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Chapter 1 

Introduction* 

 

 

 

 

 

 

In educational measurement, multiple test forms are often constructed to 

measure the same construct to prevent item disclosure and maintain fairness. 

To make accurate comparisons of results, different test forms are created with 

as equal content and psychometric properties as possible. However, it is 

unlikely the test forms will be perfectly comparable. Therefore, score 

differences between test forms can be attributed either to differences in 

difficulty of the test forms or to differences in proficiency of the examinees. 

Equating and linking procedures can be used to disentangle differences 

between test form difficulty and differences between the proficiency of 

examinees (von Davier, 2013) so that scores on different test forms can be used 

interchangeably (see Angoff, 1971; Holland & Rubin, 1982; Kolen & Brennan, 

2004). Multiple data collection designs can be considered for collecting data to 

be used for linking. Choosing one type of data collection design over another 

depends on practical and statistical limitations. For example, differential 

student motivation for test taking needs to be considered when choosing a data 

collection design (Holland & Wightman, 1982). Differential motivation refers to 

the difference with respect to test-taking motivation that exists between high-

                                                 
* This chapter will be published as: Mittelhaëuser, M., Béguin, A. A., & Sijtsma, K. (in press). 

Selecting a data collection design for linking in educational measurement: Taking differential 

motivation into account. In R. E. Millsap, L. A. van der Ark, D. M. Bolt, & W.-C. Wang (Eds.), 

New Developments in quantitative psychology: Presentations from the 78th Annual Psychometric 

Society Meeting. New York: Springer. 
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stakes and low-stakes administration conditions. In a high-stakes 

administration condition, an examinee is expected to work harder and strive 

for maximum performance, whereas a low-stakes administration condition 

elicits typical, rather than maximum, performance. Even though essentially all 

data collection designs are effective when all examinees are sufficiently 

motivated, the way in which data collection designs are typically implemented 

in practice results in some data collection designs being more robust against 

the effect of differential motivation than others. 

In this introduction, we first discuss differential motivation, followed by 

an overview and discussion of the robustness of linking procedures against the 

effect of differential motivation for five well-known types of data collection 

designs. Then, an example is used to highlight the need to consider differential 

motivation when choosing a data collection design for linking. 

Differential Motivation 

Researchers often implicitly assume that a test score is a valid indicator of an 

examinee’s best effort (Wolf & Smith, 1995). However, accumulated evidence 

shows that if item performance does not contribute to the test score or if no 

feedback is provided, examinees may not give their best effort (Kiplinger & 

Linn, 1996; O’Neill, Sugrue, & Baker, 1996; Wise & DeMars, 2005). Unusual 

patterns of item scores or under-performance are common for low-stakes 

administration conditions. Within the item response theory (IRT) framework, 

unusual item-score patterns and under-performance threaten the correct 

estimation of examinee proficiency and item parameters (Béguin & Maan, 

2007). For example, Mittelhaëuser, Béguin, and Sijtsma (2011) found that, 

compared to using common items administered in a high-stakes condition, 

using common items administered in a low-stakes condition to link two high-

stakes tests yielded different conclusions about the proficiency distributions. 

 Many studies have focused on preventing, detecting, or correcting the 

effect of differential motivation. For example, Wise and Kong (2005) pointed 

out that the effort an examinee devotes to an item may vary throughout the 

test. Furthermore, Wolf, Smith, and Birnbaum (1995) found that the effect of 

the administration condition on test performance differs substantially for 

different groups of items. In particular, items scoring highly on perceived 

difficulty or items considered mentally taxing were more affected by a 

difference in administration condition. Despite the growing knowledge of 

differential motivation, in practice, the effect differential motivation has on 
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data is hard to detect and correct. Reise and Flannery (1996) address this 

problem by stating, ‚Typical performance tests are usually not taken as 

seriously by examinees as are maximum performance measures. < which is 

potentially more damaging to the measurement enterprise than any of the 

other so-called ‘response biases’‛ (ibid., p. 12). Since differential motivation 

might threaten the correct estimation of examinee proficiency and item 

parameters, thereby threatening the link between two test forms, differential 

motivation has to be taken into account when choosing a data collection design 

for linking. 

Data Collection Designs 

This section provides an overview of five well-known types of data collection 

designs suitable for linking and addresses the robustness of linking procedures 

and the way data collection designs are typically implemented in practice 

against the effect of differential motivation. A detailed description of these data 

collection designs and a discussion of the general advantages and 

disadvantages can be found in equating literature (see, e.g., Béguin, 2000; 

Kolen & Brennan, 2004; Scheerens, Glas, & Thomas, 2003; Von Davier, Holland 

& Thayer, 2004). A distinction is made between data collection designs in 

which the tests to be linked are administered to equivalent groups (i.e., single-

group design or equivalent-groups design) or to non-equivalent groups (i.e., 

common-item non-equivalent groups design, pre-test design or linking-groups 

design). Symbolic representations of the data collection designs are presented 

in Figure 1.1 through Figure 1.5 in the form of person-by-item matrices. Rows 

correspond to examinee data and columns to item data. Shaded areas represent 

combinations of items and examinees for which data are available. Blank areas 

represent combinations of items and examinees for which no data are available. 

The ordering of the items presented in the figures does not necessarily 

correspond to the ordering of items in the test form. Furthermore, sample sizes 

are not proportional to the sizes of the shaded and blank areas in the figures. 

Single-group or equivalent-groups designs 

The first data collection design is the single-group design (Figure 1.1). Both test 

forms are presented to a single group of examinees. An important assumption 

is that the proficiency of examinees does not change from one test form to the 

next. By assuming that the proficiency of examinees does not change, score 
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Figure 1.1 the single-group design 

 

differences between the two test forms can be attributed to differences in test 

form difficulty. Differential motivation should not pose a problem when using 

this data collection design if both test forms are administered under the same 

(high-stakes) conditions. However, if Test I is administered in a condition 

where the stakes are higher than in the administration condition of Test II, 

score differences between the test forms, due to differences in administration 

conditions, will be attributed to differences in test difficulty, resulting in 

overestimation of the difficulty of Test II. 

 The equivalent-groups design (Figure 1.2) is a variation on the single-

group design in which each test form is administered to separate, non-

overlapping groups of examinees. An important assumption is that the groups 

are randomly equivalent. By assuming that the groups are randomly 

equivalent, score differences between the two test forms can be attributed to 

differences in test form difficulty. Similar to the single-group design, 

differential motivation should not pose a problem if both tests are 

administered under the same (high-stakes) conditions. However, if Test I is 

administered in a condition where the stakes are higher than in the 

administration condition of Test II, overestimation of the difficulty of Test II is 

likely. 

 Kolen and Brennan (2004, pp. 17-19) give an empirical example of 

differential motivation in a (supposedly, counterbalanced) single-group design. 

They describe how a dataset collected according to a single-group design was 

used to scale an old test form and a new test form of the Armed Services 

Vocational Aptitude Battery (ASVAB) (Maier, 1993). It appeared that many 

examinees were able to distinguish the items of the old test form and the new 

test form. Furthermore, many examinees were aware that only the items of the 

old test form were used to determine the score that was employed for selection 

purposes. Therefore, examinees were more motivated to answer the items of 

the old test form than the items of the new test form. This difference in stakes 

between the items from the old test form and items from the new test form  
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Figure 1.2 the equivalent groups design 

 

resulted in high scores on the new test form, resulting in an estimated 350,000 

individuals entering the military between January 1, 1976 and September 30, 

1980 who should have been judged ineligible. 

Non-equivalent groups designs 

In non-equivalent groups designs, examinees taking different test forms are 

assumed to be drawn from different populations. These designs are especially 

useful when it is unrealistic to assume random equivalence of examinee 

groups. For example, in educational measurement, the proficiency level of 

examinee groups may differ. Data in non-equivalent groups designs are 

collected from the administration of two non-overlapping test forms to two 

different groups. The data contain no information to disentangle the 

differences in test form difficulty and the differences in examinees’ proficiency. 

Therefore, non-equivalent groups designs must be ‘linked’. Using the common-

item non-equivalent groups design, pre-test design or linking-groups design 

will establish the link in three different ways. 

 The common-item non-equivalent groups design (Figure 1.3) is the most 

frequently used data collection design for equating test results across programs 

and testing organizations (von Davier, 2013). In this data collection design, test 

forms are administered to non-overlapping and non-equivalent groups of 

examinees. Both groups, or samples of both groups, are administered an 

additional set of common items, which are often referred to as anchor items. 

Since the anchor items are the same across different groups of examinees, the 

difference in difficulty between the two test forms can be identified from the 

relative performance of both groups on the anchor items. The common-item 

non-equivalent groups design has two variations, one using an internal anchor 

and the other using an external anchor (Kolen & Brennan, 2004, p. 19). When 

using an internal anchor, the score on the anchor items counts towards the 

score on the test form, whereas using an external anchor, the score on the 
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Figure 1.3 the common-item non-equivalent groups design 

 

anchor items does not count towards the score on the test form. In an internal-

anchor design, the test form and anchor items are administered under the same 

(high-stakes) administration conditions, and differential motivation should not 

pose a problem when using this data collection design. Whether differential 

motivation poses a problem to the external-anchor design depends on the way 

the design is implemented in practice. 

 First, differential motivation might be a problem when using an external 

anchor design if examinees can distinguish which items count towards the 

score on the test form (i.e., items belonging to the test form) and which items 

do not (i.e., items belonging to the external anchor). If external anchor items are 

administered as a separately timed test section, examinees are most likely 

aware that the scores on these items do not count towards their score on the 

test form and differential motivation is likely to have an effect. However, if 

external anchor items are administered at the same time as the test form and 

examinees are not able to distinguish which items count towards the score on 

the test form, differential motivation will most likely not pose a problem. 

Second, differential motivation might be a problem when its effects are 

unequal between the two populations that are administered the external 

anchor items. If the effects are equal, differential motivation does not pose a 

problem and the linking result is unbiased. To see this, one may notice the 

following. In the common-item non-equivalent groups design the difference in 

difficulty between the test forms is estimated in two steps. First, the difference 

in proficiency between the populations is estimated from the relative 

performance of both populations on the anchor items. Second, the difference in 

difficulty of the forms is determined based on the relation between the anchor 

items and the items of the test forms. If the effect of differential motivation is 

equal among the populations administered the external anchor items, the 

difficulty of the external anchor items is overestimated, but the relative 
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Figure 1.4 the pre-test design 

 

performance of both populations on the external anchor items represents the 

true difference between population proficiency; hence, the linking result is 

unbiased. 

 In the pre-test design (Figure 1.4), different subgroups are administered 

one of the test forms (Test I), and each subgroup receives a different additional 

subset of items intended for use in the new test form (Test II). In this way, 

items can be pre-tested to examine their psychometric properties before 

including them in a test form, here Test II. The score on the pretest items 

usually does not count towards the score on the test form, since their 

psychometric properties are unknown at the time of administration. The 

number of items administered together with Test I is often relatively small to 

maintain the security of items in the new form (Béguin, 2000). The pretest items 

should be administered in such a way that the examinees cannot distinguish 

between the pretest items and the items of the actual test form. In this case, 

differential motivation should not have an effect on the linking result. 

However, examinees might be able to distinguish the items of the actual test 

form and the pretest items, for example, when the pretest items are 

administered as a separately timed test section. In this case, differential 

motivation results in an overestimation of the differences in proficiency 

between the two test forms. 

 An application of the pre-test design can be found in the standard-

setting procedure for the Swedish Scholastic Aptitude Test (SweSat; Emons, 

1998; Scheerens et al., 2003). The additional items do not count towards an 

examinee’s score and examinees are not aware of which items do not belong to 
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Figure 1.5 the linking-groups design 

 

the actual examination, thereby guaranteeing the same level of motivation of 

the examinees on both the SweSat items and the items that are pre-tested. 

 Using the linking-groups design (Figure 1.5), a link can be established 

between the test forms by means of linking groups (Béguin, 2000; Scheerens et 

al., 2003). Linking groups consists of examinees who do not participate in the 

actual administration of Test I and Test II but are administered subsets of items 

from both test forms. Since these examinees are administered subsets of items 

from both test forms, the difference in difficulty between the two test forms can 

be estimated from the relative performance of the linking groups on the subsets 

of items from Test I and Test II. Differential motivation should not pose a 

problem if the subsets of items are administered to the linking groups in the 

same (high-stakes) condition as Test I and Test II. If linking groups are 

administered the items in a lower-stakes condition than Test I and Test II, 

differential motivation does not necessarily pose a problem. If the effects of 

differential motivation within the linking groups are equal among the subset of 

items from Test I and Test II, the linking result is unbiased. To see this, one 

may notice that if the effects of differential motivation are equal among the 

subsets of items, the relative performance of the linking groups on the subsets 

of items from Test I and Test II remains the same and the linking result is 

unbiased. 

Example: 

Linking mathematics tests using different data collection designs 

This section introduces the mathematics scales of the ‘End of Primary School 

Test’ (Eindtoets Basisonderwijs) and the different data collection designs that 
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can be used for linking the mathematics scales of the End of Primary School 

Test 2011 and the End of Primary School Test 2012. The linking results obtained 

using different data collection designs are compared. 

End of Primary School Test 

The End of Primary School Test is administered each year at the end of Dutch 

primary education to give students, their parents, and their school advice 

about the type of secondary education most appropriate for the student. Each 

year, approximately 80 percent of all primary schools in The Netherlands 

participate in the test. Even though the advice provided by the End of Primary 

School Test is not binding, almost all students consider the test high-stakes. 

This is caused by social- and parental pressure and ample media attention. In 

addition, some more selective secondary schools use the test scores as part of 

their admission requirements. Item secrecy is vital; hence, the test form is 

renewed each year. The test forms of 2011 and 2012 each contained 60 

mathematics items. 

Method 

 Data. Samples of students were used to link the mathematics scales. The 

samples contained 4841 students for the 2011 test form and 5150 students for 

the 2012 test form. 

 Data were available to establish the link between the mathematics scales 

using either an equivalent-groups design (Figure 1.2), a common-item non-

equivalent groups design (Figure 1.3) with either an internal or external 

anchor, a pre-test design (Figure 1.4) or a linking-groups design (Figure 1.5). 

When using the equivalent-groups design to link the mathematics scales, it was 

assumed that the samples of 2011 and 2012 were randomly equivalent when 

estimating the item parameters. Therefore, the differences between the 

proficiency distributions of the 2011 and 2012 samples did not have to be 

estimated. 

 The common-item non-equivalent groups design could be applied to the 

mathematics scales in two ways, since both an internal anchor and an external 

anchor were available. When using internal anchor items, samples of students 

were administered a different test form, which in both cases included 20 

anchor items and 40 items from the test form. The anchor items count towards 

the final score on the End of Primary School Test and students were not aware 

that they had been presented an alternative test form. Therefore, differential 

motivation was not expected to pose a problem. The internal anchor items 
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were administered to 3027 and 2708 students in 2011 and 2012, respectively. 

The external anchor items were administered in a low-stakes condition as a 

separately timed test. Schools often use this set-up as an additional 

measurement of proficiency in preparation for the End of Primary School Test. 

The external anchor test was administered in the same month as the End of 

Primary School Test. The external anchor test, consisting of 50 mathematics 

items, was administered to 1696 and 1756 examinees in 2011 and 2012, 

respectively. 

 To pre-test the mathematics items intended for use in the End of 

Primary School Test 2012, 22 pre-test booklets (ranging from 28 to 62 items) 

were administered in 2011 approximately two to three weeks before the 

administration of the End of Primary School Test 2011. The number of students 

who were administered the pre-test booklets ranged from 244 to 347. Since the 

same pre-test items were administered in more than one pre-test booklet, the 

number of observations per item was larger, ranging from 276 to 976. The pre-

test booklets were administered in a low-stakes condition. Similar to the 

common-item non-equivalent groups design, the link was established for the 

2011 and 2012 samples. 

 Subsets of items intended for use in the End of Primary School Test 2011 

or the End of Primary School Test 2012 were pre-tested on different samples of 

students to examine the psychometric properties of the items. These samples of 

students could be used as linking groups in a linking-groups design. Twenty 

pre-test booklets (ranging from 27 to 63 items) were administered in 2010 

approximately two to three weeks before the administration of the End of 

Primary School Test 2010. The number of students who were administered the 

pre-test booklets ranged from 150 to 349. Since the same pre-test items were 

administered in more than one pre-test booklet, the number of observations per 

item was larger and ranged from 194 to 692. The pre-test booklets were 

administered in a low-stakes condition. 

 Analyses. Marginal maximum likelihood estimates of the proficiency 

distributions of the students who were administered the 2011 or 2012 test 

forms were obtained using the Rasch model (Rasch, 1960). According to the 

Rasch model, the probability of passing an item i for student j is a function of 

proficiency parameter    and can be given by 

 (     |  )  
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where    is the difficulty parameter of item i. OPLM software was used to 

estimate the Rasch model (Verhelst, Glas, & Verstralen, 1995). The differences 

in mean proficiency of the 2011 and 2012 samples were compared between the 

different data collection designs used. Students’ t-tests were used to determine 

whether mean proficiency of the samples of 2011 and 2012 differed 

significantly. Cohen’s d was used to assess the effect size (Cohen, 1988). 

 It may be argued that the Rasch model properties of unidimensionality, 

nonintersecting response curves, and a zero lower asymptote may not be 

appropriate for the data sets investigated here. However, Béguin (2000) 

showed that the procedure involving the Rasch model for equating the 

examinations in the Netherlands is robust against violations of 

unidimensionality and guessing. We assumed that this result could be 

generalized to our data and that the use of the Rasch model was appropriate. 

To investigate whether this assumption wasvalid, the data analysis was 

repeated on item sets from which items that did not fit the Rasch model were 

removed. 

Results 

Table 1.1 shows the estimated proficiency means of the mathematics scales of 

the End of Primary School Test 2011 and 2012. For all data collection designs, 

the mean proficiency of the population presented with the 2012 test form was 

higher than the population presented with the 2011 test form. All effects were 

significant at a .01 level, but the effect size is considered to be very small when 

using the common-item non-equivalent groups designs or the linking-groups 

design, and medium when using the pre-test design (Cohen, 1988). It appears 

as if differential motivation has a noticeable effect on the resulting link when 

using a pre-test design with link items administered in a low-stakes condition. 

 Item misfit was investigated using Infit and Outfit statistics (Wright & 

Masters, 1982) available in the eRm package in R (Mair, Hatzinger, & Maier, 

2010). In scale construction, items having an Infit Mean Square value or Outfit 

Mean Square value outside the range of 0.5–1.5 (Linacre, 2002) are usually not 

selected. Items of the End of Primary School Test and the internal anchor had 

Outfit Mean Square and Infit Mean Square statistics between 0.5 and 1.5, 

indicating that the Rasch model was consistent with these items (Linacre, 2002). 

Among the external anchor items, one item had an Outfit Mean Square statistic 

of 2.031. From the 467 items, which were pre-tested in 2011 and used to link the 

test forms according to a pre-test design, 14 items had an Outfit Mean Square  
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Table 1.1 Estimated proficiency distributions using different data collection designs 

Data collection design Population N M SD Cohen’s d/ Sign. 

