Tilburg * ©ite University

Tilburg University

Invariant subspaces and invertibility properties for singular systems

Geerts, A.H.W.

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Geerts, A. H. W. (1992). Invariant subspaces and invertibility properties for singular systems: The general case. (Research Memorandum FEW). Faculteit der Economische Wetenschappen.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim

1235
Coufal syptemo

INVARIANT SUBSPACES AND INVERTIBILITY PROPERTIES FOR SINGULAR SYSTEMS:
 THE GENERAL CASE

Ton Geerts
FEW 557

Communicated by Prof.dr. J. Schumacher

Tol/
K.U.B.
BIBLIOTHEEK
TLLBURG

INVARIANT SUBSPACES AND INVERTIBILITY PROPERTIES FOR SINGULAR SYSTEMS: THE GENERAL CASE

Ton Geerts ${ }^{*}$),
Tilburg University, Dept. of Econometrics,
P.O. Box 90153, NL-5000 LE Tilburg, the Netherlands.

ABSTRACT

Open-loop definitions and properties of several subspaces for general singular systems are characterized by means of a fully algebraic distributional framework. Simple recursive algorithms for producing these spaces as well as related duality aspects turn out to follow directly from these definitions. Next, we provide definitions and conditions for two notions of left (right) invertibility of a general singular system in terms of our distributions, subspaces, and Rosenbrock's system matrix, and we show which conditions represent the 'gap' between our invertibility concepts. Finally, we prove that in many cases left (right) invertibility is equivalent to left (right) invertibility of the system matrix.

KEYWORDS

Singular system, impulsive-smooth distributions, strong controllability, duality, weak and strong left and right invertibility.

1. Introduction.

We consider linear time-invariant systems on $\mathbb{R}^{+}:=[0, \infty)$ in the generalized state space form
$E \dot{X}(t)=A x(t)+B u(t)$,
$y(t)=C x(t)+D u(t)$,
where $E, A \in \mathbb{R}^{l \times n}, B \in \mathbb{R}^{l \times m}, C \in \mathbb{R}^{r \times n}, D \in \mathbb{R}^{r \times m}$, and $x(t) \in \mathbb{R}^{n}$, $u(t) \in \mathbb{R}^{m}, y(t) \in \mathbb{R}^{r}$ for all $t \geq 0$. No assumptions will be made on E or on the matrix pencil ($s E-A$). Systems (1.1) are called singular [1] - [4], implicit [5] - [6], descriptor systems [7] [8], degenerate [9] or generalized systems [10]. Various contributors on singular systems have investigated various aspects under various assumptions - for the sake of brevity, we refer to our own references as well as to those mentioned there.

In this paper we will define and characterize several subspaces of \mathbb{R}^{n} for general singular systems (1.1). Since the open-loop definitions of these spaces are in terms of (special) distributions, their systemic interest (e.g. in view of optimal control problems) becomes directly apparent. Our distributional framework enables us to formulate and prove in a straightforward manner various statements on these spaces and our algorithms for computing them are in line with earlier expectations (e.g. [10]). Moreover, we will present definitions of and equivalent statements (expressed in subspaces and Rosenbrock's system matrix [24]) on our concepts of weak and strong left and right invertibility for a system (1.1), and we will specify when the two notions are equivalent as in [23]. To the best of our knowledge, our results on invertibility for continuous-time singular systems are the most general and, perhaps, also the most elegant ones.

Before going into details in Section 2, we shall spend the rest of this Introduction on the issue of consistency of initial conditions and the interpretation of "initial conditions" in our distributional setting.

It is well known that every initial condition $x_{0}:=x(0)$ is consistent [1] if $1=n$ and E is invertible. In case of a singular matrix E, however, this need not be the case.

Example [3, p. 812].
Consider

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u .
$$

It follows that $x_{2}=-u, x_{1}=-\dot{u}$. Hence, if u, sufficiently smooth, is given, then there exists only one consistent initial condition, namely $x_{01}=-\dot{u}\left(0^{+}\right), x_{0_{2}}=-u\left(0^{+}\right)$. (Conversely, one can say that if x_{01}, x_{02} are given, then u is consistent if it is sufficiently well-behaved and $\left.u\left(0^{+}\right)=-x_{02}, \dot{u}\left(0^{+}\right)=-x_{01}\right)$.

However, when modeling e.g. electrical circuits, it may occur that the initial value x_{0} need not be consistent, i.e., that $x_{0} \neq x\left(0^{+}\right)$. For instance, in [3] it is stated that the model of our Example with $u=0$ corresponds to a simple circuit with unit capacitor only, x_{2} denoting its potential, x_{1} the current (see below).

If at $t=0$ the switch is closed and $x_{01}=x_{1}\left(0^{-}\right)=0, x_{02}=$ $x_{2}\left(0^{-}\right) \neq 0$ (and hence inconsistent), then the solution is [3] x_{2} $=0, x_{1}=-x_{0_{2}} \delta(t), \delta(t)$ denoting the Dirac delta function. In other words, for arbitrary initial conditions $x_{0}:=x\left(0^{-}\right)$a solution of (1.1a) (if any) may exhibit impulsive behaviour even if the input u is an ordinary function.

Such observations led several authors on singular systems (e.g. [8]) to the use of generalized functions (distributions [11]), whereas others (e.g. [3]) based their analysis on the Laplace transformation approach of Doetsch [12, 522].

Recently [13], [30] it was demonstrated that both viewpoints can be captured in one fully algebraic and therefore easily understandable distributional framework without using Kronecker canonical forms, state space decompositions, unnecessarily involved distributions or artificial extra parameters. The method's power lies in the combination of the linear system structure and the elegant class $e_{i m p}$ of allowed distributions. Loosely speaking (for more details, see Section 2), an element of $c_{i m p}$ is a linear combination of an impulse (a distribution with support 0) and a distribution that can be identified with a smooth function on $\mathbb{R}^{+}[15]$, and $c_{i m p}$ is a commutative algebra over \mathbb{R} with convolution of distributions as multiplication (unit element δ, the Dirac delta distribution), see [14]. Instead of (1.1a), we introduce in [13], [30] its distributional version

$$
\begin{equation*}
\delta^{(1)} * E x=A x+B u+E x_{0} \delta, \tag{1.2}
\end{equation*}
$$

with $x_{0} \in \mathbb{R}^{n}, \delta^{(1)}$ denoting the distributional derivative of δ, and * standing for convolution of distributions. If $u \in e_{i m p}^{m}$ (the m-vector version of $c_{i m p}$), then we can define for every pair $\left(x_{0}, u\right)$ the solution set
$\left.S\left(x_{0}, u\right):=\left|x \in C_{i m p}^{n}\right|\left(\delta^{(1)} E-A \delta\right) * x=B u+E x_{0} \delta\right\}$
and x is called a solution of (1.2) associated with (x_{0}, u) if x $\in S\left(x_{0}, u\right)$. For many properties of our distributional setup, see Section 2. Here, we would like to highlight the presence of a point x_{0} in the distributional differential equation (1.2).

If $1=n$ and E is invertible, then we may assume without loss of generality that $\mathrm{E}=\mathrm{I}$ and (1.2) reduces to

$$
\begin{equation*}
\delta^{(1)} * x=A x+B u+x_{0} \delta . \tag{1.4}
\end{equation*}
$$

This distributional version of the ordinary differential equation $\dot{\mathbf{x}}=\mathrm{Ax}+\mathrm{Bu}$ on \mathbb{R}^{+}has been extensively studied in [15]; since $\left(\delta^{(1)} I-A \delta\right)$ is within $C_{i m p}^{n \times n}$ invertible w.r.t. convolution with inverse corresponding to the smooth function $\exp (A t)$ on \mathbb{R}^{+}, see [15, p. 375], one can easily see that for every x_{0} and every smooth u the distributional differential equation (1.4) has exactly one smooth solution x, corresponding to the function

$$
\begin{equation*}
\exp (A t) x_{0}+\int_{0}^{t} \exp (A(t-r)) B u(\tau) d \tau \tag{1.5}
\end{equation*}
$$

on \mathbb{R}^{+}. It follows that $\mathbf{x}\left(0^{+}\right)=x_{0}$ - apparently, the arbitrary point x_{0} plays the role of initial condition if u is smooth and $E=I$. In general, however, x_{0} as well as $u \in C_{\text {imp }}^{m}$ may be arbitrary in (1.2); consequently, the value of x immediately after the impulse, $x\left(0^{+}\right)$, may be unequal to x_{0}. What is more, we will establish that not so much the property $x_{0}=x\left(0^{+}\right)$as its generalization $E x_{0}=E x\left(0^{+}\right)$is strongly related to the question of smoothness for solutions x of (1.2).

Our approach of defining subspaces in Section 3 clearly parallels the method followed in [15] - the claims in [15, Section 3] turn out to be special cases of ours. One of the main differences between singular systems and standard systems (systems with $\mathrm{E}=\mathrm{I}$), however, is the fact, that, unlike any solution x of (1.4), a solution x of (1.2) might be "more impulsive" than the control u is. Our answer to this extra difficulty is the Main Lemma, see Section 2. Part of our work generalizes results in [10] as well as statements in [16] - in particular, we do not preassume the existence of the transfer function. Section 4 contains our main contributions on invertibility for singular systems.

2. Preliminaries.

As was stated in the Introduction, the distributional framework based on $C_{i m p}$ allows a fully algebraic treatment of general singular systems - one might even forget about being involved with distributions at all. We will recall the headlines only; for more details, see [14], [11].

Let $D_{\text {- }}$ be the space of test functions with upper-bounded support and let \mathscr{X}_{+}' denote the dual space of real-valued continuous linear functionals on x_{-}. Then the space x_{+}of test functions with lower-bounded support can be considered as a subspace of ν_{+}' by the identification $\langle\varphi, \varphi\rangle={ }_{-\infty} \int^{+\infty} \psi(t) \varphi(t) d t$, where $\langle u, \varphi\rangle$ stands for the value of $u \in \mathcal{D}_{+}{ }^{\prime}$ at $\varphi \in D_{1}$. It can be shown that every $u \in \mathscr{D}_{+}{ }^{\prime}$ has lower-bounded support. The distributional derivative $u^{(1)}$ of $u \in D_{+}$' is defined $\left\langle u^{(1)}, \varphi\right\rangle$ $:=-\langle u, \dot{\varphi}\rangle, \dot{\varphi}$ denoting the ordinary derivative of $\varphi \in \mathscr{D}_{-}$. With "pointwise" addition and scalar multiplication and with the convolution * as multiplication, \mathscr{I}_{+}' is a commutative algebra [17, vol. 2] over \mathbb{R} with unit element δ, defined by $\langle\delta, \varphi\rangle=$ $\varphi(0)\left(\varphi \in D_{-}\right)$. Also, we have $u^{(1)}=u^{(1)} * \delta=(u * \delta)^{(1)}=u$ * $\delta^{(1)}$. Any linear combination of δ and its derivatives $\delta^{(1)}, 1 \geq$ 1 , is called impulsive. A distribution $u \in \mathscr{D}_{+}{ }^{\prime}$ that can be identified with an ordinary function (u!) is called smooth on \mathbb{R}^{+} if u is smooth on \mathbb{R}^{+}[15] and zero elsewhere.

