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Computing the Maximum Volume Inscribed Ellipsoid
of a Polytopic Projection

Jianzhe Zhen*, Dick den Hertog
Department of Econometrics and Operations Research, Tilburg University, 5000 LE, The Netherlands

{j.zhen@uvt.nl, d.denhertog@uvt.nl}

We introduce a novel scheme based on a blending of Fourier-Motzkin elimination (FME) and adjustable

robust optimization techniques to compute the maximum volume inscribed ellipsoid (MVE) in a polytopic

projection. It is well-known that deriving an explicit description of a projected polytope is NP-hard. Our

approach does not require an explicit description of the projection, and can easily be generalized to find a

maximally sized convex body of a polytopic projection. Our obtained MVE is an inner approximation of

the projected polytope, and its center is a centralized relative interior point of the projection. Since FME

may produce many redundant constraints, we apply an LP-based procedure to keep the description of the

projected polytopes at its minimal size. Furthermore, we propose an upper bounding scheme to evaluate

the quality of the inner approximations. We test our approach on a simple polytope and a color tube design

problem, and observe that as more auxiliary variables are eliminated, our inner approximations and upper

bounds converge to optimal solutions.

Key words : Fourier-Motzkin elimination; maximum volume inscribed ellipsoid; polytopic projection;

chebyshev center; removing redundant constraints; adjustable robust optimization

1. Introduction

Let P be a polytope in Rn1+n2 (not necessarily full-dimensional) defined by m linear inequalities

P =

{(
x
y

)
∈Rn1+n2 | A

(
x
y

)
≤ b
}
, (1)

where x ∈Rn1 , y ∈Rn2 , A ∈Rm×(n1+n2), and b ∈Rm. The aim of this paper is to propose a novel

approach that computes the maximum volume inscribed ellipsoid (MVE) of the projected polytope

P onto the x-space. The auxiliary variables y may occur in P due to the nature of the problem at

hand or the result of reformulations to make the problem linear. Finding the MVE of a polytopic

projection may arise in many applications.

* Corresponding author. The research of this author is supported by NWO Grant 613.001.208.
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Application 1. Ellipsoidal approximations to polytopic sets. For polytopes with many

constraints and/or facets, ellipsoids are much easier to handle, both theoretically and computation-

ally. For instance, the global minimum of any quadratic functions over an ellipsoid can be located

in polynomial time while finding such global minimum over a polytope is generally NP-hard. Since

the description of the polytopic feasible set for power system problems often contains prohibitively

many constraints, Sarić and Stanković (2008) propose to first simplify the description of the poly-

topic feasible set to a one-line MVE approximation, and then determine the optimal economic

dispatch and locational marginal prices within the MVE.

Application 2. Maximal homothet of a polytopic projection. Aggregation of a large

number of responsive loads presents power flexibility for demand response. An effective control and

coordination scheme of flexible loads requires an accurate and tractable model that captures their

aggregate flexibility. The flexibility of each individual load is a polytope, and their aggregation is

the Minkowski sum of these polytopes. The aggregate flexibility can be viewed as the projection

of a high-dimensional polytope onto the subspace representing the aggregate power. Zhao et al.

(2016) extends our approach to extract the aggregate flexibility of deferrable loads using inner

approximation of the polytopic projection.

Application 3. Design centering/tolerance design problems. Consider a manufacturing

process in which the characteristics of a product are represented by a vector x. Due to unavoidable

disturbances, e.g., implementation errors, in the manufacturing process, the realized value of x will

deviate from the nominal value in the design. The product is acceptable if x lies in the “region

of acceptability” P. Without assuming the structure of the uncertainties, a product design x that

is “most interior” in the x-space of P is desired. For problems without auxiliary variables, Graeb

(2007) and Hendrix et al. (1996) propose to consider the MVE center as the robust design.

Application 4. Nominal scenario recovery in polytopic uncertainty set. In robust

optimization, the uncertainty set contains the scenarios for which one would safeguard. One may

be interested to find a centralized nominal scenario that is not far from the (later) realization. For

example, the approximated nominal scenario can be used to evaluate the price of robustness (see

Bertsimas and Sim (2004)). Due to the existence of auxiliary variables, the MVE center of the

projection can be considered as an approximation of the nominal scenario.

Application 5. Robust solutions for system of uncertain linear equations. Given a

system of uncertain linear equations Ax= b, where the coefficient matrix A and right-hand side

vector b reside in an polytopic uncertainty set U . The convex representation of the feasible solution

set {x | ∃(A,b) ∈ U : Ax= b} contains auxiliary variables. Zhen and den Hertog (2015) consider

the MVE (and its center) of the feasible solution set as an inner approximation of the set (a

centered solution of the system).
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The method for finding the MVE of a full-dimensional polytope with no auxiliary variables (e.g.,

the variables y in P) is well-established, which can be computed in polynomial time by solving a

semidefinite programming (SDP) problem (see Boyd and Vandenberghe (2004)). One obvious way

of determining the MVE in the x-space of a given polytope P is as follows: firstly, we project P onto

the x-space, in other words, derive an explicit description of the x-space with no auxiliary variables

y; then, we can solve an SDP problem to find the MVE of the projected polytope. The projection

of P can be obtained by eliminating the auxiliary variables y. The pioneer method Fourier-Motzkin

elimination (FME) was first introduced in Fourier (1824), and was rediscovered in Motzkin (1936).

In each step of the iterative algorithm the dimension of the polytope is reduced by projecting it

onto a hyperplane. Other projection methods, i.e., the Extreme Point Method (see Lassez (1990))

and Convex Hull Method (see Lassez and Lassez (1992)), are evaluated in Huynh et al. (1992).

Jones et al. (2004) develop a new algorithm for obtaining the projection of polytopes, which is

suited for problems in which the number of vertices far exceeds the number of facets. A more

recent development on the method for variable elimination in systems of inequalities can be found

in Chaharsooghi et al. (2011). However, Tiwary (2008) shows that deriving an explicit description

of a projected polytope is NP-hard in general. The size of the description of the projection and of

the intermediate computations can be intractable (see Example 2).

We develop a novel approach for computing the MVE in a polytopic projection. We first eliminate

a subset of auxiliary variables via FME, and then compute the MVE of the x-space by solving an

adjustable robust optimization (ARO) problem. In general, one cannot eliminate all the adjustable

variables due to the rapid growth in the number of constraints after FME, otherwise, one can

simply solve an SDP problem to find the desired MVE. In order to improve the computability

of our approach, we remove the redundant constraints and keep the description of the projected

polytope at its minimal size (i.e., no redundant constraints) via an LP-based procedure. Ben-Tal

et al. (2004) show that ARO problems are in general NP-hard. Through the lens of FME, we

characterize the optimal decision rules for the proposed ARO problems. We further impose linear

and quadratic decision rules on the remaining adjustable variables to inner approximate the MVE

of the projection. The main advantages of our approach compare to the existing methods are:

a) it can deal with general polytopes with auxiliary variables, i.e., it does not require an explicit

description of the projection; b) it can be easily extended to find maximally sized convex bodies

in polytopic projections; c) it allows users make a trade-off between approximation quality and

computational complexity.

