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1. Introduction

We consider those cases in multiple regression ana-

lysis, where our only prior knowledge is, that a subset of

the parameters have finite, definite and known bounds. Exam-

ples of this type often occur in Econometric Analysis, e.g.

the marginal propensity to consume in consumption equations

lies between 0 and 1. It may happen, that a least squares

method, when applied to the above situations, produce estima-

tes of the parameters, which are inconsistent with our prior

knowledge, i.e. some or all of the estimates may fall outside

the known bounds. This is clearly unacceptable to the experi-

mentor. The reasons of this inconsistency may be due to mul-

ticollinearity, inadequacy of the sample data or otherwise.

The method given here is essentially a Bayesian one,

and will take care of the above situations. The estimates

will be always consistent with the prior knowledge. Even if

the least Squares estimates are consistent, the estimation

procedure which incorporates the apriori information expli-
citly is more justified and efficient t~,ia-tia~-~rocedure vhich
treats the parameters as uarestricted.~ P~~~
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2. Bayesian estimates of the parameters

We take the single equation regression model,

(2.1) y- X B t u
y is a Tx1 vector of observations

on dependent variable.
X is a Txp matrix of observations

on the explanatory variables,

with fixed elements and rank p.

S is a px1 vector of unknown .pa-

rameters.

u is a Tx1 vector of random dis-

turbances.

Each element of u is independent-

ly and normally distributed with
mean zero and variance a 2.

The likelihood function of the sample is given by,

(2.2) R(B,a Iy) - aT(21,~)T 2 Exp {- ~2 ~(Y - X~)' (Y - XB)~}

Throughout this paper we shall use the sym-
bol Q(S,a,A) to denote a quadratic form in variables

S centred at a and with matrix A, namely

Q(B,a,A) - (S a)'A(S a)

The likelihood function (2.2) can now be written as:

(2.3) R(S,o~Y) - T 1 T 2 Exp {- 1
a (2n) 2a2

~Q(g,g,V) t (T - p)S2~}



whe;e:

and

V - (X'X) ,

~ - V-1X'y (L.S. estimate of N)

(T - P)S2 - (Y - XQ)'(Y - XQ)

(Y - XB)'(Y - XB) - (Q - d)'(X'X)(Q - ~3) } (Y - XB)'(Y-Xb)

- ~(Q~B~V) t (T - P)SZ

Bayesian solution: a is knowr.

As regards the prior distribution, we assume that
only the bounds of a subset Q~, of the parameters Q are fini-
te and definitely known. The method essentially remains the
same if the bounds are either t m or - W e.g. when the para-
meters are restricted to be positive or negative. Following
Jeffreys [ 3~, Zellner and Tiao [ 5 8~ 6~, we assume that
the elements of Q1 and QZ are locally independent and uni-
form in their respective ranges. This type of prior is usu-
ally called diffuse or non-informative in the literature.

taken,

(2.~)

with:

The following prior distribut.ions on S1 and SZ is

p(B1,QZ) a constant

c , Q1 ~ d

-W~ U ~ W
2

c and d are rxt vectors with known elements.

By Bayes theorem, the joint posterior distribution
is given by,

(2.5 ) P(Qi ~Q2 ~Y) a R.(B1 ~BZ IY)p(Q1 ~Qz )
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or, combining (2.3) and (2.k) we get,

(2.6) p(-1,~2~y) ~ o-T exp { - ~ ~ Q(R,R,V) t (T-p)S2 ~ }
2a2

Without loss of generality, let R1 be the first r

elemecits of ~, and R2 consists of the remaining p-r elements.

Thus 3-(Q1). The matrix V is accordingly partitioned as,
u2

V -

where

X1 is a T x r matrix

X2 is a T x(p-r) matrix

X - (X1 XZ ).

XiXl XiX2

X2 X 1 XZ X2

The quadratic form Q(B,B,V) in (2.6) can be further written

as,

(2.7) Q(s,s,v) - (R-s)'v(R-R) - Q(R2,s2-v22v~1(R1-61), v22)

t Q(R~~R~~V1~-V1zV22V2~)

Here the quadratic form Q(R,B,V) is split into two quadratic

forms, one containing R1 only and the other containing R1
and R2 .

Taking account of (2.7), the joint posterior dis-
tribution of R1 and R2 in (2.6) is expressed as,

(2.8) p(R1,B2ly) a a-Texp
{- 2a2LQ(R2,R2-V22V21(B1-B1),V22) t

Q(f31,R1'V11-V12V22V21) } (T - p)S2~ }
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Using the properties of multivariate normal dis-

tribution, S is integrated out from (2.8), when we get the
2

marginal posterior distribution of Si as,

(2.9) p(S1~Y) a a-(T-Ptr)exp
{- 2a2 ~Q(Sl~sl'vli-~i2~22V21) t

(T-p)S2~ }

Since a is known and (T-p)S2 is constant, we can
write,

(2.10) p(~1~Y) 6 eXp {- 2a2 `Q(~l,sl~Vll-V12V22V21)~ },c:sl;d

From (2.10) it is seen that the marginal posterior
distribution of ~i is in the form of a multivariate r dimen-
sional normal distribution, but truncated.

