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0 Introduction~

In a number of articles [ 2,3,4,5 ] different
.conditions were presented that quarantee the consistency
of the simple majority decision rule. In [5] Inada summa-
rized these conditions. It appears that rnost proofs in
this field are lenqthy and tedious. In this note we show
that by a simple vector representation of nreferences be-
tween three alternatives, the proofs can be substantially
facilitated, since thev are reduced to the finding of
hyperplanes that separate convex sets. It is also shown
that the conditions for an odd number of voters can be
~eneralised

1 Vector representation of preferences

Let R be a z~reference relation with derived re-
lations P(strict preference) and I(indifference). Any
orderina of three alternatives a, b and c can be repre-
sented by a three-dimensional vector x-(x1, x2, x3)
with components that can only take on the values 0, 1
and -1, if we define

1 if a P b 1 if b P c 1 if c P a
x1 - 0 if a I b x2 - 0 if b I c x3 - 0 if c I a

-1 if b P a -1 if c P b -1 if a P c

~`I thank Prof. Inada for his comment which prevented an error
that occured in an earlier draught of this paper.
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Obviously there are different ways to represent the pre-
ferences, but the repre~entation given above seems the
most suitable one.
There exist exactly thirteen transitive preference orde-
rings of a, b and c; the vector representations are de-
noted xo, x1, x2,..., x12 and constitute the set

V - {xo, x1, x2,..., x12}

preference
ordering

1x
preference x2

vector 3x

a a a a a c c c c b b b b

I P P P I P P P I P P P I
b b 1~ c c a a b b c c a a

I P I P P P I P P P I P P

c c c b b b b a a a a c c

0 1 1 1 1 1 0-1 -1 -1 -1 -1 0
0 1 0-1 -1 -1 -1 -1 0 1 1 1 1
0-1 -1 -1 0 1 1 1 1 1 0-1 -1

xo x1 ~`2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

It is easily verified that for xi E V and for k, 1, m E
{ 1, 2, 3 t, such that k~ 1~ m~ k

x.k --1 ~ 0 ~ x.l f x.m ~ 2i - i i -

and

and also

xik - 0~ xil f xim - 0 (1.3)

xik - 1~ 0~ xil t xim ~-2

,-1 ~ xik f xil t xim ~ 1
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xik - 1 xil --1 or xim --1

xik --1 xil - 1 or xi'~~ - 1

Any of the alternatives a, b and c can take on five dif-
ferent positions in the preference relation: it can be the
only best or worst element (strictly best or strictly
worst), it can be one of two equivalent hest or worst ele-
ments (weaklv best or worst) or it can be medium, inclu-
ding the case of three equivalent alternatives. Now if we
define

w1 - x1 - x3, ~~i2 - x2 - x1 , ~a3 - x3 - x2 (1 .6)

~.~e have, as is easily verified, for a

if w1 - 2, a is striclv best
if w1 - 1, a is weakly best
if w1 - 0, a is medium
if w1 --1, a is weakly w.orst
if w1 --2, a is strictly worst

The same holds for b and c with respect to w2 and w3.
The set

Y-! y-: R3 ~-1 ~ yk ~ 1, for k- 1, 2, 3 }

(1 .7)

is the set of points that lie on or within a cube. Let X
be the subset of Y containing all vectors which have com-
ponents 1, 0, -1,

X-{ x E Y ~ xk ~{ 1, 0, -1 }, for k- 1,2,3
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Now

V C X c Y

and we have

V-{ x e X ~ x f 0 and x~ 0} (1 .9)

Apart from xo - 0, V consists of all points of X on a closed
curve on the edges of the cube Y; this curve does not inter-
sect the positive and the negative orthants of the cube.
(see fig. 1.1)

- 1

j .1'-.

~ ~o' ,~i ~

Fig. 1.1

x3
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The points of (Y-V) represent nreference orderincs that
are not transitive, e.q. x-(1,1,1) means aPb, bPc and
cPa, and they are all points of X that lie in the nositive
or negative orthants of the cube
Let h1 and N be

P4 -{ y e Y I y~ 0}, N-{ y F Y ~ y ~ 0}

then

(1 .10)

X- V~- M u N (1.11)

~IOte that 0~ ~.1 '~ N

2 Vector representation of votinq

If every individual has a transitive preference
ordering of a, '~ and c, voting means that every voter
chooses one and only one point of V. If n is the number
of voters, and ni (i - 0,1,2,...,12) is the number of
voters that choose xi, then votinq can be represented by
fhe numbers

n. 12
ai - r where iEo ai - 1 (2.1)

and the result of the voting procedure is given by a
vector y - Y

12
y - E a.x.i-o i i (2.2)

representing the social orderinq, which obviously can be
represented by a point x e X, if we define
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xk - 1 if yk ~ 0

xk - 0 if yk - 0

xk --1 if yk ~ 0
(2.31

If y e M u N, the voting paradox occurs, if however
y~(M u N) the social ordering, represented by y, is
transitive. Obviously the point x, derived from y by
(2.3), fullfills

x E (M u N) ~~ y E (M u N)