In order to evaluate the quality of our lower bounds, we adapt the approach of Hadjiyiannis et al.

(2011) (HGK approach) to obtain upper bounds on the optimal solutions of the proposed ARO

problem. We show via numerical experiments that the upper bound from HGK approach better
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approximates the optimal objective value as more auxiliary variables are eliminated. Using FME

to improve the upper bounds from the HGK approach is novel, and can also be easily applied to

a broad class of ARO problems.

In this paper, we focus on MVE because it possesses many appealing properties, e.g., it is unique,

invariant of the representation of the given convex body, and its center is a centralized (relative)

interior of the convex body. In §4.3, we extend our approach to find a largest ball in a polytopic

projection, and its center is known as Chebyshev center, which is a point that is farthest from the

boundary of the projections.

Our main contributions are as follows:

• We introduce a novel scheme based on a blending of FME and ARO techniques to compute the

MVE in a polytopic projection. Firstly, we apply FME to eliminate a subset of auxiliary variables

in the given polytope, and then we solve an ARO problem via decision rule approximations, e.g.,

linear decision rules (LDRs) or quadratic decision rules (QDRs), to compute the desired MVE.

For the color tube design problem, the lower bound from QDR approximation is optimal even if

no auxiliary variable is eliminated. Our approach can easily be generalized to find a maximally

sized convex body in a polytopic projection, and allows users to make a trade-off between solution

quality and computational complexity.

• Through the lens of FME, we characterize the optimal decision rules for the proposed ARO

problems.

• After eliminating an auxiliary variable via FME, we apply an LP-based removing redundant

constraint procedure to keep the description of the projected polytope at its minimal size.

• We further construct an upper bounding scheme based on FME and HGK approach, which

can be easily applied to a broad class of ARO problems. From numerical experiments, we observe

that, a) as more auxiliary variables are eliminated, the upper bound from HGK approach converge

to the optimal solution; b) unexpectedly, the critical scenarios of LDR approximations produce

better upper bounds than those from QDR approximations.

The rest of this paper is organized as follows. In §2, we introduce our approach for polytopes

that are full-dimensional in the x-space. We adapt the approach of Hadjiyiannis et al. (2011) to

obtain upper bounds of the optimal MVE in §3. We discuss an LP-based procedure for removing

redundant constraints, and extend our approach to find the largest ball in §4. §5 evaluates our

approach via numerical experiments. In §6, we conclude with future research directions.

Notations. We use [n], n ∈N to denote the set of running indices, {1, . . . , n}. We generally use

bold faced characters and capital letters such as x ∈ Rn and A ∈ Rm×n to represent vectors and

matrices, respectively, i.e., ai· to denote the i-th row of the matrix A, xi ∈ R denotes the i-th
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element of x, and aij denotes the j-th element of ai·. Special vectors include 0 and 1 which are

respectively the vector of zeros and the vector of ones. We use Bn to denote the n-dimensional

unit ball Bn = {x∈Rn : ||x||2 ≤ 1}.

2. MVE of Full-dimensional Projected Polytope

Suppose the polytope P given by (1) is full-dimensional in the x-space, where x∈Rn1 and y ∈Rn2

are the main variables and auxiliary variables, respectively. We denote Proj(P) as the projection

of P onto the x-space, where

Proj(P) =

{
x∈Rn1 | ∃y ∈Rn2 :A

(
x
y

)
≤ b
}
. (2)

For a special class of P where n2 = 0 (i.e., P = Proj(P)), the MVE of Proj(P) can be determined

via the following semi-infinite programming problem:

max
x,E
{log detE | ∀ζ ∈Bn1 : A(x+Eζ)≤ b} , (3)

where E ∈ Sn1 with implicit constraint E � 0, and Sn1 is the set of n1×n1 symmetric matrices. The

matrix E models the shape and volume of an n1-dimensional ellipsoid with the unique center at the

optimal x of (3). This is a static linear robust optimization problem under ellipsoidal uncertainty

Bn1 , which can be reformulated into an SDP problem (see, e.g., Boyd and Vandenberghe (2004),

Ben-Tal et al. (2009)):

max
x,E

{
log detE | aTi·x+ ||Eai·||2 ≤ bi ∀i∈ [m]

}
, (4)

where ai· denote the i-th row of matrix A. For the rest of this paper, we focus on general polyhedra

where n2 ∈Z+, hence, P 6= Projx(P).

2.1. Two Naive Attempts

Two naive extensions of (3) may be as follows:

max
x,y,E

{
log detE | ∃y ∈Rn2 ,∀ζ ∈Bn1+n2 : A

[(
x
y

)
+Eζ

]
≤ b
}
, (5)

where E ∈ Sn1+n2 ;

max
x,y,E

{
log detE | ∃y ∈Rn2 ,∀ζ ∈Bn1 : A

[(
x
y

)
+Eζ

]
≤ b
}
, (6)

where E ∈ Sn1 . Problem (5) determines the MVE in the (x,y)-space; Problem (6) finds the

MVE of the x-space with a fixed optimal vector y. The following example shows that due to the

existence of auxiliary variables y, both (5) and (6) fail to find the MVE of the x-space.
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Figure 1 The ellipsoids in (7). The triangle corresponds to the polytope P defined in (7). The dash ellipsoid and

the line segment are obtained from (5) and (6), respectively; the thick line segment on x-axis is the

optimal MVE in (7).

Example 1. Approximating the MVE via (5) and (6). Suppose P is the full-dimensional

polytope that is formed by the intersection of three half-planes:

Proj(P) = {x∈R| ∃y ∈R : −0.5x− y≤−9, 0.6x+ y≤ 10, −x− y≤−10} . (7)

Figure 1 depicts the polytope P and the obtained ellipsoids from (5) and (6). It can readily be

seen that the feasible x ∈R lies in the interval [0,10], i.e., Proj(P) = [0,10]. Clearly, the MVE of

Proj(P) is the interval [0,10] which is centered at x= 5. Problem (5) finds the MVE of P which

is centered at (4,7.33); Problem (6) finds the longest horizontal line segment in P.

