen [ 8] that the treatment of triples
is sufficient, since the absence of intransitivity for each
triple ensures the absence of intransitivity in larger sets.
The conditions were summarized by Inada in [ 5], and he also
proved that this set of conditions was complete. In [ 9] Sen
and Pattainak discussed conditions that only guarantee quasi-
transitivity of social preference. Inada pointed out in [ 6]
that it is quite plausible to allow individual preferences
to be quasi-transitive, e.g. in the case that the difference
between alternatives o and Y and Yy and B is not perceptible,
where-as o is considered better than B. Therefore he presen-
ted conditions guaranteeing-quasi-transitivity of social
preference, given quasi-transitive individual preferences.
In this note we propose a new method to handle problems in
the field of majority decisions, which is based on a vector
representation of individual and social preferences, which
was proposed by May [7]. It is shown that the conditions for
transitive and quasi-transitive social preference can be
derived by an application of the separation theorem for con-

vex seftss

] I thank prof.Inada for his comment, which prevented and
error that occurred in an earlier draught of this paper.



2., VECTOR REPRESENTATION OF PREFERENCES.,

Let R b e a preference relation with derived relations P
(strict preference) and I (indifference). Any ordering of

three alternatives a, B and Y can be represented by a three-

dimensional vector x = (x], x2, x3) with components that can

only take on the values O, 1 and -1, if we define as in [ Z] %
i if s P B I i B P ¥ 1 4f ¥ P o

! =l fifei® x=lpif BTy x =0 ifyTa (2.1)
t<l] € B P @ I' A ¥ P B 1 if a P vy

Obviously there are different ways to represent the preferen-
ces, but the representation given above seems the most suita-
ble one. There exist exactly thirteen transitive preference
orderings of o, B and Y. Their vector representations are

v and constitute the set

denoted VO, v LERRE 12

1 1)

v v

%0 VlZ} {2,:2)

it o
Further there exist six quasi-transitive preference orderings,
which are not transitive, i.e. orderings for which the

relation P is transitive, but not necessarily R. If we denote
the vector representations of these orderings by

Vigs Vygrrtce Vige the set of quasi-transitive vector represen-—

tations, transitive ones included, 1is,

v, .} i £2.3)

Fpeieag Wyad Figpb¥es Veg
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transitive quasi-transitive

— A

pre-

ference

ordering

x 1o 1 1 1 1 0 =1 = =] =1 =] 0 1 6 0 -1 0 0
prefe- 5
0 T @ <] =1 =1 =0 =i 0 1 1 1 1 0 =1 o0 @ 1 0
rence
x3 O =M = =] 0 1 1 1 1 1 O =1 =1 0 @ 1 06 U —1
vector

Yo Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Yio Vi Y2 B Y9415 Ve iz Vs
L V=7
A"

We shall use k, £, m to denote any permutation of the num-
bers 1, 2, 3, hence k # £ # m # k. Now is is easily verified

that the following properties are true

If = & V¥
k 2

“l€x #x #g° €1 (2.4)
and

xk = =] =0 S xZ + xm g2

g

x' = 0 =-1 < £> & x® <1 (2.5)

k £ m



Any of the alternatives a, B and Y can take on one of five

different positions in the preference ordering x € V:

= if the preference is transitive it can be the only best
or worst element (strictly best or strictly worst) of the

set {a, B, Y!

= it can be one of the best or worst elements if the pre-
ference is transitive, or the only best or worst element

if the preference is quasi-transitive (weakly best or worst)

= it can be medium (including the case of three equivalent

alternatives).

These concepts are different from the ones used by Sen iR
[8] or [9]: "a weakly best" element e.g. is both "best" and

"medium" according to Sens definition.

Now we can define a vector w = (wl, w2, w3), which gives the
positions of each alternative:
2 3 2
wl = xl - x3, woo= x2 = x], w3 = %X =R (2.8)

.
We have, as is easily verified, for a

i
isstrictly best

if w = 2, o

if w] = 1, o is weakly best

if w] = 0, o is medium

if w1 = -1, o is weakly worst
it w] = -2, @ 1s strictly worst



The same holds for 5 and Y with respect to wz and w3.

Note that for some permutation k, £, m, we have either
k k ' £ 9. k ‘ 3

w = x - X erw = x = x , depending on what kind of
permutation is used.

