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Abstract

The three-step generalized methods of moments (GMM) approach of Kapoor, Kelejian and
Prucha (2007), which corrects for spatially correlated errors in static panel data models, is
extended by introducing fixed effects, a spatial lag, and a one-period lag of the dependent
variable as additional explanatory variables. Combining this approach with the dynamic
panel-data GMM estimators of Arellano and Bond (1991) and Blundell and Bond (1998)
and specifying moment conditions for various time lags, spatial lags, and sets of exoge-
nous variables yields new spatial dynamic panel data estimators. The proposed spatially
corrected GMM estimates are based on a spatial lag and a transformation correcting for
the spatial error correlation. We prove their consistency and asymptotic normality for a
large number of spatial units and a fixed number of time periods. Feasible spatial cor-
rection based on estimated spatial error correlation is shown to lead to estimators that
are asymptotically equivalent to the infeasible estimators based on a known spatial error
correlation. Monte Carlo simulations show that the root mean squared error of spatially
corrected GMM estimates is generally smaller than that of corresponding spatial GMM
estimates in which spatial error correlation is ignored.

JEL codes: C15, C21, C22, C23

Keywords: Dynamic panel models, spatial lag, spatial error, GMM estimation



1 Introduction

The fields of dynamic panel data models and spatial econometric models have matured rapidly

and have reached (graduate) textbooks during the last decade.1 Panel data may feature state

dependence, i.e., the dependent variable is correlated over time, as well as display spatial de-

pendence, i.e., the dependent variable is correlated in space. Applied economists’ interest in

frameworks that integrate spatial considerations into dynamic panel data models is a fairly re-

cent development, however.2 For this model class, Elhorst (2005, 2008, 2010, 2014), Su and

Yang (2008), Yu et al. (2008), Lee and Yu (2010b), and Yu and Lee (2010) have analyzed the

properties of maximum likelihood (ML) estimators and combinations of ML and corrected least

squares dummy variable estimators. During the last decade, the flexible generalized method of

moments (GMM) framework for dynamic panels has gained popularity, but it has not received

much attention in the spatial econometrics literature. Lee and Liu (2010), Lin and Lee (2010),

and Liu, Lee, and Bollinger (2010) study spatial GMM estimators for static panels. In a recent

paper, Lee and Yu (2014) investigate efficient GMM estimation for spatial dynamic panel data

with fixed effects.3 Our paper integrates the two strands of literature by investigating theoret-

ically and numerically the performance of various spatial GMM estimators for dynamic panel

data models with spatial lag and spatial errors. Contrary to Lee and Yu (2014), we consider

only estimation based on the moment conditions linear in parameters, but allowing for spatially

correlated errors.

Many economic interactions among agents can be characterized by a spatially lagged de-

pendent variable or observations on the dependent variable in other locations than the ‘home’

1See Arellano (2003) and Baltagi (2008, Chapter 8) for an analysis of dynamic panel data models and
Anselin (1988, 2006) for a treatment of spatial econometrics.

2Badinger et al. (2004), Foucault et al. (2008), Jacobs, Ligthart and Vrijburg (2010), Brady (2011),
and Bartolini and Santolini (2012) provide empirical applications of spatial dynamic panel data models.
See Lee and Yu (2010a) and Elhorst (2011) for an overview of dynamic spatial panel models.

3Using a Monte Carlo simulation study, Kukenova and Monteiro (2009) and Elhorst (2010) explore
GMM in a spatial dynamic panel data framework. Kukenova and Monteiro (2009) analyze a spatial
system GMM estimator and include an exogenous covariate in addition to a spatial lag and the time lag
of the dependent variable. Elhorst (2010) briefly touches upon difference GMM estimators with a spatial
lag in order to compare them to spatial ML estimators. However, both studies do not correct their spatial
GMM estimators for potential spatial error correlation.



location. In the public finance literature, for example, local governments take into account the

behavior of neighboring governments in setting their tax rates (cf. Wilson, 1999, and Brueckner,

2003) and deciding on the provision of public goods (cf. Case, Rosen, and Hines, 1993). In the

trade literature, foreign direct investment (FDI) inflows into the host country depend on FDI

inflows into proximate host countries (cf. Blonigen, Davies, Waddell, and Naughton, 2007). The

spatial lag structure allows explicit measurement of the strength of the spatial interaction. Spa-

tial error dependence is an alternative way of capturing spatial aspects and may arise due to an

omitted explanatory variable.4 Spatially correlated errors can be thought of as analogous to the

well-known practice of clustering error terms by groups, which are defined based on some directly

observable characteristic of the group.

In spatial econometrics, the groups are based on spatial ‘similarity,’ which is typically captured

by some geographic characteristic (e.g., proximity). Spatial panel data applications typically em-

ploy either a spatial lag model or a spatial error model. Ignoring spatial error correlation in

static panel data models may give rise to a loss of efficiency of the estimates and may thus erro-

neously suggest that strategic interaction is absent. In contrast, disregarding spatial dependency

in the dependent variable comes at a relatively high cost because it gives rise to biased estimates

(cf. LeSage and Pace, 2009, p. 158). Rather than using either a spatial lag model or spatial

error model, we allow both processes to be simultaneously present. Indeed, in their empirical

tax competition model, Egger, Pfaffermayr, and Winner (2005) find evidence that spatial error

dependence may exist above and beyond the theoretically motivated spatial lag structure.5

Non-spatial dynamic panel data models are usually estimated using the GMM estimator of

Arellano and Bond (1991), which differs from static panel GMM estimators in the set of moment

conditions and the matrix of instruments. In dynamic panels with unobserved heterogeneity,

Nickell (1981) shows that the standard least squares dummy variable estimator is biased and

4Spatial error correlation may also result from measurement error in variables, a misspecified functional
form of the regression equation, the absence of a spatial lag or a misspecified weighting matrix.

5Case et al. (1993), Jacobs et al. (2010), Baltagi and Bresson (2011), and Brady (2011) also consider
spatial models with both spatial lag and spatial error components. Only the study by Jacobs et al. (2010)
uses a spatial dynamic panel data model.
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inconsistent for large N and fixed small T .6 The standard Arellano-Bond estimator is known

to be inefficient if time dependency is strong because it makes use of information contained in

first differences of variables only. Alternatively, authors have used Blundell and Bond’s (1998)

system approach, which consists of both first-differenced and level equations and an extended set

of internal instruments. In the following, we contribute to the literature by developing spatial

variants of the Arellano-Bond and Blundell-Bond estimators. Our new approach extends these

estimators by defining appropriate instruments to control for the endogeneity of the spatial lag

and time lag of the dependent variable while correcting for spatial error correlation. For this

purpose, we use new spatial instruments, which are based on a combination of several spatial lags

and a modification of the approach of Kelejian and Robinson (1993), and standard instruments

for dynamic panel data models.

As the structure of the spatial error correlation might not be known, we propose first esti-

mators that are robust to the misspecification of the spatial error correlation and do not even

require its knowledge. If the spatial error structure can be assumed or is known, the estimators

can take it into account and correct for spatial error correlation. Throughout the paper, we use

the term ‘spatial’ GMM estimators to refer to GMM estimators for panel data models including

a spatial lag with or without correction for spatial error correlation.7 If a spatial GMM estimator

corrects for spatial error correlation, we speak of ‘spatially corrected’ GMM estimators. Recently,

Kapoor, Kelejian, and Prucha (2007) designed a GMM procedure to deal with spatial error cor-

relation in static random effects panels. We extend their three-step spatial procedure to panels

with a spatially lagged dependent variable, a one-period time lag of the dependent variable, and

unit-specific fixed effects. This is achieved by modifying their second-stage moment conditions by

considering the first differences of errors. We analytically investigate the asymptotic properties of

the estimators for large N and fixed small T . Possible extensions are discussed as well, including

the spatio-temporal model and the use of pre-determined variables.8

6Anderson and Hsiao (1982) suggest simple instrument variable estimators for a first differenced model,
which uses the second lag of the dependent variable—either in differences or levels—to instrument the
lagged dependent variable.

7Anselin, Gallo, and Gayet (2008) call this model class a ‘time-space simultaneous model.’
8Yu, De Jong, and Lee (2008) and Pesaran and Tosetti (2011) study the properties of ML estimators
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The finite-sample performance of the spatial GMM estimators is investigated by means of

Monte Carlo simulations. The simulation experiments indicate that the root mean squared error

(RMSE) of spatially corrected GMM estimates, based on a spatial lag and spatial error correction,

is generally smaller than that of corresponding spatial GMM estimates in which spatial error

correlation is ignored, particularly for a strong positive spatial error correlation. Moreover, the

RMSE of the spatially corrected GMM estimates is not much affected by the size of the spatial

lag parameter. We also find that the spatial Blundell-Bond estimators outperform the spatial

Arellano-Bond estimators, which are however consistent under more general assumptions. Finally,

we find that spatial estimators using spatially weighted endogenous variables as instruments

in addition to weighted exogenous variables are more efficient than those based on weighted

exogenous variables.

The paper is organized as follows. Section 2 sets out our spatial dynamic panel data model.

Section 3 develops the two estimators for spatial dynamic panel data models, that is, the spatially

corrected Arellano-Bond and Blundell-Bond estimators. Section 4 proves the consistency and

asymptotic normality of the spatial estimators, whereas Section 5 discusses possible extensions

of the main model. Section 6 presents Monte Carlo simulation outcomes. Finally, Section 7

concludes. The proofs are in the Appendix.

2 The Spatial Dynamic Panel Data Model

Consider a panel with i = 1, ..., N spatial units and t = 1, ..., T time periods. The focus is on

panels with a small number of time periods relative to the number of spatial units. Assume that

the data at time t are generated according to the following model:

yN (t) = λyN (t− 1) + δWNyN (t) +XN (t)β + uN (t), t = 2, ..., T, (1)

where yN (t) is an N × 1 vector of observations on the dependent variable, yN (t − 1) is a one-

period time lag of the dependent variable, WN is an N × N matrix of spatial weights, XN (t)

in the context of dynamic, possibly nonstationary, panels with fixed effects and spatial error correlation,
assuming both N and T large.
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is an N × K matrix of observations on the strictly exogenous explanatory variables (where K

denotes the number of covariates), and uN (t) is an N × 1 vector of error terms. If we later

need to refer to observations from all applicable time periods in a given context, we simply

omit the time specification in brackets; here, for example, yN = [y⊤
N (1), . . . ,y

⊤
N (T )]

⊤ or XN =

[X⊤
N (1), . . . ,X

⊤
N (T )]

⊤, where ⊤ denotes a transpose. Further, the scalar parameter λ is the

coefficient of the lagged dependent variable, δ is the spatial autoregressive coefficient, which

measures the endogenous interaction effect among units, and β is a K × 1 vector of (fixed) slope

coefficients.

The spatial lag is denoted by WNyN (t), which captures the contemporaneous correlation

between unit i’s behavior and a weighted sum of the behavior of units j 6= i. The elements

of WN (denoted by wij) are exogenously given, non-negative, and zero on the diagonal of the

matrix. Note that there is little formal guidance on choosing the ‘correct’ spatial weights because

many definitions of neighbors are possible. The literature usually employs contiguity (i.e., units

having common borders) or physical distance between units as weighting factors. We assume the

elements of WN to be row normalized so that each row sums to one. This is not the only possible

normalization, see, for example, Kelejian and Prucha (2010). Nevertheless, the row normalization

is standard in spatial applications, and therefore, we use it in the simulations of Section 6.

The reduced form of equation (1) amounts to:

yN (t) = (IN − δWN )
−1 [λyN (t− 1) +XN (t)β + uN (t)] , (2)

where IN is an identity matrix of dimension N × N . Stationarity of the model does not only

require that |λ| < 1, but also that the characteristic roots of the matrix λ(IN − δWN )
−1 should

lie in the unit circle, which is the case if

|λ|+ δωL < 1 if δ < 0 and |λ|+ δωU < 1 if δ ≥ 0, (3)

where ωL and ωU denote the smallest (i.e., the most negative) and largest characteristic roots of

WN , respectively (cf. Elhorst, 2008). If WN is row normalized, ωU = 1.9 Equation (3) yields a

9No general results hold for the smallest characteristic root of the matrix of spatial weights. The lower
bound ωL is typically less than −1; see Elhorst (2008, p. 422).
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tradeoff between the size of λ and δ.

Spatial error correlation may arise, for example, when omitted variables follow a spatial

pattern, yielding a non-diagonal variance-covariance matrix of the error term uN (t). In the case

of spatial error correlation, the error structure in (1) is a spatially weighted average of the error

components of neighbors, where the weights are given by a row-normalized N × N matrix MN

of spatial weights (with typical element mij). More formally, the spatially autoregressive process

is given by:

uN (t) = ρMNuN (t) + εN (t), (4)

where MNuN (t) is the spatial error term, ρ is a (second) spatially autoregressive coefficient,

and εN (t) denotes the vector of innovations.10 The interpretation of the ‘nuisance’ parameter

ρ is very different from δ in the spatial lag model in that there is no particular relation to a

substantive theoretical underpinning of the spatial interaction. We follow the common practice

in the literature by assuming WN 6= MN , which allows us to identify both spatial parameters δ

and ρ in the absence of exogenous variables and a dynamic lag. The spatial error process in the

reduced form is uN (t) = (IN − ρMN )
−1εN (t). If |ρ| < 1, the spatial error process is stable and

thus yields feedback effects that are bounded.

The vector of innovations is defined as:

εN (t) = ηN + vN (t), vN (t) ∼ iid(0, σ2vIN ), (5)

where ηN is an N × 1 vector representing unobservable unit-specific fixed effects and vN (t) is

an N × 1 vector of independently and identically distributed (iid) error terms with variance σ2v ,

which is assumed to be constant across units and time periods. In the following, we consider a

specification in which ηN is possibly correlated with the regressors.

10As εN (t) contains the individual effects, see (5), uN (t) defined in (4) contains a weighted average of
individual specific effects. This is closely related to the common correlated effects of Pesaran and Tosetti
(2010).
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Equations (1), (4), and (5) can be written concisely as:

yN (t) = ZN (t)θ + uN (t), (6)

uN (t) = (IN − ρMN )
−1[ηN + vN (t)], (7)

where ZN (t) = [yN (t−1),WNyN (t),XN (t)] denotes the matrix of regressors and θ = [λ, δ,β⊤]⊤

is a vector of K + 2 parameters. Our general dynamic spatial panel data model embeds various

special cases discussed in the literature. If λ = ρ = 0 and δ > 0, the model reduces to the familiar

spatial lag model (also known as the mixed regressive-spatial autoregressive model; see Anselin,

1988), whereas for λ = ρ = 0 and β = 0 we get a pure spatial autoregressive model. If λ = δ = 0

and ρ > 0, we obtain the spatial error model. If λ > 0 and δ = ρ = 0, we arrive at Arellano and

Bond’s dynamic panel data model. Finally, the general spatial dynamic panel data model boils

down to a standard static panel data model if λ = δ = ρ = 0.

3 Spatial Dynamic Panel Estimators

In this section, the spatial dynamic panel estimators are proposed. We extend the static panel

data model of Kapoor et al. (2007), who explicitly correct for spatial error correlation, to include

both a time lag and a spatial lag of the dependent variable, and additionally, account for the fixed

effects. We apply a panel GMM procedure and propose a set of suitable instruments for both

the time lag and spatial lag of the dependent variable. This procedure yields consistent spatially

corrected Arellano-Bond estimators and spatially corrected Blundell-Bond estimators, which will

be derived in two stages.

3.1 Infeasible GMM estimators

To construct a GMM estimator for model (6)–(7), two transformations are necessary. The clas-

sical approach to the GMM estimation of the fixed-effects dynamic panel-data models relies on

differencing that eliminates the time-invariant individual effects. The serial error correlation cre-
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ated by such a transformation is taken into account by means of the GMM weighting matrix as

discussed later.

In model (6)–(7), there is one additional type of error correlation: the spatial correlation

of errors. As the moment conditions in dynamic panels have to be defined as cross-sectional

averages, the spatial correlation cannot be accounted for by the GMM weighting matrix, which

accommodates only the correlation among moment conditions. On the other hand, many estima-

tion procedures typically perform best if errors are uncorrelated and homoscedastic. Since the

spatial correlation cannot be taken into account by a GMM estimator based on cross-sectional

averages, we base estimation on the transformed model:

BNyN (t) = BNZN (t)θ +BNuN (t), t = 2, ..., T, (8)

where BN is a non-singular N ×N transformation matrix. Denoting ỹN (t) = BNyN (t), Z̃N (t) =

BNZN (t), and ũN (t) = BNuN (t), the model can be concisely rewritten as ỹN (t) = Z̃N (t)θ +

ũN (t). Given error structure (7), the errors in model (8) become uncorrelated across individuals

if BN = IN − ρMN . For this particular choice BN or an estimate thereof, the model (and the

corresponding estimators) will be called spatially corrected.

We will first construct two infeasible GMM estimators for the parameters of model (8) under

the assumption that BN is known. The moment conditions of the proposed estimators will

however not rely on the assumption of spatially uncorrelated errors as the matrixBN = IN−ρMN

is generally not known due to its dependence on the parameter ρ and will have to be estimated

as discussed in Section 3.2. Hence, even the choice BN = IN representing no spatial correlation

or the lack of knowledge about the spatial error structure is valid.

3.1.1 Arellano-Bond Estimator

To estimate θ in (8), we employ a GMM estimator defined by a set of linear moment conditions

for the error term ũN (t). Later, equations identifying θ will be obtained by substituting for the

error term from the model equation, ũN (t) = ỹN (t)− Z̃N (t)θ.

