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Abstract

Grammatical inference deals with learning of grammars describing languages. Formal gram-
matical inference aims at identifying families of languages that have a shared property,
which can be used to prove efficient learnability of the families formally. In contrast, in
empirical grammatical inference research, practical systems are developed that are applied
to languages. The effectiveness of these systems is measured by comparing the learned
grammar against a Gold standard which indicates the ground truth. From successful em-
pirical learnability results, either shared properties may be identified, leading to further
formal learnability results, or modifications to the systems may be made, improving prac-
tical results. Proper evaluation of empirical systems is, therefore, essential. Here, we
evaluate and compare existing state-of-the-art context-free grammar learning systems (and
novel systems based on combinations of existing phases) in a standardized evaluation en-
vironment (on a corpus of plain natural language sentences), illustrating future directions
for empirical grammatical inference research.

Keywords: Context-free grammars, empirical grammatical inference, evaluation.

1. Introduction

The aim of grammatical inference (GI) research is to identify families of languages that can
be learned efficiently. A language is described by a finite representation, called a grammar,
hence the name grammatical inference. Exactly when a language is learned (by building or
identification) and what counts as “efficiently” is described by the learning setting.

Two different methodological approaches to GI are typically identified: formal GI and
empirical GI. Both approaches lead to knowledge about learnability of languages, but the
methods used are quite different.

Research in the field of formal GI takes a mathematical approach. First, a family, i.e. a
collection of languages that share a common property, is identified. Next, an algorithm that
describes the learning process is designed. The algorithm makes use of the common property
of the language family. Using the algorithm, efficient learnability within a particular learning
setting is then proved mathematically.

Empirical GI typically also starts from a family of languages that share a common
property. However, in contrast to formal GI, often this property is hard to describe using
mathematics. For instance, one might be interested in learning the family of natural lan-
guage syntax. The fact that these languages are spoken or written by people does not help
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greatly in identifying a mathematical property that describes this family. Again, like in
formal GI, an algorithm is applied to the data, but in empirical GI, this is done based on
example data from one or more languages from the family of languages to be learned.

The major difference between the two approaches is how bias is handled. Formal GI
starts by identifying a family of languages and then modeling the bias of the learning
algorithm to allow it to learn the family. In most empirical GI tasks, the family of languages
to be learned is not formally described beforehand, so this approach relies on the underlying
idea, or perhaps hope, that the learning system has an appropriate bias that allows for the
efficient learning of the languages in the family.

When the bias of the learning algorithm does not match with the family of languages to
be learned, imperfect learning will take place. To measure how different the learned language
is from the language to be learned, evaluation is of extreme importance for empirical GI.
In order to assess and compare the performance of learning systems, a proper evaluation is
essential. However, in the past different evaluation approaches have been used leading to
incompatible results. Furthermore, incomplete descriptions of the evaluation approach also
means that results cannot be compared directly.

Here, we mention existing evaluation strategies, followed by a brief description of the
current state-of-the-art context-free GI systems. Next, we identify two phases that allow for
the clustering of approaches of the GI systems. We then provide a standardized evaluation
method, and evaluate and compare current state-of-the-art empirical GI systems. This work
builds on van Zaanen and Geertzen (2008) and evaluates complete GI systems.

2. Background

Learning context-free grammars has received much attention within the research area of
empirical GI. The difficulty with these more powerful families of languages (in contrast
to regular or sub-regular languages) is that checking language equivalence is undecidable.
However, given that much empirical GI research is performed in the area of context-free
grammars, alternative evaluation approaches are required. Here, we briefly describe these
approaches and also sketch the GI systems that will be evaluated in Section 3.

2.1. Evaluation strategies

Several evaluation strategies can be used to evaluate GI systems. van Zaanen (2002a, pp.
58–62) made a first attempt to cluster existing strategies into three groups. Later, four
groups have been recognized (van Zaanen et al., 2004): “Looks-good-to-me”, “Rebuilding
known grammars”, “Compare against a treebank”, and “Language membership”. For an
extensive overview of these groups, see van Zaanen and de la Higuera (2011). As far as we
know, all evaluations found in other publications fall in one of these groups.

The evaluation in empirical GI typically measures the effectiveness of a system on a
particular task with the ultimate aim to show perfect learning. Only more recently have
comparisons of the results of different systems been performed. The first comparison of two
completely different practical systems can be found in van Zaanen and Adriaans (2001),
where the ABL and EMILE GI systems were compared in a standardized setting.