Linear combinations of impulsive distributions and smooth distributions on \mathbb{R}^{+}will be called impulsive-smooth [15, Def. 3.1] and the set $c_{i m p}$ of these impulsive-smooth distributions is a subalgebra. In particular, this implies that $c_{i m p}$ is closed under differentiation $\left(=\right.$ convolution with $\left.\delta^{(1)}\right)$ and under integration $\left(=\right.$ convolution with the inverse of $\delta^{(1)}$, the Heaviside distribution H). Also the next property of $c_{i m p}$ is important.

Proposition 2.1 [14, Theorem 3.11]..

Let $u \in C_{i m p}$. Then there exists $a v \in C_{i m p}$ such that $u \star v=v^{*} u=$ δ (i.e., $v=u^{-1}$) if and only if $u \notin 力_{+}$.

Thus, every impulsive distribution $u \neq 0$ is invertible within $c_{i m p}$. Now if we define [14, Def. 3.1]

$$
\begin{align*}
& p:=\delta^{(1)}, p^{k}:=p^{k-1 * p}(k \geq 2), p^{0}:=\delta, \tag{2.1a}\\
& p^{-1}:=H, p^{-1}=p^{-(1-1)}{ }_{\star p^{-1}}(1 \geq 2), \tag{2.1b}
\end{align*}
$$

then it is easily seen that $\mathrm{p}^{k+1}=\mathrm{p}^{\mathrm{k}_{\mathrm{*}} \mathrm{p}^{l}}(\mathrm{k}, 1 \in \mathbb{Z})$ [14, Prop. 3.2] and thus $\left(p^{k}\right)^{-1}=p^{-k}$ and $\left(p^{0}\right)^{-1}=p^{0}=6$; we will write p^{0} $=1$ and $\alpha \delta=\alpha(\alpha \in \mathbb{R})$. From now on, convolution will be denoted by juxtaposition (recall that $c_{i m p}$ is a commutative algebra). Observe that the decomposition of $u \in C_{i m p}$ in an impulsive and a smooth part is unique. If $e_{p-i m p}$ denotes the subalgebra of pure impulses and $e_{s m}$ the subalgebra of smooth distributions on \mathbb{R}^{+} and if $u=u_{1}+u_{2}, u_{1} \in C_{p-i m p}, u_{2} \in C_{s m^{\prime}}$ then $u\left(0^{+}\right):=\lim _{t \downarrow 0}$ $u_{2}\left(0^{+}\right)$. If $u \in e_{i m p}$ is smooth, and \dot{u} stands for the distribution that can be identified with the ordinary derivative of u on \mathbb{R}^{+}, then one can easily show that

$$
\begin{equation*}
\mathrm{pu}=\dot{\mathrm{u}}+\mathrm{u}\left(0^{+}\right) \tag{2.2}
\end{equation*}
$$

(with $\left.u\left(0^{+}\right)=u\left(0^{+}\right) \delta!\right)$. In particular, $p 0=0$ (the derivative of 0 is 0$)$, but also $p^{-1} 0=p^{-1}(p 0)=\left(p^{-1} p\right) 0=0$, i.e., the primitive of 0 equals 0 . Thus, $p u=0 \Leftrightarrow u=0 \Leftrightarrow p^{-1} u=0$. More generally, we even have

Proposition 2.2.

If $u, v \in C_{i m p}$ and $u v=0$, then either u and/or v equals 0.

Proof. If $u \in D_{+}$, then $v=0$ and if $v \& x_{+}$, then $u=0$ by Proposition 2.1. If u and v are both smooth, then the claim follows from Titchmarsh's Theorem [18, Th. 152].

Next, let c_{f} denote the set of fractional impulses:
$c_{f}:=\left\{u \in c_{i m p} \mid u=u_{1} u_{2}^{-1}, u_{1,2} \in c_{p-i m p}, u_{2} \neq 0\right\}$.
If $u=u_{1} u_{2}^{-1}, v=v_{1} v_{2}^{-1}\left(u_{2}, v_{2} \neq 0\right)$ are both in c_{f}, then $u+v=\left(u_{1} v_{2}+u_{2} v_{1}\right)\left(v_{2} u_{2}\right)^{-1} \in c_{f}, u v=u_{1} v_{1}\left(u_{2} v_{2}\right)^{-1} \in e_{f}$ and c_{f} is again a subalgebra of $e_{i m p}$. Moreover,

Proposition 2.3.

The commutative field C_{f} is isomorphic to the commutative field of rational functions $\mathbb{R}(s)$.

Proof. Let $\mathbb{R}[s]$ denote the integral domain (with unit element) of polynomials with real coefficients. Then it is clear that $\mathbb{R}[s]$ and $e_{p-i m p}$ are isomorphic (see (2.1)). Now $\mathbb{R}(s)$ and c_{f} can be identified with the quotient fields of $\mathbb{R}(s)$ and $c_{p-i m p}$, respectively [17, vol. 1, § 13].

Corollary 2.4.

Let k_{1}, k_{2} be any nonnegative integers and let $M^{k_{1} \times k_{2}}(s)$, $M_{f}^{k_{1} \times k_{2}(p)}$ denote the sets of $k_{1} \times k_{2}$ matrices with elements in $\mathbb{R}(s)$ and c_{f}, respectively. If $T(s) \in M^{k_{1} \times k_{2}}(s)$ and $T(p)$ is the corresponding distributional matrix in $M_{f}^{k_{1} \times k_{2}}(p)$, then $\exists_{L}(s) \in M^{k_{2} \times k_{1}}(s): L(s) T(s)=I^{k_{2}} \Leftrightarrow \exists_{L} \in e_{i m p}^{k_{2} \times k_{1}}: L T(p)=I^{k_{2}}$, and also
$\exists_{R(s)} \in M^{k_{2} \times k_{1}}(s): T(s) R(s)=I^{k_{1}} \Leftrightarrow \exists_{R} \in e_{i m p}^{k_{2} \times k_{1}}: T(p) R=I^{k_{1}}$.
In particular, $T(s)$ is left (right) invertible as a rational matrix if and only $T(p)$ is left (right) invertible as a matrix with elements in C_{f}.

Proof. Assume that $L(s) T(s)=I^{l}$, let $L(p)$ be the corresponding matrix with elements in C_{f}. Then $L(p) T(p)=I^{1}\left(=I^{1} \delta!\right)$ because of Proposition 2.3. Conversely, assume that $T(s) \xi(s)=0$ for some l-vector of rational functions. It follows that $T(p) \xi(p)=$ 0 . Since $c_{i m p}$ is a commutative ring (even an integral domain with unit element 5 , see Proposition 2.2), we establish that $\xi(p)=I^{l} \xi(p)=[L T(p)] \xi(p)=L[T(p) \xi(p)]=0, i . e ., \xi(s)=0$ and hence $T(s)$ is left invertible as a rational matrix (for references on linear algebra and matrix computations, we refer to [17], [19], [20]). The proof for the second claim runs analogously.

We are ready for the distributional version of (1.1) on \mathbb{R}^{+} (see (1.2))

$$
\begin{align*}
& \mathrm{pEx}=A x+B u+E x_{0}, \tag{2.4a}\\
& y=C x+D u, \tag{2.4b}
\end{align*}
$$

together with the solution set $S\left(x_{0}, u\right)$ for every pair ($\left.x_{0}, u\right) \in$ $\mathbb{R}^{n} \times c_{i m p}^{m}((1.3))$. We stress that this way of defining a general singular system on \mathbb{R}^{+}unifies e.g. [3] - [4], [8], [10], [12], [25], [28], but also the well-known [15] for standard systems (see Section 1). In addition, if the arbitrary point x_{0} is consistent (see Section 1), then it can be proven [13, Th. 2.13], [30, Sec. 2] that (2.4a) has a functional solution x with $x\left(0^{+}\right)=x_{0}$. For instance, consider the distributional version of

Example (continued).
Consider $p\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right] u+\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{01} \\ x_{02}\end{array}\right]$ and let u, smooth, be given. If $x_{01}=-\dot{u}\left(0^{+}\right)$and $x_{02}=-u\left(0^{+}\right)$, then $x_{2}=$ $-u$ and $x_{2}\left(0^{+}\right)=x_{02}$ and $x_{1}=p(-u)-x_{02}=-\dot{u}((2.2))$ and $x_{1}\left(0^{+}\right)=x_{0_{1}}$.
Note that $u=0$ yields $x_{2}=0, x_{1}=-x_{02}$, which agrees with [3] (see Section 1).

Apparently, singular systems, unlike standard systems, may generate impulsive solutions even if the inputs are smooth. We will deal with this aspect by means of the next basic result.

Main Lemma 2.5.

Let $x_{0} \in \mathbb{R}^{n}, u=u_{1}+u_{2}, u_{1} \in e_{p-i m p}^{m}, u_{2} \in C_{s m^{\prime}}^{m} x=x_{1}+x_{2} \in$ $S\left(x_{0}, u\right), x_{1} \in e_{p-i m p}^{n}, x_{2} \in e_{s m}^{n}$. Then

$$
\begin{align*}
& \mathrm{pEx} \mathrm{E}_{1}+\mathrm{E}\left(\mathrm{x}_{2}\left(0^{+}\right)\right)=\mathrm{Ax} \mathrm{I}_{1}+B \mathrm{u}_{1}+E \mathrm{X}_{0} \tag{2.5a}\\
& \mathrm{pEx} \mathrm{x}_{2}=\mathrm{Ax} \mathrm{~A}_{2}+\mathrm{Bu}_{2}+\mathrm{E}\left(\mathrm{x}_{2}\left(0^{+}\right)\right) \text {. } \tag{2.5b}
\end{align*}
$$

Proof. We have $\mathrm{pEx} \mathrm{I}_{1}+\mathrm{E}\left(\mathrm{x}_{2}\left(0^{+}\right)\right)+\left[E\left(\mathrm{px} \mathrm{I}_{2}-\mathrm{x}_{2}\left(0^{+}\right)\right)\right]=A \mathrm{x}_{1}+B \mathrm{X}_{1}$ $+E x_{0}+\left[A x_{2}+B u_{2}\right]$ and $p x_{2}-\mathrm{x}_{2}\left(0^{+}\right)$is smooth ((2.2)).