8



First, to eliminate the unit-specific fixed effects ηN contained in ũN (t) = BNuN (t) due to

(7), the first differences of (8) are taken analogously to Arellano and Bond (1991):

∆ỹN (t) = ∆Z̃N (t)θ +∆ũN (t), t = 3, ..., T, (9)

where ∆qN (t) ≡ qN (t)−qN (t−1) for qN (t) ∈ {ỹN (t), Z̃N (t), ũN (t), εN (t),vN (t)} and ∆ũN (t) =

BN (IN − ρMN )
−1∆εN (t) = BN (IN − ρMN )

−1∆vN (t) does not contain ηN anymore. Note that

the differenced model is specified only in T − 2 time periods (and thus T ≥ 3): one observation

is lost due to the first differencing operation and another observation is dropped because of the

one-period time lag of the dependent variable.

In the differenced model, both the time lag and the spatial lag of the dependent variable

are endogenous. In addition, these two endogenous regressors are correlated with each other.

Consistent GMM estimation is possible if there are at least K+2 instruments that are correlated

with the time lagged, spatially lagged, and exogenous variables and are uncorrelated with the

errors ∆ũN (t) for each t = 3, . . . , T . First, the moment conditions identifying the coefficients of

the strictly exogenous variables are:

E[∆X̃
⊤
N (t)∆ũN (t)] = 0, t = 3, ..., T. (10)

Next, Arellano and Bond (1991) propose to use the levels of the dependent variable, ỹN (t−

2), ..., ỹN (1), as instruments for the time lag of the dependent variable in first differences (i.e.,

∆ỹN (t − 1)). The instruments are correlated with the time lag of the dependent variable in

first differences ∆ỹN (t− 1), but are uncorrelated with the ‘future’ error term in first differences,

∆ũN (t), since the unit-specific effects are eliminated from the differenced variables. This property

holds even in the spatial model defined by (8) and (7) because the spatial correlation applies only

within a given time period t, and hence, ỹN (t − 2) is correlated with ũN (t − 2), ..., ũN (1), but

cannot be correlated with ũN (t) and ũN (t− 1). Consequently, we impose the following moment

conditions to identify λ:

E[ỹ⊤
N (t− s)∆ũN (t)] = 0, t = 3, ..., T, s = 2, ..., t − 1. (11)

9



Equation (11) yields (T − 2)(T − 1)/2 moment conditions for a given T .

For the spatial lag, we consider two alternative sets of instruments. The first approach instru-

ments the spatial lag by various time lags of the spatially lagged dependent variable. The validity

of such moment conditions follows by the same argument as given in the previous paragraph for

equation (11). This approach implies the following moment conditions for δ:

E[{Wl
N ỹN (t− s)}⊤∆ũN (t)] = 0, t = 3, ..., T, s = 2, ..., t − 1, l = 1, ..., L, (12)

where l indicates various powers of WN and the integer L is the maximum ‘spatial lag’ used

for instrumenting. For each power l ≥ 1, equation (12) yields again (T − 2)(T − 1)/2 moment

conditions.

The second approach uses instruments based on a modification of Kelejian and Robinson

(1993). The expected value of the spatial lagWN ỹN (t) depends on the spatial lags ofWNX̃N (t)β

(see the reduced form of (1)); the first differences of WN ỹN (t) are thus correlated with the

differences of WN X̃N (t), which are proposed as instruments: WN∆X̃N (t). As the strictly

exogenous variables ∆X̃N (t) are not correlated with the error term ∆ũN (t), the instruments

satisfy the following moment conditions:11

E[{Wl
N∆X̃N (t)}⊤∆ũN (t)] = 0, t = 3, ..., T, l = 1, ..., L. (13)

Note that the moment conditions specified for the spatial autoregressive parameter δ for various

time lags s, spatial lags l, and sets of exogenous variables will have different precision and power

depending on the coefficients in model (1): large λ and δ or large β imply stronger correlation of

WN ỹN (t) with the instruments given in (12) or (13) for s ≥ 1 and l ≥ 1, respectively.

For each time period, we specified J ≥ K + 2 moment conditions, which can be concisely

written as E[H̃
⊤
N,AB(t)∆ũN (t)] = 0, where the columns of H̃N,AB(t) represent the instruments

∆X̃N (t), ỹN (t− s),Wl
N ỹN (t− s), and Wl

N∆X̃N (t) given above. Merging the information from

all available time periods and substituting for the error term from the model equation, ũN (t) =

11In these moment conditions, the averages can also be taken across time periods due to the strict
exogeneity of ∆X̃N (t).
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ỹN (t)− Z̃N (t)θ, the proposed GMM estimator will minimize

[H̃
⊤
N,AB∆ũN ]

⊤AN,AB[H̃
⊤
N,AB∆ũN ]

N

=
[H̃

⊤
N,AB(∆ỹN −∆Z̃Nθ)]

⊤AN,AB[H̃
⊤
N,AB(∆ỹN −∆Z̃Nθ)]

N

with respect to θ, where H̃N,AB is a block-diagonal matrix consisting of blocks H̃N,AB(t), t =

3, . . . , T andAN,AB is a GMM weighting matrix (recall that here ∆ỹN = [∆ỹ⊤
N (3), . . . ,∆ỹ⊤

N (T )]
⊤

and ∆Z̃N = [∆Z̃
⊤
N (3), . . . ,∆Z̃

⊤
N (T )]

⊤). Defining ỹN,AB = ∆ỹN and Z̃N,AB = ∆Z̃N to unify

notation, the resulting spatial Arellano-Bond estimator then becomes

θ̃N,AB =
[
∆Z̃

⊤
NH̃N,ABAN,ABH̃

⊤
N,AB∆Z̃N

]−1
∆Z̃

⊤
NH̃N,ABAN,ABH̃

⊤
N,AB∆ỹN

=
[
Z̃
⊤
N,ABH̃N,ABAN,ABH̃

⊤
N,ABZ̃N,AB

]−1
Z̃
⊤
N,ABH̃N,ABAN,ABH̃

⊤
N,ABỹN,AB. (14)

The weighting matrix AN,AB recommended under the assumption of iid errors ũN by Arellano

and Bond (1991) is equal to the J × J matrix AN,AB = [H̃
⊤
N,ABGN,ABH̃N,AB/N ]−1, where

GN,AB = G⊗ IN is an N(T −2)×N(T −2) weighting matrix with elements (i, j = 1, . . . , T −2)

Gij =





2 if i = j

−1 if i = j + 1

−1 if j = i+ 1

0 otherwise

(15)

and ⊗ denotes the Kronecker product. In our model, this weighting matrix is the optimal GMM

weighting matrix if the errors vN (t) are independently and identically distributed and if the

transformation matrix BN = IN − ρMN as discussed later. In the presence of heteroscedasticity

or serial autocorrelation in vn or incorrect BN , the standard two-step GMM estimator can be

employed, that is, one can re-estimate (14) using the optimal weighting matrix based on the

initial estimate θ̂N,AB: ÂN,AB = [V̂ar{H̃⊤
N,AB(ỹN,AB − Z̃N,ABθ̃N,AB)}]−1.

This baseline Arellano-Bond estimator can be further extended by using better instruments

for the lagged dependent variable: the traditional ones defined in (11) do not perform well for
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values of the autoregressive parameter close to 1. One possible improvement includes the lagged

differences of the exogenous variables as instruments:

E[∆X̃
⊤
N (t− 1)∆ũN (t)] = 0, t = 3, ..., T. (16)

Another option discussed in the following section consists of the moment conditions suggested

by Blundell and Bond (1998), which however require more restrictive assumptions on the fixed

effects.

3.1.2 Blundell-Bond Estimator

The GMM approach of Blundell and Bond (1998)—often referred to as the system GMM estimator—

can be used to extend the Arellano and Bond (1991) conditions by specifying moment conditions

also for variables in levels rather than only for their first differences. This typically improves es-

timation for large values of the autoregressive coefficient, but it is possible only if the individual

effects are not correlated with the differences of the response and explanatory variables: the indi-

vidual effects are allowed to be correlated only with time-independent components of explanatory

variables.12

The Blundell-Bond estimator for the spatially autoregressive dynamic panel model can be

constructed by stacking equation (9) and

ỹN (t) = Z̃N (t)θ + ũN (t), t = 3, . . . , T. (17)

The Blundell and Bond (1998) moment conditions for the level equation (17), which contains

individual effects ηN in ũN (t), are constructed using the first-differenced variables as instru-

ments (i.e., using instruments not containing the individual effects). For example, for the strictly

exogenous variables:

E[∆X̃
⊤
N (t)ũN (t)] = 0, t = 3, ..., T, (18)

12In this sense, the assumptions of Blundell and Bond (1998) are closer to the correlated random effects
than to the fully general fixed effects approach.
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which—in contrast to the Arellano-Bond estimator in Section 3.1.1—requires the individual effects

to be independent of ∆X̃N (t). The equivalents of the instruments for both the time and spatially

lagged dependent variables given in (11), (12), and (13) for model (9) can be analogously specified

for model (17) as

E[∆ỹ⊤
N (t− s)ũN (t)] = 0, t = 3, ..., T, s = 1, ..., t − 2, (19)

E[{Wl
N∆ỹN (t− s)}⊤ũN (t)] = 0, t = 3, ..., T, s = 1, ..., t − 2, l = 1, 2, ..., L, (20)

E[{Wl
N∆X̃N (t)}⊤ũN (t)] = 0, t = 3, ..., T, l = 1, 2, ..., L, (21)

respectively.13 All these moment conditions can be concisely written as E[H̃
⊤
N,LV L(t)ũN (t)] = 0,

where the columns of H̃N,LV L(t) represent the instruments ∆X̃N (t),∆ỹN (t−s),Wl
N∆ỹN (t−s),

and WN∆X̃N (t) given above (abbreviation LVL refers to the level equation).

Merging the information from all available time periods again, let H̃N,LV L be a block-

diagonal matrix consisting of blocks H̃N,LV L(t) for t = 3, . . . , T , ỹN = [ỹ⊤
N (3), . . . , ỹ

⊤
N (T )]

⊤,

and Z̃N = [Z̃
⊤
N (3), . . . , Z̃

⊤
N (T )]

⊤. These instruments for the level equation (17) are typically

used jointly with the instruments introduced in Section 3.1.1 for the differenced equation (9).

To define the Blundell-Bond estimator for the spatially autoregressive dynamic panel model, we

thus define merged vectors and matrices for both systems: the vector of responses ỹN,BB =

[∆ỹ⊤
N , ỹ

⊤
N ]

⊤, the matrix of explanatory variables Z̃N,BB = [∆Z̃
⊤
N , Z̃

⊤
N ]

⊤, the vector of errors

ũN,BB = [∆ũ⊤
N , ũ

⊤
N ]

⊤, the instruments H̃N,BB = diag{HN,AB,HN,LV L}, and the weighting ma-

trices GN,BB = diag{GN,AB, IT−2⊗ IN} and AN,BB = [H̃
⊤
N,BBGN,BBH̃N,BB/N ]−1 .14 Minimiz-

ing

1

N
(H̃

⊤
N,BBũN,BB)

⊤AN,BB(H̃
⊤
N,BBũN,BB)

=
1

N

[
H̃

⊤
N,BB(ỹN,BB − Z̃N,BBθ)

]⊤
AN,BB

[
H̃

⊤
N,BB(ỹN,BB − Z̃N,BBθ)

]

13In the moment conditions with strictly exogenous variables, the averages can again be taken across
time periods.

14Without prior knowledge of (εi, ηi) moments, an asymptotically optimal weighting matrix cannot be
constructed in the first step (cf. Blundell and Bond, 1998). See Kiviet (2007) for alternatives.
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with respect to θ then leads to the spatial Blundell-Bond estimator:

θ̃N,BB =
(
Z̃
⊤
N,BBH̃N,BBAN,BBH̃

⊤
N,BBZ̃N,BB

)−1
Z̃
⊤
N,BBH̃N,BBAN,BBH̃

⊤
N,BBỹN,BB . (22)

Similarly to the estimator (14), the two-step GMM estimator can be used, where the optimal

weight matrix is estimated by ÂN,BB = [V̂ar{H̃⊤
N,BB(ỹN,BB − Z̃N,BB θ̃N,BB)}]−1.

Given that the forms (14) and (22) are identical, we will use for the sake of simplicity only the

notation θ̃N , ỹN , ũN , Z̃N , H̃N , etc. from now on, representing the (infeasible) estimates and the

vectors and matrices of responses, errors, covariates, instruments and so on used for estimation,

both in the case of the spatial Arellano-Bond or Blundell-Bond estimators. The corresponding

vectors and matrices used within the feasible estimation procedure in Section 3.2 will be denoted

θ̂N , ŷN , ûN , ẐN , ĤN , and so on.

3.2 Feasible GMM estimators

The estimators (14) and (22) proposed in Section 3.1 are applicable for any transformation matrix

BN (subject to some regularity conditions) as the moment conditions do not rely on the spatial

uncorrelatedness of the error terms. The GMM estimation based on the transformation matrix

BN = IN − ρMN that completely eliminates the spatial correlation among errors is however

infeasible as parameter ρ is unknown. To construct a feasible estimator, we have to proceed

in three steps. First using a known BN such as BN = IN , apply (14) or (22) to obtain an

initial estimator θ̂
0
N of θ by using θ̃N = θ̃N,AB or θ̃N,BB . Next, construct residuals ûN (t) =

yN (t)−ZN (t)θ̂
0
N and use them to consistently estimate ρ by ρ̂N (an estimator will be described

in the following paragraphs). Then the estimate of the spatial transformation matrix B̂N =

IN − ρ̂NMN can be used to define transformed variables ŷN (t) = B̂NyN (t), ẐN (t) = B̂NZN (t),

and ûN (t) = B̂NuN (t) and the transformed model ŷN (t) = ẐN (t)θ + ûN (t). Finally, the GMM

estimators (14) or (22) are applied again to obtain the final estimate θ̂N—the spatially corrected

Arellano-Bond or Blundell-Bond estimator, respectively:

θ̂N =
(
Ẑ
⊤
NĤNÂNĤ

⊤
N ẐN

)−1
Ẑ
⊤
NĤNÂNĤ

⊤
N ŷN , (23)
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where ĤN represents the instrument matrix corresponding to the Arellano-Bond or Blundell-

Bond estimators as constructed in Section 3.1 and ÂN = [Ĥ
⊤
NGNĤN/N ]−1 is the feasible GMM

weight matrix corresponding to the infeasible AN (thus using ĤN instead of H̃N ). Again, (23)

can be extended by estimating and applying the optimal GMM weight matrix.

To perform this three-step procedure consisting of the initial estimation, estimation of ρ,

and the spatially corrected estimation, the estimates of the parameters describing the error dis-

tribution have to be derived. Having the initial estimate θ̂
0
N of the regression coefficients, the

parameters ρ and σ2v of the error distribution will now be estimated; recall from (7) and (5) that

uN (t) = (IN − ρMN )
−1[ηN + vN (t)], where vN (t) ∼ iid(0, σ2vIN ). To estimate ρ and σ2v , a

GMM estimator is again constructed – this time based on errors uN (t), which are estimated by

the regression residuals û0
N (t) = yN (t) − ZN (t)θ̂

0
N . The three proposed moment conditions are

a modification of those derived by Kapoor et al. (2007) for random effects static panel models.

The main difference is that we base the estimation of ρ and σ2v on the first differences of errors

to account for the presence of individual effects.

To define the moment conditions, let us first denote (with a slight abuse of notation) ∆εN =

[∆ε⊤N (2), . . . ,∆ε
⊤
N (T )]

⊤ and ∆uN = [∆u⊤
N (2), . . . ,∆u⊤

N (T )]
⊤ (the information from all the time

periods is thus merged). Their counterparts spatially transformed by matrix MN are ∆ε̄N =

(IT−1 ⊗ MN )∆εN , ∆ūN = (IT−1 ⊗ MN )∆uN , and ∆¯̄uN = (IT−1 ⊗ MN )∆ūN , which implies

that

∆εN ≡ ∆uN − ρ∆ūN , ∆ε̄N ≡ ∆ūN − ρ∆¯̄uN . (24)

The three equations identifying ρ and σ2v are as follows (see Appendix A.1 for a derivation):

E




1
N(T−1)∆ε

⊤
N∆εN

1
N(T−1)∆ε̄

⊤
N∆ε̄N

1
N(T−1)∆ε̄

⊤
N∆εN



=




2σ2v

2σ2v tr(M
⊤
NMN )/N

0



, (25)

where tr(M⊤
NMN ) denotes the trace of the matrix M⊤

NMN . If we now substitute for ∆εN and

∆ε̄N in (25) using ∆uN and ∆ūN , see (24), we obtain the following moment conditions:

E[γN − ΓN (ρ, ρ
2, σ2v)

⊤] = 0, (26)
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where γN = [ 1
N(T−1)∆u⊤

N∆uN ,
1

N(T−1)∆ū⊤
N∆ūN ,

1
N(T−1)∆ū⊤

N∆uN ]
⊤ and

ΓN =




2
N(T−1)∆u⊤

N∆ūN − 1
N(T−1)∆ū⊤

N∆ūN 2

2
N(T−1)∆ū⊤

N∆¯̄uN − 1
N(T−1)∆

¯̄u
⊤
N∆¯̄uN

2
N tr(M⊤

NMN )

2
N(T−1)

[
∆ū⊤

N∆ūN +∆¯̄u
⊤
N∆uN

]
− 1
N(T−1)∆

¯̄u
⊤
N∆ūN 0



. (27)

The nonlinear system of equations (26) can be solved by GMM to obtain estimates of ρ and σ2v .