The comparison between ABL and EMILE relies on the “Compare against treebank”
approach. In this approach, a (manually) structured dataset serves as the Gold standard,
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or ground truth. From this treebank, plain sequences are extracted, which are given as
input to a GI learning system. The output of the learning system, which is a structured
version of the input sequences, can then be compared against the Gold standard.

The “Compare against treebank” approach, which is now the de-facto standard evalua-
tion approach for empirical GI systems, focuses on measuring structural or strong equiva-
lence. This means that the learned structures of the two systems are compared. Typically,
this kind of evaluation is unlabeled, which means that any labels assigned to the structures
are not taken into account during evaluation.

The “Language membership” approach is the only other approach that can be used if
the underlying grammar (or family) is unknown. GI systems indicate whether sequences
are part of the language or not, which means that it can be used if, for instance, the learned
structure is not relevant or not consistent between systems to be compared. This approach
is often used in competitions or shared tasks, e.g. (Lang et al., 1998; Starkie et al., 2004).
This approach does not measure structural equivalence, but aims to measure language or
weak equivalence.

One of the problems of the “Compare against treebank” approach is that several choices
have to be made, such as exactly which structures are counted, which may result in unfair
comparisons in case different choices have been made. van Zaanen and Geertzen (2008)
compared many of the evaluation choices and proposed a standard evaluation setting.

2.2. Comparing state-of-the-art

To allow for a comparison of the empirical GI systems that are currently considered state-
of-the-art, van Zaanen and van Noord (2012) attempted to structure and compare the
existing systems. It turns out that, in the existing systems, two phases can be identified:
generation, which introduces structures, and selection, which selects or prunes structures
from the structures introduced in the generation phase. The generation phase can be
greedy, introducing all possible structures, or more gentle, slowly adding structure if enough
evidence can be found. The selection phase may be extensive, especially in the greedy
generation phase, or even non-existent, for instance, combined with very gentle generation
phases.

In van Zaanen and van Noord (2012), the generation phases of the state-of-the-art
systems are evaluated and compared. We will briefly describe these systems, as many
of these systems (and new combinations of the generation and selection phases) will be
evaluated here. First, we described the systems that rely on the greedy generation phase,
followed by the systems that use a more gentle generation phase.

2.3. Greedy generation

Constituent-Context Model (CCM) (Klein and Manning, 2002) and U-DOP (Bod, 2006a,b)
are both systems that rely on a greedy generation phase. This phase assigns all binary struc-
tures on input sequences. Since all possible structures are introduced, there are structures
that overlap, resulting in structures that cannot be the result from a parse of a context-free
grammar (which can only describe tree structures). These ambiguous structures are tem-
porarily stored, but in order to end up with context-free structures, this ambiguity needs
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to be removed. This means that the selection phase should make sure that conflicting
structures should be resolved.

The difference between the two systems can be found in the selection phase. Essentially,
both systems take a similar approach: identify the mostly likely structures given their
occurrences in the (complete) data. Their difference is in how this likelihood is calculated.
Both systems start from a uniform probability distribution over the structures. CCM then
applies the expectation maximization (EM) algorithm (Dempster et al., 1977) to improve
the probabilities of the structures given the data. U-DOP relies on the (stronger) statistical
model of Data-Oriented Parsing (Bod, 1998; Bod et al., 2003).

2.4. Gentle generation

There are several systems that start with a gentle generation phase. In particular, we focus
on the Alignment-Based Learning (ABL) system (van Zaanen, 2000a,b, 2002a), which will
be evaluated here. However, alternative systems such as EMILE Adriaans (1992), and
ADIOS (Edelman et al., 2004; Solan et al., 2005) rely on the same underlying notion to
introduce structure only when enough evidence can be found.

The linguistic notion of substitutability states that elements of the same type are sub-
stitutable. For instance, if a noun is replaced by another noun in a particular sentence,
this results in another syntactically correct sentence. If sentences can be found that show
evidence of substitution, this information may be used to assign structure.

The ABL system combines a gentle generation phase with a selection phase. During
the generation phase, structure is assigned, but because this process may introduce some
overlapping structure (just like in the greedy generation systems), a selection phase is added
to resolve these conflicting structures. The selection of structure is based on simple relative
maximum likelihood probabilities of the structures.