The set
Y={yger" | =1 39> &1, for k = 1,2,3: (2.9

is the set of points that lie on or Within a cube. Let X be

the subset of Y containing all vectors which have components

% = {2 7% xk g 1ly 0, —1}; for k= ;2,53 (2: 185
Now

T EVEC XY
and we have

W= iz e X x 2 0 and x <0} (2.11)
and

Vv ={x eX l(xk = ] = x2 o g Q) and

(xk ==] = xl + xm = 0)} i

Apart frem Ty T 0, T consists of all points of X on a closed

curve on the edges of the cube Y; this curve does not inter-
sect the positive and the negative orthant of the cube. (See

fig. 1) The set V-T consists of the points that are in the



center of the faces of the cube.
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The points of (X-T) represent preference orderings that are
not transitive e.g. x = (1, 1, 1) means a P By, B P ¥ and

Yy P o and they are all points of x that lie in the positive
or negative orthant of the cube; the points of X-V are not

quasi-transitive.



3 VECTOR REPRESENTATION 0OF VOTING.

If every individual has a transitive or q.t. preference
ordering of a, B and ¥, voting means that every voter chooses
one and only one point of V. If n is the number of voters,
and ni (i=0,1, 2,..., 18) is the number of voters that

choose vi, then votine can be represented by the numbers:

I 5
vy "= g whewe | B, = | (3.1)

and the result of the voting procedure is given by a vector

vy g ¥

representing the social ordering, which obviously can be

represented by a point x € X, if we define

xk = 1 if yk > 0

p k
xk = 0 if y =0 (3.3)
xk = =] if yk <0

Let Mt and Nt be the positive and negative orthants of the
cube Y

M ={yeyY |y

| v
o
-

(3.4)

A
o
——

N ={ye¥Y |y



If y € Mt U Nt’ the voting paradox occurs, if however

y £ (Mt U Nt) the social ordering, represented by y, is

transitive.

fullfills

U == U
X B (Mt Nc) y € (Mt N

(Note that 0 ¢ Mt and 0 ¢ Nt

v N (Mt U Nt) # 0)

Also we define

M = {ye¥ | ¥

| v

The

(M, VN =

Obviously the point x,

0 and yk

0 and yk

.

and that T N (Mt U Nt)

o= (y* >0 and y"

2
= 0 = (y < 0 and ym

V) == v
x e (M U N) y e (M, U N)

derived from y by (3.3),

® but

0)3 < M

0)} c N,

(3.5)

points of (M ] Nv) are not (quasi-) transitive. Hence

v
@ and if x is derived from y by (3.3):

Now if by imposing certain conditions it is ensured that the

voting result y belongs to a set R,

n U =
R (Mt Nt) @ or

respectively, than
social ordering 1is
restriction on the
since in this case

by the convex hull of V:

quasi-transitive.

such that

R N (Mv U Nv) =9

the voting paradox is excluded or the
If there is no
votes ki, this is certainly not true,

the set of all possible results is given



Conv V'={y e Y ' v =12\ v. for 2. > 0

and I ki =1 } (3:6)

and

Conv VN (M UN) # ¢
v v
also

Conv T M (Mt U Nt) E) 34 7)

Obviously only rational vectors in Y are possible, if the
number of voters is finite, but for sake of simplicity we
permit all real vectors. If some of the ﬁi are known to be
zero, the voting results must be in the convex hull of the
points that may have positive weights. As Inada [ 5] 4 W& eall
a set of preference vectors v, that may have nonzero votes,
a Idigk L € Ve

Hence
= =
Yi ¢ 5 Ai 0 (3.8)

Note that this does not mean that Ai > @ for all v, € L, If
the set of possible results of a voting process is denoted
R(L), R(L) is the convex hull of L, provided that there are

no other conditions than (3.8)

BIL) = Ceuw L =

{ ye% | ¥ Xi Ve = ¥, for A: 2 0, A. = @ for

v. £ L and I %i=; } £3:9)



We shall construct all list fof the following cases

1) L C T, such that the voting must result in a transitive
social ordering (see [5])
N U =
R (L) M, N 9

2) L C T, such that the voting must result in a (quasi-)
transitive social ordering (see [9])
R(LY" (M UN) =9
v v

3) L C V, such that the voting must result in a (quasi-)

transitive social ordering (see [6])
m U =
R (L) (Mv Nv) )

4) Finally we shall introduce additional conditioms, such
that the quasitransitive points of R(L) = Conv L in case 2
above are excluded. It appears that this can be done by
requiring that at least one of the following conditions is
fallfi]lled.
1) some Ai’ which will be defined in theorem 2, are positive
2) the votes for nonzero preferences cannot be divided into
two equal groups. This conditions is fullfilled if the

number of voters is odd.