Student’s t 

Common-item internal 2011 

2012 

4,841 

5,150 

1.232 

1.306 

1.038 

1.064 

0.07 / ** 

Common-item external 2011 

2012 

4,841 

5,150 

1.133 

1.208 

1.037 

1.062 

0.07 / ** 

Pre-test design 2011 

2012 

4,841 

5,150 

0.050 

0.547 

1.036 

1.061 

 0.47 / ** 

Linking-groups design 2011 

2012 

4,841 

5,150 

1.176 

1.303 

1.037 

1.062 

0.12  / ** 

** p < .01 

 

statistic higher than 1.5. A total of 516 items were pre-tested in 2010 and used 

to link the test forms according to a linking-groups design, of which 15 items 

had an Outfit Mean Square statistic higher than 1.5. Given the total number of 

items, the small numbers of misfitting items indicate that the Rasch model is 

consistent with these datasets. Deleting the misfitting items in the different 

data collection designs led to the same conclusion, which is the overestimation 

of the difference in proficiency distributions when using a pre-test design. 

Discussion 

Empirical data analyses illustrate the potential effect of differential motivation 

on results of linking using different data collection designs. Since there is no 

reason to assume that differential motivation affects the linking result when 

using a common-item non-equivalent groups design with an internal anchor, 

the different linking results can be compared with the linking result of this data 

collection design. The results suggest that the equivalent-groups design is not 

appropriate for linking both test forms of the End of Primary School Test, since 

there is a small, although significant difference in proficiency distributions 

between the samples who were presented either the 2011 or the 2012 test form. 

Even though students were aware that the items of the external anchor test did 

not count towards the score on the End of Primary School Test, both common-
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item non-equivalent groups designs provide the same result. The most likely 

explanation for this result is that the effects of differential motivation are 

approximately equal for both populations administered the external anchor 

test, which leads to the unbiased estimation of the difference between the 

proficiency of both populations. The same explanation is likely for the linking-

groups design, on the basis of which the same conclusion has to be drawn as 

for both common-item non-equivalent groups designs. Even though all types 

of data collection designs led to the conclusion that the mean proficiency of the 

population presented with the 2012 test form was significantly higher 

compared to the population presented with the 2011 test form, the effect size 

when using the pre-test design was larger compared to the other data 

collection designs. Using a pre-test design with linking items administered in a 

low-stakes administration condition produced differential motivation causing 

an overestimation of the difference in proficiency distributions, which is 

consistent with expectation. 

 All data collection designs may be effective provided all students are 

sufficiently motivated. However, the way in which data collection designs are 

typically implemented in practice results in some data collection designs being 

more robust against the effect of differential motivation than others. The 

conclusions with respect to the different data collection designs can therefore 

only be generalized to the extent that data collection designs are implemented 

in the same way as they were implemented for the End of Primary School Test. 

To illustrate this, the link items used in the external anchor design, pre-test 

design and linking-groups design are administered as separately timed tests in 

low-stakes conditions. The differences between the data collection designs with 

respect to the estimated proficiency distributions will undoubtedly be 

negligible if the link items are administered in high-stakes conditions. 

Furthermore, we expect that administering the link items in a low-stakes 

condition at the same time as the End of Primary School Test with students 

being able to distinguish link items and items from the test form, results in 

larger differences between the data collection design with respect to the 

estimated proficiency distributions. To see this, one may notice that under 

these circumstances the difference in performance on the link items and the 

items from the test form is expected to be larger, since students are likely more 

inclined to spend effort on answering items correctly from the test form than 

the link items. 
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 The question that remains is how the effect of differential motivation can 

be modeled. For example, when items are administered in a low-stakes 

administration condition, is it possible to classify item-score vectors as either 

resulting from motivated or unmotivated performance? If this is true, a mixture 

IRT model with latent classes might be useful for linking high-stakes tests 

when differential motivation is known to have an effect (Mittelhaëuser, Béguin, 

& Sijtsma, 2013). Alternatively, examinees might be motivated to a certain 

degree to answer items correctly in which case a multidimensional IRT model 

(Embretson & Reise, 2000; Reckase, 2009) might be useful. Furthermore, 

person-fit methods (e.g., Meijer & Sijtsma, 2001) may be used to investigate 

how differential motivation affects the individual item-score vector. Since the 

results suggest that differential motivation has an effect on the linking result in 

different data collection designs, using methods that produce greater insight 

into the effect differential motivation has on linking tests administered in a 

high-stakes condition is valuable for measurement practice and measurement 

research. 

Outline of the thesis 

This thesis focuses on modeling the effect of students’ differential motivation 

on linking in educational measurement. I evaluated the performance of the 

mixture Rasch model using a simulation study and real-data applications. 

Additionally, the performance of person-fit methods was evaluated using real-

data applications. Each chapter in this thesis was written as a research article. 

Each chapter can be read independently of the other chapters. As a result, the 

chapters show some overlap, particularly with respect to the introduction of 

concepts, definitions and notation. 

In Chapter 2, I investigated whether the use of the mixture Rasch model 

helps to diminish the effect of differential motivation on linking two 

operational versions of the End of Primary School Test. In Chapter 3, I 

simulated differential motivation between the stakes for operational tests and 

anchor items and investigated whether linking of the operational tests by 

means of the Rasch model produces an invalid linking result. Additionally, the 

performance of the mixture Rasch as a method for modeling simulated 

differential motivation was evaluated. In Chapter 4, I explored to what extent a 

mixture Rasch model and the well-known    person-fit statistic could be used 

to model motivational differences in data administered in a low-stakes 

administration condition. In Chapter 5, I used person-fit methods to investigate 
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the difference between responding in low-stakes and high-stakes 

administration conditions with respect to test performance and response 

consistency. In the epilogue, I will reflect on the decisions underlying the 

operationalization and the modeling of differential motivation.  
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Chapter 2 

Mixture Rasch Modeling of Differential 

Motivation in IRT Linking* 

Abstract 

The way in which data collection designs used for linking are usually 

implemented in practice, might make some data collection designs more robust 

against the effect of differential motivation compared to others. Data from a 

Dutch testing program were used to investigate whether the differences in 

estimated proficiency distributions between two operational tests differed 

between data collection designs with anchor items administered in low-stakes 

conditions on the one hand and data collection designs with anchor items 

administered in high-stakes conditions on the other hand. Some data collection 

designs were found to be more robust against the effect of differential 

motivation than others. Specifically, the pre-test design resulted in a substantial 

overestimation of the difference between the estimated mean proficiency of the 

populations administered the operational tests. The effect of differential 

motivation in the pre-test design was controlled for by using a mixture Rasch 

model to link the operational tests. Removing items displaying DIF between 

high-stakes and low-stakes administration conditions did not improve the 

linking result. 

  

                                                 
* This chapter has been submitted for publication 
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Many testing programs use a new test form at each major administration to 

maintain fairness and prevent item disclosure (Holland & Rubin, 1982). The 

test forms may differ with respect to difficulty and, as a result, scores on 

different test versions may not be directly comparable. Several procedures such 

as linking, scaling, and equating develop a common metric between test forms 

(e.g., see Kolen & Brennan, 2004). A frequently used data collection design for 

linking in educational testing is the common-item non-equivalent groups 

design. In this design, two different test forms are administered in two 

different populations, for example, sixth-grade primary-school students in two 

successive years, and both test forms are linked by means of common items 

(i.e., anchor items). In an educational testing context, the common-item non-

equivalent groups design is often eligible, since usually it cannot be assumed 

that populations are equivalent. For example, the proficiency level of students 

may change from year to year, producing populations that vary by proficiency 

level. The common-item non-equivalent groups design can produce a common 

scale, which enables direct comparison of scores over test forms. The test forms 

to be linked and the common items are henceforth referred to as operational 

test forms and the anchor items, respectively. 

The validity of the linking result depends on whether the anchor items 

measure the same construct as the operational tests (Klein & Jarjoura, 1985). In 

an item response theory (IRT) context, this means that the anchor items and the 

operational test forms measure the same latent proficiency and are consistent 

with the same IRT model. The validity of the linking result might be threatened 

by the effect of differential motivation. Differential motivation refers to the 

difference in test-taking motivation that exists between high-stakes and low-

stakes administration conditions. In a high-stakes administration condition, a 

student is expected to work harder and strive for maximum performance, 

whereas a low-stakes administration condition elicits typical, rather than 

maximum, performance. Empirical evidence for the effect of differential 

motivation was provided by Wise and DeMars (2005), who found that students 

might not give their best effort in low-stakes assessment, when they know they 

receive neither grades nor credit for their performance. In practice, testing 

programs may use anchor items administered in low-stakes administration 

conditions to link operational tests administered in high-stakes conditions 

(Wise & Kong, 2005). This difference between administration conditions may 

result in unusual patterns of item scores or in relatively meagre performance 

on the anchor items, and the effect may introduce bias in the linking procedure. 
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 A mixture IRT model may be used to test whether, compared to the 

high-stakes operational test, the low-stakes condition of the anchor items 

differently affects some of the item-score vectors (i.e., the vector of item scores 

a student has produced). Mixture IRT models assume that the data are a 

mixture of different data sets from two or more latent populations (Rost, 1997; 

Von Davier & Yamamoto, 2004), also called latent classes, in which populations 

perform differently on the test items. If this assumption is correct, a particular 

IRT model does not hold for the entire population, but different model 

parameters are valid for different subpopulations. Usually, the number of 

subpopulations and the size of the subpopulations are unknown. In linking 

high-stakes operational tests with anchor items administered in low-stakes 

conditions, one can specify the mixture IRT model in such a way that one of 

the latent classes represents high-stakes responding represented by vectors of 

item scores unique to this latent class, while the other latent class represents 

low-stakes responding (Béguin, 2005; Béguin & Maan, 2007). Using solely the 

data of the latent class representing high-stakes responding in the linking 

procedure is expected to improve the results of the linking procedure. 

 Instead of excluding the latent class displaying low-stakes responding 

from the linking procedure, an alternative procedure to improve the link is to 

exclude items from the linking procedure, which show differential item 

functioning (DIF) between low-stakes and high-stakes administration 

conditions. This procedure is especially useful for investigating whether 

differential motivation affects particular item types, such as items near the end 

of a test or relatively difficult items. 

 We used data from a Dutch testing program to investigate whether the 

differences in estimated proficiency distributions between two operational 

tests differ between data collection designs with anchor items administered in 

low-stakes conditions on the one hand and data collection designs with anchor 

items administered in high-stakes conditions on the other hand. This was done 

by comparing the estimated mean proficiency differences of the operational 

tests over the different data collection designs. Furthermore, the mixture Rasch 

model was used to investigate whether a latent class representing low-stakes 

responding could be identified. Next, the latent class that was identified as 

representing low-stakes responding was removed from the data to diminish 

the effect of differential motivation on the linking result. Then, item-misfit 

between high-stakes and low-stakes administration conditions was 

investigated. Finally, it was investigated whether removing items showing DIF 
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between high-stakes and low-stakes administration conditions diminishes the 

effect of differential motivation on the linking result. 

Method 

Participants and Design 

Data were used from the mathematics scales of the ‘End of Primary School Test’ 

(Eindtoets Basisonderwijs). This test is administered every year at the end of 

Dutch primary education, and students’ results are used to give advice to 

schools and parents about the most appropriate type of secondary education. 

Even though the advice the End of Primary School Test provides is not 

binding, almost all students consider the test high-stakes because of social and 

parental pressure and ample media attention. Since the test is administered in a 

high-stakes condition, item secrecy is vital; hence, the test form is renewed each 

year. A link between test forms administered in subsequent years can be 

established using an internal anchor, an external anchor, and pre-test data or a 

combination of these methods. We developed a common metric for the 

mathematics scales of the End of Primary School Test using two consecutive 

test forms, which are the test forms administered in 2009 and 2010, henceforth 

referred to as 2009 operational test and 2010 operational test, respectively. 

 Data collection designs. We discuss three data collection designs in 

which an internal anchor, an external anchor, or pre-test data are used to link 

the 2009 operational test and the 2010 operational test. The way in which data 

collection designs used for linking are usually implemented in practice, might 

make some data collection designs more robust against the effect of differential 

motivation compared to others. The difference between the designs most 

relevant to this study concerns whether the anchor items were administered 

under the same high-stakes conditions as the operational tests, and thus, 

whether differential motivation can be expected to have an effect on the linking 

result. Figures 2.1 through 2.3 present symbolic representations of the data 

collection designs in the form of person-by-item matrices. Rows correspond to 

student data and columns to item data. The shaded areas represent 

combinations of items and students for which data are available, while the 

blank areas represent combinations of items and students for which no data are 

available. The ordering of the items presented in the figures does not 

necessarily correspond to the ordering of items in the test form. Furthermore, 

sample sizes are not necessarily proportional to the sizes of the shaded and 

blank areas in the figures. 
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Figure 2.1 The internal anchor design 

 

 Figure 2.1 shows the internal anchor design. In this design, samples of 

both populations of students administered the operational test forms were 

administered an alternative test form, which included a selection of items from 

the operational test form and additional anchor items, herein referred to as 

internal anchor items. The anchor items are the same across both alternative 

test forms. Therefore, differences in difficulty between the operational test 

forms can be estimated based on the relative performance of the samples on the 

anchor items. The internal anchor items were placed in the same position in 

both alternative test forms to avoid undesirable order effects. In this data 

collection design, all items including the anchor items contribute to a student’s 

score on the operational test. Since the operational tests and the anchor items 

are administered in the same high-stakes condition, when using an internal 

anchor design, differential motivation should not have an effect on the linking 

result. Test security might be threatened if every student who was 

administered one of the operational tests is presented the anchor items. 

However, in the internal anchor design, only samples of both populations are 

presented the anchor items and the students in these samples were not aware 

that they were presented an alternative test form. The internal anchor items, 

the number of internal anchor items, and the number of students who were 

presented the internal anchor items were not made public. It can thus be 

assumed that the threat to test security is minimal when implementing the 

internal anchor design in this way. Since the effect of differential motivation is 

expected to be absent, the internal anchor design is especially useful in linking 

the 2009 and 2010 operational tests. The difference in estimated proficiency 

distribution between the two operational tests found for the internal anchor 
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Figure 2.2 The external anchor design 

 

design can therefore serve as a benchmark for investigating the effect of 

differential motivation in different data collection designs. 

 The external anchor design (Figure 2.2) is different from the internal 

anchor design in that the score on the anchor items does not contribute to the 

score on the operational test and the external anchor does not replace part of 

the operational test. Therefore, when using an external anchor design to link 

two operational tests, the link between the operational tests is based on the 

additional anchor items, herein referred to as external anchor items. A 

distinction can be made between the implementation of this design, where 

students are either aware or unaware that the score on the external anchor 

items does not contribute to their score on the operational test, the former 

being a more serious problem with respect to differential motivation. In 

applying this data collection design to the End of Primary School Test, students 

were aware that the score on the external anchor items did not contribute to the 

score on the End of Primary School Test. As a result, the stakes of the 

administration condition of the external anchor items and the operational tests 

differed. 

 The third data collection design used in this study is the pre-test design 

(Figure 2.3). Subsets of items intended for use in the operational tests were pre-

tested in different samples of students to examine the statistical characteristics 

of the items before including them in an operational test. Items with the most 

promising item characteristics were selected for the operational test. However, 

items that were pre-tested in two consecutive years can be used as an external 

link between the two operational tests. Similar to the anchor items in the 

external anchor design, the stakes of the administration condition of the anchor 

items in 
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Figure 2.3 The pre-test design 

 

the pre-test design differed from the stakes of administration condition of the 

operational tests. 

 Participants. Each operational test form contained 60 mathematical items, 

which did not overlap between the operational test forms. Samples of students 

administered the operational test forms contained 4,995 students in 2009 and 

5,123 students in 2010. The internal anchor consisted of 20 mathematical items 

administered to 2,989 students in 2009 and 2,421 students in 2010. The external 

anchor consisted of 20 mathematics items administered to 5,086 students in 

2009 and 4,575 students in 2010. In order to pre-test items for the 2009 

operational test, in 2008, 19 pre-test booklets (ranging from 30 to 90 

mathematical items) were administered. The number of students administered 

the pre-test booklets ranged from 183 to 313. Since the same pre-test items were 

administered in more than one pre-test booklet, the numbers of observations 

per item were larger, ranging from 219 to 1,685. The mathematical items for the 

2010 operational test were pre-tested in 2009 using 23 pre-test booklets 

(ranging from 29 to 60 mathematical items). The number of students who were 

administered these pre-test booklets ranged from 46 to 372. The number of 

observations per item ranged from 504 to 1,664. 

Analyses 

 The Rasch model. The Rasch model (Rasch, 1960) was fitted to the data to 

inspect differences in estimated mean proficiency between the populations 

administered the 2009 and 2010 operational tests. According to the Rasch 

model, the probability that student j passes item i is a function of proficiency 

parameter    and is given by 
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where    is interpreted as the difficulty parameter of item i . The OPLM 

software (Verhelst, Glas, & Verstralen, 1995) was used to estimate the Rasch 

model. The fit of the Rasch model to the items from the operational test was 

investigated by means of Infit and Outfit statistics (Wright & Masters, 1982) 

available in the eRm package in R (Mair, Hatzinger, & Maier, 2010). Mean 

Square Outfit values or Mean Square Infit values above 1 indicate greater 

variation in the data than predicted by the Rasch model, and values below 1 

indicate that the data over-fit the model. Items having statistics outside the 

range of 0.5 – 1.5 are less useful for Rasch measurement (Linacre, 2002) and 

were therefore iteratively removed from the analyses. The differences between 

estimated mean proficiency of both operational tests were compared for each 

of the three linking designs. Cohen’s d was used to assess effect size (Cohen, 

1988). Student’s t-tests were used to determine whether the differences 

between the means of the 2009 and 2010 operational tests were significant. 

 The standard deviations of the estimated proficiency distributions that 

OPLM provides were used to evaluate the significance of the differences 

between the estimated mean proficiencies of the populations administered the 

2009 and 2010 operational tests. However, instead of using the complete 

variance-covariance matrix, with larger data sets OPLM only uses the diagonal 

of the matrix (Verhelst, Glas, & Verstralen, 1995), which might result in an 

underestimation of the standard deviations of the estimated proficiency 

distributions. Therefore, a bootstrap procedure (Efron & Tibshirani, 1993) was 

used to construct 95% confidence intervals (CIs) for the differences between the 

mean proficiencies of the operational tests. The bootstrap procedure was done 

using the following sequence of steps: 

1. From each dataset obtained from the students administered the 

internal anchor, the external anchor, or pre-test data, 1,000 bootstrap 

samples were drawn. Data from the operational tests were not 

bootstrapped; hence, the same data were used throughout. 

2. OPLM was used to estimate the mean proficiency for each 

population administered an operational test. The analysis was 

repeated for each bootstrap sample. 

3. For each data collection design, steps 1 and 2 resulted in 1,000 

differences in estimated mean proficiency between the operational 

tests. For each type of data collection design, the Shapiro-Wilk test 
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(Shapiro & Wilk, 1965) was used to test whether the differences 

found in the bootstrap samples were normally distributed. A 95% CI 

was constructed using the .025 and .975 percentiles under the normal 

distribution. 

