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CHAPTER 1

INTRODUCTION

Each individual, firm, country, or any kind of economic agent in the society is
making decisions on a daily basis to achieve respective goals often under some
physical, technological or institutional restrictions, and intrinsically outcomes
do not only depend on the decision of the agent but also on the decisions of
others. Game theory is a mathematical approach to analyze the process of
decision making of several agents in mutually dependent situations.

Game theory is firstly introduced by von Neumann and Morgenstern
(1944) in their book "Theory of Games and Economics Behavior". They es-
tablish in this book two major approaches of the study of game theory, non-
cooperative game theory and cooperative game theory. They introduce two-
person zero-sum games, which is the starting point of non-cooperative game
theory, and based on it they also build the foundation of n-person cooperative
game theory assuming that in a situation which has more than two agents,
the agents may coordinate their actions as coalitions. The distinction becomes
clearer in Nash (1951), who defines that in a non-cooperative game “each par-
ticipant acts independently, without collaboration or communication with any
of the others”, while in cooperative game they “may communicate and form
coalitions which will be enforced by an umpire”. While non-cooperative game
theory formulates situations with possibly opposing interests and analyzes ac-
tions agents would choose in such situations, cooperative game theory is con-
cerned with what kinds of coalitions would be formed and how much payoff
every agent should receive.

1



2 INTRODUCTION

A cooperative game with transferable utility, or simply a TU-game,
considers a situation in which agents are able to cooperate to form coalitions
and the total payoff obtained from their cooperation can be freely distributed
among the agents in the coalition. More precisely, a TU-game is described by
a finite set of agents, called players, and a characteristic function. A character-
istic function of a TU-game assigns to each coalition the total profit, or worth,
which can be maximally obtained by the coalition without cooperating with
any player outside the coalition. A fundamental question of TU-games is how
much payoff each player must receive.

A solution concept for TU-games assigns to each TU-game a set of al-
locations that satisfy certain properties, or axioms. One of the well-known
solution concepts of TU-games is the core introduced by Gillies (1959), as the
set of allocations that are efficient and exactly distribute the worth of the grand
coalition of all players, and are stable in the sense that no group of players has
the incentive to leave the grand coalition and obtain the worth of themselves.
While the core of a TU-game may be empty, a single-valued solution gives pre-
cisely one allocation for each TU-game. One of the well-known single-valued
solution concepts, called the Shapley value, is introduced by Shapley (1953),
being the average of the marginal vectors induced from all linear orders of
players. To every linear order a marginal vector corresponds, which assigns
to a player the difference of the worths between the coalition which consists
of all the players who are ordered before him in the linear order with and
without him. The Shapley value is the only single-valued solution concept of
TU-games which satisfies efficiency, additivity, the null player property, and
symmetry. Other characterizations of the Shapley value are given by for ex-
ample Young (1985) with a monotonicity axiom and van den Brink (2002) with
a fairness axiom.

The concept of convexity for TU-games is introduced in Shapley (1971).
If a TU-game is convex then the marginal contribution a player makes to a
coalition increases as the coalition he joins becomes larger. It is shown that
convexity of a TU-game guarantees stability of the Shapley value of the game,
i.e., the Shapley value is an element of the core, since the core of a convex
game equals the convex hull of all marginal vectors.

For TU-games it is assumed that any set of players can form a coali-
tion and earn the worth of their cooperation, but in many economic situations
of interest, there exist restrictions which prevent some coalitions from coop-
erating. To illustrate this point, consider a cooperative situation where two
professors, A and B, and two students, one student of A and one of B, are
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writing proposals to obtain some research budget. The worth of any set of
players is the budget they get if they cooperate, and assume that each pro-
fessor knows (or can communicate with) his student and the other professor,
while a student knows his professor and the other student. In this setting, it
is not realistic to assume that the coalition of professor A and the student of
B or the coalition of professor B and the student of A will be formed, since
the players in such coalitions can not communicate with each other within the
coalition.

In the literature, limited cooperation possibilities among the players
of this kind can be represented by an undirected graph on the set of play-
ers. In this graph, the set of nodes is the set of players and a link1 between
two players means that they are able to communicate, and therefore such a
graph expresses a communication structure between players. Myerson (1977)
firstly introduces the idea and defines the class of TU-games with communica-
tion structure. Given a communication structure represented by an undirected
graph, only players that are connected in the graph are feasible, i.e., have the
opportunity to form a coalition and enjoy the resulting worth.

A single-valued solution concept on the class of TU-games with com-
munication structure is introduced by Myerson (1977) and now it is called the
Myerson value. For a TU-game with communication structure, the Myerson
value is the Shapley value of the so-called Myerson restricted game, which is
a TU-game derived from the original game. In a Myerson restricted game, the
worth of a coalition, which is not connected in the underlying communication
structure, equals the sum of the worths of the maximally connected subsets of
the coalition.

In Myerson (1977) the Myerson value is characterized by component
efficiency and fairness and in van den Nouweland (1993) by component effi-
ciency, additivity, the strong superfluous link property, and point anonymity.
This is an extension of a result in Borm et al. (1992) on a subclass of TU-games
with communication structure. In Chapter 2 we give an alternative character-
ization of the Myerson value on the class of TU-games with communication
structure. We use another form of fairness, called coalitional fairness, and
characterize the Myerson value jointly with component efficiency, additivity,
and a restricted form of the null player property. This combination of axioms
is similar to the original set of axioms used for the Shapley value in Shapley
(1953). It is shown by examples that the axioms are logically independent.

1In order to be consistent through this monograph, we call a directed edge an arc and an
undirected edge a link, even if the original literature call them otherwise.
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On the class of TU-games with communication structure, several other
single-valued solution concepts are introduced. The position value, intro-
duced by Meessen (1988) and Borm et al. (1992), considers the link game,
another restricted TU-game derived from the original TU-game with commu-
nication structure. It defines the worth of a coalition of links, instead of that
of players, and first assigns the Shapley value to each link in the link game.
The position value allocates to a player the share of the Shapley value of links
he belongs to. An axiomatic characterization of the position value on the class
of TU-games with cycle-free communication structure is given in Borm et al.
(1992) as the unique single-valued solution concept satisfying component ef-
ficiency, additivity, the superfluous link property, and link anonymity. On the
class of TU-games with communication structure which may contain cycles, a
characterization of the position value is provided by Slikker (2005) with com-
ponent efficiency and balanced link contributions.

The average tree solution, another single-valued solution concept on
the class of TU-games with communication structure, is studied in Chapter 3.
The average tree solution is firstly introduced by Herings et al. (2008) on the
class of TU-games with cycle-free communication structure. Instead of defin-
ing a restricted game which reflects the communication restriction between
players, it considers the average of the marginal vectors corresponding to all
spanning trees extracted from the underlying communication structure. Her-
ings et al. (2008) shows that on this class of games the average tree solution
is the unique single-valued solution concept satisfying component efficiency
and component fairness. An alternative characterization of this solution on
the class of TU-games with cycle-free communication structure is given in
van den Brink (2009) with component efficiency, collusion neutrality, addi-
tivity, the communication ability property, the equal gain/loss property, and
component independence. On the class of TU-games with connected cycle-
free communication structure, Mishra and Talman (2010) uses efficiency, lin-
earity, strong symmetry, the dummy property, and independence in unanim-
ity games for a characterization of the average tree solution.

In Herings et al. (2010) the average tree solution is generalized to the
class of TU-games with communication structure which may contain cycles.
They give an algorithm to generate a collection of rooted spanning trees from
a communication structure, and the average tree solution is defined as the av-
erage of marginal vectors corresponding to those rooted spanning trees. Baron
et al. (2011) shows that this set of rooted spanning trees is the only one that
satisfies the following property: In any tree, every two players who share a
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communication link in the underlying graph are comparable in the sense that
one of them is a subordinate of the other. Compared to the axiomatic study of
the average tree solution on TU-games with cycle-free communication struc-
ture, not much is done on the axiomatization of the average tree solution on
TU-games with communication structure which contains cycles.

Chapter 3 studies the average tree solution on the class of TU-games
with circular communication structure, where the communication structure
is represented by a circle on the player set. Players could be firms or cities
situated along a lake shore or a circular pipeline where players can only be
connected to their two direct neighbors, one located on each side. The com-
munication structure in the example with the two professors and two students
above can be represented by a circle with four nodes. This is a new class of
games to be studied by its own and we provide a characterization of the av-
erage tree solution by using efficiency, additivity, the restricted null player
property, symmetry among players, and symmetry between games. The My-
erson value satisfies the first four axioms, and therefore the last axiom makes
a difference between the Myerson value and the average tree solution on this
class of games. It is shown that these axioms are logically independent. It
is also proven that on the class of TU-games with circular communication
structure the average tree solution coincides with the Shapley value of Bil-
bao and Ordóñez (2009), which uses maximal chains on the player set instead
of trees. Also, necessary and sufficient conditions on the characteristic func-
tion are given such that all marginal vectors and the average tree solution of a
TU-game with circular communication structure are payoff vectors in the core
of the game.

Although the class of TU-games with communication structure con-
tains the classical TU-games as a subclass and its communication restriction
is straightforward, the collection of connected sets of players in a communi-
cation structure as a collection of feasible coalitions may be restrictive. For
instance, how can we implement the extra information in the example of two
professors and two students above that the professors are in more dominant
positions than the students? In the literature there are two approaches to ex-
press cooperation restriction between players of TU-games, beyond commu-
nication structures. One approach is to assume that the collection of feasible
coalitions of players satisfies certain combinatorial structures defined as spe-
cific set systems. For example, Bilbao and Edelman (2000) considers convex
geometries, Algaba et al. (2001) considers union stable structures, Algaba et al.
(2003) considers antimatroids, Bilbao and Ordóñez (2009) considers augment-
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ing systems, and Koshevoy and Talman (2014) considers building sets. All of
these set systems can express a cooperation restriction which can not be ex-
pressed as a collection of connected coalitions of a communication structure,
but sometimes contain the class of cooperative restriction that communication
structures can represent.

Another approach to bring more flexibility into cooperation restriction
between players is to explicitly introduce a kind of dominance structure on
the players in a game. For instance, Faigle and Kern (1992) allows that players
may be partially ordered, such as in a hierarchy, and assumes that only the
coalitions that are compatible with this order may form. Gilles et al. (1992),
Derks and Gilles (1995), and van den Brink and Gilles (1996) consider situa-
tions that each player has a set of predecessors in the player set induced from
a permission structure, and if a player wants to cooperate with other players
he must ask for permission from his predecessors in the structure. Gilles and
Owen (1992) and van den Brink (1997) take another assumption that the per-
mission from one predecessor in underlying permission structure is enough
to cooperate with others. Khmelnitskaya et al. (2012) explicitly considers a
directed communication graph to describe a cooperation restriction among
players, where an arc represents a unilateral relation between a pair of play-
ers.

Quasi-building systems introduced in Chapter 4 unites the two ap-
proaches. A quasi-building system on a players set consists of a set system,
which represents the set of feasible coalitions of players, and a choice set func-
tion, which expresses a dominance relation within each feasible coalition. A
player in the choice set of a feasible coalition means that he can act as a ‘boss’ of
the coalition, in a sense that he has the power to make the cooperation possible
or to dissolve the cooperation. We call a TU-game with cooperation restriction
represented by a quasi-building system a quasi-building system game, and
show that the class of these games can express many classes of TU-games with
restricted cooperation, including the games with set systems and the games
with directed graphs mentioned above. Further, we define a single-valued so-
lution concept called the average marginal vector value, or the AMV-value,
as the average of marginal vectors induced from a set of rooted trees on the
player set. Each rooted tree, a hierarchical order of players, is compatible with
the underlying quasi-building system, that is, it reflects the dominance re-
lation between players and the feasibility restriction of coalitions. We present
some basic properties the AMV-value satisfies, such as efficiency and linearity.
We also modify the null player property to this class, define inessential coali-
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tions which do not play a role in affecting the resulting allocation outcome,
and closed coalitions which can not do better than sharing the worth of the
coalition itself between the members of it. We further define three subclasses
of quasi-building system games, which are still general enough to cover all
the TU-games with cooperation restriction mentioned before, and for each
subclass we give a convexity-type of condition on the characteristic function
which guarantees that every marginal vector considered for the AMV-value,
and therefore the value itself, is stable.

Chapter 5 is on the class of cooperative games with non-transferable
utility, or NTU-games, which deal with cooperative situations when benefits
from cooperation are not transferable between individuals. The concept of
NTU-games is introduced by Aumann and Peleg (1960) as cooperative games
without side payments. In TU-games, one can think that the worth of a coali-
tion is expressed in terms of money, and players are allowed to transfer their
utilities by side payments. In NTU-games this assumption is relaxed, because
there may exist not such medium of transferring utilities among players, or, if
it exists, the utilities of players may not be linear in the medium. TU-games are
in this sense a special case of NTU-games, and concepts defined on TU-games
are often generalized to NTU-games. For example, the core is extended to
NTU-games by Aumann (1961), and the balancedness condition of Bondareva
(1963), a necessary and sufficient condition for TU-games to have a nonempty
core, is extended in Scarf (1967) as a sufficient condition for NTU-games. A
necessary and sufficient condition for the nonemptiness of the core of a NTU
game is established in Predtetchinski and Herings (2004).

The concept of convexity has been extended to NTU-games in Vilkov
(1977) as cardinal convexity, in Sharkey (1981) as ordinal convexity, in Hen-
drickx et al. (2000) as individual merge convexity, and in Masuzawa (2012)
as strongly ordinal convexity. The last two conditions guarantee that every
appropriately defined marginal vector of an NTU-game is stable. The first
aim of Chapter 5 is to introduce a new natural condition on the payoff sets
of an NTU-game such that every marginal vector of the game is stable. This
condition is weaker than both individual merge convexity and strong ordinal
convexity. Second, we define a multi-valued solution concept, called the solu-
tion set, which is determined by the average of all marginal vectors and is the
Shapley value if the NTU-game is induced by a TU-game.

On the class of NTU-games that we consider, all marginal vectors are
well defined and by construction efficient for the grand coalition as in the case
of TU-games, but the average of these vectors may be not efficient, or even
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not be feasible for the grand coalition. To define the solution set of an NTU-
game we take the average of all marginal vectors as a reference point. In case
the average is feasible but not efficient for the grand coalition, the solution
set consists of all efficient allocations reached from the reference point into
any strictly positive direction, and if the reference point is not feasible for the
grand coalition, the solution set is the set of efficient allocations reached from
the reference point into any strictly negative direction. Therefore, the solu-
tion set can be seen as the set of bargaining solutions of a bargaining problem
with the reference point, if it is feasible for the grand coalition and cannot be
blocked by any proper subset of players, as disagreement point, and, if not
feasible, as utopia point. A single-valued solution concept of this type on the
class of NTU-games is the marginal based compromise value introduced by
Otten et al. (1998) and this solution concept is contained in the solution set un-
der general conditions. Also a sufficient condition is given under which the
solution set is a subset of the core.



CHAPTER 2

AN AXIOMATIZATION OF THE MYERSON VALUE

2.1 Introduction

In the literature of cooperative game theory, most of the solutions proposed
are characterized by axioms which state desirable properties a solution pos-
sesses. On the class of TU-games, Shapley (1953) introduces the Shapley value,
the best-known single-valued solution concept, and characterizes it as the
unique solution on the class of TU-games that satisfies efficiency, additivity,
the null player property, and symmetry. Efficiency requires that the resulting
allocation distributes to the players exactly the worth of the grand coalition.
Additivity says that if there are two TU-games of the same set of players, the
allocation of a new game, in which the worth of a coalition is the sum of the
worths of the same coalition of the two games, is equal to the sum of the allo-
cations of each game. The null player property gives zero payoff to a player
who contributes nothing to change the worth by joining to any coalition. Sym-
metry says that if two players are symmetric, i.e., for any coalition which does
not contain the two players, the worth of the coalition with one of the two
players is equal to the worth of the coalition with the other player, then the
two players should receive the same payoff. Other characterizations of the
Shapley value are proposed in for example Young (1985) and van den Brink
(2002).

In this chapter we study TU-games with communication structure in-
troduced by Myerson (1977). It arises when the restriction for cooperation is

9
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represented by an undirected graph on the set of players in which a link be-
tween any two players implies that these players can communicate and only
connected subsets of players are able to cooperate and obtain their worth.

One of the most well-known single-valued solutions on the class of TU-
games with communication structure is the Myerson value (Myerson (1977)),
defined as the Shapley value of the so-called Myerson restricted game. By
Myerson (1977), the Myerson value is characterized by (component) efficiency
and fairness, fair in the sense that if a link is deleted between two players, the
Myerson value imposes the same loss on payoffs for each of these two players.
Another characterization of the Myerson value is given by van den Nouwe-
land (1993), which follows an axiomatization given in Borm et al. (1992) on
the class of TU-games with cycle-free communication structure. In van den
Brink (2009) an axiomatization of the Myerson value on this subclass is given
to make comparisons between different single-valued solution concepts.

In this chapter we give an alternative axiomatization of the Myerson
value for TU-games with arbitrary communication structure. Our approach is
to use another form of fairness and the Myerson value is characterized by
component efficiency, additivity, a restricted form of the null player prop-
erty, and a different form of fairness. This combination is similar to the origi-
nal characterization of the Shapley value. The fairness property we propose,
called coalitional fairness, says that if the worth of one coalition changes, then
the change in payoff is the same for all players within that coalition.

This chapter is organized as follows. Section 2 introduces TU-games
with communication structure and the Myerson value. In Section 3 an ax-
iomatic characterization is given. This chapter is based on Selçuk and Suzuki
(2014).

2.2 TU-games with communication structure and the
Myerson value

A cooperative game with transferable utility, or a TU-game, is a pair (N, v)
where N = {1, . . . , n} is a finite set of n players and v : 2N → R is a charac-
teristic function with v(∅) = 0. For a subset S ∈ 2N, being the coalition con-
sisting of all players in S, the real number v(S) is the worth of the coalition,
being the maximum payoff that the players in S can achieve by cooperation
and which can be freely distributed among the players in S. Let GN denote the
class of TU-games with fixed player set N.
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A special class of TU-games is the class of unanimity games. For T ∈
2N, the unanimity game (N, uT) ∈ GN has characteristic function uT : 2N → R

defined as

uT(S) =

{
1 if T ⊆ S,
0 otherwise.

It is well-known that any TU-game can be uniquely expressed as a linear com-
bination of unanimity games. Let (N, 0) ∈ GN denote the zero game, i.e.,
0(S) = 0 for all S ∈ 2N.

A payoff vector x = (x1, . . . , xn) ∈ Rn is an n-dimensional vector that
assigns payoff xi to player i ∈ N. A single-valued solution on GN is a funstion
ξ : GN → Rn which assigns to every TU-game (N, v) a payoff vector ξ(N, v).

The most well-known single-valued solution on the class of TU-games
is the Shapley value, see Shapley (1953). It is the average of the marginal
vectors induced from the collection of permutations of players. Let Π(N) be
the collection of permutations, or linear orderings, on N. Given a permutation
σ ∈ Π(N), the set of predecessors of i ∈ N in σ is defined as

Pσ(i) = {j ∈ N| σ(j) < σ(i)}.

Here, σ(i) = j, for i, j ∈ N, means that player j is in ith position under σ.
Given a TU-game (N, v) ∈ GN, for a permutation σ in Π(N) the marginal
vector mσ(N, v) assigns payoff

mσ
i (N, v) = v(Pσ(i) ∪ {i})− v(Pσ(i))

to player i = 1, . . . , n. The Shapley value of (N, v), Sh(N, v), is the average of
all n! marginal vectors, i.e.,

Sh(N, v) =
1
n! ∑

σ∈Π(N)

mσ(N, v).

A graph on N is a pair (N, L), with N = {1, . . . , n} a set of nodes and
L ⊆ Lc

N, where Lc
N = {{i, j} | i, j ∈ N, i 6= j} is the complete set of undirected

links without loops on N, and an unordered pair {i, j} ∈ L is called an link
in (N, L). A subset S ∈ 2N is connected in (N, L) if for any i ∈ S and j ∈ S,
j 6= i, there is a sequence of nodes (i1, i2, . . . , ik) in S such that i1 = i, ik = j and
{ih, ih+1} ∈ L for h = 1, . . . , k − 1. The collection of connected coalitions in
(N, L) is denoted CL(N). By definition, the empty set ∅ and every singleton
{i}, i ∈ N, are connected in (N, L). For S ∈ 2N, the subset of links L(S) ⊆ L is
defined as L(S) = {{i, j} ∈ L| i, j ∈ S}, being the subset of L of links that can
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be established within S. The graph (S, L(S)) is a subgraph of (N, L). A com-
ponent of a subgraph (S, L(S)) of (N, L) is a maximally connected coalition
in (S, L(S)) and the collection of components of (S, L(S)) is denoted ĈL(S).
For a graph (N, L), if {i, j} ∈ L, then i is called a neighbor of j and vice versa.
The collection of neighbors of node i ∈ N in (N, L) is denoted by DL

i , that is,
DL

i = {j ∈ N \ {i} | {i, j} ∈ L}. The collection of neighbors of S ∈ 2N in
(N, L) is defined similarly as DL

S = {j ∈ N \ S | ∃i ∈ S : {i, j} ∈ L}.
The combination of a TU-game and an (undirected) graph on the player

set is a TU-game with communication structure, introduced by Myerson (1977)
and denoted by a triple (N, v, L) where (N, v) is a TU-game and (N, L) is a
graph on N. A link between two players has as interpretation that the two
players are able to communicate and it is assumed that only a connected set of
players in the graph is able to cooperate to obtain its worth and freely transfer
it as payoff among the players in the coalition. Let Gcs

N denote the class of TU-
games with communication structure and fixed player set N. A single-valued
solution on Gcs

N is a function ξ : Gcs
N → Rn which assigns to every TU-game

with communication structure (N, v, L) ∈ Gcs
N a payoff vector ξ(N, v, L).

The most well-known single-valued solution on the class of TU-games
with communication structure is the Myerson value. It is the Shapley value of
the so-called Myerson restricted game. Following Myerson (1977), the Myer-
son restricted characteristic function vL : 2N → R of (N, v, L) ∈ Gcs

N is defined
as

vL(S) = ∑
K∈ĈL(S)

v(K), S ∈ 2N.

The pair (N, vL) is a TU-game and is called the Myerson restricted game of
(N, v, L), and the Myerson value of a game (N, v, L) ∈ Gcs

N is defined as

µ(N, v, L) = Sh(N, vL).

2.3 Axiomatic characterization

In this section we study existing characterizations and give a new axioma-
tization of the Myerson value on the class of TU-games with communica-
tion structure. When introducing the class of TU-games with communication
structure, Myerson (1977) characterizes the Myerson value by component ef-
ficiency and fairness axioms.

Definition 2.3.1 A solution ξ : Gcs
N → Rn satisfies component efficiency if for

any (N, v, L) ∈ Gcs
N it holds that ∑i∈Q ξi(N, v, L) = v(Q) for all Q ∈ ĈL(N).
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A solution on the class of TU-games with communication structure satisfies
component efficiency if the solution allocates to each component as the sum
of payoff among its members the worth of the component.

Definition 2.3.2 A solution ξ : Gcs
N → Rn satisfies fairness if for any (N, v, L) ∈

Gcs
N and {i, j} ∈ L it holds that

ξi(N, v, L)− ξi(N, v, L \ {i, j}) = ξ j(N, v, L)− ξ j(N, v, L \ {i, j}).

A solution on the class of TU-games with communication structure satisfies
fairness if the deletion of a link from the graph results in the same payoff
change for the two players who are endpoints of the link.

Theorem 2.3.3 (Myerson, 1977) The Myerson value is the unique solution on Gcs
N

that satisfies component efficiency and fairness.

Another characterization of the Myerson value on the class of TU-games
with communication structure is given by van den Nouweland (1993), which
is in line with an earlier result of Borm et al. (1992) on the class of TU-games
with cycle-free communication structure. An alternative characterization of
the Myerson value on this subclass is given in van den Brink (2009). In van den
Nouweland (1993) component efficiency, additivity, the strong superfluous
link property, and point anonymity are used to characterize the Myerson value.

For any two TU-games (N, v) and (N, w) in GN, the TU-game (N, v +

w) is defined by (v + w)(S) = v(S) + w(S) for all S ∈ 2N.

Definition 2.3.4 A solution ξ : Gcs
N → Rn satisfies additivity if for any (N, v, L),

(N, w, L) ∈ Gcs
N it holds that ξ(N, v + w, L) = ξ(N, v, L) + ξ(N, w, L).

Additivity of a solution means that if there are two TU-games with the same
communication structure, the resulting payoff vectors coincide when apply-
ing the solution to each of the two games and adding the two vectors and
when applying the solution to the game which is the sum of the two games.

Given a TU-game with communication structure (N, v, L) ∈ Gcs
N , a link

{i, j} ∈ L is called strongly superfluous if vL = vL\{i,j}, i.e., a link whose
absence does not influence the restricted game.

Definition 2.3.5 A solution ξ : Gcs
N → Rn satisfies the strong superfluous link

property if for any (N, v, L) ∈ Gcs
N and strongly superfluous link {i, j} ∈ L it

holds that
ξ(N, v, L) = ξ(N, v, L \ {i, j}).
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For a graph (N, L), let DL denote the set of nodes that have at least a
link in (N, L), i.e., DL = {i ∈ N | {i, j} ∈ L for some j ∈ N}. A TU-game with
communication structure (N, v, L) ∈ Gcs

N is called point anonymous if there is
a function f : {0, 1, . . . , |DL|} → R with vL(S) = f (|S ∩ DL|) for all S ∈ 2N.
For a point anonymous TU-game with communication structure, the worth of
a coalition in the restricted game depends only on the number of players in
the coalition who have at least a link in the communication structure.

Definition 2.3.6 A solution ξ : Gcs
N → Rn satisfies point anonymity if for every

point anonymous TU-game with communication structure (N, v, L) ∈ Gcs
N it

holds that ξi(N, v, L) = ξ j(N, v, L) for all i, j ∈ DL and ξi(N, v, L) = 0 for all
i ∈ N \ DL.

Theorem 2.3.7 (van den Nouweland, 1993) The Myerson value is the unique so-
lution on Gcs

N that satisfies component efficiency, additivity, the strong superfluous
link property, and point anonymity.

We give another characterization of the Myerson value by using com-
ponent efficiency, additivity, a restricted form of the null player property, and
another form of fairness. The combination is similar to the original character-
ization of the Shapley value by Shapley (1953).

A player i ∈ N is called a restricted null player in a TU-game with com-
munication structure (N, v, L) ∈ Gcs

N if this player never contributes whenever
he joins to form a connected coalition, that is, v(S ∪ {i})−∑K∈ĈL(S) v(K) = 0

for all S ∈ 2N such that i /∈ S and S ∪ {i} ∈ CL(N). The restricted null player
property says that this player must get zero payoff.

Definition 2.3.8 A solution ξ : Gcs
N → Rn satisfies the restricted null player

property if for any (N, v, L) ∈ Gcs
N and restricted null player i ∈ N in (N, v, L)

it holds that ξi(N, v, L) = 0.

Note that a restricted null player of a TU-game with communication struc-
ture (N, v, L) is a null player of its Myerson restricted game (N, vL), and a
restricted null player of a TU-game with complete communication structure
(N, v, Lc) is a null player of the TU-game (N, v). The next axiom replaces sym-
metry.

Definition 2.3.9 A solution ξ : Gcs
N → Rn satisfies coalitional fairness if for any

two TU-games (N, v, L), (N, v′, L) ∈ Gcs
N and Q ∈ 2N it holds that ξi(N, v, L)−

ξi(N, v′, L) = ξ j(N, v, L)− ξ j(N, v′, L) for all i, j ∈ Q whenever v(S) = v′(S)
for all S ∈ 2N, S 6= Q.
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Coalitional fairness of a solution implies that given a TU-game with commu-
nication structure, if the worth of a single coalition changes, then the payoff
change should be equal among all players in that coalition.

From additivity and the restricted null player property we have the
following lemma.

Lemma 2.3.10 Let a solution ξ : Gcs
N → Rn satisfy additivity and the restricted

null player property. Then for any two TU-games with the same communication
structure (N, v, L), (N, v′, L) ∈ Gcs

N it holds that ξ(N, v, L) = ξ(N, v′, L) whenever
v(S) = v′(S) for all S ∈ CL(N).

Proof Consider the game (N, w, L) where w = v − v′. Then every player is
a restricted null player in this game because w(S) = 0 for all S ∈ CL(N).
Therefore every player must receive zero payoff, that is, ξi(N, w, L) = 0 for all
i ∈ N. From additivity and v = w+ v′ it follows that ξ(N, v, L) = ξ(N, w, L)+
ξ(N, v′, L) = ξ(N, v′, L). 2

This lemma says that the worth of an unconnected coalition does not affect
the outcome of a solution that satisfies additivity and the restricted null player
property, which leads to the following corollary.