Since the ∆uN ’s are not known, they have to be estimated by regression residuals ∆û0
N (t) =

∆yN (t) − ∆ZN (t)θ̂
0
N , where θ̂

0
N is an initial estimator obtained from (14) and (22) using the

transformation matrix BN = IN , for instance. Denoting the analogs of γN and ΓN based on the

regression residuals ∆û0
N by γ̂N and Γ̂N , respectively, the GMM estimator of ρ and σv based on

(26) is defined by

(ρ̂N , σ̂v,N ) = argminρ,σv [γ̂N − Γ̂N (ρ, ρ
2, σ2v)

⊤]⊤CN [γ̂N − Γ̂N (ρ, ρ
2, σ2v)

⊤], (28)

where CN is a GMM weighting matrix. Initially and in Section 6, we use only CN = I3. The

optimal weight matrix can be derived analogously to Kapoor et al. (2007) and has the same

form as in that paper (see Appendix A.1 for verification). Its computation is cumbersome and

we recommend, similarly to Kapoor et al. (2007), to use CN = I3. Furthermore, simulations

in Section 6 indicate that replacing the optimal weighting matrix by the identity matrix hardly

influences the precision of estimates.

4 Asymptotic Properties of the Estimators

To formulate the asymptotic results for the estimators θ̃N and θ̂
0
N [given in (14) or (22)], ρ̂N

and σ̂v,N [given in (28)], and θ̂N [given in (23)], let θ0, ρ0, and σ0v denote the true parameter

values. Recall that θ̃N and θ̂N can represent here the (spatially-corrected) spatial Arellano-

Bond or Blundell-Bond estimator depending on which moment conditions are used. The feasible

estimates depend on an estimate B̂N of the N ×N spatial transformation matrix. To explicitly

state that BN depends only on a finite set of parameters, let BN =
∑

κ

k=1 φkΦk,N , where φk’s

are (possibly unknown) scalars and Φk,N are known N × N matrices for k = 1, . . . ,κ with a

16



fixed κ ∈ N. Our main interest lies in BN = IN − ρMN , which corresponds to κ = 2, φ1 = 1,

Φ1,N = IN , φ2 = ρ, and Φ2 = MN and which contains one unknown parameter ρ to be estimated.

Further, an extended notation for the spatial matrices aggregated across all time periods is

needed: in the case of the Arellano-Bond estimator, let IN⊗ = IT−2 ⊗ IN , MN⊗ = IT−2 ⊗MN ,

and WN⊗ = IT−2 ⊗ WN ; in the case of the Blundell-Bond estimator, let IN⊗ = I2(T−2) ⊗ IN ,

MN⊗ = I2(T−2) ⊗ MN , and ŴN⊗ = I2(T−2) ⊗ WN . Similarly, BN⊗ = IT−2 ⊗ BN or BN⊗ =

I2(T−2) ⊗BN and Φk,N⊗ = IT−2 ⊗Φk,N or Φk,N⊗ = I2(T−2) ⊗Φk,N for k = 1, . . . ,κ.

In what follows, we will first discuss the imposed assumptions (Section 4.1) and then the

derived asymptotic results (Section 4.2).

4.1 Assumptions

First, the assumptions needed for the consistency and asymptotic normality of the spatially

corrected GMM estimator are specified. Throughout the section, we assume N → +∞ and

T = c0, where c0 is a constant. More specifically, the number of instruments is assumed to be

fixed: this is guaranteed by T being finite for instruments lagged in time and by L in (13) and

(21) being finite for spatially lagged instruments.

Now, the first set of assumptions specifies standard assumptions regarding the error terms,

which guarantee the validity of the moment conditions specified in Section 3 and the existence

of finite second moments for the central limit theorem. The existence of the fourth moments is

made for the convenience of using some auxiliary results of Kelejian and Prucha (2010). Similarly,

the assumption of identically distributed errors is made for simplicity and could be relaxed. The

only restrictive assumption on the individual effects follows from Blundell and Bond (1998), see

Assumption E4 below, which is closer to the (correlated) random effect structure than to the

fixed effects assumption and which applies only to the (spatial) Blundell-Bond estimator, but

not to the Arellano-Bond estimator. Hence, Assumption E4 is not required for estimation as

it is irrelevant in the case of the proposed spatial Arellano-Bond estimator. (The validity of

Assumption E4 under various model assumptions is extensively discussed in Blundell, Bond, and
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Windmeijer, 2000.) Finally, Assumption E also specifies a weak initial condition on the response

variable: in Assumption E1, we state that the responses in the first time period, yN (1), can

be spatially correlated in a general way and that their spatial structure obeys similar rules as

the model or errors themselves in that each element of yN (1) is a weighted sum of independent

random variables, see equation (2); these random variables are denoted vN (1) since the model

(2) and its errors vN (t) are defined only for t ≥ 2.

Assumption E

1. The initial value yN (1) can be written as yN (1) = SNvN (1), where the elements of vN (1) =

[v1(1), . . . , vN (1)]
⊤ are independent and identically distributed, have uniformly bounded

second moments, and SN is a N ×N matrix.

2. The error vectors vN (t) = [v1(t), . . . , vN (t)]
⊤ are independent with independently and

identically distributed elements for each N ∈ N and t = 2, . . . , T with zero mean E[vi(t)] =

0, a finite variance Var[vi(t)] = σ2v , i = 1, . . . , N , and uniformly bounded fourth moments.

Further, vN (t) is assumed to be independent of ηN and of XN (t), XN (s), and yN (s) for

any s = 1, . . . , t− 1; t = 2, . . . , T .

3. The fixed effects ηN = [η1, . . . , ηN ]
⊤ are mutually independent and have uniformly bounded

fourth moments.

4. In the case of the Blundell-Bond estimator, ηN is additionally assumed to be uncorrelated

with ∆ZN (t): E[∆ZN (t)ηi] = 0 for t = 2, . . . , T .

The spatial structure described by matrices WN and MN is assumed to follow Assumption S,

which is made slightly more general than specified in Section 2—where we assumed row nor-

malized matrices—by allowing various normalizations of spatial weight matrices (see Kelejian

and Prucha, 2010). Similar assumptions are also applied to the transformation matrix BN and

its decomposition based on Φk,N , which however automatically satisfy them if BN has a form

BN = IN − ρMN for some ρ (note that the initial choice BN = IN is included for ρ = 0).
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Assumption S

1. All diagonal elements of WN and MN are zero; all diagonal elements of BN are equal to

one.

2. There exist finite positive constants K
′

δ,K
′′

δ ,K
′

ρ, and K
′′

ρ such that matrices IN − δWN ,

IN − ρMN , and BN are non-singular for all δ ∈ (−K ′

δ,K
′′

δ ) and ρ ∈ (−K ′

ρ,K
′′

ρ ) and any

N ∈ N.

3. The absolute values of the row and column sums of BN , SN ,WN , MN , (IN − δ0WN )
−1,

(IN − ρ0MN )
−1, and Φk,N , k = 1, . . . ,κ, are bounded uniformly in N ∈ N.

Next, the assumptions concerning the explanatory variables and the imposed instrumental vari-

ables are specified. To guarantee identification of the model parameters, the matrix of explanatory

variables Z̃N and of the instrumental matrix H̃N are generally assumed to have rank at least K+2

so that results apply to various sets of instruments proposed in Section 3.1. To achieve this, for

example, in the case of purely dynamic model without explanatory variables, it is sufficient that

the parameters linking the instruments and instrumented variables are non-zero, that is, λ 6= 0

and δ 6= 0, and that the spatial weight matrices IN , WN , and W2
N are not linearly dependent.

See a detailed discussion of the identification assumptions in this framework is given by Lee and

Yu (2013).

Additionally, we require only the existence of various finite moments of the explanatory vari-

ables, instruments, and moment conditions as needed for the central limit theorem (see Assump-

tion V4 and V5 below). Since the spatial structure might change with an increasing sample size

in a generally unspecified way, these expectations change as well with an increasing sample size;

for example E[H̃
⊤
N Z̃N/N ] changes with N along with the corresponding spatial matrices. We

assume for simplicity of notation that these averages have well-defined limits, for example, that

limN→∞ E[H̃
⊤
N Z̃N/N ] exists, but this assumption can be relaxed. Finally, note that the assump-

tion of the uniformly bounded (2 + ψ)th moments, see Assumption V3 below, which implies the

uniform integrability of the squared moment equations, replaces a more restrictive, though often
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used condition of bounded nonstochastic regressors (e.g., Kapoor et al., 2007).

Assumption V

1. ZN has a full rank almost surely.

2. HN has a rank greater or equal to K + 2 almost surely.

3. The expectations E(XN,ij)
2+ψ, E(ZN,ij)

2+ψ and E(HN,ijεN,k)
2+ψ are bounded uniformly

in i, j, k for some ψ > 0.

4. The limits of matrices limN→∞E[H⊤
NΦ

⊤
k,N⊗Φk,N⊗ZN ] = Q̃k,HZ exist and are non-singular

for k = 1, . . . ,κ as well as their linear combination limN→∞ E[H̃
⊤
N Z̃N ] = E[H⊤

NB
⊤
N⊗BN⊗ZN ] =

Q̃HZ , which exists and is non-singular.

5. The limits of variance matrices (k = 1, . . . ,κ)

limN→∞ E[H⊤
NΦ

⊤
k,N⊗Φk,N⊗[IN⊗−ρ0MN⊗]

−1εNε
⊤
N [IN⊗−ρ0MN⊗]

−1⊤Φ⊤
k,N⊗Φk,N⊗HN/N ] =

Q̃k,HΣH as well as limN→∞E[H̃
⊤
N ũN ũ

⊤
NH̃N/N ] =

limN→∞ E[H⊤
NB

⊤
N⊗BN⊗[IN⊗ − ρ0MN⊗]

−1εNε
⊤
N [IN⊗ − ρ0MN⊗]

−1⊤B⊤
N⊗BN⊗HN/N ] =

Q̃HΣH are finite and positive definite.

Finally, we have to specify assumptions important for the GMM estimator itself, that is, condi-

tions on the parameter space and the GMM weighting matrices. They mainly guarantee that the

spatial correlation matrices IN−δWN and IN−ρMN are invertible and GMM matrices ÃN , ÂN ,

CN , and ΓN are non-singular. This assumption is again general to accommodate any choice of

the weight matrices; regarding the matrices suggested in Section 3, they are mostly deterministic

(e.g., identity matrices) with the exception of AN,AB = [H̃
⊤
N,ABGN,ABH̃N,AB/N ]−1; in the case

of AN,AB, convergence to a well-defined limit follows from Lemma 2 in the Appendix.

Assumption G

1. The parameter space for θ = (λ, δ,β)⊤ is Θ = (−1, 1) × (−K ′

δ,K
′′

δ )× R
K .
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2. Non-singular symmetric matrices AN satisfy p-limN→∞AN = A, where A is a finite

positive definite matrix.

3. Non-singular symmetric matrices ÂN satisfy p-limN→∞ ÂN = A, where A is a finite

positive definite matrix.

4. The parameter space Φ for ϕ = (ρ, σv)
⊤ is a compact subset of (−K ′

ρ,K
′′

ρ )×R
+. Moreover,

ϕ0 = (ρ0, σ0v)
⊤ ∈ Φ◦.

5. The smallest eigenvalues of the matrix Γ⊤
NΓN are uniformly larger than κΓ > 0.

6. Positive definite matrices CN and ĈN satisfy limN→∞CN = C and p-limN→∞ ĈN =

C, respectively, where CN are non-stochastic positive definite matrices with eigenvalues

uniformly larger than κB > 0 and uniformly smaller than KB > 0.

4.2 Consistency and Asymptotic Normality

In this section, the asymptotic properties of the proposed estimators are derived. As the regression

parameters are estimated by a linear GMM estimator, we only have to account for the spatial

error correlation and its estimation to derive the asymptotic distributions in the classical way.

However, the estimation of ρ and σ2v characterizing the variance and spatial correlation of the

errors is nonlinear and it is thus necessary to prove that the parameters are identified and that

the finite-sample GMM objective function converges to its population counterpart (cf. Kelejian

and Prucha, 2010).

Let us remark at this point that the assumptions specified in Section 4.1 are not sufficient for

the general spatial Arellano-Bond or Blundell-Bond estimators. The main reason is that even the

unobservable errors exhibit both dependence in space and in time; for example, the differenced

error terms ∆ũN (t) in (9) are serially correlated due to differencing and spatially correlated due

to cross-sectional correlation (note that this is obviously not the case in the level equation (17)).

To derive the asymptotic results presented in this section, one thus needs to impose additional

conditions on the spatial dependence such that the error terms have a “short” memory. We can
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impose additional conditions on WN that will guarantee that ∆ũN are near-epoch dependent in

space, for instance, using the definition of the near-epoch dependence and the law of large numbers

of Jenish and Prucha (2012). That means the locations of the cross-sectional units in space have

to be defined, the elements of WN and MN have to satisfy additional constraints such as those in

Jenish and Prucha (2010, equation (13)), and the proofs could be done analogously to the Jenish

and Prucha’s (2012) proofs of consistency and asymptotic normality of the cross-sectional GMM

estimator.

On the other hand, it is possible to derive the asymptotic properties of the general spatial

Arellano-Bond or Blundell-Bond estimators using only the assumptions in Section 4.1 if only a

subset of moment conditions is used such that the involved unobservable error terms are not

serially correlated. For example, using the moment conditions (11)–(13) of the Arellano-Bond

estimator only for odd time periods t = 3, 5, . . . , 2⌈T/2⌉−1 makes employed ∆ũN (t) independent

over time; the same is true if only the moments for the level equation (17) are used. In that case,

the near-epoch dependence does not have to be imposed and the asymptotic results can be derived

using just the weak Assumption S3 on the spatial weight matrices. Since both sets of assumptions

and proofs lead to formally the same results (e.g., the variance matrices can be expressed in the

same way in both cases), we provide the proofs under the weaker assumptions of Section 4.1,

noting that the other case can be derived analogously using the limit theorems of Jenish and

Prucha (2012).

We will show first that the infeasible estimator θ̃N defined by (14) or (22) for a given sequence

of transformation matrices BN is consistent and asymptotically normal. Consequently, the same

result applies to the initial estimator θ̂
0
N based on BN = IN .

Theorem 1. Under Assumptions E, S, V, and G1–G2, the GMM estimator θ̃N is
√
N -consistent

and

√
N(θ̃N − θ0) L→ N(0, [Q̃

⊤
HZAQ̃HZ ]

−1Q̃
⊤
HZAQ̃HΣHA

⊤Q̃HZ [Q̃
⊤
HZAQ̃HZ ]

−1)

in distribution as N → +∞.
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Proof. See Appendix A.3.1. �

Although the asymptotic distribution of θ̃N and θ̂
0
N is derived in Theorem 1, it is not practi-

cally applicable at this stage: the variance matrix Q̃HΣH of H̃N ũN generally depends on unknown

parameters σ0v and ρ0 (see Assumption V5). This also means that the two-step GMM estimator

based on (an estimate of) the optimal weighting matrix A = Q̃
−1
HΣH cannot be constructed. To

achieve feasible estimation, the variance σ0v and spatial autocorrelation parameter ρ0 has to be es-

timated first by σ̂v,N and ρ̂N defined in equation (28). The consistency of the proposed estimates

σ̂v,N and ρ̂N is proved in the following theorem.

Theorem 2. Let Assumptions E, S, V3, and G4–G6 hold and θ̂
0
N be a

√
N -consistent estimator

of θ0,
√
N(θ̂

0
N − θ0) = Op(1). Then the GMM estimator ϕ̂N = (ρ̂N , σ̂v,N )

⊤ of ϕ0 = (ρ0, σ0v)
⊤ is

consistent, ϕ̂N → ϕ0 in probability as N → +∞.

Proof. See Appendix A.3.2. �

Having a consistent estimate ρ̂N of ρ0, the asymptotic variance in Theorem 1 can be evaluated

and the optimal GMM weighting matrix Q̃
−1
HΣH can be estimated. More importantly, ρ̂N can be

used to transform the model (8) to obtain (asymptotically) spatially uncorrelated errors. The

spatially-corrected infeasible estimator relies on the transformationBN = IN−ρ0MN as described

in Section 3. If we now set B̂N = IN − ρ̂NMN , Theorem 2 and Assumption S3 guarantee that

‖B̂N − BN‖F = |ρ̂N − ρ0|‖MN‖F → 0 in probability as N → +∞, where ‖ · ‖F denotes the

Frobenius norm. This asymptotic equivalence of the feasible and infeasible transformations leads

to the following theorem: the feasible GMM estimator corresponding to the transformation matrix

B̂N =
∑

κ

k=1 φ̂k,NΦk,N is asymptotically equivalent to the infeasible GMM estimator based on

BN =
∑

κ

k=1 φkΦk,N in general for any transformation such that |φ̂k,N − φ0k| = op(1) for all

k = 1, . . . ,κ, and in particular, for B̂N = IN − ρ̂NMN and BN = IN − ρ0MN as ρ̂N − ρ0 = op(1)

by Theorem 2.

Theorem 3. Under Assumptions E, S, V, and G1–G3, the GMM estimator θ̂N defined in (23)

for transformation matrix B̂N is
√
N -consistent, asymptotically normal

√
N(θ̂N − θ0) L→ N(0, [Q̃

⊤
HZAQ̃HZ ]

−1Q̃
⊤
HZAQ̃HΣHA

⊤Q̃HZ [Q̃
⊤
HZAQ̃HZ ]

−1),
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and asymptotically equivalent to the infeasible estimator,
√
N(θ̂N − θ̃N )

p→ 0 as N → +∞, if

BN =
∑

κ

k=1 φkΦk,N , B̂N =
∑

κ

k=1 φ̂k,NΦk,N , and |φ̂k,N − φ0k| = op(1) as N → +∞ for all

k = 1, . . . ,κ.

