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by

S.R. CHOWDHURY

l. Introduction

In this paper two types of priors are used to estimate the

parameters. One type of prior is just the Jeffreys' prior i.e, a

prior of ignorance or which is sometimes called a diffuse prior. The

other prior is in the form of a multivariate normal distribution. In

both the cases joint posterior distributions, marginal posterior

distributions etc, of the parameters are derived analytically. It

may be mentioned that these are the priors which are mostly used in

econometric analysis.
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2. The Model and the estimation of parameters

We take the single equation regression model,

(1) Y-X~tu

y is a Txl vector of observations on dependent
variable,
X is a Txp matrix of observations on the
explanatory variables, with fixed elements and
rank p,
~ is a pxl vector of unknown parameters.
u is a Tx1 vector of random disturbances.
Each element of u is independently and normally
distributed with mean zero and variance o 2,

The likelihood function of the sample is given by,

1 1
(2) j(~,oIY) - aT(2n)T 2 eXp i- 2 s2 ~(Y - X~)'(Y - X~)))

Throughout this paper we shall use the symbol ~(6, a, A) to
denote a quadratic form in variables ~ centred at a and with matrix
A, namely -

Q( ~, a, A) - ( ~ - a )' A( ~ -a )

The likelihood Punction (2) can now be written as:

(3) 1(~,rt~Y) - T 1T 2 exp ~- ~2 ~Q(~, ~, V) f(T - P)s2))
o (2n) 2 a

where:

V-(X'X) ,

~ - V 1X'y (L,S, estimator of ~)
(T - p)s2 - (y - X~)'(y - X~) (Residual S,S)
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and

- Q,( ~, ~, V) f( T- P) s2

Prior distributions

2.1 Jeffrevs' prior [3]

Log a, and the elements of ~ are assumed to be 1oca11y, uniformly
and independently distributed:

( 4) p( ~, a) a Q 0 G a G o0

- ooG~Gfco

Combining prior and likelihood by Bayes theorem, we get the joint
posterior distribution of ~ and a as:

(5) P(~,aly) a Q(Tfl) exp
1

(- ~ ~Q,(~, ~, V) f (T-P)s2]}

OGaGoo

- aoG ~ G } o0

Integrating out a, we get the marginal posterior distribution of
~ as:

T
( 6) P( ~ IY) a [Q( 6, ~, V) t( T-P) s2 ]- ~ - oo G~ G t ro

This is in the form of a p-dimensional multivariate "t"
distribution. Under the assumption of quadratic loss, the posterior
mean of ~ is the Bayesian estimator. So the Bayesian estimator of B
is ~(posterior mean), i.e. same as the L.S. estimator. The margi-
nal distribution of any one element of ~ is univariate "t" and can
be easily obtained from (6) by integration.

( y - x~) ' ( y - x~) - ( ~ - ~) ' ( x' x) ( ~ - ~) } ( y - x~) ' ( y - xa)
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2.2 Multinormale prior

We assume that the prior of ~ is in the form of a multivariate nor-
mal distribution. The prior of a is just like before i.e, log Q is
uniform, and locally independent of the prior oF ~:

( 7) P( ~, o) Cz á e~cp {- 2(~-~' S( p- ~) } 0 G o G ao

-coGRGfm

~ is assumed to follow a multivariate normal with mean ~ and
covariance matrix S-l.

The joint posterior distribution of ~ and Q is given by:

( 8) P( ~, o ~y) a Q ( T}1) eXp
{- ~ L~w( ~, ~, V) f( T- P) s2 )).

exp {- 2 (~ - ~'S(~ - ~)

Mar~inal posterior distribution for the multinormal prior.

2.2.1 Case l:a is known.

Since o is known and ( T - p)s2 is constant, we can write for the
marginal posterior distribution of ~ from (8):

(9) P(~~Y) aexP (- ~ L(~ - ~)' ~ (R - ~) t (R - ~)'s(~ - ~))).

Denote~-V1 H-V1tS

~ - H-i(Vl ~ t S~)

So

(10) P( B ~Y) a exP {- 2 Q( R, ~, H) }
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Now (10)is in the form of a multivariate normal distribution. The
posterior mean of ~ is ~, which is the Bayesian estimator, agair.
with the assumption of quadratic loss. The marginal posterior
distributions of each element of ~ is normal and can be easily
derived.

2.2.2 Case 2: o is unknown.

From the joint posterior distributíon of ~ and Q in (8), by integra-
ting out a we get the marginal posterior distribution of B as:

( ll) P( ~ ~Y) a ~Q( ~, ~, V) t ( T - P) s2 )-T,2. ~exp {- 2 ~-~ ' S( S-~) ) )

(11) is the product of a multivariate "t" distributior: with a multi-
variate normal distribution.

As v- T - p tends to infinity, the multivariate "t" dis-
tribution becomes a multivariate normal and ~ is the limiting mear.
of the distribution in (ll).

Now from (11) we get:
( v}p)

(12) P(~IY) a[1 } vs~~l- 2 [eXP {- 2(~ - 6)'S(~ - B1)1

Write Ql - Q( B. s~. V) and Q2 -(~- ~) ' 3( ~- ~)

VVl -~. Then Ql - Q,( R, ~~ Vy) .

(vtp)
QThe expression 1 f ~- 2 can be written as

Q ~ 1( v~-p ) r
(13) ~1 t ~ 2 - exp ?- 2 Ql~ exp ~2 Q1 - v 2~ 1r.