Now if by imposing certain conditions it is en-
sured that the voting result y belongs to a set R, such
that

R ~ (M u N) - ~ (2.4)

then the voting paradox is excluded. If the votes ai are
not restricted, thís is not true, since in this case the
set of all possible results is given by the convex hull
of V:

Conv V- { y E V ~ y- E aixi for ai ~ 0

and E ai - 1 } (2.5)

an d

Conv V n(M u N) ~~f. (2.6)

Obviously only rational vectors in Y are possible,
if the number of voters is finite, but for sake of simpli-
city we permit all real vectors.

If some of the ai are known to be zero, the vo-
ting result must be in the convex hull of the points

6



that may have positive weights. As Inada, we call a set
of preference vectors :{i that may :~ave nonzero votes, a
list L ~ V.
Hence

xi ~ L ~ ai - 0 (2.7)

Note that this does not mean that u. ~ 0 for all xi F L.- 1If the set of possible results of a voting pro-
cess is denoted R(L), R(L) is the convex hull of L, pro-
vided that there are no other conditions than (2.7)

R(L) - Conv L -

ai xi - y, for ai ~ 0, ai - 0 for

xi ~ L and ~ ai - 1}(2.3)

I1ow the votinq paradox cannot occur, if and only if

R(L) n (M u N) - ~

In section 4 the lists of this type will be given. They
will be called unrestricted lists.

Now suppose that the convex hull of some list
intersects the positive and negative orthants of (M u N),
but that this intersection only contains boundary points
of both sets, e.g. y-(?, ;, 0), i.e. aPb, bPc and aIc.
Hence for y r Conv L, we have y~ 0 and y~( 0. Now

Conv L n(M u N) ~ p

Conv L n Int (M u N) -~
(2.9)

By excludinq the boundary points in the set of
voting results, we also exclude the voting naradox. It
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appears that this can be done by requiring that at least
one of the following conditions is fullfilled.

1) some ai, which will be defined in theorem 2, are po-
sitive

2) the votes for nonzero preferences cannot be divided
into two equal groups. This condition is fullfilled
if the number of voters is odd.

If we denote the set of all voting results, that fullfill
one of these conditions, by R'(L), it appears that
R'(L) ~(M ~ N) -~J for all lists defined by Inada for an
odd number of voters.

The above results will be gíven in two theorems,

by means of separating hyperplanes.

3 Two theorems

Let

P-{ p e R3 ~ P1 t P2 f p3 - 1 and p~ 0}

{3.1)

whereas

Pt -{ p e P ~ p~ 0}

~f we define

3 k k
pX - k-1 P x

the set

I'(p) -{ y F`~ i PY - 0}

(3.2)

(3.3)

(3,4)

~



is a hyperplane that separates the cube Y into two sub-
sets and we have

Y ~ M~ PY - 0 and y F N~ py ~ 0 (3.5)

If p is strictly positive ( p E, P}),

y e M ~ pY ' 0 and y F N~ py ~ 0 (3.6)

Now if an unrestricted list R(L) is strictly separated
from M by one hyperplane and from N by another hyperplane,
it cannot intersect M or N.
If }p,q E P, and if

y: R(L) - PY ~ 0 and qy ~ 0 (3.7)

we have

R(L) ~ (M U N) - ~J

Hence the voting paradox cannot occur, provided every
voter chooses a vector of L.
This result leads to the following theorem

THEOREM 1

If L ~ V and there exist p, q e P}, such that

xi e L~ pxi ~ 0 and qxi ~ 0

then

R(L) n(M u N) - j~7

9



Proof

Since

xi e L~ pxi ~ 0

we have for y e R(L) - Conv L, y- x~eL aixii
and hence py ~ 0. Since z e M~ pz ~ 0 we have

Conv L n M- p

In the same way it follows, applying xi e L~ qxi ? 0,

Conv L n N - ~

hence

R(L) n(M U N) - fX

If (3.6) holds for some points p, q s P, the hyperplanes
F(p) and F(q) do not necessarily strictly separate R(L)
from M and N. Therefore we need the conditions 1 or 2 to
guarantee that

R~ (L) n(M ~ N) - A

THEOREM 2

Let L ~ V and there exist p, q e P, such that

xi e L ~ pxi ~ 0 and qxi ' 0

10



Let

R'(L) -{y , Conv L ~ condition 1 or 2 holds}

condition 1: ~ xi t L: aipxi ~ 0 anu 3 x~ - L: a~qx~ ~ 0

condition 2: ~ K c L: 0~ K and F. a. - axiEK i x~E~-I~{0} ~

then

R' (L) r~ ( t~l u N) - 1~

Proof

1 Let condition 1 hold
Hence for some xi ~ L, we have aipxi ~ 0, therefore
ai ~ 0 and pixi - 0
Now for y. R'(L) holds

and

PY - ~ aipxi ~ 0

and since y e M~ py ? p
we have y ~ M.