Corollary 2.3.11 If a solution ξ : Gcs
N → Rn satisfies additivity and the restricted

null player property, then ξ(N, v, L) = ξ(N, vL, L) for any (N, v, L) ∈ Gcs
N .

To prove that on the class of TU-games with communication structure
the axioms above uniquely define the Myerson value, we consider Myerson
restricted unanimity games. Given a unanimity game with communication
structure (N, uT, L) ∈ Gcs

N with T ∈ 2N, the Myerson restricted unanimity
game (N, uL

T) ∈ GN is given by

uL
T(S) =

{
1 if T ⊆ K for some K ∈ ĈL(S),
0 otherwise.

Given a graph (N, L) and S ∈ 2N, let CL
(S) denote the collection of connected

coalitions which minimally contain S, that is,

CL
(S) = {K ∈ CL(N) | S ⊆ K, K \ {i} /∈ CL(N) ∀ i ∈ K \ S}.

Note that if a graph (N, L) is not connected, the set CL
(S) may be empty for

some S ∈ 2N. On the other hand, if (N, L) is connected and cycle-free, then
CL

(S) consists of one element for any S ∈ 2N.
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Lemma 2.3.12 For a unanimity TU-game with communication structure (N, uT, L)
∈ Gcs

N with T ∈ 2N, it holds that

uL
T =

{
∑J⊆{1,...,k}(−1)|J|+1u∪j∈J Qj if CL

(T) = {Q1, . . . , Qk},
0 if CL

(T) = ∅.

Proof First consider the case when CL
(T) = ∅. This implies that there exists

no K ∈ ĈL(N) which contains T, and from the definition of uL
T it follows

that uL
T(S) = 0 for all S ∈ 2N. Next, let v = ∑J⊆{1,...,k}(−1)|J|+1u∪j∈J Qj when

CL
(T) 6= ∅. If T ∈ CL(N), then CL

(T) = {T} and therefore it holds that v =

uT = uL
T. Suppose T /∈ CL(N). It is to show that v(S) = uL

T(S) holds for every
S ∈ 2N. First take S ∈ 2N such that there is no K ∈ ĈL(S) satisfying T ⊆ K.
This implies that Q 6⊂ S for any Q ∈ CL

(T), and thus we have u∪j∈J Qj(S) = 0
for all J ⊆ {1, . . . , k}, which results in v(S) = 0 = uL

T(S). Next, take any
S ∈ 2N such that there exists K ∈ ĈL(S) satisfying T ⊆ K. This K is unique and
denote M = {j ∈ {1, . . . , k} | Qj ⊆ K}. Among all J ⊆ {1, . . . , k}, it holds that
u∪j∈J Qj(S) = 1 only when J ⊆ M, and otherwise u∪j∈J Qj(S) = 0. Let |M| = m.

Then v(S) = ∑J⊆M(−1)|J|+1u∪j∈J Qj(S) = ∑k=m
k=1 (−1)k+1(m

k ) = 1 = uL
T(S),

since it is known from the binominal theorem that ∑k=m
k=0 (−1)k(m

k ) = 0 and
therefore ∑k=m

k=1 (−1)k+1(m
k ) = −∑k=m

k=1 (−1)k(m
k ) = (m

0 ) = 1. 2

Note that for any J ⊆ {1, . . . , k}, it holds that ∪j∈JQj is connected, since
for each j ∈ J the set Qj itself is connected and contains T. This lemma shows
that any restricted unanimity TU-game with communication structure can be
uniquely expressed as a linear combination of unanimity TU-games with the
same communication structure for connected coalitions, as the next example
illustrates.

Example 2.3.13 Consider a unanimity TU-game with communication struc-
ture (N, u{1,3,5}, L), where (N, L) is a circle graph with six nodes, that is N =

{1, 2, 3, 4, 5, 6} with L = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}}. There are
three connected coalitions that minimally cover {1, 3, 5}, CL

({1, 3, 5}) = {Q1,
Q2, Q3} where Q1 = {1, 2, 3, 4, 5}, Q2 = {1, 3, 4, 5, 6}, and Q3 = {1, 2, 3, 5, 6}.
From the lemma it follows that uL

{1,3,5} = uQ1 +uQ2 +uQ3−uQ1∪Q2−uQ1∪Q3−
uQ2∪Q3 + uQ1∪Q2∪Q3 = uQ1 + uQ2 + uQ3 − 2uN. Indeed, uL

{1,3,5}(S) gives the
worth of 1 if S is Q1, Q2, Q3 or N and the worth of 0 for any other S, and those
worths are also assigned by the game uQ1 + uQ2 + uQ3 − 2uN, which is a linear
combination of unanimity games for connected coalitions in (N, L).
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On the class of unanimity TU-games with communication structure, we
have the following expression, which is well known, see for example Mishra
and Talman (2010), and we present it without proof.

Lemma 2.3.14 For any TU-game with communication structure (N, cuT, L) ∈ Gcs
N

with T ∈ CL(N), T 6= ∅, and c ∈ R, it holds that

µj(N, cuT, L) =

{
c/|T| if j ∈ T,
0 if j 6∈ T.

This lemma says that the Myerson value of a unanimity TU-game with com-
munication structure with a connected coalition assigns the allocation which
gives zero payoffs to the players who do not belong to the connected coali-
tion and the worth of the connected coalition is shared equally among those
who belong to it. Next, we give a characterization of the Myerson value in the
following theorem.

Theorem 2.3.15 The Myerson value is the unique solution on Gcs
N that satisfies com-

ponent efficiency, additivity, the restricted null player property, and coalitional fair-
ness.

Proof First, we show that the Myerson value satisfies all properties. Compo-
nent efficiency is used to characterize the value in Myerson (1977) and additiv-
ity is used in van den Nouweland (1993). If a player is a restricted null player
in a TU-game with communication structure (N, v, L) ∈ Gcs

N , then this player is
a null player in the restricted game vL and therefore the Myerson value, being
the Shapley value of vL, assigns zero to this player. Finally, suppose there are
two TU-games with the same communication structure (N, v, L), (N, v′, L) ∈
Gcs

N and Q ∈ CL(N) such that v(S) = v′(S) for all S ∈ CL(N), S 6= Q, and
take any i ∈ Q. It holds that mσ

i (N, v, L) = mσ
i (N, v′, L) for any σ ∈ Π(N) un-

less Pσ(i) = Q \ {i}. There are (|Q| − 1)!(n− |Q|)! permutations σ such that
Pσ(i) = Q \ {i} and for each such σ the marginal contribution of i changes
by mσ

i (N, v, L) − mσ
i (N, v′, L) = (vL(Q) − vL(Q \ {i})) − (v′L(Q) − vL(Q \

{i})) = vL(Q)− v′L(Q), which is independent of i. Therefore every player in
Q receives the same change the same number of times and so the change in
the Myerson value is the same among all players in Q.

Second, let ξ : Gcs
N → Rn be a solution which satisfies all four ax-

ioms. We firstly show that for any graph (N, L) it holds that ξ(N, cuT, L) =

µ(N, cuT, L) for any T ∈ CL(N) and c ∈ R. Let (N, L) be any graph on N and
denote ĈL(N) = {Q1, . . . , Qh} for some h ≥ 1. First consider the zero game
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(N, 0, L) ∈ Gcs
N . In this game all players are restricted null players and there-

fore it follows from the restricted null player property that ξi(N, 0, L) = 0 =

µi(N, 0, L) for all i ∈ N. Next consider the game (N, cuQk , L) ∈ Gcs
N for some

1 ≤ k ≤ h. Every player outside Qk is a restricted null player of (N, cuQk , L)
and therefore receives zero payoff. Between the two games (N, cuQk , L) and
(N, v′, L), where v′(Qk) = 0 and v′(S) = cuQk(S) for any other S ∈ 2N, coali-
tional fairness implies that

ξi(N, cuQk , L)− ξi(N, v′, L) = ξ j(N, cuQk , L)− ξ j(N, v′, L) ∀ i, j ∈ Qk.

Since v′(S) = 0 for all S ∈ CL(N), by Lemma 2.3.10 it holds that ξi(N, v′, L) =
ξi(N, 0, L) = 0 for all i ∈ N. This means that ξi(N, cuQk , L) = ξ j(N, cuQk , L)
for all i, j ∈ Qk. Together with component efficiency and Lemma 2.3.14, we
have

ξi(N, cuQk , L) =
c
|Qk|

= µi(N, cuQk , L) ∀ i ∈ Qk,

and therefore ξ(N, cuQk , L) = µ(N, cuQk , L). Now consider a game (N, cuT, L)
∈ Gcs

N with T ∈ CL(N), T ⊂ Qk, and |T| = |Qk| − 1. It follows from the
restricted null player property that any player i /∈ T receives zero payoff,
since this player yields zero marginal contribution when joining to any set of
players to form a connected coalition. For the games (N, cuT, L) and (N, v′′, L),
where v′′(T) = 0 and v′′(S) = cuT(S) for any other S ∈ 2N, coalitional fairness
then implies that

ξi(N, cuT, L)− ξi(N, v′′, L) = ξ j(N, cuT, L)− ξ j(N, v′′, L) ∀ i, j ∈ T.

Since v′′(S) = cuQk(S) for all S ∈ CL(N), it follows from Lemma 2.3.10 that
ξ(N, v′′, L) = ξ(N, cuQk , L). This means that ξi(N, v′′, L) = ξ j(N, v′′, L) for all
i, j ∈ T. With component efficiency and Lemma 2.3.14, this results in

ξi(N, cuT, L) =
c
|T| = µi(N, cuT, L) ∀ i ∈ T.

Next, suppose ξ(N, cuT, L) = µ(N, cuT, L) holds for all T ∈ CL(N), T ⊂
Qk, |T| > m > 1. Consider (N, cuT, L) ∈ Gcs

N with T ∈ CL(N), T ⊂ Qk,
|T| = m. For i /∈ T, it follows from the restricted null player property that
ξi(N, cuT, L) = 0. Define v′′′ such that v′′′(T) = 0 and v′′′(S) = cuT(S) for any
other S ∈ 2N. Then coalitional fairness implies

ξi(N, cuT, L)− ξi(N, v′′′, L) = ξ j(N, cuT, L)− ξ j(N, v′′′, L) ∀ i, j ∈ T.

Also define v = ∑`∈DL
T

cuT∪{`} − (k − 1)cuQk where k = |DL
T| is the number

of neighbors of T in (N, L). Since v(S) = v′′′(S) for all S ∈ CL(N) it follows
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from Lemma 2.3.10 that ξ(N, v, L) = ξ(N, v′′′, L). From additivity and the
supposition that ξ(N, cuS, L) = µ(N, cuS, L) for all S ∈ CL(N), S ⊂ Qk with
|S| > m, it follows that

ξi(N, v′′′, L) = ξi(N, v, L) = ∑
`∈DL

T

ξi(N, cuT∪{`}, L)− (k− 1)ξi(N, cuQk , L)

= ∑
`∈DL

T

µi(N, cuT∪{`}, L)− (k− 1)µi(N, cuQk , L)

= ∑
`∈DL

T

µj(N, cuT∪{`}, L)− (k− 1)µj(N, cuQk , L)

=ξ j(N, v, L) = ξ j(N, v′′′, L)

for all i, j ∈ T, and therefore

ξi(N, cuT, L) = ξ j(N, cuT, L) ∀ i, j ∈ T.

By component efficiency it holds that ξi(N, cuT, L) = c/|T| for all i ∈ T,
which implies ξ(N, cuT, L) = µ(N, cuT, L). When |T| = 1, component effi-
ciency and the restricted null player property imply that ξ allocates the My-
erson value to (N, cuT, L) ∈ Gcs

N . Therefore for a multiple of any unanimity
TU-game with communication structure for a connected coalition, the four
axioms uniquely give the allocation of the Myerson value. Since ξ satisfies ad-
ditivity and the restricted null player property, it follows from Corollary 2.3.11
that ξ(N, v, L) = ξ(N, vL, L) for any (N, v, L) ∈ Gcs

N . By Lemma 2.3.12 it holds
that vL can be expressed as a unique linear combination of unanimity games
for connected coalitions. That is, given any (N, v, L) ∈ Gcs

N there exist unique
numbers cT ∈ R for T ∈ CL(N), T 6= ∅, such that vL = ∑T cTuT. The proof is
completed since for any (N, v, L) ∈ Gcs

N it holds from additivity that

ξ(N, v, L) =ξ(N, vL, L)

=ξ(N, ∑
T∈CL(N),T 6=∅

cTuT, L)

= ∑
T∈CL(N),T 6=∅

ξ(N, cTuT, L)

= ∑
T∈CL(N),T 6=∅

µ(N, cTuT, L)

=µ(N, v, L).

2

To show the independence of the four axioms, consider the following
solutions for (N, v, L) ∈ Gcs

N .
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• ξi(N, v, L) = 0 for all i ∈ N.

This solution trivially satisfies additivity, the restricted null player property,
and coalitional fairness. It fails component efficiency.

• ξ(N, v, L) is such that:

– ξ(N, v, L) = µ(N, v, L) if v({i}) = 0 for some i ∈ N.

– ξi(N, v, L) = v(Q)
|Q| for i ∈ Q, Q ∈ ĈL(N), otherwise.

This solution satisfies component efficiency. As for the restricted null player
property, suppose player i ∈ N is a restricted null player in (N, v, L). Then
v({i}) = 0 holds and therefore ξi(N, v, L) = µi(N, v, L) = 0. Regarding
coalitional fairness, consider two TU-games with the same communication
structure, (N, v, L) and (N, v′, L), such that for some Q ∈ 2N it holds that
v(Q) 6= v′(Q) and v(S) = v′(S) for S ∈ 2N \ {Q}. First, if Q = {i}, i ∈ N,
then coalitional fairness trivially holds. Next, assume |Q| > 1 and v({i}) 6= 0
for all i ∈ N. If Q /∈ ĈL(N), it holds that ξ(N, v, L) = ξ(N, v′, L) and coali-
tional fairness holds. If Q ∈ ĈL(N), then for any i, j ∈ Q it holds that
ξi(N, v, L) − ξi(N, v′, L) = v(Q)

|Q| −
v′(Q)
|Q| = ξ j(N, v, L) − ξ j(N, v′, L). There-

fore coalitional fairness also holds for such cases. Finally, when |Q| > 1 and
v({i}) = 0 for some i ∈ N, the solution gives the Myerson value which
satisfies coalitional fairness. Therefore the solution satisfies coalitional fair-
ness. The solution fails additivity. Consider (N, u{1}, L) and (N, 2u{2}, L) with
N = {1, 2} and L = {{1, 2}}. Then it holds that ξ(N, u{1} + 2u{2}, L) =

(3
2 , 3

2) 6= (1, 2) = (1, 0) + (0, 2) = ξ(N, u{1}, L) + ξ(N, 2u{2}, L).

• ξi(N, v, L) = v(Q)
|Q| for all i ∈ Q and Q ∈ ĈL(N).

It is easy to check that this solution satisfies component efficiency, additiv-
ity, and coalitional fairness. This solution does not satisfy the restricted null
player property, as any restricted null player of a game receives non-zero pay-
off if the component he belongs to has non-zero worth.

• ξ(N, v, L) = mσ(N, vL) with σ = (1, 2, . . . , n).

Since every marginal vector is component efficient, additive, and satisfies the
restricted null player property, this solution satisfies these properties. It fails
coalitional fairness. Consider the two TU-games with the same communi-
cation structure (N, 0, L) and (N, uN, L), where N ∈ CL(N). Observe that
0(S) = uN(S) for every S ∈ 2N \ {N}. Then for any j < n it holds that
that ξn(N, uN, L) − ξn(N, 0, L) = 1− 0 = 1 6= 0 = 0− 0 = ξ j(N, uN, L) −
ξ j(N, 0, L), since ξ(N, 0, L) = (0, . . . , 0, 0) and ξ(N, uN, L) = (0, . . . , 0, 1).



CHAPTER 3

SOLUTION CONCEPTS FOR COOPERATIVE GAMES

WITH CIRCULAR COMMUNICATION STRUCTURE

3.1 Introduction

In the previous chapter we study the Myerson value on the class of TU-games
with communication structure represented by an undirected graph of which
the connected sets form the collection of feasible coalitions. The Myerson
value for such a game is equal to the Shapley value of the corresponding My-
erson restricted game. For this class of games, several other solution concepts
have been introduced in the literature. For example, the position value is in-
troduced by Meessen (1988) and Borm et al. (1992). The position value shares
the Shapley value of the induced link game, another graph restricted game
which defines the worth to the power set of the set of links, among the players
who own a link. It is characterized by Slikker (2005) by efficiency and bal-
anced link contributions. The latter means that for any pair of players, the
total sum of the payoff losses of one player caused by breaking each link of
the other player is the same for both players.

The average tree solution is introduced by Herings et al. (2008) on the
class of TU-games with cycle-free communication structure. Unlike the Myer-
son value and the position value, this solution is not defined via some trans-
formation of the original game but instead it is the average of the marginal
vectors deduced from a specific collection of (rooted) spanning trees on the
graph. For a cycle-free graph, every player induces exactly one spanning tree

21
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with himself as the root, and hence in case of n players the average tree so-
lution is the average of n marginal vectors, while the Myerson value is the
average of n! marginal vectors and the position value uses (n − 1)! vectors
on this class of graphs. On the class of TU-games with cycle-free commu-
nication structure Herings et al. (2008) shows that the average tree solution
is characterized by component efficiency and component fairness. The latter
means that when a link between players is deleted the average loss of play-
ers in both resulting components is the same. Another characterization of the
average tree solution on the class of TU-games with connected cycle-free com-
munication structure is given by Mishra and Talman (2010). They show that
the solution is completely characterized by efficiency, the dummy property,
linearity, strong symmetry, and independence in unanimity games. The last
property is not satisfied by the Myerson value and says that if a player joins
to the minimum winning connected coalition of a unanimity game, then the
payoff of any player in the coalition not being linked to this player does not
change.

Herings et al. (2010) generalizes the average tree solution to the class
of TU-games with communication structure. Given a graph, they define a col-
lection of admissible spanning trees as the ones where each player has in each
component of his subordinates one successor. This selects trees on the graph
which describe how the players can be partially ordered in such a way that if
there is a communication link between two players, one of them should be a
subordinate of the other. When the underlying graph has cycles, and therefore
more communication links, there are typically more ways for players to com-
municate and the number of admissible spanning trees becomes larger. Baron
et al. (2008) gives an axiomatization on the class of TU-games with connected
communication structure as a unique solution satisfying efficiency, linearity
and T -hierarchy. The latter property means that in a unanimity TU-game
with communication structure for a connected coalition the payoff is only ex-
plained by how often a player is a root in the smallest subtree that contains
the coalition under all admissible spanning trees.

We study solutions on the class of TU-games with circular communica-
tion structure where the underlying graph is assumed to be a circle. Players
could be firms or cities situated along a lake shore or a circular pipeline where
players can only be connected to their two direct neighbors, one located on
each side. A subset of players is in such a setting only able to cooperate if it
consists of consecutive nodes on the circle. As described in the previous chap-
ter, the Shapley value for a TU-game, i.e., with full communication structure,
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is the average of the marginal vectors corresponding to, in case of n players,
all n! permutations on the player set. For a TU-game with circular commu-
nication structure we propose to take as solution the average of the marginal
vectors that correspond to permutations in which each player has a communi-
cation link with the player preceding him in the permutation. The idea is that
if a player is not connected to the player that is immediately preceding him
in the permutation then this player is not able to cooperate with his preced-
ing players and therefore doesn’t receive his marginal contribution. It turns
out that on the class of TU-games with circular communication structure the
average of the marginal vectors of these admissible permutations is precisely
the average tree solution introduced in Herings et al. (2010). If there are n
players there are 2n of such admissible permutations, each yielding a differ-
ent marginal vector. Instead of looking only at permutations in which every
player is linked to his immediate predecessor in the permutation, one could
also argue that a player may join the predecessors in the permutation if he
is connected to at least one of them, not being necessarily the last one. The
idea here is that if a player is linked to some of the players that precede him
in the permutation, he is able to cooperate with them and get his marginal
contribution. Since the starting agent can be any agent and every time one of
two agents can join until the last agent is left, the number of permutations is
equal to 2n−2n in case of n players. Each such permutation leads to a different
marginal vector and one may take the average of these marginal vectors as so-
lution concept. It appears that this solution is equal to the Shapley value intro-
duced by Bilbao and Ordóñez (2009) on the class of augmenting systems and
for the class of TU-games with circular communication structure it coincides
with the solution proposed before. Although the two sets of permutations and
of marginal vectors differ for both solutions, the resulting payoff distribution
is precisely the same.

We further give for the class of TU-games with circular communication
structure an axiomatization of the solution using standard axioms. We show
that it is fully characterized by efficiency, additivity, the restricted null player
property, those which are used in the previous chapter, and some form of sym-
metry, which consists of two axioms. One of the two axioms is on anonymity
of the players on a circle. If every player’s position shifts along the circle in
one way or the opposite way, then the entries of the solution shift accordingly.
This axiom is also satisfied for the Myerson value. The second axiom is on
characteristic functions of two different games. A player gets the same payoff
in two TU-games with circular communication structure with the same set of
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players, if in both games the worth of any connected coalition to which this
player is connected is the same, and also the worth of such a coalition together
with this player is the same. The Myerson value does not satisfy this axiom,
as it is observed in Chapter 2 that the allocation the Myerson value assigns
to a player may change if the worth of a coalition to which he belongs, not
necessarily the one to which he is connected to, changes.

The stability of the solution on the class of TU-games with circular com-
munication structure is studied as well. A payoff of a game is stable if no
coalition can oppose to the payoff in a sense that the players in a coalition
can not do better by themselves than what they get from the payoff. The no-
tion of core is introduced by Gillies (1959) for TU-games and for TU-games
with communication structure it is defined as the set of payoff vectors that are
component efficient and stable for connected coalitions. On the class of TU-
games with cycle-free communication structure, Herings et al. (2008) shows
that superadditivity of the Myerson restricted game is a sufficient condition
under which the average tree solution is an element of the core of the game.
A game is superadditive if the worth of the union of any two disjoint coali-
tions is at least equal to the total worth of both. This condition is further
weakened by Talman and Yamamoto (2007). On the class of TU-games with
communication structure which may contain cycles, Herings et al. (2010) in-
troduces the notion of link-convexity. If the underlying communication struc-
ture is cycle-free, link-convexity is weaker than superadditivity and stronger
than the condition found in Talman and Yamamoto (2007). In this chapter we
introduce the notion of circular-convexity on the class of TU-games with cir-
cular communication structure. Circular-convexity is weaker than convexity
but stronger than superadditivity. This convexity condition is equivalent to
link-convexity on the class of TU-games with circular communication struc-
ture. It is well known that for TU-games convexity is equivalent to the prop-
erty that all marginal vectors lie in the core and therefore also the Shapley
value. We show that for a TU-game with circular communication structure,
circular-convexity is a necessary and sufficient condition to guarantee that ev-
ery admissible marginal vector for the average tree solution is an element of
the core and therefore also the average tree solution. A stronger version of
circular-convexity is also given as a necessary and sufficient condition for ev-
ery marginal vector for the Shapley value introduced in Bilbao and Ordóñez
(2009) to be in the core. We further give a necessary and sufficient condition
for the solution itself to be in the core, called average-circular-convexity. This
condition is not necessarily stronger than superadditivity, and weaker than
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circular-convexity. We also illustrate that the Myerson value may not be in the
core if the game is circular-convex.

This chapter is organized as follows. Section 2 introduces TU-games
with circular communication structure and the solutions. In Section 3 the ax-
iomatic characterizations for the solutions are given. In Section 4 stability of
the solution concepts is discussed. This chapter is partly based on Selçuk et al.
(2013).

3.2 TU-games with circular communication struc-
ture and solutions

Consider a finite number of nodes or agents located on a circle. The nodes
could for example be villages along a lake shore or around a mountain, shop-
ping malls along a ring road of a city, or companies connected to a circular
pipeline. Let the set N = {1, . . . , n} denote the set of nodes, with n ≥ 3. Given
the location of the nodes on a circle, we assume without loss of generality that
each node i ∈ N has two neighbors, i − 1 and i + 1, and that there is a link
between any node and each of his neighbors, where we adopt the convention
and i− 1 = n when i = 1, and i+ 1 = 1 when i = n. Let Lcircle

N denote the set of
links between any two neighbors, that is Lcircle

N = {{i, i + 1}| i = 1, . . . , n}. A
TU-game with circular communication structure is a triple (N, v, Lcircle

N ). Let
Gcircle

N denote the class of TU-games with circular communication structure
with fixed player set N. In this chapter we fix L = Lcircle

N unless otherwise
mentioned.

For i, j ∈ N, we use Sj
i to express the connected coalition containing

all players from i to j in a circle graph (N, L), i.e., Sj
i = {i, i + 1, . . . , j} if j ≥

i and Sj
i = {i, i + 1, . . . , n, 1, . . . , j} if i > j. Notice that Si−1

i = N, where
i − 1 = n when i = 1, and Si

i = {i}, i = 1, . . . , n. A solution on Gcircle
N is

a function ξ : Gcircle
N → Rn which assigns to every TU-game with circular

communication structure (N, v, L) a payoff vector ξ(N, v, L). The core of a
TU-game with circular communication structure (N, v, L) ∈ Gcircle

N is defined
as

C(N, v, L) = {x ∈ Rn |
n

∑
i=1

xi = v(N), ∑
i∈S

xi ≥ v(S), ∀ S ∈ CL(N)}.

The core is the set of allocations that are efficient, ∑n
i=1 xi = v(N), and are

not opposed by any connected coalition, that is ∑i∈S xi ≥ v(S) for all S ∈



26
SOLUTION CONCEPTS FOR COOPERATIVE GAMES

WITH CIRCULAR COMMUNICATION STRUCTURE

CL(N). For the class of TU-games, in which all coalitions are feasible, the core
is introduced by Gillies (1959) and is for a TU-game (N, v) given by

C(N, v) = {x ∈ Rn |
n

∑
i=1

xi = v(N), ∑
i∈S

xi ≥ v(S), ∀ S ∈ 2N}.

Note that for any TU-game with circular communication structure (N, v, L) ∈
Gcircle

N it holds that C(N, v, L) = C(N, vL), where (N, vL) is the Myerson re-
stricted game of (N, v, L) as described in Chapter 2.

The Shapley value of a TU-game, in which any coalition is connected in
terms of its communication structure, can be interpreted as follows. To form
the grand coalition, agents enter a room randomly one-by-one and if an agent
enters he connects to the last person who entered before and he receives his
marginal contribution for joining the agents who are already present in the
room. In this way a permutation σ = (σ(1), . . . , σ(n)) is obtained in which
first agent σ(1) enters, which can be any of the n agents, and this agent receives
his worth v({σ(1)}), the minimum amount to let him stay in the room. Then
agent σ(2) enters, which can be any of the remaining n− 1 agents, he receives
as payoff his marginal contribution v({σ(1), σ(2)})− v({σ(1)}) when joining
agent σ(1), otherwise the two agents would not stay together in the room, and
agent σ(2) connects to agent σ(1) to form the ordering (σ(1), σ(2)). Then from
the remaining n− 2 agents agent σ(3) enters, gets as payoff his marginal con-
tribution v({σ(1), σ(2), σ(3)}) − v({σ(1), σ(2)}), otherwise the three agents
would not stay together in the room, and connects to agent σ(2), the last agent
who joined before, to form the ordering (σ(1), σ(2), σ(3)), and so on, until the
last agent, σ(n), enters, gets his marginal contribution v(N)− v(N \ {σ(n)}),
and connects to agent σ(n− 1), the last agent who joined before, to complete
the ordering σ in forming the grand coalition N. In general, for k = 2, . . . , n,
when k − 1 agents, σ(1), . . . , σ(k − 1), have entered the room before, agent
σ(k), one of the remaining n − k + 1 agents, enters. This agent gets as pay-
off v({σ(1), . . . , σ(k)})− v({σ(1), . . . , σ(k− 1)}), being his contribution when
joining the agents in the room, otherwise they would leave the room, and con-
nects to agent σ(k− 1), the last agent who entered before, to form the order-
ing (σ(1), . . . , σ(k)). This process generates a marginal vector and the Shapley
value is the average of all such marginal vectors.