Corollary 2.6.

Let $u \in e_{s m}^{m} x_{0} \in \mathbb{R}^{n}$. If $x \in S\left(x_{0}, u\right) \cap e_{S m}^{n}$, then $E x_{0}=$ $E\left(x\left(0^{+}\right)\right)$.

Remark 2.7.

In [13, Prop. 3.5] it is proven that the converse of Corollary 2.6 is true if ($s E-A$) is invertible as a rational matrix. In general, however, x may be impulsive even if $E x_{0}=E\left(x\left(0^{+}\right)\right)$. Example: $p\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{l}0 \\ 0\end{array}\right] u+\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{01} \\ x_{0_{2}}\end{array}\right]$. If $x_{01}=0$, then $x_{01}=x_{1}\left(0^{+}\right)\left(x_{1}=0\right)$, but x_{2} may be arbitrary.

Remark 2.8.

In principle it is possible to allow distributional inputs that are linear combinations of impulses and distributions associated with more general functions with support on \mathbb{R}^{+}. However, the class of these distributions does not have such nice properties as Cimp' and, moreover, it is long recognized that smoothness requirements do not limit the possibilities for the treatment of feedback (pole placement, e.g. [4]), associated optimal control problems [15], [9], [8], [28], [21], geometric approaches and invertibility properties [15], [22], [10], [23], realization theory [5], [16], or solvability aspects [13], [30].

Remark 2.9.

By application of Kronecker's canonical form, it can be shown (e.g. [8]) that ($\mathrm{pE}-\mathrm{A}$) is invertible within $e_{i m p}^{n \times n}$ if and only if $\operatorname{det}(s E-A) \neq 0$. Note that this result follows directly from Proposition 2.3 (or Corollary 2.4). The combination of this result with Lemma 2.5 turns out to be a successful one in the sequel.
3. Weak unobservability and strong controllability.

Given the system $\Sigma: p E x=A x+B u+E x_{0,} y=C x+D u$, with $x_{0} \in \mathbb{R}^{n}$ and $u \in \mathbb{C}_{\text {imp }}^{m}$. The following definitions generalize associated concepts in $[15$, Section 3].

Definition 3.1.

A point x_{0} is called weakly unobservable if there exists an input $u \in e_{s m}^{m}$ and a state trajectory $x \in S\left(x_{0}, u\right) \cap C_{s m}^{n}$ such that $y=0$. The space of these points is denoted by $v(\Sigma)$.
A point x_{0} is called strongly controllable if there exists an input $u \in C_{p-i m p}^{m}$ and a state trajectory $x \in S\left(x_{0}, u\right) \cap C_{p-i m p}^{n}$ such that $y=0$. The space of these points is denoted by $W(\Sigma)$.
A point x_{0} is called distributionally weakly unobservable if there exists an input $u \in e_{i m p}^{m}$ and a state trajectory $x \in$ $S\left(x_{0}, u\right)$ such that $y=0$. The space of these points is denoted by $\gamma_{d}(\Sigma)$.

A point x_{0} is called weakly unobservable strongly controllable if there exists an input $u \in C_{\text {imp }}^{m}$ and a state trajectory $x \in$ $S(0, u)$ such that $y=0$ and $E x_{0}=E\left(x\left(0^{+}\right)\right)$. The space of these points is denoted by $x(\Sigma)$.

For further use, we recall Rosenbrock's system matrix [24]

$$
P_{\Sigma}(s)=\left[\begin{array}{cc}
A-s E & B \tag{3.1}\\
C & D
\end{array}\right]
$$

$P_{\Sigma}(p)$ denotes the corresponding distributional matrix. The first theorem on the four subspaces of Definition 3.1 follows directly from the Main Lemma 2.5 .

Theorem 3.2.

$$
\psi_{d}(\Sigma)=\gamma(\Sigma)+w(\Sigma), g(\Sigma)=\gamma(\Sigma) \cap w(\Sigma) .
$$

Proof. First statement. $=$ Trivial, by definition. \Rightarrow Let x_{0} be such that for certain $\left[\begin{array}{l}x \\ u\end{array}\right] \in e_{i m p}^{n+m}, P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=\left[\begin{array}{c}-E x_{0} \\ 0\end{array}\right]$. Write $x=$ $x_{1}+x_{2}, u=u_{1}+u_{2}, u_{1}$ and x_{1} impulsive, u_{2} and x_{2} smooth. It follows that $\mathrm{pEx} \mathrm{x}_{1}=A \mathrm{x}_{1}+\mathrm{Bu} \mathrm{L}_{1}+\mathrm{E}\left(\mathrm{x}_{0}-\mathrm{X}_{2}\left(0^{+}\right)\right), C \mathrm{X}_{1}+\mathrm{Du} \mathrm{L}_{2}=0$ and hence $\left(\mathrm{x}_{0}-\mathrm{x}_{2}\left(0^{+}\right)\right) \in W(\Sigma)$. In addition, $\mathrm{pEx} \mathrm{X}_{2}=\mathrm{Ax} \mathrm{I}_{2}+\mathrm{Bu} \mathrm{u}_{2}+$ $E\left(X_{2}\left(0^{+}\right)\right), C x_{2}+D u_{2}=0$ and hence $X_{2}\left(0^{+}\right) \in T(\Sigma)$. We establish that $x_{0} \in \Psi(\Sigma)+w(\Sigma)$. Second statement. ε Let x_{0} be such that $P_{\Sigma}(p)\left[\begin{array}{l}x_{1} \\ u_{1}\end{array}\right]=\left[\begin{array}{c}-E x_{0} \\ 0\end{array}\right], x_{1}$ and u_{1} impulsive, and $P_{\Sigma}(p)\left[\begin{array}{l}x_{2} \\ u_{2}\end{array}\right]=\left[\begin{array}{c}-E x_{0} \\ 0\end{array}\right]$, x_{2} and u_{2} smooth. Then $P_{\Sigma}(p)\left[\begin{array}{l}-x_{1}+x_{2} \\ -u_{1}+u_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, in other words, x $:=-x_{1}+x_{2} \in S(0, u)$ with $u:=-u_{1}+u_{2}, C x+D u=0$ and $E\left(x\left(0^{+}\right)\right)=E\left(x_{2}\left(0^{+}\right)\right)=E x_{0}$ by Corollary 2.6. Thus, $X_{0} \in x(\Sigma) . \Rightarrow$ There exist $\left[\begin{array}{l}x \\ u\end{array}\right] \in C_{\text {imp }}^{n+m}$ such that $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $E\left(x\left(0^{+}\right)\right)=$ Ex x_{0}. If $x=x_{1}+x_{2}, u=u_{1}+u_{2}, x_{1}$ and u_{1} impulsive, x_{2} and u_{2} smooth, then $p E x_{2}=A x_{2}+B u_{2}+E x_{0}, C x_{2}+D u_{2}=0$ (hence $x_{0} \in$ $W(\Sigma))$ and $\mathrm{pE}\left(-\mathrm{x}_{1}\right)=\mathrm{A}\left(-\mathrm{x}_{1}\right)+\mathrm{B}\left(-u_{1}\right)+E x_{0}, C\left(-\mathrm{x}_{1}\right)+\mathrm{D}\left(-u_{2}\right)$ $=0$ (hence $x_{0} \in W(\Sigma)$). This completes the proof.

Remark 3.3.

Theorem 3.2 generalizes [23, Theorem 3.4] and [15, Propositions 3.23 and 3.25].

Of interest in the sequel is also the space ${ }_{C}(\Sigma)$ of points x_{0} for which there exist smooth x and u such that $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=$ $\left[\begin{array}{c}-E x_{0} \\ 0\end{array}\right]$ and $x\left(0^{+}\right)=x_{0} .{ }_{C}(\Sigma)$ is a subspace of $r(\Sigma)$. More precisely,

Proposition 3.4.

$$
\sigma(\Sigma)={ }_{C}(\Sigma)+\operatorname{ker}(\Sigma)
$$

Proof. Let $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=\left[\begin{array}{c}-E x_{0} \\ 0\end{array}\right],\left[\begin{array}{l}x \\ u\end{array}\right]$ smooth. Then $x\left(0^{+}\right) \in \boldsymbol{\gamma}_{C}(\Sigma)$ (yes, see (2.5b)!) and $x_{0}-x\left(0^{+}\right) \in \operatorname{ker}(E)$ by Corollary 2.6 . Thus, $x_{0}=x\left(0^{+}\right)+\left(x_{0}-x\left(0^{+}\right)\right) \in \gamma_{C}(\Sigma)+\operatorname{ker}(E) \in \operatorname{Ker}(E) \subset$ $s(\Sigma)$.

We establish from Theorem 3.2 and Proposition 3.4 that $\sigma(\Sigma), x(\Sigma)$ and $\tau_{d}(\Sigma)$ are known if $\tau_{C}(\Sigma)$ and $w(\Sigma)$ are. For these latter spaces we have the next statements and algorithms.

Proposition 3.5.

Let \mathcal{L} be any subspace of \mathbb{R}^{n}. Then

$$
\left[\begin{array}{l}
A \\
C
\end{array}\right] \mathcal{L} \subset\left[\begin{array}{l}
E \mathcal{L} \\
0
\end{array}\right]+\operatorname{im}\left(\left[\begin{array}{l}
B \\
D
\end{array}\right]\right) \Leftrightarrow
$$

$$
\exists_{F} \in \mathbb{R}^{m \times n}:(A+B F) \ell \in E L, \quad(C+D F) \ell=0 .
$$

Proof. See e.g. the proof of [15, Theorem 3.10].

