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Abstract:  

We describe non-cooperative game models and discuss game theoretic solution 

concepts. Some applications are also noted. Conventional theory focuses on the 

question ‘how will rational players play?’, and has the Nash equilibrium at its core. 

We discuss this concept and its interpretations, as well as refinements (perfect and 

stable equilibria) and relaxations (rationalizability and correlated equilibria). 

Motivated by experiments that show systematic theory violations, behavioral game 

theory aims to integrate insights from psychology to get better answers to the 

question ‘how do humans play?’. We provide an overview of the observed 

regularities and briefly sketch (beginnings of) theories of boundedly rational play.  
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1. INTRODUCTION 

 

Games are mathematical models of interactive decision situations, i.e. situations in 

which multiple decision makers, each one with its own objectives, jointly determine 

the outcome. Game theory aims to predict what players will do in such situations 

and what outcomes will result. The theory has been applied in economics, other 

social sciences, biology and computer science, among others. Aumann (1987) 

presents an overview of how the field developed in the 20th century. The 3-volume 

‘Handbook of Game Theory with Economic Applications’ (Aumann and Hart, 

1992/1994/2002) provides a fairly complete overview of rationalistic game theory 

in almost 2400 pages. Excellent textbooks at the graduate level are Myerson (1991) 

and Osborne and Rubinstein (1994). For more information and detailed references, 

the reader is advised to consult any of these sources. Behavioral game theory is 

more recent, less established and developing more quickly; Camerer (2003) 

provides a good starting point for this branch.   

 

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel has 

been awarded to game theorists four times. In 1994, John Harsanyi, John Nash and 

Reinhard Selten shared the Prize for developing equilibrium theory in non-

cooperative games; in 2005 Robert Aumann and Thomas Schelling shared it for 

enhancing our understanding of conflict and cooperation by mean of game theoretic 

analysis; in 2007 Leonid Hurwicz, Eric Maskin and Roger Myerson were praised 

for developing the theory of mechanism design, while in 2012 Alvin Roth and Lloyd 

Shapley received the Prize for the theory of stable allocations and the practice of 

market design. Researchers from closely related fields were honored in 1996 (James 

Mirrlees and William Vickrey; incentives under asymmetric information), in 2002 

(Daniel Kahneman, Vernon L. Smith; behavioral economics and experimental 

economics), and in 2009 (Elinor Ostrom (who shared the Prize with Oliver 

Williamson); institutional economics). This year, the Prize was awarded to Jean 

Tirole, who has also made important contributions to non-cooperative game theory, 

among others together with Drew Fudenberg and Eric Maskin. Excellent 

information on the contributions of the Prize winners is available on the official web 

site of the Nobel Prize, 

http://www.nobelprize.org/nobel_prizes/economics/laureates/index.html 
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The game theory literature distinguishes two main classes of models: cooperative 

games and non-cooperative games. The terminology, which suggests that in one 

case the players cooperate and in the other don’t, is misleading. The difference is 

not in what players want, but rather in what they are allowed to do. Traditional game 

theory assumes that players are rational and strive to maximize their utility; in this 

respect, there is no difference between the two models. In non-cooperative theory, 

however, it is assumed that the model is complete and that the players are bound by 

its rules. In particular, contracts or commitments are binding only if the formal rules 

explicitly allow this. By contrast, in cooperative theory, players are free to 

negotiate, form coalitions and possibly make side payments, and are assumed to 

have access to a costless external mechanism that enforces agreements. Non-

cooperative theory assumes such an external mechanism is absent, hence, focuses 

on self-enforcing agreements.  

 

The distinction was coined by John Nash in his PhD-thesis (Nash, 1950), which also 

introduced the fundamental solution concept for non-cooperative games (the Nash 

equilibrium concept). In the path-breaking Von Neumann and Morgenstern (1944), 

the founders of game theory had developed two distinct theories: one for 2-person 

games in which the players have strictly opposite interests (2-person zero-sum 

games) and another for n-person games in which the players can form coalitions and 

make side payments. They had argued that, as soon as there are more than 2 players, 

choosing an ally and forming a coalition becomes crucial, with side-payments being 

key in stabilizing cooperation; hence, that 2-person zero-sum games, in which such 

possibilities are irrelevant, are the exception. Consequently, they assumed that a 

mechanism enforcing coalitions and contracts was available and focused on 

cooperative theory. Nash extended Von Neumann and Morgenstern’s 2-person zero-

sum theory and developed the general non-cooperative theory. In this theory, each 

player acts independently, without collaborating with any of the others, however, 

by making full use of all the possibilities for cooperation that the game allows. 

 

A model should be rich enough to allow for the relevant possibilities, but also simple 

enough to allow in-depth analysis and yield insight. Nash argued that non-

cooperative models are more fundamental, as it should always be possible to model 
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coalition negotiations as formal moves in a non-cooperative game. Although 

correct, the resulting model may be too complicated and the attention for details 

may blur the general picture, hence, each type of model has its advantages. 

Possibilities for cooperation can be modeled either as part of the game, or as part of 

the solution concept. In this contribution, we limit ourselves to the former approach. 

As we will see, there exist various deep links between the two approaches.  

Cooperative game theory is surveyed in William Thomson’s contribution to this 

Encyclopedia. 

 

The remainder of the material is structured as follows. We first describe the two 

main classes of non-cooperative models (the extensive form and the strategic (or 

normal) form), and the concept of strategy that allows the reduction of one model 

to the other. Next, we turn to solution concepts that are based on the assumption 

that players are perfectly rational and have full understanding of the game. We 

discuss Nash equilibrium, some of its drawbacks, as well as extensions (correlated 

equilibria) and refinements of it, such as perfect and stable equilibria. The 

experimental literature has shown that human players may deviate from perfect 

rationality in systematic ways; hence, we next discuss recent results from the 

behavioral game theory literature, which aims to construct models of thinking and 

learning that are descriptively more accurate. We close by briefly discussing some 

applications, including the link between cooperative and non-cooperative theory. 

 

 

2. NON-COOPERATIVE GAME MODELS 

 

An ‘extensive game’ is a very detailed model of a conflict situation; it specifies 

which players are involved and how the game evolves over time: which player 

moves when, what information does the player then have, what can he do, what are 

the possible consequences of his actions, and how do the players evaluate the 

outcomes? Von Neumann and Morgenstern (1944) already provided a set-theoretic 

description of this model, but Kuhn (1953) provided a graph theoretic formulation 

that is easier to work with and that has become the standard.  
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A special case is a game with ‘perfect information’, in which the moves are 

sequential and each player, whenever he has to move, is fully informed about 

everything that has happened before. Chess is a game with perfect information. 