If we denote the set of all voting results, that fullfill
one of these conditions, by R'(L), it appears that
R'(L) N (Mt ] Nt) = @ for all lists defined by Imada [ 5]

for an odd number of voters.



4. THEOREMS.

In this section we shall present three theorems. These
theorems provide a simple procedure to construct all lists
for the cases discussed in the preceding section. They are
essentially based on the separation theorem for convex sets.

We first introduce some new concepts.

Let

Fudpen® [ o' %55 @ p7 = 1 and b >0 and p* # 1} (4.1)
whereas

2

P={p e P p > 0} (4.2)

(Note that the points (1, 0, 0), (0, 1, 0) and (0; @5 1)

are not in P)

If we define

3
BB
px = ) 'p x §4.3)
, k=1
the set
F(p) = {y e Y | py = 0} (4.4)

divides the cube Y into two subsets (half-cubes)

c(pf ={yeY | py < 0} (4.5)

and

[}
-~

<
™
<

H(p) py > 0} (4.6)



|
o=
w

I

where
F(p) = G(p) ™ H(p)

we have for p € P
vy € MV = py > 0 wand y € NV = py < 0 (4.7

—_ +
1f p is sgrictly positive (p & P )

y e M, = py * 0 and N = py < 0O (4.8)

<
)

Now if a set R(L) is strictly separated from Mv by one
hyperplane and from Nv by another hyperplane, it cannot

intersect M of N .
v v

1f p, @ € P, dnd if
y € R(L) = py £ 0 and qy > O (4.9)

we have

R(L) " (M UN ) =9
v v

In this case the voting leads to a (quasi-) transitive result.

Thus we have the following lemma

Lemma |

Let L C V, then

]
=)

Ap;, g € P: L C G(p) M H(q) = Conv L N (M_ U N )



Proof .

Let x € Mv, hence xk > 0, x2 > 0 and x" > 0.

Now we must have p x > 0, since p > 0 and x > 0.

0, then pk xk = pﬁ xz = pm x™ = 0 and pk = pz

Suppose px
Buk then p € P,

Hence x ¢ G(p) and G(p) M Mv = 9.

In £he same way it can be shown that H(gq) N Nv = Q.
Sinee G(p) N H(q) is convex; conv L € G(p) N H{g).
We have

Comv L M (M W N ) C G(p) N H({(qg) O (M U N )
v v v v

= (EB{p) N Hig) N Mv) G (GCp)y " Hig) O NV) =@
If the vectors p and q are strictly positive the voting

result must be transitive. Obviously this is possible only

LE L € T.

Lemma 2.
Let L. € V; then

Ip, q € P’ + L CG(p) N H(qQ) = Conv L N (M UN) =0

Proof.

%
Let x € Mt, hence xk > 0, x > 0 and %™

Vv
o

+
If p e P, p >0 and therefore px > 0. So x ¢ G(p) and

G(p) N Mt = 0.



The rest of the proof parallels the proof of Lemma 1.

The converse of Lemma | is also true. That means, that i
some list cannot give a result which is not quasi-transitive,
the points of this list can be separated from Mv and Nv by

two hyperplanes of P.

Lemma 3.

LE L &€ V¥,

]

Conv L N (MV ) NV) @ =dp, q ¢ P : L C G(p) N H(q)

Proof.

r 5

a) Let L. € L' = LU {0}, Now Gony L' N (MV @) Nv) = 0.

For suppose y' € Conv L' N Mv, where

'
= S ol N
y Yoou. v, o+ W, . 0, then y (1 u; v;) € Conv L M
b

and that is a contradiction.

Since both Mv and Conv L' are convex sets, by the separation
. 3
theorem, there exists a vector r € R° and a constant ¢ such

that

X & Cony L = & =

A
©

and

XxX EM = r %
v

v
-

Since L 0 is in the boundary of both sets, we have ¢ = O



and r > 0, for otherwise we would have rx = 0 for some
0 < x €M s
v
Now
P ] L —3 T» hence p] + p2 + p3 =

In the same way we can find q ¢ R3, such that q > 0 and
q * g * 494" = .