2.2. Fourier-Motzkin Eliminate

Fourier-Motzkin Eliminate (FME) is an old method for deriving polytopic projections. The follow-

ing algorithm is adapted from (Bertsimas and Tsitsiklis 1997, page 72).
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Algorithm 1 Fourier-Motzkin Elimination for polyhedral projections.

1. For some l ∈ [n2], rewrite each constraint in Proj(P) into the form:

ail+n1yl ≤ bi−
∑
j∈[n1]

aijxj −
∑

j∈[n2]\{l}

aij+n1yj ∀i∈ [m],

if ail+n1 6= 0, divide both sides by ail+n1. We obtain an equivalent representation of Proj(P) involv-
ing the following constraints:

yl ≤
bi

ail+n1
−
∑
j∈[n1]

aijxj
ail+n1

−
∑

j∈[n2]\{l}

aij+n1yj
ail+n1

∀i∈ [m] : ail+n1 > 0,

yl ≥
∑
j∈[n1]

aijxj
ail+n1

+
∑

j∈[n2]\{l}

aij+n1yj
ail+n1

− bi
ail+n1

∀i∈ [m] : ail+n1 < 0,

0≤ bi−
∑
j∈[n1]

aijxj −
∑

j∈[n2]\{l}

aij+n1yj ∀i∈ [m] : ail+n1 = 0.

2. Let Proj(P\{l}) be the set after yl is eliminated, and it is defined by the following constraints:

bi
ail+n1

−
∑
j∈[n1]

aijxj
ail+n1

−
∑

j∈[n2]\{l}

aij+n1yj
ail+n1

≥ ∀i∈ [m] : ail+n1 > 0

∑
j∈[n1]

akjxj
akl+n1

+
∑

j∈[n2]\{l}

akj+n1yj
akl+n1

− bk
akl+n1

∀k ∈ [m] : akl+n1 < 0,

bi−
∑
j∈[n1]

aijxj −
∑

j∈[n2]\{l}

aij+n1yj ≥0 ∀i∈ [m] : ail+n1 = 0.

Lemma 1. Proj(P) = Proj(P\{l}).

Proof. See Appendix 1.

From Lemma 1, one can repeatedly apply Algorithm 1 to eliminate all the auxiliary variables y,

which results in an explicit description Proj(P\[n2]) of Proj(P). We can then compute the MVE of

Proj(P\[n2]) via (4), if the constraints in Proj(P\[n2]) are not prohibitively many. However, in Step

2 of Algorithm 1, the number of constraints may increase quadratically after each elimination. The

complexity of eliminating n2 adjustable variables from m constraints via Algorithm 1 is O(m2n2 ),

which is an unfortunate inheritance of FME. In §4.1 we apply an LP-based procedure to remove

redundant constraints, and keep the description of the projection at its minimal size. The following

example shows that deriving a polytopic projection may lead to an exponential growth in the

number of constraints.
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Example 2. The complexity of variable eliminations/polytopic projections. Let us con-

sider the following two interesting polytopes:{
x∈Rn1 |

n1∑
i=1

|xi| ≤ 1

}
and (8){

x∈Rn1 | ζTAx≤ 1 ∀ζ ∈ [0,1]
}
, where A∈Rm×n1. (9)

We rewrite (8) and (9) into the following representations:{
x∈Rn1 | ∃y ∈Rn1 :

n1∑
i=1

yi ≤ 1, xi ≤ yi, −xi ≤ yi, ∀i

}
and (10){

x∈Rn1 | ∃y ∈Rm+ :
m∑
i=1

yi ≤ 1, y≥Ax

}
, respectively. (11)

If one employs Algorithm 1 to eliminating all the auxiliary variables y in (10) and (11), we have

the explicit descriptions with 2n1 constraints and 2m constraints, respectively:{
x∈Rn1 |

n1∑
i=1

max{xi,−xi} ≤ 1

}
{
x∈Rn1 |

m∑
i=1

max
{
aTi·x,0

}
≤ 1

}
,

where ai· ∈Rn1 denotes the i-th row of A.

Note that polytope (8) is modeled by a piecewise-linear constraint, which is often seen in budget

uncertainty sets (e.g., Bertsimas and Sim (2004)); the polytope (9) is modeled by a semi-infinite

constraint, which is a typical constraint in robust optimization problems with box uncertainties.

The auxiliary variables in the reformulations lift polytopes with many constraints into higher

dimensions, so that the reformulations only need few constraints and extra auxiliary variables.

However, eliminating the auxiliary variables may lead to an exponential growth in the number of

constraints.

2.3. Our Approach

In this subsection, we introduce a novel scheme based on a blending of FME and ARO techniques

to compute the MVE in a polytopic projection. Firstly, for n2 ∈ Z+ in P, we propose to solve

following variant of Problem (5) and (6) to compute the MVE of the x-space of P:

max
x,y,E

{
log detE | ∀ζ ∈Bn1 ,∃y ∈Rn2 :A

(
x+Eζ
y

)
≤ b
}
. (12)

This is a two-stage ARO problem with fixed recourse under ellipsoidal uncertainty Bn1 . Here,

x ∈Rn1 and E ∈ Sn1 are here-and-now decision variables, and y are wait-and-see adjustable vari-

ables. The optimal matrix E of (12) models the shape and volume of the n1-dimensional MVE



9

with the unique center at the optimal x. To the best of our knowledge, finding the MVE in a poly-

topic projection via ARO is novel. Problem (12) is generally intractable, because the adjustable

variables y are decision rules instead of finite vectors of decision variables. The following theorem

characterizes optimal decision rules for (12).

Theorem 1. There exist polynomials of (at most) degree n1 and linear in ζi, i ∈ [n1], that are

optimal decision rules for y in (12).

Proof. See Appendix B. �

In fact, Theorem 1 not only holds for Problem (12), but also for general linear ARO problems with

fixed recourse.

Note that Problem (6) is in fact a special case of (12) where the optimal y are constant,

a.k.a, static decision rules. More sophisticated yet computationally tractable decision rules can be

imposed on y, e.g., quadratic decision rules (QDRs):

yj = ζTWjζ+vTj·ζ+uj, for j = 1, ..., n2, (13)

where uj ∈ R, vj· ∈ Rn1 , and Wj ∈ Rn1×n1 . The following theorem provides a computationally

tractable reformulation of (12) with quadratic decision rules (13).

Theorem 2. The solution (x∗,u∗,E∗, V ∗,W ∗
j ) is optimal for (12) with QDRs (13) if and only if

it is an optimal solution of the following SDP problem:

(lbQ) max
x,u,τ ,λ,E,V,Wj

log detE

s.t. τ ≤ b

λ≥ 0 τi−λi−a
T
i·

(
x
u

)
− 1

2
aTi·

(
E
V

)
− 1

2

(
E
V

)T
ai· λiI −

∑n2
j=1 aij+n1Wj

� 0 ∀i∈ [m],

where ai· is the i-th row of A, i∈ [m].