Figure 1 gives a very simple example: player 1 ( moves first and chooses between 

terminating the game, with payoff to  and X to  or giving the move to 

(action ), who then determines whether each player gets 0, or whether  gets 2, 

with  getting Y. We will return to this game below. Most of the literature has 

restricted attention to games with ‘perfect recall’ in which a player never forgets 

what he knew or what he has done before. Bridge, when modeled as a 2-player 

game, has imperfect recall: if EW is the defending team, then W does not know 

(recall) the cards of E. 

 

 

 

 

 

 

 

 

 

                          

    

    

    

  L R 

 0 1,X 1,X 

 I 0,0 2,Y 

   

Table1 

 

   Figure 1 (  

 

By means of the concept of strategy, already introduced in early work of John von 

Neumann, an extensive form game can be reduced to its strategic form. A ‘strategy’ 

for a player is a full plan of action for how to play the game, i.e. it specifies a unique 

action for each decision point of this player and each piece of information that this 

player might then have. Denote by  the set of players in the game and by  the set 

of all strategies for player . Assume that players evaluate outcomes by Von 

Neumann Morgenstern utility functions and let  be the utility function of player  

An -tuple of strategies , one for each player, determines a 

probability distribution over the outcomes and, hence, implies a unique expected 

utility  for each player. Von Neumann argued that the ‘strategic form’ of the 

game, the tuple specifying players, strategies and 

1,X 

0,0 2,Y 

2 

L R 

I O

   1 



6 
 

payoffs, contains all the information that is needed for rational players to determine 

what to do. Consequently, it would suffice to develop theory for ‘strategic games’. 

The literature has debated whether the details of the extensive form are indeed 

irrelevant (see Section 3).Table 1 gives the strategic form of the game from Figure 

1: the rows are the strategies of , the columns the strategies of and in each cell, 

the first number is the payoff (i.e. the utility) to and the second the payoff to  

a convention that will be followed throughout. Note that in a strategic game each 

player only moves once, with players choosing strategies simultaneously.   

 

The interpretation of a ‘strategic game’  is that the data of the game are 

common knowledge: all players are fully informed who the players are, what 

strategies each of them has available and how all players evaluate the possible 

outcomes. Harsanyi (1968) showed how incomplete information can be 

incorporated into the model. In Harsanyi’s model, the game starts with a chance 

move that distributes private information to each player. It is then common 

knowledge what pieces of information each player might have and with what 

probabilities, but the exact piece of information (also called the player’s type) is 

only known to the player himself. Formally, a ‘Bayesian game’ is a tuple 

, where  is the set of players,  is the type space,  is 

a probability distribution on , and  is the vector of utility functions, where each 

player  utility may generally depend on all types and all actions taken, 

.  

 

In a Bayesian game, information is distributed asymmetrically:  is informed about 

his type  and can choose his action  on the basis of it;  only knows his own 

type  and on this basis forms beliefs  about what might know and might 

do, As an example of a Bayesian game, think of a sealed bid auction: each 

bidder knows what the auctioned object is worth to him, but has only imprecise 

information about the value of others. Also see the entry on auctions. A special class 

of Bayesian games, ‘signaling games’, has proved fertile for theory development. 

In such a game, there is only one player with private information, but this player 

moves first; he has to decide how much information to reveal, while his opponents 

have to figure out what information his action might be signaling. (See the entry on 

the economics of information.)  
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It should be noted that above we referred to common knowledge in a loose sense: 

all players knowing something is different from that being common knowledge. The 

latter also implies that all players know that all players know it, and that all players 

know that all players know that all players know it, etc; see Aumann (1976) for a 

formal definition. Rubinstein (1989) shows that games with almost common 

knowledge are very different than games with common knowledge. 

 

In the above discussion, we restricted attention to pure strategies; however, there is 

also the possibility of randomization. In a strategic form game, a ‘mixed strategy’ 

of  is a probability distribution  over this player’s set of pure strategies . (We 

will write  for the set of all such probability distributions.) It can be interpreted 

either as an act of deliberate randomization of this player, or as an expression of the 

uncertainty that the other players face about what is going to do. In the latter case, 

 represents the common beliefs held by the opponents of . (The assumption that 

they have the same beliefs makes sense if they have the same information; in a 

Bayesian game,  are the ex-ante beliefs, before the own type is known.)  

 

In an extensive game, one can distinguish two types of randomization. When using 

a mixed strategy, the player randomizes over his pure strategies before the game 

starts. If the player randomizes locally over his actions at each of his information 

sets, this is called a ‘behavior strategy’. A mixed strategy always induces a behavior 

strategy, but the converse only holds in games with prefect recall (Kuhn, 1953); 

hence, in these games, the restriction to behavior strategies is without loss of 

generality. Bridge provides an illustration that, without perfect recall, one may be 

able to play better with mixed strategies: to play optimally, the defending team 

needs to perfectly coordinate the actions of its members without revealing too much 

information; this is possible in a mixed strategy, but not when the team members 

randomize independently.  
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3. RATIONALITY AND EQUILIBRIUM 

 

3.1 Nash equilibrium  

 

The fundamental solution concept for non-cooperative games was introduced by 

John Nash in his 1950 PhD-thesis. The mathematical core of the thesis was 

published as Nash [1951], but the Chapter ‘Motivation and Interpretation’, was not 

published, which may have led to misunderstandings and may have delayed 

development of the field. 

 

Let  be an n-person strategic game. A ‘Nash equilibrium’ of  is a 

strategy combination (either mixed or pure) with the property that each player  is 

playing a best response against the strategies played by the others, hence 

for all . In other words, as long as the others do not deviate from 

their equilibrium strategies, player  cannot improve his payoff by deviating from 

his equilibrium strategy. An equilibrium of an extensive game is defined similarly; 

it simply is an equilibrium of the associated strategic game. An equilibrium of a 

Bayesian game is frequently called a Bayesian Nash equilibrium: each player plays 

a best response against the strategies of the others, whatever his type might be.  