It is well known that the Bayesian estimates of the

parameters are the means of the marginal posterior distribu-
tions, when the loss function is a quadratic one.

With the assumption of a quadratic loss function,
the Bayesian estimate of S1 can be evaluated from,

(2.11) Id S
ti c
sl -

where

1 exP {- ~ ~Q(Bl~sl'VI1-V12V22V21)~ }dsl
2a2

Jd exp {- ~ ~Q(~l~sl'V11-v12V22~21)~} dsl
c 202

tiS1 is the posterior mean of (2.10). The denomi-
nator in ( 2.11) is the normalising constant for (2.10).
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(2.11) can be further written as:

- sl -

-s1-

éd (B1-S1) eXP {- 2a2 [Q(B1,s1~V11-V12V22V21}~ dgl t

B Jdexp {- ~ [Q(~ ,~3 ,V -V V-1V )~ } ds1 c 2Q2 1 1 11 1z 22 21 1

Jdexp {- ~ [Q(S1'QI'V11-V12V22V21~1} dsl
c 2a2

a2
-1

V11-V12VzzV21

a2
1

V11-~1zV22V21

édexp [ - 2a2[Q(31,51'V11-V12V22V21~~ ~

d(- 2Q2 [Q(Sl,sl'V11-V12v22V21~~ ~

1
1

[Q(Sl,sl'V11-V12vz2V21)~ ]dsl2a2

exP { - ~ [Q(d,sl'V11-V12V22V21~~ }2 02

exp { Q~c,sl'V11-V12V22V21~}

Jdexp {- ~ [Q(B1,S1,V11-V12v22V21~~ }dsl
c 262

One has to apply numerical integration procedure
to evaluate ~1.
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Bayesian estimate of S2

To find the Bayesian estimate of S2, we need to

find first the marginal posterior distribution of S2.
From (2.8), the marginal posterior distribution of S2 is ob-

tained by integrating out S1. Thus

(2.12) p(S2IY) a a-T cdexp{ - 2~2
~Q(~2~S2-V22V21(B1-S1)~V22) t

Q(~1~R1~V11-V12V22vz1) } (T-p)s2~ } d~l

The Bayesian estimate of S2, which is the posterior
mean of B2, is,

(~.13) á

~ C

Q(61'~i'V11-V12V22v21)}(T-p)S2~}~dsl~ds2

Changing the order of integrals, and considering
the properties of the multivariate normal distribution, we
obtain after simplification the following simple relation,

(2.1~) S2 - S2 - V22V21(S1-S1)

From ( 2.14), S2 can be easily calculated, once S1 is calcu-
lated by numerical integrations procedure. It is to be noted
that when the prior informations about slare also non infor-
mative like S2 i.e. p(81,62) a Constant with -~~51~ m,
-~~a2~m , then S1 and s 2 are respectively equal to s l and S2'
and this fact is also corroborated by the relation (2.14).

t~ S2{Cdexp {- 2~Q2~9,(~2,32-V22V21(~1-Q1)~V22) t

Q(Rlssl'V11-V12V22v21) } (T-p)S2~} dsl}dS2

2

Í~ ~ Id~exp {- ~ ~Q(S2'S2-V22V21(S1-S1),V22) t
~rt2



Bayesian solution: a is unknown

In this case, in addition to the prior distributions

on B1 and ~2, we have to assume the prior distribution on a.

Again following Jeffreys I 3~, Zellner and Tiao

~ 5 Ec 6~, we take the most logical prior distributions on

BI, S2 and a as

1
(2.15) P(Sl~s2~6) a a

The elements of B1, S2 and log a are assumed to be uniform-

ly, and locally independently distributed. This type of prior

follows from Invariance theory given by Jeffreys.

As before, the joint posterior distribution of R1,

C?~ and a is,

(2.16) p(sl,s2,a~y) a a-(Tt1)exp
{- 2a2

~Q~R2~S2'V22V21~R1-~1),V22)

t 4,(s1,Qi,V11-V12vz2vzl) } (T-p)S2~ }

Integrating out S2 from (2.1ó), will give the joint

posterior distribution of SI and a,

(2.17) P(S1~a~Y) a a-(T-Ptrt1)exp{
- 2a2

LQ(Ri~sl'vll-V12V22V21) t

~T-p)S2~ }

Finally integrating (2.17) with respect to a, we

get the marginal posterior distribution of S1 as,

-(T-Ptr)

(2.18) P(B~IY) a ~~i(91'S1'U11-V12V22V21) } (T-p)S2~
2

c~Rl~ d
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The expression (2.18) is in the form of a multi-
variate 't' distribution, but truncated.

tiThe Bayesian estimate Rl which is the mean of (2.18),
is given by the following expression,

(T-ptr)
a ~ i - n

(2.19)
ti
S1 -

c

(T-Ptr)

fd LQ(~'1'sl'V11-V12Vz2V21) } (T-p)S2~ - 2 ds~c

( T-Pfri2XVll
72V2 2v2 1 )

- ~t1
(T-P)S2~ 2 - ~9(c~sl'V11-

[Q(d,al~~~~-~~2~22Vz~) t

T-pfr

i,
V12V22V21) } (T-P)S2~ 2

td LQ(~1,Q1,v11-V12V22V21) }
c - ~tr

(T-p)52~ 2 dsl
`

The evaluation of R1 is to be done by numerical in-
tegration.