In a circle graph it is not the case that every agent is connected to every
other agent. We assume that if an agent enters the room as described above
and he is not connected to the last agent that entered before, then the grand
coalition cannot be formed. The idea is that if there is no link between the
agent who enters and the last agent who entered before, the entering agent is
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not able to communicate and therefore cannot form a coalition with the agents
who entered before. For example, the last agent who entered got the techno-
logical facilities to connect to the agent who entered before and is now the
only agent in the room who is able to connect the next agent. In this way only
orderings σ are able to form the grand coalition in which, for k = 2, . . . , n, once
the k− 1 agents σ(1), . . . , σ(k− 1) have entered the room in this order, agent
σ(k) will only enter and stay in the room if he is connected to the last agent
that entered before, being agent σ(k − 1). In this case he receives as payoff
his marginal contribution v({σ(1), . . . , σ(k)})− v({σ(1), . . . , σ(k − 1)}), oth-
erwise the k agents would not stay together in the room, and agent σ(k) con-
nects to agent σ(k− 1) to form the ordering (σ(1), . . . , σ(k)). In other words,
we assume that only if for all k = 2, . . . , n node σ(k) is linked to node σ(k− 1),
then the grand coalition N can be formed through the ordering σ and every
agent receives his marginal contribution. If, for at least one k ∈ N, agent
σ(k) is not connected to σ(k − 1), then we assume that the grand coalition
cannot be formed through the ordering σ. In case agent i = σ(1) enters the
room first, there are just two agents, agent i − 1 (agent n when i = 1) and
agent i + 1 (agent 1 when i = n), being connected to agent i and who there-
fore may enter the room to join agent i. After one of these two agents enters,
there is only one of the remaining n − 2 agents who can enter and join the
agent who entered before, and so on, until the last remaining agent enters.
This leads to 2n different orderings, or permutations, through which the grand
coalition can be formed. Let us call these permutations admissible. For each
node i ∈ N there are two admissible permutations σ with σ(1) = i, denoted
σi

1 = (i, i + 1, . . . , n, 1, . . . , i− 1) and σi
2 = (i, i− 1, . . . , 1, n, . . . , i + 1). The set

of admissible permutations is then given by

Πa(N) = {σi
1 | i = 1, . . . , n} ∪ {σi

2 | i = 1, . . . , n}.

Given a TU-game with circular communication structure (N, v, L) ∈ Gcircle
N , to

any admissible permutation σ ∈ Πa(N) a marginal vector mσ(N, v, L) corre-
sponds and assigns payoff

mσ
i (N, v, L) = v(Pσ(i) ∪ {i})− v(Pσ(i)) (3.1)

to agent i = 1, . . . , n. As solution concept we take the average of these 2n
marginal vectors,

1
2n ∑

σ∈Πa(N)

mσ(N, v, L).
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We show now that this solution coincides with the average tree solution. The
average tree solution is introduced by Herings et al. (2010) on the class of TU-
games with communication structure and is defined on the class of TU-games
with circular communication structure as follows.

An n-tuple B = (B1, . . . , Bn) of connected coalitions in a circle graph
(N, L) is admissible if there is some r ∈ N such that Br = N, for all i ∈ N it
holds that i ∈ Bi, and if Bi \ {i} 6= ∅ there exists a unique j ∈ N satisfying
{i, j} ∈ L and Bj = Bi \ {i}. Let BL denote the collection of admissible n-tuples
of connected coalitions in (N, L). The next example illustrates the concept of
admissible n-tuples in a circle graph.

Example 3.2.1 Consider a circle graph (N, L) with n = 4 and suppose B =

(B1, B2, B3, B4) is admissible with B2 = N. Since B2 \ {2} = {1, 3, 4} and 2 is
linked to 1 and 3, it must hold that either B1 = {1, 3, 4} or B3 = {1, 3, 4},
not both. If B1 = {1, 3, 4}, then B1 \ {1} = {3, 4}. Since 1 is linked to
both 2 and 4 but B2 = N, it follows that B4 = {3, 4}, and we obtain B =

({1, 3, 4}, N, {3}, {3, 4}). If B3 = {1, 3, 4}, then we obtain B = ({1}, N, {1, 3, 4},
{3, 4}). Note for example that B = ({1, 3, 4}, N, {3, 4}, {4}) is not admissible
because in this case B1 \ {1} = B3, where {1, 3} /∈ L.

Given a TU-game with circular communication structure (N, v, L) ∈
Gcircle

N , to an admissible B ∈ BL the marginal vector mB(N, v, L) corresponds,
defined by

mB
i (N, v, L) = v(Bi)− v(Bi \ {i}), i ∈ N.

The average tree solution of a TU-game with circular communication struc-
ture (N, v, L) ∈ Gcircle

N is then defined as the average of the marginal vectors
corresponding to all admissible n-tuples of connected coalitions in (N, L),

AT(N, v, L) =
1
|BL| ∑

B∈BL

mB(N, v, L).

Theorem 3.2.2 For any TU-game with circular communication structure (N, v, L)
∈ Gcircle

N it holds that

AT(N, v, L) =
1

2n ∑
σ∈Πa(N)

mσ(N, v, L).

Proof Take any σ ∈ Πa(N) and suppose σ = σi
1 for some i ∈ N. Define

Bk = {i, . . . , k} for k = i, . . . , n, and Bk = {i, . . . , n, 1, . . . , k} for k = 1, . . . , i− 1.
Then B = (B1, . . . , Bn) is an admissible n-tuple of connected coalitions in
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(N, L), satisfying mB(N, v, L) = mσi
1(N, v, L). Similarly, when σ = σi

2 for some
i ∈ N, define Bk = {k, . . . , i} for k = 1, . . . , i, and Bk = {k, . . . , n, 1, . . . , i} for
k = i + 1, . . . , n. Then again this B = (B1, . . . , Bn) is an admissible n-tuple of
connected coalitions in (N, L), satisfying mB(N, v, L) = mσi

2(N, v, L). There-
fore every permutation in Πa(N) corresponds to a unique admissible n-tuple
of connected coalitions in (N, L). Next, let B = (B1, . . . , Bn) be an admissible
n-tuple of connected coalitions in (N, L). Then there exists unique i ∈ N such
that Bi = N. Consider the set Bi \ {i} = N \ {i}. This set has two elements that
are linked to i, namely i− 1 and i+ 1, where i− 1 = n when i = 1 and i+ 1 = 1
when i = n. So, Bi \ {i} is either Bi+1 (B1 when i = n) or Bi−1 (Bn when i = 1).
Suppose Bi \ {i} = Bi+1. Then, when i < n, i + 2 is the only element of
Bi+1 \ {i + 1} that is linked to i + 1 and so Bi+1 \ {i + 1} = Bi+2, and, when
i = n, 2 is the only element of B1 \ {1} that is linked to 1, and so on. In every
further step there is only one element in Bk \ {k} that is linked to k, and that
is the element k + 1 and so Bk\{k} = Bk+1, for k = i + 1, . . . , n, 1, . . . , i. From
this it follows that mB(N, v, L) = mσi−1

2 (N, v, L). Similarly, if Bi \ {i} = Bi−1, it
holds that mB(N, v, L) = mσi+1

1 (N, v, L). Therefore every admissible n-tuple of
connected coalitions in (N, L) corresponds to a unique permutation in Πa(N),
which completes the proof. 2

The theorem says that on the class of TU-games with circular communi-
cation structure the average tree solution is equal to the average of all marginal
vectors that correspond to permutations on the players set in which every two
consecutive players of the permutation are neighbors of each other. Only such
permutations are assumed to be able to form the grand coalition, coming from
the interpretation of the Shapley value described above.

The Shapley value of a TU-game can also be interpreted in a slightly
different way. To form the grand coalition, agents enter a room randomly
one-by-one and if an agent enters he just joins the set of agents that are al-
ready present in the room and he receives his marginal contribution. In this
interpretation an entering agent does not connect to the last agent who entered
before but he just joins the set of agents who entered before. The Shapley value
can be seen as the average of such vectors of marginal contributions.

Under the circular communication structure with this interpretation, it
holds for an ordering σ that when the k− 1 agents σ(1), . . . , σ(k− 1) have en-
tered the room, the next agent, agent σ(k), can only enter and gets his marginal
contribution if he is connected to at least one of the k− 1 preceding agents, not
necessarily being agent σ(k− 1). The idea is that a player can only join a coali-
tion to form a larger coalition if he is able to communicate with at least one
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member of that coalition. Let us call such orderings compatible. Observe that
any admissible ordering is also compatible. After the first agent σ(1), which
can be any of the n agents, enters the room, the second agent who enters,
agent σ(2), can be any of the two neighbors of σ(1), which is the same in the
previous interpretation. However, agent σ(3), who enters next, can be either
the remaining neighbor of agent σ(1), not being agent σ(2), or the remaining
neighbor of agent σ(2), not being agent σ(1). In general, if σ(1), . . . , σ(k− 1)
have entered, then agent σ(k), who is entering the room next, is connected
to one of the two end points of the induced connected coalition on the set
{σ(1), . . . , σ(k− 1)}.

Given the first agent σ(1), which can be any of the n agents, there are
two choices of σ(2) for being compatible with σ(1). In general, for 2 ≤ k ≤ n−
1, there are two choices of σ(k) for being compatible with (σ(1), σ(2), . . . , σ(k−
1)). For the case k = n, the last agent, σ(n), is uniquely determined. This leads
to 2n−2n different compatible orderings, or permutations, through which the
grand coalition can be formed. The set of compatible permutations can be
defined as

Πc(N) = {σ ∈ Π(N)|Pσ(i) ∈ CL(N) ∀ i ∈ N}.

As solution concept we may take the average of the marginal vectors induced
by all compatible permutations,

1
2n−2n ∑

σ∈Πc(N)

mσ(N, v, L),

where for σ ∈ Πc(N) the vector mσ(N, v, L) is defined in the same way as
above. We show now that this solution coincides with the Shapley value in-
troduced by Bilbao and Ordóñez (2009) on the class of games with augmenting
systems, which contains the class of TU-games with circular communication
structure. An augmenting system on the set N is defined as a pair (N,F )
where F ⊆ 2N satisfies: ∅ ∈ F ; for S, T ∈ F with S ∩ T 6= ∅, then S ∪ T ∈ F ;
for S, T ∈ F with S ⊂ T, there exists i ∈ T \ S such that S ∪ {i} ∈ F . A
TU-game on an augmenting system is a triple (N, v,F ) where (N,F ) is an
augmenting system describing the set of feasible coalitions each of which is
able to cooperate to earn its worth and distribute it freely among the players
in it. We denote Gas

N the class of TU-games on augmenting systems with fixed
player set N. As mentioned in Bilbao and Ordóñez (2009), (N, CL(N)) is an
augmenting system that represents the collection of feasible coalitions, i.e., the
collection of connected coalitions of the communication structure (N, L), not
necessarily a circle graph, and therefore Gcircle

N ⊂ Gas
N .
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Given an augmenting system (N,F ) with N ∈ F , an ordering ρ =

(ρ(1), . . ., ρ(n)) ∈ Π(N) is compatible on (N,F ) if {ρ(1), . . . , ρ(k)} ∈ F for
all k = 1, . . . , n, and corresponds one-to-one to a maximal chain R in F , being
a collection of coalitions in F ordered with respect to set inclusion that is not
contained in any larger chain in F . Let Ch(F ) denote the set of maximal
chains in F . Given (N, v,F ) ∈ Gas

N with N ∈ F , each maximal chain R ∈
Ch(F ) corresponding to compatible ordering ρ on (N,F ) induces a marginal
vector which assigns

mR
ρ(i)(N, v,F ) = v({ρ(1), . . . , ρ(i)})− v({ρ(1), . . . , ρ(i− 1)})

to agent ρ(i) ∈ N. Then the Shapley value of a game (N, v,F ) ∈ Gas
N with

N ∈ F is defined in Bilbao and Ordóñez (2009) as the average of the marginal
vectors induced from all maximal chains in F , i.e.,

Sh(N, v,F ) = 1
|Ch(F )| ∑

R∈Ch(F )
mR(N, v,F ).

Theorem 3.2.3 For any TU-game with circular communication structure (N, v, L)
∈ Gcircle

N it holds that

Sh(N, v, CL(N)) =
1

2n−2n ∑
σ∈Πc(N)

mσ(N, v, L).

Proof The communication structure induced from a circle graph (N, L) is
equivalent to the one induced from an augmenting system (N,F ) with the
set of feasible coalitions equal to F = CL(N). We show that there is a one-
to-one relation between Πc(N) and Ch(CL(N)). For any maximal chain R ∈
Ch(CL(N)) with corresponding compatible ordering ρ on (N, CL(N)), ρ is an
element in Πc(N). Conversely, any compatible permutation σ ∈ Πc(N) is a
compatible ordering on (N, CL(N)) corresponding to some maximal chain R
in CL(N). Therefore, for any maximal chain R in Ch(CL(N)) with correspond-
ing compatible permutation σ ∈ Πc(N) it holds for all i ∈ N that

mσ
i (N, v, L) = v(Pσ(i) ∪ {i})− v(Pσ(i))

= v({j ∈ N|σ(j) < σ(i)} ∪ {i})− v({j ∈ N|σ(j) < σ(i)})
= v({σ(1), . . . , σ(σ−1(i))})− v({σ(1), . . . , σ(σ−1(i)− 1)})
= mR

i (N, v, CL(N)).

2
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Thus far, we have obtained two solution concepts on the class of TU-
games with circular communication structure, following from two different
interpretations of the Shapley value on the class of TU-games. The first one,
which turns out to be the average tree solution introduced by Herings et al.
(2010), is the average of 2n marginal vectors, while the other solution, which
turns out to be the Shapley value as introduced by Bilbao and Ordóñez (2009),
is the average of 2n−2n marginal vectors. Generically, all latter marginal vec-
tors are different and they contain the former ones. Nevertheless the two aver-
ages are the same, that is, the two solution concepts introduced above coincide
on the class of TU-games with circular communication structure.

Theorem 3.2.4 On the class of TU-games with circular communication structure the
average tree solution and the Shapley value in Bilbao and Ordóñez (2009) coincide,
that is, for any (N, v, L) ∈ Gcircle

N , it holds that AT(N, v, L) = Sh(N, v, CL(N)).

Proof For any TU-game with circular communication structure (N, v, L) ∈
Gcircle

N it has to be shown that

1
|Πa(N)| ∑

σ∈Πa(N)

mσ(N, v, L) =
1

|Πc(N)| ∑
σ∈Πc(N)

mσ(N, v, L).

Take any S ∈ CL(N) and i /∈ S satisfying S ∪ {i} ∈ CL(N). Let Πa
S,i and

Πc
S,i denote the subsets of admissible and compatible permutations σ satis-

fying mσ
i (N, v, L) = v(S ∪ {i}) − v(S), respectively. It suffices to show that

|Πa
S,i|

|Πa(N)| =
|Πc

S,i|
|Πc(N)| . If S = ∅, then Πa

S,i = {σi
1, σi

2} and Πc
S,i consists of 2n−2

compatible permutations σ with σ(1) = i, and therefore
|Πa

S,i|
|Πa(N)| =

1
n =

|Πc
S,i|

|Πc(N)| .

If S = N \ {i}, then Πa
S,i = {σ

i+1
1 , σi−1

2 } and Πc
S,i consists of 2n−2 compatible

permutations σ with σ(n) = i, and therefore
|Πa

S,i|
|Πa(N)| =

1
n =

|Πc
S,i|

|Πc(N)| . Other-

wise, |Πa
S,i| = 1 and |Πc

S,i| = 2|S|−1 · 2n−|S|−2 = 2n−3, the number of compat-
ible permutations with σ(|S|+ 1) = i, where the first term of the product is
the number of ways to fill the first |S| positions and the second term is the
number of ways to fill the last n − |S| − 1 positions. Therefore it holds that
|Πa

S,i|
|Πa(N)| =

1
2n =

|Πc
S,i|

|Πc(N)| for any such S, which completes the proof. 2

Although both solutions differ in terms of the number of marginal vec-
tors to take the average of, where the Shapley value in Bilbao and Ordóñez
(2009) takes the average of 2n−3 times more different marginal vectors than
the average tree solution does, they coincide on the class of TU-games with
circular communication structure. This is because for any i ∈ N and S ∈
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CL(N) \ {N \ {i}, ∅} such that i /∈ S and S ∪ {i} ∈ CL(N) the marginal con-
tribution v(S ∪ {i})− v(S) appears only once as entry among the admissible
marginal vectors and 2n−3 times among the compatible marginal vectors, and
when S ∈ {N \ {i}, ∅}, v(S ∪ {i})− v(S) appears twice as entry among the
admissible marginal vectors and 2n−2 times among the compatible marginal
vectors, and therefore the two averages are equal to each other.

3.3 Axiomatic characterization

In this section, we give characterizations for the average tree solution and
therefore also for the Shapley value in Bilbao and Ordóñez (2009) on the class
of TU-games with circular communication structure.

In the previous section it is shown that the average tree solution coin-
cides with the Shaply value introduced by Bilbao and Ordóñez (2009) on the
class of TU-games with circular communication structure. Thus on this class
of games the average tree solution has the same characteristics as the latter
value has. In Bilbao and Ordóñez (2009), this value is characterised with the
hierarchical strength axiom. As discussed in Section 3.1, Baron et al. (2008)
shows that the average tree solution is the unique solution on the class of
TU-games with connected communication structure that satisfies efficiency,
linearity and T -hierarchy. Both ideas are related to the work of Faigle and
Kern (1992). Given a connected coalition from a communication structure, the
hierarchical strength of a player in the coalition is defined. In Bilbao and Or-
dóñez (2009), it is equivalent to the proportion of the maximal chains where
the player joins last among the players in the coalition. In Baron et al. (2008),
it is equivalent to the proportion of the admissible trees where the player is
the root of the subtree which minimally contains all players in the coalition.
On the class of circular communication structure, both hierarchical strengths
coincide and therefore both axioms are equivalent on the class of TU-games
with circular communication structure.

For the class of TU-games with cycle-free communication structure, a
characterization of the average tree solution is given in Herings et al. (2008)
with the component fairness axiom, in comparison with the fairness axiom for
the Myerson value. Given a TU-game with cycle-free communication struc-
ture, a deletion of a link always yields two new components from its original
cycle-free communication structure, and component fairness says that the av-
erage payoff change among players who are in one of the two components is
equal to that in the other component. This axiom is not applicable to the so-
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lution defined on TU-games with circular communication structure because
deleting a link does not create two components, and furthermore, deleting a
link leads to a different class than the class of TU-games with circular commu-
nication structure. In van den Brink (2009) a characterization for the average
tree solution on TU-games with cycle-free communication structure is given
by using axioms on the behavior of the solution of a game when a pair of
linked players can collude, which is expressed as a change in the characteris-
tic function of the game. In Mishra and Talman (2010) another characterization
of the average tree solution on this class of games is given by using some sym-
metry axioms defined on characteristic functions. They show that the average
tree solution can be characterized by (component) efficiency, strong symme-
try, the restricted null player property (they call it dummy), linearity, strong
symmetry, and independence in unanimity games. Our axiomatic approach
on the class of TU-games with circular communication structure is in line with
the last. The first three properties are also introduced in the previous chapter
for the class of TU-games with communication structure.

Definition 3.3.1 A solution ξ : Gcircle
N → Rn satisfies efficiency if for any (N, v, L)

∈ Gcircle
N it holds that ∑i∈N ξi(N, v, L) = v(N).

Definition 3.3.2 A solution ξ : Gcircle
N → Rn satisfies additivity if for any (N, v, L),

(N, w, L) ∈ Gcircle
N it holds that ξ(N, v + w, L) = ξ(N, v, L) + ξ(N, w, L).

Definition 3.3.3 A solution ξ : Gcircle
N → Rn satisfies the restricted null player

property if for any (N, v, L) ∈ Gcircle
N and restricted null player i ∈ N in (N, v, L)

it holds that ξi(N, v, L) = 0.

As a consequence of Lemma 2.3.10, we have the following.

Corollary 3.3.4 If a solution ξ : Gcircle
N → Rn satisfies additivity and the restricted

null player property, then ξ(N, v, L) = ξ(N, vL, L) for any (N, v, L) ∈ Gcircle
N .

The next two axioms together form a kind of symmetry with respect to the
circle.

Definition 3.3.5 A solution ξ : Gcircle
N → Rn satisfies symmetry among players

if for any admissible permutation π ∈ Πa(N) and game (N, v, L) ∈ Gcircle
N it

holds that ξi(N, v′, L) = ξπ(i)(N, v, L), where v′(S) = v(π(S)) for all S ∈ 2N.

Symmetry among players of a solution means that if two TU-games with cir-
cular communication structure differ only by a shift of the players along the
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circle in one way or the reverse way, i.e., a reordering of the players through
an admissible permutation, then the entries of the solution differ only by this
shift.

Definition 3.3.6 A solution ξ : Gcircle
N → Rn satisfies symmetry between games

if for any (N, v, L), (N, v′, L) ∈ Gcircle
N and i ∈ N, it holds that ξi(N, v, L) =

ξi(N, v′, L) when v(S) = v′(S) and v(S ∪ {i}) = v′(S ∪ {i}) for all S ∈ CL(N)

satisfying i 6∈ S and S ∪ {i} ∈ CL(N).

Symmetry between games of a solution implies that in two different TU-games
with circular communication with the same player set, a player gets the same
payoff if in both games the worth of any connected coalition to which this
player is connected is the same and also the worth of such a coalition together
with this player is the same.

Given a connected coalition T ∈ CL(N), player j ∈ T is an end player
of T if T \ {j} ∈ CL(N). Let E(T) denote the set of end players of connected
coalition T, i.e., E(T) = {i ∈ T | T \ {i} ∈ CL(N)}. Notice that E(N) = N and
E({j}) = {j} for all j ∈ N. First we give in the following lemma an expression
of the average tree solution on the class of unanimity TU-games with circular
communication structure for a connected coalition.

Lemma 3.3.7 For any unanimity TU-game with circular communication structure
(N, cuT, L) ∈ Gcircle

N with T ∈ CL(N) and c ∈ R, it holds that

ATj(N, cuT, L) =


0 if j 6∈ T,
c if j ∈ T and |T| = 1,
(n− |T|+ 2)c/(2n) if j ∈ E(T) and |T| > 1,
c/n if j ∈ T \ E(T).

Proof If j /∈ T, then for any σ ∈ Πa(N) it holds that mσ
j (N, cuT, L) = 0 and

therefore the average tree solution assigns zero. If T = {j}, then mσ
j (N, cuT, L)

= c for all admissible permutations and the average tree solution assigns c to
this player. If |T| > 1 and j ∈ E(T), consider any admissible permutation σ

such that σ(k) = j, 1 ≤ k ≤ n. It holds that mσ
j (N, cuT, L) = 0 for k < |T|. For

each k, |T| ≤ k ≤ n− 1, there is one admissible permutation σ with σ(k) = j
such that T \ {j} ⊆ Pσ(j) and therefore mσ

j (N, cuT, L) = c. When k = n, both
admissible permutations σ with σ(n) = j yield mσ

j (N, cuT, L) = c. In total,
out of 2n marginal vectors induced from admissible permutations, j yields
a marginal contribution of c in (n − |T|) + 2 vectors and zero in the others.
Thus ATj(N, cuT, L) = (n − |T| + 2)c/(2n) holds. Finally, if j ∈ T \ E(T),
among σ ∈ Πa(N), mσ

j (N, cuT, L) = c occurs for the two permutations σ with
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σ(n) = j, and otherwise mσ
j (N, cuT, L) = 0. This gives ATj(N, cuT, L) = c/n,

which completes the proof. 2

Note in the proof that when T = N it follows that (n− |T|+ 2)c/(2n) = c/n.
Next, we give a characterization of the average tree solution on the class

of TU-games with circular communication structure.

Theorem 3.3.8 On the class of TU-games with circular communication structure,
the average tree solution is the unique solution satisfying efficiency, additivity, the
restricted null player property, symmetry among players, and symmetry between
games.

Proof First, we show that the average tree solution satisfies all properties.
Efficiency follows from the fact that all marginal vectors are efficient by con-
struction. Since all admissible marginal vectors of a TU-game with circular
communication structure are linear in the worths of the connected coalitions
and the average tree solution is the average of these vectors, the average tree
solution satisfies additivity. If a player is a restricted null player, this player
has marginal contribution equal to zero at any admissible permutation and
therefore the average is also zero. If players are shifted or reversely shifted
along the circle, the entries of the marginal vectors corresponding to admis-
sible permutations shift accordingly and therefore also their average. Finally,
if in two different games a player has the same marginal contribution to any
connected coalition he is connected to, each admissible marginal vector as-
signs to that player in both games the same payoff and therefore also their
average.

Second, let ξ : Gcircle
N → Rn be a solution which satisfies all five ax-

ioms. The proof is first done for the class of unanimity TU-games with cir-
cular communication structure for connected coalitions. Consider the game
(N, cuN, L) ∈ Gcircle

N . Take π = σk
1 for some k 6= 1. Then π ∈ Πa(N) and

cuN(π(S)) = cuN(S) for all S ∈ CL(N). From symmetry among players it
follows that ξ1(N, cuN, L) = ξk(N, cuN, L), which implies that in the game
(N, cuN, L) all players receive the same payoff. By efficiency this yields

ξk(N, cuN, L) =
c
n
= ATk(N, cuN, L) ∀ k ∈ N.

For the game (N, cuT, L) ∈ Gcircle
N with T = {i} it follows from efficiency and

the restricted null player property that player i receives c and all other players
0 as in the average tree solution. Now, take any T ∈ CL(N) with 1 < |T| < n
and consider (N, cuT, L) ∈ Gcircle

N . Then each i 6∈ T is a restricted null player
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in (N, cuT, L) and therefore this player receives zero payoff as in the average
tree solution. Next, let i ∈ T \ E(T), then for all S ∈ CL(N) such that i 6∈ S and
S ∪ {i} ∈ CL(N) it holds that cuT(S ∪ {i}) = cuN(S ∪ {i}). From symmetry
between games it follows that

ξi(N, cuT, L) = ξi(N, cuN, L) =
c
n
= ATi(N, cuT, L).

Finally, let i ∈ E(T). Because of symmetry among players and since 1 <

|T| < n, we may assume that i = 1 and T = {1, . . . , j} for some 1 < j < n.
Let π = σ

j
2, then π ∈ Πa(N), π(1) = j, and π(T) = T. Define the game

(N, v′, L) ∈ Gcircle
N by v′(S) = cuT(π(S)) for all S ∈ 2N. Because of symmetry

among players and since π(1) = j, it holds that ξ j(N, v′, L) = ξ1(N, cuT, L).
Moreover, v′(S ∪ {j}) = c = cuT(S ∪ {j}) if S ∈ CL(N) and S ⊇ T \ {j},
and v′(S ∪ {j}) = 0 = cuT(S ∪ {j}) for all other S ∈ CL(N). From symmetry
between games it then follows that ξ j(N, v′, L) = ξ j(N, cuT, L). Together this
implies ξ j(N, cuT, L) = ξ1(N, cuT, L), and so the two end players of T receive
the same payoff in the game (N, cuT, L). From efficiency and the facts that all
other players in T receive payoff c

n and all players outside T receive payoff
zero, the two end players 1 and j of T receive both payoff equal to

ξ1(N, cuT, L) = ξ j(N, cuT, L) =
c
2

(
1− |T| − 2

n

)
=

n− |T|+ 2
2n

c,

which is the same as both players receive at the average tree solution. Thus
ξ(N, cuT, L) = AT(N, cuT, L) holds for any T ∈ CL(N).

Since ξ satisfies additivity and the restricted null player property, it fol-
lows from Corollary 2.3.11 that ξ(N, v, L) = ξ(N, vL, L) for any (N, v, L) ∈
Gcircle

N . By Lemma 2.3.12 it holds that vL can be expressed as a unique lin-
ear combination of unanimity games for connected coalitions, i.e., given any
(N, v, L) ∈ Gcircle

N there exist unique numbers cT ∈ R for T ∈ CL(N), T 6= ∅,
such that vL = ∑T cTuT. The proof is completed since

ξ(N, v, L) =ξ(N, vL, L)

=ξ(N, ∑
T∈CL(N),T 6=∅

cTuT, L)

= ∑
T∈CL(N),T 6=∅

ξ(N, cTuT, L)

= ∑
T∈CL(N),T 6=∅

AT(N, cTuT, L)

=AT(N, v, L).
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2

To show the independence of the five axioms, consider the following
solutions for (N, v, L) ∈ Gcircle

N .

• ξi(N, v, L) = 0 for all i ∈ N.

This solution trivially satisfies additivity, the restricted null player property,
symmetry among players, and symmetry between games. It fails efficiency.

• ξ(N, v, L) is such that:

– ξi(N, v, L) = 0 for all i ∈ N if v(N) = 0.

– ξ(N, v, L) = AT(N, v, L), otherwise.

This solution satisfies efficiency, the restricted null player property, and sym-
metry among players. Regarding symmetry between games, consider two
TU-games with circular communication structure on the same set of players
(N, v, L) and (N, v′, L), where there exists i ∈ N such that v(S) = v′(S) and
v(S ∪ {i}) = v′(S ∪ {i}) for all S ∈ CL(N) satisfying i /∈ S and S ∪ {i} ∈
CL(N). First assume that v(N) = 0. Since N ∈ CL(N) and N \ {i} ∈
CL(N) for all i ∈ N, it holds that v′(N) = v(N) = 0. Then it follows that
ξi(N, v, L) = ξi(N, v′, L) = 0. Next, assume v(N) 6= 0. For the same rea-
son, it holds that v′(N) = v(N). In this case the solution assigns the av-
erage tree solution and thus ξi(N, v, L) = ξi(N, v′, L) holds as well. There-
fore this solution satisfies symmetry between games. It fails additivity. Con-
sider (N, u{1,2} − uN, L) and (N, uN, L) where N = {1, 2, 3}. It holds that
ξ(N, u{1,2} − uN + uN, L) = ξ(N, u{1,2}, L) = (1

2 , 1
2 , 0) 6= (0, 0, 0) + (1

3 , 1
3 , 1

3) =

ξ(N, u{1,2} − uN, L) + ξ(N, uN, L).