Proof. See Appendix C. �

Problem (lbQ) although computationally tractable, can be difficult to solve in practice, especially

when the instance is large. Alternatively, one can impose simpler decision rules on y, e.g., linear

decision rules (LDRs):

y= V ζ+u, (14)

where the coefficients u ∈ Rn2 and V ∈ Rn2×n1 are optimization variables. Similarly, the MVE of

Proj(P) can be approximated by solving a simpler SDP problem.
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Corollary 1. The solution (x∗,u∗,E∗, V ∗) is optimal for (12) with LDRs (14) if and only if it

is an optimal solution of the following SDP problem:

(lbL) max
x,u,E,V

log detE

s.t. aTi·

(
x
u

)
+

∣∣∣∣∣
∣∣∣∣∣
(
E
V

)T
ai·

∣∣∣∣∣
∣∣∣∣∣
2

≤ bi ∀i∈ [m].

Proof. The proof is straightforward, hence it is omitted. �

Due to the imposed structure on y, Problem (lbQ) and (lbL) under-approximate the MVE of

Proj(P). §5 shows that Problem (lbL) is much faster to solve than (lbQ), but the quality of the

solutions from (lbQ) can be much better than (lbL). In the following example, we apply (lbL) to

find the MVE of the projected polytope in Example 1.

Example 3. The maximum volume inscribed ellipsoid of a full-dimensional polytope

with auxiliary variables. Let us again consider the full-dimensional polytope (7). After elimi-

nating y via Algorithm 1, we have Proj(P\{1}) = {x | x∈ [0,10]}. The optimal MVE is centered

at x= 5 with a radius 5. By solving (lbL) for Proj(P) (i.e., without eliminating y), we find the

optimal MVE with y∗ = 7− 3ζ for ζ ∈ [−1,1]. This optimal LDR of y∗ coincides with the line that

covers all the feasible values of x in P, i.e., 0.6x+ y= 10.

Zhen et al. (2016) show that in general, the decision rule approximations of ARO problems can

simply be improved by eliminating the adjustable variables via FME. Therefore, we propose first

(iteratively) eliminate a subset S ⊆ [n2] of y via FME till the size of resulting description of

Proj(P\S) =

{
x∈Rn1 | ∃y ∈Rñ2 : Ã

(
x
y

)
≤ b̃
}
, (15)

reaches the prescribed limit. Here, m̃ and ñ2 = n2 − |S| denote the number of constraints and

remaining auxiliary variables; Ã ∈ Rm̃×(n1+ñ2) and b̃ ∈ Rm̃ denote the resulting coefficient matrix

and the right-hand-side vector, respectively. Then, we solve the corresponding ARO problem (12)

via decision rule approximations to compute the MVE of Proj(P\S).

FME may lead to many redundant constraints in (15). §4.1 discusses an LP-based procedure to

remove all the redundant constraints in (15). We observe in §5.2 that this procedure can signifi-

cantly improve the computability of our approach.

Since Problem (12) have left-hand side uncertainties and non-linear objective function, the

performance bounds on LDR approximations in Bertsimas and Goyal (2012) and Bertsimas and

Bidkhori (2015) are not applicable here.
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3. An Upper Bounding Scheme

3.1. HGK Approach and FME

The scenario counterpart (ub) of Problem (12):

(ub) max
x,Y,E

log detE

s.t. A

(
x+Eζj

yj

)
≤ b ∀j ∈ [k]

produces an upper bound on the optimal value of (12). Here, yj is the j-th column of Y ∈Rn2×k,

and ζj ⊂Bn1 , ∀j ∈ [k], k ∈Z+. Problem (ub) is feasible if there exists a feasible yj for each scenario

ζj, j ∈ [k]. In order to obtain a tight upper bound, HGK approach considers the critically binding

scenarios (CBSs) from decision rule approximations of ARO problems.

A critical scenario of Problem (12) with QDRs can be determined by solving the following

problem:

ζiQ = arg max
ζ∈Bn1

aTi·

(
x∗

u∗

)
+aTi·

(
E∗

V ∗

)
ζ+ ζT

(
n2∑
j=1

aij+n1W
∗
j

)
ζ− bi, i∈ [m], (16)

where (x∗, u∗, E∗, V ∗,W ∗) denotes the optimal solution from (lbQ). From Appendix C, we can

reformulate (16) into an SDP problem. The critical scenario ζk is binding if the optimal objective

value of (16) is 0. Similarly, for (12) with LDRs, the CBSs are obtained from solving the following

SOCP problem:

ζiL = arg max
ζ∈Bn1

aTi·

(
x∗

u∗

)
+aTi·

(
E∗

V ∗

)
ζ− bi, i∈ [m], (17)

where (x∗,u∗,E∗, V ∗) denotes the optimal solution from (lbL).

In §2.3, we use FME to improve the decision rule approximations of Problem (12). FME can

also be used to improve the upper bounds obtained from the HGK approach. We propose to first

eliminate a subset of auxiliary variables via FME, and then use the CBSs from (16) or (17) to

compute the upper bounds of (12). This blending of HGK approach and FME is novel, and can

also be applied to a broad class of ARO problems. Via numerical experiments in §5, we observe

that as more auxiliary variables are eliminated, the obtained upper bounds converge to optimal

solutions.
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3.2. A simple iterative procedure

Solving (ub) with a set of many scenarios can be problematic. Therefore, we propose the following

iterative procedure. Given the set of critical scenarios {ζ1, ...,ζm}, we first solve an initialization

problem

(Iub) max
x,Y,E

log detE

s.t. aTi·

(
x+Eζi

yi

)
≤ bi ∀i∈ [m],

where ζi, i ∈ [m], are the critical scenarios from (16) or (17). Then, we check if the i-th

constraint, i ∈ [m], satisfies all the CBSs for the optimal (x∗, Y ∗,E∗) from (Iub). If there are

violating constraints detected, we add those constraints to (Iub) and solve it again. We repeat

this procedure until no violating constraints can be found. This iterative procedure only adds the

violating constraints in each iteration. In §5, we observe that this procedure efficiently avoids to

include too many redundant constraints, and significantly reduces computation time.

4. Miscellaneous

4.1. Removing Redundant Constraints

It is well-known that FME may produce many redundant constraints and may be very sensitive

to those constraints. In order to keep Proj(P\S) at its minimal size, after eliminating an auxiliary

variable via FME, we execute an LP-based procedure to detect and remove the redundant con-

straints. This removing redundant constraint procedure is first proposed by Caron et al. (1989).