Theorem 3.6.
${ }_{C}(\Sigma)$ is the largest subspace $\&$ for which

$$
\left[\begin{array}{l}
A \\
C
\end{array}\right] \rho \in\left[\begin{array}{c}
E L \\
0
\end{array}\right]+\operatorname{im}\left(\left[\begin{array}{l}
B \\
D
\end{array}\right]\right)
$$

Moreover, if \boldsymbol{X} is any subspace of \mathbb{R}^{1} such that

$$
x \subset E\left[\begin{array}{l}
A \\
C
\end{array}\right]^{-1}\left(\left[\begin{array}{l}
x \\
0
\end{array}\right]+i m\left(\left[\begin{array}{l}
B \\
D
\end{array}\right]\right)\right\} \text {, then } x \subset E ⿶_{C}(\Sigma) \text {. }
$$

Proof. Without proof (compare e.g. [15, (3.12)]) we state

$$
{ }_{x_{0}} \in \mathbb{V}_{C}(\Sigma)^{\exists} u_{0} \in \mathbb{R}^{m: A x_{0}}+B u_{0} \in E V_{C}(\Sigma), C x_{0}+D u_{0}=0
$$

It follows that $\left[\begin{array}{l}A \\ C\end{array}\right]{ }^{\top} C(\Sigma) \subset\left[\begin{array}{c}E r_{C}(\Sigma) \\ 0\end{array}\right]+i m\left(\left[\begin{array}{l}B \\ D\end{array}\right]\right)$. Next, let $\&$ be any space such that for certain $F \in \mathbb{R}^{m \times n}$ (Proposition 3.5), (A + $\mathrm{BF}) \mathcal{L} \subset \mathrm{EL},(\mathrm{C}+\mathrm{DF}) \boldsymbol{\ell}=0$. Then there exist a matrix K and a basis matrix L for $\ell^{1)}$ such that $(A+B F) L=E L K$ and $(C+D F) L=$ 0. Now, let $1=L \bar{x} \in \ell$. By verification we establish that $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=\left[\begin{array}{c}-E 1 \\ 0\end{array}\right]$ with $\left[\begin{array}{l}x \\ u\end{array}\right]=\left[\begin{array}{l}I \\ F\end{array}\right] L(p I-K)^{-1} \bar{x}$ and $x\left(O^{+}\right)=L \bar{x}=1$ [15, p. 375]. Hence $1 \in{ }_{C}(\Sigma)$. This proves the first claim.

Next, we have $x=E\left(E^{-1} x\right)$ since $x \subset$ im (E) (always $E\left(E^{-1} x\right) \subset x$). Now, assume that EN $\subset E M$ with $\mu:=\left[\begin{array}{l}A \\ C\end{array}\right]^{-1}\left\{\left[\begin{array}{l}E x \\ 0\end{array}\right]+\operatorname{im}\left(\left[\begin{array}{l}B \\ D\end{array}\right]\right)\right\}$. Then N $\subset M+\operatorname{ker}(E)$. In addition, $\mu \subset\left[\begin{array}{l}A \\ C\end{array}\right]^{-5}\left\{\left[\begin{array}{l}E \mu \\ 0\end{array}\right]+\operatorname{im}\left(\left[\begin{array}{l}B \\ D\end{array}\right]\right)\right\}$, i.e., $\left[\begin{array}{l}A \\ C\end{array}\right] \mu$ $\subset\left[\begin{array}{l}E M \\ 0\end{array}\right]+\operatorname{im}\left(\left[\begin{array}{l}B \\ D\end{array}\right]\right)$, since $E N \in E M$. But then, by the foregoing, $A \subset$ ${ }^{\gamma_{C}}(\Sigma)$ and hence $N \subset{ }_{C}(\Sigma)+\operatorname{ker}(E)$ and $E N \subset E \sigma_{C}(\Sigma)$. Taking $N=$ E^{-1} S completes the proof (1) this observation was found in [25]).

Remark 3.7.

Our space ${ }_{C}(\Sigma)$ corresponds to the so-called supremal output Nulling (A, E, im(B))-invariant subspace of [25] - however, we do not require $s E-A$ to be invertible. If $D=0$, then $r_{C}(\Sigma)$ equals the supremal (A, E, B)-invariant subspace γ^{\star} in $[10$, Sec. 2] (see Proposition 3.8) - yet, unlike as in [10, Sec. 3], we allow $s E$ - A to be arbitrary in our dynamical subspace interpretations.

Proposition 3.8 contains the same Molinari-type algorithm [26] for the construction of $\tau_{C}(\Sigma)$ as e.g. [10].

Proposition 3.8.

Consider the algorithm

$$
\tau_{0}:=\mathbb{R}^{n}, \tau_{i+1}:=\left[\begin{array}{l}
A \\
C
\end{array}\right]^{-1}\left(\left[\begin{array}{c}
E \gamma_{i} \\
0^{2}
\end{array}\right]+i m\left(\left[\begin{array}{l}
B \\
D
\end{array}\right]\right)\right\} .
$$

Proof. The inclusion is clear by induction. Next, we have ${ }_{c}(\Sigma)$ $\subset v_{i}$ for all i, since if $v_{i} \supset{ }_{C}(\Sigma)$, then $v_{i+1} \supset{ }_{C}(\Sigma)$ by Theorem 3.6. Now assume that $\tau_{i}=\tau_{i+1}$. Then $\tau_{i} \subset \gamma_{C}(\Sigma)$, again by Theorem 3.6. It follows that $\boldsymbol{v}_{i}={ }_{C}(\Sigma)$ and thus $\boldsymbol{v}_{n}={ }_{C}(\Sigma)$.

Next, we investigate $w(\Sigma)$.

Theorem 3.9.

W($\Sigma)$ is the smallest subspace \mathcal{L} for which

$$
E^{-1}[A B]\left\{\left(\ell \oplus \mathbb{R}^{m}\right) \cap \operatorname{ker}\left(\left[\begin{array}{ll}
C & D \tag{3.2}
\end{array}\right]\right\} \subset \ell\right.
$$

Proof. Assume that X_{0} is such that $E x_{0}=A w+B u_{0}$ with $C w+D u_{0}$ $=0, u_{0} \in \mathbb{R}^{m}$ and $W \in \mathbb{W}(\Sigma)$. There exist impulsive u_{1} and x_{1} such that $p E x_{1}=A x_{1}+B u_{1}+E w, C x_{1}+D u_{1}=0$, by definition of $w(\Sigma)$. Now, define $\bar{u}:=p u_{1}-u_{0}$, impulsive, and $\bar{x}:=p x_{1}-w$, impulsive. Then $\mathrm{pE} \overline{\mathrm{x}}=\mathrm{A} \overline{\mathrm{x}}+\mathrm{B} \bar{u}+E x_{0}, C \bar{x}+D \bar{u}=0$, i.e., $\mathrm{x}_{\mathrm{o}} \in$ $\mathcal{W}(\Sigma)$. Next, let $\mathcal{L} \subset \mathbb{R}^{n}$ satisfy (3.2) and let $x_{0} \in \mathbb{W}(\Sigma)$. Then there exist impulsive u_{1} and X_{1} such that $p E x_{1}=A x_{1}+B u_{1}+E x_{0}$ and $C x_{1}+D u_{1}=0$. Suppose $u_{1}=\sum_{i=0}^{k} \beta_{i} p^{i}$ and $x_{1}=\sum_{i=0}^{k+j} \alpha_{i} p^{i}$ with α_{i}, β_{i} real column vectors and $j \geq 0$. Then $E \alpha_{k+j}=0, E \alpha_{k+j-1}=$ $A \alpha_{k+j}, C \alpha_{k+j}=0, \ldots, E \alpha_{k}=A \alpha_{k+1}, C \alpha_{k+1}=0, E \alpha_{k-1}=A \alpha_{k}+$ $B \beta_{k}, C \alpha_{k}+D \beta_{k}=0, \ldots, E \alpha_{0}=A \alpha_{1}+B \beta_{1}, C \alpha_{1}+D \beta_{1}=0,0=A \alpha_{0}$ $+B \beta_{0}+E x_{0}, C \alpha_{0}+D \beta_{0}=0$. Hence $\alpha_{k+j} \in \mathcal{L}, \alpha_{k+j-1} \in \mathcal{L}, \ldots, \alpha_{k}$ $\in \mathcal{L}, \alpha_{k-1} \in \mathcal{L}, \ldots, \alpha_{0} \in \mathcal{L}$ and $x_{0} \in \mathcal{L}$. If $j=-k, \ldots,-1$, the proof runs similarly.

Theorem 3.10.

Consider the algorithm

$$
\begin{aligned}
& w_{0}:=\operatorname{ker}(E) \\
& w_{i+1}:=E^{-1}[A B]\left\{\left(w_{i} \oplus \mathbb{R}^{m}\right) \cap \operatorname{ker}([C D])\right\}
\end{aligned}
$$

Then $w_{0} \subset w_{1} \subset \ldots \subset w_{n}=w(\Sigma)$.

Proof. Since ker $(E) \subset \mathbb{W}_{1}$, the inclusions are clear by induction. Also, $w_{0} \subset w(\Sigma)$. Now, suppose that $w_{i} \subset w(\Sigma)$. Then $w_{i+1} \subset w(\Sigma)$ by Theorem 3.9 and thus all $w_{i} \subset w(\Sigma)$. If $w_{i}=w_{i+1}$, then $w_{i} c$ $W(\Sigma) \subset w_{i}$ (Theorem 3.9) and thus $w_{i}=w(\Sigma)$ - in particular, $w_{n}=$ W(Σ) since our system is finite-dimensional.

Remark 3.11.

Our subspace $\mathbb{W}(\Sigma)$ is the generalization of Malabre's f^{*} in [10, Definition 12], where $s E-A$ is assumed invertible. If $D=0$, $W(\Sigma)$ may be called the infimal (C, A, E) -invariant subspace related to im(B) [10], see also Corollary 3.13. Note that every point in w_{i} (Theorem 3.10) can be "controlled impulsively" by an impulsive $\left[\begin{array}{l}u \\ x\end{array}\right]=\psi(p)$, where $\psi(s)$ is polynomial of degree $\leq i-1$ (and a polynomial of degree -1 is assumed to be zero). This follows directly from the proof of Theorem 3.9. In terms of Willems [27], $W(\Sigma)$ stands for the controllable L_{2}-almost output nulling subspace and $\boldsymbol{\sigma}_{d}(\Sigma)$ stands for the L_{2}-almost output nulling subspace. Our $R(\Sigma)$ corresponds to Willems' controllable output nulling subspace. See also [6, p. 1291].

There exist certain duality (see e.g. [22, Ch. 0.12]) results between ${ }_{{ }_{C}}(\Sigma)$ and $w(\Sigma)$, but not the usual ones $[15$, p. 380] of course, as 1 may be unequal to n. Theorem 3.12 generalizes duality statements in [10], since we start from open-loop subspace definitions (Definition 3.1) rather than from algebraic representations as Theorems 3.6 and 3.9.

Theorem 3.12.

Let $\Sigma^{\prime}:=\left(E^{\prime}, A^{\prime}, C^{\prime}, B^{\prime}, D^{\prime}\right)$. Then

$$
w(\Sigma)=\left(E^{\prime} q_{C}\left(\Sigma^{\prime}\right)\right)^{\perp}=E^{-1}\left(q_{C}\left(\Sigma^{\prime}\right)\right)^{\perp}
$$

and $\left(W\left(\Sigma^{\prime}\right)\right)^{\perp}=E \gamma_{C}(\Sigma)$.