 

Nash provided two justifications for his concept. The first interpretation is 

rationalistic; Nash equilibrium is an answer to the question: what would perfectly 

rational players do? If we assume that a theory of rational play produces a unique 

solution and if the players know the solution, then rational (payoff maximizing) 

players will conform to this solution only if it is a Nash equilibrium. Any other 

(single-valued) theory is self-defeating. While assuming rational players to know 

the solution and to make use of their knowledge seems fine, the assumptions of 

existence and uniqueness are crucial. In fact, as a game may have multiple Nash 

equilibria (see below), this rationalistic justification seems incomplete at best. How 

can a player predict what another player will do if there are multiple Nash 

equilibria? This question motivated a fruitful, long-term research project of two 

Nobel Prize winners, who ultimately showed that additional, but not undisputable, 

assumptions allow one to come up with an answer; Harsanyi and Selten (1988).  
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The second ‘mass action interpretation’ assumes the game to be repeated, with each 

time players being newly drawn from certain populations and with each player 

accumulating empirical information on the relative advantages of their own 

strategies as well as on how often the opponents play their strategies. If the 

frequencies with which the various pure strategies are used converge, then ‘ the 

mixed strategies representing the average behavior in each of the populations form 

an equilibrium point’. (Nash, 1950, p. 22). In other words, under certain 

assumptions, learning leads to Nash equilibrium. Note that for this second 

interpretation, uniqueness is irrelevant; the initial conditions may determine at 

which equilibrium the process ends up. A large literature has investigated various 

types of learning processes and under which conditions convergence to equilibrium 

is indeed obtained; see Fudenberg and Levine (1998, 2009) and Young (2004) for 

overviews.   

 

A third interpretation originates in the biological literature; see Maynard Smith 

(1982). Strategies are assumed to be randomly matched against each other with the 

payoff   representing the fitness (expected number of offspring) of strategy  

when the state of the system is  The fittest strategies grow fastest, hence, if the 

system converges, it must be to a Nash equilibrium. The literature has studied 

various evolutionary processes, among which the replicator equation; see Weibull 

(1995). 

 

By using a fixed point theorem (such as Brouwer’s or Kakutani’s) one can show 

that any strategic game has a Nash equilibrium, provided one allows equilibria in 

mixed strategies. ‘Matching pennies’ (two players simultaneously choose  or  

with  winning both pennies if the choices match and  winning otherwise), shows 

that not all games have equilibria in pure strategies: in this game each player has to 

randomize.  

 

Mixed strategies and mixed strategy equilibria are frequently viewed as being 

problematic, as players do not have strict incentives to play them: any pure strategy 

in the support of a mixed equilibrium strategy is a best response as well. Mixed 

strategies, however, can also be interpreted as beliefs. Harsanyi (1973) showed that 

mixed equilibria arise naturally as beliefs associated with pure equilibria of a 
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Bayesian game in which the uncertainty that each player faces about the other 

players’ payoffs is explicitly taken into account. If one allows for the payoffs to be 

slightly uncertain, but each player being perfectly informed about his own payoff, 

then we have a larger Bayesian game  in which each player can play a pure 

strategy as for each payoff realization a specific pure action is optimal. However, 

as opponents do not know payoff realization, they will be uncertain about 

what action will actually play. Given an equilibrium  of a generic strategic game 

 one can find an equilibrium  of the Bayesian game  such that, in the 

limit, as the uncertainty vanishes, for each the beliefs of opponents 

associated with  converge to . 

 

As noted, Nash’s non-cooperative model is a generalization of Von Neumann and 

Morgenstern’s 2-person zero-sum game. Indeed, Nash’s equilibrium concept is a 

generalization of their minimax solution. The founders of game theory asked the 

question what is the highest payoff that a player can guarantee himself and they 

defined a minimax strategy as one that guarantees this value. For 2-person zero-sum 

games,  is a Nash equilibrium if and only if, for each player , is a minimax 

strategy. If games are not strictly competitive, however, the two concepts differ; 

best responding against a player that pursues his own interests is different from 

optimally defending yourself against somebody that plays against you.  

 

 C D   L R   S R 

C 3,3 0,4  U 5,1 0,0  S X,X X,0 

D 4,0 1,1  D X,X 1,5  R 0,X 4,4 

a) prisoners’ dilemma  b) Battle of the Sexes  c) Stag Hunt 

 

Table 2: Three strategic form games 

 

Table 2 lists three well-known games. In the Prisoners’ Dilemma (Table 2a),  

is the unique Nash equilibrium. This shows that an equilibrium may be (Pareto) 

inefficient; another outcome is preferred by both players. That constraints on 

cooperation can hurt players is unsurprising; they no doubt would agree on , 

if they could sign binding contracts. ‘Battle of the Sexes’ (Table 2b, with X=0) is a 

game with two pure equilibria, and a mixed strategy one yielding each player 
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hence, a game may have multiple equilibria. In Stag Hunt (Table 2c, with 

),  and  are Pareto ranked equilibria. Although  yields higher 

payoffs for both players,  is a safer strategy: it guarantees the payoff X, while, if 

only one player chooses , he ends up with  In this game, there is a conflict 

between risk dominance and payoff dominance: if , then  risk 

dominates  (Harsanyi and Selten, 1988). The strategic game from Table 1 

(with shows that some Nash equilibria may be unstable.  is a Nash 

equilibrium, but, for ,  is always at least as good as  and sometimes it is strictly 

better; hence,  weakly dominates . We conclude that Nash equilibria always exist, 

that there may be multiple (non-equivalent) equilibria, and that some equilibria may 

be unstable. 

 

By means of a model similar to Harsanyi’s, Carlsson and Van Damme (1993) have 

shown that common payoff uncertainty can eliminate equilibria, hence, can serve as 

an equilibrium selection device. Consider a game as in Table 2c. If  then  is 

a strictly dominated strategy;  is strictly dominated if , while for intermediate 

values, there are multiple equilibria. Carlsson and Van Damme consider the 

situation where  can take any real value, with players facing uncertainty, but each 

player receiving a reasonably accurate independent signal  about the true value of 

 before making his decision. They coined the term ‘global game’ for the resulting 

Bayesian game. If  receives a very large signal he can be reasonably 

sure that  is dominated, hence he will play . Similarly, each player will choose  

if his signal is very negative. It is natural to focus on simple (switching point) 

equilibria of the global game in which each plays  if and only if , for 

some  indeed the authors show that under certain assumptions only such 

equilibria exist. In such a Bayesian equilibrium, a player must be indifferent when 

receiving the signal  However, as each player believes that the events and 

are approximately equally likely, indifference can hold only if  In 

the limit, as uncertainty vanishes, players, hence, coordinate on the risk dominant 

equilibrium of the Stag Hunt. For further discussion on global games, on the 

conditions under which these have unique limit equilibria, the relation with common 

knowledge, and their applications, the reader is referred to Morris and Shin . 
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3.2 Rationalizability, iterated dominance and correlated equilibria 

 

Nash equilibrium assumes that players optimize and have correct beliefs about their 

opponents. The concept of rationalizability (Bernheim, 1984; Pearce, 1984) keeps 

the first assumption, but relaxes the second. It can be obtained as outcome of an 

interactive process. In the first step, all beliefs are allowed and any player  can 

choose any best response to these. In the second step, for any the beliefs of  

opponents are only allowed to put positive weight on strategies that are best 

responses for  and any player  is only allowed to play strategies that are best 

responses to profiles of the resulting beliefs. The ‘rationalizable strategies’ are those 

that survive iterative application of this procedure. In games with a unique 

rationalizable outcome, weaker rationality assumptions suffice to obtain the 

outcome. 