We test whether the j-th inequality, j ∈ [m], in Proj(P\S) is implied by the rest via the following

LP problem:

max
x,y

aTj·

(
x
y

)
− bj

s.t. aTi·

(
x
y

)
≤ bi i∈ [m] \ {j},

where ai· is the i-th row of A, i ∈ [m], and bi is the i-th element of the vector b. Then the j-th

inequality in Proj(P\S) is redundant if and only if the optimal objective value is less or equal to 0.

By successively solving this LP for each untested inequality against the remaining, one would finally

obtain a description of Proj(P\S) at its minimal size. §5.2 shows that this procedure significantly

improves the computability of our approach.
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4.2. MVE of General Polytope

Suppose the projected polytope Proj(P) defined in (2) is not full-dimensional. There are (hidden)

equality constraints in polytope P. We consider two classes of (hidden) equality constraints in

Proj(P). The first class consists of equality constraints that contain the auxiliary variables y. The

second class consists of equality constraints that only contain the main variables x. The equality

constraints formed by inequalities can be detected and separated efficiently (see Fukuda (2013)).

For Problem (12), a typical constraint of the first class can be presented as follows:

aT (x+Eζ) + y= b ∀ζ ∈Bn1 , (18)

where a∈Rn1 and the variable y ∈R is an auxiliary variable (without loss of generality we assume

the coefficient for y is 1). In Gorissen et al. (2015), the authors briefly discuss two ways of deal-

ing with uncertain equality constraints with adjustable variables. Either one can eliminate those

equality constraints, or one can apply LDRs. Lemma 2 shows that both procedures are equivalent.

Lemma 2. Using an LDR for the auxiliary variable y in (18) is equivalent to eliminating y.

Proof: See Appendix D. �

Since using decision rules requires extra variables, it is preferred to eliminate the auxiliary

variables in the uncertain equality constraints. For simplicity, we assume there is no (hidden)

equality constraint containing y in Proj(P). After separating all the hidden equality constraints

from the inequalities, we partition the constraints in Proj(P) as follows:

Proj(P) =
{
x∈Rn1 | ∃y ∈Rn2 : A1

xx+A1
yy≤ b

1, A2
xx= b2

}
. (19)

Here, the set without (hidden) equalities { x ∈ Rn1 | ∃y ∈ Rn2 : A1
xx + A1

yy ≤ b
1} is full-

dimensional. Obviously, A2
xx = b2 reduce the dimension of Proj(P), and there does not exist a

positive definite matrix E such that,

A2
x(x+Eζ) = b2 ∀ζ ∈Bn1 .

Hence, the method introduced in §2 cannot be applied directly. We propose to use the following

constraints elimination technique (see Boyd and Vandenberghe (2004)). Let us define the columns

of the full rank matrix F ∈Rn1×(n1−l) to be a basis of the null space of A2
x, where l = rank(A2

x).

Then, we have

{
x∈Rn1 | A2

xx= b2
}

=
{
Fz+x0 | z ∈Rn1−l

}
, (20)
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where x0 is a solution of the linear equations A2
xx= b2. The new set (on the right hand side of

(20)) is full-dimensional in the variable z. Hence, Proj(P) can be represented as a full-dimensional

set:

Proj(Q) =

{
z ∈Rn1−l | ∃y ∈Rn2 :A1

(
Fz+x0

y

)
≤ b1

}
,

where A1 = (A1
x A1

y). Note that Proj(P) = {Fz+x0 | z ∈ Proj(Q)}. The MVE of the full-

dimensional set Proj(Q) can be obtained by solving:

max
x,y,E

{
log detE | ∀ζ ∈Bn1−l,∃y ∈Rn2 :A1

(
F (z+Eζ) +x0

y

)
≤ b1

}
.

This is again a two-stage ARO problem. Hence, all the techniques discussed in §2 and §3 can be

readily applied. Since the MVE is affine invariant, the MVE center of Proj(P) can be recovered

from an affine transformation of z∗, i.e.,

x∗ = Fz∗+x0.

4.3. Extension to Ball

A largest ball in a full-dimensional Proj(P) can simply be determined by replacing the matrix E

with ρI everywhere in (12), where ρ ∈R+ and I ∈Rn1×n1 is the identity matrix, the optimal x is

a point that is furthest away from the exterior of Proj(P), a.k.a., Chebyshev center.

Let us consider a special class of (full dimensional) polyhedra where only a subset of x appears

in the constraints containing y, e.g., for S ⊆ [n1],

Proj(P) =
{
x∈Rn1 | ∃y ∈Rn2 : A1

xxS +A1
yy≤ b

1, A2
xx≤ b

2
}
. (21)

The corresponding problem of finding a largest inscribed ball of (21) can be formulated as follows:

max
x,y,ρ

{
ρ | ∀ζ ∈Bn1 ,∃y ∈Rn2 :A1

(
xS + ρζS

y

)
≤ b1, A2

x(x+ ρζ)≤ 0

}
. (22)

For this special class of polyhedra, the following theorem shows that we can restrict decision rules

to be functions in a subset of uncertain parameters ζS .

Theorem 3. There exist piece-wise affine functions in ζS that are optimal decision rules for y in

(22).

Proof: See Appendix E. �

Since the largest ball and its Chebyshev center is not affine invariant, if Proj(P) is not full

dimensional, the constraint eliminate technique discussed in §4.2 cannot be applied. A largest

inscribed ball of Proj(P) defined in (19) can be determined by solving the following ARO problem

max
x,y,ρ

{
ρ | ∀ζ ∈ {ζ ∈Bn1 |A2

xζ = 0},∃y ∈Rn2 :A1

(
x+ ρζ
y

)
≤ b1, A2

xx= 0

}
. (23)
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Here, the constraints A2
xζ = 0 ensure the ball to be within the same space as x. An alternative

formulation of Problem (23) can be presented as follows:

max
x,y,ρ

{
ρ | ∀ζ ∈Bn1 ,∃y ∈Rn2 :A1

(
x+ ρPζ
y

)
≤ b1, A2

xx= 0

}
, (24)

where P = I − (A2
x)T [A2

x(A2
x)T ]−1A2

x is the (symmetric) projection matrix that projects vector

ζ ∈Rn1 onto the null space of A2
x.