• ξi(N, v, L) = v(N)
n for all i ∈ N.

This solution satisfies efficiency, additivity, symmetry among players, and
symmetry between games. However, this solution does not meet the restricted
null player property, as a restricted null player of any TU-game with circular
communication structure receives non-zero payoff if the worth of the grand
coalition is non-zero.

• ξ(N, v, L) = mσ(N, v, L) with σ = (1, 2, . . . , n).

Since every marginal vector is efficient, additive, and satisfies the restricted
null player property, this solution satisfies these properties. It can be easily
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verified that the solution also satisfies symmetry between games, since it al-
locates to i ∈ N that ξi(N, v, L) = v(S ∪ {i}) − v(S) with some S ∈ CL(N),
i /∈ S, and S ∪ {i} ∈ CL(N). It fails symmetry among players. For exam-
ple, consider (N, v, L) = (N, uN + u{1,2,3}, L) where N = {1, 2, 3, 4}. Then,
ξ(N, v, L) = (0, 0, 1, 1). Now take the admissible permutation π = (2, 3, 4, 1)
and let v′(S) = v(π(S)) for all S ∈ 2N, then ξ(N, v′, L) = (v({2}), v({2, 3})−
v({2}), v({2, 3, 4}) − v({2, 3}), v(N) − v({2, 3, 4})) = (0, 0, 0, 2), which can
not be obtained by shifting the entries of (0, 0, 1, 1).

• ξ(N, v, L) = µ(N, v, L).

From the results of Chapter 2, the Myerson value on the class of TU-games
with circular communication structure, which is contained by the class of TU-
games with communication structure, satisfies efficiency, the restricted null
player property, and additivity. It satisfies symmetry among players, because
the Myerson value is also an average of marginal vectors and a shift induced
by an admissible permutation just shifts the entries of the marginal vectors. It
fails symmetry between games. Consider (N, uN, L) and (N, u{1,2,3}, L) where
N = {1, 2, 3, 4}. Observe that uN(S) = u{1,2,3}(S) except for S = {1, 2, 3}.
Symmetry between games would then imply ξ2(N, uN, L) = ξ2(N, u{1,2,3}, L),
but µ2(N, uN, L) = 1

4 6=
1
3 = µ2(N, u{1,2,3}, L).

The characterization we obtain in Chapter 2 for the Myerson value dif-
fers in the symmetry axioms regarding the behavior of a solution between two
games. Coalitional fairness, which is satisfied by the Myerson value, says that
if two games are the same except the worth of only one connected coalition,
then the payoff change should equally occur for each member of the coalition.
For the average tree solution, if two games are the same except the worth of
one connected coalition, then symmetry between games implies that a pay-
off change may occur only for the end players of the coalition and the end
players of its complement, and thus the average tree solution does not satisfy
coalitional fairness. With the other axioms the payoff change must be equal be-
tween the end players of the coalition, and between the end players of its com-
plement. Symmetry between games also implies that the payoff of a player
should not change between two games if his marginal contributions induced
from the collection of admissible permutations are the same in both games.
On the other hand, the Myerson value gives the same payoff to a player if his
marginal contributions induced from all permutations are the same. If, how-
ever, there are two games in which any player has the same marginal contri-
butions induced from all permutations, then the two games correspond to the
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same Myerson restricted game. The axiom regarding marginal contribution is
called marginality and introduced in Young (1985) on the class of TU-games
to characterize the Shapley value. We remark that the restricted null player
property and symmetry between games can be replaced by the following ax-
iom.

Definition 3.3.9 A solution ξ : Gcircle
N → Rn satisfies restricted marginality if

for any (N, v, L), (N, v′, L) ∈ Gcircle
N and i ∈ N it holds that ξi(N, v, L) =

ξi(N, v′, L) when v(S ∪ {i}) − v(S) = v′(S ∪ {i}) − v′(S) for all S ∈ CL(N)

satisfying i 6∈ S and S ∪ {i} ∈ CL(N).

Corollary 3.3.10 On the class of TU-games with circular communication structure,
the average tree solution is the unique solution satisfying efficiency, additivity, sym-
metry among players, and restricted marginality.

3.4 Stability of the solutions

In this section, we study on the class of TU-games with circular communi-
cation structure the relationship between the average tree solution and the
core. Especially, we provide necessary and sufficient conditions for each ad-
missible marginal vector, for each compatible marginal vector, and the av-
erage tree solution, to be in the core. Shapley (1971) introduces the notion
of convex TU-game and shows that if a game is convex, then all marginal
vectors, as well as the Shapley value, are in the core. Ichiishi (1981) further
shows that all marginal vectors of a TU-game are in the core if and only if
the game is convex. A TU-game (N, v) is convex if for all S ⊂ T, T ∈ 2N,
and i ∈ S it holds that v(T)− v(T \ {i}) ≥ v(S)− v(S \ {i}), or equivalently,
v(S) + v(T) ≤ v(S ∪ T) + v(S ∩ T) holds for every S, T ⊂ N. If the latter
inequality holds for every S, T with S ∩ T = ∅, the game is called superad-
ditive. A TU-game with circular communication structure (N, v, L) is said to
be convex if its restricted game (N, vL) is convex, and is called superadditive
if (N, vL) is superadditive. The Myerson value of a TU-game with circular
communication structure is an element of the core of the game if the game is
convex, because the Myerson value is the Shapley value of the restricted game.
A convex game ensures that the core of the game is not empty, while this may
not always hold if the game is superadditive. We introduce a weaker form
of convexity on the class of TU-games with circular communication structure,
which is on this class equivalent to link-convexity introduced by Herings et al.
(2010).
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Definition 3.4.1 A TU-game with circular communication structure (N, v, L) ∈
Gcircle

N is circular-convex if

v(S) + v(T) ≤ v(S ∪ T) + v(S ∩ T)

for any S, T ∈ CL(N) that satisfy at least one of the following conditions:

(1) S ∪ T = N and S ∩ T ∈ CL(N);

(2) S ∪ T ∈ CL(N) and S ∩ T = ∅.

Condition (2) requires superadditivity of the restricted game and therefore
circular-convexity requires more than what is needed for a game (N, v, L) ∈
Gcircle

N to be superadditive. If n = 3 then circular-convexity coincides with
convexity of (N, v), because in that case a circle graph is the complete graph.
For n > 3, circular-convexity is weaker than convexity of (N, v, L), because it
does not take the convex relationship into account between two non-disjoint
connected coalitions S and T if S ∪ T 6= N or if S ∩ T consists of two compo-
nents, i.e., when S and T overlap each other at both their ends. For a connected
coalition S the number of connected coalitions T satisfying the conditions (1)
and (2) does not depend on the size of S as far as 1 ≤ |S| < n. The total
number of different connected coalitions T with which circular-convexity has
to be satisfied for S is equal to 2n − 2, since there are n connected coalitions
in a circle graph which connect to S from one side of the graph, and also n
connected coalitions which connect to S from the other side, with N and N \ S
being counted twice. This number is the same for convexity of (N, v, L) only
if |S| = 1. If |S| > 1, this number is larger for convexity than 2n− 1 and also
depends on the size of S. Therefore, on the class of TU-games with circular
communication structure, circular-convexity is stronger than superadditivity,
but weaker than convexity.

We show that circular-convexity of a TU-game with circular commu-
nication structure is a necessary and sufficient condition for all admissible
marginal vectors to be in the core.

Theorem 3.4.2 For a TU-game with circular communication structure (N, v, L) ∈
Gcircle

N , every admissible marginal vector mσ(N, v, L), σ ∈ Πa(N), is in the core if
and only if the game is circular-convex.

Proof Suppose the TU-game with circular communication structure (N, v, L)
is circular-convex. Take any connected coalition S ∈ CL(N). We show that
for every σ ∈ Πa(N), mσ(S) ≥ v(S), where mσ(S) = ∑j∈S mσ

j (N, v, L). Since
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S ∈ CL(N), we have S = Sb
a for some 1 ≤ a, b ≤ n. Without loss of generality,

we assume a ≤ b and σ = σi
1 for some i ∈ N. Recall that σi

1 is the admissible
permutation with σ(1) = i and σ(n) = i− 1. First suppose i /∈ S, that is, either
1 ≤ i < a or b < i ≤ n. Then it holds that

mσi
1(Sb

a) = v(Sb
i )− v(Sa−1

i )

= v(Sa−1
i ∪ Sb

a)− v(Sa−1
i )

≥ v(Sa−1
i ) + v(Sb

a)− v(Sa−1
i )

= v(Sb
a),

where the inequality follows from condition (2) of Definition 3.4.1. Next, sup-
pose i ∈ S. If i = a, then

mσi
1(Sb

a) = v(Sb
a)− v(∅) = v(Sb

a).

If a < i ≤ b, then

mσi
1(Sb

a) = mσi
1(Sb

i ) + mσi
1(Si−1

a )

= v(Sb
i )− v(∅) + v(Si−1

i )− v(Sa−1
i )

= v(Sb
i ) + v(N)− v(Sa−1

i )

= v(Sa−1
i ∩ Sb

a) + v(Sa−1
i ∪ Sb

a)− v(Sa−1
i )

≥ v(Sb
a),

where the inequality follows from condition (1) of Definition 3.4.1. Therefore
circular-convexity is a sufficient condition.

Suppose that mσ(N, v, L) ∈ C(N, v, L) holds for every σ ∈ Πa(N), but
(N, v, L) is not satisfying circular-convexity. Then there are two distinct con-
nected coalitions S and T which satisfy at least one of the conditions of Defi-
nition 3.4.1 while v(S) + v(T) > v(S ∪ T) + v(S ∩ T). First, consider the case
when Condition (2) of Definition 3.4.1 holds, i.e., S ∪ T ∈ CL(N) and S ∩ T =

∅. Without loss of generality, let S = Sb
a and T = Sc

b+1 with 1 ≤ a ≤ b < c ≤ n.
Then it holds for the marginal vector mσc

2(N, v, L) that

mσc
2(Sb

a) = v(Sc
a)− v(Sc

b+1)

= v(Sb
a ∪ Sc

b+1)− v(Sc
b+1)

= v(S ∪ T)− v(T)

< v(S) = v(Sb
a).

This contradicts that mσc
2(N, v, L) ∈ C(N, v, L). Next, consider the case when

Condition (1) of Definition 3.4.1 holds, i.e., S ∪ T = N and S ∩ T ∈ CL(N).
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Without loss of generality, let S = Sb
a and T = Sa−1

c with 1 ≤ a < c ≤ b ≤ n.
Observe that S ∩ T = Sb

c . Then for the marginal vector mσc
1(N, v, L) it holds

that

mσc
1(Sb

a) = mσc
1(Sb

c) + mσc
1(Sc−1

a )

= v(Sb
c)− v(∅) + v(Sc−1

c )− v(Sa−1
c )

= v(Sb
c) + v(N)− v(Sa−1

c )

= v(Sa−1
c ∩ Sb

a) + v(Sa−1
c ∪ Sb

a)− v(Sa−1
c )

= v(S ∩ T) + v(S ∪ T)− v(T)

< v(S) = v(Sb
a).

This contradicts that mσc
1(N, v, L) ∈ C(N, v, L). It is shown that whenever

there is a violation for circular-convexity, there is an admissible marginal vec-
tor outside the core. This concludes that circular-convexity is also a necessary
condition. 2

From the theorem it immediately follows that the convex hull of all
admissible marginal vectors is a subset of the core if and only if the game is
circular-convex.

Corollary 3.4.3 For any TU-game with circular communication structure (N, v,
L) ∈ Gcircle

N it holds that the set Conv {mσ(N, v, L)|σ ∈ Πa(N)} is a subset of the
core C(N, v, L) if and only if the game is circular-convex.

Since the average tree solution is the average of all admissible marginal vec-
tors, which are in the core under circular-convexity of a game, we have the
following corollary.

Corollary 3.4.4 For any circular-convex TU-game with circular communication struc-
ture (N, v, L) ∈ Gcircle

N it holds that AT(N, v, L) ∈ C(N, v, L).

A condition for the stability of all compatible marginal vectors requires more
than what circular-convexity requires, since there are more marginal vectors
which are compatible than admissible, while all admissible marginal vectors
are compatible, and all marginal vectors are different from each other.

Definition 3.4.5 A TU-game with circular communication structure (N, v, L) ∈
Gcircle

N is strongly circular-convex if

v(S) + v(T) ≤ v(S ∪ T) + v(S ∩ T)

for any S, T ∈ CL(N) such that S ∪ T ∈ CL(N) and S ∩ T ∈ CL(N).
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Note that for n = 3 strong circular-convexity is equivalent to convexity, as is
the case for circular-convexity. For n > 3 the condition is weaker than con-
vexity but stronger than circular-convexity, since it also requires a convex re-
lationship between some but not all intersecting pairs of connected coalitions
S and T with S ∪ T 6= N.

Theorem 3.4.6 For a TU-game with circular communication structure (N, v, L) ∈
Gcircle

N , every compatible marginal vector mσ(N, v, L), σ ∈ Πc(N), is in the core if
and only if the game is strongly circular-convex.

Proof Suppose the TU-game with circular communication structure (N, v, L)
is strongly circular-convex. Take any S ∈ CL(N) and σ ∈ Πc(N), and let
mσ(S) = ∑j∈S mσ

j (N, v, L). Without loss of generality, let us order the players
in S on σ as i1, . . . , i|S| such that j < k implies Pσ(ij) ⊂ Pσ(ik). Note that this
ordering is uniquely determined given σ and S. Then, from equation (3.1), we
have

mσ(S)− v(S) =
|S|

∑
k=1

(
v
(

Pσ(ik) ∪ {ik}
)
− v
(

Pσ(ik)
))
− v(S)

=
|S|−1

∑
k=1

(
v
(

Pσ(ik) ∪ {ik}
)
− v
(

Pσ(ik)
))

+ v
(

Pσ(i|S|) ∪ {i|S|}
)
− v
(

Pσ(i|S|)
)
− v(S)

=
|S|−1

∑
k=1

(
v
(

Pσ(ik) ∪ {ik}
)
− v
(

Pσ(ik)
))

+ v
(

Pσ(i|S|) ∪ S
)
− v
(

Pσ(i|S|)
)
− v(S)

≥
|S|−1

∑
k=1

(
v
(

Pσ(ik) ∪ {ik}
)
− v
(

Pσ(ik)
))
− v
(

Pσ(i|S|) ∩ S
)

=
|S|−1

∑
k=1

(
v
(

Pσ(ik) ∪ {ik}
)
− v
(

Pσ(ik)
))
− v(S \ {i|S|}),

where the inequality follows from the strong circular-convexity condition for
connected coalitions S and Pσ(i|S|). Notice that Pσ(i|S|) ∪ S = Pσ(i|S|) ∪ {i|S|}
and Pσ(i|S|) ∩ S = S \ {i|S|}. Repeating the procedure gives

mσ(S)− v(S) ≥
|S|−1

∑
k=1

(
v
(

Pσ(ik) ∪ {ik}
)
− v
(

Pσ(ik)
))
− v(S \ {i|S|})

≥
|S|−2

∑
k=1

(
v
(

Pσ(ik) ∪ {ik}
)
− v
(

Pσ(ik)
))
− v(S \ {i|S|−1, i|S|})
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· · ·

≥
(

v
(

Pσ(i1) ∪ {i1}
)
− v
(

Pσ(i1)
))
− v(S \ {i2, . . . , i|S|})

=v
(

Pσ(i1) ∪ {i1}
)
− v
(

Pσ(i1)
)
− v({i1})

≥0.

Therefore strong circular-convexity is a sufficient condition.
Suppose that mσ(N, v, L) ∈ C(N, v, L) holds for every σ ∈ Πc(N),

but (N, v, L) is not satisfying strong circular-convexity. Then there are two
distinct connected coalitions S and T which satisfy the conditions of Defini-
tion 3.4.5 while v(S) + v(T) > v(S ∪ T) + v(S ∩ T). From the proof of The-
orem 3.4.2, if S ∪ T ∈ CL(N) and S ∩ T = ∅ or if S ∪ T = N and S ∩ T ∈
CL(N), there is an admissible, therefore compatible, permutation σ satisfy-
ing mσ(N, v, L) /∈ C(N, v, L), which is a contradiction. Thus it suffices to
find a compatible permutation σ with mσ(N, v, L) /∈ C(N, v, L) whenever
S ∩ T ∈ CL(N) \ {∅} and S ∪ T 6= N. Take any compatible permutation σ

with the first |S ∩ T| positions occupied by the elements of S ∩ T, the next
|T \ S| positions occupied by the elements of T \ S, and the next |S \ T| posi-
tions occupied by the elements of S \ T. Such a compatible permutation exists,
because S ∩ T, T \ S, S \ T and N \ (S ∪ T) are nonempty connected coali-
tions while S ∩ T and T \ S, also (S ∩ T) ∪ (T \ S) = T and S \ T, and also
(S ∩ T)∪ (T \ S)∪ (S \ T) = S ∪ T and N \ (S ∪ T) are disjoint but connected.
Observe that σ cannot be admissible. It holds that mσ(S ∩ T) = v(S ∩ T)
and mσ(S \ T) = mσ(S ∪ T)−mσ(T) = v(S ∪ T)− v(T). Then it follows that
mσ(S) = mσ(S ∩ T) + mσ(S \ T) = v(S ∩ T) + v(S ∪ T) − v(T) < v(S) and
therefore mσ(N, v, L) /∈ C(N, v, L). 2

Corollary 3.4.7 For any TU-game with circular communication structure (N, v,
L) ∈ Gcircle

N it holds that the set Conv {mσ(N, v, L)|σ ∈ Πc(N)} is a subset of the
core C(N, v, L) if and only if the game is strongly circular-convex.

In general, for a (strongly) circular-convex TU-game with circular commu-
nication structure (N, v, L) ∈ Gcircle

N with n > 3 it does not hold that the
set Conv {mσ(N, v, L)| σ ∈ Πa(N)} (Conv {mσ(N, v, L)|σ ∈ Πc(N)}) is equal
to the core C(N, v, L). In particular, when (N, v, L) is a convex TU-game with
circular communication structure, C(N, v, L) is equal to the convex hull of all
marginal vectors mσ(vL), σ ∈ Π(N), defined in Chapter 2, which are all ex-
treme points of the core, whereas Conv {mσ(N, v, L)|σ ∈ Πc(N)} is the con-
vex hull of less (different) marginal vectors and therefore is a proper subset of
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C(N, v, L). The set Conv {mσ(N, v, L)|σ ∈ Πa(N)} is the convex hull of even
less (different) marginal vectors, which holds true for any TU-game with cir-
cular communication structure. Also in case a (strongly) circular-convex TU-
game with circular communication structure (N, v, L) ∈ Gcircle

N with n > 3 is
not convex, the core C(N, v, L) is in general not equal to Conv{mσ(N, v, L)| σ ∈
Πa(N)} (Conv{mσ(N, v, L)|σ ∈ Πc(N)}) and contains these sets as proper
subsets.

The next examples show that strong circular-convexity is weaker than
convexity and that circular-convexity is weaker than strong circular-convexity.

Example 3.4.8 Consider the 4-person TU-game with circular communication
structure (N, v, L) with characteristic function

v(S) =


2 if S = N, {1, 3, 4} ,
1 if S = {1, 4} , {3, 4} , {1, 2, 3} , {1, 2, 4} , {2, 3, 4} ,
0 otherwise.

This game is strongly circular-convex but not convex (take S = {1, 2, 3} and
T = {1, 3, 4}). From Theorem 3.4.6, it follows that mσ(N, v, L) ∈ C(N, v, L)
for all σ ∈ Πc(N). Player 2 is a restricted null player and therefore a sta-
ble allocation assigns to this player zero payoff. Since player 2 is not a null
player in the Myerson restricted game (N, vL)

(
vL({1, 2, 3}) − vL({1, 3}) =

1 > 0
)
, the Myerson value allocates some positive value to this player, yield-

ing µ(N, v, L) = ( 7
12 , 1

12 , 7
12 , 9

12) /∈ C(N, v, L) = C(N, vL). The average tree
solution equals AT(N, v, L) = (5

8 , 0, 5
8 , 6

8) ∈ C(N, v, L).

Example 3.4.9 Consider the 4-person TU-game with circular communication
structure (N, v, L) with characteristic function

v(S) =


2 if S = N,
2− ε if S = {1, 3, 4} ,
1 if S = {1, 4} , {3, 4} , {1, 2, 3} , {1, 2, 4} , {2, 3, 4} ,
0 otherwise,

for some 0 ≤ ε ≤ 1. For ε = 0 this is Example 3.4.8. For 0 < ε ≤ 1, the
game is circular-convex but not strongly-circular-convex (take S = {1, 4} and
T = {3, 4}). From Theorem 3.4.2 it follows that mσ(N, v, L) ∈ C(N, v, L) for all
σ ∈ Πa(N). For the permutation σ = (4, 3, 1, 2) ∈ Πc(N) \Πa(N), however,
it holds that mσ(N, v, L) = (1 − ε, ε, 1, 0) /∈ C(N, v, L), since mσ

1 (N, v, L) +
mσ

4 (N, v, L) < v({1, 4}). The average tree solution of this game is AT(N, v, L) =
(5−ε

8 , 2ε
8 , 5−ε

8 , 6
8) ∈ C(N, v, L) and the Myerson value of the game equals to
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µ(N, v, L) = (7−ε
12 , 1+3ε

12 , 7−ε
12 , 9−ε

12 ). Note that µ(N, v, L) /∈ C(N, v, L) for 0 ≤
ε < 1

9 .

Next, we proceed to find a necessary and sufficient condition for the
average tree solution on the class of TU-games with circular communication
structure to be stable. The value is the average of admissible marginal vec-
tors that are stable under circular-convexity, and the desired condition can be
seen as the one under which circular-convexity is, on average, satisfied. For
a nonempty connected coalition S ∈ CL(N), S 6= N, of a circle graph (N, L),
let CC(S) be the collection of connected coalitions that are considered for the
circular-convexity condition with respect to S, i.e.,

CC(S) =
{

T ∈ CL(N)

∣∣∣∣∣ S ∪ T = N and S ∩ T ∈ CL(N), or
S ∪ T ∈ CL(N) and S ∩ T = ∅

}
.

Definition 3.4.10 A TU-game with circular communication structure (N, v, L)
∈ Gcircle

N is average-circular-convex if for any S ∈ CL(N), S 6= N, it holds that

∑
T∈CC(S)

(v(S ∪ T) + v(S ∩ T)− v(S)− v(T)) ≥ v(S) + v(N \ S)− v(N).

Iñarra and Usategui (1993) introduces the notion of average-convexity on the
class of TU-games. A TU-game is average-convex if for every coalition S ∈ 2N

the sum of the marginal contributions of every agent in S to any coalition
which is a superset of S is larger than the sum of the marginal contributions of
these agents when joining to S. It is well-known that if a TU-game is con-
vex, then the marginal contribution of a player becomes larger if he joins
to a bigger set of players, and average-convexity of TU-games is related to
this property. On the other hand, the average-circular-convex condition of a
TU-game with circular communication structure requires that the sum of sur-
pluses (v(S∪ T) + v(S∩ T)− v(S)− v(T)) a connected coalition (S) generates
with all other connected coalitions (T) to which the coalition is connected and
has a nonempty connected intersection only if the union is the grand coali-
tion, is at least equal to the (possibly negative) loss the coalition generates
with its complement. For a circular-convex game all terms in the left hand
side are non-negative and the term in the right-hand side is non-positive, and
therefore a circular-convex TU-game with circular communication structure
is average-circular-convex. However, the condition does not imply superad-
ditivity, because some of the surpluses can be negative. In the latter case not
all admissible marginal vectors will be elements of the core. We show that
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average-circular-convexity of a TU-game with circular communication struc-
ture is a necessary and sufficient condition that the average tree solution of
the game is stable.

Theorem 3.4.11 For any TU-game with circular communication structure (N, v, L)
∈ Gcircle

N it holds that AT(N, v, L) ∈ C(N, v, L) if and only if the game is average-
circular-convex.

Proof Due to efficiency of the average tree solution, the grand coalition N
does not block AT(N, v, L). Take any connected coalition S with |S| < n and
without loss of generality let S = Sb

a for some 1 ≤ a ≤ b ≤ n. The sum of
payoffs allocated to S by the average tree solution equals

∑
i∈S

ATj(N, v, L) = ∑
j∈Sb

a

ATj(N, v, L) =
b

∑
j=a

ATj(N, v, L)

=
b

∑
j=a

1
2n ∑

i∈N

(
mσi

1
j (N, v, L) + mσi

2
j (N, v, L)

)
=

b

∑
j=a

1
2n ∑

i∈N

(
v(Sj

i)− v(Sj
i \ {j}) + v(Si

j)− v(Si
j \ {j})

)
=

b

∑
j=a

( 1
n

v(N) +
1

2n ∑
i∈N

(
v(Si

j)− v(Si
j+1) + v(Sj

i)− v(Sj−1
i )

))
=
|Sb

a|
n

v(N) +
1

2n ∑
i∈N

(
v(Si

a)− v(Si
b+1) + v(Sb

i )− v(Sa−1
i )

)
=

1
2n

[
∑
i/∈S

(
v(Si

a)− v(Si
b+1) + v(Sb

i )− v(Sa−1
i )

)
+ ∑

i∈S

(
v(N) + v(Si

a)− v(Si
b+1) + v(N) + v(Sb

i )− v(Sa−1
i )

)]
=

1
2n

[
∑
i/∈S

(
v(Sb

a ∪ Si
b+1)− v(Si

b+1) + v(Sb
a ∪ Sa−1

i )− v(Sa−1
i )

)
+ ∑

i∈S

(
v(Sb

a ∪ Si
b+1) + v(Si

a)− v(Si
b+1) + v(Sb

a ∪ Sa−1
i )

+ v(Sb
i )− v(Sa−1

i )
)]

=
1

2n

[
∑
i∈N

(
v(Sb

a ∪ Si
b+1) + v(Sb

a ∩ Si
b+1)− v(Si

b+1)
)

+ ∑
i∈N

(
v(Sb

a ∪ Sa−1
i ) + v(Sb

a ∩ Sa−1
i )− v(Sa−1

i )
)]

.
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It holds that CC(S) = {Sa−1
i | i ∈ N} ∪ {Si

b+1 | i ∈ N}. It also holds that
{Sa−1

i | i ∈ N} ∩ {Si
b+1 | i ∈ N} = {N, Sa−1

b+1} and Sa−1
b+1 = N \ Sb

a. Therefore it
follows that

∑
j∈S

ATj(N, v, L) =
1

2n

[
∑

T∈CC(S)

(
v(S ∪ T) + v(S ∩ T)− v(T)

)
+ v(N)− v(N \ S) + v(S)

]
.

Then,

∑
j∈S

ATj(N, v, L)− v(S) =
1

2n

[
∑

T∈CC(S)

(
v(S ∪ T) + v(S ∩ T)− v(S)− v(T)

)
+ v(N)− v(S)− v(N \ S)

]
,

which is nonnegative for all S ∈ CL(N), S 6= N, if and only if (N, v, L) is
average-circular-convex. 2

Since average-circular-convexity implies that the average tree solution
is stable, we obtain the following corollary.

Corollary 3.4.12 If a TU-game with circular communication structure (N, v, L) ∈
Gcircle

N is average-circular-convex, then the core C(N, v, L) is nonempty.

The next example shows that average-circular-convexity does not imply su-
peradditivity.

Example 3.4.13 Consider the 4-person TU-game with circular communication
structure (N, v, L) with characteristic function

v(S) =



2 if S = N, {1, 3, 4} ,
1 + ε if S = {3, 4} , {1, 4} , {1, 2, 3} ,
1 if S = {1, 2, 4} , {2, 3, 4} ,
ε if S = {1, 2} , {2, 3} ,
0 otherwise,

for some 0 ≤ ε ≤ 1
3 . For ε = 0 this is Example 3.4.8. For any ε > 0,

this game is not superadditive (take S = {2} and T = {3, 4}) and in par-
ticular, it can be checked that every marginal vector is outside the core, i.e.,
mσ(N, v, L) /∈ C(N, v, L) for all σ ∈ Π(N). For 0 ≤ ε ≤ 1

3 , this game is
average-circular-convex and the average tree solution equals AT(N, v, L) =

(5+ε
8 , 0, 5+ε

8 , 6−2ε
8 ) ∈ C(N, v, L), while the Myerson value is never in the core,

µ(N, v, L) = (7+ε
12 , 1+ε

12 , 7+ε
12 , 9−3ε

12 ) /∈ C(N, v, L).
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From Theorem 3.4.11 it follows that the average tree solution of a TU-
game with circular communication structure is in the core if for each con-
nected coalition the surpluses are on average non-negative and also its surplus
with its complement is non-negative.