 

The above procedure is related to (but not fully equivalent with) the iterative 

elimination of strictly dominated strategies, where a pure strategy  of player  is 

‘strictly dominated’ if there exists a mixed strategy  such that 

for all . The difference is related to the question of whether beliefs 

about different players can be correlated or not. This issue does not arise in 2-person 

games, for which the two procedures are equivalent. Note that any Nash equilibrium 

is rationalizable, however, Nash equilibria may vanish if weakly dominated 

strategies are eliminated. (A pure strategy  is ‘weakly dominated’ if there exists  

satisfying the above inequalities for some  and corresponding weak inequalities 

for all .) 

  

Aumann (1974) introduced the concept of correlated equilibrium that generalizes 

Nash’s concept to games in which communication between the players is possible. 

It assumes that players can conduct joint lotteries (play correlated strategies), but 

cannot make binding agreements or side payments. As an introduction, consider the 

game from Table 2b with X=0 (‘Battle of the Sexes’). If players can communicate, 

they can decide to throw a coin together and to play  when the outcome is  

and , when the outcome is  This correlated strategy yields each player the 

payoff 3, which is a good compromise. Furthermore, the agreement is self-

enforcing: whatever the outcome of the coin toss, one player has a strong incentive 
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to abide by the agreement and to follow up on it, so that it is in the best interest of 

the other to do so as well. We have a correlated equilibrium: a correlated strategy 

which no player has an incentive to deviate from. 

 

It will be clear that any convex combination of Nash equilibria is a correlated 

equilibrium. However, we can do more. Consider again the game from Table 2b, 

but now with  and consider the scenario in which the players instruct a 

trustworthy mediator to randomize equally among the three cells of the matrix that 

have positive payoffs. Furthermore, they instruct him that, for each outcome of the 

lottery   shall only be informed about which row resulted while shall only be 

informed about the column. Viewing this information as a recommendation of what 

to play, one notices that, if one player always follows the recommendation, it is in 

the interest of the other player to do so as well. For example, if   is recommended, 

 knows that has been recommended (and will play) , hence,  yields the 

highest payoff. Similarly, if  is recommended,  knows that will play , 

each with probability ½, hence, again following the recommendation is best. The 

entire scheme is self-enforcing, hence, a correlated equilibrium, but it is not a 

convex combination of Nash equilibria. Formally, a ‘correlated equilibrium’ is a 

correlated strategy  such that, for each player  if , then  is a best 

response against ; in words: any recommendation  that any  might 

receive is a best response given  beliefs after hearing . 

 

3.3 Equilibrium refinements and stable equilibria 

 

We now focus attention on games in extensive form. Zermelo (1913) already 

showed that, in theory, chess can be solved by a backward induction procedure: 

starting at the end of the game, one works backwards replacing each decision point 

with the outcome that is obtained if a local best reply is taken there. It is 

straightforward to extend this procedure to any game with perfect information. Note 

that this procedure assumes persistent rationality: whatever happened before, each 

player assumes that all players will act rationally from then on. This assumption 

seems appropriate, but it is noteworthy that Von Neumann and Morgenstern (1944) 

already criticized it.  
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In the game of Figure 1, backward induction produces the Nash equilibrium . 

There is, however, a second equilibrium,  that is not consistent with this 

procedure. In effect, in this second equilibrium, threatens to choose and, if 

believed, chooses , so that the threat does not have to be executed. The question 

is whether the threat to play really is credible. What is at issue here is that the 

strategic form of the game seems to assume that a player can commit himself to a 

strategy. However, in a non-cooperative game such commitments are impossible, 

hence, when faced with the fait accompli that  has chosen , the best  can do is 

to choose . Strategies should not just be optimal at the beginning of the game, but 

also from each decision point onwards; in a non-cooperative setting, only backward 

induction equilibria make sense. When a player is rational, the possibility to re-

optimize should not lead him to deviate from his original strategy. 

 

Following Selten (1965), a large literature on ‘equilibrium refinements’ has studied 

the question of how to generally eliminate Nash equilibria that rely on ‘incredible 

threats’. Three related but conceptually different strands of literature can be 

distinguished.  

 

The first line groups concepts that aim to extend the backward induction procedure 

beyond games with perfect information. Selten (1965) proposed ‘subgame perfect 

equilibria’: equilibria that induce Nash equilibria in all subgames; a subgame being 

a part of the game tree that constitutes a game of itself. Kreps and Wilson (1982) 

strengthened this idea and introduced ‘sequential equilibria’. Such an equilibrium 

consists of a strategy profile  together with a system of beliefs  that for each 

player specifies a probability distribution over the nodes in each information set. 

Two conditions are required:  

(i) Sequential rationality: at each information set, the player’s strategy is 

optimal against the strategies of the others given the beliefs, and 

(ii) Consistency: the system of beliefs should be compatible with the strategy 

profile.  

Various formalizations of consistency have been proposed. The main advantage of 

this framework is that it provides a natural language to discuss ‘reasonableness’ of 

beliefs and of the associated equilibria, hence, sequential equilibria can be further 

refined by imposing additional conditions on the beliefs.  For example, in signaling 
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games, one can insist that, upon observing action uninformed players assign 

beliefs  to those types  of the informed player for which is 

dominated or equilibrium dominated. (See the entry on information economics.) 

 

In the second strand of literature, it is assumed that players will, with a small 

probability, make mistakes and it is required that equilibria be robust against this 

possibility. Hence, perfect rationality is viewed as a limiting case of slightly 

imperfect rationality. The seminal paper in this strand is Selten (1975), which 

introduced the concept of ‘perfect equilibrium’, based on the idea that all players 

make independent mistakes at each of their information sets. When players tremble, 

all decision nodes are reached with positive probability, so that an optimizing player 

is forced to choose a best response everywhere. Consequently, in the perturbed game 

there cannot be incredible threats. An  equilibrium is said to be perfect if it can be 

obtained as limit of Nash equilibria of a sequence of perturbed games when the 

mistakes vanish. As Kreps and Wilson (1982) define their main consistency 

requirement in terms of mistakes, there is a clear link between the two strands: any 

perfect equilibrium is sequential. The perfectness concept can be refined by 

imposing further conditions on the mistakes. For example, Roger Myerson’s proper 

equilibrium insists that more costly mistakes occur with much lower frequency.  