Bayesian estimate of S2

The joint posterior distribution of R2 and a is
given by,

(2.20) P(52~6~Y) ~ édo-(Tt1)exp
{- 2a2

~4(f32~R2-V22 v21(S1-Q1)~y22

t Q(Q1,31,v11-V12Vzzv21) } (T-p)s2, } dRl
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The marginal posterior distribution of R2 is ob-

tained by integrating out a from (2.20) .

(2.21) P(Q2~Y) a I~ r jd a-(Tt1)eXp {- 1
n L ~ C~(Q2'R2-V22V21

2a~

(R1-S1),v22) t Q(?1,R1,v11-vizvz2vzl) t

(T-p)SZ ~ } dRl ~ do

Finally, the Bayesian estimate of RZ is giveri by,

t~ a f fa -rTti~ , 1z
m - o c

-1
vzzvzi(Q

[o,(sz,áz -
2Q2

Q1),v22) t Q(Ql,sl~vll-vizvz2vzl) t

(T-p)SZ~ } aal~ aQ 1 asz

(2.22) S2
f~ r j~ r jd Q-(Tt1)eXp{- ~~Q(RZ,R2-v2zV21

~ L o L c 2a2

(sl-sl),v22) t Q(s1'R1'vli-vizvz2vzl) t

(T-P)S2 ~} dRl I da 1 dR2

As before, simplyfying we get,

(2.23) É2 - ? - Vzz ~21(f31-(31)
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The relation (2.23) is same as (2.14). Both S1
and S2 when a is known will differ from ~1 and ~2 when o
is unknown. This is evident from the expressions of S1 in
two cases (vide (2.11) 8~ (2.19)). The forms of the distri-

butions in two cases are different, the former involves mul-
tivariate normal, whereas the latter involves multivariate
't'.

The Bayesian estimators are optimal with respect
to the prior distributions and loss functions assumed, for
they minimise the average risk. They are also BAN and ef-
ficient in comparison to the OLS. .
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t
3. Numerical Example

To illustrate the working of the formulas, a con-

sumption-equation relating to the figures 1948-1966 of the

Belgian economy is taken:

Ct - Ri t SZ Wt } S3 Zt-4 } s4 Lt-1 } S5 lt-1 t S60 ct-

Explanation-of the symbols

All the variables are expressed as relative changes:

xt -
t- 1

ti ti

xt - x~ 1 , where absolute quantities aretix
indicated by ti .

private consumption: current value;

disposable labour income ;

disposable non-labour income;

primary and secondary liquidities;

interest on long dated government

securi ties ;

c t - ct-1

From past experience, we can accept the bounds as

. 4 ~C RZ ~. 6 and 0~ S4 ~. 3. The other parameters are

taken to be unrestric ted .

First ordinary leas t squares (0 .L .S .) is applied,

and then with the relevant data, numerical integrations and

other calculations are performed to obtain the Bayesian es-

timates .

t I am indebted to J. Pompen of the Computer Centre and
E. Borghers of Economic faculty of Katholieke Hogeschool,
Tilburg, for making necessary programmes and calculations

on a I . B .M . 1620I I compute r.
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Parameters O.L.S. Bayes Estimators

~6; .O~S4~.3Bounds: -4~8 2

a) b)
B1 - . 38877 . 78212 . 71993

s 211 - 43887 . 44129z , 55
s ~ - 36131 . 35731s . 29 55
~a . 17748 - 05212 . 06348

ss - . 13678 - - 13549 - . t3529

S5 - . 32183 - - 30261 - . 30237

R t . 90612 . 86746 . 87179

s tt 1.o26to t.2o678 t.18830

t
R- Multiple correlation coefficient, adjusted for

degress of freedom
tt

S- least squares estimates of the standard devia-
tion of the error terms

a)b) The numerical integrations are done with trapezoi
dal rule. The columns a) and b) differ only in
that the figures of b) are made more accurate by
taking smaller intervals for integrations.



Tnough in this example O,L.S, estimates are

reasonable i,e, they lie already within the bounds ac-
cording to our apríori belief, nevertheless Bayesian
method is applied to show how the estimates can differ
in two cases when the apriori informations are explicit-
ly taken into account.

4. Conclusions

The method of estimation given in the preceding
sections is quite general and is applicable to the cla,ss
of problems in regression analysis where a subset of
parameters is known to lie within certain ranges apriori.
The cases of positive and negative restrictions of the
parameters are also incorporated into the method. The
only trouble is computational, but with powerful com-
puters this is not impossible.
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