Proof. See Appendix A.3.3. �

The feasible GMM estimator depends on the choice of two matrices: the transformation BN

and the weighting matrix AN . Theorem 3 indicates that the asymptotic distributions of the

infeasible and feasible GMM estimators are equivalent as long as B̂N and ÂN are consistent

estimates of BN and AN , respectively. First, the transformation BN = IN − ρ0MN has been

chosen to remove the spatial error correlation and can be estimated using ρ̂N by Theorem 2. It

can be shown that this transformation is minimizing the asymptotic variance in special cases; for

example in the case of the two-stage least squares estimator corresponding to G = I in Section

3.1, it follows from the Cauchy-Schwartz inequality (Tripathi, 1999) by a similar argument as in

Lee (2003).

Next, the optimal choice of the weighting matrix for GMM equals the inverse of the variance

of the moment conditions,

AN = {E[H̃⊤
N ũN ũ

⊤
NH̃N/N ]}−1

= {E[H⊤
NB

⊤
N⊗BN⊗[IN⊗ − ρ0MN⊗]

−1εNε
⊤
N [IN⊗ − ρ0MN⊗]

−1⊤B⊤
N⊗BN⊗HN/N ]}−1

→ Q̃
−1
HΣH ,

which can be estimated once the estimate ρ̂N of ρ0 is obtained and which results in the asymptotic

variance of the spatial GMM estimator being [Q̃
⊤
HZQ̃

−1
HΣHQ̃HZ ]

−1. Note that the variance of

errors E(εNε
⊤
N ) depends (i) in the case of the Arellano-Bond estimator only on σv, which is

consistently estimated by σ̂v,N due to Theorem 2, but (ii) in the case of the Blundell-Bond

estimator on variances of all individual effects ηN . More specifically in the case of the spatial

Arellano-Bond estimator with BN = IN −ρ0MN , the independence of idiosyncratic shocks vN (t)

on covariates and ∆εN (t) = vN (t)−vN (t−1) for t = 2, . . . , T implies that E(∆εN∆ε
⊤
N ) = GN,AB
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defined in Section 3.1 and

AN = {E[H⊤
NB

⊤
N⊗BN⊗[IN⊗ − ρ0MN⊗]

−1εNε
⊤
N [IN⊗ − ρ0MN⊗]

−1⊤B⊤
N⊗BN⊗HN/N ]}−1

= diag{E[H⊤
N (t)B

⊤
NBN [IN − ρ0MN ]

−1 ·E[εN (t)ε
⊤
N (t)|H̃N (t)]

· [IN − ρ0MN ]
−1⊤B⊤

NBNH̃N (t)/N ]}−1

= diag{E[H⊤
N (t)[IN − ρ0MN ]

⊤σ2vG[IN − ρ0MN ]HN (t)/N ]}−1

= σ2vE[H̃
⊤
NGN,ABH̃N ]

−1.

Hence, the proposed first-step weighting matrix of the spatial Arellano-Bond estimator is an

estimate of the optimal weighting matrix AN/σ
2
v if the errors εN are homoscedastic.

Consequently, the advantages of the spatial Arellano-Bond estimator are (i) weak identifica-

tion assumptions allowing for general fixed effects model and (ii) the optimal weighting matrix

under homoscedasticity can be constructed a priori. On the other hand, the spatial Blundell-

Bond estimator (i) imposes stricter assumptions in that the time changes of covariates cannot

be correlated with the individual effects, but (ii) it uses these constrains to construct additional

moment conditions that lead to more precise estimation. Irrespective of the chosen estimator, we

provide estimators for the matrices entering the asymptotic variance of θ̂N in the final theorem.

Theorem 4. Under the assumptions of Theorems 2 and 3, which guarantee ρ̂N → ρ0, σ̂v,N → σ0,

and B̂N → B in probability as N → +∞, it holds that

N−1Ĥ
⊤
N ẐN = N−1H⊤

NB̂
⊤
N⊗B̂N⊗ZN → Q̃HZ

and

N−1Ĥ
⊤
N ûN û

⊤
NĤN = N−1H⊤

NB̂
⊤
N⊗B̂N⊗uNu

⊤
NB̂

⊤
N⊗B̂N⊗HN → Q̃HΣH

in probability as N → +∞.

Proof. See Appendix A.3.4. �
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5 Extensions

The spatial dynamic panel data model we analysed up to now has a dynamic lag, a spatial lag, and

spatial correlated errors, with the exogenous variables XN (t) assumed strictly exogenous. This

section briefly discusses two types of extensions: (i) extensions to the model and (ii) extensions

to the GMM estimators.

The model introduced in Section 2 can be extended by a spatial-temporal lag, WNyN (t− 1),

or spatial exogenous variables, WNXN (t):

yN (t) = λyN (t− 1) + δWNyN (t) + γWNyN (t− 1) +XN (t)β +WNXN (t)θ + uN (t).

Consistent GMM estimation is still possible if there are at least 2K + 3 valid instruments that

are correlated with the time-lagged, spatially lagged, spatio-temporal, exogenous, and spatial

exogenous variables and uncorrelated with the errors ∆ũN (t) for each t = 3, ..., T . For example,

spatial lags of the exogenous variables, WNXN (t − 1), can be used to instrument the spatio-

temporal variables or the spatially lagged exogenous variables if β 6= 0 or values of XN (t) are

correlated over time, respectively. Note though that including both the spatio-temporal lag

and spatial exogenous variables will likely lead to the problem of weak instruments, especially

for smaller absolute values of the autoregressive parameter. Moreover, the identification would

require conditions specified in Lee and Yu (2013).

Extensions allowing for higher order dynamic and spatial lags in the model can also be dealt

with in a straightforward manner by choosing proper instruments. The same holds for time-

varying spatial weights matrices.15

The second type of extensions refers to the design of the GMM estimators introduced in

Section 3 above. On the one hand, additional or alternative instruments can be employed such

as lagged differences of the exogenous variables to instrument dynamic lags of the endogenous

variable in the spatial Arellano-Bond estimators as discussed in Section 3.1.1. On the other

hand, the assumptions could be relaxed. For example, returning to the original model of Section

15Lee and Yu (2012) study quasi-ML estimation of spatial models with time-varying weights matrices.
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2, we can relax the strict exogeneity assumption on the exogenous variables to XN (t) being pre-

determined. In this case the spatio-temporal model of Section 2 stays the same, but the moment

conditions (10) in the Arellano-Bond estimator have to replaced by

E[X̃
⊤
N (t− s)∆ũN (t)] = 0, t = 3, . . . , T, s = 2, . . . , t− 1,

and (13) by

E[{Wl
NX̃N (t− s)}⊤∆ũN (t)] = 0, t = 3, . . . , T, s = 2, . . . , t− 1, l = 1, . . . , L.

In the Blundell-Bond estimator the moment conditions for the pre-determined variables become

E[∆X̃
⊤
N (t− s)ũN (t)] = 0, t = 3, . . . , T, , s = 2, . . . , t− 1, and

E[{Wl
N∆X̃N (t− s)}⊤ũN (t)] = 0, t = 3, . . . , T, s = 2, . . . , t− 1, l = 1, . . . , L.

Provided sufficient moment conditions exist to estimate the K + 2 parameters, our GMM esti-

mators can still be used and are consistent.

6 Monte Carlo Simulations

To assess the performance of the estimators presented in Section 3, this section reports a Monte

Carlo experiment. The design of the Monte Carlo experiment is discussed first before turning to

the results.

6.1 Simulation Design

We report the small sample properties of the estimators using data sets generated based on the

spatial dynamic panel data model introduced in Section 2. In generating the data, we follow

a three-step procedure. First, we generate the vector of covariates, which includes only one

exogenous variable. The exogenous variable is defined as:

XN (t) = ς + χ(t), ς ∼ iid N(0, 1), χ(t) ∼ iid N(0, 1), (29)
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where ς represents the unit-specific component and χ(t) denotes a random component; both are

drawn from the standard normal distribution.

Thereafter, we use ς to construct the unit-specific effect. We do this in order to explicitly

model the fixed effects that we assume in Section 2. To be specific, we construct ηN as follows

ηN =

√
φ

2
[ξ + ς] ,with ξ ∼ iid N(0, 1). (30)

where φ can be used to increase the variance of the fixed-effect relative to the variance of the

idiosyncratic error vN . Combining (30), (4), and (5) with

vN ∼ iid N(0, INT ), (31)

yields the error component uN (t). The third step generates data for the dependent variable

yN (t) and the spatial lag WNyN (t). The data generation process is given by (6) and (7) for

t = 2, ..., T and y(1) = ηN . Because it is impossible to analytically establish the conditions for

mean-stationarity in the underlying model, and it is unclear how fast a spatial-dynamic model

converges numerically, we iterate until the mean of yN (t) converges.

We use different spatial weights matrices for the spatial lag and spatial error component, that

is, WN 6= MN . To accommodate a large N , we generate artificial contiguity matrices. In doing

so, we randomly assign n neighbors to each spatial unit i—while ensuring symmetry—and row

normalize the matrices. We generate new matrices WN and MN for each iteration, to make

sure that our results do not depend on a specific draw of the weights matrix (but ensuring that

all estimators within an iteration follow from the same matrices). In the benchmark scenario,

we assume five neighbors of each spatial unit, implying 91.7% zero entries, the so-called sparsity

of the weight matrix. As a robustness check, we vary the number of neighbors from 5 to 20 in

the random contiguity matrices. In addition, we consider the Bucky ball contiguity specification,

which assumes a fixed location of unit i’s neighbors. The Bucky ball matrix is shaped like a soccer

ball, where the distance from any point to its nearest neighbors is the same for all the points.

As the Bucky ball specification assumes N = 60 it cannot be used for varying N . Depending

on whether unit i is a pentagon or hexagon, there are five or six neighbors. Because of its fixed
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geographic structure, the Bucky ball specification implies WN = MN . Finally, we consider row-

normalized weight matrices based on the inverse of squared distance. We randomly generated n

points and compute the Euclidean distance between each pair. Again this weighting matrix is

subsequently row-normalized.

In the benchmark specification, we use N = 60 and T = 5. The parameters in (6) and

(7) take on the following values in the data generation process. As all estimators are regression

equivariant, the coefficient of the exogenous explanatory variable β is set to unity. We set λ = 0.3

and δ = 0.5, so that the stationarity conditions (3) are satisfied, and the spatial autocorrelation

coefficient ρ equals 0.3. For each experiment, the performance of the estimators is computed based

on 1000 replications. Following Kapoor et al. (2007) and others, we measure performance by the

RMSE =

√
bias2 +

( q1−q2
1.35

)2
, where bias denotes the difference between the median and the ‘true’

value of the parameter of interest (i.e., the value imposed in the data-generating process) and

q1− q2 is the interquantile range (where q1 is the 0.75 quantile and q2 is the 0.25 quantile). If the

distribution is normal, (q1 − q2)/1.35 comes close (aside from a rounding error) to the standard

deviation of the estimate.

6.2 Results

Table 1 gives a detailed overview of the estimators considered in the simulation study. We

report four different types of spatial GMM estimators all of which instrument the time lag of

the dependent variable in addition to addressing spatial aspects. For each estimator, seven

instrument-sets have been defined. We consider a spatial Arellano-Bond differenced-based GMM

estimator (labeled AB) and a spatial Blundell-Bond system-based GMM estimator (labeled BB).

The spatially corrected Arellano-Bond estimator (labeled SAB) and spatially corrected Blundell-

Bond estimator (labeled SBB) explicitly correct for spatial error correlation and correspond to

the final step of the spatial GMM procedure discussed in Section 3.2. We use three time lags in

instrumenting the one-period time lag of the dependent variable. To instrument the spatial lag, we

use various instrument sets: (i) the modified Kelejian and Robinson (1993) instruments (indicated
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by the subscript X); (ii) time lags s of the spatially lagged dependent variable (indicated by the

subscript Y ), which are labelled spatio-temporal instruments; and (iii) a combination of the

instrument sets X and Y (represented by the subscript XY ). The numbers in the subscripts

denote the number of time lags s and spatial lags l of Wl
NyN (t−s), where we consider only cases

with an equal number of time lags and spatial lags. The instrument-set Y captures the case with

only endogenous variables as instruments.

Table 2 reports the RMSE of estimating the spatial autoregressive parameter δ for the various

estimators and different values of N starting at the benchmark value of N = 60 (T = 5 is fixed).

The table shows that the RMSE decreases if N increases. For those estimators using spatially

weighted exogenous variables WN∆XN (t) as instruments, extending the number of spatial units

from 60 to 500 reduces the RMSE by more than 50 % when λ = 0.3 and δ = 0.5. The decrease

in the variance is smaller for all estimators in case λ = 0.7 and δ = 0.2. Furthermore, estimators

using only spatio-temporal instruments (Y ) have larger RMSEs.

We find that the spatially corrected estimators have generally a smaller RMSE than their

non-spatially corrected counterparts. The reduction in the RMSE is more than 5% in the model

with λ = 0.3 and δ = 0.5, but smaller in case λ = 0.7 and δ = 0.2. Additionally, the (S)BB

estimators give rise to a smaller RMSE than the (S)AB estimators in case λ = 0.7 and δ = 0.2,

the improvement in efficiency is more than 50%. For λ = 0.3 and δ = 0.5, the (S)BB estimators

are superior only when the number of spatial units is relatively low (N = 60), yielding a reduction

in the RMSE of almost 40%. When the number N of spatial units increases, the superiority of

(S)BB estimators is less clear: for lower values of λ, the (S)AB estimators are preferable. This

corresponds to the intuition that the advantage of adding the level-equations to the difference-

equations is the largest when λ is relatively high or when the number of observations is relatively

low.

Note that increasing λ causes an increase in the RMSE for the (S)AB estimator and a decrease

for the (S)BB estimator, reflecting that an increase in λ reduces the power of the dynamic

instruments in (S)AB instruments relative to the instruments in the levels equation of the (S)BB

estimators. With respect to the choice of instrument set, the specifications with both X and
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Y instruments for the spatial lag yield smaller RMSEs than those without exogenous variables

in the instrument set for the spatial lag (only Y ). When comparing estimators using only X

instruments (ABX/BBX) with those using only spatio-temporal Y instruments (ABY 3/BBY 3)

reveals that in 8 out of 12 instances, the former report a lower RMSE. Hence, spatially lagged

exogenous variables are generally stronger instruments than spatio-temporal instruments. It is

only worthwhile to replace spatially lagged exogenous variables with spatio-temporal instruments

for the BB estimator in case λ = 0.7 and δ = 0.2. The combination of both types of instruments

is preferable to using one type of instruments though.

Simple counting based on the lowest RMSE suggests that SBBXY 3 is the best estimator in

case λ = 0.7 and δ = 0.2. However, for the case with λ = 0.3 and δ = 0.5, we see that the

best estimator depends on N : SBBXY 1 for N = 60, SBBXY 2 for N = 200; and SABXY 1 for

N = 500. Overall, SBBXY 2 performs very well under all configurations. But, as AB estimators

are consistent under more general assumptions, it is interesting to observe that, although none

of the estimators comes out on top, SABXY 1 most often features a RMSE that is close to the

RMSE of the best estimator amongst the SAB estimators.

Table 3 presents the RMSE in estimating the parameter δ for various estimators and various

values of T starting at the benchmark value of T = 5 (N = 60 is fixed). If the time dimension of

the panel rises, techniques to limit the proliferation of instruments might be needed. As before,

we limit the lag depth of the dynamic instruments to 3, which corresponds to the maximum

number of lags used for T = 5, guarantees thus comparability across different values of T , and

reduces the RMSE in estimating the spatial lag parameter at higher values of T (see Jacobs et

al., 2009).

Increasing the number of time periods from 5 to 20 in the benchmark case of λ = 0.3 and

δ = 0.5 reduces the average RMSE by 20%, where the decline is somewhat stronger for the

BB and SBB estimators. In case λ = 0.7 and δ = 0.2, the fall in RMSE induced by a rise in

T from 5 to 20 for both the (S)AB estimators and (S)BB estimators is on average more than

40%. Overall, when individual effects are not correlated with differences in the response and

explanatory variables, the (S)BB estimators are preferred over (S)AB estimators. The preferred
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estimator is the (S)BBXY 2 for λ = 0.3 and δ = 0.5, whereas (S)BBXY 3 is preferred for λ = 0.7

and δ = 0.2. Within the SAB estimators, SABX generally reports the lowest RMSE, except in

the case of a short panels (T = 5) when λ is equal to 0.7; in that case it is advisable to include

some spatio-temporal instruments in the instrument matrix.

Furthermore, except for the BB estimators in case λ = 0.7 and δ = 0.2, spatially corrected

estimators are preferred. Note that the RMSE for the BB estimators in case λ = 0.7 and δ = 0.2

is by far the lowest in the sample. Compare for example the RMSE for ABX and BBX and

observe that BBX in case of λ = 0.7 and δ = 0.2 shows a 50 % lower RMSE compared to the

second lowest RMSE which is found for BBX in case λ = 0.3. Maybe the relative efficiency of

the BB estimators in this case makes further improvements more difficult.

Finally, the weak instrument problem in these models is nicely illustrated. When only spatio-

temporal instruments are used (the ABY and BBY estimators) the simulations suggest it is best

to use all of them, hence, all three spatio-temporal lags have explanatory power. However, when

exogenous (X) instruments are also available, it is best to use only one spatio-temporal lag in

the case of the ABXY estimator. Apparently, although the spatio-temporal instruments have

explanatory power, higher lags are relative weak instruments. For the BB estimators it is better

to use more spatio-temporal lags, especially when λ and δ are high.