Corollary 3.4.14 For a TU-game with circular communication structure (N, v, L)
∈ Gcircle

N , AT(N, v, L) ∈ C(N, v, L) if for any S ∈ CL(N), S 6= N, it holds that

∑
T∈CC(S)

(v(S ∪ T) + v(S ∩ T)− v(S)− v(T)) ≥ 0 and v(N) ≥ v(S) + v(N \ S).

In the case where n = 3, the average tree solution of a TU-game with
circular communication structure coincides with the Shapley value, and there-
fore the average-circular-convexity condition is a necessary and sufficient cond-
tion for the Shapley value to be stable.

Corollary 3.4.15 For a TU-game (N, v) ∈ GN with n = 3, it holds that Sh(N, v) ∈
C(N, v) if and only if

∑
T∈2N\{∅}

(v(S ∪ T)+v(S ∩ T)− v(S)− v(T))

≥v(S) + v({1, 2, 3} \ S)− v({1, 2, 3})

holds for all S ∈ 2N, S 6= {1, 2, 3}.



CHAPTER 4

QUASI-BUILDING SYSTEM: A NEW COOPERATIVE

RESTRICTION

4.1 Introduction

In the previous chapters we study the class of TU-games with communica-
tion structure, for which only any connected set of players is assumed to be
able to form a coalition to obtain its worth. Although this class of games con-
tains the classical TU-games as a subclass, the collection of connected sets of
players in a communication structure, as a collection of feasible coalitions of
the structure, is still subject to some conditions. For example, for a commu-
nication structure every coalition consisting of one player is feasible to form.
However, consider a situation where an employer hires a professional to gen-
erate a joint profit and both parties are deciding how to share the profit. There
is a hierarchical structure in this case and it may be natural to assume that
the factors that are brought on the table of negotiation is the outside option of
the employee and the profits they jointly generate, not the outside option of
the employer working as an individual. Another implicit assumption that un-
derlies a communication structure is that if there are feasible coalitions which
contain a player in common, then the union of such coalitions is also feasi-
ble. There are cases where one may find it difficult to take this assumption
as granted. Especially when there are two coalitions whose intersection is a
player who is not influential in both coalitions. There is no reason to assume
a priori the union of such two coalitions to be feasible. TU-games with com-
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munication structure treat players asymmetrically in terms of the connectivity
in the underlying graph. These two examples are cases in which players are
more asymmetric, in terms of power of each player in the structure, than a
communication structure allows.

In the literature of cooperative games many studies go beyond a com-
munication structure. One way to go further is to explicitly introduce a kind
of dominance structure on the players in a game. Faigle and Kern (1992) intro-
duces games on a partially ordered set. In such a game there is a precedence
relation on the players set, expressed by a partial order, and a coalition is fea-
sible if for every player in the coalition, all of his preceding players, coming
from the precedence relation, are in the coalition as well. Another example
of this kind is introduced by Gilles et al. (1992) to assume an underlying per-
mission structure. A permission structure is described by a directed graph
representing a hierarchical structure among the players, which defines for
each player its set of predecessors, and if a player wants to cooperate with
other players he must ask for permission from all his predecessors (conjunc-
tive approach). In the same setting, Gilles and Owen (1992) takes another ap-
proach, called disjunctive approach, by assuming that a player needs at least
one of its predecessors to give permission to cooperate with other players.
Given a TU-game with permission structure, each approach yields different
TU-game, a permission restricted game. van den Brink and Gilles (1996) and
van den Brink (1997) study the Shapley value of such restricted games. Re-
cently, van den Brink et al. (2015) characterizes the average tree solution of the
permission restricted games on the class of TU-games with permission struc-
ture when a permission structure is represented by a tree. On the other hand,
Khmelnitskaya et al. (2012) introduces TU-games with dominance structure
and interpret a directed graph on the player set as subordination relation
among the players. They define a collection of feasible hierarchical order-
ings of players given the structure, and as solution concept they consider the
average of all the marginal vectors induced from such hierarchical orderings.
Another way to generalize communication structures is to introduce a class of
set systems which is more general than the collection of connected coalitions
obtained from a communication structure. For example, augmenting systems
introduced in Bilbao (2003) do not require every singleton to be feasible. It
is known that the collection of feasible coalitions that arise from a game on a
poset as well as from a game with a permission structure forms an augment-
ing system. On the other hand, convex geometries considered in Bilbao and
Edelman (2000) do not have to be union stable. Other set systems of feasi-
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ble coalitions for cooperative games with restricted coalitions that have been
considered in the literature are union stable structures (Algaba et al. (2001)),
antimatroids (Algaba et al. (2004)), and partition systems (Algaba et al. (2000)),
or building sets (Koshevoy and Talman (2014)). In all these models, marginal
vectors are defined, although using different methods, and Shapley-type val-
ues are studied as solutions, that is, the average of marginal vectors is taken
as solution concept to determine how much payoff every player will get.

In this chapter we go one step further and not only assume that some
set system of feasible coalitions is given but also that every feasible coalition
may contain players that are not able to form or leave the coalition. Only play-
ers that are able to form or leave the coalition are assumed to obtain marginal
contribution. To get an idea of a possible distinction between players, let us
consider a TU-game with communication structure. If we consider how well
a player is connected in a subgraph reflects his communication power in the
underlying coalition, it may be assumed that given a feasible coalition only
the players who have the maximal communication power within the coali-
tion, i.e., who share the maximal number of edges within the subgraph, are
able to form or leave the underlying coalition. Another example is a com-
munication game on a hierarchy or more general a directed or mixed graph
with directed and undirected edges, where in any connected subgraph only
players who are not dominated by any other player in the subgraph are able
to contribute to the underlying feasible coalition. Undominated players could
be the members of the management team in a coalition or in case the players
are jobs those tasks that can be performed after the other tasks in the coalition
have been performed.

We model the distinction between players in a coalition who are able to
contribute or not by assigning to every feasible coalition a nonempty subset
of players, called its choice set, consisting of the players who are able to form
or leave the coalition. Specifically, we introduce the notion of a quasi-building
system. A quasi-building system on a set of players consists of a set system
of feasible coalitions of the players set and a choice function that assigns to
each feasible coalition a choice set. Only a player that is in the choice set of
a coalition is able to form or leave the coalition, while the remaining players
form a unique maximal partition1 into feasible subcoalitions satisfying that no
union of subsets of two or more of them is feasible. In case the choice set of

1A set of players can be uniquely maximal partitioned into feasible coalitions if there is a
collection of disjoint feasible coalitions whose union is equal to the players set and any other
collection of disjoint feasible coalitions whose union is the players set is a proper subset of it.
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each feasible coalition is the coalition itself, a building set system is obtained.
A quasi-building system for the examples above is the following. The

set of feasible coalitions is the set of connected subgraphs, and the choice func-
tion of any connected subgraph is the set of nodes with maximal degree in the
subgraph or the set of undominated players.

Every quasi-building system induces a nonempty collection of com-
patible rooted trees on the players set. In each rooted tree every node is a
player and has a unique predecessor, except the root itself, and a possibly
empty set of successors. For each node, the player, which labels this node,
forms together with the players, which label the successors of this node in the
tree, a feasible coalition, and this player belongs to the choice set of this coali-
tion. Such a rooted tree represents a hierarchical structure on the set of players
compatible with the restrictions to form and leave coalitions according to the
quasi-building system.

For a TU game on a quasi-building system we propose a solution as
follows. For each compatible rooted tree arising from the quasi-building sys-
tem we define a marginal vector. A marginal vector corresponding to a rooted
tree assigns as payoff to any player how much this player contributes in worth
when joining his successor players in the tree. Only if a player belongs to the
choice set of a coalition this player is able to receive payoff, which reflects
that only such a player is able to form or leave the coalition. As solution we
take the average of all such marginal vectors. This solution we call the aver-
age marginal vector value (AMV-value). The AMV-value satisfies efficiency,
linearity, a restricted null player property, the inessential coalition property,
and the closed coalition property. The second last property says that the so-
lution should not change if the worth of an inessential coalition changes. The
last property says that any non-inessential feasible coalition whose players are
not in the choice set of any non-inessential coalition that contains the coalition
should obtain its own worth.

We consider several subclasses of quasi-building systems and give for
each of them convexity-type of conditions under which the AMV-value is an
element of the core and therefore cannot be blocked by any feasible coalition.
We first study union stable quasi-building systems for which it holds that the
union of any two non-disjoint feasible coalitions is also feasible if at least one
of the intersecting players is in the choice set of one or both coalitions. For such
a quasi-building system the convexity condition only has to hold for any pair
of union-closed coalitions. For undirected, directed, or mixed graphs (Ambec
and Sprumont (2002), Khmelnitskaya et al. (2012), Myerson (1977)), the col-
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lection of connected sets of players with as choice set the set of undominated
players within the set is a union stable quasi-building system. The AMV-value
for TU-games on this subclass is equal to the average covering tree solution
introduced in Khmelnitskaya et al. (2012). Set systems like partition systems
(Algaba et al. (2000)), or building sets (Koshevoy and Talman (2014)), aug-
menting systems (Bilbao (2003)), posets (Faigle and Kern (1992)), and antima-
troids (Dilworth (1940)) can be defined as union stable quasi-building systems,
in which the choice set of a feasible coalition is equal to the set of players for
which the set of remaining players can be uniquely maximal partitioned. For
TU-games on building sets the AMV-value is equal to the GC-solution intro-
duced in Koshevoy and Talman (2014). From our core stability results several
existing results for these cases follow.

Another class we study is the class of intersection-closed quasi-building
systems. For an intersection-closed quasi-building system it holds that if the
intersection of two feasible coalitions is nonempty, then this intersection is
also a feasible coalition and, moreover, if a player is in the choice set of some
feasible coalition then this player must be in the choice set of any feasible
subcoalition that contains this player. The latter property is known as inde-
pendence of irrelevant alternatives in bargaining solutions and is called the
heredity property, Chernoff property, or α-axiom of Sen (Chernoff (1954), Sen
(1971)). For this class of quasi-building systems the convexity condition only
has to hold for any pair of strongly union-closed coalitions. For convex ge-
ometries as class of set systems, which contains posets as a special case, it
holds that the induced quasi-building system defined in the same way as for
augmenting systems is an intersection-closed quasi-building system. If for
augmenting systems and convex geometries the choice set of a feasible coali-
tion is restricted to those players for which the remaining players in the set
form a single feasible coalition, a chain quasi-building system is obtained, the
third class of quasi-building systems we study. In general, for a chain quasi-
building system, for every player in the choice set of a feasible coalition it
holds that the set of remaining players is a feasible coalition. All rooted trees
induced from a chain quasi-building system are line-trees. Posets are a special
case of all three quasi-building systems being studied. In case a convex ge-
ometry or an augmenting system is described by such a chain quasi-building
system, the AMV-value coincides with the Shapley value in Bilbao and Edel-
man (2000) and Bilbao and Ordóñez (2009), respectively, and in case of a poset
the AMV-value coincides with the Shapley value in Faigle and Kern (1992). If
cooperation is universal and the choice set of every coalition is the coalition
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itself, then the AMV-value is the Shapley value (Shapley (1953)).
This chapter is organized as follows. In Section 2 quasi-building sys-

tems are introduced and the AMV-value is defined. Section 3 studies special
cases of quasi-building systems. Section 4 discusses properties of the AMV-
value. Core stability and convexity are studied in Section 5.

This chapter is based on Koshevoy et al. (2013).

4.2 Quasi-building system games and the average
marginal vector value

In cooperative game theory, the Shapley value, the average of all marginal vec-
tors of a TU-game, is one of the most well-known solution concepts. When co-
operation between players is restricted, a Shapley-type solution concept con-
cerns how the restriction limits the way a player receives his marginal contri-
bution.

First of all, in order for a player to receive his marginal contribution
when joining a set of players to form a coalition, the resulting coalition must
be feasible. Otherwise, not only that player, but any player who is a member
of it cannot receive a marginal contribution from it. This occurs for example if
the feasible coalitions are the connected subsets of an undirected graph on the
set of players as we study in the previous chapters.

Second, even if a coalition is feasible, not all of its members might be
able to leave or join to the coalition and obtain their marginal contribution.
This may occur if some players dominate each other as in a hierarchy, a di-
rected graph with or without cycles, or the presence of precedence constraints.
For example, if player 1 dominates player 2, then we can interpret this as that
player 1 can join player 2 to form the coalition consisting of players 1 and 2,
but player 2 cannot join player 1 to form this coalition. Only player 1 is then
able to receive a marginal contribution from the coalition consisting of players
1 and 2, but player 2 is not.

In this chapter we assume that for a set of players a collection of feasible
coalitions is given, including the grand coalition of all players2 and that every
feasible coalition contains a nonempty subset of players, called the choice set

2In case the grand coalition of all players is not feasible, we assume that it has a unique
maximal partition into feasible coalitions satisfying that every feasible coalition is a subset of
one of the partition members. The analysis can then be applied separately to every partition
member.
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of the coalition.
If a player in the choice set of a feasible coalition leaves the coalition,

we assume that the set of remaining players of the coalition has a unique max-
imal partition into feasible coalitions, of which subsets are not able to form a
feasible coalition. This implies that each player in the choice set of a feasible
coalition is able to form that coalition in a unique way. The combination of
a set system of feasible coalitions and a choice function that assigns to every
feasible coalition a choice set is called a quasi-building system.

Definition 4.2.1 A pairQ = (H, U) is a quasi-building system on N if it satisfies
the following conditions:

(Q1) H ⊆ 2N is a set system on N containing both ∅ and N and U : H → 2N

is a choice function, that is, U(∅) = ∅ and for every nonempty H ∈ H
it holds that U(H) 6= ∅ and U(H) ⊆ H.

(Q2) For every H ∈ H and h ∈ U(H), there exists a unique maximal partition
of H \ {h} into elements ofH, P(H \ {h}) = {S1, . . . , Sk}, satisfying that
for any J ⊆ {1, . . . , k} with |J| ≥ 2 and nonempty Tj ⊆ Sj, j ∈ J, it holds
that ∪j∈JTj /∈ H.

Condition (Q1) says that the grand coalition of all players is feasible
and that every nonempty feasible coalition contains a nonempty choice set.
Condition (Q2) gives some structure to the collection of feasible coalitions and
requires that when a player in the choice set of a feasible coalition is removed
then there exists a unique maximal partition of the remaining players into fea-
sible subcoalitions. Moreover, the members of this partition are components
in the sense that no subsets of different members can form a feasible coalition
together. It means that these components or any subsets of them are not able
to cooperate with each other. Note that condition (Q2) is weaker than union
stable condition, see Algaba et al. (2001) which says that the union of any two
intersecting feasible coalitions is also feasible. In the next section we show
that quasi-building systems can express cooperative situations described by
undirected, directed, or mixed graphs, or set systems like partition systems,
or building sets, augmenting systems, posets, convex geometries, and antima-
troids.

Example 4.2.2 Consider a cooperative situation between agents that is repre-
sented by an undirected graph among the agents, as communication structure
discussed in the previous chapters. A link between two agents is a commu-
nication possibility between these agents due to for example a political, geo-
graphical, technological, or social relation, and only connected sets of agents
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in the graph are able to form a team to cooperate. Given a connected subset of
agents, those who may form or leave the team are the ones who are connected
to at least one agent outside the team. These players are the ones that are able
to extend the coalition further and may get credit for it. This situation can be
expressed by a quasi-building system, constituted from the collection of con-
nected subsets of nodes in the graph, and as choice set of a connected subset
of nodes the agents that are connected to agents outside the coalition.

Example 4.2.3 Consider a set of tasks to be performed to produce some prod-
uct, for example an airplane, which consists of several components including
right wing, left wing, and aircraft body. Given the set of all tasks, which yields
an airplane, all tasks that can be performed only at the end of the production
belong to the choice set of the set of all tasks, e.g. painting the exterior and
furnishing the interior. Without the task of painting (furnishing) the remain-
ing tasks still form a feasible set of tasks and furnishing (painting) should be
then in the choice set of these tasks. Suppose before painting the exterior and
furnishing the interior the airplane is being assembled, then the choice set of
the remaining tasks without painting and furnishing consists of assembling
the airplane. Suppose at this job the right wing, the left wing, and the aircraft
body are assembled together, then the remaining tasks without assembling
the airplane can be split into three independent groups of tasks, one for the
right wing with assembling the right wing as its choice set, one for the left
wing with assembling the left wing as its choice set, and one for the aircraft
body with assembling the aircraft body as its choice set, and so on, until no
tasks are left. Tasks from different groups are unrelated and performed inde-
pendently from each other. In this way the whole production procedure can
be described by a quasi-building system. The choice set of a feasible group of
related tasks consists of all the tasks that might be performed after all other
tasks in the group have been undertaken. There can be more than one such
task like painting the exterior and furnishing the interior in the set of all tasks.

For a given set system there may exist different choice functions which
satisfy condition (Q2).

Example 4.2.4 Consider the complete set system with three players, i.e., there
is no restriction on the feasibility of coalitions. Note that U({i}) = {i} for
i = 1, 2, 3.

1. If in any coalition every player is in the choice set, i.e., U(H) = H for all
H ⊆ {1, 2, 3}, then in any coalition each player is able to leave or join the
coalition.
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2. If U({1, 2, 3}) = {1, 2, 3}, U({1, 2}) = {1}, U({1, 3}) = {3}, and U({2,
3}) = {2}, then the quasi-building system (H, U) corresponds to the
situation at which there is no domination in the grand coalition {1, 2, 3},
player 1 dominates player 2 in coalition {1, 2}, player 2 dominates player
3 in coalition {2, 3}, and player 3 dominates player 1 in coalition {1, 3}.
This quasi-building system corresponds to a directed circle in which
player 2 is an immediate successor of player 1 but not of player 3, player
3 is an immediate successor of player 2 but not of player 1, and player 1
is an immediate successor of player 3 but not of player 2.

3. If U({1, 2, 3}) = {1}, U({1, 2}) = {1}, U({1, 3}) = {1}, and U({2, 3})
= {2, 3}, then player 1 dominates the other players in any coalition he
is a member of, while there is no domination between the players 2 and
3. This quasi-building system corresponds to a graph in which players
2 and 3 are immediate successors of player 1 and players 2 and 3 are
linked to each other.

4. If U({1, 2, 3}) = {1, 2}, U({1, 2}) = {1, 2}, U({1, 3}) = {1}, and U({2,
3}) = {2}, then players 1 and 2 always dominate player 3, while there
is no domination between players 1 and 2. This quasi-building system
corresponds to a graph in which player 3 is an immediate successor of
players 1 and 2 and players 1 and 2 are linked to each other.

5. If U({1, 2, 3}) = {1, 2, 3}, U({1, 2}) = {1}, U({1, 3}) = {1}, and U({2,
3}) = {2}, then there is no domination in the grand coalition, player
1 dominates player 2 in coalition {1, 2}, player 1 dominates player 3 in
coalition {1, 3}, and player 2 dominates player 3 in coalition {2, 3}. This
quasi-building system cannot be represented by any graph.

Now we explain how to construct a solution for cooperative games
with restrictions to form and leave feasible coalitions described by a quasi-
building system. The solution is the average of the marginal vectors that corre-
spond to the rooted trees that are compatible with the quasi-building system.
In this way only players who belong to the choice set of a feasible coalition are
able to receive a marginal contribution.

A rooted tree on N is a set T ⊆ {(i, j) | i, j ∈ N, i 6= j} satisfying
that there is a unique node, labeled by r(T), called the root of the tree, such
that (i, r(T)) /∈ T for all i 6= r(T) and from r(T) to any other node there is a
unique directed path in T. Given a set D ⊆ {(i, j) | i, j ∈ N, i 6= j} on N,
a node labeled by j ∈ N is a predecessor of a node labeled by i ∈ N, or i is
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an immediate successor of j, if (j, i) ∈ D. The set of immediate successors of
j in D is denoted by SD(j). An element j ∈ N is a successor of i ∈ N in D if
there is a directed path in D from the node labeled by i to the node labeled by
j. The set of all successors of node labelled by i in D is denoted by FD(i) and
F̄D(i) = FD(i) ∪ {i}.

Definition 4.2.5 Given a quasi-building system Q = (H, U) on N, a rooted
tree T on N is compatible with Q if for all i ∈ N it holds that F̄T(i) ∈ H,
i ∈ U(F̄T(i)), and P(FT(i)) = {F̄T(j) | j ∈ ST(i)}.

A rooted tree T on N is compatible with a quasi-building system on N
if for every node labeled by i ∈ N it holds that the coalition consisting of i and
all his successors in T is a feasible coalition and i is in the choice set of this
coalition. Moreover, each member of the unique maximal partition of the set
of successors of i consists of an immediate successor of i and his successors
in T. A rooted tree represents a hierarchy structure on the set of individual
players (see, for example, Demange (2004)). Thus, a rooted tree compatible
with a quasi-building system represents a hierarchy structure on the set of
players that is compatible with the restrictions to form and leave coalitions
according to the quasi-building system.

An important property of a quasi-building system Q is that the set of
rooted trees compatible with Q, denoted by T (Q), is nonempty.

Theorem 4.2.6 Let Q be a quasi-building system on N, then T (Q) 6= ∅.

Proof Let Q = (H, U). We construct a compatible tree by induction on n.
For n = 1 the result is trivial. Take n ≥ 2. From (Q1) it follows that N ∈ H
and U(N) 6= ∅. We label the root of T by any element r ∈ U(N). According
to (Q2) there exists a unique maximal partition S1, . . . , Sk of N \ {r} for some
k ≥ 1 such that Sj ∈ H for all j = 1, . . . , k. In each Sj, j = 1, . . . , k, there
exists according to (Q1) an element rj ∈ U(Sj). For j = 1, . . . , k, we take in
T each node labeled by rj as an immediate successor of r. By induction, for
each j = 1, . . . , k, there exists a rooted tree Tj for the restriction of the quasi-
building system Q to Sj such that the root of Tj is the node labeled by rj. By
this construction we obtain by induction a rooted tree T compatible withQ. 2

The next example shows that two quasi-building systems with the same
set system but different choice functions may lead to different collections of
compatible rooted trees.
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Example 4.2.7 Consider the quasi-building system Q = (H, U) on N = {1, 2,
3}, where H = 2N and U(H) = H for all H ∈ H. All six line-trees on N are
compatible with this system.

Next Consider the quasi-building systemQ = (H, U) on N = {1, 2, 3},
whereH = 2N and U({1, 2, 3}) = {1, 2, 3}, U({1, 2}) = {1}, U({1, 3}) = {3},
and U({2, 3}) = {2}. There are three line-trees compatible with this system.
One line-tree has as root the node labeled by 1 and has (1, 2) and (2, 3) as
edges. Another line-tree has as root the node labeled by 2 and has (2, 3) and
(3, 1) as edges. The third line-tree has as root the node labeled by 3 and has
(3, 1) and (1, 2) as edges.

Let Q = (H, U) be a quasi-building system on N and v : H → R

a function such that v(∅) = 0. We consider H as a coalition structure on a
set of n players and v as a characteristic function of a cooperative game with
v(H), H ∈ H, the worth of feasible coalition H. The triple (N, v,Q) is a quasi-
building system game on the player set N. The collection of all quasi-building
system games on N is denoted by Gqbs

N . A single-valued solution on Gqbs
N is

a mapping ξ : Gqbs
N → Rn, assigning a payoff vector ξ(N, v,Q) ∈ Rn to any

quasi-building system game (N, v,Q) ∈ Gqbs
N .

As solution concept for a quasi-building system game, we propose the
average of the marginal vectors corresponding to all compatible trees. For a
quasi-building system game, at a marginal vector corresponding to a compat-
ible tree every player receives as payoff what he contributes in worth when
he joins his successors in the tree, i.e., given a quasi-building system game
(N, v,Q) ∈ Gqbs

N , the marginal vector mT(N, v,Q) ∈ Rn corresponding to
rooted tree T ∈ T (Q) is defined by

mT
i (N, v,Q) = v(F̄T(i))− ∑

j∈ST(i)
v(F̄T(j)), i ∈ N.

Definition 4.2.8 On the class of quasi-building system games Gqbs
N the Average

Marginal Vector value, or AMV-value, assigns to every quasi-building system
game (N, v,Q) ∈ Gqbs

N the payoff vector

AMV(N, v,Q) = 1
|T (Q)| ∑

T∈T (Q)
mT(N, v,Q).

The AMV-value of a quasi-building system game is the average of the marginal
vectors induced by all trees compatible with the quasi-building system. The
AMV-value is well-defined on the class of quasi-building system games, since
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according to Theorem 4.2.6 every quasi-building system has at least one tree
compatible with it. The AMV-value takes into account that only players that
are in the choice set of a coalition can receive a marginal contribution to form
the coalition.

4.3 Special cases for quasi-building system

In this section we discuss how a quasi-building system is induced when the
underlying structure for cooperation has some specific properties, such as a
collection of connected subsets in a (mixed) graph, or a combinatorial struc-
ture such as augmenting system, antimatroid, poset, partition system, or con-
vex geometry. When the cooperation structure is a communication situation
represented by a graph, the choice function is used to represent the underlying
dominance relations between the players. In case the cooperative structure is
expressed by some set system, the choice set of a feasible coalition consists
precisely of the players in the coalition who satisfy condition (Q2).

4.3.1 Graphical quasi-building systems

A mixed graph G = (V, E) on N with E ⊆ {(i, j) | i, j ∈ N, i 6= j} consists of
a set of nodes V equal to the set N and a set of edges E which is constituted
from a set of links L = {(i, j) ∈ E | (j, i) ∈ E)}, being undirected edges, and
a set of arcs A = {(i, j) ∈ E | (j, i) /∈ E)}, being directed edges. A mixed
graph without arcs is an undirected graph and a mixed graph without links is
a directed graph. A graph G = (V, E) on N is complete if E = {(i, j) | i, j ∈
N, i 6= j}.

Definition 4.3.1 Given a mixed graph G = (V, E) on N with E = L ∪ A, the
pair Q(G) = (H, U) consists of a set system H and mapping U : H → 2N

given by the following conditions:

• H consists of all subsets H of N such that H is a connected set in G and if
there is a directed path in G from some node in H to some node outside
H, then there exists also a directed path in G from the latter node to some
node in H.

• U assigns to any H ∈ H a set of nodes which are undominated in the
subgraph G(H) of G on H, i.e., U(H) is the set of nodes in H from which
there exists a directed path in the subgraph G(H) to any of its predeces-
sors in G(H).
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Note that in case of an undirected graph each connected set is a feasible
coalition and that its choice set consists of all its nodes.

Lemma 4.3.2 For any connected mixed graph G on N, Q(G) is a quasi-building
system on N.

Proof Let Q(G) = (H, U). Since G is connected, it holds that N ∈ H. For
any nonempty H ∈ H, H is connected in G and since H is finite there exists
an undominated node in G(H). This implies that U(H) is a nonempty subset
of H, which proves condition (Q1). Since G is a graph, for every h ∈ U(H)

there exists a unique maximal partition of H \ {h} into elements of H. Also
because G is a graph, any union of nonempty subsets of at least two sets in
such a maximal partition is not connected in G and is therefore not an element
of the set systemH. Consequently, condition (Q2) is also fulfilled. 2

For a connected mixed graph G, Q(G) is called the graphical quasi-
building system corresponding to G.

In Example 4.2.7 two different quasi-building systems are presented.
The first one in the example corresponds to the graphical quasi-building sys-
tem induced from the complete graph of three nodes, or an undirected circle.
The second one corresponds to the graphical quasi-building system induced
from a directed circle with three nodes. The example shows that different con-
nected mixed graphs may have the same set system of connected coalitions.
The differences in dominance between nodes within the graphs is expressed
in the choice function since the choice sets of the feasible coalitions may differ.

On the class of mixed graph games, the average covering tree value
is introduced in Khmelnitskaya et al. (2012) as the average of the marginal
vectors that correspond to the set of all covering trees induced from the graph.
The AMV-value coincides with the average covering tree solution since the set
of trees being compatible with a graphical quasi-building system coincides
with the collection of covering trees on the underlying graph.

4.3.2 Set systems

In this subsection we discuss quasi-building systems that are induced by set
systems of feasible coalitions like partition systems, or building sets, augment-
ing systems, antimatroids, posets, and convex geometries.

Definition 4.3.3 Given a set system F on N, the pair Q(F ) = (H, U) con-
sists of a set system H and mapping U : H → 2N satisfying the following
conditions:
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• H = F .

• U(H) = {h ∈ H | there exists a unique maximal partition of H \ {h}
satisfying (Q2)} for all H ∈ H.

For a set system F , the pair Q(F ) = (F , U) is a quasi-building system if ∅
and N belong to F and U(H) 6= ∅ for all nonempty H ∈ F .

A quasi-building system is a generalization of a partition system, intro-
duced in Algaba et al. (2000), or building set (Koshevoy and Talman (2014)).
A set systemH is a building set on N if the following conditions are satisfied:

(B1) H is a set system on N containing both ∅ and N.

(B2) If S, T ∈ H with S ∩ T 6= ∅, then S ∪ T ∈ H.