 

Sequential equilibria and perfect equilibria rely essentially on the extensive game 

structure. As a result, two extensive games with the same strategic form may have 

different sequential or perfect equilibria. Kohlberg and Mertens (1985)  argued that 

such dependency is undesirable: fully rational players are not misled by presentation 

details that are strategically irrelevant. Hence, they argued in favor of a solution that 

satisfies invariance, i.e. which only depends on the strategic form. The game from 

Figure 1 illustrates that the backward induction property may be uncovered in the 

strategic form:  the only strategy pair to survive backward induction in the 

extensive game, is also the only one surviving interactive elimination of weakly 

dominated strategies in the strategic form. Hence, we have two different rationality 

principles that produce the same outcome. More generally, a proper equilibrium of 

a strategic game induces a sequential equilibrium in any extensive form game with 

that strategic form. Hence, it seems possible that ‘robust’ equilibrium outcomes can 

be identified in the strategic form. 
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Kohlberg and Mertens (1986) initiated the axiomatic approach to equilibrium 

refinement: they postulate several properties that a rational solution should satisfy 

and investigate whether a solution satisfying these properties exists. Examples of 

such properties are: (a) invariance (already discussed above), (b) consistency with 

one-person decision theory (admissibility), (c ) independence of strategies that are 

dominated or that are suboptimal responses against the solution, and (d) a solution 

should remain whenever a game is embedded in a larger one (the small worlds 

property). Kohlberg and Mertens (1986) proposed to strengthen perfectness by 

insisting not just on stability against one particular sequence of trembles, but  

against all small trembles. As typically a single equilibrium will not have this 

property, they suggested looking at minimal closed and connected sets of equilibria 

that are stable in this sense. This initial attempt did not satisfy all properties that 

they considered desirable, but Mertens (1989) next proposed a concept that indeed 

satisfies all of them. The definition of Mertens-stability is highly technical, insisting 

on certain homology properties of the best reply correspondence. Govindan and 

Wilson (2008) defined the related concept of metastable equilibria that is somewhat 

weaker than Mertens-stability, but satisfies the same decision-theoretic properties.  

 

We thus conclude that the question ‘how to exclude Nash equilibria that rely on 

incredible threats?’ has led to highly technical questions about the best reply 

correspondence of the game. Exactly why such sophisticated techniques appear 

necessary to solve such an intuitive question is still imperfectly understood. 

Nevertheless, that stability suffices for that purpose can be shown with a simple 

example, which also illustrates the concept of forward induction. Consider the game 

in which  first chooses whether to take up an outside option yielding him payoff 

2 or to play Battle of the Sexes (the game from Table 2b with X=0). Taking up the 

outside option is part of the perfect equilibrium : if  thinks that  will 

be played in the subgame, he is better off taking his option. However, this outcome 

does not seem reasonable:  not choosing the outside option and then playing  is 

strictly dominated. Being requested to play, it seems that should, therefore, 

conclude that  will play  and should respond with . Hence, only the outcome 

( ) seems reasonable. Indeed, this is the only stable equilibrium outcome.  
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This same outside option game may, however, illustrate that in case communication 

is possible (hence, when the basic solution concept is correlated equilibrium), we 

cannot insist on the solution to just depend on the strategic form. Exactly when the 

communication takes place may matter. If players can only communicate before the 

start of the game,  can never be induced to play hence, communication is 

immaterial and the outcome is ( ). On the other hand, if players can communicate 

after has thrown away his option, then players can randomize between ( ) and 

( ), hence, can be induced to give up his option. Extensive form correlated 

equilibria are different from strategic form correlated equilibria, and for good 

reasons; see Myerson (1991; chapter 6), where one can also find some remarks on 

how to refine correlated equilibria. 

 

 

4. BEHAVIORAL GAME THEORY 

 

Conventional game theory, with its focus on the question ‘how will rational players 

play?’ frequently makes sharp predictions about the outcome or about how this 

outcome changes with a change in the data (comparative statics), hence, studying 

the theory’s empirical relevance appears quite natural. Testing with field data, 

however, has its limitations, and although there are exceptions, serious experimental 

investigation of the descriptive relevance of rationality-based theory only started in 

the 1980s (Kagel and Roth, 1995). The first wave of experimental studies 

established that standard theory sometimes (or frequently, depending on one’s 

viewpoint) provides poor predictions of how humans play, and that there are 

systematic patterns in the deviations, which has then led to revised theories (or at 

least models) of play incorporating these regularities. In the last 25 years, emphasis 

has thus shifted to the question ‘how do humans play non-cooperative games?’, 

leading to a strong interaction between theory and empirical work.  

 

This section provides a brief overview of the results that have been achieved in this 

rapidly developing field. We start by describing how human players deviate from 

conventional rationality. Three aspects can be distinguished: (i) motivation (what 

drives people; how do players evaluate outcomes?); (ii) cognition (how do people 

reason; what thinking processes do they use when they are confronted with a new 
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game?) and (iii) adaptation: (how do people learn when they play the same game 

repeatedly?). After having described empirical regularities, we briefly discuss novel 

theories relating to each of these aspects.  

 

4.1 Bounds on human rationality 

  

Humans have emotions, face cognitive limitations, and may be under (time) 

pressure; they process information differently, or may be motivated differently than 

standard theory assumes. Conventional theory is silent on the decision making 

processes that are used. It assumes that players only differ in preferences, not in 

cognitive abilities. Models of bounded rationality take into account limits on human 

knowledge, informational processing capacity and computational ability. 

Obviously, in some games, these limits are more important than in others.  

 

When observed behavior differs from the game theoretic prediction, one can point 

to one of two main causes:  

(i) the game, as perceived by the players, is different from the one analyzed by 

the theorist; or  

(ii) the solution concept is not applicable in this situation. 