Table 4 presents the RMSE of the BB estimators for several values of δ in the interval [0.3, 0.7]

and for different values of ρ (the results for AB estimators are qualitatively similar). We vary ρ

in the interval [−0.8, 0.8], where a negative ρ implies that an unobserved positive shock in the

equation for spatial unit i decreases the dependent variable in other spatial units i 6= j. To

make sure the stationarity condition (3) is met for large values of δ, we set λ to 0.2. The most

prominent feature of the results is that there is a U-shape in the RMSE for the non-spatially

corrected BB estimators, which is absent (or reversed) in the case of the spatially corrected BB

estimators. That is, we find that generally non-spatially corrected BB estimators have larger

RMSEs in estimating λ, δ, and β than their spatially corrected counterparts for ρ 6= 0 (only

for λ results are mixed). The reduction in the RMSE of the spatial correction is largest when

estimating δ. The difference in RMSEs between BB and SBB estimators for large absolute values
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of |ρ| is on average always larger than 16%. The decrease in the RMSE is larger for a large

positive ρ (this yields a gain of more than 60% in estimating δ). In this respect, notice that the

final rows of the table show that also ρ is estimated more accurately when it is larger. We see

that the difference between spatially corrected and spatially uncorrected estimators is close to

zero for a pure spatial lag model (i.e., ρ = 0).

Table 5 investigates the effect of the specification of the spatial weights matrices on the

RMSE from estimating δ for various values of ρ. Reducing the sparsity—fewer zeros through

an increase in the number of neighbors as measured by n—of the random contiguity matrices

generally increases the RMSE of all estimators with the exception of the estimators using only Y

instruments. The increase of the RMSE is especially large for the spatially corrected estimators.

This can be explained by separating the effect of increasing n on the spatial and spatially corrected

estimators. For the spatial estimators increasing the number of neighbors implies that on the

one hand, spatial shocks become more “global”, which makes identification of both δ and ρ

more difficult. On the other hand, more neighbors enhances the strength of the spatio-temporal

instruments relative to the exogenous instruments which are used to the identify δ. Intuitively,

the increase in n reduces the variation inWX instruments as unit-specific shocks in the exogenous

variables are more strongly averaged out. For the Y instruments this effect is less pronounced as

they identify δ through the time persistency in the model. The spatial lag and its time lags are

affected in exactly the same way by the change in the spatial weights matrices W and M . As a

result, estimators employing only spatio-temporal instruments suffer the least from increasing n.

The RMSE of all spatially corrected estimators is increased due to a reduction of the variance in

estimating ρ (not reported). Note the inverted U-shape: when RMSE is high (ρ = |0.8| or the

shock in the error term dominates) the reduction in the RMSE is relatively small compared to

the case where ρ = 0.3, when spatially dispersed shocks from X are relatively more important in

determining Y .

For the distance matrix—where weights are computed as 1/(dij)
p, with dij the distance be-

tween unit i and j and p ∈ {4, 8}—we see that giving more weight to close neighbors (by increasing

p) improves the efficiency of especially the spatially corrected estimators. This can be explained
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from a more accurate estimation of ρ in addition to any possible efficiency gains in estimating

δ. The increase in p causes more variation in the weights which enables better estimation of

ρ. Results for estimating δ are mixed, again we see an inverted U-shape when comparing the

efficiency gains in estimating δ for various values of ρ.

The Bucky-ball specification—which imposesWN = MN , and assumes five or six neighbors—

yields a high RMSE (compare to the case n = 5). The restriction WN = MN makes it harder to

separate the processes for ρ and δ. Therefore, efficiency is reduced more for estimators that use

fewer or weaker instruments (estimators only using Y instruments).

The final two tables, Table 6 and 7, show the results of two additional robustness checks for

the main set of results. Table 6 shows that using two-step spatial AB/BB estimators or two-step

spatially corrected AB/BB estimators instead of one-step estimators does not affect the results at

all. Depending on the model, results either improve or deteriorate slightly, where the differences

in RMSE are small. Table 7 studies the properties of estimators that uses a subset of the moment

conditions which are not serially dependent, following the discussion in Section 4.2. We focus

on the SAB and SBB estimators employing three spatio-temporal lags. Table 4.2 compares

the estimators relying on a subset of moment conditions (labeled ISAB and ISBB respectively,

where the I stands for an independent subset of moment conditions) with the original estimators

using all moment conditions. Using a subset of independent moment conditions generally leads to

an increase in the RMSE for all the coefficients compared to the estimators that use all available

moment conditions. Only for estimating δ in the model with δ = 0.5, λ = 0.3 and N = 60, we

find a small reduction in the RMSE. Overall, the efficiency loss is largest for estimating λ and β.

The AB estimator shows for both λ and β an efficiency loss of more than 30 % due to using only

a subset of the moment conditions, whereas the BB estimator shows an efficiency loss of more

than 15 %. The efficiency losses are somewhat smaller for estimating δ, on average 15% for AB

and 8% for the BB estimators. Overall, increasing N causes an unambiguous reduction in the

RMSE of the ISAB and ISBB estimators.
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7 Conclusion

This paper deals with GMM estimation of spatial dynamic panel data models with fixed effects

and spatially correlated errors. We extend the three-step GMM approach of Kapoor et al. (2007),

which corrects for spatially correlated errors in static panel data models, by introducing a spatial

lag and a one-period lag of the endogenous variable as additional explanatory variables, and

allowing for fixed effects. Combining the extended Kapoor et al. (2007) framework with the

dynamic panel data model GMM estimators of Arellano and Bond (1991) and Blundell and

Bond (1998) and supplementing the dynamic instruments by various spatial lags and weighted

exogenous variables yields new spatial dynamic panel data estimators.

We formally prove the consistency and asymptotic normality of our spatial GMM estima-

tors for the case of large N and fixed small T . Feasible spatial correction based on estimated

spatial error correlation is shown to lead to estimators that are asymptotically equivalent to the

infeasible estimators based on a known spatial error correlation. The Monte Carlo simulations

indicate that the RMSE of spatially corrected GMM estimates—which are based on a spatial lag

and spatial error correction—is generally smaller than that of the corresponding spatial GMM

estimates in which spatial error correlation is ignored, particularly for strong positive spatial

error correlation. We show that the spatial Blundell-Bond estimators outperform the spatial

Arellano-Bond estimators. However, Blundell-Bond estimators impose stricter assumptions in

that time changes of covariates cannot be correlated with the individual effects. Finally, two-step

GMM estimators using optimal GMM weighting matrices do not systematically outperform their

one-step counterparts.
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Table 1: Estimators

Instruments for y(−1) Instruments for Wy Instruments for X
Arellano-Bond estimators
(S)ABX Lagged levels (3 lags) W∆x, W 2∆x, W 3∆x, W∆x(−1), W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)ABXY 1 Lagged levels (3 lags) Wy(−1), W∆x, W 2∆x, W 3∆x, W∆x(−1), W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)ABXY 2 Lagged levels (3 lags) Wy(−1), W 2y(−1), Wy(−2), W 2y(−2), W∆x, W 2∆x, W 3∆x, W∆x(−1),

W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)ABXY 3 Lagged levels (3 lags) Wy(−1), W 2y(−1), W 3y(−1), Wy(−2), W 2y(−2), W 3y(−2), Wy(−3),

W 2y(−3), W 3y(−3), W∆x, W 2∆x, W 3∆x, W∆x(−1), W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)ABY 1 Lagged levels (3 lags) Wy(−1) ∆x, ∆x(−1)
(S)ABY 2 Lagged levels (3 lags) Wy(−1), W 2y(−1), Wy(−2), W 2y(−2) ∆x, ∆x(−1)
(S)ABY 3 Lagged levels (3 lags) Wy(−1), W 2y(−1), W 3y(−1), Wy(−2), W 2y(−2), W 3y(−2), Wy(−3),

W 2y(−3), W 3y(−3) ∆x, ∆x(−1)

Blundell-Bond estimators Instruments for Arellano-Bond estimators plus . . .
(S)BBX Levels and Dif. (3 lags) W∆x, W 2∆x, W 3∆x, W∆x(−1), W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)BBXY 1 Levels and Dif. (3 lags) W∆y(−1), W∆x, W 2∆x, W 3∆x, W∆x(−1) W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)BBXY 2 Levels and Dif. (3 lags) W∆y(−1), W 2∆y(−1), W∆y(−2), W 2∆y(−2), W∆x, W 2∆x, W 3∆x, W∆x(−1),

W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)BBXY 3 Levels and Dif. (3 lags) W∆y(−1), W 2∆y(−1), W 3∆y(−1), W∆y(−2), W 2∆y(−2), W 3∆y(−2), W∆y(−3),

W 2∆y(−3), W 3∆y(−3), W∆x, W 2∆x, W 3∆x, W∆x(−1), W 2∆x(−1), W 3∆x(−1) ∆x, ∆x(−1)
(S)BBY 1 Levels and Dif. (3 lags) W∆y(−1) ∆x, ∆x(−1)
(S)BBY 2 Levels and Dif. (3 lags) W∆y(−1), W 2∆y(−1), W∆y(−2), W 2∆y(−2) ∆x, ∆x(−1)
(S)BBY 3 Levels and Dif. (3 lags) W∆y(−1), W 2∆y(−1), W 3∆y(−1), W∆y(−2), W 2∆y(−2), W 3∆y(−2), W∆y(−3),

W 2∆y(−3), W 3∆y(−3) ∆x, ∆x(−1)
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Table 2: RMSE of Spatial GMM Estimators of δ for Various Values of N and λ

Estimator λ = 0.3 λ = 0.7
N = 60 N = 200 N = 500 N = 60 N = 200 N = 500

ABX 0.173 0.092 0.054 0.222 0.123 0.081
ABXY 1 0.183 0.091 0.053 0.226 0.124 0.080
ABXY 2 0.197 0.095 0.054 0.238 0.130 0.082
ABXY 3 0.216 0.105 0.057 0.239 0.132 0.082
ABY 1 0.331 0.290 0.214 0.405 0.376 0.340
ABY 2 0.313 0.271 0.219 0.356 0.341 0.275
ABXY 3 0.303 0.263 0.220 0.334 0.294 0.260

SABX 0.161 0.085 0.053 0.220 0.116 0.079
SABXY 1 0.168 0.083 0.053 0.217 0.118 0.078
SABXY 2 0.177 0.088 0.053 0.212 0.122 0.076
SABXY 3 0.193 0.093 0.055 0.210 0.123 0.075
SABY 1 0.305 0.263 0.202 0.401 0.348 0.313
SABY 2 0.291 0.245 0.204 0.335 0.312 0.260
SABY 3 0.281 0.240 0.196 0.297 0.265 0.238

BBX 0.145 0.086 0.062 0.085 0.074 0.066
BBXY 1 0.132 0.086 0.061 0.070 0.057 0.052
BBXY 2 0.129 0.089 0.063 0.062 0.049 0.046
BBXY 3 0.136 0.095 0.064 0.059 0.050 0.043
BBY 1 0.167 0.145 0.125 0.082 0.070 0.067
BBY 2 0.154 0.142 0.121 0.069 0.059 0.057
BBY 3 0.154 0.140 0.123 0.064 0.058 0.056

SBBX 0.135 0.082 0.060 0.085 0.067 0.063
SBBXY 1 0.120 0.079 0.058 0.067 0.055 0.047
SBBXY 2 0.117 0.081 0.057 0.060 0.050 0.043
SBBXY 3 0.123 0.084 0.059 0.059 0.048 0.042
SBBY 1 0.152 0.136 0.117 0.078 0.067 0.063
SBBY 2 0.142 0.131 0.109 0.070 0.058 0.055
SBBY 3 0.137 0.129 0.110 0.065 0.057 0.053

Notes: RMSEs based on Monte Carlo simulations with 1000 replications. The other

parameters are: T = 5, n = 5, δ = 0.5, β = 1, and ρ = 0.3. To meet the stability

condition (3), δ is set to 0.2 if λ = 0.7.
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Table 3: RMSE of Spatial GMM Estimators of δ for Various Values of T and λ

Estimator λ = 0.3 λ = 0.7
T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

ABX 0.173 0.146 0.138 0.222 0.161 0.130
ABXY 1 0.183 0.151 0.138 0.226 0.163 0.130
ABXY 2 0.197 0.161 0.143 0.238 0.170 0.136
ABXY 3 0.216 0.205 0.199 0.239 0.199 0.167
ABY 1 0.331 0.305 0.300 0.405 0.312 0.266
ABY 2 0.313 0.308 0.298 0.356 0.313 0.273
ABXY 3 0.303 0.266 0.246 0.334 0.256 0.204

SABX 0.161 0.129 0.117 0.220 0.144 0.109
SABXY 1 0.168 0.134 0.118 0.217 0.143 0.109
SABXY 2 0.177 0.142 0.122 0.212 0.148 0.114
SABXY 3 0.193 0.179 0.174 0.210 0.164 0.135
SABY 1 0.305 0.281 0.273 0.401 0.280 0.227
SABY 2 0.291 0.280 0.270 0.335 0.272 0.231
SABY 3 0.281 0.240 0.221 0.297 0.216 0.169

BBX 0.145 0.117 0.102 0.085 0.060 0.040
BBXY 1 0.132 0.114 0.100 0.070 0.052 0.039
BBXY 2 0.129 0.112 0.102 0.062 0.046 0.038
BBXY 3 0.136 0.124 0.119 0.059 0.038 0.028
BBY 1 0.167 0.153 0.140 0.082 0.057 0.043
BBY 2 0.154 0.143 0.138 0.069 0.049 0.040
BBY 3 0.154 0.141 0.138 0.064 0.039 0.029

SBBX 0.135 0.102 0.086 0.085 0.060 0.043
SBBXY 1 0.120 0.100 0.086 0.067 0.055 0.041
SBBXY 2 0.117 0.099 0.087 0.060 0.048 0.040
SBBXY 3 0.123 0.105 0.100 0.059 0.038 0.027
SBBY 1 0.152 0.134 0.122 0.078 0.056 0.045
SBBY 2 0.142 0.128 0.122 0.070 0.051 0.042
SBBY 3 0.137 0.119 0.116 0.065 0.040 0.029

Notes: RMSEs based on Monte Carlo simulations with 1000 replications. The other

parameters are: N = 60, n = 5, δ = 0.5, β = 1, and ρ = 0.3. To meet the stability

condition (3), δ is set to 0.2 if λ = 0.7.
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Table 4: RMSE of Spatial Blundell-Bond Estimators for Various Values of δ and ρ

Estimator Par. δ = 0.3 δ = 0.5 δ = 0.7
ρ = −0.8 ρ = −0.4 ρ = 0 ρ = 0.4 ρ = 0.8 ρ = −0.8 ρ = −0.4 ρ = 0 ρ = 0.4 ρ = 0.8 ρ = −0.8 ρ = −0.4 ρ = 0 ρ = 0.4 ρ = 0.8

BBX λ 0.109 0.098 0.092 0.098 0.131 0.096 0.082 0.080 0.081 0.116 0.075 0.074 0.065 0.067 0.135
BBXY 1 λ 0.102 0.092 0.088 0.093 0.131 0.095 0.085 0.079 0.080 0.107 0.071 0.065 0.061 0.060 0.119
BBXY 3 λ 0.098 0.084 0.083 0.078 0.108 0.080 0.073 0.067 0.062 0.095 0.061 0.051 0.048 0.052 0.114
SBBX λ 0.077 0.081 0.083 0.081 0.078 0.070 0.066 0.070 0.072 0.070 0.044 0.053 0.053 0.050 0.051
SBBXY 1 λ 0.077 0.081 0.085 0.082 0.082 0.066 0.066 0.067 0.071 0.070 0.044 0.052 0.051 0.050 0.046
SBBXY 3 λ 0.077 0.080 0.085 0.082 0.077 0.063 0.068 0.065 0.066 0.068 0.040 0.046 0.048 0.045 0.045

BBX δ 0.187 0.173 0.152 0.200 0.446 0.164 0.145 0.140 0.171 0.347 0.119 0.092 0.098 0.116 0.228
BBXY 1 δ 0.187 0.163 0.163 0.200 0.423 0.159 0.138 0.134 0.169 0.328 0.105 0.085 0.088 0.107 0.208
BBXY 3 δ 0.190 0.171 0.176 0.218 0.434 0.164 0.149 0.145 0.180 0.341 0.107 0.089 0.092 0.117 0.216
SBBX δ 0.135 0.154 0.160 0.166 0.146 0.109 0.133 0.141 0.147 0.130 0.076 0.081 0.099 0.099 0.090
SBBXY 1 δ 0.131 0.150 0.166 0.163 0.130 0.104 0.125 0.134 0.141 0.117 0.068 0.076 0.088 0.092 0.080
SBBXY 1 δ 0.133 0.158 0.179 0.174 0.141 0.103 0.135 0.146 0.147 0.123 0.069 0.078 0.093 0.099 0.085

BBX β 0.108 0.094 0.094 0.096 0.148 0.106 0.095 0.091 0.097 0.142 0.113 0.097 0.090 0.099 0.136
BBXY 1 β 0.106 0.097 0.095 0.097 0.146 0.107 0.096 0.089 0.097 0.144 0.107 0.093 0.087 0.101 0.135
BBXY 3 β 0.112 0.099 0.095 0.098 0.139 0.107 0.097 0.093 0.095 0.135 0.108 0.094 0.087 0.099 0.128
SBBX β 0.091 0.087 0.094 0.089 0.089 0.087 0.091 0.090 0.091 0.086 0.085 0.092 0.090 0.089 0.087
SBBXY 1 β 0.090 0.089 0.096 0.089 0.088 0.087 0.092 0.089 0.090 0.089 0.080 0.093 0.087 0.089 0.086
SBBXY 3 β 0.091 0.087 0.096 0.089 0.092 0.086 0.094 0.092 0.089 0.090 0.082 0.091 0.088 0.088 0.086