Hence

L C Conv L € €Conv L" © G(p) » H(qg)

b) However we cannot be sure that p, q € P, since it is not
excluded that pk = 1, pl = pm = 0. Now suppose without

loss of generality, that p = (1, 0, 0). We show that

L 6 (1, 0, @) =dap*® & P ¢ L € &fp')
There are three candidates for p', namely (4, }, }), (4, 0, 1)
and (4, 1, 0).

Now it can easily be chequed that

{(0,0,1),(0,1,0)}= A

G ((1, 0, 0)) NV

6 (€is £: )Y oW

G ((]’ 09 0)) nv {(0,],0),(0,],‘1)}= B

& €¢h; 4. 0)) & ¥

G ((1, 0, 0)) NV G ((4, 0, H)) N {(0,0,1),(0,4,1)}=cC

and now

ANDL = B2LCE (), 4, 1D
BFL=0:LCG((£’£’O))
COL= =L C€@E (e, &, L))



At least one of these intersections must be empty, for

suppose A N L # ¢. If (0, 1, 0) € L, we have C N L = P, since
Conv {(0, 1, 0),(0, 0, 1)} N M # @ and
comy {0, 1, 0),00,-1; 1)} 0 Mo# 0

If (6, 0, 1) € L, we must have B N L = @.

By applying lemma's 1 and 3 we cannot yet construct all lists

for case 1, since P is an infinite set. Therefore we define

a new set Q € P, consisting of the seven points of the table
below (see fig. 2)
p] 1/3 1/2 1/4 1/4 0 12 1/2
2
P 1/3 1/4 1/2 1/4 1/2 0 142
p3 1/3 1/4 1/4 1/2 1/2 1/2 0
a bl b2 b3 cl ¢y c3
= c
Q {a, b], by b3, € s Sy c3} P (4.10)
+ +
@'= g NP = ia, by bye byl (& 11)
If some half-cube contains a set of points of V, there is

some q € Q, such that the half-cubes G(p) or H(g) also

contain these points.



(0,0,1)
(fig. )X
€ b c]
a
1 2
(1;050) €3 {05150

Lemma 4.

Vpie Py, Tge Q2 G(p) ™ V C Glg) NV and Hip) ™V € H(lq) NV

% Fig. 2. represents the set P', being the positive section
of a plane in

3

R : P' = { p & R3 | ' & 3

p >0 and p + p°~ + p” =1},
The lines in this figure are the intersections of P' with

the planes

{ p& r3 | p v, =01} for v, € V.

The points of Q are those points of P in which the

greatest number of planes intersect.



Ptoof (for G(p)).

If p ¢ P, there is some permutation such that one of the

following three cases occurs:

k 2 m

a) P =p =p >0
b) Pk>pl=pm>0
k ;) m

c) p

Ilv
e
Vv
]
(RRY%
(=]

(a) New p = (1/3; 1/%3; 1/3) £ Q

(b) Choose qk =4, ¢ =4q" =1
k
Let x &€ G(p) M V, hence p % 4+ p x #* p x <0

There are three possibilities

1 xk = =13 since by (2.5) 0 < x2 + x™ < 2, we have
xk + 4 (x2 + x™) g =] ¥4 DOy 6 ®E LW
2
14 5 xk = 0; hence EE (xl + xm) < 0 and therefore
" P
xk + 3 (x7 4+ xm) 0
k & m
1itsm = g hence RE (x = % ) < =1, By applying (2.5) we
P
have
L2 m " .
22 % %X s _RT < -1 and since x € V, we must have
P
xk + xl = =2 and now qx < 0.

k
(c) Choose q = q =4, q =0



Let x € G(p) N V: there are three possibilities:

’ . k
1s ® =1 @Einge ¥ ly we have =x— # x= <

A

m

it xk = & 5 henge & =< = B 2@ and since
P ;
x & VYV xQ < 0 and therefore xk + xl < 0
£ m m
5 7 k 2
1ids % = ] 3 now —RE x = =) -EE x" < =l @ EE <9 3
P P P
. u k 1
since x € V, x = —I| and therefore x + x = 0.

Now we can prove our main theorem; if and only if some list
gives (quasi-) transitive results only, it must be in the

intersection of two half cubes generated by points of Q.