 The mixture Rasch model. Next to the Rasch model, the mixture Rasch 

model was used to link the operational tests using the three different data 

collection designs. Let    denote the score on item i, with the total number of 

items represented by k. According to the mixture IRT model, the probability of 

passing item i depends on a class-specific proficiency parameter    , denoting 

the proficiency of student j if he/she belongs to latent class  . The techniques 

currently available for estimating a mixture IRT model focus on the Rasch 

model. The limitation to the Rasch model is partly because of the limited 

information in the data to estimate more-complex models. The mixture Rasch 

model defines the conditional response probability as 

 (     |   )  
             

               
   

where     is a class-specific difficulty parameter. Aggregated over items, the 

probability of obtaining an item-score vector                    given 

proficiency    and membership of class   is 

 (  |    )  ∏
                  

               

 

   

  

Let    denote the proportion of the population that belongs to class      

      . Proportion    is also called the class probability. The probability for an 

individual j with item-score vector    to belong to class  , denoted        , 

depends on the item-score vector in the following way: 

 ( |  )  
   (  | )

∑    (  | ) 
   

                                                      

 A dedicated version of the OPLM software (Béguin, 2008) was used to 

estimate the mixture Rasch model. Two latent classes were specified in the 

mixture IRT model, the first representing responding expected under high-

stakes conditions and the second representing responding expected under low-

stakes conditions. Classes were specified by modelling the item-score vectors 

of the operational tests as being exclusively part of the first latent class, which 

was done by setting      and      in Equation 2.1 for all item-score vectors 

of the operational tests. The constraints should identify the first latent class as 
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students showing high-stakes responding and the second latent class as 

students showing low-stakes responding. The item-score vectors of the external 

anchor and the pre-test data could be in either the first or the second latent 

class. As with the simple Rasch model, a bootstrap procedure was used to 

construct 95% CIs for the differences between the mean proficiencies of the 

operational tests. The mixture Rasch model was compared to the simple Rasch 

model to investigate whether modelling subpopulations would improve the 

link between the operational tests. This was done by means of (1) comparing 

the differences in mean proficiency between the samples administered the two 

operational tests, (2) a test for model comparison, and (3) comparing difficulty 

parameters estimated for both the Rasch model and the mixture Rasch model. 

 Differential Item Functioning. Instead of identifying item-score vectors 

from the data, which were affected by the low-stakes nature of the 

administration condition of the anchor items, one could also remove items 

from the dataset that function differently in high-stakes and low-stakes 

administration conditions. DIF analysis identifies items that display different 

statistical properties in different group settings after controlling for differences 

between the estimated proficiencies of the groups (Holland & Wainer, 1993). 

Items displaying DIF between high-stakes administration conditions and low-

stakes administration conditions are not suited for establishing a common 

metric between the operational test forms. In the context of DIF, OPLM 

software provides the contribution of each item to the     statistic (Glas, 1989), 

which evaluates the squared difference between expected and observed 

proportions of item-correct scores in homogeneous score groups (i.e., groups in 

which each student has the same number-correct score). 

 Items having a mean contribution to the     statistic in excess of 4 were 

selected for visual inspection of DIF. OPLM provided graphs displaying the 

item characteristic curves (ICCs) for different groups, which were used for 

visually inspecting DIF between administration conditions. This DIF approach 

was applied only to the pre-test design, since this is the only data collection 

design in which anchor items were administered in both high-stakes and low-

stakes administration conditions. After removing items displaying DIF, the 

Rasch model was again fitted to the data and the differences between estimated 

mean proficiencies of the operational tests were compared to the linking result 

for the internal anchor design, serving as a benchmark. 
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Table 2.1 Proficiency distributions estimated with the Rasch Model. 

Design Population M SD N Cohen’s d/ p-

value 

Student’s t 

95% CI 

IA 2009 0.000 1.004 7,984 0.015/.362  (-0.023; 0.053) 

 2010 0.015 1.046 7,544   

EA 2009 0.000 1.002 10,081 0.068/<.001 (0.038; 0.102) 

 2010 0.070 1.044 9,698   

Pre-test 2009 0.000 0.956 11,789 0.375/<.001 (0.355; 0.403) 

 2010 0.379 1.062 5,123   

Note. IA = Internal Anchor; EA = External Anchor. 

 

Results 

Rasch Analysis 

None of the items from the operational test forms had a Mean Square Outfit 

statistic or Mean Square Infit statistic outside the (0.5–1.5) range, indicating that 

the Rasch model was consistent with these items (Linacre, 2002). Table 2.1 

shows the estimated proficiency means of the 2009 and 2010 operational tests. 

For the internal anchor design, the estimated mean proficiency of the 

population administered the 2010 operational test was not significantly higher 

than the estimated mean proficiency of the population administered the 2009 

operational test (p > .05). However, for the external anchor design and the pre-

test design the estimated difference in mean proficiency between the 

populations administered the 2009 and 2010 operational tests was significant. 

Interestingly, the effect size resulting from using the pre-test design was 

considerably higher than the effect size resulting from using either the internal 

or external anchor design. 

 The 95% CIs for the differences between estimated mean proficiencies of 

the 2009 and 2010 operational tests are presented in Table 2.1, Column 7. The 

Shapiro-Wilk test (Shapiro & Wilk, 1965; results not tabulated) indicated that 

the differences between estimated mean proficiencies were normally 

distributed (p > .05) for each data collection design. Even though the results of 

the Student’s t-tests led us to conclude that the linking result differed between 

the internal and external anchor design, the CIs of both designs overlapped. 

However, the CI for the pre-test design did not overlap with the CIs for the 

internal and external anchor design. Therefore, we have reason to conclude 
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Table 2.2 Proficiency distributions estimated with the mixture Rasch model. 

Design Population M SD N Cohen’s d/ 

p-value 

Student’s t 

95% CI 

IA 2009 0.000 1.008 7,984 0.016/.332 (-0.026; 0.058) 

 2010 0.016 1.049 7,544   

EA 2009 0.000 1.007 10,081 0.068/<.001 (0.026; 0.104) 

 2010 0.070 1.049 9,698   

Pre-test 2009 0.000 0.885 11,789 0.008/.613 (-0.055; 0.074) 

 2010 -0.008 1.070 5,123   

 Note. IA = Internal Anchor; EA = External Anchor. 

 

that the results of the linking procedure differed between the different data 

collection designs. Specifically, compared to the internal anchor design, the 

pre-test design results in a substantial overestimation of the difference between 

proficiency distributions of the populations that were administered the 

operational tests. 

Mixture Rasch model 

Table 2.2 shows the estimated proficiency means and the corresponding 95% 

CIs for the 2009 and 2010 operational tests that resulted from the application of 

the mixture Rasch model. The results for both the internal and external anchor 

design resemble the results for the simple Rasch model. For the internal anchor 

design, the estimated mean proficiency of the population administered the 

2010 operational test was not significantly higher than the estimated mean 

proficiency of the population administered the 2009 operational test (p > .05). 

For the external anchor design, estimated mean proficiency between the 

populations administered the 2009 and 2010 operational tests differed 

significantly. The mixture Rasch model and the Rasch model provided 

different results for the pre-test design. For the Rasch model, we found a large 

effect size, indicating an overestimation of the difference in mean proficiency. 

However, this large effect diminishes when using the mixture Rasch model, 

and the conclusions based on the pre-test design (i.e., no significant difference 

in proficiency between populations administered the operational tests) 

resemble the conclusions based on the internal anchor design. 

 For the internal and external anchors, the class membership probabilities 

of belonging to the latent class representing high-stakes responding were 

approximately equal in 2009 and 2010: for the internal anchor, both  
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Figure 2.4 Item difficulty parameters of the Rasch model and the mixture Rasch model 

for the latent class representing high-stakes responding (○) and the latent class 

representing low-stakes responding (Δ) estimated in the internal anchor design. 

 

probabilities were .75 (2009 and 2010), and for the external anchor, they were 

.62 (2009) and .63 (2010). The class-membership probabilities differed among 

the pre-test booklets. From the 19 pre-test booklets used to pre-test the items of 

2009, one booklet was removed from the analysis because the probability to 

belong to the class representing high-stakes responding was .00. The mean 

probability of the remaining 18 pre-test booklets was .58 (ranging from .40 to 

.79), whereas the mean probability of the 23 mathematics pre-test booklets to 

pre-test the items of 2010 was .66 (ranging from .30 to .95). The question 

remains whether the mixture Rasch model provides a better fit to the data than 

the simple Rasch model and whether the latent classes identified represent 

low-stakes and high-stakes responding. 

 Based on the log likelihoods, the mixture Rasch model provided a better 

fit to the data than the simple Rasch model. This result was found for the 

internal anchor design ( 2 (138, N = 15,528) = 4,158.8, p < .001), the external 

anchor design ( 2  (138, N = 19,779) = 5,800.6, p < .001), and the pre-test design (
2  (647, N = 21,753) = 13,922.8, p < .001). 
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Figure 2.5 Item difficulty parameters of the Rasch model and the mixture Rasch model 

for the latent class representing high-stakes responding (○) and the latent class 

representing low-stakes responding (Δ) estimated in the external anchor design. 

 

 The difficulty parameters of both latent classes were compared between 

the mixture Rasch model and the Rasch model. The difficulty parameters of 

both models are comparable because the mean of the proficiency distribution 

of the 2009 operational test was fixed at 0 in both models. Figure 2.4 shows the 

estimated difficulty parameters of the internal anchor items for both the Rasch 

model and the mixture Rasch model. Interestingly, the difficulty parameters of 

the Rasch model and the mixture Rasch model were approximately the same 

for both latent classes, except for one item. It could be said that the latent 

classes were identified for the larger part by this particular item. Figure 2.5 

shows the difficulty parameters of the external anchor items for both models. 

The differences between the difficulty parameters estimated using the Rasch 

model and the mixture Rasch model did not show a regular pattern. Because of 

the large number of items in the pre-test design, Figure 2.6 shows the difficulty 

parameters of the Rasch model and the mixture Rasch model separately for 

each latent class. The difficulty parameters estimated in the latent class 

representing high-stakes responding were approximately the same for the 

mixture Rasch model and the simple Rasch model, whereas the difficulty 
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a. 

 
b. 

 

Figure 2.6 Item difficulty parameters of the Rasch model and the mixture Rasch model 

for the latent class representing high-stakes responding (a) and the latent class 

representing low-stakes responding (b) estimated in the pre-test design. 
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parameters estimated in the latent class representing low-stakes responding 

were higher for the mixture Rasch model and the simple Rasch model. As 

expected, for the pre-test design, the difficulty parameters were higher for the 

latent class representing low-stakes responding than the latent class 

representing high-stakes responding. 

Differential Item Functioning 

Five items were identified showing DIF between low-stakes and high-stakes 

administration conditions. After removal of these items, the Rasch model was 

fitted to the remaining data. The mean proficiencies of the 2009 and 2010 

operational tests were 0.000 and 0.370,respectively, which is comparable to the 

linking result for the pre-test design using the Rasch model including the five 

DIF items. It was concluded that removal of items displaying DIF did not have 

an effect on the differences in estimated proficiency between the operational 

tests. 

Discussion 

We conclude that the result of the linking procedure depends on the type of 

data collection design. Specifically, the linking results differed between data 

collection designs, which differ with respect to the administration condition of 

the anchor items. Even though the external anchor design and the pre-test 

design both used anchor items administered in low-stakes administration 

conditions, the linking results for these two designs differed. Using the pre-test 

design to link the operational tests resulted in a substantial overestimation of 

the difference between the estimated proficiency of the populations 

administered the operational tests. Removing items showing DIF between 

high-stakes and low-stakes administration conditions did not improve the 

linking result for the pre-test design. 

 We also found evidence for the existence of differently motivated 

subpopulations. As a result of fitting the mixture Rasch model, for an external 

anchor, we found that the differences in estimated mean proficiency between 

the two operational tests did not change but that the differences had 

disappeared for the pre-test data. Class-membership probabilities of the latent 

class representing high-stakes responding might explain these results. The 

class-membership probabilities of the external anchor were almost the same in 

both years. Mittelhaëuser, Beguin, and Sijtsma (in press) argue that the linking 

result is only threatened if the effect of differential motivation is unequal 

between the populations. However, the class-membership probabilities of the 
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pre-test booklets varied greatly, which rendered fitting a mixture Rasch model 

worthwhile. 

 The use of a mixture Rasch model proved to be useful with the current 

data. However, since the assumption of equal discrimination for all items is 

unlikely to be met in most real-data sets, it might be interesting to add varying 

discrimination parameters to the mixture model. Furthermore, the current 

research only investigated a mixture Rasch model with two latent classes, 

because it was assumed that examinees were either motivated or unmotivated 

to take the test. However, examinees could just as well have been motivated to 

a certain degree, in which case a model with more latent classes or a 

multidimensional IRT model is more appropriate to model item responding 

(Embretson & Reise, 2000).  
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Chapter 3 

The Effect of Differential Motivation on 

IRT Linking Using the Rasch Model* 

Abstract 

The purpose of this study was to investigate whether simulated differential 

motivation between the stakes for operational tests and anchor items would 

produce an invalid linking result if the Rasch model was used to link the 

operational tests. This was done for an external anchor design and a variation 

of a pre-test design. The study also investigated whether a constrained mixture 

Rasch model could identify the latent classes in such a way that one latent class 

would represent high-stakes responding while the other would represent low-

stakes responding. The results indicated that for an external anchor design, the 

Rasch linking result was only biased when the motivation level differed 

between the subpopulations that were presented with the anchor items. 

However, the mixture Rasch model could not identify the classes representing 

low-stakes and high-stakes responding. When a pre-test design was used to 

link the operational tests by means of a Rasch model, bias in the linking result 

was found in each condition. The amount of bias increased when the 

percentage of students showing low-stakes responding on the anchor items 

increased. The mixture Rasch model was only able to identify the classes 

representing low-stakes and high-stakes responding under a limited number of 

conditions. 

  

                                                 
* This chapter has been submitted for publication 
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In order to prevent item disclosure and maintain fairness, many testing 

programs use a new test form for every major administration (Holland & 

Rubin, 1982). Test forms may differ with respect to difficulty, and as a result, 

without further adaptation, scores on different test forms may not be 

comparable. A linking procedure is an adaptation that can be used to develop a 

common metric between test forms and adjust different scales for differences in 

levels of difficulty. A linking design frequently used in educational testing is 

the common-item non-equivalent groups design (see, e.g., Kolen & Brennan, 

2004). In this design, different test forms are administered to different 

populations, and test forms can be linked by means of common items, also 

referred to as anchor items, to develop a common metric. The validity of the 

linking result depends, for example, on the question of whether the anchor 

items measure the same attribute as the test forms to be linked, henceforth 

referred to as the operational tests (Beguin & Hanson, 2001). Other factors that 

threaten to invalidate the linking of the operational tests and the anchor items 

concern order effects or the differences between the administration condition of 

the operational tests and the anchor items (see, e.g., Cook & Petersen, 1987; 

Klein & Jarjoura, 1985). 

 Differential student motivation (Holland & Wightman, 1982) regarding 

test taking needs to be considered in determining whether the anchor items 

measure the same attribute as the operational tests. Differential motivation 

refers to the difference in test-taking motivation between high-stakes and low-

stakes (i.e., non-consequential) administration conditions. In a high-stakes 

administration condition, an examinee is expected to work harder and strive 

for maximum performance whereas a low-stakes administration condition 

elicits typical, rather than maximum, performance. In practice, testing 

programs might use anchor items administered in low-stakes conditions to link 

operational tests administered in high-stakes conditions (Wise & Kong, 2005). 

Unfortunately, if no important personal consequences are associated with test 

performance, students may care little whether their test scores accurately 

reflect their level on the attribute of interest (Reise & Flannery, 1996; Sundre, 

1999; Wolf, Smith, & Birnbaum, 1995), and differences between student effort 

and, therefore, student performance in high-stakes and low-stakes 

administration conditions are expected (Wise & DeMars, 2005). The 

inconsistency in the stakes of the administration condition may lead to the 

misfit of the item response theory (IRT; see Van der Linden & Hambleton, 

1997) model used for linking, or it may bias the linking result (Béguin, 2005). 
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a. 

 
b. 

 
Figure 3.1 (a) An external anchor design, (b) a pre-test design. 

 

We used a simulation study to investigate the extent to which differences 

between the stakes in the operational tests and the anchor items would 

produce an invalid linking result if the Rasch model was used to link two 

operational tests; we also investigated which circumstances affected the bias in 

the linking result. 

 Two types of data collection designs discussed here are the external 

anchor design and a variation of a pre-test design. Figures 3.1a and 3.1b show 

representations of an external anchor design and a pre-test design, 

respectively. The rows correspond to student data and the columns to item 

data. The boxes represent combinations of students and items for which data 

are available. In both data collection designs, population A is administered 

operational test I, and population B is administered operational test II. Since we 

focus on common-item non-equivalent groups designs, we do not assume 

equivalence of the populations, and anchor items are needed to link 

operational tests I and II. 
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 In the external anchor design, the anchor items are administered to a 

subpopulation of population A (i.e., A*) and to a subpopulation of population 

B (i.e., B*). The anchor items are administered in addition to the two 

operational tests, and the total score on the anchor items does not contribute to 

the score on the operational tests; hence, the anchor items are referred to as 

external anchor items. Differences with respect to difficulty between the 

operational tests can be identified from the relative performance of 

subpopulations A* and B* on the anchor items. If the external anchor items are 

administered under a condition where the stakes are lower than the stakes of 

the operational tests, the validity of the linking result may be threatened. 

Theoretically, this is true only if the effect of differential motivation is unequal 

between the populations (Mittelhaëuser, Béguin, & Sijtsma, in press). To clarify 

this statement, one may first assume that the effect of differential motivation is 

equal among the populations administered with the external anchor items so 

that in comparison with the operational tests, the difficulty of the external 

anchor items is overestimated; but the relative performance of both 

populations on the external anchor items represents the true difference 

between population proficiency levels. Therefore, the linking result is 

unbiased. However, if the effect of differential motivation is unequal between 

the populations, the performance differences between the subpopulations on 

the anchor items due to differences in administration conditions will be 

attributed to differences between population proficiency levels, thereby 

resulting in an overestimation of the proficiency differences between the 

populations. 

 In a pre-test design, operational tests are linked using anchor items that 

are external to one of the operational tests (i.e., operational test I) and internal 

to the other operational test (i.e., operational test II). In this design, subsets of 

items intended for use in a new operational test (i.e., operational test II) are 

pre-tested on a subpopulation of students (i.e., A*) to whom the old operational 

test (i.e., operational test I) was administered. Differences with respect to the 

difficulty between the operational tests can be identified from the relative 

performance of subpopulation A* and population B on the anchor items. If the 

condition in which the anchor items are administered to subpopulation A* and 

population B differ in the sense that the stakes are lower for subpopulation A*, 

then subpopulation A* will likely show less effort and a correspondingly lower 

performance on the anchor items compared to population B. The performance 

differences between subpopulation A* and population B on the anchor items 
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due to differences in administration conditions will be attributed to differences 

between population proficiency levels, thus resulting in an overestimation of 

the proficiency of population B. 

 In the current simulation study, the effect of differential motivation is 

operationalized by simulating the data on the anchor items in two latent 

classes, one representing high-stakes responding and the other representing 

low-stakes responding. In mixture IRT models, it is assumed that the data are a 

mixture of different datasets from two or more unidentified populations (Rost, 

1997; Von Davier & Yamamoto, 2004), also called latent classes. Thus, 

theoretically, an IRT linking procedure using a mixture Rasch model is more 

robust against responding differences between different subgroups of students 

on the anchor items than a simple Rasch model. 