 
Conventional game theory starts with the model and assumes that it is common 

knowledge among the players. Real life conflict situations are less structured  and 

have to be interpreted; a model has to be constructed, and different players may 

perceive the situation differently. At first, one does not necessarily see all aspects 

of the problem, leading to superficial decision making. Nevertheless, this may 

already produce a satisfactory solution, not inviting further reflection. Selten (1998) 

notes that such superficiality may explain the framing effect (Tversky and 

Kahneman, 1981): the way the situation is presented may have an important 

influence on the outcome. The reasoning process anchors at aspects that deeper 

inspection might reveal to be irrelevant. Alternatively, framing may provide clues 

to the solution that conventional theory mistakenly neglects; Schelling (1960).  

 

Traditional models assume that players are rational in the sense of Von Neumann 

and Morgenstern (expected utility) and Savage (subjective expected utility). Mostly, 
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the assumption of players having a common prior is added. Following the path-

breaking Kahneman and Tversky (1979), behavioral economics has shown that 

humans deviate from these assumptions and the resulting behavior in systematic 

ways: (i) utility depends not just on the final state (outcome), but on changes in the 

state; (ii) the change is measured w.r.t. a reference point; (iii) losses loom larger 

than gains (loss aversion); (iv) individuals use decision weights that are different 

from probabilities, with small probabilities being overweighted and large ones 

underweighted; (v) information is processed differently than Bayes’ rule describes. 

(See the entry on Behavioral Economics for more details.) Furthermore, while the 

rational choice model allows general preferences, in empirical work it is frequently 

assumed that players are selfish and care only about own materialistic payoffs. 

Many humans are motivated differently: altruism and reciprocity play a role, with 

(social) norms influencing behavior as well.  

 

Equilibrium concepts assume that (i) players form beliefs about what others will do, 

(ii) these beliefs are correct, and (iii) players best respond to them. In equilibrium, 

players never are surprised. A game may be too complicated to find a best response, 

or players may be insufficiently motivated to find one. Equilibrium concepts are 

based on circular reasoning (fixed points; solutions to systems of equations), but, as 

stressed by Selten (1998), humans have a tendency to avoid circular concepts. The 

natural way of problem solving is by using step-by-step reasoning processes. The 

rationalistic interpretation of equilibrium assumes, but leaves unexplained how the 

beliefs of players that are confronted with a new game come to be correct , an 

assumption that is especially problematic in games with multiple equilibria. Finally, 

natural learning processes need not converge to (Nash) equilibrium, or the learning 

may be too slow to be practically relevant. 

 

Although for certain classes of games, non-equilibrium concepts, such as 

rationalizability or iterated dominance, are sufficient to predict the outcome, these 

rely on an unlimited number of iterations; humans seem to do only a very small 

number of rounds of iterated strategic thinking. Related, humans find processes like 

backward induction to be unnatural and don’t always use these. 
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4.2 Empirical regularities 

 

Bounded rationality (the rationality displayed by humans in decision making 

situations), hence, differs significantly from perfect rationality. As a result, it is not 

surprising that experiments have revealed that outcomes observed when humans 

play games differ systematically from the standard game theory predictions; see 

Camerer (2003), Goeree and Holt (2001) and Selten (1998). The following are some 

observed empirical regularities: 

(i) Framing effects can be very important, even in simple zero-sum games;  

(ii) The outcome may depend on aspects of the game that conventional theory 

considers to be irrelevant; in contrast, aspects that the theory considers 

relevant need not matter; for example, two games with the same unique 

mixed strategy equilibrium may be played differently;  

(iii) Not only the ordering of the payoffs matters, but also payoff differences: 

strategies that are not best responses may be played and small payoff 

differences may be ignored altogether;  

(iv) Frequently, players care about other aspects than own (material) payoffs; 

(v) In games played once, the observed outcome may differ from the unique 

rationalizable one; in strategic games, people only do a small number of 

rounds of iterated elimination;  

(vi) In perfect information games, monitoring of the decision making process 

shows that players may not do backward induction; this procedure does not 

come naturally, but it can be taught;  

(vii) When players gain experience with a game, they adjust behavior; players 

learn in different ways and with different speeds, which may depend on the 

game; learning processes may be very slow.  

 

4.3 Players’ motivations 

 

The ultimatum game (Güth et al, 1982), along with its variants, the dictator game 

and the trust game, has spawned a large literature on social preferences. In the 

ultimatum game, proposes how to divide an amount of money between him and 

; if  accepts, the proposal is implemented; otherwise, each player gets 0. If both 

players are selfish (care only about own material payoffs),  offers (close to 0) to 
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, which the latter accepts. Experiments, however, show that most offers are close 

to 50/50 and that the responding player may reject considerable amounts. The 

dictator game (the variant in which  is forced to accept all proposals) allows to 

test whether the behavior of  is driven by altruism or by the fear that low offers 

will be rejected. In the trust game,  can first transfer all or part of the amount to 

, with that amount, , being multiplied by a known constant , and with  

subsequently deciding how much to transfer back. In this game, responding players 

display positive reciprocity: the larger the transfer received, the more is transferred 

back. In public goods games, we see negative reciprocity: players that do not 

contribute sufficiently to the public good are punished. All these games show 

considerable individual heterogeneity, while culture matters as well; Henrich et al 

(2004). 

 

While the experimental results do not refute game theoretic analysis as such, they 

suggest that great care is needed in modeling a situation as a game; the frequently 

made assumption of selfishness does not describe most situations very well. Player 

2 may be motivated to get a reasonable share and he may prefer conflict to an 

outcome in which he gets much less than the proposer. The game of Figure 1 is a 

kind of mini-ultimatum game:  may reject if Y is too small. On the other hand, if 

 and ,  might realize that is forced to divide asymmetrically; he may 

accept in this case, while he might possibly reject if  is large and  Hence, 

not only the outcomes matter, but also the context in which these arise; 

consequentialism is violated. In the literature, a large variety of models has been 

proposed and tested to incorporate these aspects, including models of pure 

distributional preferences, as well as models in which intent or procedural aspects 

matter. Given heterogeneity, incomplete information about preferences is natural, 

and there are also models in which players care about what others think of them. 

Sobel (2005) is a recent overview of the literature on interdependent preferences.  