(B3) For all i ∈ N, {i} ∈ H.

A building set is a set system containing the grand coalition ((B1)) and all
singletons ((B3)). A set system satisfying condition (B2) is called union stable,
see Algaba et al. (2001).

Proposition 4.3.4 For a set system H on N and function U : H → 2N satisfying
U(H) = H for all H ∈ H, it holds that (H, U) is a quasi-building system if and
only ifH is a building set.

Proof. Suppose (H, U) is a quasi-building system on N with U(H) = H for
all H ∈ H. Condition (B1) obviously holds. Let S, T ∈ H with S ∩ T 6= ∅. If
S∪ T = N, then (B2) is verified by (Q1). Suppose S∪ T 6= N. Take any j ∈ N \
(S∪ T), then j ∈ U(N) since U(N) = N. Because of (Q2) and since S∩ T 6= ∅,
S ∪ T is contained in some single member of the partition P(N \ {j}). Let R
be this set, then R ∈ H. If S ∪ T = R then (B2) is verified. Otherwise, take
any j′ ∈ R \ (S ∪ T). Again, by (Q2) and, since U(R) = R and S ∩ T 6= ∅, we
get that S ∪ T belongs to a single member of the partition P(R \ {j′}), and so
on. At some step, we get S ∪ T ∈ H and (B2) is verified. For verifying (B3),
take any i ∈ N and j ∈ N \ {i}. Then there is a unique S ∈ P(N \ {j}) in
H containing i and take any j′ ∈ S \ {i}. Then take the unique member of
P(S \ {j′}) inH containing i, and so on, until we get {i} ∈ H.

For the reverse implication, let the set system H be a building set and
consider (H, U) where U(H) = H for all H ∈ H. Condition (Q1) follows from
condition (B1) and the supposition U(H) = H for all H ∈ H. For condition
(Q2), it is to show that there exists a unique maximal feasible partition of H \
{h} for every H ∈ H and h ∈ H. Take any H ∈ H and h ∈ H. Due to (B3),
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there exists a feasible partition of H \ {h}, and therefore there is at least one
maximal partition S . Suppose there is another maximal feasible partition of
H \ {h}, say, T . Since S 6= T , there exists S ∈ S such that S * T for all T ∈ T ,
otherwise S cannot be a maximal partition of H \ {h}. Now consider T S =

{T ∈ T | T ∩ S 6= ∅}. Then |T S| ≥ 2 and from (B2) it follows that
⋃

T∈T S(T ∪
S) =

⋃
T∈T S T ∈ H, which contradicts that T is a maximal partition of H \ {h}.

Finally, to show the second part of condition (Q2), take any H ∈ H and h ∈ H.
Let {S1, . . . , Sk} be the unique maximal partition of H \ {h}, and suppose there
exists J ⊆ {1, . . . , k} with |J| ≥ 2 and some nonempty Tj ⊆ Sj, j ∈ J, such that
T = ∪j∈JTj ∈ H. From (B2) it follows that

⋃
j∈J(T ∪ Sj) =

⋃
j∈J Sj ∈ H, since

T ∩ Sj 6= ∅ for all j ∈ J, which contradicts that {S1, . . . , Sk} is a maximal
partition. 2

The proposition implies that if a set system is a building set, then we
obtain a quasi-building system if we take as choice set of any feasible coalition
the coalition itself. Therefore, Q(F ) is a quasi-building system if F is a build-
ing set. For a building set F , the AMV-value of a game (N, v,Q(F )) is equal
to the gravity center solution of the building set game (N, v,F ) introduced
in Koshevoy and Talman (2014), because the collection of maximal strictly
nested sets of a building set F defined in Koshevoy and Talman (2014) cor-
responds one-to-one to the collection of rooted trees compatible with Q(F ).
In Koshevoy and Talman (2014) it is shown that, for a building set, the gravity
center solution coincides with the Shapley value defined in Faigle et al. (2010)
using the Monge algorithm. Furthermore, if the set system is the collection
of all coalitions of players, then the AMV-value of the corresponding quasi-
building system game (N, v, (2N, U)) with U(H) = H for all H ∈ 2N is the
Shapley value (Shapley (1953)) of the TU-game v.

In Bilbao (2003) augmenting systems are introduced as set systems in
cooperative games. A set system F on N is an augmenting system on N if it
satisfies the following conditions:

(S1) ∅ ∈ F .

(S2) If S, T ∈ F with S ∩ T 6= ∅, then S ∪ T ∈ F .

(S3) If S, T ∈ F and S ⊂ T, then there exists i ∈ T \ S such that S ∪ {i} ∈ F .

An augmenting system is a set system which is union stable ((S2)) and satis-
fying one-point extension ((S3)). Although the collection of connected subsets
of an undirected graph is an augmenting system, this does not hold in gen-
eral for a mixed graph with cycles. Antimatroids, another class of set systems,
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introduced in Dilworth (1940), form a subclass of the class of augmenting sys-
tems. In Faigle and Kern (1992), a restriction among players is expressed as
precedence constraints, represented by a poset. Given a poset on a player set,
a subset of the player set is feasible as a coalition if for every player in the sub-
set, all players who are ordered below this player are also in the subset. The
collection of feasible coalitions of a poset forms an antimatroid, see Algaba
et al. (2004). An augmenting system on N may not contain N as a feasible
coalition.3

Lemma 4.3.5 For any augmenting system F on N with N ∈ F , Q(F ) is a quasi-
building system on N.

Proof Let Q(F ) = (H, U), then H = F . The empty set belongs to H by
condition (S1) and N belongs to H by assumption. By definition U(H) ⊆ H
for all H ∈ H. Regarding the non-emptiness of the set U(H), it follows from
condition (S1) and repeated application of condition (S3) starting with S = ∅,
that for any H ∈ H there exists h ∈ H such that H \ {h} ∈ H, which implies
that U(H) is nonempty. Condition (Q1) is therefore satisfied. Condition (Q2)
is satisfied by construction. 2

The notion of convex geometry is introduced in Edelman and Jamison
(1985). A set system F is a convex geometry on N if it satisfies the following
conditions:

(C1) ∅ ∈ F .

(C2) If S, T ∈ F , then S ∩ T ∈ F .

(C3) If S ∈ F , S 6= N, then there exists i ∈ N \ S such that S ∪ {i} ∈ F .

A convex geometry is a set system satisfying intersection-closedness ((C2)),
see Bilbao and Edelman (2000), and another form of one-point extension ((C3)).
Note that a mixed graph may not be expressed as a convex geometry, since
the collection of connected subsets of a graph may not satisfy intersection-
closedness. Different from augmenting systems, in a convex geometry the
grand coalition N is necessarily feasible. Since union-closedness does not im-
ply intersection-closedness and vice versa, there is no inclusion relationship
between the class of convex geometries and the class of augmenting systems.

3If for an augmenting system on N it holds that N is not a member, but every i ∈ N
belongs to at least one member, then there exists a unique maximal partition of N into feasible
coalitions satisfying that every feasible coalition is a subset of one of the partition members.
The analysis can then be applied separately to every partition member.
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Lemma 4.3.6 For any convex geometry F on N, Q(F ) is a quasi-building system
on N.

Proof Let Q(F ) = (H, U), then H = F . The empty set and N belong to H
by (C1) and (C3). Suppose that for some nonempty H ∈ H there is no h ∈ H
such that H \ {h} ∈ H. By (C1), H cannot be a singleton and therefore |H| ≥ 2.
From (C1) and (C3) it follows that there exists a sequence of n sets S1, . . . , Sn,
with |Sk| = k, Sk ∈ H, k = 1, . . . , n, and S1 ⊂ S2 ⊂ · · · ⊂ Sn = N. Consider
Sn−1 and denote it as N \ {i1}. From (C2) it follows that i1 /∈ H, otherwise
H ∩ (N \ {i1}) = H \ {i1} ∈ H, which contradicts the supposition. Next,
consider Sn−2 and denote it as N \ {i1, i2}. Similarly, it holds that i2 /∈ H, and
so on. Now consider S|H| and let T = N \S|H|. H∩T = ∅ and therefore S|H| =
H. Then S|H|−1 ∈ H and there exists h ∈ H such that S|H|−1 = H \ {h} is
feasible, which again is a contradiction. This proves condition (Q1). Condition
(Q2) is satisfied by construction. 2

From the prrof of the lemma it follows that the collection of trees com-
patible with a quasi-building system induced by a convex geometry always
contains at least one line-tree.

Solutions introduced in the literature for the class of games on aug-
menting systems containing also the grand coalition and on convex geome-
tries are the Shapley value in Bilbao and Ordóñez (2009), which we study in
the previous chapter, and the Shapley value in Bilbao and Edelman (2000),
respectively. Both these values are defined as the average of the marginal
vectors that correspond to all maximal chains in the underlying set system.
The AMV-value for games on the induced quasi-building system of these set
systems differs from those two values because not all compatible trees are nec-
essarily line-trees. This means that for these structures the AMV-value is the
average of typically more marginal vectors than the two Shapley values are.
Notice that for both kinds of set systems F these Shapley values are equal to
the AMV-value defined on a quasi-building system (H, U) given by

• H = F ,

• U(H) = {h ∈ H | H \ {h} ∈ F} for all H ∈ F .

For both cases the one-point extension conditions (S3) and (C3) ensure that
U(H) 6= ∅ for every nonempty H ∈ F , and we see in Section 5 that such a
pair (H, U) is what we call a chain quasi-building system.

Another solution on the class of cooperative games on augmenting sys-
tem is introduced in Bilbao (2003) and characterized in Algaba et al. (2010).
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They define a restricted TU-game, like the Myerson restricted game from a
TU-game with communication structure, and propose as solution concept the
Shapley value of the restricted game.

4.4 Properties of the average marginal vector value

In this section we discuss some properties of the AMV-value on the class of
quasi-building system games. The first two properties are standard.

Definition 4.4.1 A solution ξ : Gqbs
N → Rn satisfies efficiency if for all (N, v,Q) ∈

Gqbs
N it holds that

∑
i∈N

ξi(N, v,Q) = v(N).

An efficient value generates for every quasi-building system game a payoff
vector which allocates the worth of the grand coalition among the players.

Proposition 4.4.2 The AMV-value satisfies efficiency.

Proof Let (N, v,Q) ∈ Gqbs
N be a quasi-building system game. It suffices to

show that the marginal vector induced from any tree compatible with Q is
efficient, since the AMV-value is the average of all such vectors. Take any tree
T ∈ T (Q). For all i ∈ N it holds that

∑
j∈F̄T(i)

mT
j (N, v,Q) = ∑

j∈F̄T(i)
v(F̄T(j))− ∑

j∈F̄T(i)
∑

k∈ST(j)
v(F̄T(k))

= ∑
j∈F̄T(i)

v(F̄T(j))− ∑
k∈FT(i)

v(F̄T(k))

= v(F̄T(i)),

since for each k ∈ FT(i), there is a unique j ∈ F̄T(i) such that k is an immediate
successor of j in T. Let r ∈ N be such that F̄T(r) = N, i.e., r is the root of T.
Then it holds that

∑
i∈N

mT
i (N, v,Q) = ∑

i∈F̄T(r)
mT

i (N, v,Q) = v(F̄T(r)) = v(N).

2

Let Q = (H, U) be a quasi-building system on N. For any two quasi-
building system games (N, v,Q) and (N, w,Q) in Gqbs

N and a, b ∈ R the quasi-
building system game (N, av + bw,Q) in Gqbs

N is defined by (av + bw)(H) =

av(H) + bw(H) for all H ∈ H.
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Definition 4.4.3 A solution ξ : Gqbs
N → Rn satisfies linearity if for any quasi-

building system games (N, v,Q) and (N, w,Q) in Gqbs
N and a, b ∈ R it holds

that
ξ(N, av + bw,Q) = aξ(N, v,Q) + bξ(N, w,Q).

Proposition 4.4.4 The AMV-value satisfies linearity.

Proof Let (N, v,Q) and (N, w,Q) be two games on a quasi-building system
Q = (H, U) and let a, b ∈ R. It suffices to show that the marginal vector cor-
responding to any tree compatible with Q satisfies linearity, since the AMV-
value is the average of all such vectors. Consider the quasi-building system
game (N, av+ bw,Q). All three games have the same collection T (Q) of com-
patible trees. For each T ∈ T (Q) and i ∈ N, it holds that

mT
i (N, av + bw,Q) =(av + bw)(F̄T(i))− ∑

j∈ST(i)
(av + bw)(F̄T(j))

=a(v(F̄T(i))− ∑
j∈ST(i)

v(F̄T(j)))

+ b(w(F̄T(i))− ∑
j∈ST(i)

w(F̄T(j)))

=amT
i (N, v,Q) + bmT

i (N, w,Q),

which implies that each marginal vector corresponding to a tree compatible
with Q satisfies linearity. 2

The null player property is a widely known concept. In a standard
TU-game, a player is a null player if he never contributes to the worth of any
coalition he joins. A restricted null player is defined in the previous chapters
on the class of TU-games with communication structure as the player who
never contributes to the worth when he joins to a set of players to form a
connected coalition. For a quasi-building system game, however, a player is
only able to receive a marginal contribution if he is a member of the choice set
of that coalition, and therefore a restricted null player is defined as follows.

Definition 4.4.5 For a quasi-building system game (N, v,Q) ∈ Gqbs
N withQ =

(H, U), a player i ∈ N is a restricted null player if for all H ∈ H such that
i ∈ U(H) it holds that

v(H)− ∑
K∈P(H\{i})

v(K) = 0.
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The definition of a restricted null player for a quasi-building system game
depends not only on the set system but also on the choice function.

Definition 4.4.6 A solution ξ : Gqbs
N → Rn satisfies the restricted null player

property if for every (N, v,Q) ∈ Gqbs
N it holds that ξi(N, v,Q) = 0 whenever

i ∈ N is a restricted null player for (N, v,Q).

The restricted null player property says that a player who never contributes
any worth to a feasible coalition he is able to form should receive zero payoff.

Proposition 4.4.7 The AMV-value satisfies the restricted null player property.

Proof Let (N, v,Q) ∈ Gqbs
N be a quasi-building system game withQ = (H, U)

and let i ∈ N be a restricted null player for (N, v,Q). Since the AMV-value is
the average of the marginal vectors corresponding to all rooted trees compat-
ible with Q, it suffices to show that mT

i (N, v,Q) = 0 for all T ∈ T (Q). Take
any T ∈ T (Q) and let H = F̄T(i), then i ∈ U(H). Since i is a restricted null
player for (N, v,Q), it follows that

mT
i (N, v,Q) = v(F̄T(i))− ∑

j∈ST(i)
v(F̄T(j))

= v(H)− ∑
K∈P(H\{i})

v(K) = 0.

2

For a quasi-building system a feasible coalition of players can be inessen-
tial. A feasible coalition of a given quasi-building system Q = (H, U) is
inessential if it is not the grand coalition and is either not a member of a
maximal partition P(H \ {h}) for any H ∈ H, h ∈ U(H), or if it is a mem-
ber of some maximal partition P(H \ {h}), then the coalition H itself is also
inessential. This recursively defines the set I(Q) of inessential coalitions of a
quasi-building system Q.

Example 4.4.8 Consider the quasi-building system Q = (H, U) on N = {1, 2,
3} where H = 2N \ {2, 3} and U({1, 2, 3}) = {1}, U({1, 2}) = {1}, and
U({1, 3}) = {1}. Player 1 dominates players 2 and 3. This situation can
be expressed by a directed graph where player 1 is the unique predecessor
of player 2 and player 3. The coalitions {1, 2}, {1, 3} and {1} are inessential,
because those coalitions do not belong to any maximal partition. Notice that
U({1, 2, 3}) = {1} and P({1, 2, 3} \ {1}) = {{2}, {3}}, which implies that
both {2} and {3} are not inessential coalitions.
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The main property of an inessential coalition is that it does not show up as
F̄T(i) for any i ∈ N and compatible tree T, as we see in the next lemma. It is
also shown that inessential coalitions are the only feasible coalitions that have
this property.

Lemma 4.4.9 Let Q = (H, U) be a quasi-building system on N and let H ∈ H.
Then H 6= F̄T(i) for any tree T ∈ T (Q) and i ∈ N if and only if H ∈ I(Q).

Proof Suppose H ∈ I(Q) and H = F̄T(i) for some tree T ∈ T (Q) and i ∈
N. Since H ∈ I(Q), it holds that H 6= N. Therefore there exists H1 and
h1 ∈ U(H1) such that H1 = F̄T(h1) and H ∈ P(H1 \ {h1}), which would
be a contradiction unless H1 ∈ I(Q). If H1 ∈ I(Q), by following the same
argument there exists H2 = F̄T(h2) for some h2 ∈ U(H2) satisfying H1 ∈
P(H2 \ {h2}). Then it must hold that H2 ∈ I(Q) to avoid a contradiction,
and so on. Since the player set is finite and N /∈ I(Q), we obtain a finite
sequence of feasible coalitions (H1, . . . , Hm) for some m < n satisfying H1 ⊂
· · · ⊂ Hm, Hm−1 ∈ I(Q) and Hm /∈ I(Q), whereas Hm−1 ∈ P(Hm \ {hm}) and
Hm = F̄T(hm) for some hm ∈ U(Hm). This implies Hm−1 /∈ I(Q), which is a
contradiction.

Next, suppose H /∈ I(Q). If H = N, then H = F̄T(r) for some r ∈
U(N) and tree T ∈ T (Q). If H 6= N, then there exists H1 ∈ H \ I(Q) such
that H ∈ P(H1 \ {h1}) for some h1 ∈ U(H1). Since H1 is not inessential, there
exists H2 ∈ H \ I(Q) such that H1 ∈ P(H2 \ {h2}) for some h2 ∈ U(H2),
and so on. Since the player set is finite, there is a finite sequence of players
(h1, . . . , hm) and feasible sets (H0, H1, . . . , Hm) for some m < n such that Hm =

N, H0 = H, and hj ∈ U(Hj) and Hj−1 ∈ P(Hj \ {hj}) for j = 1, . . . , m. Then as
in the proof of Theorem 4.2.6 we can construct a tree T on N having player hm

as root and containing (hj, hj−1) for j = 2, . . . , m as arcs. Then T corresponds
to a rooted tree compatible with Q and H = F̄T(j) for some j ∈ N. 2

Definition 4.4.10 A solution ξ : Gqbs
N → Rn satisfies the inessential coalition

property if for every (N, v,Q), (N, w,Q) ∈ Gqbs
N such that v(H) = w(H) for all

H ∈ H \ I(Q), it holds that ξ(N, v,Q) = ξ(N, w,Q).

The inessential coalition property says that the solution is independent of the
worth of inessential coalitions. In Example 4.4.8, where player 1 is the only
player who can form or leave the grand coalition, the worths of smaller fea-
sible coalitions containing player 1 (v({1}), v({1, 2}) and v({1, 3})) will not
be brought to the negotiation table because he is in a dominant position. The
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solutions we study in the previous chapters are independent of the worths
of not feasible, i.e. not connected, coalitions in underlying communication
structure, cf. Lemma 2.3.11. With respect to this point, the inessential coali-
tion property of a solution on the class of quasi-building system game takes
into account, not only the feasibility of coalitions, but also the choice function
which underlies in the system.

The AMV-value on the class of quasi-building system games satisfies
this property, since according to Lemma 4.4.9 the collection of compatible trees
and the marginal vectors compatible to those trees do not change by changing
the worths of inessential coalitions.

Proposition 4.4.11 The AMV-value satisfies the inessential coalition property.

While an inessential coalition cannot be a maximal subset of successors
of a node in any compatible tree, there might also exist feasible coalitions that
are in every compatible tree maximal subsets of successors of some node. Such
a coalition is called a closed coalition of the quasi-building system.

Definition 4.4.12 Given a quasi-building system Q = (H, U), a coalition H ∈
H is a closed coalition if for every T ∈ H \ I(Q) satisfying H ⊂ T it holds that
H ∩U(T) = ∅.

A closed coalition of a quasi-building system is a feasible coalition, of
which no player belongs to the choice set of any non-inessential feasible coali-
tion that contains the coalition. Notice that the grand coalition N is by defini-
tion a closed coalition. In a hierarchical structure, any coalition consisting of
a player together with all his successors in the hierarchy is a closed coalition.
Since members of a closed coalition can never contribute outside their own
coalition, as none of them can form or leave a coalition which contains them,
their total payoff should be equal to the worth of the coalition itself. In Exam-
ple 4.4.8, where players 2 and 3 are dominated and not able to form a feasible
coalition by themselves, a solution that satisfies the closed coalition property
will allocate to each of these players the worth of himself. This property in-
corporates the concept of choice sets, and it may be seen as a generalization of
component efficiency to the class of quasi-building system games. In Chapter
2, on the class of TU-games with communication structure the Myerson value
satisfies component efficiency, saying that the solution allocates to each com-
ponent in the underlying communication graph its worth. The closed coalition
property does the same for all coalitions that can not benefit from cooperation
with the players outside.
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Definition 4.4.13 A solution ξ : Gqbs
N → Rn satisfies the closed coalition property

if for every (N, v,Q) ∈ Gqbs
N with Q = (H, U) and closed coalition H ∈ H it

holds that ∑i∈H ξi(N, v,Q) = v(H).

A solution that satisfies the closed coalition property allocates as total payoff
to the players who form a closed coalition exactly the worth of that coalition.
Since the grand coalition is a closed coalition, the closed coalition property
implies efficiency.

Proposition 4.4.14 The AMV-value satisfies the closed coalition property.

Proof Let (N, v,Q) ∈ Gqbs
N be a quasi-building system game withQ = (H, U)

and H ∈ H a closed coalition. We first show that for all T ∈ T (Q) it holds
that H = F̄T(i) for some i ∈ N. Suppose there exists T ∈ T (Q) such that
H 6= F̄T(j) for all j ∈ N. Then there exists i ∈ H such that H ( F̄T(i). This
implies that i ∈ H ∩U(F̄T(i)), whereas F̄T(i) ∈ H \ I(Q), which contradicts
that H is a closed coaltion. Since the AMV-value is the average of the marginal
vectors corresponding to all rooted trees compatible to Q, it suffices to show
that ∑j∈H mT

j (N, v,Q) = v(H) for all T ∈ T (Q). Take any T ∈ T (Q). Let
i ∈ H be such that F̄T(i) = H, then it follows that

∑
j∈H

mT
j (N, v,Q) = ∑

j∈F̄T(i)
mT

j (N, v,Q) = v(F̄T(i)) = v(H).

2

4.5 Stability of the average marginal vector value

In this section we discuss the stability of the AMV-value for several subclasses
of quasi-building system games. For each subclass, a convexity type of condi-
tion, under which the AMV-value of the game in this subclass lies in the core,
is given.

The core of a cooperative game is the set of efficient and stable payoff
vectors. On the class of quasi-building system games the core is defined as
follows.

Definition 4.5.1 Let (N, v,Q) ∈ Gqbs
N be a quasi-building system game, where

Q = (H, U). The core of (N, v,Q) is given by the set

C(N, v,Q) = {x ∈ Rn|
n

∑
i=1

xi = v(N), ∑
i∈H

xi ≥ v(H) for all H ∈ H}.

The core reflects the property that only coalitions that are feasible are
able to block a payoff vector, see for example Bilbao et al. (1999).
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4.5.1 Union stable quasi-building systems

In this subsection we consider the subclass of union stable quasi-building sys-
tems.

Definition 4.5.2 A quasi-building system Q = (H, U) on N is union stable if
the following condition holds:

(Q3) For any H1 ∈ H and H2 ∈ H \ I(Q) satisfying H1 ∩U(H2) 6= ∅ it holds
that H1 ∪ H2 ∈ H.

Condition (Q3) says that the union of two feasible coalitions, of which at least
one is non-inessential, is also feasible if their intersection contains an element
in the choice set of the non-inessential coalition. Note that this condition is
weaker than the union stable condition for set systems.

Union stable quasi-building system games cover games on communi-
cation graphs (undirected, directed, or mixed), partition systems or building
sets, augmenting systems, antimatroids, and posets.

Definition 4.5.3 Given a union stable quasi-building system Q = (H, U),
(A, B) is union-closed if A ∈ H, B ∈ H \ I(Q), and A ∩U(B) 6= ∅.

A feasible coalition A and a non-inessential feasible coalition B of a
union stable quasi-building system form a union-closed pair of coalitions if
there exists a player in A which is in the choice set of B. Note that the union
A ∪ B is inH because of (Q3).

Definition 4.5.4 Let Q = (H, U) be a union stable quasi-building system on
N. A function f : H → R is Q-supermodular if for any union-closed pair
(A, B), i ∈ A ∩U(B) and maximal partition D of A ∩ B \ {i} into elements of
H it holds that

f (A) + ∑
K∈P(B\{i})

f (K) ≤ f (A ∪ B) + ∑
K∈D

f (K).

Notice that condition (Q2) implies that the set B \ {i} has a unique max-
imal partition P(B \ {i}). The maximal partition of A ∩ B \ {i} into feasible
coalitions may not be unique, and the condition is required to hold for all
such maximal partitions. The next example shows that, for a union-closed
pair, a maximal partition of its intersection into feasible coalitions might not
be unique.
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Example 4.5.5 Consider a quasi-building system Q = (H, U) on N = {1, 2, 3,
4, 5}, whereH = {N, {1, 2, 3, 4},{1, 2, 3, 5},{1, 2},{2, 3},{1}, {2}, {3}, {4}, {5}}
and its choice function U is such that U(N) = {4, 5}, U({1, 2, 3, 4}) = {1},
U({1, 2, 3, 5}) = {3}, U({1, 2}) = {1}, U({2, 3}) = {3}, and U({i}) = {i},
i ∈ N. The system Q is union stable and has two compatible trees T1 =

{(4, 3), (3, 1), (1, 2), (3, 5)} and T2 = {(5, 1), (1, 3), (3, 2), (1, 4)}. The pair (A, B)
with A = {1, 2, 3, 4} and B = {1, 2, 3, 4, 5} is union-closed with A ∩U(B) =

{4}. The intersection A ∩ B \ {4} = {1, 2, 3} has two maximal partitions into
feasible coalitions, namely {{1}, {2, 3}} and {{1, 2}, {3}}. Both {1} and {3}
are inessential coalitions.

In the next theorem it is shown that Q-supermodularity is a sufficient
condition for the stability of the AMV-value.

Theorem 4.5.6 Let (N, v,Q) ∈ Gqbs
N be a union stable quasi-building system game.

If v is Q-supermodular, then AMV(N, v,Q) ∈ C(N, v,Q).

Proof Since the AMV-value is efficient and the solution is the average of the
marginal vectors corresponding to all compatible rooted trees, it suffices to
show that for all T ∈ T (Q) and H ∈ H it holds that

∑
j∈H

mT
j (N, v,Q) ≥ v(H).

Take any T ∈ T (Q) and H ∈ H. Let H1, . . . , Hs be the maximally
connected subsets of H in T. For k = 1, . . . , s denote Hk = {ik

1, . . . , ik
tk
} and let

h < l if ik
h ∈ FT(ik

l ). For k = 1, . . . , s denote rk = ik
tk

and let h < l if rh ∈ FT(rl).
Since T is a tree, rk is the root of the subtree of T on F̄T(rk) containing the
set Hk, k = 1, . . . , s. Moreover, F̄T(rs) contains the set H, otherwise there
exists r ∈ N \ H such that H is split into (nonempty subsets of) more than
one element of P(FT(r)), which violates (Q2). The set F̄T(rs) therefore also
contains F̄T(rk) for k = 1, . . . , s− 1. For k = 1, . . . , s it holds that

Hk = F̄T(rk) \
( tk⋃

h=1

( ⋃
j∈ST(ik

h)\Hk

F̄T(j)
))

,

which implies that

∑
j∈H

mT
j (N, v,Q) =

s

∑
k=1

(
v(F̄T(rk))−

tk

∑
h=1

∑
j∈ST(ik

h)\Hk

v(F̄T(j))
)

.
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To show that the latter expression is at least equal to v(H), let Ik = H ∪
(∪k

h=1F̄T(rh)) for k = 0, . . . , s and Ik
h = Ik−1 ∪ (∪h

j=1F̄T(ik
j )) for h = 0, . . . , tk,

k = 1, . . . , s. Notice that I0 = H and Is = F̄T(rs) and that for k = 1, . . . , s it
holds that Ik

0 = Ik−1 and Ik
tk

= Ik. We first show by induction that Ik
h ∈ H

for all h = 0, . . . , tk, k = 1, . . . , s. Since I1
0 = I0 = H and H ∈ H, it holds

that I1
0 ∈ H. Suppose I1

h ∈ H for some h < t1. Since F̄T(i1
h) ∈ H and

i1
h ∈ H ∩U(F̄T(i1

h)) ⊆ I1
h ∩U(F̄T(i1

h)), it follows from (Q3) that the union I1
h+1

of the sets I1
h and F̄T(i1

h+1) is inH. In particular, this implies for h = t1− 1 that
I1
t1

is in H. Since I1
t1
= I1 = I2

0 , it also holds that I2
0 ∈ H. Continuing the same

argument, we obtain by induction that Ik
h ∈ H for all k and h.