Proof. According to Theorem 3.6, we have

$$
\begin{aligned}
& E \cdot q_{C}\left(\Sigma^{\prime}\right) \subset E \cdot\left[\begin{array}{l}
A^{\prime} \\
B^{\prime}
\end{array}\right]^{-1}\left\{\left[\begin{array}{c}
E^{\prime} \psi_{C}\left(\Sigma^{\prime}\right) \\
O^{\prime}
\end{array}\right]+i m\left(\left[\begin{array}{l}
C \\
D^{\prime}
\end{array}\right]\right)\right\}, \\
& \text { and hence } x:=\left(E^{\prime q_{C}}\left(\Sigma^{\prime}\right)\right)^{\perp} \supset E^{-1}\left[\begin{array}{ll}
A & B
\end{array}\left\{\left(\mathbb{H} \oplus \mathbb{R}^{m}\right) \cap \operatorname{ker}([C D])\right\}\right. \text {. }
\end{aligned}
$$

Thus, $w(\Sigma) \subset x$ by Theorem 3.9, i.e., $E \cdot{ }_{C}\left(\Sigma{ }^{\prime}\right) \subset(W(\Sigma))^{1}$. On the other hand, $(W(\Sigma))^{\perp} \in E \cdot\left[\begin{array}{l}A^{\prime} \\ B^{\prime}\end{array}\right]^{-1}\left\{\left[\begin{array}{c}(W(\Sigma))^{\perp} \\ 0\end{array}\right]+i m\left(\left[\begin{array}{l}C \\ D^{\prime}\end{array}\right]\right)\right\}$, again by Theorem 3.9, and hence $(W(\Sigma))^{\perp} \subset E \cdot \Psi_{C}(\Sigma ')$ by the last claim of Theorem 3.6! It follows that $\left.(\mathbb{w}(\Sigma))^{\perp}=E \cdot \Phi_{C}(\Sigma)^{\prime}\right)$ and thus $w(\Sigma)=$ $\left(E \cdot r_{C}(\Sigma)\right)^{\perp}=E^{-1}\left(r_{C}\left(\Sigma^{\prime}\right)\right)^{\perp}$. Hence also $w\left(\Sigma^{\prime}\right)=\left(E r_{C}(\Sigma)\right)^{\perp}$.

Corollary 3.13.
$W(\Sigma)$ is the smallest subspace $\&$ for which there exists a matrix $G \in \mathbb{R}^{l \times \mathbf{r}}$ such that

$$
E^{-1}|(A+G C) \ell+i m(B+G D)| \subset \ell .
$$

Proof. By Proposition 3.5 and Theorem 3.6, there exists a Gr \in $\mathbb{R}^{r \times 1}$ such that

$$
\left(A^{\prime}+C^{\prime} G^{\prime}\right) \otimes_{C}\left(\Sigma^{\prime}\right) \subset E^{\prime} ष_{C}\left(\Sigma^{\prime}\right),\left(B^{\prime}+D^{\prime} G^{\prime}\right) \nabla_{C}\left(\Sigma^{\prime}\right)=0 .
$$

Hence, by Theorem 3.12, $(A+G C) w(\Sigma) \subset\left(r_{C}\left(\Sigma^{\prime}\right)\right)^{1}$, im $(B+G D) \subset$ $\left(r_{C}\left(\Sigma^{\prime}\right)\right)^{\perp}$, i.e., $(A+G C) w(\Sigma)+i m(B+G D) \subset\left(\boldsymbol{r}_{C}\left(\Sigma^{\prime}\right)\right)^{\perp}$ and thus $E^{-1}\{(A+G C) w(\Sigma)+i m(B+G D)\} \subset W(\Sigma) ; W(\Sigma)$ satisfies the claim. Next, let $L \subset \mathbb{R}^{n}$ and $G \in \mathbb{R}^{l \times r}$ such that
$\mathcal{L}^{\perp} \subset E^{\prime}\left\{\left(A^{\prime}+C^{\prime} G^{\prime}\right)^{-1} \ell^{\perp} \cap \operatorname{ker}\left(B^{\prime}+D^{\prime} G^{\prime}\right)\right\}$,
then $\ell^{\perp} \subset E \cdot\left[\begin{array}{l}A^{\prime} \\ B^{\prime}\end{array}\right]^{-1} 1\left[\begin{array}{l}\ell^{\perp} \\ 0\end{array}\right]+\operatorname{im}\left(\left[\begin{array}{l}C^{\prime} \\ D^{\prime}\end{array}\right]\right) 1$ and hence $\mathcal{L}^{\perp} \subset E^{\prime} \Upsilon_{C}\left(\Sigma^{\prime}\right)$ (last statement of Theorem 3.6), i.e., $\ell \supset W(\Sigma)$ (Theorem 3.12).

In this Section we have defined 5 different subspaces in terms of distributions and we have seen how they can be computed - note, that all results reduce directly to corresponding ones in [15] if $E=I$.

In the final Section 4 we will define our concepts of singular system invertibility and relate these notions to the subspaces as well as to the system matrix.
4. System invertibility.

Invertibility concepts in terms of distributions for standard systems, i.e., systems with $E=I$, were introduced in [15, Section 3], see also [27]. Now we propose the following straightforward generalizations of these concepts for an arbitrary singular system Σ of the form

$$
\begin{equation*}
\mathrm{pEx}=A \mathrm{x}+\mathrm{Bu}+E \mathrm{x}_{0}, \mathrm{y}=C \mathrm{x}+\mathrm{Du} \tag{4.1}
\end{equation*}
$$

with $\left(x_{0}, u\right) \in \mathbb{R}^{n} \times e_{i m p}^{m}$. As in Corollary 2.4 , we denote the set of $k_{1} \times k_{2}$ matrices with elements in $\mathbb{R}(s)$, the field of rational functions, by $M^{k_{1} \times k_{2}}(s)$.

Definition 4.1.

A system $\Sigma=(E, A, B, C, D)$ is called left invertible in the weak sense if

$$
x_{0}=0 \text { and } y=0 \Rightarrow u=0
$$

Theorem 4.2.
Σ is left invertible in the weak sense if and only if for every $\left[\begin{array}{l}\mathrm{x}(\mathrm{s}) \\ \mathrm{u}(\mathrm{s})\end{array}\right] \in \mathrm{M}^{(\mathrm{n}+\mathrm{m}) \times 1}(\mathrm{~s})$,

$$
P_{\Sigma}(s)\left[\begin{array}{l}
x(s) \\
u(s)
\end{array}\right]=0 \Leftrightarrow\left[\begin{array}{ll}
A- & s E \\
C
\end{array}\right] x(s)=0, u(s)=0
$$

Proof. \Rightarrow Assume that (Proposition 2.3) $P_{\Sigma}(p)\left[\begin{array}{l}x(p) \\ u(p)\end{array}\right]=0$. Then, by definition, $u(p)=0$ and also $\left[\begin{array}{cc}A & -p E \\ C\end{array}\right] x(p)=0$. Assume without loss of generality that $\left[\begin{array}{lll}A & - & s E \\ & C & \end{array}\right]=\left[\begin{array}{l}Q_{1}(s) \\ Q_{2}(s)\end{array}\right]\left[I_{n_{1}} \quad X(s)\right]$ with
 $X(s) \in M^{n_{1} \times\left(n-n_{1}\right)}(s)$. Then the claim is equivalent to left-invertibility of $\left[\begin{array}{ll}Q_{1}(s) & B \\ Q_{2}(s) & D\end{array}\right]$ (Proof: Let $\left[\begin{array}{ll}Q_{1}(s) & B \\ Q_{2}(s) & D\end{array}\right]\left[\begin{array}{l}x_{1}(s) \\ u(s)\end{array}\right]=$ 0 , then $\left[\begin{array}{l}Q_{1}(s) \\ Q_{2}(s)\end{array}\right]\left[\begin{array}{ll}I_{n_{1}} & X(s)]\left[\begin{array}{c}X_{1}(s) \\ 0\end{array}\right]+\left[\begin{array}{l}B \\ D\end{array}\right] u(s)=0 \text { and hence } u(s)=, ~=~=~\end{array}\right]$
 0 then $\left[I_{n_{1}} X(s)\right] x(s)=0, u(s)=0$, and thus $\left[\begin{array}{c}A-s E \\ c\end{array}\right] x(s)=0$, $u(s)=0$.) Hence, if $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=0$ for certain $\left[\begin{array}{l}x \\ u\end{array}\right] \in e_{i m p}^{n+m}$, then $\left[\begin{array}{l}Q_{1}(p) \\ Q_{2}(p)\end{array}\right]\left[I_{n_{1}} x(p)\right] x+\left[\begin{array}{l}B \\ D\end{array}\right] u=0$. Let $L(s) \in M^{\left(n_{1}+m\right) \times(1+r)}(s)$ be a left inverse of $\left[\begin{array}{ll}Q_{1}(s) & B \\ Q_{2}(s) & D\end{array}\right]$, then (Corollary 2.4) $\left[I_{n_{1}} X(p)\right] x=0$, $u=0$ since $c_{i m p}$ is a commutative ring. This completes the proof.

Definition 4.3.

A system $\Sigma=(E, A, B, C, D)$ is called right invertible in the weak sense if

$$
\forall_{\bar{y}}^{-} \in e_{i m p}^{r}{ }^{\exists} u \in e_{i m p}^{m} x \in S(0, u): y=\bar{y}
$$

Theorem 4.4.

Σ is right invertible in the weak sense if and only if for every $[\eta(s) \xi(s)] \in M^{1 \times(l+r)}(s)$,

$$
[\eta(\mathrm{s}) \xi(\mathrm{s})] \mathrm{P}_{\Sigma}(\mathrm{s})=0 \Leftrightarrow \eta(\mathrm{~s})[\mathrm{A}-\mathrm{sE} \quad \mathrm{~B}]=0, \xi(\mathrm{~s})=0 .
$$

Proof. \Rightarrow Assume that (Proposition 2.3) $[\eta(p) \xi(p)] P_{\Sigma}(p)=0$. Since for every standard basis vector e_{i} in $\mathbb{R}^{1}(i=1, \ldots, 1)$ there exists a $\left[\begin{array}{l}x_{i} \\ u_{i}\end{array}\right] \in C_{i m p}^{n+m}$ such that $P_{\Sigma}(p)\left[\begin{array}{l}x_{i} \\ u_{i}\end{array}\right]=\left[\begin{array}{l}0 \\ e_{i}\end{array}\right]$ (with e_{i} now standing for $e_{i} \delta!$), we find that $\xi(p)=0$ and thus also $\eta(\mathrm{p})[\mathrm{A}-\mathrm{pE} \mathrm{B}]=0$. © Dualize the second part of Theorem 4.2.