 If different latent classes produced the data, different model parameters 

would be valid for different subpopulations and a mixture IRT model could be 

used to identify the latent classes. For example, mixture IRT models have been 

used to identify subpopulations that differ with respect to the scalability of the 

items on personality traits (Rost, Carstensen, & Von Davier, 1997), to identify 

students who employ different solution strategies (Mislevy & Verhelst, 1987), 

and to identify known sources of contamination underlying item parameter 

estimates, such as test speededness (Bolt, Cohen, & Wollack, 2002; Yamamoto 

& Everson, 1997). Furthermore, a constrained mixture Rasch model can 

identify the latent classes in such a way that one latent class represents high-

stakes response behavior while the other represents low-stakes response 

behavior (Béguin, 2005; Béguin & Maan, 2007). 

 The purpose of this study was to investigate whether simulated 

differences between the stakes of the administration conditions for the 

operational tests and the anchor items would produce an invalid linking result 

if the Rasch model was used to link the operational tests. We also investigated 

which circumstances affected the bias in the linking result. Since the data were 

generated from two latent classes that differed on the basis of response effort, 

the linking results obtained from a mixture Rasch model were used as a 

benchmark. 

Method 

Models 

Let    denote the score on item i, and let k represent the number of items in a 

test. According to the mixture IRT model, the probability of passing item i, 
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      ), depends on a class-specific person parameter    , which denotes the 

proficiency of student j when he/she belongs to latent class  , and a class-

specific difficulty parameter     . The mixture Rasch model defines the 

conditional response probability as 

 (     |   )  
   (       )

     (       )
  

When aggregated across items, the probability of obtaining an item-score 

vector                    given proficiency   , and the membership of class   

equals 

 (    )  ∏
                  

               

 

   

  

Let    denote the proportion of the population belonging to class      

      , which is also known as the class probability. The probability that 

student j belongs to class g equals 

 (    )  
   (  | )

∑    (  | ) 
   

                                                        

Von Davier and Yamamoto (2004) discussed the estimation procedure for the 

mixture IRT model by means of the EM algorithm. The Rasch model can be 

interpreted as a special case of the mixture Rasch model in which    . 

Data 

Dichotomous item scores were generated under 40 conditions, which differed 

on the basis of the following factors: 

 Design. The same notation was used for samples and populations. The 

data were generated for an external anchor design and a pre-test design, as 

presented in Figure 3.1. Each design contained two operational tests (I and II), 

each consisting of 60 items. For each operational test, a sample of 5,000 item-

score vectors was generated. In the external anchor design, 1,000 item-score 

vectors containing 0/1 scores for 20 anchor items were generated for both 

subpopulation A* and subpopulation B*. In the pre-test design, 1,000 item-

score vectors containing 0/1 scores for 20 anchor items were generated for 

subpopulation A*. Item-score vectors for the operational tests were generated 

as if they had originated from a high-stakes administration condition in which 

we assumed that all students showed high-stakes responding. This was 

operationalized by choosing      and      in Equation 3.1 for all item-
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score vectors of both operational tests, thus fixing their class membership. The 

item-score vectors of the anchor items were generated as if they had originated 

from a low-stakes administration condition in which we assumed that students 

showed either high-stakes responding or low-stakes responding. 

 Item parameters of the anchor items. Empirical studies showed that 

students are more motivated in high-stakes administration conditions than in 

low-stakes administration conditions (Sundre, 1999; Wolf, Smith, & Birnbaum, 

1995) and that motivated students perform better than unmotivated students 

(Wise & DeMars, 2005). Within an IRT framework, this results in items having 

higher item difficulty estimates when items are administered in low-stakes 

administration conditions than when they are administered in high-stakes 

administration conditions. The degree to which the item parameters used for 

generating data differed between classes of students showing differences in 

responding on the anchor items varied, resulting in small-effect conditions and 

large-effect conditions. In the small-effect conditions, the item parameters of 

the anchor items differed slightly between students who responded differently; 

under the large-effect conditions, the differences between the item parameters 

were larger. The item parameters for the operational tests and anchor items 

were selected as follows: 

1. Real data obtained from the administration of 60 items in a high-stakes 

condition at the end of Dutch primary education was fitted to the Rasch 

model. The same items were also administered in a low-stakes pre-test 

condition. Hence, data were available from which both ‚high-stakes 

item parameters‛ and ‚low-stakes item parameters‛ were estimated for 

60 items. These 60 high-stakes real-data item parameter estimates were 

used to generate artificial data for both operational tests in both designs. 

2. To generate artificial data for the anchor items, the 60 items were ordered 

according to the difference between the item parameter estimated from 

high-stakes administration data and the item parameter estimated from 

low-stakes administration data. 

3. The 20 items showing the greatest difference between the two item 

parameter estimates were used to generate data for the anchor items in 

the large-effect conditions. The 20 items showing the smallest difference 

between the two item parameter estimates were used to generate data 

for the anchor items in the small-effect condition. 

Table 3.1 contains the item parameter estimates used to generate data for all 

conditions. 
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Table 3.1 Real-data item difficulty parameters used to generate artificial data. 

Large effect  Small effect  Unique 

operational 

High-stakes Low-stakes  High-stakes Low-stakes  High-stakes 

-0.570 

-1.113 

0.281 

0.248 

0.683 

0.772 

1.020 

0.752 

0.267 

-0.363 

-0.953 

0.000 

-0.952 

0.266 

0.055 

-0.992 

-0.903 

-0.632 

-1.501 

0.847 

-0.116 

-0.637 

0.770 

0.744 

1.199 

1.314 

1.562 

1.308 

0.833 

0.245 

-0.336 

0.628 

-0.249 

0.980 

0.841 

-0.206 

-0.109 

0.164 

-0.693 

1.661 

 0.483 

-0.180 

-0.024 

1.031 

0.187 

0.313 

-0.425 

-0.310 

-0.627 

1.557 

0.018 

-0.393 

0.474 

0.283 

0.273 

0.248 

0.137 

-0.535 

0.823 

1.087 

0.523 

-0.120 

0.048 

1.112 

0.341 

0.478 

-0.238 

-0.115 

-0.405 

1.787 

0.260 

-0.133 

0.736 

0.598 

0.630 

0.607 

0.497 

-0.159 

1.230 

1.517 

 0.542 

-0.549 

0.672 

0.423 

-0.212 

-0.722 

-1.259 

-0.632 

-0.662 

0.450 

0.617 

0.379 

1.258 

0.806 

0.060 

-0.349 

-0.774 

-0.621 

0.219 

-0.161 

 

 Proficiency of the populations. The data generated resulted in conditions 

with equivalent normal proficiency distributions for both populations     

                     and conditions in which the means of the normal 

proficiency distributions differed by 0.25 standard deviations           

                 . 

 Proportion of students showing low-stakes responding on anchor items. 

Varying the proportion of students showing low-stakes responding on the 

anchor items resulted in conditions in which 10%, 25%, 50%, and 75% of the 

item-score vectors for the anchor items were generated using low-stakes item  

parameters. In the external anchor design, the proportion of students showing 

low-stakes responding on the anchor items varied across populations. This 

resulted in conditions whereby 50% of the students in subpopulation A* 

invested low-stakes responding on the anchor items whereas either 10% or 75% 

of the 
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students in subpopulation B* invested low-stakes responding on the anchor 

items. 

 This simulation design resulted in 24 conditions for the external anchor 

design and 16 conditions for the pre-test design. For each of the 40 conditions, 

1,000 datasets were generated, denoted by replication. In each replication h 

         , operational tests I and II were linked by means of a Rasch model 

and a mixture Rasch model with ordinal constraints on the latent classes. 

Analyses 

 Software. The OPLM software (Verhelst, Glas, & Verstralen, 1995) 

produced marginal maximum likelihood estimates of the item parameters from 

the Rasch model. An adapted version of OPLM used a mixture Rasch model to 

estimate the item parameters. The item-score vectors for the operational tests 

were modelled to exclusively belong to the first latent class, which was done by 

choosing      and      in Equation 3.1 for all item-score vectors for the 

operational tests. The item-score vectors for the anchor items could belong 

either to the first or the second latent class. Using these constraints on the latent 

classes facilitated the identification of latent classes such that one represented 

high-stakes responding and the other low-stakes responding (Béguin, 2005; 

Béguin & Maan, 2007). 

 For both the Rasch and mixture Rasch models, normally distributed 

proficiency distributions were approximated using Gauss-Hermite quadrature 

(Abramowitz & Stegun, 1972) with 180 quadrature points. Both designs were 

estimated using two marginal proficiency distributions. In the external anchor 

design, proficiency distributions were estimated for population A and 

subpopulation A* on the one hand and population B and subpopulation B* on 

the other hand. In the pre-test design, proficiency distributions were estimated 

for population A and subpopulation A* on the one hand and population B on 

the other hand. 

Evaluation criteria 

The criteria used to evaluate the performance of the estimation procedure and 

the linking precision in the 40 conditions were based on IRT observed-score 

equating. In IRT observed-score equating, an IRT model is used to estimate the 

distribution of observed number-correct scores (Kolen & Brennan, 2004; Zeng 

& Kolen, 1995), henceforth referred to as an estimated score distribution. In 

practice, the interest is on determining how population B would have 

performed on operational test I (or vice versa, how population A would have 
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performed on operational test II). Two criteria were used to evaluate the 

equating precision in each condition. Given the item and population 

parameters used for generating data with the same estimated score 

distribution, and given the item and population parameters estimated in 

replication h, these criteria compared the estimated score distribution for 

population B on operational test I. Since the estimated score distributions were 

needed to compute the evaluation criteria used in this study, we shall first 

explain how the estimated score distributions were computed. Following this, 

we shall discuss the two evaluation criteria. 

 Estimating score distributions. The score distribution for students 

belonging to population A, with a normal proficiency distribution with a mean 

of   , and a standard deviation of    were computed by integrating over the 

population distribution of  , that is, 

      ∫ ∑                     

     

 

where       in the summand stands for the set of all item-score vectors 

resulting in the same total score  . At each of the quadrature points, a recursion 

formula proposed by Lord and Wingersky (1984) was used to obtain        , 

which is the score distribution of students with the same proficiency  . A 

distinction was made between computing the estimated score distribution 

based on the item and population parameters used to generate the data 

(henceforth called true estimated score distribution) and computing the 

estimated score distribution based on the item and population parameters 

estimated in replication h. 

 Criterion 1. To compare the true estimated score distribution of 

population B on operational test I with the estimated score distributions 

resulting from the H replications, a mean squared error (MSE) was computed. 

Let         be the frequency of score   based on the parameters used to generate 

the data. Let     be the frequency of score   based on the parameters estimated 

in replication h. The mean MSE across scores was computed from the squared 

deviations of the two frequencies obtained in each combination of the H 

replications and the     scores, that is, 

    
 

      
∑ ∑(           )
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Furthermore, the MSE was decomposed into a term representing the mean 

across scores of the squared bias (mean bias) and a term representing the mean 

across scores of the variance (mean variance), 
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where   ̅ is the mean frequency of score r across replications, that is, 

  ̅  
 

 
∑    

 

   

  

 Criterion 2. The second criterion was based on comparing equivalent 

scores from the observed-score equating function with the true equivalent 

scores (i.e., equivalent scores based on the item and population parameters 

used to generate the data). Thus, equivalent scores based on the item and 

population parameters from replication h were compared with the equivalent 

scores based on the item and population parameters used to generate the data. 

Let         be the integer score on operational test I, which is equivalent to score 

  on operational test II, based on equipercentile equating computed using the 

true item parameters and true latent proficiency distribution for population B. 

Let     be the corresponding score estimated in replication h. Furthermore, let 

        be the probability for population B to obtain score r on operational test I 

based on the true parameter values. To compare the equivalent scores, a 

weighted mean squared error (WMSE) was computed by summation across 

samples and scores. The scores were weighted by        , which resulted in 

     
 

 
∑       ∑             

 

 

   

 

   

                                    

The WMSE was decomposed into a term representing the weighted sum of the 

squared bias (weighted bias) of equated scores and a term representing the 

weighted sum of the variance (weighted variance) of the equated scores, 

therefore, 

              ∑       

 

   

(  ̅         )
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where   ̅ is the mean equivalent score of score r across replications, that is, 

  ̅  
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The weighted mean absolute error (WMAE) is obtained if the squared error in 

Equation 3.2 is replaced by the absolute value of the error and, as a result, 

     
 

 
∑       ∑              

 

   

 

   

  

Compared to the WMSE, the WMAE can be interpreted more easily in terms of 

the deviation from        . 

Results 

The evaluation criteria for all conditions are presented in Table 3.2 through 

Table 3.5. In each table, the first column indicates whether the Rasch or mixture 

Rasch model was used to link the two tests. The second column (i.e., Pop) 

indicates whether data were generated from two populations with equivalent 

proficiency distributions (‚0.00‛ mean difference) or whether data were 

generated using proficiency distributions with a 0.25 standard deviation mean 

difference. The third column gives the percentage of students generated to 

show low-stakes responding on the anchor items in subpopulations A* and B* 

(for the external anchor design) and subpopulation A* (for the pre-test design). 

Columns 4 and 5 give the MSE and the WMSE, respectively, with the amount 

of bias (as opposed to variance) in parentheses. 

External anchor design 

 Small effect. Table 3.2 (small effect size) shows that the linking result was 

unbiased for the Rasch model if the effect of differential motivation was the 

same for subpopulations A* and B*. Since bias in the MSE and the WMSE was 

negligible, both could be attributed completely to variance across replications 

(not tabulated). Bias in the linking result increased as differences in motivation 

were larger. Differences were negligible between proficiency distributions that 

coincided and proficiency distributions having a 0.25 standard-deviation mean 

difference. The WMAE was approximately equal to the WMSE. When the 

linking result was biased, the differences between the equated scores based on 

the true item parameters and the equated scores based on the item parameters 
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Table 3.2 Evaluation criteria for the external anchor design and small effect size. 

  % L-S 

responding 

Evaluation criteria 

Model Pop A*-B* MSE (bias) WMSE (bias) WMAE 

Rasch 0.00 10-10 9.6 (0.0) 0.1 (0.0) 0.1 

 0.25  9.7 (0.0) 0.1 (0.0) 0.1 

 0.00 25-25 10.0 (0.0) 0.1 (0.0) 0.1 

 0.25  9.7 (0.0) 0.1 (0.0) 0.1 

 0.00 50-50 10.1 (0.0) 0.1 (0.0) 0.1 

 0.25  10.2 (0.0) 0.1 (0.0) 0.1 

 0.00 75-75 10.4 (0.0) 0.1 (0.0) 0.1 

 0.25  10.1 (0.0) 0.1 (0.0) 0.1 

 0.00 50-75 49.5 (38.2) 0.8 (0.6) 0.7 

 0.25  51.1 (41.1) 0.8 (0.6) 0.8 

 0.00 50-10 108.9 (98.3) 1.5 (1.3) 1.2 

 0.25  111.7 (101.1) 1.5 (1.3) 1.1 

Mixture Rasch 0.00 10-10 11.4 (0.0) 0.2 (0.0) 0.2 

 0.25  11.4 (0.0) 0.2 (0.0) 0.2 

 0.00 25-25 12.7 (0.0) 0.2 (0.0) 0.2 

 0.25  12.6 (0.0) 0.2 (0.0) 0.2 

 0.00 50-50 13.4 (0.0) 0.2 (0.0) 0.2 

 0.25  12.6 (0.0) 0.2 (0.0) 0.2 

 0.00 75-75 12.7 (0.0) 0.2 (0.0) 0.2 

 0.25  13.2 (0.0) 0.2 (0.0) 0.2 

 0.00 50-75 51.1 (36.9) 0.8 (0.5) 0.7 

 0.25  50.5 (37.5) 0.8 (0.6) 0.7 

 0.00 50-10 107.1 (93.4) 1.5 (1.3) 1.1 

 0.25  110.6 (96.8) 1.5 (1.3) 1.1 

Note: Pop = the difference between the mean of the proficiency distributions used 

to generate the data; % L-S responding A*-B* = the percentage of students 

generated to show low-stakes responding in subpopulation A* - subpopulation B* 

 

from the replications were approximately 1 score unit. 

 Compared to the Rasch model, the mixture Rasch model did not produce 

substantially lower levels of bias in the linking result. The estimated class 

proportions for the latent class representing low-stakes responding were 

approximately .67 (varying across conditions from .66 to 68) for subpopulation 

A* and .67 (.66 to .68) for subpopulation B*. This result suggests that even 

though the effect size in the small-effect condition was large enough to produce 



-48- 
 

Table 3.3 Evaluation criteria for the external anchor design and large effect size. 

  % L-S 

responding 

Evaluation criteria 

Model Pop A*-B* MSE (bias) WMSE (bias) WMAE 

Rasch 0.00 10-10 10.8 (0.0) 0.1 (0.0) 0.1 

 0.25  10.0 (0.0) 0.1 (0.0) 0.1 

 0.00 25-25 12.1 (0.1) 0.2 (0.0) 0.2 

 0.25  12.0 (0.1) 0.2 (0.0) 0.2 

 0.00 50-50 12.5 (0.0) 0.2 (0.0) 0.2 

 0.25  12.3 (0.1) 0.2 (0.0) 0.2 

 0.00 75-75 12.1 (0.0) 0.2 (0.0) 0.2 

 0.25  12.8 (0.2) 0.2 (0.0) 0.2 

 0.00 50-75 290.7 (278.8) 4.1 (3.9) 2.0 

 0.25  298.5 (286.9) 4.2 (4.0) 2.0 

 0.00 50-10 709.7 (697.7) 10.0 (9.7) 3.1 

 0.25  723.6 (711.9) 9.6 (9.4) 3.0 

Mixture Rasch 0.00 10-10 17.7 (0.0) 0.3 (0.0) 0.3 

 0.25  17.1 (0.0) 0.3 (0.0) 0.3 

 0.00 25-25 26.0 (0.1) 0.4 (0.0) 0.4 

 0.25  26.9 (0.0) 0.4 (0.0) 0.4 

 0.00 50-50 42.8 (0.2) 0.7 (0.0) 0.6 

 0.25  42.4 (0.1) 0.6 (0.0) 0.6 

 0.00 75-75 42.6 (0.2) 0.7 (0.0) 0.5 

 0.25  50.3 (0.3) 0.7 (0.0) 0.6 

 0.00 50-75 195.8 (151.1) 2.8 (2.1) 1.5 

 0.25  216.5 (166.0) 3.1 (2.3) 1.5 

 0.00 50-10 494.2 (463.6) 7.0 (6.5) 2.5 

 0.25  510.9 (480.1) 6.9 (6.4) 2.5 

Note: Pop = the difference between the mean of the proficiency distributions used 

to generate the data; % L-S responding A*-B* = the percentage of students 

generated to show low-stakes responding in subpopulation A* - subpopulation B* 

 

bias in the linking result in some conditions, it was too small for the estimation 

procedure in the mixture Rasch model to correctly identify the latent classes. 