BBX ρ 0.141 0.148 0.135 0.107 0.093 0.149 0.155 0.138 0.116 0.095 0.137 0.137 0.128 0.117 0.093
BBXY 1 ρ 0.142 0.146 0.135 0.107 0.091 0.151 0.155 0.138 0.114 0.093 0.137 0.135 0.129 0.118 0.092
BBXY 3 ρ 0.141 0.151 0.137 0.109 0.092 0.145 0.154 0.137 0.114 0.092 0.139 0.137 0.129 0.118 0.089

Notes : RMSEs based on Monte Carlo simulations with 1000 replications. The remaining parameters are: N = 60, T = 5, n = 5, λ = 0.2, and β = 1.
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Table 5: RMSE of Spatial GMM Estimators of δ for Various Weight Matrices and Values of ρ

Estimator ρ = −0.8 ρ = 0.3 ρ = 0.8
Contiguity Distance4 Distance8 Bucky Contiguity Distance4 Distance8 Bucky Contiguity Distance4 Distance8 Bucky

n = 5 n = 10 n = 15 n = 5 n = 10 n = 15 n = 5 n = 10 n = 15
ABX 0.185 0.201 0.214 0.214 0.180 0.317 0.173 0.233 0.270 0.301 0.231 0.201 0.398 0.438 0.460 0.472 0.454 0.461
ABXY 1 0.182 0.211 0.237 0.171 0.162 0.358 0.183 0.246 0.292 0.288 0.220 0.207 0.384 0.433 0.456 0.467 0.452 0.464
ABXY 2 0.190 0.224 0.252 0.187 0.152 0.422 0.197 0.276 0.314 0.273 0.207 0.230 0.388 0.439 0.461 0.459 0.445 0.480
ABXY 3 0.205 0.248 0.281 0.183 0.152 0.475 0.216 0.297 0.326 0.273 0.205 0.245 0.392 0.441 0.464 0.459 0.446 0.494
ABY 1 0.352 0.358 0.364 0.213 0.215 0.756 0.331 0.362 0.385 0.342 0.265 0.436 0.478 0.478 0.485 0.479 0.467 0.553
ABY 2 0.307 0.304 0.311 0.182 0.168 0.750 0.313 0.351 0.361 0.285 0.221 0.405 0.454 0.473 0.481 0.464 0.451 0.546
ABY 3 0.289 0.299 0.302 0.206 0.159 0.754 0.303 0.337 0.355 0.325 0.210 0.379 0.441 0.466 0.475 0.480 0.449 0.545

SABX 0.133 0.170 0.188 0.162 0.104 0.170 0.161 0.223 0.264 0.306 0.237 0.203 0.157 0.249 0.332 0.462 0.409 0.426
SABXY 1 0.130 0.177 0.204 0.146 0.099 0.171 0.168 0.233 0.280 0.302 0.219 0.211 0.153 0.258 0.353 0.451 0.400 0.434
SABXY 2 0.141 0.188 0.213 0.146 0.097 0.204 0.177 0.259 0.305 0.284 0.210 0.231 0.161 0.279 0.372 0.440 0.382 0.455
SABXY 3 0.150 0.200 0.236 0.146 0.094 0.246 0.193 0.283 0.321 0.286 0.204 0.256 0.166 0.294 0.382 0.441 0.380 0.473
SABY 1 0.246 0.273 0.272 0.165 0.113 0.765 0.305 0.362 0.389 0.353 0.274 0.484 0.262 0.373 0.437 0.472 0.441 0.546
SABY 2 0.210 0.230 0.247 0.148 0.095 0.758 0.291 0.342 0.359 0.298 0.217 0.453 0.228 0.353 0.423 0.447 0.395 0.541
SABY 3 0.198 0.230 0.243 0.191 0.095 0.724 0.281 0.329 0.351 0.317 0.203 0.429 0.214 0.341 0.412 0.467 0.393 0.541

BBX 0.155 0.163 0.154 0.131 0.129 0.357 0.145 0.171 0.189 0.179 0.144 0.178 0.312 0.345 0.358 0.385 0.387 0.414
BBXY 1 0.138 0.143 0.144 0.114 0.102 0.354 0.132 0.167 0.182 0.146 0.123 0.165 0.282 0.340 0.357 0.373 0.383 0.404
BBXY 2 0.140 0.140 0.143 0.119 0.097 0.363 0.129 0.169 0.185 0.139 0.114 0.176 0.289 0.339 0.358 0.363 0.373 0.413
BBXY 3 0.138 0.143 0.143 0.116 0.097 0.382 0.136 0.177 0.184 0.138 0.113 0.178 0.292 0.339 0.355 0.359 0.369 0.421
BBY 1 0.184 0.176 0.171 0.127 0.124 0.495 0.167 0.178 0.187 0.165 0.135 0.236 0.300 0.352 0.358 0.387 0.397 0.436
BBY 2 0.176 0.162 0.156 0.113 0.101 0.480 0.154 0.181 0.195 0.153 0.122 0.227 0.308 0.350 0.362 0.378 0.386 0.439
BBY 3 0.161 0.157 0.148 0.122 0.099 0.475 0.154 0.187 0.192 0.201 0.121 0.223 0.309 0.348 0.364 0.442 0.381 0.443

SBBX 0.105 0.115 0.123 0.097 0.071 0.140 0.135 0.164 0.188 0.175 0.143 0.167 0.117 0.175 0.229 0.318 0.277 0.338
SBBXY 1 0.098 0.107 0.116 0.089 0.064 0.140 0.120 0.157 0.174 0.145 0.116 0.153 0.103 0.165 0.221 0.290 0.264 0.324
SBBXY 2 0.097 0.107 0.114 0.090 0.063 0.140 0.117 0.158 0.178 0.136 0.111 0.159 0.098 0.168 0.224 0.269 0.237 0.334
SBBXY 3 0.093 0.107 0.113 0.092 0.064 0.154 0.123 0.164 0.179 0.137 0.105 0.153 0.097 0.172 0.224 0.259 0.231 0.344
SBBY 1 0.126 0.127 0.123 0.098 0.067 0.266 0.152 0.179 0.188 0.171 0.143 0.239 0.126 0.176 0.233 0.321 0.286 0.382
SBBY 2 0.114 0.115 0.120 0.088 0.064 0.238 0.142 0.173 0.189 0.148 0.119 0.224 0.115 0.177 0.235 0.299 0.260 0.384
SBBY 3 0.110 0.118 0.120 0.117 0.061 0.238 0.137 0.173 0.184 0.179 0.115 0.211 0.114 0.184 0.235 0.395 0.253 0.392

Notes : RMSEs based on Monte Carlo simulations with 1000 replications. The remaining parameters are: N = 60, T = 5, λ = 0.3, δ = 0.5, and β = 1. Bucky refers to the Bucky ball weight matrix and n denotes the
number of neighbors in the random contiguity specifications.
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Table 6: RMSE of one-step versus two-step estimators

Estimator Parameter λ = 0.3, δ = 0.5 λ = 0.7, δ = 0.2
N = 60, T = 5 N = 60, T = 20 N = 500, T = 5 N = 60, T = 5 N = 60, T = 20 N = 500, T = 5

one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step one-step two-step
SABX δ 0.161 0.171 0.117 0.112 0.053 0.056 0.220 0.225 0.109 0.104 0.079 0.074
SABXY 3 δ 0.193 0.193 0.174 0.171 0.055 0.057 0.210 0.220 0.135 0.132 0.075 0.077
SABY 3 δ 0.281 0.286 0.221 0.223 0.196 0.187 0.297 0.324 0.169 0.162 0.238 0.230
SBBX δ 0.135 0.137 0.086 0.083 0.060 0.054 0.085 0.080 0.043 0.043 0.063 0.048
SBBXY 3 δ 0.123 0.126 0.100 0.097 0.059 0.062 0.059 0.058 0.027 0.029 0.042 0.041
SBBY 3 δ 0.137 0.146 0.116 0.113 0.110 0.122 0.065 0.070 0.029 0.030 0.053 0.052

SABX λ 0.100 0.107 0.042 0.042 0.033 0.033 0.173 0.180 0.075 0.074 0.053 0.056
SABXY 3 λ 0.119 0.128 0.068 0.067 0.035 0.036 0.217 0.219 0.110 0.108 0.060 0.064
SABY 3 λ 0.118 0.129 0.074 0.073 0.042 0.043 0.201 0.206 0.112 0.110 0.061 0.063
SBBX λ 0.070 0.090 0.037 0.039 0.026 0.028 0.086 0.094 0.068 0.068 0.037 0.040
SBBXY 3 λ 0.068 0.068 0.037 0.038 0.028 0.029 0.083 0.084 0.068 0.067 0.043 0.044
SBBY 3 λ 0.072 0.077 0.035 0.037 0.030 0.031 0.083 0.091 0.068 0.069 0.041 0.041

Notes : RMSEs based on Monte Carlo simulations with 1000 replications. The remaining parameters are β = 1 and ρ = 0.3.
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Table 7: RMSE of Original and Restricted Spatial Corrected Estimators for Various Values
of N

Estimator Parameter λ = 0.3 and δ = 0.5 λ = 0.7 and δ = 0.2
N = 60 N = 200 N = 500 N = 60 N = 200 N = 500

SABXY 3 λ 0.119 0.058 0.035 0.217 0.107 0.060
SBBXY 3 λ 0.068 0.041 0.028 0.083 0.059 0.043
ISABXY 3 λ 0.165 0.078 0.043 0.302 0.140 0.076
ISBBXY 3 λ 0.078 0.049 0.036 0.088 0.067 0.050

SABXY 3 δ 0.193 0.093 0.055 0.210 0.123 0.075
SBBXY 3 δ 0.123 0.084 0.059 0.059 0.048 0.042
ISABXY 3 δ 0.191 0.099 0.064 0.265 0.146 0.092
ISBBXY 3 δ 0.133 0.089 0.064 0.064 0.051 0.046

SABXY 3 β 0.102 0.052 0.032 0.123 0.061 0.039
SBBXY 3 β 0.090 0.052 0.033 0.087 0.053 0.036
ISABXY 3 β 0.135 0.067 0.040 0.185 0.088 0.050
ISBBXY 3 β 0.100 0.061 0.038 0.094 0.060 0.043

SABXY 3 ρ 0.123 0.064 0.042 0.124 0.063 0.039
SBBXY 3 ρ 0.117 0.065 0.042 0.120 0.063 0.041
ISABXY 3 ρ 0.119 0.065 0.037 0.121 0.061 0.039
ISBBXY 3 ρ 0.121 0.067 0.037 0.116 0.064 0.039

Notes: RMSEs based on Monte Carlo simulations with 1000 replications. The other
parameters are: T = 5, n = 5, β = 1, and ρ = 0.3. ISAB, ISBB denote spatially
corrected AB and BB estimators with an independent subset of moment conditions.
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Appendix

A.1 Derivation of Moment Conditions in Stage Two

To arrive at the moment conditions in (25), we define the spatially transformed counterpart of

∆εN by ∆ε̄ = (IT−1 ⊗MN )∆εN . We make use of the following properties of the error term:

∆εN = ∆vN , E[vNv
⊤
N ] = σ2vIN(T−1), (A.1)

which follows from Assumption E. In addition, we apply E[v⊤
NAvN ] = tr(AE[vNv

⊤
N ]), where A

is a conformable matrix. Finally, we use the fact that

tr[IT−1 ⊗ (M⊤
NMN )] = (T − 1) tr(M⊤

NMN ), tr(MN ) = 0. (A.2)

Using the above leads to the following moment conditions:

E[∆ε⊤N∆εN ] = E[∆v⊤
N∆vN ]

= 2σ2v tr(IN(T−1)) = 2σ2vN(T − 1), (A.3)

E[∆ε̄⊤N∆ε̄N ] = E[∆v⊤
N (IT−1 ⊗M⊤

NMN )∆vN ]

= 2σ2v tr(IT−1 ⊗M⊤
NMN ) = 2σ2v(T − 1) tr(M⊤

NMN ), (A.4)

E[∆ε̄⊤N∆εN ] = E[∆v⊤
N (IT−1 ⊗M⊤

N )∆vN ]

= 2σ2v tr(IT−1M
⊤
N ) = 2σ2v(T − 1) tr(M⊤

N ) = 0. (A.5)

Dividing (A.3)–(A.5) by N(T − 1) gives the moment conditions in (25).

An optimal GMM estimator for this system of moment conditions relies on an optimal GMM

weights-matrix. Following the derivation in Kapoor et al. (2007) we arrive at the following matrix

for the case of first-differences

CN = 5




2 2
N tr(M⊤

NMN ) 0

2
N tr(M⊤

NMN )
2
N tr(M⊤

NMNM
⊤
NMN )

1
N tr

(
M⊤

NMN

[
M⊤

N +MN

])

0 1
N tr

(
M⊤

NMN

[
M⊤

N +MN

])
1
N tr(M⊤

NMN +M⊤
NMN )



.(A.6)
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A.2 Auxiliary lemmas

In this appendix, the law of large numbers in the presence of spatial correlation is verified for the

derivative and variance of the sample moment conditions. Their limits form an inherent part of

the asymptotic variance of the corresponding estimators.

Let us first recall the extended notation for the spatial matrices aggregated across all time

periods: in the case of the Arellano-Bond estimator, let IN⊗ = IT−2 ⊗ IN , MN⊗ = IT−2 ⊗MN ,

and WN⊗ = IT−2 ⊗ WN ; in the case of the Blundell-Bond estimator, let IN⊗ = I2(T−2) ⊗ IN ,

MN⊗ = I2(T−2) ⊗ MN , and WN⊗ = I2(T−2) ⊗ WN . Similarly, BN⊗ represents IT−2 ⊗ BN or

I2(T−2) ⊗BN and Φk,N⊗ = IT−2 ⊗Φk,N or Φk,N⊗ = I2(T−2) ⊗Φk,N are defined for k = 1, . . . ,κ.

Finally, recall that the error terms εN (t) and uN (t) represent – depending on the considered

estimator – ∆vN (t) or (∆v⊤
N (t),η

⊤
N + v⊤

N (t))
⊤ and their spatially correlated counterparts.

Lemma 1. Under Assumptions E and S and V, it holds that N−1H̃
⊤
N Z̃N−E[N−1H̃

⊤
N Z̃N ] → 0 in

probability as N → +∞. Similarly, N−1H⊤
NΦ

⊤
k,N⊗Φk,N⊗ZN − E[N−1H⊤

NΦ
⊤
k,N⊗Φk,N⊗ZN ] → 0

in probability as N → +∞ for matrices Φk,N , k = 1, . . . ,κ.

Proof: Noting that H̃N = BNHN and Z̃N = BNZN , the proof is the same for any matrix

such as Φk,N satisfying the same Assumptions S3 and V imposed on BN and it is therefore done

for BN only.

For the simplicity of notation, let λ, β, δ, and ρ represent the true parameter values in

this proof. First note that N−1H̃
⊤
N Z̃N = N−1{H⊤

N (t)B
⊤
NBNZN (t)}Tt=3 so that the result can

be proved for each time period separately. Further, ZN (t) and HN (t) consist of XN (t) and

yN (t) and their lags, where XN (t) has independent and identically distributed elements, yN (t) =

(IN − δWN )
−1{λyN (t − 1) + XN (t)β + uN (t)} = (IN − δWN )

−1{λt−1yN (1) + λt−2XN (2)β +

. . .+ λ0XN (t)β + λt−2uN (2) + . . .+ λ0uN (t)} and λ and β represent the true parameter values.

Using uN (t) = (I − ρMN )
−1[ηN + vN (t)] and Assumption V, we can express ZN (t) and HN (t)

as linear combinations of vN (1),vN (2), . . . ,vN (t),XjN(1), . . .XjN (t),ηN , j = 1, . . . ,K, where

XjN (t) represents the jth column of XN (t); for example, yN (t) = λt−1(IN − δWN )
−1SNvN (1)+

λt−2(IN − δWN )
−1(I−ρMN )

−1vN (2)+ . . .+λ
0(IN − δWN )

−1(I−ρMN )
−1vN (t)+ β1λ

t−2(IN −
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δWN )
−1X1N (1)+ . . .+β1λ

0(IN − δWN )
−1X⊤

1N (t)+ . . .+βKλ
t−2(IN − δWN )

−1XKN(1)+ . . .+

βKλ
0(IN − δWN )

−1XKN (t)+ (1−λt−1)/(1−λ)(I− ρMN )
−1ηN}. At the same time, all vectors

in these linear combinations consist of independent random variables with uniformly bounded

second moments and all matrices in these linear combinations have uniformly bounded row and

column sums of absolute values of their elements. Moreover, this matrix property is preserved

under matrix multiplication (e.g., Kelejian and Prucha, 1999, footnote 20).

Consider now an arbitrary element of N−1H⊤
N (t)B

⊤
NBNZN (t): N−1hN (t)

⊤B⊤
NBNzN (t),

where hN (t) and zN (t) represent columns of HN (t) and ZN (t), respectively. Labelling the

relevant matrices with bounded row and column sums by S
v,j
N for v ∈ {h, z}, let hN (t) =

S
h,1
N vN (1)+S

h,2
N vN (2)+. . .+S

h,t
N vN (t)+S

h,t+1
N X1N (1)+. . .+S

h,2t
N X1N (t)+. . .+S

h,Kt+1
N XKN(1)+

. . .+S
h,(K+1)t
N XKN(t)+S

h,(K+1)t+1
N ηN , similarly zN (t) = S

z,1
N vN (1)+S

z,2
N vN (2)+. . .+S

z,t
N vN (t)+

S
z,t+1
N X1N (1)+ . . .+S

z,2t
N X1N (t)+ . . .+S

z,Kt+1
N XKN (1)+ . . .+S

z,(K+1)t
N XKN (t)+S

z,(K+1)t+1
N ηN ,

and (ψ1
N , . . . ,ψ

(K+1)t+1
N ) ≡ (υN (1),vN (2), . . . ,vN (t),X1N (1), . . .X1N (t), . . . ,XKN(1), . . .XKN(t),ηN ).