Remark 4.5.

Fully independently, several kinds of invertibility were defined and characterized for discrete-time singular systems in [29]. Apparently, left (right) invertibility in [29] coincides with our left (right) invertibility in the weak sense (compare [29, Corollaries 3.1, 4.1] with our Theorems 4.2, 4.4), although our definitions for continuous-time systems are given in terms of distributions. However, one should recall in this context that left (right) invertibility for standard systems (= left (right) invertibility of the associated transfer function) was formulated within a distributional framework earlier [15]. Finally, observe that weak left and weak right invertibility are dual concepts.

Weak right invertibility can also be quantified with the set τ of points x_{0} from where every $\bar{y} \in C_{i m p}^{r}$ is attainable:

$$
\begin{equation*}
\boldsymbol{g}:=\left\{x_{0} \in \mathbb{R}^{n} \mid \forall \bar{y} \in c_{i m p}^{r}{ }^{\exists} u \in c_{i m p}^{m}{ }^{\exists} x \in S\left(x_{0}, u\right): y=\bar{y}\right\} \tag{4.2}
\end{equation*}
$$

It is clear that $\sigma \subset{ }_{d}(\Sigma)$, the distributionally weakly unobservable subspace. The converse is true if and only if Σ is right invertible in the weak sense, i.e., if $0 \in \mathscr{G}$.

Theorem 4.6.
Σ is right invertible in the weak sense if and only if $g=$ ${ }^{*}(\Sigma)$.

Proof. \Rightarrow Let $x_{0} \in \psi_{d}(\Sigma)$, i.e., let $\left[\begin{array}{l}x_{1} \\ u_{1}\end{array}\right] \in e_{i m p}^{n+m}$ be such that $P_{\Sigma}(p)\left[\begin{array}{l}x_{1} \\ u_{1}\end{array}\right]=\left[\begin{array}{c}-E x_{0} \\ 0\end{array}\right]$ and let $\bar{Y} \in e_{i m p}^{r}$. Then there also exists a $\left[\begin{array}{l}x_{2} \\ u_{2}\end{array}\right]$ such that $P_{\Sigma}(p)\left[\begin{array}{l}x_{2} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ y\end{array}\right]$. It follows that $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=$ $\left[\begin{array}{c}-E x_{0} \\ \bar{y}\end{array}\right]$ with $\left[\begin{array}{l}x \\ u\end{array}\right]=\left[\begin{array}{l}x_{1}+x_{2} \\ u_{1}+u_{2}\end{array}\right]$ and hence $x_{0} \in \mathscr{G} \in 0 \in \mathcal{Y}_{d}(\Sigma)$.

The case $g=\mathbb{R}^{n}$ turns out to be of special interest.

Definition 4.7.

A system Σ is called right invertible in the strong sense if

$$
\forall_{x_{0}} \in \mathbb{R}^{n \forall y_{y}} \in e_{i m p}^{r}{ }^{\exists} u \in e_{i m p}^{m} x \in S\left(x_{0}, u\right): y=\bar{y}
$$

Proposition 4.8.
Σ is right invertible in the strong sense if and ouly if Σ is right invertible in the weak sense and $\boldsymbol{q}_{d}(\Sigma)=\mathbb{R}^{n}$.

Proof. $\Rightarrow \sigma=\mathbb{R}^{n} \subset \mathscr{q}_{d}(\Sigma) \subset \mathbb{R}^{n}$. $\&$ From Theorem 4.6, $\sigma=\mathbb{R}^{n}$.

If sE - A is invertible, then, according to Proposition 4.8 and [23, Theorem 3.8], weak right invertibility implies strong right invertibility (see also [15, Theorem 3.24] for the case E $=I$). In general, however, this is not the case. More precisely,

Theorem 4.9.

The following statements are equivalent.
i) Σ is right invertible in the strong sense.
ii) $\quad \tau_{d}(\Sigma)=\mathbb{R}^{n}$,

$$
\begin{aligned}
& \forall[\eta(s) \xi(s)] \in M^{1 \times(l+r)}(s): \\
& \quad[\eta(s) \quad \xi(s)]\left[\begin{array}{lll}
E & A & B \\
0 & C & D
\end{array}\right]=0 \Leftrightarrow \eta(s)\left[\begin{array}{lll}
E & A & B
\end{array}\right]=0, \xi(s)=0 .
\end{aligned}
$$

iii) ${ }^{\forall}[\eta(s) \xi(s)] \in M^{1 \times(1+r)}(s):$

$$
[\eta(s) \xi(s)] P_{\Sigma}(s)=0 \curvearrowleft \eta(s)[E A B]=0, \xi(s)=0
$$

Proof. i) \Rightarrow ii). For every standard basis vector e_{i} in \mathbb{R}^{1} there exist u_{i} and x_{i} in $C_{i m p}^{m}$ and $e_{i m p}^{n}$, respectively, such that $p E x_{i}=$ $A x_{i}+B u_{i}, e_{i}=C x_{i}+D u_{i}$. If $[\eta(s) \xi(s)]\left[\begin{array}{lll}E & A & B \\ 0 & C & D\end{array}\right]=0$, then $0=$
$\eta(p) p E x_{i}=\eta(p)\left[A x_{i}+B u_{i}\right]=-\xi(p)\left[C x_{i}+D u_{i}\right]=-\xi(p) e_{i}$
(Proposition 2.3) and hence $\xi(p)=0$. ii) \Rightarrow iii). Assume that $[\eta(s) \xi(s)] P_{\Sigma}(s)=0$. Since $\gamma_{d}(\Sigma)=\mathbb{R}^{\mathrm{n}}$, it follows that $\eta(\mathrm{p}) E x_{0}$ $=0$ for all x_{0}, i.e., $\eta(p) E=0$. Thus, by ii) and Proposition 2.3., $\eta(s)[E A B]=0$ and $\xi(s)=0$. iii) \Rightarrow i). Without loss of generality, assume that $\left[\begin{array}{lll}E & A & B\end{array}\right]=\left[\begin{array}{lll}\mathrm{T}_{1} \\ \mathrm{Y}_{1}\end{array}\right]\left[\begin{array}{lll}\mathrm{T}_{1} & \mathrm{~T}_{2} & \mathrm{~T}_{3}\end{array}\right]$ with $\mathrm{T}_{\mathrm{i}} \in$ $\mathbb{R}^{1_{1} \times n}(i=1,2), T \in \mathbb{R}^{1_{1} \times m}, Y \in \mathbb{R}^{\left(1-1_{1}\right) \times 1_{1}},\left[T_{1} T_{2} T_{3}\right]$ right invertible. Then it follows that $\left[\begin{array}{llll}\mathrm{T}_{2} & - & \mathrm{sT}_{1} & \mathrm{~T}_{3} \\ & \mathrm{C} & & \mathrm{D}\end{array}\right]$ is right invertible (compare second part of proof of Theorem 4.2). If $R(s)$ is any right inverse, then for every $x_{0} \in \mathbb{R}^{n}, \bar{y} \in \mathbb{C}_{\text {imp }}^{r}$ it can be easily seen that $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=\left[\begin{array}{c}-E x_{0} \\ \bar{y}\end{array}\right]$ with $\left[\begin{array}{l}x \\ u\end{array}\right]:=$ $R(p)\left[-\frac{T}{Y} x_{0}\right]$. This completes the proof.

Not surprisingly, the dual counterpart of strong right invertibility will be called strong left invertibility.

Definition 4.10 .

A system Σ will be called left invertible in the strong sense if

$$
x_{0}=0, y=0 \Rightarrow u=0, E x=0
$$

Theorem 4.11.

The following statements are equivalent.
i) Σ is left invertible in the strong sense.
ii) $x(\Sigma)=\operatorname{ker}(E)$,

$$
\begin{aligned}
& \forall\left[\begin{array}{l}
x(s) \\
u(s)
\end{array}\right] \in M^{(n+m) \times 1}(s): \\
& {\left[\begin{array}{ll}
E & 0 \\
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x(s) \\
u(s)
\end{array}\right]=0 \Leftrightarrow\left[\begin{array}{l}
E \\
A \\
C
\end{array}\right] x(s)=0, u(s)=0 . }
\end{aligned}
$$

iii) $\forall\left[\begin{array}{l}x(s) \\ u(s)\end{array}\right] \in M^{(n+m) \times 1}(s):$

$$
P_{\Sigma}(s)\left[\begin{array}{l}
x(s) \\
u(s)
\end{array}\right]=0 \Leftrightarrow\left[\begin{array}{l}
E \\
\mathbb{A} \\
C
\end{array}\right] x(s)=0, u(s)=0
$$

Proof. i) \Rightarrow iii). By Proposition 2.3 , we establish that $u(p)=$ 0. $\left[\begin{array}{c}A-p E \\ C\end{array}\right] x(p)=0$ and $E x(p)=0$. iii) \Rightarrow i). We may write $\left[\begin{array}{l}\mathbb{E} \\ A \\ C\end{array}\right]=$ $\left[\begin{array}{l}Q_{1} \\ Q_{2} \\ Q_{3}\end{array}\right]\left[\begin{array}{ll}I & X\end{array}\right]$ with $\left[\begin{array}{l}Q_{1} \\ Q_{2} \\ Q_{3}\end{array}\right]$ left invertible. As earlier, we establish that $\left[\begin{array}{ccc}Q_{2} & -s Q_{1} & B \\ Q_{3} & D\end{array}\right]$ is left invertible. Now let $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=0,\left[\begin{array}{l}x \\ u\end{array}\right]$ $\in e_{i m p}^{n+m}$ i.e., let $\left[\begin{array}{c}Q_{2} \\ Q_{3} \\ Q_{3} Q_{1}\end{array}\right]\left[\begin{array}{ll}I & X\end{array}\right] x+\left[\begin{array}{l}B \\ D\end{array}\right] u=0$. Then $\left[\begin{array}{ll}I & X\end{array}\right] x=0$, $u=0$ and hence $E x=0, u=0$. ii) \Leftrightarrow iii). If $\Sigma^{\prime}:=\left(E^{\prime}, A^{\prime}\right.$, $\left.C^{\prime}, B^{\prime}, D^{\prime}\right)$, then it follows from the above and Theorem 4.9 that Σ^{\prime} is strongly right invertible if and only if Σ is strongly left invertible. Since $\gamma\left(\Sigma^{\prime}\right)+w\left(\Sigma^{\prime}\right)=\mathbb{R}^{1} \Leftrightarrow{ }_{C}\left(\Sigma^{\prime}\right)+w\left(\Sigma^{\prime}\right)=\mathbb{R}^{1}$ (Proposition 3.4) $\Leftrightarrow\left(\boldsymbol{r}_{C}\left(\Sigma^{\prime}\right)\right)^{\perp} \cap E{r_{C}}(\Sigma)=0$ (Theorem 3.12) \Leftrightarrow $\left(\nabla_{C}\left(\Sigma^{\prime}\right)\right)^{\perp} \cap E V(\Sigma)=0 \Leftrightarrow E^{-1}\left(\gamma_{C}\left(\Sigma^{\prime}\right)\right)^{\perp} \cap \gamma(\Sigma)=\operatorname{ker}(E) \Leftrightarrow W(\Sigma) \cap$ $T(\Sigma)=x(\Sigma)=\operatorname{ker}(\Sigma)$ (Theorems 3.12, 3.2), the proof is now complete.