 Large effect. Table 3.3 (large effect size) shows that comparable to the 

small effect size (Table 3.2), for the Rasch model, the linking result was 

minimally biased when differential motivation was equal for subpopulations 

A* and B*. Since bias in the MSE and the WMSE was small, both could be 

attributed largely to variance across replications (not tabulated). Bias in the 
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linking result increased as motivation differences widened. Again, differences 

were negligible between conditions in which the proficiency distributions 

coincided and conditions in which the proficiency distributions differed with a 

0.25 standard-deviation mean difference. When the linking results were biased, 

the differences between the equated scores based on the true item parameters 

and the equated scores based on the item parameters from the replications 

were approximately 2 and 3 score units in the condition where 75% and 10% of 

the students in subpopulation B* showed low-stakes responding, respectively. 

 For the conditions in which the Rasch model produced bias, the mixture 

Rasch model produced a somewhat smaller amount of bias. For conditions in 

which motivation differences between populations were generated, compared 

tothe Rasch model, the mixture Rasch model produced a score difference 

between the equated scores based on the true item parameters and the equated 

scores based on the item parameters from replications that were approximately 

0.5 score units lower. The question remains whether the estimated latent 

classes represented high-stakes responding and low-stakes responding. Again, 

the estimated class proportions led us to believe that this was not the case. For 

example, when data were generated from equal proficiency distributions, and 

the percentage of low-stakes responding for subpopulations A* and B* was 

50% and 10%, respectively, the estimated class proportions for subpopulation 

A* and B* were .40 and .31, respectively. This result suggests that despite the 

large effect size, the estimation procedure for the mixture Rasch model was still 

not able to correctly identify the latent classes. 

Pre-test design 

 Small effect. Table 3.4 shows that for the Rasch model, bias increased as 

a percentage of low-stakes responding on the anchor items increased. For 50% 

and 75% low-stakes responding, the MSE and WMSE were largely due to bias. 

Substantial differences were absent between equivalent proficiency 

distributions and proficiency distributions with a 0.25 standard-deviation 

mean difference. The difference between the WMAE and the WMSE increased 

as the percentage of low-stakes responding increased. The differences between 

the equated scores based on the true item parameters and the equated scores 

based on the item parameters from the replications increased from 0.1 to 

almost 2 score units as the percentage of low-stakes responding increased. 

Compared to the Rasch model, the mixture Rasch model produced a 

similar or smaller amount of bias. For the latent class representing low-stakes 
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Table 3.4 Evaluation criteria for the pre-test design and small effect size. 

  % L-S 

responding 

Evaluation criteria 

Model Pop A* MSE (bias) WMSE (bias) WMAE 

Rasch 0.00 10 14.5 (6.8) 0.1 (0.0) 0.1 

 0.25  12.7 (5.2) 0.1 (0.1) 0.1 

 0.00 25 46.9 (39.5) 0.5 (0.3) 0.5 

 0.25  46.9 (39.7) 0.5 (0.3) 0.5 

 0.00 50 161.6 (154.2) 1.5 (1.4) 1.2 

 0.25  163.7 (156.0) 1.5 (1.4) 1.2 

 0.00 75 357.1 (348.9) 3.9 (3.8) 1.9 

 0.25  363.7 (355.7) 3.9 (3.8) 1.9 

Mixture Rasch 0.00 10 21.2 (1.5) 0.3 (0.0) 0.3 

 0.25  18.5 (0.8) 0.3 (0.1) 0.3 

 0.00 25 41.2 (17.8) 0.5 (0.1) 0.4 

 0.25  44.8 (18.2) 0.5 (0.1) 0.5 

 0.00 50 116.5 (80.6) 1.2 (0.7) 0.9 

 0.25  114.3 (80.9) 1.2 (0.7) 0.9 

 0.00 75 267.8 (234.6) 3.0 (2.5) 1.6 

 0.25  272.7 (240.9) 3.0(2.5) 1.6 

Note: Pop = the difference between the mean of the proficiency distributions used to 

generate the data; % L-S responding A* = the percentage of students generated to 

show low-stakes responding in subpopulation A* 

 

responding, the estimated class proportions were approximately .11, .13, 

.18,and .26 for conditions where 10%, 25%, 50%, and 75% of the students 

showed low-stakes responding on the anchor items, respectively. The 

estimated class proportions were the same for conditions in which equal 

proficiency distributions and different proficiency distributions were used to 

generate data. As with the external anchor design, this led us to believe that 

even though the effect size in the small effect condition was large enough to 

produce substantial bias in the linking result in some conditions, the effect size 

was too small for the mixture Rasch model to correctly identify the latent 

classes in each condition. 

Large effect. Table 3.5 shows that the Rasch model produced a higher 

level of bias as the percentage of students showing low-stakes responding on 

the anchor items increased. The MSE and WMSE were largely affected by bias. 

The results were approximately the same for equivalent proficiency 

distributions and different proficiency distributions. The difference between 
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Table 3.5 Evaluation criteria for the pre-test design and large effect size. 

  % L-S 

responding 

Evaluation criteria 

Model Pop A* MSE (bias) WMSE (bias) WMAE 

Rasch 0.00 10 51.9 (43.8) 1.0 (1.0) 1.0 

 0.25  51.8 (42.8) 1.1 (1.0) 1.0 

 0.00 25 288.1 (279.4) 4.8 (4.7) 2.1 

 0.25  291.8 (283.1) 4.7 (4.5) 2.1 

 0.00 50 1099.8 (1091.3) 17.0 (16.8) 4.1 

 0.25  1136.5 (1126.7) 16.8 (16.7) 4.0 

 0.00 75 2468.6 (2459.5) 37.4 (37.2) 6.1 

 0.25  2530.0 (2521.1) 36.2 (36.0) 5.9 

Mixture Rasch 0.00 10 43.1 (0.5) 0.7 (0.1) 0.6 

 0.25  41.1 (1.4) 0.7 (0.2) 0.6 

 0.00 25 72.5 (2.2) 1.2 (0.2) 0.8 

 0.25  71.6 (1.4) 1.1 (0.1) 0.8 

 0.00 50 139.5 (8.6) 2.2 (0.3) 1.2 

 0.25  144.1 (11.7)  2.2 (0.4) 1.2 

 0.00 75 679.9 (347.3) 10.6 (5.8) 2.6 

 0.25  707.1 (374.5) 10.5 (6.0) 2.6 

Note: Pop = the difference between the mean of the proficiency distributions used to 

generate the data; % L-S responding A* = the percentage of students generated to 

show low-stakes responding in subpopulation A* 

 

the WMAE and the WMSE increased as the percentage of low-stakes 

responding on the anchor items increased. The differences between the 

equated scores based on the true item parameters and the equated scores based 

on the item parameters from the replications increased from one to 

approximately six score units as the percentage of low-stakes responding 

increased. 

Compared with the Rasch model, the mixture Rasch model produced a 

substantially smaller amount of bias. The estimated class proportions for low-

stakes responding were approximately .13, .23, .44, and .52 for conditions 

where 10%, 25%, 50%, and 75% of the students showed low-stakes responding, 

respectively. It seemed that for the first three conditions, the estimated class 

proportions approximated the actual class proportions used in generating data. 
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Discussion 

We used simulated data to investigate the amount of bias introduced in the 

linking result when differential motivation affects the scores on the anchor 

items. As expected, for an external anchor design, the linking result was only 

biased when motivation differed between the subpopulations presented with 

the anchor items. The conclusions were the same for conditions in which 

equivalent proficiency distributions or proficiency distributions having 

different means were used to generate data. Since two latent classes were used 

to generate the data, the linking results from the mixture Rasch model served 

as a benchmark. However, the mixture Rasch model could only identify the 

classes representing low-stakes and high-stakes responding when a pre-test 

design was used to link the two tests, when the effect size was large, and when 

the percentage of students showing low-stakes responding was less than 75%. 

It is somewhat worrisome that under some conditions, the effect size was large 

enough to create substantial bias in the linking result but that the effect size 

was not large enough to control for this bias by means of a mixture IRT model 

with constraints on the latent classes. 

Simulation studies only cover a limited variation of conditions, and the 

model used to generate the data does not perfectly represent real datasets 

(Davey, Nering, & Thompson, 1997). Therefore, the results should be 

interpreted with caution. For example, we operationalized differences in 

response efforts between high-stakes and low-stakes administration conditions 

by assigning students to one or two latent classes, respectively, in which the 

latent classes had different item-response probabilities. This operationalization 

of differential motivation may not realistically reflect differential motivation 

that is effective in real test taking. 

The focus of the current study was on the Rasch model. Less restrictive 

IRT models than the Rasch model are available (Embretson & Reise, 2000). 

Such models are expected to better fit empirical data. However, the Rasch 

model has benefits, such as the sum score being a sufficient statistic for the 

proficiency estimate. Furthermore, research indicates that the Rasch model is 

robust under a variety of circumstances (Dinero & Haertel, 1977; Forsyth, 

Saisangjan, & Gilmer, 1981), thus suggesting that the use of more complex IRT 

models may not provide less biased results.  
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Chapter 4 

Modeling Differences in Test-Taking 

Motivation: Exploring the Usefulness of 

the Mixture Rasch Model and Person-Fit 

Statistics* 

Abstract 

In analyzing test data, it is often assumed that students were motivated to 

answer the items correctly, hence that the attribute of interest drove test 

performance. However, if the test is administered in a low-stakes 

administration condition or if students do not receive feedback, students might 

not put their best effort into answering the items correctly. Within the item 

response theory (IRT) framework, lack of motivation threatens the correctness 

of proficiency and item parameter estimation and therefore the usefulness of 

the IRT model. The goal of the current study was to explore to what extent a 

mixture Rasch model and the    person-fit statistic could be used to model 

motivational differences in data administered in a low-stakes administration 

condition. In modeling the mixture Rasch model, constraints distinguished two 

latent classes of students: (1) a class representing ‚motivated‛ response 

behavior and (2) a class representing ‚unmotivated‛ response behavior. We 

investigated the usefulness of the mixture modeling strategy in a sample of 

primary-school students (N = 1,512) by comparing the posterior probabilities of 

the mixture Rasch model and the student’s self-reported motivation. 

Furthermore, the study investigated the relationship between the student’s 

self-reported motivation and the    person-fit statistic. 

                                                 
* This chapter has been published as: Mittelhaëuser, M., Béguin, A. A., & Sijtsma, K. (2013). 

Modeling differences in test-taking motivation: Exploring the usefulness of the mixture Rasch 

model and person-fit statistics. In R. E. Millsap, L. A. van der Ark, D. M. Bolt, & C. M. Woods 

(Eds.). New developments in quantitative psychology (pp. 357-370). New York: Springer. 
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Item response theory (IRT) models are useful in educational measurement for 

supporting the construction of measurement instruments, linking and equating 

of measurements, and evaluation of test bias (Scheerens, Glas, & Thomas, 

2003). However, the IRT model must fit the data so as to be applicable to 

practical testing problems and yield consistent proficiency level and item 

parameter estimates. Unfortunately, researchers often implicitly assume that 

scores on a test are valid indicators of a student’s best effort (Wolf & Smith, 

1995) but Wainer (1993, p. 12) noted that: ‚If a test doesn’t count for specific 

individuals, how can we be sure that they are trying as hard as they might if it 

mattered?‛. Over the years, evidence has accumulated that if item performance 

does not contribute to the test score or if no feedback is provided, students may 

not give their best effort and perform to their best ability (e.g., Wise & DeMars, 

2005; O’Neill, Sugrue, & Baker, 1996; Kiplinger & Linn, 1996). Under-

performance is typical for tests administered in a low-stakes administration 

condition. Consequently, performance on items administered in a low-stakes 

condition may differ from performance on items administered in a high-stakes 

condition, resulting in unusual patterns of item scores or in relatively poor 

performance on the low-stakes items. Within an IRT framework, low-stakes 

performance threatens the correct estimation of the proficiency and item 

parameters. For example, Mittelhaëuser, Béguin, and Sijtsma (2011) found that 

using low-stakes common items to link two high-stakes tests yielded different 

conclusions about the ability distributions compared to using high-stakes 

common items. 

 This article explores the usefulness of two methods that may be helpful 

in removing bias in parameter estimation caused by the low-stakes 

administration condition of a test. The first method uses a mixture Rasch model 

that assumes that the data are a mixture of different data sets from two or more 

latent populations (Rost, 1997; Von Davier & Yamamoto, 2004), also called 

latent classes. If the mixture assumption is correct, a Rasch model does not 

hold for the entire population but different model parameters are valid for 

different subpopulations. Let    denote the score on item i, and let k denote the 

number of items in the test. According to the mixture Rasch model, the 

probability of passing item i        depends on a class-specific person 

parameter,    , which denotes the proficiency of student j if he/she belongs to 

latent class g. The conditional response probability is defined as: 

 (    |   )  
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where     is a class-specific difficulty parameter. The probability of obtaining 

an item-score vector,               , given proficiency     equals 

 (  |   )  ∏
       (       ) 

               

 

   

  

Let    denote the proportion of the population that belongs to class      

      . The probability for student j to belong to class  , also known as the 

posterior probability, depends on the item-score vector; that is, 

 ( |  )  
         

∑           
   

                                               

 Mixture IRT models can be used to identify classes resulting from 

different types of response behavior. Consequently, the mixture strategy can 

also be used to handle known sources of contamination in item parameter 

estimates. For example, Bolt, Cohen, and Wollack (2002) used a mixture Rasch 

model with ordinal constraints to help remove the effect of test speededness on 

item parameter estimates. We used other constraints facilitating identification 

of latent classes such that one of the latent classes represents ‚high-stakes 

response behavior‛ and the other latent class ‚low-stakes response behavior‛ 

(Béguin, 2005; Béguin & Maan, 2007). As the probability for each individual to 

belong to a latent class (i.e., posterior probability) can be estimated, it is 

possible to identify the item-score vectors the low-stakes administration 

condition of the test affect. The posterior probabilities represent the 

probabilities for a student to respond in either a ‚low-stakes manner‛ or a 

‚high-stakes manner.‛ 

 Alternatively, person-fit methods assign a value to each individual 

vector of item scores, and a statistical test is used to determine whether the 

underlying IRT model fits the item scores (Embretson & Reise, 2000). 

Significant person-fit values identify item-score vectors for which the IRT 

model does not fit, and the researcher may decide to remove the aberrant item-

score vectors from the data set (Meijer & Sijtsma, 1995). The remaining set of 

item-score vectors for which the IRT model fits are expected to produce 

consistent parameter estimates. The    statistic is a well-known person-fit 

statistic (Drasgow, Levine, & Williams, 1985). By estimating the    statistic on a 

low-stakes item-score vector given the ability parameter estimated on a high-

stakes test, it may be possible to detect students driven by unmotivated 

response behavior. 
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 The goal of this study was to explore whether indicators of non-typical 

response behavior, such as the posterior probabilities from a mixture IRT 

model and the    person-fit statistic can be used to model motivational 

differences between students. We investigated the relationship between 

student’s self-reported motivation on the one hand and the posterior 

probabilities of the mixture Rasch model and the    statistic on the other hand. 

Method 

Participants and Design 

Four different scales were used to collect data: the End of Primary School Test 

2012 (Eindtoets Basisonderwijs), the pre-test of the End of Primary School Test 

2013, a scale measuring test-taking motivation, and a scale measuring social 

desirability. The order in which the different scales are discussed below 

corresponds to the order in which they were administered to the students. 

 Pre-test. Subsets of items intended for use in a high-stakes test are 

usually pre-tested on different samples of students to examine the statistical 

characteristics of the items before including them in a high-stakes test. To pre-

test math items for the End of Primary School Test 2013, eighth-grade primary-

school students (N = 9,124) were presented with a pre-test containing math 

items. Items most suitable for the population were selected for the End of 

Primary School Test 2013. Twenty-seven different pre-test versions also called 

test booklets were constructed, varying in test length from 30 to 60 items and 

including 585 multiple-choice items in total. The responses were coded 0 

representing a wrong answer and 1 representing a right answer. The number of 

respondents per test booklet ranged from seven to 516. However, as a given 

pre-test item was administered in more than one pre-test booklet, the number 

of observations per item ranged from 332 to 1,424. The pre-test was used in 

most schools to practice for the high-stakes End of Primary School Test 2012, 

but the students were aware that they would not receive a score on the pre-test. 

Therefore, the pre-test is considered to be administered in a low-stakes 

administration condition. 

 Test-taking motivation. After the administration of the pre-test, a 

subsample of 1,512 students was administered a questionnaire containing nine 

items that measured test-taking motivation (TTM). The construction of the 

items was inspired by existing scales, such as the Test-Taking Motivation 

Questionnaire (Eklöf, 2006), the Student Opinion Scale (Thelk, Sundre, Horst, & 

Finney, 2009), and a subset of items from the self-report questionnaires of  
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Table 4.1Test-taking motivation items with mean scores and component loadings 

   Loadings 

Item  M A1 A2 A3 

1 I enjoy going to school. 3.00 -.121 .061 .853 

2 I enjoy learning math. 2.86 .011 -.107 .817 

3 I did my best on the math items. 3.80 .705 .066 .103 

4 My teacher wants me to do my best on the math 

items. 

3.80 -.034 .841 .001 

5 My parents want me to do my best on the math 

items. 

3.83 .009 .823 .055 

6 I did a good job on the math items. 3.21 .525 -.178 .205 

7 The kids in my class did their best on the math 

items. 

3.53 .409 .202 -.061 

8 I could have worked harder on the math items. 2.88 .788 -.097 -.115 

9 I’m curious about how many math items I 

answered correctly. 

3.66 .203 .132 .422 

 

the Education Quality Accountability Office (Zerpa, Hachey, van Barneveld, & 

Simon, 2011). Each item was answered on a 4-point Likert-scale (1 = No, 2 = 

Not so much, 3 = Kind of, 4 = Yes). Table 4.1 shows English translations of the 

items. 

 Social desirability. To check whether the tendency to answer in a 

socially desirable way influenced self-reported motivation, the students were 

administered six items stating desirable but uncommon behavior. The 

construction of the items was inspired by the Children’s Social Desirability 

Scale (Baxter et al., 2004). Each item was answered as Not True (1) or True (2). 

Table 4.2 provides English translations of the items. 

End of Primary School Test 2012. Each year in February, the End of 

Primary School Test is administered to students who are in the last year of 

Dutch primary education. The test results provide an independent advice to 

primary-school teachers, parents and secondary-schools about the most 

appropriate type of secondary education for a student. The test is administered 

in a high-stakes condition, and secrecy of the items is vital; hence, the test form 

is renewed each year. The End of Primary School Test 2012 contained 60 

multiple-choice math items. The responses were coded 0 representing a wrong 

answer and 1 representing a right answer. In total, 144,708 students completed 

the math items of the End of Primary School Test 2012. 
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Table 4.2 Social desirability items with mean scores and standard deviations 

Item  M SD 

1 I like all the kids in my class. 1.49 .50 

2 I always tell the truth. 1.35 .48 

3 I never fight. 1.15 .36 

4 I always do what my teacher tells me to do. 1.60 .49 

5 I always behave well. 1.44 .50 

6 I never lie. 1.27 .45 

 

Analyses 

All analyses were performed using SPSS version 20 unless stated otherwise. 

Principal components analysis. A principal components analysis (PCA) 

was performed to investigate the internal structure of the TTM scale. After 

motivational components of the TTM scale were identified, the reliability 

estimate known as the greatest lower bound (GLB) was calculated for the total 

TTM scale using Factor 8.1 (Lorenzo-Seva & Ferrando, 2006). 