On expanding the second factor on the right in powers of v-1, wc
obtain from( 13) :
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- 2 (v }p)

(14) rl t vl ~ - exP ~- 2 Ql~ i~ Pi v 1

where :

Po - 1, Pl - ~ [Qi - 2PQ1]

p2 - 96 [3Qi - 4(3P t 4)Qi f 12P(P } 2)Qi]

The expression ( 12) can now be wrtiten as:

~
(15 ) P( 6 IY) a exp (- 2(~el t.~,2) ) iEo ~ 1 v-1

or

(16)
H ~2

P( ~ IY) a
(2n)Yi

~xp
L

`o - i
-~( B, B, H) ) E r. v~- i-o ' i

where H- Vl f S~ ~- H-1(V1 6 t:-;3~

or

(17) P( B IY) - W-1 h( ~) ,

:4 00
where h( B) -( 2~) P 2 exp [- 2 9,( 6, ~, H) ) i~o Pi v

i

and

(18) W - J h(~)d~

The integral W in (18) can be integrated term by term. Each term is,
in fact, a polynomial in the moments of the quadratic form Jl - Q(~,~,Vl),
where the variables ~ have a multivariate normal distribution with
mean ~ and covariance matrix V-l. The r.ior~ents are found out indirectly

from the cumulants. (COOK, M.B. [2], K.7NDALL, M.G. and A. ST[JART [1~]i



7

The cumulant generating flznetion of Ql is

(' ~
(19) K( t) - log JR ( 2~)p 2 exp {tQl - 2 Q( ~, 6, H) )d6

- - 2 log ~1 - ~í-1(tvl)~ -ttTj1v1T~ ~z(tvl~'(g-2tv17~)-1(tvl~

where ~ - ~ - a

On differentiating (19) and after some algebratic reductions we get

Kl - tr H-1 Vl t Tl'vl~l

Kr - 2r-1(7-1): itr(a-~1)r t 7,~'x(x-~l)7n}

where K's are the cumulants.
NoW W- E biv i
tirherebo-l; b1-~ [K2tKi-2pK1]

(20) bz - 96 [3( K4 f 4K3K1 t 3K2 t 6KziCi f Ki) - 16K3 - 48xzKl

- 16Ki - jp( 4K3 t]~2K~1 t 4Ki - 8K2 - 8Ki)

f ~2( x2 t xi) ] ~

Subatituting the results of (20) in (17~ we get the folloWing asymptotic
expression for the posterior distributiOn of ~,

(21) P(~IY) -(2H)P 2 exp [- 2 Q(6, ~, H)} iEo ci y-i

Where c - 10

c1-Pi-bi

cz-P2-b2-pibi}bi

--------------------------------1~----
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The teras ci are found out froa the e~cpreeeion:

L o bi v iJ Lo pi v-iJ

As v tends to infinity, the mean of the posterior distribution in
(21) tends to ~. For other values of v, the mean can be found out
from (21).

2.2.2.1 MarRinal posterior distribution of a sinale parameter

Let ~ - vhere ~( 2 ) -

From the joint posterior distribution of ~1 and ~(2), we get the
marginal posterior distribution for ~l as

h ('
(22) P(~lIY) -( 2H)P 2 JR~ exp {- 2 Q(~, ~, H)} ió ci

v-i d~(z)

The follo~ing partition i s made:

H,.1 H121 rsil 5121

H-1

L H21 H22 ~ L S21 S22J

We can noW ~rrite the marginal posterior dietribution as
~4

P( ~1 ~Y) - ISil I~ exp {- 2 R( ~l, ~, Sii) } f( Bl ~Y)
( 2~)

Srhe re ,

~4

f( ~ ~Y) ~ IH22 I f exp {- ~ Q( ~ 2, B, H )} E c v-id~1 (2~~~ R~ 2 ( ) 22 i-o i (z)

H -



with 9 - ~(z) - H~2 Hzl( ~i - ~i)
9

The evaluation oi f(~l~y) will be uone in the same way as before i.e.
by finding out the cumulants f'irst and then making inversion.
For this, ~l is considered fixed fuid ~(2) is considered to have a mul-
tivariate normal distribution wit}; Tean B and covariance matrix H22.

The fol-l.owing partition is made:

p-1

r`' ~2
M2~

;

The cumulant:~ of' ~( ~, ~, V1) a--~ ~ r:.. follows :

(23) wl

V,1 -
Nii Mi2

~ 1~.~i

- tr H~2
Mz2 } Y'6:...,Y f Q,( ~1, ~1,(hill)-1)

- 2r-1( r-1) : { r,~(
i.

r.12z'~ r } T~7 ~ Hzz( H22 ht22) rY )

where Y - d-~( 2) } M22 t~21( ~1 -

Using the results of 23, we can express the marginal posterior distri-
bution of ~ as1

Yz
r:( R IY) - ~ Sil ~-

1 ( 2 n) ~~

where ~0

sl - gl - bl

~
etiF {- 2 Q(Gii.' ~i' 511, ) E Si v-i

0

s2-gz-b2~;lbli-bi

r~22

where gi's have the same relation ~aith '-ii'~ a~ bi's ha~ with Ki's.
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3. Construction of the Multinormal prior

In the previous section we have given all the theoi~y that is re-
quired f'or the estimation of parameters. The procedure assumed the

existence of a multinormal prior.
Níultinormal priors can be constructed froM the past sam-

ples. Least squares estimates of ~ and its covariance matrix for

the past sample can be utiLized to build up the pr;or mean and prior
covariance matrix. Another way may be to assume Jeffreys' prior for

the previous sample and take the posterior distribution of ~ as the

prior f'or the current one .
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