Proposition 4.12.
Σ is left invertible in the strong sense if and only if Σ is left invertible in the weak sense and $x(\Sigma)=\operatorname{ker}(E)$.

Proof. $\Sigma^{\prime}:=\left(E^{\prime}, A^{\prime}, C^{\prime}, B^{\prime}, D^{\prime}\right)$ is strongly right invertible if and only if Σ^{\prime} is weakly right invertible and $\gamma_{d}\left(\Sigma^{\prime}\right)=\mathbb{R}^{l}$, by Proposition 4.8.

Hence weak and strong left invertibility are equivalent, just as weak and strong right invertibility are, if sE - A is invertible [23, Theorem 3.9]. Our final Corollaries consider two more general situations where weak and strong left (right) invertibility are equivalent.

Corollary 4.13.

Assume that [E A B] is of full row rank. Then the following statements are equivalent.
i) Σ is right invertible in the strong sense.
ii) $\quad r_{d}(\Sigma)=\mathbb{R}^{n},\left[\begin{array}{lll}E & A & B \\ 0 & C & D\end{array}\right]$ is of full row rank.
iii) $P_{\Sigma}(s)$ is right invertible as a rational matrix.

Moreover,

$$
\begin{aligned}
& {[A-s E \text { B] right invertible } \varnothing} \\
& { }^{\forall} x_{0} \in \mathbb{R}^{n \exists} u \in C_{i m p}^{m}: S\left(x_{0}, u\right) \neq \emptyset
\end{aligned}
$$

amd if $[A-s E \quad B]$ is right invertible, then weak and strong right invertibility are equivalent.

Proof. The first claim is immediate from Theorem 4.9. If $R(s)=$ $\left[\begin{array}{l}R_{1}(s) \\ R_{2}(s)\end{array}\right]$ is a right inverse of $[A-s E \quad B]$, then $u:=R_{2}(p)\left(-E x_{0}\right)$ is such that $x:=R_{1}(p)\left(-E x_{0}\right) \in S\left(x_{0}, u\right)$. Conversely, assume that $\eta(s)[A-s E B]=0\left(\eta(s)\right.$ rational), then $\eta(p) E x_{0}=0$ for all x_{0} and hence $\eta(p)=0$. Finally, apply Theorem 4.4.

Remark 4.14.

In [13, Definition 2.4], [30, Definition 3.1] the system pEx $=$ $\mathrm{Ax}+\mathrm{Bu}+E \mathrm{x}_{0}$ is called (C)-ontrol solvable if

$$
{ }^{x_{0}} \in \mathbb{R}^{n \exists} u \in e_{i m p}^{m}: S\left(x_{0}, u\right) \neq \varnothing
$$

Indeed, if for a certain $x_{0}, S\left(x_{0}, u\right)=$ for all u, then $e . g$. linear-quadratic optimal control problems [15], [27], [21], [8], [28], [31] are not well posed. Since one may assume without loss of generality that [EA B] is of full row rank in (2.4a), we observe from Corollary 4.13 that right invertibility (in either sense) is equivalent to right invertibility of Rosenbrock's system matrix if the system (2.4a) is C-solvable.

Corollary 4.15.
Assume that $\left[\begin{array}{l}E \\ A \\ C\end{array}\right]$ is of full column rank. Then the following statements are equivalent.
i) Σ is left invertible in the strong sense.
ii) if $x_{0}=0$ and $y=0$, then $u=0, x=0$.
iii) $x(\Sigma)=\operatorname{ker}(E),\left[\begin{array}{ll}E & 0 \\ A & B \\ C & D\end{array}\right]$ is of full column rank.
iv) $P_{\Sigma}(s)$ is left invertible as a rational matrix.

Moreover, if $\left[\begin{array}{c}A-s E \\ C\end{array}\right]$ is left invertible, then weak and strong left invertibility are equivalent.

Proof. Straightforward, by dualizing Corollary 4.13; observe that, if $P_{\Sigma}(p)\left[\begin{array}{l}x \\ u\end{array}\right]=0$ yields $u=0$ and $E x=0$, then also $\left[\begin{array}{l}E \\ A \\ C\end{array}\right] x=$ 0 and hence $u=0, x=0$.

Remark 4.16.

Observe that, if $s E$ - A is invertible, then left (right) invertibility of the system matrix $\mathrm{P}_{\Sigma}(\mathrm{s})$ is equivalent to left (right) invertibility of $T(s)=D+C(s E-A)^{-1} B$, the transfer function of Σ [23, Theorems 3.8, 3.9].

Remark 4.17.

In the recent [16], conditions for left and right invertibility of singular systems were given in the case of existence of the transfer function, that naturally arises when starting from a realizational point of view, that is, when one tries to find a suitable state-space representation for a linear system given by autoregressive equations.

Here, however, we consider the "reversed" situation: A system is given in state-space form as a result of its mere nature (an electrical circuit or an econometrical model, for instance) and one is interested in the system's behaviour under the influence of diverse control inputs. Moreover, we do not require the transfer function to exist. For example, if $\Sigma=(0,0, I, I, 0)$, then the transfer function does not exist according to [16, Theorem 4.3], whereas in our context the (pathological) system Σ is both left and right invertible in the strong sense.

5. Conclusions.

By means of our fully algebraic distributional framework and without any assumptions on the coefficients of the singular system $\Sigma=(E, A, B, C, D)$, we have defined and characterized in full detail
several subspaces of interest (e.g. with respect to optimal control problems) and their relative connections, and
several concepts of left and right invertibility for the system Σ and the 'gaps' between these notions.

Moreover, we have proven various relations between these subspaces, the concepts of invertibility and Rosenbrock's system matrix.

In future papers such as [31] we hope to present a complete treatment of general linear-quadratic optimal control problems subject to general linear systems along the lines of the distributional approach and the results exposed here and in [30].

This paper was written in Spring 1991, when the author was with the Mathematical Institute of Wuerzburg University, Am Hubland, D-8700 Wuerzburg, Germany, as an Alexander von Humboldt-research fellow.

References.

[1] S.L. Campbell, Singular Systems of Differential Equations, Pitman, San Francisco, vol. 1, 1980, vol. 2, 1982.
[2] F.L. Lewis, "A survey of linear singular systems", J. Circ. Syst. \& Sign., vol. 5, pp. 3-36, 1986.
[3] G.C. Verghese, B.C. Levy \& T. Kailath, "A generalized state-space for singular systems", IEEE Trans. Aut. Ctr., vol. AC-26, pp. 811-831, 1981.
[4] Z. Zhou, M.A. Shayman \& T.-J. Tarn, "Singular systems: A new approach in the time domain", IEEE Trans. Aut. Ctr., vol. $A C-32, ~ p p .42-50,1987$.
[5] J. Grimm, "Realization and canonicity for implicit systems", SIAM J. Ctr. \& Opt., vol. 26, pp. 1331-1347, 1988.
[6] A. Banaszuk, M. Kociecki, \& K.M. Przyluski, "The disturbance decoupling problem for implicit linear discrete-time systems", SIAM J. Ctr. \& Opt., vol. 28, pp. 1270-1293, 1990.
[7] D.G. Luenberger, "Time-invariant descriptor systems", Automatica, vol. 14, pp. 473-480, 1978.
[8] D. Cobb, "Descriptor variable systems and optimal state regulation", IEEE Trans. Aut. Ctr., vol. AC-28, pp. 601-611, 1983.
[9] L. Pandolfi, "On the regulator problem for linear degenerate control systems", J. Opt. Th. Appl., vol. 33, pp. 241-254, 1981.
[10] M. Malabre, "Generalized linear systems: Geometric and structural approaches", Lin. Alg. 8 Appl., vol. 122/123/124, pp. 591-621, 1989.
[11] L. Schwartz, Theorie des Distributions, Hermann, Paris, 1978.
[12] G. Doetsch, Einfuehrung in Theorie und Anwendung der Laplace Transformation, Birkhaeuser, Stuttgart, 1970.
[13] T. Geerts \& V. Mehrmann, "Linear differential equations with constant coefficients: A distributional approach", Preprint 90-073, SFB 343, Universitaet Bielefeld, Germany.
[14] M.L.J. Hautus, "The formal Laplace transform for smooth linear systems", Lecture Notes in Econ. \& Math. Syst., vol. 131, pp. 29-46, 1976.
[15] M.L.J. Hautus \& L.M. Silverman, "System structure and singular control", Lin. Alg. 8 Appl., vol. 50, pp. 369-402, 1983.
[16] M. Kuijper \& J.M. Schumacher, "State space formulas for transfer poles at infinity", Preprint CWI Amsterdam, 1991.
[17] B.L. van der Waerden, Algebra, Springer Berlin-Heidelberg, erster Teil, 1966, zweiter Teil, 1967.
[18] E.C. Titchmarsh, Fourier Integrals, Oxford, 1937.
[19] W. Greub, Lineare Algebra, Springer Berlin-Heidelberg, 1976.
[20] G. Birkhoff \& S. MacLane, A Survey of Modern Algebra, Macmillan, New York, 1951.
[21] T. Geerts, Structure of Linear-Quadratic Control, Ph.D Thesis, Eindhoven, 1989.
[22] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer, New York, 1979.
[23] T. Geerts, "Invertibility properties of singular systems: A distributional approach", Proc. First European Control Conference (ECC '91, Grenoble, France, July 2-5), Hermes, Paris, vol. 1, pp. 71-74, 1991.
[24] H.H. Rosenbrock, "Structural properties of linear dynamical systems", Int. J. Ctr., vol. 20, pp. 191-202, 1974.
[25] F.L. Lewis \& K. Ozçaldiran, "Geometric structure and feedback in singular systems", IEEE Trans. Aut. Ctr., vol. AC-34, pp. 450-455, 1989.
[26] B.P. Molinari, "A strong controllability and observability in linear multivariable control", IEEE Trans. Aut. Ctr., vol. $\mathrm{AC}-21, \mathrm{pp} .761$-764, 1976.
[27] J.C. Willems, A, Kitapci \& L.M. Silverman, "Singular optimal control: A geometric approach", SIAM J. Ctr. \& Opt., vol. 24, pp. 323-337, 1986.
[28] D.J. Bender \& A.J. Laub, "The linear-quadratic optimal regulator for descriptor systems", IEEE Trans. Aut. Ctr., vol. AC-32, pp. 672-688, 1987.
[29] A. Banaszuk, M. Kociecki \& F.L Lewis, "On various kinds of invertibility for implicit linear systems", Proc. First European Control Conference (EEC '91, Grenoble, France, July 2-5), Hermes, Paris, vol. 1, pp. 66-70.
[30] T. Geerts, "Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems", Lin. Alg. \& Appl., to appear.
[31] T. Geerts, "Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems", preprint, submitted.