3. Experiments

To measure the performance of current state-of-the-art systems, we perform experiments
of several systems within a standardized environment, making sure that the comparison is
fair.1 To be able to build on existing work, we follow the procedure as used in van Zaanen
and van Noord (2012), which only focused on the generation phase. This work is extended
here by considering selection phases as well. By evaluating all combinations of generation
and selection phases, we also introduce new empirical GI systems that have never been
evaluated before.

3.1. Dataset

All GI systems are applied to the Wall Street Journal (WSJ) sections of the Penn Treebank
3 (Marcus et al., 1993). This treebank contains newspaper articles, which may contain
relatively long sentences. To be able to investigate the effect of sentence length, we make
selections based on maximum sentence length. If we set the maximum sentence length to x,
then WSJx describes all sentences of maximum length x. Previous work has mostly evalu-
ated on WSJ10 (Klein and Manning, 2002; Bod, 2006a). Here, we also provide information

1. In previous publications, results are not always comparable due to differences in evaluation choices.
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Table 1: Properties of the WSJ treebank. Structures shows the number of pairs of brackets.
Sentences displays the number of sequences containing tokens (or words). Types
denotes the number of unique tokens.

Dataset Structures Sentences Tokens Tokens/sentence Types
WSJ10 82,508 7,092 49,625 7.0 10,707
WSJ20 559,995 25,017 330,806 13.2 29,158
WSJ50 1,728,360 48,766 1,018,846 20.9 48,385

on WSJ20 and WSJ50 (an overview of the size of these datasets can be found in Table 1)
and show results by plotting information from WSJ3 to WSJ50.

To calculate the evaluation metrics, the entire dataset is used. For instance, evaluating
WSJ10, all sentences up to a length of ten words are provided as input to the GI systems
and the learned structures are compared against the corresponding Gold standard data.

3.2. Metrics

Measuring the similarity of the structure between the Gold standard and the output of the
learned systems is done using three well-known metrics taken from the field of information
retrieval (van Rijsbergen, 1979). Firstly, precision (Eq. 1) measures the percentage of
correctly learned structures (i.e., pairs of brackets).2 Secondly, recall (Eq. 2) shows the
percentage of the Gold standard structures that are also found in the learned structures.
Thirdly, F-score (Eq. 3) is the geometric mean of precision and recall, providing an overall
evaluation score.

Precision =

∑
s∈structure |correct(gold(s), learned(s))|∑

s∈structure |learned(s)|
(1)

Recall =

∑
s∈structure |correct(gold(s), learned(s))|∑

s∈structure |gold(s)|
(2)

F-score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3)

3.3. Systems

We compare the performance of several systems. Due to space restrictions, we select two
systems: one system that uses the greedy generation method and one that is based on a
gentle generation method. These systems are split into their generation and selection phases
and each combination of generation and selection phase is evaluated. Additionally, these
results are compared against two baseline systems.

From the greedy generation systems, we selected CCM. For this system, an imple-
mentation (developed by Luque (2011)) is freely available. The system required minor
modifications to allow for the system to perform the selection phase on data generated by

2. In this evaluation, pairs of brackets are counted, so partially correct tree structures improve the evaluation
scores.
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non-greedy generation phases and on words rather than POS tags. The generation phase
used in CCM is called “binary” and the selection phase is called “ccm”.

From the gentle generation systems, the ABL system is used. An implementation of ABL
is available (van Zaanen, 2002b, 2003), which allows both phases to be applied separately.3

Here, we use the “wm” generation method and the “leaf” and “branch” selection methods
as described in van Zaanen (2002a).

The “wm” generation method relies on the edit distance algorithm (Wagner and Fischer,
1974) to identify alignments (words or phrases that can be found in two sentences). The
“leaf” and “branch” selection methods compute probabilities for each of the introduced
hypotheses (i.e., potential constituents or pairs of brackets) and resolves overlapping hy-
potheses by selecting only those hypotheses with the highest probabilities. The probability
computed using the “leaf” method normalizes the number of times the words within the
hypothesis occur together as a hypothesis by the total number of hypotheses. The “branch”
method also takes the non-terminal of the hypothesis into account.

As generation phase baselines, we use the “left” and “right” systems, that assign binary
tree structures that extend to the left or to the right respectively. Because these baselines
result in proper tree structures (in contrast to the “binary” and “wm” systems), the best
performing system (“right”) is also used as baseline for the selection phase.

4. Results

For sake of completeness, we first briefly discuss the results of the generation phase, which
can be found in van Zaanen and van Noord (2012). We focus only on the best generation
systems, which in turn form the basis of the evaluation of the selection phases. These results
are provided following the discussion of the generation phase results.