Corollary 2. The solution (x∗,u∗, ρ∗, V ∗,W ∗
j ) is optimal for (24) with QDRs (13) if and only

if it is an optimal solution of the following SDP problem:

(lbQb) max
x,u,τ ,λ,ρ,V,Wj

ρ

s.t. τ ≤ b

λ≥ 0

A2
xx= 0 τi−λi−a

1T
i·

(
x
u

)
− 1

2
a1T
i·

(
ρP
V P

)
− 1

2

(
ρP
V P

)T
a1
i· λiI −P

∑n2
j=1 a

1
ij+n1

WjP

� 0 ∀i∈ [m],

where a1
i· is the i-th row of A1, i ∈ [m], I ∈ Rn1×n1 is the identity matrix, and P = I −

(A2
x)T [A2

x(A2
x)T ]−1A2

x.

Proof. Identical to Theorem 2, hence, it is omitted. �

Note that the technique discussed in this subsection cannot be applied to find the MVE, since it

leads to unbounded objective value if the x-space is not full-dimensional. For Problem (24) with

LDRs, one can simply replace the matrix E by ρP in all the constraints of (lbL) and maximize ρ

instead of logdetE.

One can easily extend our framework to find maximally sized convex bodies in polytopic projec-

tions, e.g., {ζ ∈ Rn1 : ||ζ||1 ≤ 1} and {ζ ∈ Rn1 : ||ζ||∞ ≤ 1} instead of {ζ ∈ Rn1 : ||ζ||2 ≤ 1} in (12).

Zhao et al. (2016) extends our approach to determine the maximum homothet of a given polytope

in polytopic projections. In Table 1, we summarize the complexities of Problem (12) with static,

linear and quadratic decision rules for different geometries.

5. Numerical Experiments

In this section, we evaluate the performance and applicability of our method. In §5.1, we conduct

a simple experiment to examine the performance of our lower and upper bounds. In §5.2, we apply

our approach to find a robust temperature profile for the color picture tube design. We denote the
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Table 1 The complexities for computing the maximally sized convex bodies via decision rule approximations.

Geometry
Decision rules

Static Linear Quadratic
Ball LP CQP SDP

MVE SDP SDP SDP
1-box LP LP NP-hard
∞-box LP LP NP-hard

Figure 2 The tetrahedron P1 defined in (25). The dark shaded square is the projection of P1 onto the x-space.

upper bounds from solving (ub) with critical scenarios from (16) and (17) as (ubQ) and (ubL),

respectively.

5.1. A Simple Experiment

Let us consider the full-dimensional tetrahedron

P i = {(x1, x2, y) | x1 +x2 + y≤ 1, x1−x2 + y≤ 1, −(1 + i)x1− iy≤ 0, y≥ 0 } , (25)

where x1, x2 are main variables, y is an auxiliary variable, and i ∈ [0,8]. We are interested in the

MVE of the projected P i onto the x-space. When i= 0, the projection Proj(P0) is an isosceles

triangle; when i= 1, Proj(P i) forms a square (see Figure 2); when i > 1, Proj(P i) becomes a kite.

The explicit description of Proj(P i) can be obtained by eliminating y in (25) via FME (see §2):

Proj(P i) = {(x1, x2) | x1 +x2 ≤ 1, x1−x2 ≤ 1, −x1 + ix2 ≤ i, −x1− ix2 ≤ i } .

Note that this is a full-dimensional polyhedron with no auxiliary variables. We can compute the

optimal MVE center of Proj(P i) via (4).

In Figure 3, the objective values logdetE (i.e., volumes) of the optimal and approximated MVEs

of Proj(P i) are plotted. As expected, the lower bounds from (lbQ) consistently outperform the
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Figure 3 The volume of optimal and approximated MVEs of Proj(Pi) for i ∈ [0,8]. The two solid lines (QDR)

are the lower and upper bounds of the volume of approximated MVEs from QDRs (i.e., from (lbQ) and

(ubQ)); the two dash lines (LDR) present the lower and upper-bounds of the volume of approximated

MVEs from LDRs (i.e., from (lbL) and (ubL)); the shaded area (BestLU) is the region between the best

lower and upper bounds from (ubL). The thick line (Optimal) plots the optimal logdet E.

ones from (lbL). On the other hand, despite more computational efforts, the upper bounds from

(ubQ) are mostly poorer than the ones from (ubL). The quality of the approximations is also

affected by the shape of the tetrahedron P i. If i= 0, all approximations are optimal; when i= 1,

the solution from (lbQ) is optimal, while the upper bound from (ubL) is at its poorest among all

i∈ [0,8].

Similar observations can be obtained from Figure 4. The approximated MVE centers from (lbQ)

are the closest to the optimal MVE centers. For i < 5.5, the approximated centers from (lbQ)

are closer to the optimal ones; for i > 5.5, the approximated centers from (ubL) are closer to the

optimal ones.

5.2. Robust Color Picture Tube Design

In the manufacturing process of a CRT TV, the color picture tube is assembled to the mask-screen

and the inner shield by a industrial oven at a high temperature. The oven temperature causes

thermal stresses on the tube and if the temperature is too high, the pressure will scrap the tube

due to implosion. In den Hertog and Stehouwer (2002), the authors present a temperature profile of

a color picture tube, see Figure 5. The profile is characterized by the temperature at 20 locations.

To minimize the production cost and hence the number of scraps, an optimal temperature profile

that satisfies the following criteria is considered:
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Figure 4 The Euclidean distance of the optimal and approximated MVE centers of Proj(Pi) for i ∈ [0,8], i.e.,

the lbL, lbQ, ubL and ubQ plot the Euclidean distance of the optimal MVE centers and approximated

MVE centers from (lbL), (lbQ), (ubL) and (ubQ) for i∈ [0,8], respectively.

• the maximal stress for the TV tube is minimal

• the temperature differences between near locations are not too high

• the temperatures are in the specified range.

The authors formulate the associated problem as follows:

(TV ) min
x,smax

smax

s.t. ai + bTi x≤ smax ∀i∈ [k]

|Ax| ≤∆Tmax

l≤x≤u,

where smax ∈ R is the maximal stress, ai + bTi x ∈ R is the stress at location i of the temperature

profile x∈Rn. There are n= 20 temperature points on the tube (see Figure 5). Furthermore, these

temperatures result in k = 216 thermal stresses on different parts of the tube. The 216 response

functions of the thermal stresses, ai+b
T
i x, are derived by using the finite element method simulator

and regression. The vectors l ∈Rn and u∈Rn are the lower and upper bounds of the temperature

profile. The parameter ∆Tmax ∈ Rd represents the maximal allowed temperature on d location

combinations; A ∈ Rd×n is the coefficient matrix that enforce the specified temperatures do not

differ more than ∆Tmax. For example, the temperatures at locations 2 and 5 in Figure 5 cannot
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Figure 5 Temperature profile of a color picture tube.

differ more than ∆Tmax. By solving the nominal problem (TV ), the unique minimum smax = 14.15

is found. Suppose the maximum tolerance of smax is at most 15. A robust temperature profile that

tolerates implementation error and not far from the current profile is desired, say, ||x− x̄||1 ≤ 15.