 Mixture Rasch model. The data of the pre-test and the data of the End of 

Primary School Test 2012 were combined, providing 9,124 item-score vectors 

containing items administered in a low-stakes condition (pre-test items) and 

different items administered in a high-stakes condition (items from the End of 

Primary School Test 2012). A mixture Rasch model was estimated for this 

dataset using a dedicated version of the OPLM software (Verhelst, Glas, & 

Verstralen, 1995; Béguin, 2008). We anticipated that we would not find 

motivational differences in the high-stakes administration condition. Therefore, 

the item-score vectors of the End of Primary School Test 2012 were modeled as 

being exclusively part of the first latent class. This was done by setting 

       and        in Equation 4.1 for all item-score vectors of the End of 

Primary School Test 2012. The item-score vectors of the pre-test could be in 

either the first or the second latent class. To identify the model, it was assumed 

that student’s abilities did not differ across latent classes. 

After estimating the mixture Rasch model for the 9,124 item-score 

vectors, the posterior probabilities of the 1,512 students who completed the 

TTM scale were related to their self-reported motivation. This was done by 

estimating the correlation coefficient and inspecting the mean posterior 

probability for each separate TTM sum score. Furthermore, the item difficulty 

parameters of both latent classes were plotted to inspect the differences 

between the latent classes. 
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 Person-fit. The    statistic (Drasgow et al, 1985; Meijer & Sijtsma, 1995) is a 

person-fit statistic that assesses the likelihood of an item-score vector under a 

specific IRT model. The    statistic is given by 

   
      

√      
 

where l denotes the unstandardized likelihood of the item-score vector and 

     and        denote the expected likelihood and the variance of the 

likelihood, respectively. These three quantities are given by: 

  ∑                             

 

   

 

with 

     ∑                                     

 

   

 

and 

       ∑                 
     

       
   

 

   

 

The    statistic is assumed to be a standard normal deviate, with large negative 

values providing evidence of misfit. 

For each student, the    statistic was calculated using the statistical 

program R (R Development Core Team, 2010) by means of the following three 

steps: 

1. Item parameters of the Rasch model were estimated for the End of 

Primary School Test 2012 and pre-test concurrently. 

2. The item parameters estimated in step 1 were fixed and the proficiency 

parameters of the Rasch model were estimated for the End of Primary 

School Test 2012. 

3. The    statistic was calculated for the pre-test items, given the item 

parameters and proficiency parameters estimated in step 1 and 2, 

respectively. 

The    statistic provided a likelihood measure of the low-stakes item-score 

pattern of the pre-test given the ability estimate based on the high-stakes item-

score pattern of the End of Primary School Test 2012. High negative    values 

suggested motivational differences between the administration conditions. 
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After having estimated the    statistic for the 9,124 item-score vectors, 

the    statistics of the 1,512 students who completed the TTM scale were related 

to their self-reported motivation. This was done by estimating the correlation 

coefficient and analyzing the mean    statistic for each sum score on the TTM 

scale. 

 Social desirability. We used the Kruskal–Wallis Test to investigate the 

relationship between the score on the TTM scale and the social desirability (SD) 

scale so as to determine whether social desirability influenced the TTM scores. 

Results 

Principle components analysis 

A PCA was performed on the nine items from the TTM scale. After 53 cases 

having missing values were deleted, the analysis was performed using data 

from 1,459 students. Prior to performing the PCA, the suitability of the data for 

PCA was assessed. Bartlett’s Test of Sphericity (Bartlett, 1954) reached 

statistical significance and the Kaiser-Meyer-Oklin (Kaiser, 1974) value was 

.639, indicating that the data were suitable for PCA. 

 The PCA produced three components having eigenvalues exceeding 1 

that explained 24.1%, 16.4%, and 12.7% of the variance, respectively. Analysis 

of the screeplot did not show a clear elbow. However, the loadings of the three-

component solution revealed a simple structure. To aid the interpretation of 

the components, oblimin rotation was performed. The loadings are presented 

in Table 4.1, where the highest loadings per item are presented in boldface. The 

three-component solution explained a total of 53.2% of the variance. The first 

component can be interpreted as a ‚general TTM‛ component, the second 

component as an ‚external motivation‛ component, and the third component 

as measuring ‚general attitudes‛. The small number of items in each subscale 

renders the usefulness of the separate subscales that might be constructed 

based on these components limited. Therefore, we decided to use the sum score 

on the total TTM scale in all subsequent analyses. The GLB was calculated for 

the total TTM scale and equaled .71. This value suggests a reliability that 

allows less important decisions about individuals (Evers, Lucassen, Meijer & 

Sijtsma, 2010). 

Mixture Rasch model 

We computed the correlations between students’ self-reported motivation and 

their posterior probabilities in a subsample of 1,453 students without 
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incomplete data patterns. A significant but small positive relation between the 

variables was found,      ,       . 

 We inspected the mean posterior probability for each sum score on the 

TTM scale. Figure 4.1a shows the results. Each of the sum scores of 16, 18, and 

20 was produced by just one examinee, so that 95% confidence intervals for the 

mean posterior probabilities could not be determined. The student having the 

lowest score of 16 on the TTM scale had a very low posterior probability of 

belonging to the ‚motivated‛ class. However, the student having a sum score 

of 20 on the TTM scale had a very high posterior probability of belonging to the 

‚motivated‛ class. The student having a TTM sum score of 16 indeed 

performed better on the high-stakes End of Primary School Test (95% of the 

items correctly answered) than on the low-stakes pre-test (41.67% of the items 

correctly answered). The student having a sum score of 20 performed better on 

the low-stakes pre-test (66.67% of the items correctly answered) than on the 

high-stakes End of Primary School Test (56.67% of the items correctly 

answered). The mean percentage of correctly answered items in the sample of 

1,512 students on the End of Primary School Test was 72.56, and the mean 

percentage of correctly answered items on the pre-test was 64.96. It appears 

that the administration condition indeed influenced the student having a sum 

score of 16. Furthermore, the student having a sum score of 20 showed an 

average performance on the pre-test but scored below average on the End of 

Primary School Test. 

As the number of observations on the lower sum scores on the TTM 

scale were very low (Sum score 16: n = 1, 18: n = 1, 20: n = 1, 21: n = 7, 22: n = 5, 

23: n = 12), we combined the observations for the low sum scores. Figure 4.1b 

shows the relationship between the mean posterior probability and the TTM 

sum score. 

The mean posterior probability was low for the lower TTM sum scores 

and stabilized starting from sum score 27 onward at a mean posterior 

probability of .6. The 95% confidence interval for the mean posterior 

probability for sum score 36 was slightly wider than the confidence intervals 

for sum score 27 onward. 

Figure 4.2 shows the item difficulty parameters of both latent classes. The 

difficulty parameters for most items were higher in the ‚unmotivated‛ class 

than in the ‚motivated‛ class, which was expected. However, for a few items the 

difficulty parameters were higher in the ‚motivated‛ class than in the ‚unmotivated‛ 

class. 
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a. 

 
b. 

 

Figure 4.1 (a) Mean posterior probability per motivation score, (b) mean posterior 

probability per motivation score with the lowest sum scores on the TTM scale 

combined. The gray area represents the 95% confidence interval for the mean posterior 

probability. 
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Figure 4.2 Comparison of the item parameters estimated for the two latent classes 

 

Person-fit 

The correlation between students’ self-reported motivation and their    

statistics equaled      ,          (N = 1,453, incomplete cases removed). 

Figure 4.3a shows the mean    statistic for each TTM sum score. Due to the low 

frequency of one observation, sum scores 16, 18 and 20 are presented without a 

95% confidence interval. The results for sum scores 16 through 23 were 

combined to facilitate the interpretation of the results. Figure 4.3b shows the 

results. The student having the lowest TTM sum score of 16 had a very low    

statistic. Figures 4.3a and 4.3b show that the mean    value stabilized starting 

from sum score of 25 onward at a mean    value just under 0. This result 

indicates that starting from sum score of 25 onward, the item-score patterns on 

the low-stakes pre-test were consistent with the proficiency parameters 

estimated for the high-stakes End of Primary School Test. The low-stakes 

administration condition of the pre-test did not (or very little at most) influence 

these item-score vectors. The 95% confidence interval for the mean    statistic 

for TTM sum score 36 was only little wider than that for sum score 25 onward. 

Social desirability 

Based on the data of 1,484 students (incomplete cases removed), Table 4.2 

presents the SD items and their means and standard deviations. The relation- 
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a. 

 
b. 

 

Figure 4.3 (a) Mean    statistic per motivation score, (b) mean    statistic per 

motivation score with the lowest sum scores on the TTM scale combined. The gray area 

represents the 95% confidence interval for the mean    statistic. 
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ship between the TTM score and the SD scale score was investigated by means 

of the Kruskal–Wallis Test. The results revealed a statistically significant 

difference between the TTM sum score across the seven different SD scores 

(Group 1, n = 286: Sum score 6; Group 2, n = 259: Sum score 7; Group 3, n = 269: 

Sum score 8; Group 4, n = 231: Sum score 9; Group 5, n = 196: Sum score 10; 

Group 6, n = 131: Sum score 11; Group 7, n = 65: Sum score 12),   (6, n = 1,437) = 

92.08, p < .001. The higher SD sum scores, 11 and 12, recorded a higher median 

sum score on the TTM scale (Md = 32) than the SD sum scores 7 through 10 (Md 

= 31) and the SD sum score equal to 6 (Md = 30). As the results showed a 

statistically significant difference between the TTM sum scores across the 

different SD scores, the analyses were rerun without the highest SD sum score, 

which was equal to 12. Removing these cases from the analyses did not change 

the results regarding the relationship of the TTM scale sum score and the 

posterior probabilities of the mixture Rasch model on the one hand and the 

  statistic on the other hand. Therefore, the results of the complete dataset were 

interpreted. 

Discussion 

The validity and the reliability of the TTM scale have not been investigated in 

earlier studies. Consequently, the question that arises is whether the TTM scale 

is appropriate as a measure of self-reported motivation. A more extensive 

investigation of the TTM scale is desirable. The reliability (GLB) was 

appropriate for the type of inference envisaged (Evers et al., 2010). The PCA 

revealed an internal structure approximately corresponding to results reported 

in existing literature on TTM (Eklöf, 2006). For example, two of three 

motivational components that Eklöf found in the development of the TTM 

Questionnaire (TTM, general attitudes, and performance expectancy) were also 

found for our TTM scale. The fact that we did not find a ‚performance 

expectancy‛ component might be due to the limited number of items in the 

TTM scale measuring performance expectancy. Furthermore, our TTM scale 

was administered to younger children who are probably affected more by 

‚external motivation‛ than older children. The relationship between the TTM 

sum score and SD was as we expected. Higher SD scores were associated with 

higher TTM scores. Most likely, this result explains why the 95% confidence 

intervals found with the highest TTM sum score in Figure 1 and 3 are slightly 

wider than the confidence intervals found with the lower sum scores. This 

result was probably due to response tendencies or the influence of SD on the 
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maximum TTM score. We conclude that the TTM sum score can be used in our 

research as a measure of self-reported motivation. 

The relationship between the posterior probability and the TTM sum 

score did not provide an indication of whether the posterior probabilities of the 

mixture Rasch model are useful for modeling motivation in low-stakes 

administration conditions. Even though the mean posterior probabilities 

increased when the TTM sum score increased, it is not certain whether the two 

latent classes the mixture Rasch model estimated actually represent ‚low-

stakes‛ and ‚high-stakes‛ response behavior. After all, the correlation between 

the TTM sum score and the posterior probabilities was low. Furthermore, the 

mean posterior probability stabilized at approximately .6. If the latent classes 

truly represented ‚low-stakes‛ and ‚high-stakes‛ response behavior, the mean 

posterior probability likely would increase more among the higher TTM sum 

scores. Possibly, the classes did not represent ‚low-stakes‛ and ‚high-stakes‛ 

response behavior, but instead reflected something else. Furthermore, the 

lower difficulty of items in the class representing ‚low-stakes‛ response 

behavior might indicate that assuming that the student’s ability did not differ 

across latent classes was incorrect. An in-depth analysis of the interpretation of 

the latent classes is needed. For now, we conclude that the posterior 

probabilities of the mixture Rasch model have a limited usefulness in modeling 

motivational differences. 

 The    statistic seemed a more promising approach to model 

motivational differences. First, the correlation between the    statistic and the 

TTM sum score suggested a stronger relationship. Second, not only did the 

student having the lowest TTM sum score have the lowest    statistic, the mean 

   statistic stabilized just below 0 among the higher TTM sum scores, which 

was expected. Even though the    statistic seems more useful in modeling 

motivational differences, the results should be interpreted with caution. The 

parameter estimates on which the    statistic is based were estimated in a 

dataset including highly misfitting item-score vectors. Consequently, the data 

of a relatively small cluster of students showing extreme response behavior 

might have influenced the parameter estimates. Therefore it is advisable to 

only use the    statistic as a means for identifying the most extreme cases 

instead of whole classes displaying ‚low-stakes‛ response behavior. Without 

using an iterative procedure to update the parameter estimates and the    

statistics, this approach is most likely will fail to identify whole classes as 

displaying ‚low-stakes‛ response behavior. 
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 The results lead us to conclude that the    statistic may be particularly 

useful for modeling motivational differences. However, it would be wise to 

only use the    statistic to identify the most aberrant item-score vectors, 

especially when students producing these aberrant item-score vectors behave 

as can be expected under low-stakes and high-stakes administration 

conditions. 
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Chapter 5 

Using Person-Fit Statistics to Investigate 

the Effect of Differential Motivation on 

Educational Test Performance* 

Abstract 

If the stakes in testing are low, students may care little whether their test scores 

accurately reflect their maximum performance level. Real data studies indicate 

that the absence of motivation may have a negative effect on a student’s test 

scores and the consistency of a student’s responses. This study investigated the 

difference between responding in low-stakes and high-stakes administration 

conditions in relation to test performance and response consistency. A response 

consistency difference occurred more often than a difference in performance in 

the administration conditions. Students differing on account of both 

consistency and performance were rare. Scores on a test-taking motivation 

questionnaire significantly explained variation in (1) the response consistency 

on the low-stakes tests and (2) the differences in performance on the low-stakes 

and high-stakes tests. The proportion of explained variance was small. 

  

                                                 
* This chapter has been submitted for publication 
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Educational tests are used to measure a student’s proficiency on the latent-

variable scale. Herein, it is implicitly assumed that the test score accurately 

reflects a student’s aptitude on the attribute of interest. In terms of performance 

measurements, if no important personal consequences are associated with the 

test outcome, students may care little whether their test scores accurately 

reflect their maximum performance level (Reise & Flannery, 1996; Wise & 

DeMars, 2005). This phenomenon is called differential motivation (Holland & 

Wightman, 1982) and refers to the difference in test-taking motivation that 

exists between high-stakes (i.e., consequential) administration conditions, 

where students are assumed to pursue maximum performance, and low-stakes 

(i.e., non-consequential) administration conditions that usually elicit typical 

rather than maximum performance. The lack of motivation on low-stakes tests 

is likely to be a concern for assessment professionals who, for example, wish to 

use data from low-stakes administration conditions for research purposes, to 

pilot items in low-stakes conditions that are intended for use in high-stakes 

tests, or to use low-stakes assessments to evaluate the quality of schools (Wise 

& Kong, 2005). 

In the field of educational measurement, accumulated evidence suggests 

that test-taking motivation is higher in high-stakes administration conditions 

than in low-stakes administration conditions (Sundre, 1999; Wolf, Smith & 

Birnbaum, 1995) and that highly motivated students tend to perform better 

than less well motivated students (Liu, Bridgeman, & Adler, 2012). Wise and 

DeMars (2005) conducted a meta-analysis of 12 studies and reported 25 effect 

size statistics, which reflected the mean performance difference between 

motivated and unmotivated students. All but one of the 25 effect sizes were 

found to be significant and positive with a mean effect size of 0.59, indicating 

that on average the mean performance difference between motivated and 

unmotivated students was more than one-half of a standard deviation. Even 

though younger students tend to take tests more seriously than older students 

(Paris, Lawton, Turner, & Roth, 1991), low test-taking motivation and its 

negative effect on test scores has been found in both elementary (Brown & 

Walberg, 1993) and higher education contexts (Kiplinger & Linn, 1996; Liu, 

Bridgeman, & Adler, 2012; O’Neill, Sugrue, and Baker, 1996). 

Real data studies found that low test-taking motivation negatively 

affects test scores in different ways. For example, Wise and Kong (2005) argued 

that the effort an examinee devotes to an item may vary throughout the test. 

Inferring rapid-guessing behavior from item response times (i.e., item response 
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times are lower than the time needed to read and ponder the item; Wise, 2007) 

showed that it is reasonable to believe that some examinees may start 

motivated but are less motivated from a certain item onwards, which is 

reflected in their rapid-guessing behavior. Furthermore, Wolf, Smith, and 

Birnbaum (1995) found evidence that the effect of the stakes that the 

administration condition has on test performance differs substantially between 

different types of items. Compared to items that were not mentally taxing, the 

performance on items that were mentally taxing was affected more by the 

difference between the stakes of the administration conditions. Interestingly, 

both examples indicate that differential motivation may not only have a 

negative effect on a student’s test scores but also on the consistency of his or 

her responses. 

Response consistency refers to the degree to which the student’s 

observed item scores equal his expected item scores based on his latent trait 

value (Conijn, Emons, Van Assen, & Sijtsma, 2011). To illustrate this, failing 

two relatively easy math items, such as        and        is consistent with 

a relatively low latent trait value because failing both items suggests low math 

ability. However, passing a relatively difficult math item, such as        , and 

failing a relatively easy item, such as       , is inconsistent with every latent 

trait value. The consistency of an individual item-score vector can be 

investigated by means of person-fit statistics. Person-fit statistics evaluate the 

fit of an individual’s observed item-score vector by comparing the observed 

item scores to the item scores most likely according to a particular item 

response theory (IRT) model (Meijer & Sijtsma, 2001). Studies investigating the 

usefulness of person-fit statistics for analyzing empirical data found some 

evidence that groups of respondents with known a priori characteristics, such 

as low test-taking motivation, responded aberrantly (Meijer & Sijtsma, 2001). 

Most person-fit methods only allow a binary decision about whether a 

respondent’s item-score vector is aberrant, thereby neglecting a recovery of the 

many possible mechanisms that caused the aberrance (Meijer & Sijtsma, 2001; 

Tellegen, 1988). The presence of aberrant item-score vectors in low-stakes data 

could be due to low test-taking motivation as well as to cheating or alignment 

errors on the answer sheet. Auxiliary information should be used to investigate 

the source of aberrance. Additionally, if students’ data are available from 

different test forms measuring the same attribute, a person-fit analysis of the 

item-score vectors from different test forms may provide information about the 

psychological processes that explain misfit (Ferrando, 2014). 
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Developing methods to investigate threats to valid measurements is 

valuable for measurement practice and research. Gaining knowledge of the 

effect that the stakes of the administration condition has on the individual 

item-score vector is therefore desirable. The goal of the current study was to 

investigate the difference between responding in low-stakes and high-stakes 

administration conditions in relation to test performance and response 

consistency. Data from Dutch primary school students who were administered 

both a math test in a low-stakes condition and a math test in a high-stakes 

condition were used to answer the following research questions: 

1. Do differences between high-stakes and low-stakes administration conditions 

exist in relation to the performance and consistency of the individual item-score 

vector? 