Let A = Ik
h−1 and B = F̄T(ik

h) for some h = 1, . . . , tk, k = 1, . . . , s. Then
A ∈ H, B ∈ H \ I(Q), ik

h ∈ A ∩U(B), and A ∪ B = Ik
h ∈ H. Hence, the pair

(A, B) is union-closed in Q. Concerning the intersection of A and B without
ik
h, for j ∈ ST(ik

h) \ Hk define

Dk
h(j) = {r | F̄T(r) ⊂ F̄T(j), 6 ∃ l < k with F̄T(r) ⊂ F̄T(rl) ⊂ F̄T(j)}.

Then A∩ B \ {ik
h} is maximally partitioned into elements ofH by the collection

D = {F̄T(r) | r ∈ Dk
h(j), j ∈ ST(ik

h) \ Hk} ∪ {F̄T(j) | j ∈ ST(ik
h) ∩ Hk}.

Since v is Q-supermodular, A = Ik
h−1, and A ∪ B = Ik

h , this implies that

v(Ik
h−1) + ∑

K∈P(B\{ik
h})

v(K) ≤ v(Ik
h) + ∑

K∈D
v(K).

Since P(B \ {ik
h}) ∩D = {F̄T(j) | j ∈ ST(ik

h) ∩ Hk}, the terms indexed by these
sets cancel on both sides and we obtain

v(Ik
h−1) + ∑

j∈ST(ik
h)\Hk

v(F̄T(j)) ≤ v(Ik
h) + ∑

j∈ST(ik
h)\Hk

∑
r∈Dk

h(j)

v(F̄T(r)).

Applying this inequality successively for h = 1, . . . , tk, k = 1, . . . , s, we obtain
that

v(I1
0) +

s

∑
k=1

tk

∑
h=1

∑
j∈ST(ik

h)\Hk

v(F̄T(j)) ≤ v(Is
ts) +

s

∑
k=1

tk

∑
h=1

∑
j∈ST(ik

h)\Hk

∑
r∈Dk

h(j)

v(F̄T(r)).

Since I1
0 = H, Is

ts
= F̄T(rs) and each ri, i = 1, . . . , s − 1, belongs to precisely

one Dk
h(j) for some j ∈ ST(ik

h) \ Hk, h ∈ {1, . . . , tk}, k ∈ {2, . . . , s}, it follows
that

∑
j∈H

mT
j (v,Q) =

s

∑
k=1

(
v(F̄T(rk))−

tk

∑
h=1

∑
j∈ST(ik

h)\Hk

v(F̄T(j))
)
≥ v(H).
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2

Note that Q-supermodular is a sufficient condition for the stability of
the AMV-value. In the next subsection, Example 4.5.11 shows that the AMV-
value may be in the core of a game which is not Q-supermodular.

4.5.2 Intersection-closed quasi-building systems

In this subsection the subclass of intersection-closed quasi-building systems is
considered.

Definition 4.5.7 A quasi-building system Q = (H, U) on N is intersection-
closed if the following conditions hold:

(Q4) If H1, H2 ∈ H, then H1 ∩ H2 ∈ H.

(Q5) If H1, H2 ∈ H, H1 ⊂ H2, and i ∈ U(H2) ∩ H1, then i ∈ U(H1).

Intersection-closedness condition (Q4) reflects the name of this sub-
class. It says that the (nonempty) intersection of two feasible coalitions is also
feasible. Condition (Q5) states that if a player is in the choice set of a feasible
coalition, then he must also be in the choice set of any feasible subcoalition that
contains this player. This is in line with the property called independence of
irrelevant alternatives (IIA), the α-axiom of Sen, or the heredity axiom, saying
that a choice in a set remains a choice in any subset that it contains. This prop-
erty may not be compatible with union-closed quasi-building systems. For
example, the second example of Example 4.2.7, the graphical quasi-building
system induced from a directed circle is a union-closed quasi-building system
while condition (Q5) is not satisfied for H1 = {1, 2} and H2 = N. Intersection-
closed quasi-building system games cover games with convex geometries and
cycle-free graphical quasi-building systems.

Lemma 4.5.8 For a convex geometry F on N,Q(F ) is an intersection-closed quasi-
building system on N.

Proof Take any S, T ∈ F , T ⊂ S, where P(S \ {i}) exists for some i ∈ T. From
P(S \ {i}), take the minimum set of feasible coalitions S1, . . . , Sl which covers
T \ {i}, i.e., Sk ∩ (T \ {i}) 6= ∅ for any k = 1, . . . , l and T \ {i} ⊂ ⋃l

k=1 Sk. From
intersection-closedness between T and S1, . . . , Sl, there is a feasible partition
{T1, . . . , Tl} of T \ {i}, where Tk = T ∩ Sk, k = 1, . . . , l. Further, {T1, . . . , Tl} is
the unique maximal partition of T \ {i} since P(S \ {i}) is the unique maximal
partition of S \ {i} satisfying (Q2). Therefore P(T \ {i}) exists and satisfies
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(Q2), which implies that i ∈ U(T). This shows that condition (Q5) holds for
the choice function of a quasi-building system induced by a convex geometry.
Condition (Q4) is implied by condition (C2). 2

For the class of intersection-closed quasi-building system games, a con-
vexity condition is defined as follows.

Definition 4.5.9 LetQ = (H, U) be an intersection-closed quasi-building sys-
tem on N. A function f : H → R is Q-convex if

f (T)− ∑
K∈P(T\{i})

f (K) ≤ f (S)− ∑
K∈P(S\{i})

f (K)

for all S ∈ H \ I(Q), T ∈ H, T ⊂ S, and i ∈ U(S) ∩ T.

A game on an intersection-closed quasi-building system isQ-convex if
the marginal loss caused by a player is greater whenever he is removed from
a larger feasible and non-inessential coalition. This condition is similar to a
convexity condition introduced in Bilbao et al. (1999) on the class of games on
convex geometries to guarantee stability of marginal vectors induced from all
maximal chains.

Theorem 4.5.10 Let (N, v,Q) ∈ Gqbs
N be an intersection-closed quasi-building sys-

tem game. If v is Q-convex, then AMV(N, v,Q) ∈ C(N, v,Q).

Proof Since the AMV-value is efficient and the solution is the average of the
marginal vectors corresponding to all compatible rooted trees, it suffices to
show that for all T ∈ T (Q) and H ∈ H it holds that

∑
j∈H

mT
j (N, v,Q) ≥ v(H).

Take any T ∈ T (Q) and H ∈ H. Denote H = {i1, . . . , is} and let h < l if
ih ∈ FT(il). Since FT(i) satisfies (Q2) for any i ∈ N, is is uniquely determined.
This implies that

∑
j∈H

mT
j (N, v,Q) =

s

∑
k=1

(
v(F̄T(ik))− ∑

K∈P(FT(ik))
v(K)

)
.

Let Qk = F̄T(ik) ∩ H, k = 1, . . . , s, then Qs = H and Qk ∈ H for k =

1, . . . , s− 1, since F̄T(ik) ∈ H \ I(Q) for k = 1, . . . , s− 1 and H ∈ H. For k =

1, . . . , s, since ik ∈ U(F̄T(ik)) ∩ Qk and Qk ⊆ F̄T(ik), it follows from (Q5) that
ik ∈ U(Qk) and thus Qk \ {ik} has a unique maximal partition P(Qk \ {ik}).
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Clearly, each member of P(Qk \ {ik}), k ∈ {1, . . . , s}, is equal to Qj for some
j < k. Since the game is Q-convex, we obtain

mT
ik(N, v,Q) = v(F̄T(ik))− ∑

K∈P(FT(ik))
v(K) ≥ v(Qk)− ∑

K∈P(Qk\{ik})
v(K),

for k = 1, . . . , s. Adding up this inequality for k = 1, . . . , s, we get

∑
j∈H

mT
j (N, v,Q) ≥

s

∑
k=1

(
v(Qk)− ∑

K∈P(Qk\{ik})
v(K)

)
.

Since Qs = H, this inequality becomes

∑
j∈H

mT
j (N, v,Q) ≥ v(H) +

s−1

∑
k=1

v(Qk)−
s

∑
k=1

∑
K∈P(Qk\{ik})

v(K).

The last two terms cancel out since
⋃s

k=1 P(Qk \ {ik}) = {Q1, . . . , Qs−1}, and
the desired result follows. 2

The next example is a quasi-building system game with underlying
quasi-building system both union stable and intersection-closed. The game
is Q-convex, but not Q-supermodular.

Example 4.5.11 Consider a quasi-building system game (N, v,Q) with Q =

(H, U) on N = {1, 2, 3, 4, 5}, where H = {N, {1, 2, 3, 4}, {1, 2, 3}, {2, 4}, {1},
{2}, {3}, {5}}, U is such that U(N) = {4}, U({1, 2, 3, 4}) = {4}, U({1, 2, 3}) =
{2}, U({2, 4}) = {4}, U({1}) = {1}, U({2}) = {2}, U({3}) = {3}, U({5}) =
{5}, and v is such that v(N) = 5, v({1, 2, 3, 4}) = 2, v({1, 2, 3}) = 2, v({2, 4}) =
3, v({1}) = v({2}) = v({3}) = v({5}) = 0. Q is both union stable and
intersection-closed, with {1, 2, 3, 4}, {2, 4} and {2} being inessential coalitions.
There is one compatible tree, T = {(4, 2), (4, 5), (2, 1), (2, 3)}, and the cor-
responding marginal vector mT(N, v,Q) = (0, 2, 0, 3, 0) is in the core of the
game. This game is notQ-supermodular (take the pair (A, B) with A = {2, 4}
and B = {1, 2, 3}), but the game is Q-convex.

With properly defined pairs of sets, strongly union-closed pairs, there
is an equivalent expression toQ-convexity. On the class of intersection-closed
quasi-building system, a strongly union-closed pair is defined as follows.

Definition 4.5.12 Given an intersection-closed quasi-building systemQ = (H,
U), a pair (A, B) of subsets of N is strongly union-closed if A ∈ H, B, A ∪ B ∈
H \ I(Q), and U(A ∪ B) ∩ A ∩ B 6= ∅.
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Note that the definition is different from Definition 4.5.3 of a union-
closed pair on the class of union stable quasi-building system. Now the condi-
tion requires that U(A∪ B)∩ A∩ B 6= ∅. It follows from (Q4) that A∩ B ∈ H.
It also follows from (Q5) that for any i ∈ U(A ∪ B), there exist P(A \ {i}),
P(B \ {i}), and P(A ∩ B \ {i}). It also excludes situations where the union
A ∪ B is an inessential coalition. Since i ∈ U(B) does not imply i ∈ U(A ∪ B)
nor A ∪ B ∈ H \ I(Q), for a quasi-building system which is both union sta-
ble and intersection-closed, a strongly union-closed pair is union-closed, but
a union-closed pair is not necessarily strongly union-closed.

Theorem 4.5.13 Let Q = (H, U) be an intersection-closed quasi-building system
on N. A function v : H → R is Q-convex if and only if

v(A) + ∑
K∈P(B\{i})

v(K) ≤ v(A ∪ B) + ∑
K∈P(A∩B\{i})

v(K) (4.1)

holds for any strongly union-closed pair (A, B) and i ∈ U(A ∪ B) ∩ A ∩ B.

Proof For the sufficiency, suppose the condition holds for v. Take any S ∈
H \ I(Q), T ∈ H, T ⊂ S, and i ∈ U(S) ∩ T. With A = T and B = S, the pair
(T, S) is strongly union-closed. It then follows from the condition that

v(T) + ∑
K∈P(S\{i})

v(K) ≤ v(S) + ∑
K∈P(T\{i})

v(K),

because of the fact that S ∪ T = S and S ∩ T \ {i} = T \ {i}.
For the necessity, suppose v is Q-convex. Take any strongly union-

closed pair (A, B). It is to show that (4.1) holds for any i ∈ U(A ∪ B) ∩ A ∩ B.
Take S = A ∪ B and T = A. Since S ∈ H \ I(Q), T ∈ H and T ⊂ S, from
Q-convexity it holds that for every i ∈ U(A ∪ B) ∩ A

v(A ∪ B)− ∑
K∈P(A∪B\{i})

v(K) ≥ v(A)− ∑
K∈P(A\{i})

v(K).

From (4.1), it is to show that

∑
K∈P(A∪B\{i})

v(K)− ∑
K∈P(A\{i})

v(K) ≥ ∑
K∈P(B\{i})

v(K)− ∑
K∈P(A∩B\{i})

v(K).

(4.2)
To this end, we use the following lemma.

Lemma 4.5.14 Given an intersection-closed quasi-building set Q = (H, U) with
S, T ∈ H with T ⊂ S and i ∈ U(S) ∩ T, it holds for any X ∈ P(S \ {i}) and
Y ∈ P(T \ {i}) with X ∩Y 6= ∅ that Y ⊂ X.
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The proof of this lemma follows immediately from Condition (Q2), which
prohibits a feasible coalition Y from splitting into more than one element in
P(S \ {i}). This lemma, together with (Q2), implies that it suffices to show
that

v(X)− ∑
K∈P(A\{i}),K⊂X

v(K) ≥ ∑
K∈P(B\{i}),K⊂X

v(K)− ∑
K∈P(A∩B\{i}),K⊂X

v(K)

(4.3)
holds for any X ∈ P(A∪ B \ {i}), since each element in P(A \ {i}), P(B \ {i})
and P(A∩ B \ {i}) is a subset of one element in the set P(A∪ B \ {i}), and (4.2)
is obtained by adding up the inequalities of (4.3) for all X ∈ P(A ∪ B \ {i}).

First, we divide P(A ∪ B \ {i}) into three mutually exclusive sets of
feasible coalitions.

• X = {K ∈ P(A ∪ B \ {i}) | K ⊂ A \ B},

• Y = {K ∈ P(A ∪ B \ {i}) | K ⊂ B},

• Z = {K ∈ P(A ∪ B \ {i}) | K 6⊂ A \ B, K 6⊂ B}.

Suppose X ∈ X and take K ∈ P(A \ {i}) such that K ⊂ X, which exists
due to Lemma 4.5.14. If K ( X, then a feasible coalition X splits into more
than one element in P(A \ {i}), which violates (Q2), and therefore X = K and
(4.3) holds trivially.

Suppose X ∈ Y and take K ∈ P(A \ {i}) such that K ⊂ X and K′ ∈
P(A ∩ B \ {i}) such that K′ ⊂ X. Since K ⊂ A ∩ B \ {i}, A ∩ B \ {i} ⊂ A \ {i}
and K ∈ H, it must hold from Lemma 4.5.14 and (Q2) that K′ = K. For
K′′ ∈ P(B \ {i}) such that K′′ ⊂ X, it must hold that K′′ = X for the similar
reason. Therefore (4.3) holds with equality.

Finally, suppose X ∈ Z . From (Q4) it holds that X ∩ A, X ∩ B, and
X ∩ A ∩ B are elements of H. This, together with (Q2) implies that X ∩ A ∈
P(A \ {i}), X ∩ B ∈ P(B \ {i}) and X ∩ A ∩ B ∈ P(A ∩ B \ {i}), and (4.3)
becomes

v(X)− v(X ∩ A) ≥ v(X ∩ B)− v(X ∩ A ∩ B). (4.4)

First we show that U(X) \ B 6= ∅. Because B ∈ H \ I(Q) and i ∈
U(B), there exists a compatible tree T ∈ T (Q), such that for the set of feasible
coalitions F̄T := {F̄T(j) | j ∈ N} it holds that B ∈ F̄T and P(B \ {i}) ⊂ F̄T.
There also exists unique X̄ ⊂ F̄T which minimally covers X, i.e.,

X̄ = {K ∈ F̄T | X ⊂ K,@K′ ∈ F̄T, X ⊂ K′ ⊂ K}.
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It follows from B ∈ F̄T, X \ B 6= ∅ and i /∈ X that B ( X̄. Since X̄ and
B are elements of F̄T, there exists j ∈ U(X̄) \ B with P(X̄ \ {j}) ⊂ F̄T. With
Condition (Q2) and the fact that X̄ minimally covers X in T, it holds that j ∈ X
and j ∈ X \ B. From (Q5) it then follows that j ∈ U(X) since X̄, X ∈ H, X̄ ⊃ X
and j ∈ U(X̄)∩X, and we conclude that U(X) \ B 6= ∅. Particularly, j ∈ X \ B
means j ∈ X ∩ A. Condition (Q5) is applied again for X and X ∩ A, leading
that j ∈ U(X ∩ A) and therefore P(X ∩ A \ {j}) exists. From Q-convexity it
follows that

v(X)− ∑
K∈P(X\{j})

v(K) ≥ v(X ∩ A)− ∑
K∈P(X∩A\{j})

v(K),

since X ∩ A ⊂ X, X ∈ H \ I(Q) and j ∈ U(X) ∩ A. The inequality (4.4) is
satisfied if

∑
K∈P(X\{j})

v(K)− ∑
K∈P(X∩A\{j})

v(K) ≥ v(X ∩ B)− v(X ∩ A ∩ B). (4.5)

Due to (Q2), among elements in P(X \ {j}), there is unique X′ such that X ∩
B ⊂ X′. Similarly, the feasible coalition X′ ∩ A must be an element of P(X ∩
A \ {j}). The condition also implies that P(X \ {j}) \ {X′} = P(X ∩ A ∩ B \
{j}) \ {X′ ∩ A}, and (4.5) is equivalent to

v(X′)− v(X′ ∩ A) ≥ v(X ∩ B)− v(X ∩ A ∩ B). (4.6)

If X′ ⊂ B, then the inequality holds with equality and the proof ends. If not,
then X′ \ B 6= ∅. Since X′ ∈ P(X \ {j}) where X ∈ H \ I(Q), it holds that
X′ ∈ H \ I(Q) and thus exactly the same argument follows to conclude that
there is k ∈ X′ \ B such that k ∈ U(X′). From Q-convexity it then holds that

v(X′)− ∑
K∈P(X′\{k})

v(K) ≥ v(X′ ∩ A)− ∑
K∈P(X′∩A\{k})

v(K),

since X′ ∩ A ⊂ X′, X′ ∈ H \ I(Q) and k ∈ U(X′) ∩ A. Therefore (4.6) holds if

∑
K∈P(X′\{k})

v(K)− ∑
K∈P(X′∩A\{k})

v(K) ≥ v(X ∩ B)− v(X ∩ A ∩ B)

holds, and so on. To conclude, given X1 ∈ P(A ∪ B \ {i}), there is a finite
sequence of coalitions X1, . . . , Xk inH \ I(Q) and a finite sequence of players
i1, . . . , ik with ih ∈ U(Xh) ∩ A \ B such that Xh ∈ P(Xh−1 \ {ih−1}) for h =

1, . . . , k with X1 ∩ B ∈ P(Xk \ {ik}). We apply Q-convexity on Xh and Xh ∩ A
with ih ∈ U(Xh) ∩ A \ B to obtain

v(Xh)− v(Xh ∩ A) ≥ ∑
K∈P(Xh\{ih})

v(K)− ∑
K∈P(Xh∩A\{ih})

v(K)
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= v(Xh+1)− v(Xh+1 ∩ A),

for h = 1, . . . , k− 1, and therefore we have

v(X1)− v(X1 ∩ A) ≥ · · · ≥ v(Xk)− v(Xk ∩ A) ≥ v(X1 ∩ B)− v(X1 ∩ A ∩ B),

which is the desired result. 2

4.5.3 Chain quasi-building systems

In this subsection we consider the subclass of chain quasi-building systems.
This subclass contains the sets of feasible coalitions induced by a poset on the
player set.

Definition 4.5.15 A pair Q = (H, U) is a chain quasi-building system on N if it
satisfies the following conditions:

(Q1) H ⊆ 2N is a set system on N containing both ∅ and N and U : H → 2N

is a choice function, that is, U(∅) = ∅ and for every nonempty H ∈ H
it holds that U(H) 6= ∅ and U(H) ⊆ H.

(Q2)’ For every H ∈ H and h ∈ U(H), H \ {h} ∈ H.

Condition (Q2)’ is a combination of condition (Q2) and the one-point exten-
sion property, i.e., if H ∈ H \ {N}, then there exists i ∈ N \ H such that
H ∪ {i} ∈ H and i ∈ U(H ∪ {i}). The next lemma immediately follows from
condition (Q2)’. Hence a chain quasi-building system is a quasi-building sys-
tem.

Lemma 4.5.16 Let Q = (H, U) be a chain quasi-building system on N. Then every
rooted tree compatible with Q is a line-tree.

For the stability of the AMV-value on the class of chain quasi-building
system games, we introduce the following condition. Since every compatible
tree is a line-tree, the condition involves chains.

Definition 4.5.17 Let Q = (H, U) be a chain quasi-building system on N. A
function f : H → R is Q-increasing if

k

∑
i=1

(
f (Si)− f (Si \ Hi)

)
≥ f (H)

holds for any H ∈ H and S1, . . . , Sk ∈ H \ I(Q) satisfying S1 ⊂ · · · ⊂ Sk, H ⊂
Sk and Si \Hi ∈ H \ I(Q), where Hi = (Si \ Si−1)∩H 6= ∅, for all i = 1, . . . , k.
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This condition states that the worth of a feasible coalition is less than or equal
to the sum of its marginal contributions to any increasing sequence of non-
inessential feasible coalitions.

Theorem 4.5.18 Let (N, v,Q) ∈ Gqbs
N be a chain quasi-building system game on N.

If v is Q-increasing, then AMV(v,Q) ∈ C(N, v,Q).

Proof LetQ = (H, U). Since the AMV-value is efficient and the solution is the
average of the marginal vectors corresponding to all compatible rooted trees,
it suffices to show that for all T ∈ T (Q) and H ∈ H it holds that

∑
j∈H

mT
j (N, v,Q) ≥ v(H).

Take any T ∈ T (Q) and H ∈ H. Let H1, . . . , Hk be the maximal connected
subsets of H in the tree T. By Lemma 4.5.16, T is a line-tree. Then, in {F̄T(h) |
h ∈ N}, for i = 1, . . . , k, there exists unique minimal S̄i = F̄T(r̄i) such that
Hi ⊆ S̄i and there exists unique maximal Si = F̄T(ri) such that Hi ∩ Si = ∅.
Note that r̄i ∈ Hi and S̄i \ Hi = Si for each i = 1, . . . , k. The sets S̄i, i = 1, . . . , k,
can be ordered such that S̄1 ⊂ · · · ⊂ S̄k. Notice that H ⊂ S̄k. For i = 1, . . . , k it
holds that S̄i ∈ H \ I(Q) since S̄i = F̄T(r̄i) and also that S̄i \ Hi ∈ H \ I(Q)
since S̄i \ Hi = Si and Si = F̄T(ri). Therefore, S̄1, . . . , S̄k and H satisfy the
condition for Q-increasing. Because T is a line-tree and Hi = FT(r̄i) \ FT(ri)

for i = 1, . . . , k, we have

∑
j∈H

mT
j (N, v,Q) =

k

∑
i=1

∑
j∈Hi

mT
j (N, v,Q) =

k

∑
i=1

(
v(F̄T(r̄i))− v(F̄T(ri))

)
=

k

∑
i=1

(
v(S̄i)− v(S̄i \ Hi)

)
,

which is greater or equal to v(H) since v is Q-increasing. 2



CHAPTER 5

SUPERMODULAR NTU-GAMES

5.1 Introduction

In the previous chapters we study several single-valued solution concepts on
classes of TU-games with some cooperation restriction. Those solution con-
cepts, the Myerson value, the average tree solution, and the AMV-value, are
the averages of appropriately defined marginal vectors of a game. In Chapter
3 and 4 some stability conditions of the solution concepts are derived. The
approach we take is to show that under those conditions every admissible
marginal vector is in the core and therefore the average as well, since the core
of TU-game is a convex set. It is well-known that all the marginal vectors of a
standard TU-game are elements of the core of the game if and only if the game
is convex, which means that the characteristic function underlying the game
is supermodular, see Ichiishi (1981).

In this chapter we introduce a multi-valued solution concept and study
its core stability for the class of cooperative games with non-transferable util-
ity. A cooperative game with non-transferable utility (NTU-game) consists
of a finite number of players and a mapping that assigns to each coalition a
feasible set of payoff vectors. The core of an NTU-game (Aumann (1961)) con-
sists of all payoff vectors that are feasible for the grand coalition of all play-
ers and cannot be blocked by any coalition of players. Two type of convex-
ity conditions on NTU-games, individual merge convexity (Hendrickx et al.
(2002)) and strong ordinal convexity (Masuzawa (2012)), concern the core sta-
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bility of marginal vectors of an NTU-game. Both conditions are sufficient to
guarantee the core stability of all marginal vectors. Other types of convexity
conditions, such as ordinal convexity (Vilkov (1977)) and cardinal convexity
(Sharkey (1981)), are studied in relation with the von-Neumann-Morgenstern
solution of NTU-games. For an overview of these convexity conditions, one
may refer Csóka et al. (2011).

On the class of NTU-games, we consider a solution concept that uti-
lizes the average of marginal vectors. We start with introducing the concept
of supermodularity for NTU-games. For TU-games this concept is equivalent
to convexity. If an NTU-game is supermodular all the appropriately defined
marginal vectors are elements of the core of the game. The class of supermod-
ular NTU-games contains the classes of individual merge convex NTU-games
and strong ordinal convex NTU-games.

As solution concept for NTU-games we propose a set of solutions that
is determined by the average of all marginal vectors of the game. The solution
set is never empty. In case the NTU-game is induced by a TU-game, the solu-
tion set coincides with this average and is the Shapley value of the TU-game.
In general, if the average of all marginal vectors is an efficient allocation for
the grand coalition, as is always the case if the set of efficient payoff vectors
for the grand coalition is a hyperplane, the solution set is a singleton, being
this average. If the average of all marginal vectors is a feasible but not efficient
allocation for the grand coalition, then the payoffs at the average are increased
in any strictly positive direction until an efficient allocation for the grand coali-
tion is obtained. And, if the average is not a feasible allocation for the grand
coalition, then the payoffs are decreased in any strictly negative direction until
an efficient allocation for the grand coalition is reached.

For a TU-game supermodularity of the characteristic function does not
only guarantee that all marginal vectors of the game are elements of the core,
but also that their average, the Shapley value, is in the core. As mentioned,
this is because the core of a TU-game is a convex set. However, even for su-
permodular NTU-games the core is typically not a convex set and therefore
the average of the marginal vectors may not be an efficient allocation or not be
a feasible allocation for the grand coalition, and, moreover, the average may
be blocked by a proper subcoalition, although the marginal vectors are not. To
guarantee that the solution set is a subset of the core, we introduce a convex-
ity condition that roughly says that the payoff set of the grand coalition is not
less convex-shaped or its complement is not more convex-shaped than for the
payoff sets of any subcoalition holds.
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Being determined by the average of all marginal vectors of the game,
the solution takes a similar approach as the marginal based compromise value,
or MC-value (Otten et al. (1998)). It turns out that the MC-value lies in the so-
lution set if all payoff sets satisfy non-levelness. There are several solution
concepts on the class of NTU-games that generalize the Nash bargaining so-
lution of a pure bargaining problem (Nash (1950)), such as the Harsanyi value
(Harsanyi (1963)), the Shapley NTU-value (Shapley (1969)), and the consistent
Shapley value (Maschler and Owen (1989), Maschler and Owen (1992)). From
a viewpoint of bargaining problems, the solution set we propose can be seen
as the set of bargaining solutions of an induced bargaining problem in which
the average of the marginal vectors is the disagreement point. In order for the
allocation at the average of the marginal vectors to be the disagreement point,
the allocation should be feasible for the grand coalition and not be blocked
by any proper subcoalition. On the other hand, if the average of the marginal
vectors is not feasible, then one may see the average as a utopia point. We also
discuss a specific solution in the solution set, an egalitarian type of solution.

This chapter is organized as follows. In Section 2 the concept of su-
permodularity is introduced for NTU-games. In Section 3 the solution set is
introduced and core stability is studied. Also a comparison with other solu-
tions is made in that section.

This chapter is based on Koshevoy et al. (2014).

5.2 Supermodularity

We consider cooperative games without side-payment. A non-transferable
utility game (or NTU-game) is a pair (N, V) which consists of a finite set N =

{1, . . . , n} of n ≥ 2 players and a mapping V(·) assigning to every subset S of
N a subset V(S) of RS with V(∅) = {0}. An element x = (xi)i∈S in V(S) is
an allocation for coalition S that can be realized by the players within S and at
which player i ∈ S receives payoff xi. Let Gntu

N denote the class of NTU-games
with fixed player set N. For a vector x ∈ RT and S ⊆ T, T ∈ 2N, xS denotes
the vector (xi)i∈S in RS, with xS = 0 if S = ∅. We often write (xi, xS\{i}) for
x ∈ RS and i ∈ S. For S ∈ 2N, we denote RS

+ = {x ∈ RS | xi ≥ 0 for all i ∈ S}
and RS

++ = {x ∈ RS | xi > 0 for all i ∈ S}.
For an NTU-game (N, V) ∈ Gntu

N we make the standard assumptions
on V that for all S ∈ 2N, S 6= ∅, the set V(S) is closed and comprehensive in
RS and that the game is zero-normalized, i.e., V({i}) = (−∞, 0] for all i ∈ N.
We also assume that for all S ∈ 2N, S 6= ∅, and b ∈ RS it holds that the set
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{x ∈ V(S) | xi ≥ bi for all i ∈ S} is either empty or, if not empty, a bounded
set. Moreover, we assume that V is monotone, i.e., for any S ( T, T ∈ 2N, and
x ∈ V(S) there exists y ∈ V(T) such that yS ≥ x.