Theorem 1.
Fer L € V,

Cemy L. 1 (Mv U Nv) = | == Hp, g E Q@ L'E Blp) O HEG)

v

Prioof .

= By lemma 3, p' q' € P exist, and by lemma 4
L CG(p') NVNH(') € G(p) NH(q) NV for p, q € Q.
= Since Q@ € P, this follows from lemma 1.
Our second theorem shows that a list gives transitive results

if and only if it is in the intersection of half-cubes

generated by points of Q+.



Theorem 2.

For L C T

o
Conv L N (Mt 9] Nt) = dPpy B Q @ LTGE)Y N A

Prowof.

%= Follows directly from lemma 2

= By theorem 1, p, g € Q <can be found such that
L © G(p) N H(q).
Now suppose without loss of generality, that p = (%, i, 0).

There are three candidates for another p.

B 4,~0,0 0.0 Wy-T,0))F= &

C (ldsids0)) 0T = & Hdsd 5200 ™ T

G ((%s%,o)) N T - (6 ((%,%!%)) nT = {G’, l,l),(“], 1,0))}= B

G((%,%,O))HT G (('33'3))0']: {(l’_]’])’(-ls ],]))}=C

Now AN L =@¢=1LCG (4,4,1) etc.

And at least one of the intersections must be empty:
Suppose C N'L # 9§

If (1, -1, 1) e L, BN L = @, since

(0, 0, 1) & Conw {¢1; =1, F),0=1, i, 1) ﬂMt # 0
and Conv {(1, -1, 1),(-1, 1, 0)} N Mt # 9

T (1, =1, 0) € Ly, COVEL =B

Finally we show that by introducing an additional condition,
we can guarantee that the voting result is transitive, for

lists of which only quasi-transitivity is ensured by theorem 1.



We can define for L € T and p, q € P, such that L € G(p) N H(g):

R'(L) = {y & Gonv L | conditien 1 or 2 holds}
where
conditien T99¢., € Ly N.pw, < O and 8v: & Ly X. qv., > 0
i A ; j j
condition 2:¥4K € L: 0 ¢ K and E ki = ) i
v, eK v eL-k-{0} 1

Theorem 3.

If L €T and ¥, @ g P

LE G(p) D Higy = R'(LP M (M U B .} = ¢

Proof.

1

Let condition 1 hold. Hence for some v £ L, we have
Ai pv, < 0, therefore Ai > 0 and p 2y £ 0. Now for

v € R"L) holds
y = z Aivi and py = Z kipvi <0

and since y & Mt = py 2 0, we have y s Mt'

In the same way it follows, applying Xi q v, > 0 ‘that

Let condition 2 hold and suppose that y € R (L) N Mt

Since R(L) N Mv #, we must have

Since y € Conv L, we have py < 0 and since y € Mt’ Py

hence py = 0 and this implies

v



Suppcse that for some vio € L, we have

A > 0 and w. . Q) and W #0
io io io
Since v, S L 0, but then
io io
m m
PVio = P Vio > &

and that is a contradiction. Hence we must have for v. # 0,

o, > @ = v% # 0
1 o

9

Let K = {x.eL | vh o= 1} and L-K- {0} = {x.eL | v. = -1}

i i i i
Now

A v% =0
x.eL 1 1
hence
z Xy s 2 A. but this is excluded by condition 2.

Al i 1}
v, EK v, #L-K {0}

Therefore

RY(E) 1 Mt =9
In the same way we can show that

RYLL) P Nt =9



Corrollary.

If the number of voters choosing L # 0 is odd; conditiom

of theorem 2 is satisfied.

Proof.

Then An is an odd number, hence it is impossible that

u = : /i= E )ti=Q
v.€K v.e L-K-{0}
5 S d
since
X =u=+ ¢ and an = pn % ¢n = 2un
hence

un = 5 XAn is not a whole number.



5. LISTS AND CONDITIONS.

The theorems 1, 2 and 3 permit to construct the lists for the

cases 1 = 4. Let for p, q & Q

L{p,q) = G(p) M H{q) N ¥ (5.1)

be the list associated with any combination of points of P.
Any subset of L(p,q) is a quasi-transitive or transitive list.
Obviously we are only interested in the maximal lists; dsew
lists such that they are not a proper subset of some other
list. These maximal lists are found by defining all lists

L(p, q) for p, g € Q and by dropping the ones that are not

'maximal.