In the same way it follows, applying ~xiqxi , 0 that

y ~ N.

11



2 Let condition 2 hold.
Suppose y e R'(L) ~ M
Withput loss of generality we may assume

y~ ~ 0, y2 ~ 0, y3 - 0

Since y E Conv L, we have py ~ 0 and since y e M, we
have py ~ 0, hence py - 0 and this implies

ai ~ 0 -~ pxi - 0

and

p~ - 0, p2 ~ 0, p3 ~ 0

(i)

a) Now supposé first that for some xi E L, we have
0

ai - 0 and xi - 0 and xi ~ 0
0 0 0

Hence xi ~ 0
0

and since by (i)

P1 xi } P2xí' t P3xi - S,
0 0 0

we must have p2 - 0, and since p e P, p3 ~ 0 and now
for xi such that ai ~ 0 we have

pxi - p3xi - ~.

hence ai ~ 0~.. xi - 0.
But

x3 - 0~ x~ t x? - 0
i i i

and therefore
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Eai (xi f xi) - p

but this is a contradïction, since y~ - ~aixi ~ 0.

b) Hence we must have for xi ~ 0

ai ~ 0 ~ xi ~ 0

Let K - {xi ~ xi - 1 } and L - K - {p} - {xi ~ xi - -~ }
Now

x~eL aixi - 0
i

hence

xiEK ai - xie~-K-{0} ai

but this is excluded by condition 2.
Therefore

R' (L) n M - Gl

In the same way we can show that

R' (L) n N - ~

Corrollory

If the number of voters choosing xi ~ 0 is odd, condition 2
of theorem 2 is satisfied

Proof

n
1E1 ai - a

then a n i s an odd number, hence it is impossible that
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- x`~-K li - L-K-O
i

since

n- ~ f ~~ and a n- rn f-n - 2yn

nence ,n -; a n is not a whole number.

4 Conditions and lists

L4e shall now consider a series of lists of both the res-
tricted and the unrestricte:] type. These are

the same as those given by Inada. It will l:~e shown
that the proof is now very easy applying theorems 1 and 2
respectively. F7e have only to give the vectors p and q.

A Conditions of the unrestricted type

Condition I(condition A in [ 5])
Each voter considers at least two of the three alternatives
equivalent,

There is only one list satisfying this condition:

L-{x, e V' 3;c ~{1,2,3t: xk - 0}

Since xi - V, we have xk - 0, xl - 1, xm --1 for k, 1, m
- {1,2,3~

Proof

Choose p - q - (1~3,1~3,1~3)

PJow for xi .- L, we have

pxi - qxi - 1~3 (xi } xi } xm) - 1~3(0 f 1- 1) - 0

14



Hence by theorem 1

R(L) n(M U N) - f~

fig. 4.1

Condition I

Condition II (condition C in [ 5])

All voters either consider two of the three alternatives
equivalent or one of them is strictly best and the other is
strictly worst.

We may have e.g.

aPbPc or cPbPa or aIb

There are three different lists of this type

I.k -{xi e V J xi - 0 or xi s-xi --xi for

l,m e {1,2,3}}

for k - 1,2,3

15



fi~. 4.2.

Condition II

Froof

Choose p- q anà pk -~~ pl - pm -

For xk - 0
i

1 m; xi f ; xi - 0

k a xl t á xm -~(xk - xk) - ~2 xi }~ i i i i

Condition III a(first part of Inada's condition B)

There is one alternative that all voters consider at least

as gooa as the otizer two or that all voters consider not

hetter tizan tne other two,

16



e.g. aR c and aRb for all voters.

There are 6 different lists satisfying this condition

Lk ~ 1 -{ x, e V I xi ~ 0 and xi ~ 0}

These lists can also be expressed in terms of the variable
w(1.6) and now we have two groups:

{xi E V ~ wk ~ 1}. for k- 1,2,3

and

{xi e V ~ w" ~-1}. for k - 1,2,3

Hence one of the alternatives must be weakly or strictly
best (worst) for all voters.