Consequently, N−1hN (t)
⊤B⊤

NBNzN (t) = N−1
(∑(K+1)t+1

c=1 S
h,c
N ψ

c
N

)⊤
B⊤
NBN

(∑(K+1)t+1
c=1 S

z,c
N ψ

c
N

)

= N−1
∑(K+1)t+1

c,d=1 ψcN

(
S
h,c
N

)⊤
B⊤
NBN

(
S
z,d
N

)
ψdN . Given that K and t ≤ T are fixed and finite,

we only have to prove the law of large numbers for N−1ψcNΠNψ
d
N , where ΠN is an N×N matrix

with uniformly bounded row and column sums of absolute values of its elements and ψcN and ψdN

are vectors of independent random variables with uniformly bounded second moments.

Denoting the elements of ΠN , ψ
c
N , and ψ

d
N by πij, ψ

c
k, and ψdk, respectively, for i, j, k =

1, . . . , N , the term N−1ψcNΠNψ
d
N can be rewritten as

N−1
N∑

i=1

ψci

[
N∑

k=1

πikψ
d
k

]
= N−1

n∑

i=1

N∑

k=1

ψciπikψ
d
k.

To show that

N−1
N∑

i=1

N∑

k=1

{ψciπikψdk − E(ψciπikψ
d
k)} = op(1) (A.7)

as N → +∞, note that the expectations max{|E(ψci )|, |E(ψdi )|, |E(ψciψ
d
i )|} ≤ C and variance

Var(ψci ) ≤ C for any i = 1, . . . , N and N ∈ N, where C is a positive constant, due to Assumption

E and V. Since ΠN has the row and column sums of absolute values of its elements uniformly
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bounded by D ≥ 0, the variance of

Var

[
N−1

N∑

i=1

N∑

k=1

{ψciπikψdk − E(ψciπikψ
d
k)}
]

= N−2
N∑

i,j=1

N∑

k,l=1

Cov(ψciπikψ
d
k, ψ

c
jπjlψ

d
l )

= N−2
N∑

i=1

N∑

k,l=1

Var(ψci )πikE(ψdk)πilE(ψdl ) +N−2
N∑

i=1

N∑

k,l=1

Cov(ψci , ψ
d
i )πikE(ψdk)πliE(ψdl )

+N−2
N∑

i=1

N∑

k,l=1

Cov(ψci , ψ
d
i )πkiE(ψck)πilE(ψdl ) +N−2

N∑

i=1

N∑

k,l=1

Var(ψdi )πkiE(ψck)πliE(ψcl )

≤ N−2C3
N∑

i=1

N∑

k,l=1

(πikπil + πikπli + πkiπil + πkiπli)

≤ N−2C3
N∑

i=1

N∑

k=1

{
πik

[
N∑

l=1

πil +

N∑

l=1

πli

]
+ πki

[
N∑

l=1

πil +

N∑

l=1

πli

]}

≤ N−1C34D2

because the elements of ψvi and ψwj are independent for i 6= j and v,w ∈ {c, d}. The claim (A.7)

now follows from the Chebyshev inequality for N → +∞. �

Lemma 2. Let the vector forming the ith row of H⊤
NB

⊤
N⊗BN⊗(IN⊗ − ρ0MN⊗)

−1 be r̃iN , ξN =

N−1/2H̃
⊤
N ũN = N−1/2H⊤

NB
⊤
N⊗BN⊗(IN⊗−ρ0MN⊗)

−1εN = N−1/2
∑NT ∗

i=1 r̃iNεiN , and Q̃N,HΣH =

E[N−1H⊤
NB

⊤
N⊗ BN⊗(IN⊗−ρ0MN⊗)

−1εNε
⊤
N (IN⊗−ρ0MN⊗)

−1⊤B⊤
N⊗BN⊗HN ], where NT

∗ rep-

resents the length of εN and εN (2), . . . , εN (T
∗) are assumed to be mutually independent random

vectors. Under Assumptions E and S and V, it holds that N−1
∑NT ∗

i=1 r̃iNεiNεiN r̃
⊤
iN−Q̃N,HΣH → 0

in probability as N → +∞.

Similarly, let the vector forming the ith row of H⊤
NΦ

⊤
k,N⊗Φk,N⊗(IN⊗ − ρ0MN⊗)

−1 be r̃ik,N ,

ζk,N = N−1/2H⊤
NΦ

⊤
k,N⊗Φk,N⊗(IN⊗ − ρ0MN⊗)

−1εN = N−1/2
∑NT ∗

i=1 r̃ik,NεiN , and Q̃k,N,HΣH =

E[N−1H⊤
NΦ

⊤
k,N⊗ Φk,N⊗(IN⊗ − ρ0MN⊗)

−1εNε
⊤
N (IN⊗ − ρ0MN⊗)

−1⊤Φ⊤
k,N⊗Φk,N⊗HN ]. Under

Assumptions E and S and V, it holds that N−1
∑NT ∗

i=1 r̃ik,NεiNεiN r̃
⊤
ik,N − Q̃k,N,HΣH → 0 in

probability as N → +∞.
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Proof: The two results have an identical form and hold for any matrix BN that satisfies

Assumptions S3 and V, and in particular, for matrices Φk,N , k = 1, . . . ,κ. The proof is done for

matrix BN .

Given that ξN = N−1/2H̃
⊤
N ũN is a finite-dimensional vector, we will prove the result elemen-

twise after introducing an additional notation and decomposition. Consider now an arbitrary

element of N−1/2H̃
⊤
N ũN : N

−1/2h̃
⊤
jN ũN , where h̃jN(t) represents the jth column of H̃N . Using

the block diagonal structure of H̃N , it follows that

N−1/2h̃
⊤
jN ũN = N−1/2

T ∗∑

t=3

h⊤
jN (t)B

⊤
NBNuN (t) = N−1/2

T ∗∑

t=3

h⊤
jN (t)B

⊤
NBN (IN − ρ0MN )

−1εN (t)

and

N−1h̃
⊤
jN ũN ũ

⊤
N h̃kN =

T ∗∑

s,t=3

N−1h⊤
jN(t)B

⊤
NBN (IN − ρ0MN )

−1εN (t)ε
⊤
N (s)×

(IN − ρ0MN )
−1⊤B⊤

NBNhkN (s). (A.8)

(Note that hjN (t)B
⊤
NBN (IN −ρ0MN )

−1 equals the jth row of {(r̃iN )tNi=(t−1)N+1} for some t.) By

the same notation and argument, the jkth element of variance matrix Q̃N,HΣH = E[N−1h⊤
jNB

⊤
NBN (IN−

ρ0MN )
−1εNε

⊤
N (IN − ρ0MN )

−1⊤B⊤
NBNhkN ] can also be rewritten as

T ∗∑

s,t=3

N−1E[h⊤
jN(t)B

⊤
NBN (IN − ρ0MN )

−1εN (t)ε
⊤
N (s)(IN − ρ0MN )

−1⊤B⊤
NBNhkN (s)].(A.9)

We can therefore prove that elements of the sum (A.8) converge to the elements of the sum (A.9).

Consider now arbitrary, but fixed s, t = 3, . . . , T ∗, and for the simplicity of notation, let λ, β, δ,

and ρ now represent the true parameter values in this proof. We have shown in Lemma 1 that one

can express hjN(t) = S
j,1
N vN (1)+S

j,2
N vN (2)+ . . .+S

j,t
N vN (t)+S

j,t+1
N X1N (1)+ . . .+S

j,2t
N X⊤

1N (t)+

. . . + S
j,Kt+1
N XKN (1) + . . . + S

j,(K+1)t
N XKN(t) + S

j,(K+1)t+1
N ηN using N × N matrices S

j,s
N with

bounded row and column sums of the absolute values of their elements. Let us again denote

(ψ1
N , . . . ,ψ

(K+1)t+1
N ) ≡ (vN (1),vN (2), . . . ,vN (t),X1N (1), . . .X1N (t), . . . ,XKN(1), . . .XKN (t),ηN ),

where the elements of each vector ψjN are mutually independent, though not necessarily identi-

cally distributed. The same property holds also for εN (t), which equals ∆vN (t) or (∆v⊤
n (t),η

⊤
N+
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v⊤
N (t))

⊤ depending on the estimator and which thus has independent random elements. The scalar

N−1/2h⊤
jN (t)B

⊤
NBN (IN − ρ0MN )

−1εN (t) can thus be rewritten as

N−1/2

(K+1)t+1∑

c=1

ψcN

(
S
j,c
N

)⊤
B⊤
NBN (IN − ρ0MN )

−1εN (t).

Recall that N−1/2h⊤
jN (t)B

⊤
NBN (IN−ρ0MN )

−1εN (t) is equal to the jth row of {(r̃iN )tNi=(t−1)N+1},

that is, to {(rijN )tNi=(t−1)N+1} for some t. Thus, the jth element of N−1/2
∑NT ∗

i=1 r̃iNεiN can be

expressed as

N−1/2
NT ∗∑

i=1

r̃ijNεiN = N−1/2
T ∗∑

t=1

N∑

i=1

r̃[(t−1)N+i]jNεiN

= N−1/2
T ∗∑

t=1

(K+1)t+1∑

c=1

ψcN

(
S
j,c
N

)⊤
B⊤
NBN (IN − ρ0MN )

−1εN (t)

and

N−1/2
NT ∗∑

i=1

r̃ijNεiNεiN r̃ikN (A.10)

= N−1/2
T ∗∑

t=1

(K+1)t+1∑

c,d=1

ψc⊤N

(
S
j,c
N

)⊤
B⊤
NBN (IN − ρ0MN )

−1εN (t)ε
⊤
N (t)×

× (IN − ρ0MN )
−1⊤B⊤

NBN

(
S
j,d
N

)
ψdN .

Given that K and T ∗ ≤ 2T are fixed and finite, we only have to prove the law of large numbers for

each t and c = 1, . . . , (K + 1)t+ 1 separately, that is, only for the sequences of random variables

ψcNΠ
c
NεN (t), where ΠN is again an N × N matrix with uniformly bounded row and column

sums of the absolute values of its elements and ψcN and εN (t) are vectors of independent random

variables with uniformly bounded second moments.

Denoting the elements of Πc
N , ψ

c
N , and εN (t) by π

c
ij, ψ

c
k, and εk(t), respectively, for i, j, k =

1, . . . , N , the term N−1/2ψcNΠ
c
NεN (t) can be rewritten as

N−1/2
N∑

i=1

ψci

[
N∑

k=1

πcikεk(t)

]
= N−1/2

N∑

i=1

N∑

k=1

ψciπ
c
ikεk(t)
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and the term corresponding to (A.10) as

N−1
N∑

i=1

N∑

k,l=1

ψciπ
c
ikεk(t) · εl(t)πdilψdi .

To show that

N−1
N∑

i=1

N∑

k,l=1

{ψciπcikεk(t) · εl(t)πdilψdi − E(ψciπ
c
ikεk(t) · εl(t)πdilψdi )} = op(1), (A.11)

note that the expectations max{|E(ψci )|, |E(ψdi )|, |E(ψciψ
d
i )|, |E(εi(t)|} ≤ C and variances max{Var(εi(t)),

Var(ψci ),Var(ψ
d
i )} ≤ C are bounded by a positive constant C for any i = 1, . . . , N , t = 3, . . . , T ,

and N ∈ N due to Assumption E and V. Since Πc
N and Πd

N have the row and column sums

of absolute values of its elements uniformly bounded by D ≥ 0, we can express and bound the

variance of (A.11)

Var


N−1

N∑

i=1

N∑

k,l=1

{ψciπcikεk(t) · εl(t)πdilψdi − E(ψciπ
c
ikεk(t) · εl(s)πdilψdi )}




= N−2
N∑

i,i′=1

N∑

k,l,k′,l′=1

Cov(ψciπ
c
ikεk(t) · εl(t)πdilψdi , ψci′πci′k′εk′(t) · εl′(t)πdi′l′ψdi′).

Using the fact that the covariances within the sums can be nonzero only if k = k′ and l = l′ or

k = l and k′ = l′ (errors {εk(t)}Nk=1 being independent with zero mean) and i = i′ (all vectors ψji
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have mutually independent components), we can further simplify this as

= N−2
N∑

i,i′=1

N∑

k,l=1

Cov(ψciπ
c
ikεk(t) · εl(t)πdilψdi , ψci′πci′kεk(t) · εl(s)πdi′lψdi′)

+N−2
N∑

i,i′=1

N∑

k,k′=1

Cov(ψciπ
c
ikεk(t) · εk(t)πdikψdi , ψci′πci′k′εk′(t) · εk′(s)πdi′k′ψdi′)

≤ C ·N−2
N∑

i=1

N∑

k,l=1

πcikπ
d
ilπ

c
ikπ

d
il + C ·N−2

N∑

i=1

N∑

k,k′=1

πcikπ
d
ikπ

c
ik′π

d
ik′

= C ·N−2
N∑

i=1

N∑

k=1

(πcik)
2
N∑

l=1

(πdil)
2 + C ·N−2

N∑

i=1

N∑

k=1

πcikπ
d
ik

N∑

k′=1

πcik′π
d
ik′

≤ CD2 ·N−2
N∑

i=1

N∑

k=1

(πcik)
2 +CD2 ·N−2

N∑

i=1

N∑

k=1

πcikπ
d
ik

≤ CD2 ·N−2 ·ND2 + CD2 ·N−2 ·ND2 = N−1CD4,

where the last inequalities used the Cauchy-Schwartz inequality and Assumption S. The claim

(A.7) now follows from the Chebyshev inequality for N → +∞. �

A.3 Proofs of Asymptotic Properties

A.3.1 Proof of Theorem 1

Definitions (14) or (22) and models (9) or (17) imply

θ̃N =
[
Z̃
⊤
NH̃NANH̃

⊤
N Z̃N

]−1
Z̃
⊤
NH̃NANH̃

⊤
N ỹN

= θ0 +
[
Z̃
⊤
NH̃NANH̃

⊤
N Z̃N

]−1
Z̃
⊤
NH̃NANH̃

⊤
N ũN ;

the expression depends implicitly on the transformation matrix BN , which is however fixed for

any given N ∈ N. Since Assumptions G and Lemma 1 imply AN = A+ op(1) and N
−1H̃

⊤
N Z̃N =

N−1H⊤
NB

⊤
NBNZN = Q̃HZ+op(1), matrix Z̃

⊤
NH̃NANH̃

⊤
N Z̃N is thus non-singular for a sufficiently
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large N . It follows from definition (4) that

√
N(θ̃N − θ0) =

[
1

N
Z̃
⊤
NH̃N ·AN · 1

N
H̃

⊤
N Z̃N

]−1 1

N
Z̃
⊤
NH̃N ·AN · 1√

N
H̃

⊤
N ũN

=
[
Q̃

⊤
HZAQ̃HZ

]−1
Q̃

⊤
HZA ·

{
N−1/2H̃

⊤
N ũN

}
+ op(1) (A.12)

as N → +∞. Let ξN = N−1/2H̃
⊤
N ũN = N−1/2H⊤

NB
⊤
N⊗BN⊗(IN⊗ − ρ0MN⊗)

−1εN , where

εN = ∆vN or εN = (∆v⊤
N ,η

⊤
N + v⊤

N )
⊤ depending on the estimator; the length of εN is de-

noted T ∗. Denoting the vector forming the ith column of H⊤
NB

⊤
N⊗BN⊗(IN⊗ − ρ0MN⊗)

−1 by

r̃iN , ξN = N−1/2H̃
⊤
N ũN = N−1/2

∑NT ∗

i=1 r̃iNεiN and the triangular array {r̃iNεiN}NT
∗

i=1 has zero

mean since the instruments are constructed so that E[H̃
⊤
N ũN ] = 0 and thus E[̃riNεiN ] = 0. Sup-

pose now that {εiN}NT
∗

i=1 are ordered in the following way: (∆v⊤
N (3), . . . ,∆v⊤

N (2⌈T/2⌉ − 1))⊤ in

the case of the Arellano-Bond estimator (only odd times are used), (v⊤
N (3), . . . ,v

⊤
N (T ))

⊤ in the

case of the estimator based on the level equation only (all times are used), or (∆v⊤
N (3),η

⊤
N +

v⊤
N (4),∆v⊤

N (6), . . . ,η
⊤
N +v⊤

N (T ))
⊤ in the case of the Blundell-Bond estimator, for instance. Not-

ing that v1(3), . . . ,vN (T ) are independent by Assumption E, εN (1), . . . , εN (T
∗) are indepen-

dent as well and the triangular array {r̃iNεiN}NT
∗

i=1 forms a sequence of martingale differences:

first, by the construction of the instruments, E[εN (t)|H̃
⊤
N (t), . . . , H̃

⊤
N (3)] = 0, which implies

H̃
⊤
N (t)B

⊤
NBN (IN −ρ0MN )

−1 E[εN (t)|H̃
⊤
N (t), . . . , H̃

⊤
N (3)] = 0 (and similarly for ηN ); and second,

random vectors ηN , vN (t), and ∆vN (t) have mutually independent elements, which implies inde-

pendence of elements of εN (t). Consequently, Var(ξN ) = N−1/2
∑N

i=1 Var(r̃iNεiN ) and ξN thus

has a bounded variance matrix since for N → +∞

Var[N−1/2H⊤
NB

⊤
N⊗BN⊗(IN⊗ − ρ0MN⊗)

−1εN ]

= E[N−1H⊤
NB

⊤
N⊗BN⊗(IN⊗ − ρ0MN⊗)

−1εNε
⊤
N (IN⊗ − ρ0MN⊗)

−1⊤B⊤
N⊗BN⊗HN ]

= Q̃N,HΣH → Q̃HΣH (A.13)

by Assumption V. Finally, N−1
∑N(T−2)

i=1 r̃iNεiNεiN r̃
⊤
iN − Q̃N,HΣH

P→ 0 for N → +∞ by Lemma

2. Consequently, the finite second moments and uniform integrability of Q̂
−1/2
N,HΣHξN (implied
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by Assumptions V3 and Assumption S3 by the same argument as in Lemma 2) allows us to

apply the central limit theorem for martingale differences (e.g., Davidson, 2000, Theorem 6.2.3,

or Davidson, 1994, Theorems 24.3 and 24.4), which implies that ξN converges in distribution to

the Gaussian distribution with zero mean and the finite asymptotic variance matrix Q̃HΣH as

n→ +∞. Consequently,
√
N(θ̂N − θ0) = Op(1) and

√
N(θ̂N − θ0) L→ N(0, [Q̂

⊤
HZAQ̂HZ ]

−1Q̂
⊤
HZAQ̂HΣHA

⊤Q̂HZ [Q̂
⊤
HZAQ̂HZ ]

−1)

as N → +∞, where L denotes convergence in distribution. �

A.3.2 Proof of Theorem 2

The proof is similar to the one of Kelejian and Prucha (2010, Theorem 1). First, the GMM

estimator (28) is based on the vector γN and matrix ΓN defined in (26)–(27). They both have each

random element of the form ∆u⊤
NDN∆uN/[N(T − 1)], where DN = M̂

k⊤
N M̂

l
N for k, l ∈ {0, 1, 2}.