Case 1.

By theorem 2 lists are transitive if and only if they are

generated by points of Q+. There exist exactly 16 different
combinations p, q € Q+ and it appears that these actually
result in 16 different maximal lists of 4 types (I, EIL, XIXL,
IV below).

Cases 2 and 3.

By theorem 1, any L(p, q) for p, q € Q is a quasi-transitive
list. There can be at most 49 of these. However only 19 of
them are maximal and different. These lists are of 5 different
types, including the first 2 types of case 1. (I, ILls Vs VI,
VII). The only difference between cases 2 and 3 is that for
case 2 the points of V-T are dropped hence L(p, q) N T is a

list for case 2, if L(p; q) is a list for case 3.

So a list is quasi-transitive if and only if it is of one of

these five types.



Case 4.

All lists of case 2 give transitive results if one of the

conditions of

theorem 3 is fullfilled.

The lists which are constructed are the same as

by Inada [5], [ 6]

and Sen and Pattainak [ 9].

those given

They are derived in the rest of this section and summarised

below.
num-
P ber case| case
% of
1ists] 1 2/3/4
I a a Dichotomous preferences 1 X x
i b, by Antagonistic preferences 3 X X
Extremal
I1X b, by Connected echoic resttle= 6 b4
preferences tion
a bk
v Disconnected echoic 6 p
b a
prefenrences
\Y <. Sk Separated into two 3 X
groups Value
restric-
VI c,. Sy Single peaked and tion 6 X
single caved preferences
b
k Tk
VIE Limited agreement 6 x
b ck

It will be shown that the remaining combinations

la; ck) do not generate maximal lists.

(bk, cl) and




a [ Dichotomous preferences.

L{a, a) = 6(a) N H{a) Ny

={xev | 1/3 (x’+x2+x3) < 0 and 1/3 (xl+x2+x3) > 0}
= {x e v | xl+x2+x3 = 0}
={xe?T |Tk + x* =@}

Hence we can state for this list the following condition:

Each voter has transitive preferences and considers at least

two of the alternatives equivalent.

This is called the condition of dichotomous preferences, since
each voter classifies the three alternatives in two groups
such that he is indifferent betwéen the alternatives within
the group. See Inanda [5]. There is only onelist of this type

(see fig. 3)

Fig. 3

Conv L (a;a)

II. Antagonistic preferences.

L(by,by) = {x e T | b x< 0 and b

x> 0

k



L(bk'bk) =eT| 2 xk+x2+xm = 19}

{x e T | xk = 0 ofF xk = —xQ = =]

: . . 2
Now depending on the kind of permutation, wk=xk =% OF wk=xk-xm.

Hence we also have

L(bk’bk) = {x g T | xk = 0 or (wk = 2 and wR ==2)er

(wk = =2 and w2 = 9yl

and we can state that a list is of this type; if the following

condition is satisfied:

All voters have transitive preferences and they either consider

two of the three alternatives equivalent or one of them is

strictly best and the other is strictly worst.

There are three different lists of this type (k = 1, 2y 3)

Fig. 4

I1I. Connected echoic preferences.




= {x € T l x + 4 (x7 + x) £ 0 and x“ + i(xk+xm) 2 0} (i)
={xeT | x <0 and «x > 0} Ga i)

It is easily proved that (i) and (ii) are equivalent:

(1) = (ii) : from bk x £ 0 and —b; X 0, it follows:

A

3/4 x5 + 1/4 x™ < 0, hence xX S -1/3 x° £ 1/3 and this

. . k
implies x

= 0.
. < 2
(ii) = ()% By (2.6), x* = 0+ = + x™ = 0, hence b, x = 03
k X m :
and, x =1 = x7 4+ x < 0, hence bk x 20
If k= 1 and & = 2, we have 8 R o and B R Y. So for

these lists the following condition holds:

All voters have transitive preferences and there is one

alternative that all voters consider at least as good as the

other two or that all voters consider not better than the

other two.

L(bz’bl)

There are six different lists of this type.



This condition, together with IV below, was called "the case
of “echoic preferences'" by Inada. To discriminate III and IV
we added "connected" and "disconnected". The reason for this
terminology can be understood by comparing the figures 5
and 6.