4.1. Generation

Figure 1 shows the performance of the two generation phases (“wm” and “binary”) as
well as the two baselines (“left” and “right”). The different generation systems all have
significantly different results (p < .001).

Looking at the two baselines (“right” and “left”), we see that the “right” baseline
performs very well on all metrics. This shows that the syntax of English is mostly right-
branching.

The greedy “binary” generation system has perfect recall. This shows that all possible
structures are introduced. Many incorrect structures are also introduced, which can be
derived from the low precision results. This should not be seen as a problem, as the task of
the selection phase is to remove incorrect structures, which should improve precision while
retaining high recall.

The recall of the gentle “wm” system improves when more data is available. This is to
be expected because more evidence for substitutability can be found if more examples are
present. However, the recall does not reach 100%, which is a problem, because the selection
phase will not introduce any more structures, hence the recall cannot improve anymore.

3. We are aware of the implementations of EMILE and ADIOS. However, EMILE has a wide range of
parameters that greatly influence the results and the free implementation ADIOS has limitations on the
size of the training data.
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Figure 1: F-score, precision and recall results on subsets of WSJ dataset (the x-axes indicate
the maximum sentence length of the subset) for a variety of generation systems.

The precision is higher than that of the greedy generation system, which means that fewer
incorrect structures are introduced.

4.2. Selection

Evaluating the selection systems can now be done based on the results of the different
generation systems. Here, we will concentrate on the impact of the selection systems based
on the two generation systems described in the previous section: “wm” and “binary”.

Figure 2 shows the performance of the three selection systems (“leaf”, “branch”, and
“ccm”) as well as the output of the “binary” generation phase without selection, so with
overlapping structures (“initial”). “Initial” corresponds to the upper bound on recall and
should be seen as the lower bound on precision (as the aim of selection is to remove incorrect
structures). Additionally, we show the “right” baseline, as that also produces tree structures
and leads to the best results on the generation phase.

All three systems remove a large amount of possible structures. Some of these structures
are correctly removed (increasing the precision over the “initial” system), but some correct
structures are (incorrectly) removed as well, which is illustrated by the drop in recall with
respect to “initial”. Until around WSJ10, the selection systems do not translate in an
improvement of the F-score for any of the systems and corpora containing with longer
sentences, only minor improvements can be found.

When comparing the three selection systems, “ccm” performs best until approximately
WSJ20. When longer sentences are found in the dataset, “leaf” performs best, closely
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Figure 2: F-score, precision and recall results on subsets of WSJ dataset (the x-axes indicate
the maximum sentence length of the subset) for a variety of selection systems
based on the binary generation system.

followed by “branch”. This is due to a stronger decline in both recall and precision for
“ccm”, showing that this method is more reliable on shorter sentences.

Figure 3 shows the performance of the three selection systems (“leaf”, “branch”, and
“ccm”) as well as the results before selection (“initial”) and the right branching baseline
(“right”) on the output of the “wm” generation system.

Similarly to the performance on the “binary” generation output, the performance of
all three systems drops as the sentences grow longer. However, there are some notable
differences. Firstly, the F-score of all three systems does not come above the results of the
generation phase, indicating that the drop in recall is not compensated by the increased
precision. Secondly, the recall of “ccm” is higher than both “leaf” and “branch” on longer
sentences (from around WSJ12), whereas for “binary” generation this was the other way
around. We expect that a positive interaction between the “wm” and “ccm” systems may
be the reason that the recall of “ccm” on longer sentence is somewhat higher. However,
the precision of the “leaf” system outperforms the other selection systems. The precision of
“branch” is approximately equal to the results of the generation phase, which means it does
not remove any incorrect structures. Finally, the F-score results of the “ccm” method stays
approximately the same as that of the “initial” system, and the other selection systems
have lower results. This is also in contrast to the results of the “binary” generation phase,
where “leaf” and “branch” outperform the “ccm” system. It is disappointing to see that
none of the selection systems manage to outperform the (rather strong) “right” baseline.
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Figure 3: F-score, precision and recall results on subsets of WSJ dataset (the x-axes indicate
the maximum sentence length of the subset) for a variety of selection systems
based on the wm generation system.
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Figure 4: F-score, precision and recall results on subsets of WSJ dataset (the x-axes indicate
the maximum sentence length of the subset) for a variety of selection systems
based on the wm and binary generation systems.
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To investigate the differences between the selection systems, Figure 4 shows the perfor-
mance of the three selection systems (“leaf”, “branch”, and “ccm”) on both the output of
the “binary” and “wm” generation systems. All selection systems have significantly different
results (p < .001). Both “leaf” and “branch” systems have highest precision when combined
with the “wm” method, but the recall of that combination drops more with respect to the
“binary” systems on longer sentences, leading to a lower F-score around WSJ10 (compared
against the “binary” generation system). The same trend can be found for the “branch”
selection system. For the “ccm” selection method, the reverse is true. Around WSJ10, the
F-score of the system combined with the “wm” generation phase starts outperforming that
of the combination with “binary”. Since these results may be difficult to identify from the
figure, we also show F-score results of the systems in Table 2.