The feasible temperature profile set is as follows:

Proj(P) =

{
x∈ [l,u] | ∃y ∈Rn :

ai + bTi x≤ 15, ∀i∈ [k], |Ax| ≤∆Tmax,
x− x̄≤ y, x̄−x≤ y,

∑n

j=1 yj ≤ 15

}
. (26)

We propose the MVE center of (26) as the robust temperature profile and approximate it via our

method proposed in §2.

Table 2 The number of constraints and computation times when i, i∈ [20]∪{0}, auxiliary variables are

eliminated. # Elim. denotes the number of auxiliary variables that are eliminated; # Con. gives the resulting

number of constraints from FME before and after removing redundant constraints in (26); Time records the

computation times needed for solving the corresponding (lbL), (lbQ), (ubL) and (ubQ) after removing the

redundant constraints in (26); “∗” means the computation time exceeds 2 hours.

# Elim. 0 2 4 6 8 10 12 14 16 18 20

# Con.
Before 329 328 336 380 568 1332 4400 16684 65832 262436 1048864
After 59 58 59 79 171 296 294 1058 1056 1054 1052

Time

lbL 1 1 1 1 3 5 5 31 35 29 28
lbQ 10 27 67 70 168 397 338 1322 474 345 28
ubL 43 21 28 65 1178 11399 26777 * * * *
ubQ 87 48 58 139 2585 22984 53660 * * * *

Figure 6 shows that, for the four approximations we consider, the more auxiliary variables that

are eliminated, the better the solutions become. Surprisingly, the lower bound from (lbQ) is optimal

even if no auxiliary variable is eliminated, which significantly outperforms the ones from (lbL). On

the other hand, despite more computational efforts are required, the upper bounds from (ubQ) are
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Figure 6 The volume of optimal and approximated MVEs of (26) when i, i ∈ [20], auxiliary variables are elimi-

nated. The two solid lines (QDR) are the lower and upper bounds of the volume of approximated MVEs

from QDRs (i.e., from (lbQ) and (ubQ)); the two dash lines (LDR) present the lower and upper-bounds

of the volume of approximated MVEs from LDRs (i.e., from (lbL) and (ubL)); the shaded area (BestLU)

is the region between the best lower and upper bounds from (ubL). The thick line (Optimal) plots the

optimal logdet E.

Figure 7 The Euclidean distance of the optimal and approximated MVE centers of (26) when i, i∈ [20], auxiliary

variables are eliminated, i.e., the lbL, lbQ, ubL and ubQ plot the Euclidean distance of the optimal

MVE centers and approximated MVE centers from (lbL), (lbQ), (ubL) and (ubQ), respectively.
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again mostly poorer than the ones from (ubL) (except when 6 auxiliary variables are eliminated).

The lower and upper bounds from (lbQ) and (ubL) gives the best bounds for the optimal volumes.

In Figure 7, one can observe that the approximated center from (ubQ) is optimal throughout this

experiment; the approximated center from (lbL) gradually converge to the optimal one as more

auxiliary variables are eliminated; unexpectedly, the approximated centers from (ubL) and (ubQ)

does not seem to converge as more auxiliary variables are eliminated. After eliminating 12 auxiliary

variables, the associate upper bound problems become so large that the prescribed computational

limit, i.e., 2 hours, is exceeded.

Due to the extra constraints, the set (26) is much smaller than the feasible region of (TV ).

Hence, there may exist many redundant constraints in (26). Therefore, we first apply the procedure

in §4.1 to remove the 270 (= 329− 59, see Table 2) redundant constraints in (26), and solve the

four approximations, i.e., (lbL), (lbQ), (ubL) and (ubQ). Similarly, after each auxiliary variable is

eliminated, we remove the redundant constraints (if there is any), and solve the four approximations

again. From Table 2, one can observe that, without eliminating the redundant constraints in (26)

initially, one would end up with an explicit description of (26) with 1,048,864 constraints while at

most 1052 constraints are non-redundant. We also observe that, in this experiment, if the starting

polytope does not contain redundant constraints, FME does not produce any redundant constraints

after eliminating the auxiliary variables.

The computation times needed for solving (lbL) and (lbQ) increase exponentially at first, then

decrease drastically after eliminating 14 auxiliary variables. This is because of the exponential

growth in the number of constraints and the reduction in the number of optimization variables

after eliminating the auxiliary variables. The upper bounds are computed from (ub) with all

critical scenarios from (16) and (17) via the iterative procedure described in §3. We consider all

critical scenarios instead of only CBSs, because solving (ub) with only CBSs does not produce

finite upper bounds for this experiment. We solve (ub) via the iterative procedure discussed in

§3.2. All the upper bounds are obtained within 5 iterates, and only less than 10% of the total

constraints are included in (Iub). Hence, at least more than 90% in (ub) appeared to be redundant.

All the computations are performed by using cvx 2.1 with MOSEK 7.1 within Matlab R2014a

on an Intel Core i5-4590 CPU running at 3.3GHz with 8GB RAM under Windows 8 operating

system.

6. Conclusions

By combining FME with techniques from adjustable robust optimization, e.g., decision rule approx-

imations, we construct a computationally tractable approach to find a maximally size convex body
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(e.g., ellipsoid, ball, box) of a projected polytope. Furthermore, we use FME to improve the upper

bounds from HGK approach, and observe that the critical scenarios of LDRs produce better upper

bounds than those from QDRs.

In the recent paper of Jaillet et al. (2016), the authors consider an R-model that determines the

most robust solution which would remain feasible in the problems constraints when the uncertain

parameters arise over a maximally sized uncertainty set. In contrast with their approach, we propose

to use the MVE center as a robust solution without assuming any structure on the uncertainties.

One future research direction would be to have a closer investigation on, e.g., the computational

complexities, modeling capabilities and solution characteristics of the two models.

On a numerical level, we would like to investigate the performance of our approach on cutting-

plane method. The goal of cutting-plane methods is to find a point in a convex set X . The general

procedure of cutting-plane methods is as follows. Suppose a polytope P that contains the set X is

provided, i.e., X ⊆ P. We first select a point x(0) in P. If x(0) ∈ X , then we are done; otherwise,

a separating hyperplane between x(0) and X can be constructed. This hyperplane cuts off the

halfspace that contains no points of X in P. Let us denote the resulting set P after the first cut

as P1. Then, we select another point x(1) in P1 and repeat the procedures until we locate a point

in X . A centralized point x(k) of Pk is preferred as it leads to a deeper cut of Pk. The location

of the selected point x(k) ∈ Pk in each iteration determines the convergence rate of the method.