The conditions in (ii) can also be written

k L k 2

; , k % 2 & k
and since we have either w = x - X or W =X = x , we
have
L(b b)={x€T|wk(lor x = 0}
k¥ “4& =
or
L(b b,) = {x € T | wk > 1 or x = 0}
k* & =

IV. Disconnected echoic preferences.

L{a: bk) or L(bk’ a)
wherxe
2
L(a,bk)={x€TIxk+xl+xm;Oandxk+£(x+xm);
= {x € T I xk + xl + xm < 0 and xk ; 0
= {x e T | xk = 0 or (xk - xl > £ and xk-xm >

and this means that, depending on the permutation, we have

0}



L(a,by ) = {x € T| x* = 0 or (w > 1 and w™ < 1)}

| xk = 0 or (wk > 1 and w? & 1.3

L(a’bk) = {xeT

and we can state that must hold:

All voters have transitive preferences and of two alternatives

for all voters either the first is best and the second 1is

worst, or both are equivalent.

There are six lists of this type.

L(a,b])

V. Separated into two groups.

L(ck,ck) = {x e vV | ¢, ¥ < 0 and C X 2 0}
= {x €V | X" % x™ = 0}
= {x e V ' x)’C = —xm}
= {x e T | 2 Y = -x"} U {x & v-T | ™ = 0}

and therefore a list of this type must satisfy the following

eonditions



Each voter either considers all three alternatives equivalent,

or there is one alternative which is strictly best or strictly

worst for voters with transitive preferences and which is medium

for voters with quasi-transitive preferences.

' which obviously

This condition is generally called "not medium'
within our definition of this concept is only true for transi-
tive preferences. Within our definition of worst on best also
weakly worst and weakly best as excluded for transitive

preferences.

L(cl,c])
VI. Single peaked and single caved preferences.
L(Ck’ci) = {x eV | c X < 0 and €; ® > 0}
k E
= {x e v | xz + x" < 0 and x + x" > 0} ¢4
= {x e Vv | xg = -1 or xk =1 or x = 0} (11i)
The two last expressions are equivalent:
(i) = (1ii): we have xQ < -xm < xk. Hence 1if xz =1, it follows

xk = 1 and 1f xg = 0, also xk = 0, unless x = 0



t43) = Elys §E & = -1, =® # 7 < 0 and by (2.5) x* + x"

if xk = 1, xk + x" 2 0 and by (2.5) x = %

| v
o

| A
o

There exist six lists of this type.

Now

L(ck,cﬁ) = {x 8 T ’ x2 = xk % 0} U {x € V-T | x2 = xk = —~1}
Suppose that w2= x2 = xk, then

L(ck,cg) = {x € T | wz 5 0} U {x € v-T [ wl = -1}

and we have

All voters with transitive preference considers one alternative

not best (worst) and all voters with q.t.preferences consider

this alternative worst (best)

Fig. 8

VII. Limited agreement.

L(b

)

,ck) and L(ck,b

k k



=, 0}

L(bk,ck) {x e Vv | bk x < 0 and ¢, ¥ >0
= {x eV | xk + 4 (xR + x™) < 0 and T & ' = 0}
& {g & T | xk < 0F U ix B8 ¥-T | L —

Hence it 1s required that:

All voters with transitive preferences consider one alternative

not better than a second, Whereas voters with q.t.preferences

do prefer the second to the first.

There are six lists of this &ype.

l’hl)
It remains to prove that
1) L(bk,cg) = {x & V.| xk + 4 (xQ £ 2 < 0 and xk+xm > 0}
c {x e v | =T & xQ < 0 and . > 0}

L(cm,cl)

1]
Y
o
]
(1)



X +x = 2x + x + x -x -x <0
2) L(a,ck) = {x e Vv | xk + xl o < 0 and xz + xT >0}
€ Ix & v | xk + 4 (xg + x™) < 0 and xg o > 0}
= L(bk,ck)
since
xk + 4 (xQ + x™) = xk + xg £ %" - i (x2 + x™) <0

Note also that

L(bk,bk) C L(bk,ck)
and

L(a,bk) = L(ck,b )

k

Finally we note that condition 2 of theorem 3 can be applied
to the lists of type V, VI and VII and condition 1| to type
VI and VII.

Let e.g.
N =
L(CI’CZ) T {VI’ Vo

then the condition is satisfied if

)\2+)\3+>\4>0and>\4+)\5+>\6>0
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