It is expected that students perform better and show more consistent response 

behavior on tests administered in high-stakes administration conditions than 

on tests administered in low-stakes administration conditions. The effects of 

differential motivation on performance and response consistency were 

investigated using two statistics. First, a Lagrange multiplier- (LM; Glas & 

Dagohoy, 2007) based person-fit statistic was used to investigate differences 

between performance on both math tests by assessing whether the proficiency 

parameter for one student was the same in both tests. Second, the much used 

global    person-fit statistic was used to separately assess a student’s 

consistency in both item-score vectors (Drasgow, Levine, &Williams, 1985). The 

overlap, or lack thereof, between subsets of students detected by different 

person-fit statistics was used to assess the degree to which differences between 

proficiency on the two tests coincided with a difference between consistency on 

the two tests. Stability of inconsistency across high-stakes and low-stakes 

administration conditions would suggest that response inconsistency was due 

to a stable tendency rather than, for example, a lack of motivation on one 

measurement occasion due to differential motivation. 

2. Are differences in response behavior found between data from high-stakes and 

low-stakes administration conditions related to auxiliary information, such as 

self-reported test-taking motivation, gender, and parental socioeconomic status 

(SES)? 

To address this research question, a test-taking motivation questionnaire was 

presented to the students who were administered the low-stakes math tests. If 

differences in performance and consistency between high-stakes and low-

stakes administration conditions are related to gender, parental SES, or self-
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reported test-taking motivation, these variables can be used to identify 

students at risk of producing invalid results. 

Method 

Participants and Data Collection Design 

Three different scales were used to collect data: the mathematics scale of the 

End of Primary School Test 2013 (a high-stakes test administered in the 

Netherlands at the end of primary education), the pre-test of the mathematics 

scale of the End of Primary School Test 2014, and a scale measuring test-taking 

motivation. 

 Items are usually pre-tested to examine their psychometric properties 

before including them in a high-stakes test. To pre-test math items intended for 

use in the End of Primary School Test 2014, a convenience sample of eighth-

grade primary school students (N = 9,943; 49.3% male) were presented with 

different sets of mathematics items in January 2013 (henceforth called ‘the pre-

test’). The sample was representative of Dutch primary schools according to 

region, school size, and indicators of parental SES. A random sample of 250 

schools was drawn from all schools participating in the pre-test. These schools 

were asked to administer a questionnaire measuring test-taking motivation 

directly after the administration of the pre-test. Fifty-one schools attended by 

1,199 eighth-grade students (47.5% male), agreed to participate. In February 

2013, all schools administering the test-taking motivation questionnaire 

participated in the End of Primary School Test 2013. 

Measures 

 Pre-test. Students were presented with sets of items varying in number 

from 30 to 60. In total, 638 multiple choice items were pre-tested. The responses 

were coded with 0 representing an incorrect answer and 1 representing a 

correct answer. Since a given pre-test item was administered in more than one 

item set, the number of observations per item ranged from 25 to 1,785. No 

performance feedback on the pre-test was provided. Therefore, it was 

considered that the items were administered in a low-stakes condition. 

 Test-taking motivation questionnaire. The test-taking motivation 

questionnaire consisted of 18 items. The construction of the items was inspired 

by existing scales, such as the Test-Taking Motivation Questionnaire (Eklöf, 

2006), the Student Opinion Scale (Thelk, Sundre, Horst, & Finney, 2009), and a 

subset of items from the self-report questionnaires of the Education Quality 

Accountability Office (Zerpa, Hackey, Van Barneveld, & Simon, 2011). The  
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Table 5.1 Test-taking motivation items 

Item  

1 I enjoy going to school. 

2 I enjoy learning math. 

3 I am good at math.  

4 I think it is important to learn math. 

5 I think it is always important to do your best on a test. 

6 I did my best on the math items.  

7 I answered the math items quickly.  

8 I answered the math items seriously.  

9 My teacher wants me to do my best on the math items.  

10 My parents want me to do my best on the math items. 

11 The kids in my class did their best on the math items. 

12 I guessed the answer for some of the more difficult items.  

13 I’m curious about how many math items I answered correctly. 

14 Even with the dull math items, I tried to do my best.  

15 I did a good job on the math items.  

16 I don’t like it when I have to make multiple calculations to answer an item.  

17 I could have worked harder on the math items.  

18 I could not have done a better job answering the math items.  

 

questionnaire included items specifically assessing test-taking motivation 

during the pre-test and items assessing test-taking motivation in general. Each 

item was answered on a 4-point Likert scale (1 = No, 2 = Not so much, 3 = Kind 

of, 4 = Yes). Table 5.1 shows the English translations of the items. 

 End of Primary School Test 2013. The End of Primary School Test is 

administered to students in the final year (i.e., eighth grade) of Dutch primary 

education. Each year, approximately 85% of all primary schools in the 

Netherlands, representing the same percentage of students, participate in the 

test. The test results provide independent advice to primary school teachers, 

parents, and secondary schools about the most appropriate type of secondary 

education for a student, thus rendering it important from the perception of all 

involved. The test is administered in a high-stakes condition, and the secrecy of 

the items is vital. The End of Primary School Test 2013 contained 60 multiple 

choice math items, and the responses were coded with 0 representing an 

incorrect answer and 1 representing a correct answer. 

Statistical Analyses 
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 Two-parameter logistic model. The data of the pre-test and the data of 

the End of Primary School Test 2013 were combined, providing 9,943 item-

score vectors containing scores on items administered in a low-stakes condition 

(pre-test) and different items administered in a high-stakes condition (End of 

Primary School Test 2013). A two-parameter logistic (2PL) model (Embretson & 

Reise, 2000) was estimated for this dataset using the software package MIRT 

(Glas, 2010). In the 2PL model, the probability of a correct response depends on 

two-item parameters,    and   , which are interpreted as the item 

discrimination parameter and the item difficulty parameter of item i, 

respectively. The 2PL model is given by 

 (    |  )  
   [  (     )]

         (     ) 
  

where    is the proficiency parameter for respondent j. The 2PL model must fit 

the math items of the pre-test and the End of Primary School Test 2013 

sufficiently well to allow a meaningful assessment of response consistency 

relative to the 2PL model. First, the fit of the 2PL model was compared to the fit 

of the more restrictive Rasch model or 1PL model in which all   s are equal, 

and the   s can vary freely by comparing the log-likelihoods of both models. 

Second, we assessed the item fit of the 2PL model by evaluating the fit of the 

item characteristic curve by means of an LM test provided by MIRT. This LM 

test is performed on each item and is based on creating three different score 

groups and comparing the observed and expected item scores within the score 

groups (Glas, 1999). 

 Lagrange multiplier test for the constancy of the latent variable. Since 

each student completed both the low-stakes pre-test and the high-stakes End of 

Primary School Test 2013, differences between the performances on the two 

math tests might be assessed by comparing the proportion of correct responses 

for each test for each student. However, because the two tests comprised 

different items, score differences between the tests could be attributed to 

differences between the difficulty of the tests, changes in proficiency between 

the two test administrations, or to differences between the stakes of the 

administration conditions. Glas and Dagohoy (2007) proposed a person-fit test 

based on the LM statistic. The LM test was used to test the constancy of the 

proficiency parameter across subtests and can therefore be used to assess 

whether the same proficiency estimate can be used to model different subsets 

of item scores obtained under different administration conditions. A drawback 
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of most person-fit statistics is that their asymptotic distribution is unknown 

(Nering, 1995) since the derivation of the distribution of the statistics has to 

account for the uncertainty in the estimated proficiency parameter. The LM test 

takes the effect of the proficiency estimation into account. The LM test for the 

constancy of theta was computed by means of MIRT (see Glas and Dagohoy 

(2007) for a detailed description of the computation of the LM test). An item-

score vector was classified as aberrant if the p-value corresponding to the LM 

test was lower than .05. 

 The   
  statistic. The    statistic is a well-known person-fit statistic 

(Drasgow et al., 1985), which assesses the likelihood of an item-score vector 

under a specific IRT model. The    statistic is assumed to be a standard normal 

deviate with large negative values that provide evidence of misfit. However, 

research has shown that the normal approximation to    is invalid, thereby 

yielding a conservative test, particularly for detecting aberrant responses at the 

lower and higher end of the latent-trait scale (van Krimpen-Stoop & Meijer, 

2002). A conservative test implies a loss of power to detect aberrant item-score 

vectors, which may seriously hamper the usefulness of person-fit analyses of 

real data. A modified version of    denoted as   
  has been proposed (Snijders, 

2001, also, see Van Krimpen-Stoop & Meijer, 1999) for which a valid asymptotic 

theoretical sampling distribution was derived. The computation of   
 , given the 

2PL model and using weighted maximum likelihood (WLE; Warm, 1989) 

estimators for the proficiency parameters, is presented in Appendix A. 

 For each student, the   
  statistic was computed using dedicated software 

on two different item-score vectors, which were the item-score vectors 

containing scores on the (low-stakes) pre-test and the item-score vector 

containing scores on the (high-stakes) End of Primary School Test 2013. The 

item parameters used for computing   
 

low-stakes and   
 

high-stakes resulted from 

estimating the 2PL model on the complete dataset. The proficiency parameters 

used for computing both   
 

low-stakes and   
 

high-stakes were estimated from the item-

score vector from the pre-test or the item-score vector from the End of Primary 

School test, respectively. Since large negative values of   
  provide evidence of 

misfit, an item-score vector was classified as aberrant if   
  was lower than -1.64 

(i.e., α = .05, one-tailed). 

Variation in person misfit 

After having estimated the 2PL model and the person-fit statistics from the 

9,943 item-score vectors, the overlap between the subsets of students detected 
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by different person-fit statistics was assessed for the students who completed 

the test-taking motivation questionnaire. The different types of person misfit 

investigated were represented in a Venn diagram to investigate the overlap 

between the subsets of students detected by the LM statistic,   
 

high-stakes and   
 

low-

stakes. 

Explaining person misfit 

Since students are nested within schools, a multilevel regression model, which 

takes into account the variance within and between schools, was estimated to 

investigate whether the person-fit statistics were related to the explanatory 

variables. In these analyses, the dependent variable of person fit is treated as a 

continuous variable. The intraclass correlation (ICC) (Snijders & Bosker, 1999, 

pp. 16-22) was used to assess which part of the total variance could be 

attributed to the school level. The explanatory variables included gender, 

parental SES, and the score on the test-taking motivation questionnaire. Since 

the test-taking motivation questionnaire contained items specifically related to 

the administration of the pre-test, it might seem odd to include test-taking 

motivation as an explanatory variable for   
 

high-stakes. However, even though a 

large effect was not expected, it was interesting to inspect the extent to which 

the score on the test-taking motivation questionnaire was better at explaining 

  
 

low-stakes than   
 

high-stakes. A variable indicating parental SES consisted of three 

categories with one being high on parental SES and three being low on parental 

SES. After recoding the contra-indicative items of the test-taking motivation 

questionnaire (i.e., items 12, 16, and 17), the greatest lower bound (GLB) found 

from a factor analysis was calculated as a reliability estimate using the psych-

package (Revelle, 2014) from the statistical program R (R Core Team, 2013). 

Results 

Model fit 

A chi-square test was used to assess the fit of the 2PL model relative to the 

more restrictive Rasch model. It was concluded that the 2PL model fit the data 

significantly better than the Rasch model (   = 8,832.23, df = 698, p <.001). 

 The fit of the item characteristic curves was assessed using the LM test. 

Glas (2010) argued that with large sample sizes, the absolute difference 

between the observed and the expected item scores for each score group is 

more informative about model violation than the significance level. We 

decided to inspect items which showed significant deviation from the expected 

item characteristic curve and for which the absolute difference exceeded .05. 



-78- 
 

Large deviations from the expected item characteristic curve were found in two 

items on the pre-test. For one item, we were unable to provide an explanation 

for the deviation, but for the other item, it appeared that a graph needed to 

correctly answer the item was not printed in one of the pre-test booklets, which 

rendered answering the item correctly impossible without guessing. We 

decided to remove the item in this particular pre-test booklet for further 

analyses. After re-estimating the 2PL, the number of misfitting items per pre-

test booklet was approximately five percent, which we considered an 

acceptable model fit based on the Type I error rate expected. 

Variation in person misfit 

Figure 5.1 shows a Venn diagram with the number of detected students and 

the overlap between the subsets of students detected by each statistic: the LM 

person-fit statistic,   
  estimated on pre-test items (  

 
low-stakes), and   

  estimated on 

the End of Primary School Test 2013 (  
 

high-stakes). The detection rate of the LM 

statistic was higher (10.7%) than the detection rate of   
 

high-stakes (7.7%) and   
 

low-

stakes (5.9%). It should be noted that since a base rate of aberrant item-score 

vectors is unknown, the detection rate of the different person-fit statistics does 

not provide us with information about the performance of the person-fit 

statistics. Interestingly, the overlap between the subsets of students detected by 

  
 

low-stakes and   
 

high-stakes was small, indicating that response inconsistency 

identified by   
  cannot be considered a stable tendency across different test 

forms. The overlap between the subsets of students detected by the LM statistic 

on the one hand and   
 

high-stakes and   
 

low-stakes on the other hand was also small. 

No student was classified as aberrant by all three person-fit statistics. These 

results suggest that a difference between the performance on high-stakes and 

low-stakes tests usually does not coincide with (1) the response inconsistency 

on either the high-stakes or the low-stakes tests; and (2) the transitions between 

the response inconsistency on the tests (e.g., showing inconsistent responding 

on the low-stakes test but consistent responding on the high-stakes test). 

Explaining person misfit 

We estimated a multilevel regression model to explain person misfit, as 

measured by the LM test, the   
 

high-stakes test, or the   
 

low-stakes test. This regression 

model enabled us to take both the variance of the person-fit statistics within 

and between schools into account. Gender, an indicator of parental SES, and 

the score on the test-taking motivation questionnaire were included as level-1 

independent variables. The GLB for the total test-taking motivation 
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Figure 5.1 Venn diagram showing the overlap between the subsets of students detected by 

  
 

high-stakes,   
 

low-stakes and the LM statistic (N = 1,199). 

 

questionnaire was equal to .77. This value is suggestive of a reliability that 

allows less important decisions about individuals (Evers et al., 2010). The 

regression coefficients, the model fit indices and the variance components of 

the null model, and the model with predictors (i.e., the full model) are 

presented in Table 5.2. 

 Based on the relative fit statistics known as the -2 log likelihood (LL), the 

Akaike information criterion (AIC), and the Bayesian information criterion 

(BIC; Singer & Willett, 2003, pp. 119-122), we concluded that for each person-fit 

statistic, the full model had to be preferred over the null model. For the LM 

statistic, only the score on the test-taking motivation questionnaire was a 

significant predictor. For the   
 

low-stakes, both the score on the test-taking 

motivation questionnaire and one dummy variable (comparing category 1 and 

3) of parental SES were significant. The different categories of parental SES 

differed significantly on   
 

low-stakes (p < .05). None of the predictors were 

significantly related to   
 

high-stakes. The student-level explained proportion of 

variance,   
 , was small for each person-fit statistic. For the LM statistic and the 

  
 

low-stakes statistic,   
  was negative. The 95% confidence intervals for the 

variance of the individual-level residuals (  ) and the variance of the school-

level residuals (  ) for the null model and the full model indicated that the 

  
 

high-stakes   
 

low-stakes 

LM-statistic 

77 

6 

0 

111 

57 

8 9 
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Table 5.2 Estimated regression coefficients, model-fit indices and variance components for each 

person-fit statistic 

 LM   
 

low-stakes   
 

high-stakes 

Variable Null 

model 

Full 

model 

Null 

model 

Full 

model 

Null 

model 

Full 

model 

Intercept 

Male 

SES1 

SES2 

TTM 

1.49 

- 

- 

- 

- 

4.01 

-0.09 

-0.41 

-0.44 

-0.03* 

0.38 

- 

- 

- 

- 

-1.20 

-0.15 

0.43* 

0.24 

0.02** 

-0.12 

- 

- 

- 

- 

-0.58 

-0.08 

0.11 

0.33 

0.01 

Model Fit       

-2LL 

AIC 

BIC 

5,608.17 

5,612.17 

5,622.35 

4,598.67 

4,612.67 

4,646.76 

3,849.47 

3,853.47 

3,863.66 

3,111.97 

3,125.97 

3,160.10 

3,522.20 

3,526.20 

3,536.39 

2,819.75 

2,833.75 

2,867.88 

Variance       

   

   

ICC 

  
  

6.09 

0.20 

0.03 

- 

6.80 

0.18 

0.03 

-0.09 

1.36 

0.11 

0.07 

- 

1.39 

0.12 

0.08 

-0.02 

1.06 

0.04 

0.04 

- 

1.04 

0.04 

0.04 

0.02 

Note. N = 1,199, SES1= parental SES category 1 compared with parental SES category 

3; SES2 = parental SES category 2 compared with parental SES category 3; TTM = score 

on the test-taking motivation questionnaire. 

*p < .05. **p < .01. 

 

negative   
  value was most likely due to a chance fluctuation rather than the 

misspecification of the model (i.e., random regression coefficients as opposed 

to fixed regression coefficients; for a more detailed discussion on the negative 

  
 , see Snijders and Bosker (1999, pp. 99-104)). 

Discussion 

We investigated whether the differences between high-stakes and low-stakes 

administration conditions existed in the context of test performance and the 

consistency of the individual item-score vector. It was concluded that 

differences in performance and consistency existed between the administration 

conditions. However, a difference in consistency between the administration 

conditions (i.e., showing inconsistent responding on the low-stakes test but 

consistent responding on the high-stakes test or vice versa) occurred more 
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often than a difference in performance. Students showing both a difference in 

performance and a difference in consistency were rare. 

As mentioned earlier, there are different explanations on how low test-

taking motivation negatively affects test scores. Examples include students 

who are less motivated by items that are considered mentally taxing or those 

who lose motivation near the end of the test. Given that the position of the item 

or the degree to which it is considered mentally taxing is not perfectly related 

to the difficulty of the item, in the situations described in both examples, one 

expects to find a difference between high-stakes and low-stakes tests with 

respect to performance and consistency. However, we did not find significant 

overlap between the subsets of students who were classified as aberrant with 

respect to the consistency of the item-score vector in both high-stakes and low-

stakes administration conditions. The question arises as to how students 

approach a low-stakes test. Theoretically, the degree to which an item is 

mentally taxing (i.e., the mental effort needed to reach a correct answer) differs 

from the difficulty of this item (i.e., the p-value) (Wolf, Smith, & Birnbaum, 

1995). Despite this theoretical difference, it remains unclear whether students 

distinguish between mental workload and item difficulty in practice. If not, 

then only a shift in performance is likely. Furthermore, even though the level of 

difficulty of the items usually varies throughout the test form, it is also 

common to start with relatively easy items and then slowly increase the 

difficulty of the items. However, this is not done monotonically, that is, as 

items become more difficult, they are sometimes followed by easier items to 

keep students motivated. Thus, even though the relationship between item 

position and item difficulty is not perfect, it is not unrelated either. This 

relationship suggests that if students are indeed less motivated toward the end 

of the low-stakes test, the amount of inconsistency would still not be large. It is 

questionable whether person-fit statistics, such as   
 , have sufficient power to 

detect small effects unless tests became unrealistically long (Emons, Sijtsma, & 

Meijer, 2005; Meijer & Sijtsma, 2001; Reise & Due, 1991). 