 

In many models that fit under this heading, just the players’ payoff functions are 

changed by incorporating behavioral aspects, while the solution concept remains 

conventional. Geanakoplos et al (1989), however, argued that emotions cannot be 

captured by assuming that payoffs just depend on players’ actions. Players’ 

emotions, which influence how outcomes are valued (payoffs), will also depend on 
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their expectations and, hence, on what they learn in the game. For example, in 

Figure 1, if expects to choose , then he may be disappointed when asked to 

move and, therefore, choose  while a in that expected  may simply play   

Geanakoplos et al (1989) introduce ‘psychological games’ as games in which 

payoffs depend both on what players do and on what they think and they define a 

‘psychological equilibrium’ as a profile in which each player best responds and 

beliefs are correct. Rabin (1993) builds on this idea to construct a model that 

incorporates considerations of fairness. Starting from an ordinary game and players’ 

expectations, he first applies a kindness function to modify the payoffs to take into 

account the emotions and construct a psychological game, to which then the concept 

of psychological equilibrium is applied. The resulting outcome is called a fairness 

equilibrium. In the game from Figure 1, both the outcome (1, X) and the outcome 

(2,Y) can be supported by fairness equilibria.  

 

4.4 Modeling players’ thinking processes 

 

The p-beauty contest game (  illustrates the difference between individual 

human rationality and rationalizability. In this game,  players are asked to 

simultaneously pick an integer from {1, 2, ...,100}, with the person whose number 

is closest to  times the average being the winner (ties broken randomly). The 

unique Nash equilibrium is for all to choose 1; in fact, if only 1 is 

rationalizable. Experiments show that players that are new to the game exhibit 

distinct, bounded levels of reasoning. For example, for , games played with 

a large population of players, show spikes at numbers such as 50 (superficial 

thinking), 33 (the best response against 50), 22, 15, 10, etc.. Obviously, not all 

players are perfectly rational, and in such situations, a fully rational player should 

not necessarily pick 0.  

 

If one knows that other players are not that sophisticated and engage only in limited 

thinking, a natural idea is to try to figure out what naïve players might do and to 

estimate the distribution of ‘levels of thinking’ in the population , and to best respond 

against the resulting beliefs. For example, if one thinks that naïve, level-1 and level-

2 players are equally likely, one believes the average chosen by the others to be 35 

and choses 23. Theories of cognitive hierarchy (Camerer, 2003)) or level-k thinking 
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have been developed, and have been brought to the data with reasonable success; 

see Crawford et al (2013) for a recent overview. 

 

Some insight has also been gained on the question of how “naïve play” is obtained: 

players come to the laboratory with prior ideas and may seek for analogies with 

known situations, or may seek for clues such as labels and focal points; Schelling 

(1960). It has also been shown that backward induction reasoning does not come 

natural; for example, eye tracking studies show that many players only look for a 

limited time, or not at all, at the parts of the game tree that come later; hence, there 

is a tendency for myopic decision making. 

 

4.5 Learning 

 

When players get more experience with a game, they will typically adjust their 

behavior. As already suggested in Nash (1950), learning may produce outcomes that 

are more in line with equilibrium predictions. For example, in repetitions of p-

beauty contest games, smaller numbers are chosen over time. We already noted that 

there is a very large theoretical literature on learning. In broad terms, two types of 

learning models can be distinguished. In belief learning, players adjust their beliefs 

about what others will do and best respond to these. In reinforcement learning, a 

player’s own strategies have certain “attractions”, which determine the probability 

of playing them and which are adjusted through time. Camerer (2003) describes a 

hybrid model, experience-weighted attraction learning (EWA) that has successfully 

been fitted to the data of several games. The data and model show that learning is 

much quicker in some games than in others, hence, that players come to certain 

games with rather strong, but not necessarily correct, beliefs. Of course, not all 

people learn in the same way and some people may learn quicker than others. Selten 

(1998) stresses that learning may involve a combination of adaptive and analytical 

approaches. Players that view the situation as routine and use adaptive methods may 

fail to acquire an overview of the situation and, hence, may not be able to reach 

equilibrium; for that, a more analytical approach may be needed. 
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5. CONCLUSION 

 

The allotted space only allows making just a few remarks on the applications of 

non-cooperative game theory; the interested reader is suggested to consult the 

Handbook of Game Theory or to follow any of the leads given below. 

 

One application is to cooperative game theory. The ‘Folk Theorem’ shows that when 

a game is repeated sufficiently often, players are sufficiently patient and obtain 

enough information about past play (and when some other technical conditions are 

satisfied), the set of subgame perfect equilibrium outcomes coincides with those of 

the static cooperative game. Hence, in a context of repeated interaction, contracts 

may not be necessary to achieve efficient outcomes. Work of Nobel Prize winner 

Elinor Ostrom on the exploitation of common property resources combines this 

theory with rich institutional data. Avner Greif’s contribution to the Handbook 

surveys the related literature that employs game theory for economic history 

analysis.  

 

Following Nash’s (1950) suggestion, the literature has pursued the ‘Nash program’ 

and has shown that several cooperative solution concepts can be implemented non-

cooperatively, i.e. there exists a non-cooperative game of which the (refined) 

equilibrium outcomes correspond to those predicted by the cooperative solution 

concept. For example, the Nash-bargaining solution can not only be implemented 

by means of the simultaneous bargaining game proposed already in Nash (1953), 

but also by a very natural alternating offers procedure proposed in Rubinstein 

(1982). In a similar vein, solution concepts such as the Shapley value, the kernel, 

and the nucleolus can be obtained by non-cooperative procedures; we refer to 

Thomson’s entry in this Encyclopedia for details.  

 

Within economics, the field of industrial organization has proved a fertile ground 

for application. Probably the most successful applications thus far have been to 

auctions or more generally market design; see the entry on auctions. Following the 

seminal work of Vickrey, auction theory first focused on the questions of how to 

bid in a single-item auction and what is the revenue maximizing mechanism for 
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selling such item. In implementing spectrum policy, governments were, however, 

confronted with the question of how to sell multiple heterogeneous items, given 

certain objectives, such as market efficiency and raising sufficient government 

revenue. Research, in which game theorists interacted with experimental economists 

and Operations Researchers, has led to highly innovative auction designs, such as 

the simultaneous multi round auction and the combinatorial clock auction, which 

have subsequently been successfully implemented by various governments around 

the world.  

 

By using both cooperative and non-cooperative approaches, and by combining 

theory with experimental and empirical studies, Nobel Prize winner Alvin Roth and 

co-workers showed that stability is important for understanding the success of 

particular market institutions. Building on this insight, they successfully re-

engineered several existing institutions, such as those for matching organ donors 

with patients. Importantly, this work shows that economics can take into account 

ethical restrictions, such as the prohibition of side-payments. 

 

As seen above, game theory has provided a strong stimulus for experimental 

economics. No doubt, the further development of behavioral game theory will give 

a further boost to applications.  

  



26 
 

References 

 

Aumann, R., J., 1987. Game Theory, in: Eatwell J., Milgate M., Newman P., (Eds.), 

The New Palgrave Dictionary of Economics. 2, pp. 460-482. 