Many choices of x(k) ∈Pk are proposed in the literature (see Boyd and Vandenberghe (2007)), e.g.,

the centroid, the Chebyshev center, the MVE center, the analytic center. Our approach can be

applied as an extension of the MVE center cutting-plane method and Chebyshev center cutting-

plane method. Suppose the set X is described by two kinds of variables, i.e., the variables y appear

linearly in all the constraints, and the variables x appear nonlinearly in some constraints. The

complexity of locating a point in X arises by the variables x, since if all the variables appear

linearly in the description of the set X , finding a point in it can be done by solving an LP problem.

Therefore, we focus on cutting the projection of P where the variables x reside in. The cutting-

plane can be determined by the Chebyshev center or MVE center of the projected polytope (i.e.,

the given polytope that is projected onto the space where the nonlinear variables reside in). Our

method may significantly speed up the convergence rate of the cutting-plane method in those cases.
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Appendix. Proofs of Theorems

A. Fourier-Motzkin Elimination

Proof of Corollary 1. This proof is adapted from (Bertsimas and Tsitsiklis 1997, page 73). If

x∈ Proj(P), there exists some y such that (x,y)∈P. In particular, the vector (x,y) satisfies all

the inequalities in Step 1 of Algorithm 1, from which it follows immediately that (x,y\{l}) all the

inequalities in Step 2, hence, x∈ Proj(P\{l}). This shows Proj(P)⊂ Proj(P\{l}).

We now show that Proj(P\{l}) ⊂ Proj(P). Let x ∈ Proj(P\{l}), there exists some y\{l} such

that (x,y\{l})∈ Proj(P\{l}. It follows from inequalities in Step 2 that:

max
{k∈[m] |akl+n1

<0}

∑
j∈[n1]

akjxj
akl+n1

+
∑

j∈[n2]\{l}

akj+n1yj
akl+n1

− bk
akl+n1


≤ min
{i∈[m] |ail+n1

>0}

 bi
ail+n1

−
∑
j∈[n1]

aijxj
ail+n1

−
∑

j∈[n2]\{l}

aij+n1yj
ail+n1

 .

Let yl be any number between the two sides of the above inequality. It then follows that (x,y)

satisfies all the inequalities in Step 1, and therefore, x belongs to Proj(P). �

B. Polynomial Decision Rules

Proof of Theorem 1. Suppose the values of all but one element ζ1 of ζ are fixed. The ellipsoidal

uncertainty set of (12) reduces to a simplex set for which LDRs are optimal decision rules (see

Bertsimas and Goyal (2012)). Therefore, there exist optimal decision rules that are linear in each

ζi, i∈ [n1], for all y in (12). �

C. Tractable Robust Counterpart of (12) with Quadratic Decision Rules

Proof of Theorem 2. This proof is adapted from Ben-Tal et al. (2009). Let us consider the constraint

i, i∈ [m] in (12), i.e.,

aTi·

(
x+Eζ
y

)
≤ bi ∀ζ : ||ζ||2 ≤ 1. (27)

Replacing y with quadratic decision rules:

yj = ζTWjζ+vTj·ζ+uj for j = 1, ..., n2,
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where uj ∈R, vj· ∈Rn1 and Wj ∈Rn1×n1 , we have

max
ζ:||ζ||2≤1

aTi·

(
x
u

)
︸ ︷︷ ︸

pi

+aTi·

(
E
V

)
︸ ︷︷ ︸

2qTi

ζ+ ζT
[
n2∑
j=1

aij+n1Wj

]
︸ ︷︷ ︸

Ri

ζ

= max
ζ:||ζ||2≤1

pi + 2qTi ζ+ ζTRiζ

=min
τi

{
τi | ∀(ζ : ||ζ||2 ≤ 1) : τi ≥ pi + 2qTi ζ+ ζTRiζ

}
=min

τi

{
τi | ∀((ζ, t) : ||ζ||2 ≤ t2) : (τi− pi)t2− 2tqTi ζ− ζ

TRiζ ≥ 0
}

=min
τi

{
τi | ∀(ζ, t),∃λi ≥ 0 : (τi− pi)t2− 2tqTi ζ− ζ

TRiζ−λi(t2− ζTζ)≥ 0
}

[S −Lemma]

=min
τi

{
τi |

[
τi− pi−λi −qTi
−qi λiI −Ri

]
� 0, λi ≥ 0

}
.

Hence, the tractable robust counterpart of (27) can be formulated as follows

τi ≤ bi
λi ≥ 0 τi−λi−a

T
i·

(
x
u

)
− 1

2
aTi·

(
E
V

)
− 1

2

(
E
V

)T
ai· λiI −

∑n2
j=1 aij+n1Wj

� 0.

�

D. Uncertain Equality Constraints with Auxiliary Variables

Proof of Theorem 2. Let us consider a general form of (18):

a(ζ)Tx+ y= b(ζ) ∀ζ ∈ U ,

where a(ζ) and b(ζ) are affine in ζ, i.e., x∈Rn, a(ζ) = a+Dζ, b(ζ) = b+cTζ, a∈Rn,D ∈Rn×m,

and c∈Rm, b∈R, and U is a general uncertainty set. From (14), we have:

y= u+vTζ,

where u∈R and v ∈Rm. Then we have

(a+Dζ)Tx+u+vTζ = b+ cTζ ∀ζ ∈ U

⇔ aTx+u+ (DTx+v− c)Tζ = b ∀ζ ∈ U .

The equality constraint is satisfied for all ζ in U if and only if{
aTx+u= b
(DTx+v− c)Tζ = 0 ∀ζ ∈ U .
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Take u= b−aTx and v= c−DTx, we have,

y= u+vTζ = b−aTx+ cTζ−xTDζ = b(ζ)−a(ζ)Tx.

Hence, substituting y = b(ζ)− a(ζ)Tx everywhere in the problem is equivalent to using a linear

decision rule for y. �

E. Partially Dependent Optimal Decision Rules

Proof of Theorem 3. Let us consider the corresponding Problem (22) after all auxiliary variables

y in (21) are eliminated except for one, say y1. From the first step of FME for ARO problems

(see (Zhen et al. 2016, Algorithm 1)), one can observe that y1 is upper and lower bounded by

piece-wise affine functions in ζS . The lower (or upper) bounding piece-wise affine function is an

optimal decision rule for y1. Once the optimal decision rule of y1 is determined, one can then

reverse (Zhen et al. 2016, Algorithm 1)) to recover the optimal decision rules of the eliminated

variables, and observe that there exist piecewise affine functions only in ζS that are optimal

decision rules for all yi, i∈ [N2], in Problem (22). �
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