5. Discussion

From the results presented in the previous section we can observe that the selection task
becomes more complex as more data and longer sentences are processed, which negatively
impacts the performance. This means that instead of (only) presenting results on WSJ10
as is done in the past, results including longer sentences are required to properly show the
performance of the empirical GI system.

Instead of only evaluation existing systems, results of new system combinations have
been presented here as well. The results of the combinations of “wm” and “ccm” as well as
the “leaf” and “branch” combined with “binary” have not been published before. Interest-
ingly, on longer sentences, the new “binary” and “leaf” combination outperforms all other
systems.

The “ccm” model performs disappointingly (in particular on longer sentences). However,
“ccm” has been designed to work with Part-of-Speech (POS) tags, rather than words. This
has a major impact on the amount of possible types (i.e. unique words). As can be seen in
Table 1 the amount of types increases as sentences grow longer. This could be a possible
cause for the relatively poor performance of the “ccm” system. The underlying statistical
model might perform better when there are fewer types to consider. Future work will have
to show whether this is the case or not.

6. Conclusion

Evaluation of empirical GI systems is of extreme importance. In cases where perfect learning
of language is (as of yet) unfeasible, it is essential to know how well the systems work.

By setting up a standardized evaluation environment, we have evaluated and compared
existing state-of-the-art context-free grammar learning systems. We have identified gen-
eration and selection phases in each system, which means that new, previously untested,
combinations can be evaluated as well. On datasets containing longer sentences, a novel
combination of phases outperforms all other systems.

The differences in how the systems perform illustrates strengths and weaknesses of the
existing approaches. Based on these results, new systems can be developed that build on
the strengths, but try to resolve the weaknesses.
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Table 2: F-score results of generation systems (top part) and selection systems (bottom
part) of sentence length 10, 20, and 50. Best results are highlighted.

Generation Selection 10 20 50

right 52.33 41.48 33.12
left 13.77 8.87 6.33
wm 36.94 22.75 14.56
binary 27.57 16.52 10.23

wm leaf 28.54 16.25 10.17
wm branch 17.47 8.14 5.39
wm ccm 30.50 22.76 15.23
binary leaf 25.98 19.88 17.36
binary branch 25.59 18.45 14.88
binary ccm 30.07 19.52 10.35

7. Future work

The work presented here may serve as the starting point for a range of future work directions.
In particular, we realize that the research presented here only evaluates a selection of the
existing system. Additional systems, including EMILE and ADIOS, can now be evaluated
within this evaluation framework as well.

The evaluation of the CCM model as performed here may be considered unfair as CCM
is designed to be evaluated on part-of-speech sequences instead of sequences of words. At
the moment, this evaluation has not yet been performed, but given the framework, actually
performing the evaluation is straightforward. Additionally, evaluations based on part-of-
speech sequences that have been learned in an unsupervised way may be done in the same
way, allowing for a comparison of the impact of the quality of the part-of-speech tags.

GI systems that focus on learning dependency relations (such as the DMV model (Klein,
2004) or related systems, see, for instance, Spitkovsky (2013)) have not been evaluated
within this framework either.

Another direction for future research is to use a range of treebanks, preferably in different
languages. Initial results on Chinese (Xue et al., 2005) and Arabic (Maamouri et al., 2004)
treebanks show that the evaluated systems show similar trends on other languages as well.

The structures that are the result of the GI systems are currently only evaluated against
the structure of the Gold standard (found in the treebank). However, more generic infor-
mation about the grammars may provide additional insight in the performance of the GI
systems. For instance, the size of the grammar, theoretical or practical execution time
and memory usage are also properties that may be important properties for instance when
deciding on which GI system to use in a practical situation.
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