Aumann, R.J., 1974. Subjectivity and correlation in randomized strategies. 1. J. 

Mathematical Economics. 67-96. 

Aumann, R.J., 1976. Agreeing to disagree. 4 Annals of Statistics. 1236-1239. 

Aumann, R.J, Hart, S. Handbook of Game Theory with Economic Applications, 

Volume 1 (1992), pp. 1-731, Volume 2 (1994), pp. 735-1520, Volume 3 (2002), pp. 

1521-2351, Elsevier, North Holland.  

Bernheim, B. D., 1984. Rationalizable strategic behavior. 52 Econometrica. 52, 

1007-29. 

Camerer, C., 2003. Behavioral Game Theory: Experiments in Strategic Interaction. 

Princeton University Press, Princeton, NJ.  

Carlsson, H., Van Damme, E. 1993. Global games and equilibrium selection. 61. 

Econometrica. 989-1018.  

Crawford, V.P., Costa-Gomes, M.A., Iriberri, N., 2013.  Structural Models of 

Nonequilibrium Strategic Thinking: Theory, Evidence, and Applications. 51 Journal 

of Economic Literature, 5-62. 

Fudenberg D., Levine D., 1998. The Theory of Learning in Games. MIT Press, 

Cambridge MA. 

Fudenberg, D., Levine, D.K., 2009. Learning and equilibrium. 2009.1.The Annual 

Review of Economics. 385 – 419. 

Geanakoplos, J., Pearce, D., Stacchetti, E. 1989. Psychological Games and 

Sequential Rationality. 1. Games and Economic Behavior, 1. 60-79. 

Goeree, J.K., Holt, C.A., 2001. Ten little treasures of game theory and ten intuitive 

contradictions. 91. The American Economic Review. 5, 1402-1422. 

Govindan, S., Wilson, R., 2008. Metastable equilibria. 33. Mathematics of 

Operations Research. 4, 787-820. 

Güth, W., Schmittberger, R., Schwarze, B. (1982). An experimental analysis of 

ultimatum bargaining. 3. Journal of Economic Behavior and Organization 4. 367-

388. 

Harsanyi, J., 1967-8. Games with incomplete information played by Bayesian 

players, parts I, II and III. 14. Management Science. 159-82, 320-34, 486-502. 



27 
 

Harsanyi, J., 1973. Games with randomly disturbed payoffs: a new rationale for 

mixed-strategy equilibrium points. 2. International Journal of Game Theory. 1-23. 

Harsanyi J., Selten R., 1988. A General Theory of Equilibrium Selection in Games. 

MIT Press, Cambridge, Ma. 

Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H. 2004. 

Foundations of Human Sociality: Economic Experiments and Ethnographic 

Evidence from Fifteen Small-Scale Societies. Oxford University Press, Oxford, UK. 

Kagel J., Roth A., 1995. Handbook of Experimental Economics. Princeton 

University Press, Princeton, NJ. 

Kahneman, D., Tversky, A. 1979. Prospect theory: An analysis of decisions under 

risk". 47 Econometrica. 2, 263–291. 

Kohlberg, E., Mertens J. F., 1986. On the strategic stability of equilibria. 54. 

Econometrica.  1003-39. 

Kreps, D., Wilson R., 1982. Sequential equilibria. 50. Econometrica.  863-94. 

Kuhn H., 1953. Extensive games and the problem of information, in: Kuhn, H., 

Tucker A.W., (Eds.), Contributions to the Theory of Games II. Princeton University 

Press, Princeton, NJ, pp 193-216. 

Mertens, J. F., 1989. Stable equilibrium: a reformation, part I: Definition and basic 

properties. 14 Mathematics of Operations Research. 575-625. 

Morris, S., Shin, H., 2003. Global games: theory and applications. In Dewatripont, 

M. Hansen, L. and  Turnovsky, S. (Eds) Advances in Economics and Econometrics 

(Proceedings of the Eighth World Congress of the Econometric Society). Cambridge 

University Press, Cambridge, UK. 

Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge 

University Press, Cambridge, UK. 

Myerson, R.B., 1991. Game Theory. Harvard University Press, Cambridge, Ma.  

Nash J., 1950. Non-cooperative games. Ph.D.-dissertation. Princeton University, 

Princeton, NJ. 

Nash J., 1951. Non-cooperative games. 54. Annals of Mathematics. 298-95. 

Nash J., 1953. Two-person cooperative games. 21. Econometrica. 128-140. 

Osborne, M.J., Rubinstein, A. 1994. A Course in Game Theory. MIT Press, 

Cambridge, Ma. 

Pearce D., 1984. Rationalizable strategic behavior and the problem of perfection. 

52. Econometrica. 1029-51. 



28 
 

Rabin, M. 1993. Incorporating fairness into game theory and economics. 83 

American Economic Review. 5, 1281-1302 

Rubinstein, A., 1982. Perfect equilibrium in a bargaining model. 47. Econometrica. 

1353-1366. 

Rubinstein, A., 1989. The electronic mail game: strategic behavior under ‘almost 

common knowledge’. 79 American Economic Review, 385-391 

Schelling T., 1960. The Strategy of Conflict. Harvard University Press, Cambridge 

MA. 

Selten R., 1965. Spieltheoretische Behandlung eines Oligopolmodells mit 

Nachfragetragheit. Zeitschrift für die gesamte Staatswissenschaft. 121, 301-24, 

667-89. 

Selten R., 1975. Re-examination of the perfectness concept for extensive form 

games. Int. J. Game Theory. 4, 25-55 19. 

Selten R., 1998. Features of experimentally observed bounded rationality. 42. 

European Economic Review. 413-36. 

Sobel, J., 2005. Interdependent preferences and reciprocity. 43. Journal of 

Economic Literature. 2. 392-436. 

Tversky, A., Kahneman, D. 1981. The framing of decisions and the psychology of 

choice. 211. Science 4481: 453–458 

Von Neumann J., Morgenstern O., 1944. Theory of Games and Economic Behavior, 

third ed. Princeton University Press, Princeton, NJ. 

Weibull, J., 1995. Evolutionary Game Theory. MIT Press, Cambridge, Ma. 

Young, H.P., 2004. Strategic Learning and its Limits. Oxford University Press, 

Oxford, UK 

Zermelo E., 1913. Über eine Anwendung der Mengenlehre auf die Theorie des 

Schachspiel. Proceedings of the 5th international congress of mathematicians. 2, 

501-4. 

 