97



Prcof

Choose pk - 4~ pl -~~ pm - 4

qK - z, ql - á, qm - i

if xl --1, xk t xm ~ 2, ~ence px. ~ 0i i i - i -
if xi - 0, xi t xi - 0, hence pxi - 0

if xk - 1, xl f xm ~-2, hence qx. ~ 0i i i - i -
if xi - 0, xi f xm - 0, hence qxi - 0

Condition III b(This is the second part of Inada's condi-
tion B)

L'ither one alternative is strictly best and a second is
strictly worst, or there are at least two equivalent alter-
natives, while the second is not strictly best or the first
is not strictly worst.

e.g. aPbPc, bPaIc, aIbPc, aPbIc, aIcPb, aIcIb

There are 6 different lists of this type

L~} - ixi r V ~ xik - 0 and xik t xil t xim ` 0}

LK- -

Proof

k k 1 mE V ~ x. ~ 0 and x. t x. f x. ~ 0;i - i i i -

Choose for Lk}: p-(1~3,1~3,1~3), qk - 1~2, ql - qm - 1~4

for Lk : pk- 1~2, pl - pm - 1~4, q-(1~3,1~3,1~3)

18



Now for Lk- we have either

xi --I, hence 1 c xl t x~ c 2 and

pxi -- 1~2 f 1~4(xi t xi) c- 1~2 f 1~4.2 - C

qxi -- ï~.~ t lf 3(xg t xi) i- 1~3 f 3I3 - 0

kxi - 0, hence ( xi f xm) - 0 and pxi - qxi - 0

F(p)

B Conditions of the restricted tyDe

Condition IV (condition F in [ 5))

There is one alternative that all voters consider strictl
best or strictly worst or all three are eguivalent

e.g, aPb and aPc or bPa and cPa.

There are three different lists of this type

Lk,l - ixi e V ~ xi .- -xi} foz Y0,1 - 1,2,3, k c 1

í4



' n terms of ~a, these list can be ciefined for each ;:

wk - 2 or kw

Conv L12
ric-. 4.5

Condition IV

Proof

Choose p - a, w:~ere

pk - pl -~ and pm - 0

Now for xi ` Lk 1

p~ci - pkxi t plxi -~(xi f xi- - 0- qxi

Obviously R'(L) - iy ~ V~. py - 01
Only condition 2 of theorem 2 is relevant since py - 0

for all y ~ R'(L).

Condition V(Inada's conditions D and E)

One of the alternatives is considered not best by all
voters or not worst, by all voters, or all are equivalent.

20



e,g, cPa or cPb

This is the case of single peakedness or of single caved-
ness. There are six lists of this type

Lk 1-{ xi E V~~ xi - 1 1or xi -- 1 or xi - 0}
for k,l - 1,2,3; k~ 1

In terms of w, we have for single peaked lists

{xi E V ~ wk ~ 0}.

and for single caved lists

for k - 1,2,3

for k - 1,2,3,

Note that any type V list contains some type III list,

Proof

Choose

pk - 0 i Pl - Pm - i

qk - qm - ~ , ql - 0

if xi - 1, xi f

if xi --1, xi

and

xi ~ 0, hence pxi -~(xi t xm) ~ 0

~ 1, hence pxi -~(xi t xm) ~ 0

1 k mif xi --1, (xi t xi) ~ 0, hence qxi ? 0

if xi - 1, xi ~-1, hence qxi ~ 0

21



ii.:. 4.6

F(q)

Cor.dition V: L12 x3

Obviously for k- 1, 1- 2(fig. 4.5) condition 1 of
theorem 2 is satisfiec if

t ,~ 3 `4 0 and ~4 f ~5 t à6 0

since

t

pxi 0 for i- 2,3,4

and qxi ~ 0 for i- 4,5,6

Condition VI (Inada's condition B)

There are two alternatives, such that no voter strictly
p.refers the first one to the second one

e.g. aRb

There are six lists of this type

Lk} -

Lk- - txi

22



Proof

Choose for xk ~ 0i -

pk - 0 ~ pl - pm -~

qk - 1, ql - qm - 0

Now

if xi - 1, (xi t xi) ~ 0, hence pxi -~(xi t xm) ~ 0

if xi - 0, (xi t xm) - 0, hence pxi - 0 -

and qxi - U

Choose for xk ~ 0i -

pk - 1, pl - pm - 0

qk - 0 , ql - qm - ~

Fig. 4.7

F(q)

Condition VI: Llt

23



Obviously for L1 t, condition 1 of theorem 2 is satisfied,
if ,

~2 f Y3 f x4 0 and a1 f ~2 }`3 t~,4 t a5 . 0

since pxi ~ 0 for i- 2,3,4

qxi - 0 for i- 1,2,3,4,5
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