To derive the limits of ΓN and γN and also of Γ̂N and γ̂N , we will now verify Assumption 4 of

Kelejian and Prucha (2010, Lemma C.1) to apply it to ΓN and γN (Assumptions 1–3 of Kelejian

and Prucha, 2010, are implied by Assumptions E, S, and V). This Assumption 4 concerns the

estimates ∆ûN of the error term ∆uN , which is equal here to ∆ûN = ∆yN −∆ZN θ̂N . Hence,

∆ûN −∆uN = −∆ZN (θ̂N − θ0).

Assumption 4 of Kelejian and Prucha (2010, Lemma C.1) requires that ∆ZN has uniformly

bounded (2 + ψ)th moments and that
√
N(θ̂N − θ0) is bounded in probability. The first claim

follows from Assumption V3 and the Minkowski inequality and the second claim is a consequence

of the
√
N -consistence of the initial estimator θ̂N .

Next, for any t = 2, . . . , T , ∆uN (t) = (IN − ρ0MN )∆εN (t), where ∆εN (t) is a vector of

independent random variables, and consequently, Lemma C.1(a) of Kelejian and Prucha (2010)

can be applied to obtain the following results: E[∆u⊤
N (t)DN∆uN (t)]/N is uniformly bounded,
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∆u⊤
N (t)DN∆uN (t)/N − E[∆u⊤

N (t)DN∆uN (t)]/N = op(1), and

1

N
∆û⊤

N (t)DN∆ûN (t)−
1

N
E[∆u⊤

N (t)DN∆uN (t)] = op(1)

as N → +∞ for any matrix DN with uniformly bounded rows and column sums such as

DN = M̂
k⊤
N M̂

l
N for k, l ∈ {0, 1, 2}. Since ∆uN = [∆u⊤

N (2), . . . ,∆u⊤
N (T )]

⊤, we proved that

E{∆u⊤
NDN∆uN/[N(T − 1)]} = O(1) and ∆û⊤

NDN∆ûN/[N(T − 1)]− E{∆u⊤
NDN∆uN/[N(T −

1)]} = op(1), and consequently, that EΓN and EγN are uniformly bounded and ΓN − EΓN =

op(1), γN − EγN = op(1), Γ̂N − EΓN = op(1), and γ̂N − EγN = op(1). Moreover, due to

Assumption G5, Γ⊤
NΓN is non-singular; similarly, Assumption G6 implies that also Γ⊤

NCNΓN is

non-singular and thus positive definite.

To prove the consistency of the GMM estimator (28), we can use a general result of Pötscher

and Prucha (1997, Lemma 3.1), which states that the GMM estimator is consistent if (i) it exists,

(ii) the minimum of JN (ϕ) = {EγN − EΓNν(ϕ)}⊤CN{EγN − EΓNν(ϕ)} at ϕ0 is identifiably

unique, and (iii) the sample objective function ĴN (ϕ) = {γ̂N − Γ̂Nν(ϕ)}⊤ĈN{γ̂N − Γ̂Nν(ϕ)}

converges uniformly to JN (ϕ), where ν(ϕ) = (ρ, ρ2, σ2v)
⊤, ϕ = (ρ, σv)

⊤, and ϕ0 = (ρ0, σ0v)
⊤.

First, the existence of the GMM estimate follows from the continuity of ĴN (ϕ): it is continuous

in ϕ on a compact space Φ and it thus attains its minimum.

Regarding the identification, the objective function JN (ϕ) attains its minimum only at ϕ0 =

(ρ0, σ0v)
⊤ because EΓNν(ϕ

0) = EγN , and by Assumption G,

JN (ϕ)− JN (ϕ
0) = JN (ϕ) = {ν(ϕ)− ν(ϕ0)}⊤ EΓ⊤

NCN EΓN{ν(ϕ)− ν(ϕ0)}

≥ κΓκB{ν(ϕ)− ν(ϕ0)}⊤{ν(ϕ)− ν(ϕ0)}

≥ κΓκB{(ρ− ρ0)2 + [σ2v − (σ0v)
2]}.

Consequently, for any ε > 0 it holds inf{(ρ,σv)∈Φ:‖(ρ,σv)−(ρ0,σ0
v
)‖>ε} JN (ϕ)− JN (ϕ

0) > κΓκBε
2 > 0

and ϕ0 = (ρ0, σ0v)
⊤ is identifiably unique.
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Finally, ĴN (ϕ) can be shown to uniformly converge to JN (ϕ) on Φ. Since

ĴN (ϕ)− JN (ϕ) = (γ⊤
NĈNγN − Eγ⊤

NCN EγN )− 2(γ̂⊤
NĈN Γ̂N − Eγ⊤

NCN EΓN )ν(ϕ)

+ ν(ϕ)⊤(Γ̂
⊤
NĈN Γ̂N − EΓ⊤

NCN EΓN )ν(ϕ),

and ϕ ∈ Φ, where Φ is compact, ‖ϕ‖ < Kϕ < +∞, we only have to show that the three differences

of the type Γ̂
⊤
NĈN Γ̂N −EΓ⊤

NCN EΓN = op(1) as N → +∞. This however directly follows from

our previous results: we showed that ΓN−EΓN = op(1), γN−EγN = op(1), Γ̂N−EΓN = op(1),

and γ̂N − EγN = op(1), all these random variables are bounded in probability (see Assumption

G), the expectations EΓN and EγN were shown to be uniformly bounded, ĈN −CN = op(1) by

Assumptions G6, and therefore, the claim follows from the equality

Γ̂
⊤
NĈN Γ̂N − EΓ⊤

NCN EΓN = (Γ̂
⊤
N − EΓ⊤

N )ĈN Γ̂N + EΓ⊤
NĈN (Γ̂N − EΓN )

+ EΓ⊤
N (ĈN −CN ) EΓN .

Hence, Lemma 3.1 of Pötscher and Prucha (1997) implies consistency of the estimate (28). �

A.3.3 Proof of Theorem 3

Definition (23), ŷN (t) = B̂NyN (t), ẐN (t) = B̂NZN (t), and models (9) or (17) imply

θ̂N =
[
Ẑ
⊤
NĤNÂNĤ

⊤
N ẐN

]−1
Ẑ
⊤
NĤNÂNĤ

⊤
N ŷN = θ0 +

[
Ẑ
⊤
NĤNÂNĤ

⊤
N ẐN

]−1
Ẑ
⊤
NĤN ÂNĤ

⊤
N ûN ,

54



where ûN = ŷN − ẐNθ = B̂N⊗uN . First, note that the consistency of ρ̂N → ρ0 and Assumption

V imply

N−1Ĥ
⊤
N ẐN = N−1H⊤

NB̂
⊤
N⊗B̂N⊗ZN

N−1H⊤
N

(
κ∑

k=1

φ̂k,NΦk,N⊗

)⊤( κ∑

k=1

φ̂kNΦk,N⊗

)
ZN

=
κ∑

k=1

κ∑

l=1

φ̂k,N φ̂l,N ·N−1H⊤
NΦ

⊤
k,N⊗Φl,N⊗ZN

=
κ∑

k=1

κ∑

l=1

φ0kφ
0
l · Q̃k,HZ + op(1) = Q̃HZ + op(1), (A.14)

where the last equality follows from Lemma 1. Matrix N−1Ĥ
⊤
N ẐN , which is non-singular by

Assumptions S2, V, and G4, thus converges to a non-singular matrix Q̃HZ in probability. As-

sumptions G and V further imply that ÂN = A+op(1) and that Ẑ
⊤
NĤNÂNĤ

⊤
N Ẑ

⊤
N is non-singular

for any sufficiently large N .

Next, using definition (4) results in ûN = B̂N⊗uN = BN⊗uN+(B̂N⊗−BN⊗)uN = BN⊗uN+

∑
κ

k=1(φ̂k,N − φ0k)Φk,N⊗uN . We can thus write

√
N(θ̂N − θ0) =

[
1

N
Ẑ
⊤
NĤN · ÂN · 1

N
Ĥ

⊤
N ẐN

]−1 1

N
ẐNĤ

⊤
NÂN

1√
N

Ĥ
⊤
N û

=
[
Q̃

⊤
HZAQ̃HZ

]−1
Q̃

⊤
HZA · 1√

N
Ĥ

⊤
N ûN + op(1), (A.15)
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where the last element of the product can be decomposed as

1√
N

Ĥ
⊤
N ûN =

1√
N

H⊤
NB̂

⊤
N⊗B̂N⊗uN

=
1√
N

H⊤
N{BN⊗ + (B̂N⊗ −BN⊗)}⊤{BN⊗ + (B̂N⊗ −BN⊗)}uN

=
1√
N

H⊤
NB

⊤
N⊗BN⊗uN (A.16)

+
1√
N

H⊤
NB

⊤
N⊗(B̂N⊗ −BN⊗)uN (A.17)

+
1√
N

H⊤
N (B̂N⊗ −BN⊗)

⊤BN⊗uN (A.18)

+
1√
N

H⊤
N (B̂N⊗ −BN⊗)

⊤(B̂N⊗ −BN⊗)uN . (A.19)

1. First, let us consider the term (A.16), that is, the triangular array ξN = N−1/2H⊤
NB

⊤
N⊗BN⊗uN =

N−1/2H̃
⊤
N ũN . In the proof of Theorem 1, it was shown that ξN → N(0, Q̃HΣH) in distri-

bution as n→ +∞.

2. Now, we only have to show that the remaining terms in (A.17)–(A.19) are negligible in

probability given that BN =
∑

κ

k=1 φ
0
kΦk, B̂N =

∑
κ

k=1 φ̂k,NΦk,N , and φ̂kN → φ0k in prob-

ability as n → +∞ for all k = 1, . . . ,κ. The proof is analogous for all the terms, so we

prove it just for (A.17). Let us thus consider the triangular array(s)

ζN =
1√
N

H⊤
NB

⊤
N⊗(B̂N⊗ −BN⊗)uN

=
1√
N

H⊤
NB

⊤
N⊗

κ∑

k=1

(φ̂k,N − φ0k)Φk,N⊗uN

=
κ∑

k=1

(φ̂k,N − φ0k) ·
1√
N

H⊤
NB

⊤
N⊗Φk,N⊗uN

=
κ∑

k=1

(φ̂k,N − φ0k) · ζk,N ,

where ζk,N = N−1/2H⊤
NB

⊤
N⊗Φk,N⊗uN . Since κ is finite and φ̂kN −φ0k = op(1) as n→ +∞

for all k = 1, . . . ,κ, ζN is negligible in probability if it is verified that ζk,N converges in

distribution to the normal distribution with a finite variance matrix. Similar to the proof
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of Theorem 1,

ζk,N = N−1/2H⊤
NB

⊤
N⊗Φk,N⊗(IN⊗ − ρ0MN⊗)

−1εN ,

where εN = ∆vN or εN = (∆v⊤
N ,η

⊤
N + v⊤

N )
⊤ depending on the estimator; the length of

εN is denoted T ∗. Denoting the vector forming the ith column of H⊤
NB

⊤
N⊗Φk,N⊗(IN⊗ −

ρ0MN⊗)
−1 by r̃ik,N , ζk,N = N−1/2

∑NT ∗

i=1 r̃ik,NεiN and the triangular array {r̃ik,NεiN}NT
∗

i=1

has zero mean since the instruments are constructed so that E[H̃
⊤
NΦũN ] = 0 for any

square matrix Φ including Φk,N , k = 1, . . . ,κ, and thus E[̃rik,NεiN ] = 0. Suppose now

that {εiN}NT
∗

i=1 are ordered in the following way: (∆v⊤
N (3), . . . ,∆v⊤

N (2⌈T/2⌉ − 1))⊤ in the

case of the Arellano-Bond estimator (only odd times are used), (v⊤
N (3), . . . ,v

⊤
N (T ))

⊤ in the

case of the estimator based on the level equation only (all times are used), (∆v⊤
N (3),η

⊤
N +

v⊤
N (4),∆v⊤

N (6), . . . ,η
⊤
N+v⊤

N (T ))
⊤ in the case of the Blundell-Bond estimator, for instance.

Noting that v1(3), . . . ,vN (T ) are independent by Assumption E, εN (1), . . . , εN (T
∗) are

independent as well and the triangular array {r̃ik,NεiN}NT
∗

i=1 forms a sequence of martingale

differences: first, by construction of the instruments, E[εN (t)|H̃
⊤
N (t), . . . , H̃

⊤
N (3)] = 0, which

implies H̃
⊤
N (t)B

⊤
NΦk,N(IN − ρ0MN )

−1 E[εN (t)|H̃
⊤
N (t), . . . , H̃

⊤
N (3)] = 0 (and similarly for

η⊤N ); and second, random vectors ηN , vN (t), and ∆vN (t) have mutually independent

elements, which implies independence of elements of εN (t). Consequently, Var(ζk,N) =

N−1/2
∑N

i=1Var(r̃ik,NεiN ) and ζk,N thus has a bounded variance matrix since for N → +∞

Var[N−1/2H⊤
NB

⊤
N⊗Φk,N⊗(IN⊗ − ρ0MN⊗)

−1εN ]

= E[N−1H⊤
NB

⊤
N⊗Φk,N⊗(IN⊗ − ρ0MN⊗)

−1εNε
⊤
N (IN⊗ − ρ0MN⊗)

−1⊤Φ⊤
k,N⊗BN⊗HN ]

= Q̃k,N,HΣH → Q̃k,HΣH .

Finally, N−1
∑N(T−2)

i=1 r̃ik,NεiNεiN r̃
⊤
ik,N − Q̃k,N,HΣH

P→ 0 in probability for N → +∞ by

Lemma 2. Consequently, the finite second moments and uniform integrability of Q̂
−1/2
k,N,HΣHζk,N

(implied by Assumptions V3 and Assumption S3 by the same argument as in Lemma 2)

allows us to apply the central limit theorem for martingale differences (e.g., Davidson,
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2000, Theorem 6.2.3), which implies that ζk,N converges in distribution to the Gaussian

distribution with zero mean and the finite asymptotic variance matrix Q̃k,HΣH as n→ +∞

for any k = 1, . . . ,κ. Consequently, it follows ζN = op(1) as n→ +∞.

3. Because we proved
√
N(θ̂N − θ0) = [Q̃

⊤
HZAQ̃HZ ]

−1Q̃
⊤
HZA · N−1/2Ĥ

⊤
N ûN + op(1), where

N−1/2Ĥ
⊤
N ûN is asymptotically normally distributed as shown in points 1 and 2,

√
N(θ̂N −

θ0) is asymptotically normally distributed with a zero mean and finite asymptotic variance

matrix

VSGMM =
[
Q̃

⊤
HZAQ̃HZ

]−1
Q̃

⊤
HZAQ̃HΣHAQ̃HZ

[
Q̃

⊤
HZAQ̃HZ

]−1
.

For the weighting matrix A = [Q̃HΣH ]
−1, this clearly reduces to [Q̃

⊤
HZQ̃

−1
HΣHQ̃HZ ]

−1.

4. The claim
√
N(θ̂N − θ̃N )

p→ 0 now follows from the point 2 of the proof once we compare

equations (A.12) and (A.15): their difference leads to

√
N(θ̂N − θ̃N ) =

[
Q̃

⊤
HZAQ̃HZ

]−1
Q̃

⊤
HZA ·

[
1√
N

Ĥ
⊤
N ûN − 1√

N
H̃

⊤
N ũN

]
+ op(1).

Recalling the expansion (A.16)–(A.19), the term N−1/2Ĥ
⊤
N ûN − N−1/2H̃

⊤
N ũN is however

equal to the sum of (A.17)–(A.19) and all these terms were shown to be negligible in

probability as N → +∞ in point 2. �

A.3.4 Proof of Theorem 4

The fact thatN−1Ĥ
⊤
N ẐN converges to Q̃HZ in probability has been shown in the proof of Theorem

3, see equation (A.14).

Regarding the second claim, we have shown in equations (A.16)–(A.19) that N−1/2Ĥ
⊤
N ûN =

N−1/2H̃
⊤
N ũN + op(1). Hence, N

−1Ĥ
⊤
N ûN û

⊤
NĤN = N−1H̃

⊤
N ũN ũ

⊤
NH̃N + op(1) = Q̃N,HΣH + op(1)

as shown Theorem 1 by Lemma 2 and the claim follows from equation (A.13). �
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