Given an NTU-game (N, V) ∈ Gntu
N and coalition S ∈ 2N, let DV(S) =

{x ∈ RS | @y ∈ V(S), y � x}, EV(S) = V(S) ∩ DV(S), and IV(S) = V(S) \
EV(S). Then a payoff vector x ∈ RT, with S ⊆ T, is blocked by coalition S
if xS ∈ IV(S), i.e., there exists y ∈ V(S) such that y � xS, x is not blocked
by coalition S if xS ∈ DV(S), i.e., there exists no y ∈ V(S) such that y � xS,
and x is weakly Pareto-optimal, or efficient, for coalition S if xS ∈ EV(S),
i.e., xS ∈ V(S) and there is no y ∈ V(S) such that y � xS. Notice that
DV(∅) = EV(∅) = {0} and IV(∅) = ∅.

The core of an NTU-game (N, V) ∈ Gntu
N , denoted C(N, V), is the set

of weakly Pareto-optimal allocations for the grand coalition N of all players,
that are not blocked by any coalition (Aumann (1961)), i.e.,

C(N, V) = {x ∈ V(N) | xS /∈ IV(S), ∀ S ∈ 2N}.

Let Π(N) be the set of permutations on N. Given an NTU-game (N, V) ∈ Gntu
N

and a permutation σ ∈ Π(N), the marginal vector mσ(N, V) ∈ RN is defined
by

mσ
σ(k)(N, V)

= max{yσ(k) | y ∈ V({σ(1), . . . , σ(k)}), yσ(i) = mσ
σ(i)(N, V), ∀ i < k},

for k = 1, 2, . . . , n. Notice that mσ(N, V) always exists and is uniquely defined.
Next we introduce a condition that guarantees that all marginal vectors

of an NTU-game are elements of the core.

Definition 5.2.1 An NTU-game (N, V) ∈ Gntu
N is supermodular if for any A ∈

2N, j ∈ A, and x ∈ EV(A) satisfying xA\{j} ∈ EV(A \ {j}) and xj = max{y |
(y, xA\{j}) ∈ V(A)} it holds that for all B ⊂ A such that j ∈ B

xB\{j} ∈ DV(B \ {j}) ⇒ xB ∈ DV(B).

Supermodularity of an NTU-game means that if for a player in a coali-
tion it holds that a payoff vector is efficient with and without him and a sub-
coalition without him cannot block this payoff vector, then this payoff vector
can also not be blocked by this subcoalition together with him. Notice that
if B = {j} for some j ∈ N then DV(B \ {j}) = {0} and xB ∈ DV(B) means
xj ≥ 0. In the following theorem we show that all marginal vectors of a super-
modular NTU-game are in the core of the game.
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Theorem 5.2.2 Let (N, V) ∈ Gntu
N be a supermodular NTU-game, then mσ(N, V) ∈

C(N, V) for all σ ∈ Π(N).

Proof We prove the result by induction. The theorem clearly holds for n = 2.
Suppose for n = k, k ≥ 2, the theorem is true. For n = k + 1 we may as-
sume without loss of generality that σ(k + 1) = k + 1. From the construction
of mσ(N, V) and the induction argument it follows that mσ(N, V) cannot be
blocked by any coalition S ⊆ {1, . . . , k}. Take any coalition S ∪ {k + 1} where
S ⊆ {1, . . . , k}. Then for A = {1, . . . , k + 1}, B = S ∪ {k + 1} and j = k + 1,
we have that mσ(N, V) ∈ EV(A), mσ

j (N, V) = max{y | (y, mσ
A\{j}(N, V)) ∈

V(A)} and mσ
A\{j}(N, V) ∈ EV(A \ {j}) since mσ(N, V) is a marginal vec-

tor and A \ {j} = {1, . . . , k}. If S = ∅, then supermodularity of V implies
that mσ

j (N, V) ≥ 0 and therefore singleton coalition {k + 1} can not block
mσ(N, V). Suppose S 6= ∅. Then it follows from the induction argument
that mσ

B\{j}(N, V) ∈ DV(B \ {j}). Since (N, V) is supermodular and S 6= ∅,

this implies that mσ
B(N, V) ∈ DV(B), i.e., mσ(N, V) is not blocked by coalition

S ∪ {k + 1}. 2

Next, we show that for a TU-game convexity is equivalent to super-
modularity of the corresponding NTU-game. A (zero-normalized) TU-game
(N, v) induces an NTU-game (N, V), where V(S) = {x ∈ RS | ∑i∈S xi ≤
v(S)} for all S ∈ 2N.

Proposition 5.2.3 A TU-game (N, v) is convex if and only if the induced NTU-
game (N, V) is supermodular.

Proof Suppose that the NTU-game (N, V) induced from a TU-game (N, v) is
supermodular. Given T ∈ 2N, S ⊂ T, and i ∈ S, take any x ∈ RT such that
∑h∈S\{i} xh = v(S \ {i}), ∑h∈T\{i} xh = v(T \ {i}), and ∑h∈T xh = v(T). It
holds for V that x ∈ EV(T), xT\{i} ∈ EV(T \ {i}), xi = v(T)− v(T \ {i}) =

max{y | (y, xT\{i}) ∈ V(T)}, and xS\{i} ∈ EV(S \ {i}) ⊂ DV(S \ {i}) if S \
{i} 6= ∅. Since (N, V) is supermodular, it follows that xi ≥ 0 = v({i}). Thus if
S \ {i} = ∅, then v(T)− v(T \ {i}) ≥ v({i}) is satisfied. If S \ {i} 6= ∅, then it
follows from supermodularity of (N, V) that xS ∈ DV(S), i.e., ∑h∈S xh ≥ v(S),
and therefore

v(T)− v(T \ {i}) = xi = ∑
h∈S

xh − ∑
h∈S\{i}

xh ≥ v(S)− v(S \ {i}).

Next, suppose that a TU-game (N, v) is convex and let (N, V) ∈ Gntu
N be

the NTU-game induced by (N, v). Given A ∈ 2N, B ⊂ A, and j ∈ B, take any
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x ∈ RN such that xA ∈ EV(A), xA\{j} ∈ EV(A \ {j}), and xB\{j} ∈ DV(B \
{j}). Then ∑h∈A xh = v(A) and ∑h∈A\{j} xh = v(A \ {j}), which implies
xj = v(A) − v(A \ {j}) = max{y | (y, xA\{j}) ∈ V(A)}, and ∑h∈B\{j} xh ≥
v(B \ {j}). Since v is convex and zero-normalized, it follows that

∑
h∈B

xh = ∑
h∈B\{j}

xh + xj ≥ v(B \ {j}) + v(A)− v(A \ {j}) ≥ v(B),

which implies xB ∈ DV(B). 2

In the literature several convexity conditions of NTU-games are intro-
duced under which every marginal vector of an NTU-game is in the core of
the game and which are equivalent to convexity of TU-games. One of such
conditions is introduced by Milgrom and Shannon (1996) as strong ordinal
convexity.

Definition 5.2.4 An NTU-game (N, V) ∈ Gntu
N is strong ordinal convex if for

any S, T ∈ 2N and x ∈ RN it holds that

xS ∈ V(S), xS∩T ∈ DV(S ∩ T) and xT ∈ V(T)⇒ xS∪T ∈ V(S ∪ T).

Milgrom and Shannon (1996) shows that every marginal vector of a strong
ordinal convex NTU-game is a core element and that the NTU-game induced
from a TU-game is strong ordinal convex if the TU-game itself is convex, while
Masuzawa (2012) shows that if the NTU-game induced from a TU-game is
strong ordinal convex then the TU-game is convex. Therefore on the class
of TU-games supermodularity and strong ordinal convexity are equivalent.
The next proposition shows that strong ordinal convexity implies supermod-
ularity. An NTU-game (N, V) ∈ Gntu

N is superadditive if for any S, T ∈ 2N,
S ∩ T = ∅, and x ∈ RS∪T, it holds that xS ∈ V(S) and xT ∈ V(T) imply
x ∈ V(S ∪ T). Note that a strong ordinal convex game is superadditive.

Proposition 5.2.5 Let (N, V) ∈ Gntu
N be a strong ordinal convex NTU-game. Then

(N, V) is supermodular.

Proof Suppose (N, V) is not supermodular. For any A ∈ 2N, j ∈ A, and x ∈
EV(A) satisfying xA\{j} ∈ EV(A \ {j}). and xj = max{y | (y, xA\{j}) ∈ V(A)}
it follows from superadditivity of (N, V) and since 0 ∈ V({j}) that xj ≥ 0.
Then there exists A ∈ 2N, B ⊂ A, j ∈ B with B \ {j} 6= ∅, and x ∈ RN such
that xA ∈ EV(A), xA\{j} ∈ EV(A \ {j}), xj = max{y | (y, xA\{j}) ∈ V(A)},
xB\{j} ∈ DV(B \ {j}), and xB ∈ IV(B). Let S = A \ {j} and T = B. Since
xT ∈ IV(T), there exists x′ ∈ RN such that x′S = xS, x′j > xj, and x′T ∈ V(T).
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Then x′j > xj, x′S = xS, and xj = max{y | (y, xS) ∈ V(S ∪ {j})} imply x′S∪{j} /∈
V(S∪ {j}). Therefore, x′S ∈ V(S), x′S∩T ∈ DV(S∩ T), and x′T ∈ V(T), whereas
x′S∪T /∈ V(S ∪ T), which contradicts that (N, V) is strong ordinal convex. 2

The following example shows that supermodularity is weaker than
strong ordinal convexity.

Example 5.2.6 Consider the 4-person NTU-game (N, V) with

V({i}) = (−∞, 0] for i = 1, 2, 3, 4,

V(S) = {x ∈ RS | ∑
i∈S

xi ≤ |S|2} if |S| ≥ 2 and S 6= {2, 3, 4},

V({2, 3, 4})
= {x ∈ R{2,3,4} | x2 + x3 + x4 ≤ 9} ∪ {x ∈ R{2,3,4} | x2, x3 ≤ 0, x4 ≤ 17}.

To show that (N, V) is not strong ordinal convex, consider the payoff vector
x = (0, 0, 0, 17) and take S = {1, 2} and T = {2, 3, 4}. It holds that xS =

(0, 0) ∈ V(S), xS∩T = 0 ∈ DV(S ∩ T) and xT = (0, 0, 17) ∈ V(T), while
x /∈ V({1, 2, 3, 4}). Clearly, (N, V) is supermodular.

Hendrickx et al. (2002) introduces another notion of convexity, called
individual merge convexity, and shows that for an NTU-game satisfying this
condition all marginal vectors are core elements.

Definition 5.2.7 An NTU-game (N, V) ∈ Gntu
N is individual merge convex if it is

superadditive and for any i ∈ N, T ⊆ N \ {i}, and nonempty S ⊂ T it holds
that for any p ∈ EV(S), q ∈ V(T), and r ∈ V(S ∪ {i}) such that rS ≥ p there
exists s ∈ V(T ∪ {i}) satisfying sT ≥ q and si ≥ ri.

Hendrickx et al. (2002) proves that for a TU-game individual merge convexity
of the induced NTU-game is equivalent to convexity. The next proposition
shows that individual merge convexity implies supermodularity.

Proposition 5.2.8 Let (N, V) ∈ Gntu
N be an individual merge convex NTU-game.

Then (N, V) is supermodular.

Proof Suppose (N, V) is not supermodular. For any A ∈ 2N, j ∈ A, and
x ∈ EV(A) satisfying xA\{j} ∈ EV(A \ {j}) and xj = max{y | (y, xA\{j}) ∈
V(A)} it follows from superadditivity of (N, V) and 0 ∈ V({j}) that xj ≥ 0.
Then there exist A ∈ 2N, B ⊂ A, j ∈ B with B \ {j} 6= ∅, and x ∈ RN such
that xA ∈ EV(A), xA\{j} ∈ EV(A \ {j}), xj = max{y | (y, xA\{j}) ∈ V(A)},
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xB\{j} ∈ DV(B \ {j}), and xB ∈ IV(B). Let S = B \ {j}, T = A \ {j}, and i = j.
Since xS∪{i} ∈ IV(S ∪ {i}), there exists x′ ∈ RN such that x′T = xT, x′i > xi,
and x′S∪{i} ∈ V(S ∪ {i}). Then x′i > xi, x′T = xT, and xi = max{y | (y, xT) ∈
V(T ∪ {i})} imply x′T∪{i} /∈ V(T ∪ {i}). Since x′S = xS and xS ∈ DV(S), there

exists z ≤ x′S such that z ∈ EV(S). Take p = z, q = xT, and r = x′S∪{i}, then

p ∈ EV(S), q ∈ V(T), and r ∈ V(S ∪ {i}). Moreover, rS ≥ p, but there exists
no s ∈ V(T ∪ {i}) such that sT ≥ q and si ≥ ri, since x′T∪{i} /∈ V(T ∪ {i}),
which contradicts that (N, V) is individual merge convex. 2

The next example shows that supermodularity is weaker than individ-
ual merge convexity.

Example 5.2.9 (Example 4.5 in Hendrickx et al. (2000)) Consider the 3-person
NTU-game (N, V) with

V({i}) = (−∞, 0] for i = 1, 2, 3,

V({1, 2}) = {x ∈ R{1,2} | x1 + x2 ≤ 3},
V({1, 3}) = {x ∈ R{1,3} | x1 + x3 ≤ 2},
V({2, 3}) = {x ∈ R{2,3} | x2 + x3 ≤ 6},

V(N) = {x ∈ RN | x1

6
+

x2

10
+

x3

14
≤ 1}.

To show that (N, V) is not individual-merge convex, take p = 0 ∈ EV({2}),
q = (6, 0) ∈ V({2, 3}), and r = (3, 0) ∈ V({1, 2}), then r2 ≥ 0, but there
exists no s ∈ V({1, 2, 3}) such that s{2,3} ≥ (6, 0) and s1 ≥ 3. However,
(N, V) is supermodular. Take for example A = {1, 2, 3} and j = 3. Then
x = (x1, 3 − x1, 49

5 −
14
15 x1) satisfies x ∈ EV(A), xA\{j} ∈ EV(A \ {j}), and

xj = max{y | (y, xA\{j}) ∈ V(A)}. When B = {1, 3} and xB\{j} ∈ DV(B \ {j}),
i.e., x1 ≥ 0, then x1 + x3 = 49

5 + 1
15 x1 > 2 and therefore xB ∈ DV(B). When

B = {2, 3} and xB\{j} ∈ DV(B \ {j}), i.e., x2 ≥ 0 and therefore x1 ≤ 3, then
x2 + x3 = 3− x1 +

49
5 −

14
15 x1 = 64

5 −
29
15 x1 > 6 and therefore xB ∈ DV(B), and

so on.

5.3 Solution concept

In this section we propose a solution concept for NTU-games and discuss its
core stability. For an NTU-game (N, V) ∈ Gntu

N , let a(N, V) be the average of
the marginal vectors over all permutations, i.e.,

a(N, V) =
1
n! ∑

σ∈Π(N)

mσ(N, V).
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If (N, V) is induced by a TU-game (N, v), then a(N, V) is the Shapley value of
(N, v). In general, the vector a(N, V) may not be an allocation for the grand
coalition and if it is an allocation for the grand coalition, it may not be efficient.
For this reason we propose as solution concept the following set.

Definition 5.3.1 The solution set of an NTU-game (N, V) ∈ Gntu
N is the closure,

S(N, V), of the set

So(N, V) = {x ∈ EV(N) | x = a(N, V) + λd for some λ ∈ R and d ∈ Rn
++}.

If (N, V) ∈ Gntu
N satisfies the non-levelness condition,1 then S(N, V)

can also be defined by taking in the definition of So(N, V) any d ∈ Rn
+ instead

of taking the closure of So(N, V). In case the NTU-game (N, V) is induced
by a TU-game (N, v), then the solution set S(N, V) of (N, V) is a singleton,
the point a(N, V), being the Shapley value of (N, v). For an arbitrary NTU-
game (N, V), the solution set S(N, V) is a nonempty set and contains all payoff
vectors that are efficient allocations for the grand coalition and are obtained by
if necessary either increasing or decreasing the payoffs of the average a(N, V)

of all marginal vectors. More precisely, if a(N, V) is an efficient allocation for
the grand coalition, as is always the case for an NTU-game induced by a TU-
game or more general for an NTU-game (N, V) for which the set EV(N) of
efficient allocations for the grand coalition is a hyperplane, the solution set
S(N, V) consists of only the singleton a(N, V).

If the average of all marginal vectors a(N, V) of an NTU-game (N, V)

is an inefficient allocation for the grand coalition, e.g., when V(N) is a strictly
convex set, then the solution set S(N, V) of (N, V) is obtained by increasing
the payoffs of a(N, V) in any strictly positive direction until the payoffs be-
come efficient for the grand coalition. When in this case a(N, V) is not blocked
by any proper subcoalition, S(N, V) is precisely equal to the set of bargain-
ing solutions of the bargaining problem B(V(N), a(N, V)) with disagreement
point a(N, V) and bargaining set V(N). If the average a(N, V) of marginal
vectors is not a feasible allocation for the grand coalition, e.g., when DV(N)

is a strictly convex set, then the solution set S(N, V) is obtained by decreas-
ing the payoffs of a(N, V) in any strictly negative direction until the payoffs
become efficient for the grand coalition. For this case one may see a(N, V) as
a utopia point. In general, the solution set S(N, V) of an NTU-game (N, V)

consists of all efficient allocations for the grand coalition that are "close" to
a(N, V).

1An NTU-game (N, V) ∈ Gntu
N satisfies the non-levelness condition if for all S ∈ 2N , S 6= ∅,

x, y ∈ EV(S) and y ≥ x imply y = x.
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In Otten et al. (1998) the marginal based compromise value is intro-
duced. The marginal based compromise value, or MC-value, of an NTU-game
(N, V) ∈ Gntu

N is given by

MC(N, V) = a(N, V)max{λ ∈ R | λa(N, V) ∈ V(N)}.

In case the non-levelness condition is satisfied or if a(N, V) is a strictly posi-
tive payoff vector, then the MC-value of an NTU-game (N, V) belongs to the
solution set S(N, V).

Example 5.3.2 Consider the 2-person NTU-game (N, V) with V({i}) = (−∞,
0], i = 1, 2, and V(N) = {x ∈ R2 | x2 ≤ ε− εx1, x1 ≤ 1} ∪ {x ∈ R2 | x1 ≤
1− εx2, x1 ≥ 1} for some ε ≥ 0. For ε > 0, (N, V) satisfies the non-levelness
condition and S(N, V) consists of the average a(N, V) = (1

2 , 1
2 ε) of the two

marginal vectors m1(N, V) = (1, 0) and m2(N, V) = (0, ε). For ε = 0, (N, V)

does not satisfy the non-levelness condition and S(N, V) is still a singleton, be-
ing the average a(N, V) = (1

2 , 0) of the two marginal vectors m1(N, V) = (1, 0)
and m2(N, V) = (0, 0). For ε > 0 it holds that MC(N, V) = (1

2 , 1
2 ε) = a(N, V),

while for ε = 0, MC(N, V) = (1, 0), being the marginal vector m1(N, V).
For any ε ≥ 0, both vectors a(N, V) and MC(N, V) are elements of the core
C(N, V) of (N, V), also for ε = 0. Notice that the MC-value is not continuous
in the parameter ε when ε converges to zero.

Example 5.3.3 Consider the 2-person NTU-game (N, V) with V({i}) = (−∞,
0], i = 1, 2, and V(N) = {x ∈ R2 | x1 ≤ 1, x2 ≤ ε} for some ε ≥ 0. (N, V) does
not satisfy the non-levelness condition for any ε ≥ 0. For ε > 0, S(N, V) =

{x ∈ R2 | max{εx1, x2} = ε, x1 ≥ 1
2 , x2 ≥ 1

2 ε}. This set contains the MC-
value of (N, V), MC(N, V) = (1, ε). As in the previous example, for ε = 0,
S(N, V) consists of the singleton payoff vector a(N, V) = (1

2 , 0), being the
average of the two marginal vectors m1(N, V) = (1, 0) and m2(N, V) = (0, 0),
and MC(N, V) = (1, 0), being the marginal vector m1(N, V). For any ε ≥ 0,
every payoff vector in S(N, V) and also MC(N, V) are elements of the core of
(N, V), also for ε = 0. Notice that in this game the MC-value is continuous in
the parameter ε.

Above we showed that under supermodularity it holds that all marginal
vectors of an NTU-game belong to the core and therefore are feasible alloca-
tions for the grand coalition and cannot be blocked by any coalition. However,
because for an NTU-game the core may not be a convex set, it is not guaran-
teed that under supermodularity the average of all marginal vectors is also
feasible for the grand coalition or cannot be blocked by any coalition.
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For an NTU-game (N, V) ∈ Gntu
N , let

V∗(N) := {x ∈ V(N) | xS /∈ IV(S), ∀ S ∈ 2N \ {N}}

be the set of allocations for the grand coalition that cannot be blocked by any
proper subcoalition. If (N, V) is supermodular, then every marginal vector
mσ(N, V) belongs to V∗(N).

Assumption 5.3.4 For an NTU-game (N, V) ∈ Gntu
N , it holds that for every

x, y ∈ V∗(N), α ∈ [0, 1], and d ∈ RN
++ there exists λ ∈ R such that αx + (1−

α)y + λd ∈ V∗(N).

Notice that this assumption is automatically satisfied if the NTU-game
(N, V) is induced by a TU-game (N, v) because V∗(N) is in that case a convex
set. Assumption 5.3.4 means that if a convex combination of two allocations
for the grand coalition that cannot be blocked by any proper subcoalition, is
also an allocation for the grand coalition and is blocked by some proper sub-
coalition, then the payoffs can be increased in any strictly positive direction
to obtain an allocation for the grand coalition that cannot be blocked by any
proper subcoalition. And, if the convex combination is not an allocation for
the grand coalition, then the payoffs can be decreased in any strictly negative
direction to obtain an allocation for the grand coalition that cannot be blocked
by any proper subcoalition.

Roughly the assumption requires that the payoff set V(N) for the grand
coalition is "not less" convex, or its complement RN \V(N) is "not more" con-
vex, than the payoff set V(S) (or its complement) of any proper subcoalition
S.

Lemma 5.3.5 Suppose that for an NTU-game (N, V) ∈ Gntu
N it holds that V(N)

is a convex set and that for every S ∈ 2N \ {N} the complement of V(S), the set
RS \V(S), is a convex set. Then (N, V) satisfies Assumption 5.3.4.

Proof Take any x and y in V∗(N) and α, 0 < α < 1. Since x and y are in V(N)

and V(N) is convex, it holds that z = αx + (1− α)y is also in V(N). Take any
S ∈ 2N \ {N}. Both xS and yS belong to DV(S). Since DV(S) is the closure of
RS \ V(S) and the latter set is convex, it holds that the vector zS belongs also
to DV(S), and therefore zS /∈ IV(S). Consequently, z ∈ V∗(N). 2

Notice that the condition in the lemma is automatically satisfied if the
NTU-game (N, V) is induced by a TU-game (N, v). In fact, in the lemma we
prove that under that condition the set V∗(N) of an NTU-game (N, V) is a
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convex set. If (N, V) is also supermodular, then this implies that the payoff
vector a(N, V) belongs to V∗(N). Then a(N, V) is either an element of the
core or an inefficient allocation for the grand coalition that is not blocked by
any proper subcoalition. In the latter case there exists into any strictly posi-
tive direction from a(N, V) a unique allocation which is efficient for the grand
coalition and is therefore an element of the core.

An example of the condition in Lemma 5.3.5 is when there exists neg-
ative externality between players except for the grand coalition, which is re-
flected by the convexity of the complements of the payoff sets of the proper
subcoalitions and the convexity of the payoff set of the grand coalition.

Assumption 5.3.4 implies that the projection of the core on any hyper-
plane with strictly positive normal vector is a convex set. To show this, define
for any vector d ∈ RN

++ and real number c the projection mapping Pd,c on the
hyperplane Hd,c = {x ∈ RN| ∑n

i=1 xidi = c}, i.e., for any S ⊆ RN

Pd,c(S) = {x ∈ Hd,c| x = y + λd for some λ ∈ R and y ∈ S}.

Lemma 5.3.6 For any NTU-game (N, V) which satisfies Assumption 5.3.4 it holds
that Pd,c(C(N, V)) is a convex set for all d ∈ RN

++ and c ∈ R.

Proof Take any d ∈ RN
++, c ∈ R, and u, w ∈ Pd,c(C(N, V)). It is to show that

for all α ∈ [0, 1] it holds that z = αu + (1− α)w ∈ Pd,c(C(N, V)). It follows
that z ∈ Hd,c because

n

∑
i=1

zidi = α(
n

∑
i=1

uidi) + (1− α)(
n

∑
i=1

widi) = αc + (1− α)c = c.

Since u, w ∈ Pd,c(C(N, V)), there exist x, y ∈ C(N, V) and µ, ν ∈ R such that
u = x + µd and w = y + νd. Since x, y ∈ V∗(N) and d ∈ RN

++, by Assumption
5.3.4 there exists λ ∈ R such that s = αx + (1− α)y + λd ∈ V∗(N). Therefore,
there exists β ≥ λ such that t = αx + (1 − α)y + βd ∈ C(N, V). Hence,
t = z + γd, where γ = β− αµ− (1− α)ν. This implies that z ∈ Pd,c(C(N, V)).

2

Theorem 5.3.7 For any supermodular NTU-game (N, V) ∈ Gntu
N satisfying As-

sumption 5.3.4, the solution set S(N, V) is a nonempty subset of the core C(N, V).

Proof For an NTU-game (N, V) it holds that S(N, V) is nonempty. Take first
any x ∈ So(N, V). Then x ∈ EV(N) and x = a(N, V) + λd for some λ ∈ R

and d ∈ RN
++. Take c = d>a(N, V), then a(N, V) is the projection of x on Hd,c.
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For σ ∈ Π(N), let pσ(N, V) = mσ(N, V)− λσd be the projection of mσ(N, V)

on Hd,c, then

a(N, V) =
1
n! ∑

σ∈Π(N)

(pσ(N, V) + λσd) =
1
n! ∑

σ∈Π(N)

pσ(N, V) +
1
n! ∑

σ∈Π(N)

λσd.

Pre-multiplying by the vector d yields ∑σ∈Π(N) λσ = 0 because it holds that
d>d > 0, d>a(N, V) = c, and d>pσ(N, V) = c for all σ ∈ Π(N). This implies
that

a(N, V) =
1
n! ∑

σ∈Π(N)

pσ(N, V).

Since for all σ ∈ Π(N) it holds that pσ(N, V) ∈ Pd,c(C(N, V)), it follows from
Lemma 5.3.6 that a(N, V) is an element of Pd,c(C(N, V)). Hence, there exists
y ∈ C(N, V) such that y = a(N, V) + µd for some µ ∈ R. Since d is a strictly
positive vector and x = a(V) + λd ∈ EV(N), it holds that µ = λ and therefore
x ∈ C(N, V). This implies So(N, V) ⊆ C(N, V). Since S(N, V) is the closure
of So(N, V) and the core C(N, V) is a closed set, it follows that S(N, V) ⊆
C(N, V). 2

A particular element of the solution set S(N, V) of an NTU-game (N, V)

∈ Gntu
N is the payoff vector e(N, V) = a(N, V) + λ∗(1, . . . , 1)>, where λ∗ is the

unique real number such that a(N, V) + λ∗(1, . . . , 1)> is an element of EV(N).
If λ∗ 6= 0, then every player receives the same amount of payoff more (or less)
than at a((N, V) and the solution can be considered as a kind of egalitarian
solution.

In case the average of all marginal vectors of an NTU-game (N, V) is an
inefficient allocation for the grand coalition and is not blocked by any proper
subcoalition, i.e., the solution set S(N, V) is the bargaining set of the bargain-
ing problem B(V(N), a(N, V)), one may also consider the Nash bargaining so-
lution of the bargaining problem as a single-valued solution, see Nash (1950).
The Nash bargaining solution is always an element of the solution set S(N, V)

and is therefore also an element of the core. Also any other solution of the bar-
gaining problem B(V(N), a(N, V)) is an element of the solution set S(N, V),
like the Raiffa-Kalai-Smorodinsky bargaining solution (Raiffa (1953) and Kalai
and Smorodinsky (1975)).
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