The lack of overlap between the subsets of students classified as aberrant 

with respect to the consistency of the item-score vector in both the high-stakes 

and low-stakes administration conditions leads us to believe that person misfit 

is not a stable tendency. This result contradicts that of Woods, Oltmanns, and 

Turkheimer (2008) who found positive correlations, some of which substantial, 

across five temperament and trait scales of the Schedule for Nonadaptive and 

Adaptive Personality (Clark, 1996). A possible explanation for these 
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contradictory findings is that person misfit in non-cognitive and cognitive 

measurements results from different psychological processes. This explanation 

is supported by Schmitt et al. (1999) who found that    values estimated from 

different cognitive ability domains were uncorrelated whereas    values 

estimated from different personality domains were moderately correlated. It is 

likely that as opposed to the cognitive measurement, misfit in the non-

cognitive measurement is influenced more by specific, stable response styles, 

such as faking a particular personality characteristic well. 

After having assessed the different types of misfit between and within 

high-stakes and low-stakes administration conditions, we tried to explain 

person misfit by regressing person-fit statistics on explanatory variables. 

Presumably relevant covariates, such as a score on a test-taking motivation 

questionnaire, significantly explained variation within the   
 

low-stakes and the LM 

statistic. However, the proportion of explained variance was very small. 

The studies devoted to explaining person-misfit provided us with mixed 

results. Schmitt et al. (1999) found significant correlates of person-misfit in non-

cognitive measurements (e.g., conscientiousness, gender, and test-taking 

motivation). Conijn, Emons, Van Assen, Pedersen, and Sijtsma (2013) also 

found significant covariates of person-misfit in non-cognitive measurements 

(e.g., conscientiousness and psychopathology), but they only explained small 

proportions of variation in person misfit. Conijn et al. (2013) suggested several 

explanations for the low explanatory power in person-fit research. For 

example, different types of model misfit may be related to different 

explanatory variables. Consequently, a single regression model does not 

sufficiently explain person misfit, and different regression models for different 

types of person misfit may be needed. 
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Appendix A 

Snijders (2001) showed that the asymptotic distribution of 

  
  

           ̂     ̂ 

√     ̂ 
                                              

is standard normal when using the 2PL model and the weighted likelihood 

estimator (Warm, 1989) where l denotes the unstandardized likelihood of the 

item-score vector,      denotes the expected likelihood, and   denotes the total 

number of items. The quantities in Equation 5.1 are given by: 
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   are the first and second derivatives of   , respectively, with respect to 

 , and   and   are the information and Jacobian, respectively.  
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Chapter 6 

Epilogue 

 

 

 

 

 

 

Understanding the complexity of the psychological process underlying 

differential motivation is essential for attempting to model it. A prominent 

theory regarding motivation is the expectancy-value theory for achievement 

performance proposed by Wigfield (1994), which argues that achievement 

performance depends on students’ expectancies of succeeding a task and the 

value they assign to succeeding. Eccles et al. (1983) defined attainment value as 

the subjectively assigned importance of doing well on a task. In relation to 

differential motivation, we assumed that the attainment value of passing an 

item is lower in low-stakes conditions than high-stakes conditions, thus 

lowering a student’s subjective value assigned to passing an item, and thus 

lowering a student’s achievement performance. 

The goal of this thesis was to investigate the effect of differential 

motivation on linking and the possibility to statistically model this effect. 

Substantial evidence shows that students respond differently to tests 

administered in low-stakes conditions than to tests administered in high-stakes 

conditions. The main question was not, therefore, whether an effect of 

differential motivation existed, but how it would affect the individual item-

score vector, the test results and, more specifically for this thesis, the linking 

result. In this Epilogue, I will reflect on the decisions made in operationalizing 

and modeling differential motivation. These reflections might serve as input 

for avenues of future research. 
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The effect of differential motivation was operationalized by creating a 

heterogeneous population. This was accomplished by dividing a population 

assumed to be homogeneous (i.e., the administration condition was high-

stakes) into two subgroups, the first containing students who did not respond 

differentially between administration conditions and the second who 

responded differentially. Following the mixture Rasch modeling approach, we 

attempted to model these subgroups by identifying two latent classes. Using 

the person-fit approach, these subgroups were identified by making a binary 

decision between fit (i.e., students who performed in a ‘high-stakes manner’) 

and misfit (i.e., students performing in a ‘low-stakes matter’). Different reasons 

exist for assuming that the use of (1) a more comprehensive operationalization 

of differential motivation or (2) a different modeling strategy might be useful 

for further investigating and modeling differential motivation. 

Operationalizing differential motivation. One of the first concepts I 

encountered, which suggested that the psychological process underlying the 

effect of differential motivation was more complex than expected, was test 

anxiety. In light of the expectancy-value theory, it has been shown that 

students who highly value success (e.g., passing an item) but expect to do 

poorly, report higher levels of test anxiety (Selkirk, Bouchy, & Eccles, 2011). 

Regarding the difference between high-stakes and low-stakes administration 

conditions, Zohar (1988) provided evidence that disposition to anxiety and 

being tested in a high-stakes administration condition contribute to increased 

test anxiety. Additionally, a meta-analysis performed by Hembree (1988) 

showed that test anxiety is related to lower performance. According to this line 

of reasoning, for students vulnerable to test anxiety, performance on a test 

administered in a high-stakes administration condition is expected to be lower 

than performance in a low-stakes administration condition. 

Even though the findings from Chapters 1 through 5 suggest that, 

overall, students perform better on a test administered in a high-stakes 

administration condition than a low-stakes administration condition, at the 

individual level, the effect may be reversed because of, for example, test 

anxiety. The inter-individual differences with respect to responding differently 

between high-stakes and low-stakes administration conditions are likely to be 

substantial. This expectation is supported by the different findings in the 

literature on how differential motivation affects the individual item-score 

vector. Examples include students who are less motivated by items considered 

mentally taxing and students who lose motivation near the end of the test. 
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Additional support for the expectation can be found in the low correlations 

presented in Chapter 5 between the score on the TTM on the one hand and the 

posterior probabilities of the mixture Rasch model and the person-fit results on 

the other hand. The substantial inter-individual differences between 

responding in high-stakes and low-stakes administration conditions make it 

hard to believe that these differences can be modeled sufficiently precise by 

operationalizing differential motivation in just two subgroups. Even though 

the subgroup of students who do not respond differently between 

administration conditions is likely to be homogeneous, the subgroup of 

students who do respond differently is most likely not homogeneous. 

Another assumption underlying our operationalization, worthy of 

discussion, is that students belong to a homogeneous population when tests 

were only administered in high-stakes conditions. Application of the mixture 

Rasch model to the internal anchor (in Chapter 2) did not yield evidence for 

differently motivated subgroups. However, this lack of evidence does not rule 

out other psychological processes, which might add to variation in responding 

within administration conditions. In Chapter 3, for simulated data, I found that 

both the effect size and the number of students showing low-stakes responding 

needed to be substantial for the mixture Rasch model to identify the simulated 

latent classes. A possible explanation might be that the variation between 

administration conditions needs to be sufficiently large compared to the 

variation within administration conditions before the model can correctly 

identify the latent classes. 

Modeling differential motivation. Identification of latent classes 

underlying the data only has meaning relative to the operationalization of the 

construct and the statistical method used (Bouwmeester & Sijtsma, 2007; 

Bouwmeester, Vermunt, & Sijtsma, 2007). To put it sharply, the mixture Rasch 

model can only be interpreted meaningfully to the extent that the phenomenon 

picked up from the data truly reflects the operationalization of responding 

differently. In addition, for a person-fit approach, a meaningful identification 

of subgroups, whose item-score vectors are either consistent or inconsistent 

with a specific IRT model, depends on the operationalization of the construct 

and the person-fit method used. The results presented in this thesis should 

therefore be evaluated relative to the mixture Rasch model or the person-fit 

methods used. 

Following the mixture Rasch modeling approach, it was attempted to 

model differential motivation by imposing constraints on the latent classes. 
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Using the mixture Rasch model, we assumed that the latent classes only differ 

with respect to item difficulty parameters, where the item difficulty parameters 

are higher for the class representing low-stakes responding than the class 

representing high-stakes responding. However, this idea might be too simple, 

because allowing classes to differ with respect to item discrimination 

parameters might improve modeling the differences in responding between 

administration conditions. The following line of reasoning provides support 

for allowing item discrimination to vary between classes. A higher attainment 

value in high-stakes administration conditions will only result in a difference 

in performance for those students who are proficient enough to pass the item. 

For the item characteristic curves (ICCs) in the different latent classes, this 

means that below a particular proficiency value, they overlap, and above this 

value, the ICC of the latent class showing low-stakes responding increases 

more slowly than the ICC of the latent class showing high-stakes responding. 

ICCs for the latent class representing high-stakes responding are expected to be 

steeper than ICCs for the latent class representing low-stakes responding when 

the relationship between the probability of passing an item and proficiency is 

weaker for the latent class representing low-stakes responding. Empirical 

research has to provide support for this hypothesis. 
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Summary 

 

 

 

 

 

 

In educational measurement, multiple test forms are often constructed to 

measure the same construct. Linking procedures are used to disentangle 

differences between test forms with respect to difficulty and differences 

between student groups with respect to proficiency, so that scores for different 

test forms can be used interchangeably. Students’ differential motivation can be 

considered a confounding variable when choosing a data collection design for 

linking. Differential motivation refers to the difference in test-taking 

motivation that exists between high-stakes and low-stakes administration 

conditions (Holland & Wightman, 1982). In a high-stakes administration 

condition, a student is expected to work harder and strive for maximum 

performance, whereas a low-stakes administration condition does not 

challenge students explicitly, and thus may elicit typical, rather than 

maximum, performance. In this thesis, we first discuss the suitability of 

different data collection designs and the way they are typically implemented in 

practice. In Chapters 2 through 5, we investigated the suitability of a mixture 

Rasch model and person-fit methods to model differential motivation. 

Constraints on the mixture Rasch model should help identify the latent classes 

in such a way that one latent class represents high-stakes responding while the 

other represents low-stakes responding. 

In Chapter 2, we used data from a Dutch testing program to investigate 

whether the differences between estimated proficiency distributions obtained 

from two operational tests differed between data collection designs with 

anchor items administered in low-stakes conditions on the one hand and data 

collection designs with anchor items administered in high-stakes conditions on 

the other hand. The external anchor design was concluded to be more robust 
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against the effect of differential motivation than the pre-test design. 

Specifically, using the pre-test design to link the operational tests resulted in a 

substantial overestimation of the difference between the estimated mean 

proficiency of the populations administered the operational tests. The effect of 

differential motivation in the pre-test design can be controlled for by using a 

constrained mixture Rasch model to link the operational tests. Removing items 

displaying DIF between high-stakes and low-stakes administration conditions 

does not improve the linking result. 

The purpose of Chapter 3 was to investigate under which conditions 

simulated differential motivation between the stakes of operational tests and 

anchor items produces an invalid linking result when the Rasch model was 

used to link the operational tests. This was done for an external anchor design 

and a variation of a pre-test design. Additionally, the question whether a 

constrained mixture Rasch model can identify the simulated latent classes was 

also investigated. The results indicate that for an external anchor design, the 

Rasch linking result is only biased when the motivation level differs between 

the subpopulations to which the anchor items are presented. We found that the 

constrained mixture Rasch model did not identify the simulated latent classes 

representing low-stakes and high-stakes responding. When a pre-test design 

was used to link the operational tests by means of a Rasch model, in each 

condition bias in the linking result was found. The amount of bias increased as 

the percentage of students showing low-stakes responding on the anchor items 

increased. The constrained mixture Rasch model only identified the simulated 

latent classes representing low-stakes and high-stakes responding under a 

limited number of conditions. 

In Chapter 4, we explored the extent to which a constrained mixture 

Rasch model and the    person-fit statistic can be used to model motivational 

differences in data obtained from a low-stakes administration condition. We 

investigated the usefulness of the mixture modeling strategy in a sample of 

primary-school students (N = 1,512) by comparing the posterior probabilities of 

the constrained mixture Rasch model and students’ self-reported motivation. 

Furthermore, we investigated the relationship between students’ self-reported 

motivation and the    person-fit statistic. The results led us to conclude that 

compared to the posterior probabilities of the constrained mixture Rasch 

model, the    person-fit statistic seems a more promising approach to model 

motivational differences. 
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Real-data studies indicate that the absence of test-taking motivation may 

have a negative effect on a student’s test score and the consistency of a 

student’s responses. The focus of Chapter 5 on the difference between 

responding in low-stakes and high-stakes administration conditions in relation 

to test performance and response consistency showed that a response 

consistency difference occurred more often than a difference in performance in 

the administration conditions. Students differing on account of both 

consistency and performance were rare. Scores on a test-taking motivation 

questionnaire significantly explained variation in (1) the response consistency 

on the low-stakes test and (2) the differences in performance on the low-stakes 

and high-stakes tests. However, the proportion of explained variance was 

small. 

In Chapter 6, reasons were discussed for assuming that the use of (1) a 

more comprehensive operationalization of differential motivation and (2) a 

different modeling strategy might be useful for further investigating and 

modeling differential motivation. 
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Samenvatting (Summary in Dutch) 

 

 

 

 

 

 

Van toetsen worden vaak meerdere versies geconstrueerd die hetzelfde 

construct beogen te meten. Linkprocedures kunnen gebruikt worden om de 

verschillen tussen de moeilijkheid van de toetsen en de verschillen tussen de 

vaardigheden van de leerlingen te onderscheiden. Na correctie via de 

linkprocedure kunnen scores over verschillende toetsen vergeleken worden. 

Wanneer we een data design kiezen om te linken, moeten we rekening houden 

met differentiële motivatie als potentieel storende variabele. De term 

differentiële motivatie refereert naar het verschil in motivatie tussen toetsen 

afgenomen in high-stakes afname condities en toetsen afgenomen in low-stakes 

afname condities (Holland & Wightman, 1982). In een high-stakes afname 

conditie verwachten we dat een leerling hard werkt en streeft naar een 

maximale prestatie, terwijl een low-stakes afname conditie een leerling minder 

uitdaagt en eerder een typische prestatie zal uitlokken, in tegenstelling tot een 

maximale prestatie. In dit proefschrift bespreek we eerst verschillende data 

designs en de manier waarop ze normaal gesproken geïmplementeerd worden 

in de praktijk. Ook bespreken we de geschiktheid van de data designs om het 

effect van differentiële motivatie te kunnen onderzoeken. In Hoofdstuk 2 tot en 

met Hoofdstuk 5 onderzoeken we de geschiktheid van het mixture Rasch 

model en person-fit methoden om differentiële motivatie te modeleren. Het 

opleggen van specificaties aan de latente klassen in het mixture Rasch model 

zouden moeten helpen bij het identificeren van de latente klassen zodat één 

latente klas high-stakes antwoordgedrag vertegenwoordigt terwijl de ander 

low-stakes antwoordgedrag vertegenwoordigt. 

 In Hoofdstuk 2 gebruiken we data van een Nederlands toetsprogramma 

om te onderzoeken of de geschatte vaardigheidsverdelingen verkregen met 
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twee operationele toetsen verschillen bij gebruik van verschillende data 

designs. De data designs verschilden met betrekking tot de afnameconditie van 

de ankeritems. We vonden dat het externe anker design robuuster is tegen het 

effect van differentiële motivatie dan het proeftoets design. Gebruik van het 

proeftoets design resulteerde in een substantiële overschatting van het verschil 

tussen de gemiddelden van de geschatte vaardigheidsverdelingen van de 

populaties die de operationele toetsen maakten. We controleerden voor het 

effect van differentiële motivatie in het proeftoets design door gebruik te 

maken van een mixture Rasch model om de operationele toetsen te linken. Het 

verwijderen van items die DIF vertonen tussen high-stakes en low-stakes 

afnamecondities resulteerde niet in een betere link. 

Het doel van Hoofdstuk 3 was om te onderzoeken wanneer gebruik van 

het Rasch model als linkmethode in geval van differentiële motivatie tussen de 

stakes van een operationele toets en ankeritems een invalide link resultaat 

oplevert. Dit werd onderzocht voor een extern anker design en een variant van 

een proeftoets design. Ook werd onderzocht of een mixture Rasch model met 

specificaties voor de latente klassen de gesimuleerde latente klassen kan 

identificeren. De resultaten gaven aan dat voor een extern anker design het link 

resultaat verkregen met het Rasch model bias vertoont wanneer de 

hoeveelheid gemotiveerde leerlingen verschilt tussen de subpopulaties waarbij 

de anker items worden afgenomen. Echter, het mixture Rasch model met 

specificaties voor de latente klassen identificeerde niet de gesimuleerde latente 

klassen die low-stakes en high-stakes antwoordgedrag moeten 

vertegenwoordigen. Wanneer een proeftoets design gebruikt werd om de 

operationele toetsen te linken, vonden we bias in alle condities. De hoeveelheid 

bias nam toe met het percentage leerlingen die low-stakes antwoordgedrag 

vertoonden. Het mixture Rasch model met specificaties voor de latente klassen 

identificeerde alleen in een beperkt aantal condities de gesimuleerde latente 

klassen die low-stakes en high-stakes antwoordgedrag vertegenwoordigen. 

In Hoofdstuk 4 bespreken we in hoeverre een mixture Rasch model met 

specificaties voor de latente klassen en de    person-fit methode gebruikt 

kunnen worden om verschillen in motivatie in een low-stakes afnameconditie 

te modeleren. We onderzochten de geschiktheid van een mixture modeling 

strategie in een steekproef van 1.512 basisschoolleerlingen door de posteriori 

kansen van het mixture model met specificaties op de latente klassen te 

vergelijken met het door leerlingen zelf gerapporteerde motivatieniveau. Ook 

onderzochten we de relatie tussen het door leerlingen zelf gerapporteerde 
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motivatieniveau en de    person-fit methode. Op basis van de resultaten 

concludeerden we dat, vergeleken met de posteriori kansen van het mixture 

Rasch model met specificaties op de latente klassen, het gebruik van de    

person-fit methode een betere methode is voor het modeleren van verschillen 

in motivatie. 

Empirisch onderzoek geeft aan dat het ontbreken van motivatie tijdens 

een toets afname een negatief effect kan hebben op de toetsscores van 

leerlingen en op de consistentie van het antwoordpatroon. In Hoofdstuk 5 

werd het verschil onderzocht tussen antwoordgedrag in low-stakes en high-

stakes afnamecondities met betrekking tot toetsprestaties en consistentie van 

het antwoordpatroon. Een verschil tussen consistentie van het 

antwoordpatroon werd vaker gevonden dan een verschil tussen 

toetsprestaties. Zelden werd gevonden dat leerlingen verschillen op 

consistentie van het antwoordpatroon en toetsprestaties. Toetsmotivatie 

gemeten met een vragenlijst is een significante voorspeller van variatie in (1) 

consistentie in antwoordgedrag op een toets afgenomen in een low-stakes 

conditie en (2) het verschil in prestatie tussen de low-stakes en de high-stakes 

toets. Echter, de hoeveelheid verklaarde variantie is gering. 

In Hoofdstuk 6 lichten we toe waarom het gebruik van (1) een meer 

omvattende operationalisering van differentiële motivatie en (2) andere 

statistische modellen bruikbaar kan zijn in verder onderzoek naar differentiële 

motivatie en het modeleren ervan. 
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