IN 1991 REEDS VERSCHENEN

466 Prof.Dr. Th.C.M.J. van de Klundert - Prof.Dr. A.B.T.M. van Schaik Economische groei in Nederland in een internationaal perspectief

467 Dr. Sylvester C.W. Eijffinger
The convergence of monetary policy - Germany and France as an example
468 E. Nijssen
Strategisch gedrag, planning en prestatie. Een inductieve studie binnen de computerbranche

469 Anne van den Nouweland, Peter Borm, Guillermo Owen and Stef Tijs Cost allocation and communication

470 Drs. J. Grazell en Drs. C.H. Veld
Motieven voor de uitgifte van converteerbare obligatieleningen en warrant-obligatieleningen: een agency-theoretische benadering

471 P.C. van Batenburg, J. Kriens, W.M. Lammerts van Bueren and R.H. Veenstra Audit Assurance Model and Bayesian Discovery Sampling

472 Marcel Kerkhofs Identification and Estimation of Household Production Models

473 Robert P. Gilles, Guillermo Owen, René van den Brink Games with Permission Structures: The Conjunctive Approach

474 Jack P.C. Kleijnen
Sensitivity Analysis of Simulation Experiments: Tutorial on Regression Analysis and Statistical Design

475 C.P.M. van Hoesel An $0(n \log n)$ algorithm for the two-machine flow shop problem with controllable machine speeds

476 Stephan G. Vanneste
A Markov Model for Opportunity Maintenance
477 F.A. van der Duyn Schouten, M.J.G. van Eijs, R.M.J. Heuts Coordinated replenishment systems with discount opportunities

478 A. van den Nouweland, J. Potters, S. Tijs and J. Zarzuelo Cores and related solution concepts for multi-choice games

479 Drs. C.H. Veld
Warrant pricing: a review of theoretical and empirical research
480 E. Nijssen
De Miles and Snow-typologie: Een exploratieve studie in de meubelbranche

481 Harry G. Barkema
Are managers indeed motivated by their bonuses?

482 Jacob C. Engwerda, André C.M. Ran, Arie L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X+A^{\top} X^{-1} A=I$

483 Peter M. Kort
A dynamic model of the firm with uncertain earnings and adjustment costs

484 Raymond H.J.M. Gradus, Peter M. Kort Optimal taxation on profit and pollution within a macroeconomic framework

485 René van den Brink, Robert P. Gilles
Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures

486 A.E. Brouwer \& W.H. Haemers
The Gewirtz graph - an exercise in the theory of graph spectra
487 Pim Adang, Bertrand Melenberg
Intratemporal uncertainty in the multi-good life cycle consumption model: motivation and application

488 J.H.J. Roemen
The long term elasticity of the milk supply with respect to the milk price in the Netherlands in the period 1969-1984

489 Herbert Hamers
The Shapley-Entrance Game
490 Rezaul Kabir and Theo Vermaelen
Insider trading restrictions and the stock market
491 Piet A. Verheyen
The economic explanation of the jump of the co-state variable
492 Drs. F.L.J.W. Manders en Dr. J.A.C. de Haan
De organisatorische aspecten bij systeemontwikkeling
een beschouwing op besturing en verandering
493 Paul C. van Batenburg and J. Kriens
Applications of statistical methods and techniques to auditing and accounting

494 Ruud T. Frambach
The diffusion of innovations: the influence of supply-side factors
495 J.H.J. Roemen
A decision rule for the (des)investments in the dairy cow stock
496 Hans Kremers and Dolf Talman
An SLSPP-algorithm to compute an equilibrium in an economy with linear production technologies
497 L.W.G. Strijbosch and R.M.J. Heuts
Investigating several alternatives for estimating the compound lead time demand in an (s, Q) inventory model
498 Bert Bettonvil and Jack P.C. Kleijnen Identifying the important factors in simulation models with many factors
499 Drs. H.C.A. Roest, Drs. F.L. Tijssen
Beheersing van het kwaliteitsperceptieproces bij diensten door middel van keurmerken
500 B.B. van der Genugten Density of the F-statistic in the linear model with arbitrarily normal distributed errors
501 Harry Barkema and Sytse Douma The direction, mode and location of corporate expansions
502 Gert Nieuwenhuis Bridging the gap between a stationary point process and its Palm distribution
503 Chris Veld
Motives for the use of equity-warrants by Dutch companies
504 Pieter K. Jagersma
Een etiologie van horizontale internationale ondernemingsexpansie
505 B. Kaper
On M-functions and their application to input-output models
506 A.B.T.M. van Schaik
Produktiviteit en Arbeidsparticipatie
507 Peter Borm, Anne van den Nouweland and Stef Tijs Cooperation and communication restrictions: a survey
508 Willy Spanjers, Robert P. Gilles, Pieter H.M. Ruys Hierarchical trade and downstream information
509 Martijn P. Tummers
The Effect of Systematic Misperception of Income on the Subjective Poverty Line
510 A.G. de Kok
Basics of Inventory Management: Part 1
Renewal theoretic background
511 J.P.C. Blanc, F.A. van der Duyn Schouten, B. Pourbabai Optimizing flow rates in a queueing network with side constraints
512 R. Peeters
On Coloring j-Unit Sphere Graphs

```
5 1 3 \text { Drs. J. Dagevos, Drs. L. Oerlemans, Dr. F. Boekema}
    Regional economic policy, economic technological innovation and
    networks
514 Erwin van der Krabben
    Het functioneren van stedelijke onroerend-goed-markten in Nederland -
    een theoretisch kader
5 1 5 \text { Drs. E. Schaling}
    European central bank independence and inflation persistence
516 Peter M. Kort
    Optimal abatement policies within a stochastic dynamic model of the
    firm
517 Pim Adang
    Expenditure versus consumption in the multi-good life cycle consump-
    tion model
518 Pim Adang
    Large, infrequent consumption in the multi-good life cycle consump-
    tion model
519 Raymond Gradus, Sjak Smulders
    Pollution and Endogenous Growth
5 2 0 ~ R a y m o n d ~ G r a d u s ~ e n ~ H u g o ~ K e u z e n k a m p ~
    Arbeidsongeschiktheid, subjectief ziektegevoel en collectief belang
521 A.G. de Kok
    Basics of inventory management: Part 2
    The (R,S)-model
5 2 2 ~ A . G . ~ d e ~ K o k
    Basics of inventory management: Part 3
    The (b,Q)-model
5 2 3 ~ A . G . ~ d e ~ K o k ~
    Basics of inventory management: Part 4
    The (s,S)-model
524 A.G. de Kok
    Basics of inventory management: Part 5
    The (R,b,Q)-model
5 2 5 ~ A . G . ~ d e ~ K o k ~
    Basics of inventory management: Part 6
    The (R,s,S)-model
526 Rob de Groof and Martin van Tuijl
        Financial integration and fiscal policy in interdependent two-sector
        economies with real and nominal wage rigidity
```

[^0]
IN 1992 REEDS VERSCHENEN

532	F.G. van den Heuvel en M.R.M. Turlings Privatisering van arbeidsongeschiktheidsregelingen Refereed by Prof.Dr. H. Verbon
533	J.C. Engwerda, L.G. van Willigenburg LQ-control of sampled continuous-time systems Refereed by Prof.dr. J.M. Schumacher
534	J.C. Engwerda, A.C.M. Ran \& A.L. Rijkeboer
Necessary and sufficient conditions for the existence of a positive	
definite solution of the matrix equation X + A*X	

544 R. Heuts, P. Nederstigt, W. Roebroek, W. Selen Multi-Product Cycling with Packaging in the Process Industry Refereed by Prof.dr. F.A. van der Duyn Schouten

545 J.C. Engwerda
Calculation of an approximate solution of the infinite time-varying LQ-problem
Refereed by Prof.dr. J.M. Schumacher
546 Raymond H.J.M. Gradus and Peter M. Kort On time-inconsistency and pollution control: a macroeconomic approach Refereed by Prof.dr. A.J. de Zeeuw

547 Drs. Dolph Cantrijn en Dr. Rezaul Kabir De Invloed van de Invoering van Preferente Beschermingsaandelen op Aandelenkoersen van Nederlandse Beursgenoteerde Ondernemingen Refereed by Prof.dr. P.W. Moerland

548 Sylvester Eijffinger and Eric Schaling Central bank independence: criteria and indices Refereed by Prof.dr. J.J. Sijben

549 Drs. A. Schmeits Geïntegreerde investerings- en financieringsbeslissingen; Implicaties voor Capital Budgeting
Refereed by Prof.dr. P.W. Moerland
550 Peter M. Kort
Standards versus standards: the effects of different pollution restrictions on the firm's dynamic investment policy Refereed by Prof.dr. F.A. van der Duyn Schouten

551 Niels G. Noorderhaven, Bart Nooteboom and Johannes Berger
Temporal, cognitive and behavioral dimensions of transaction costs; to an understanding of hybrid vertical inter-firm relations Refereed by Prof.dr. S.W. Douma

552 Ton Storcken and Harrie de Swart Towards an axiomatization of orderings Refereed by Prof.dr. P.H.M. Ruys

553 J.H.J. Roemen
The derivation of a long term milk supply model from an optimization model
Refereed by Prof.dr. F.A. van der Duyn Schouten
554 Geert J. Almekinders and Sylvester C.W. Eijffinger Daily Bundesbank and Federal Reserve Intervention and the Conditional Variance Tale in DM/\$-Returns
Refereed by Prof.dr. A.B.T.M. van Schaik
555 Dr. M. Hetebrij, Drs. B.F.L. Jonker, Prof.dr. W.H.J. de Freytas "Tussen achterstand en voorsprong" de scholings- en personeelsvoorzieningsproblematiek van bedrijven in de procesindustrie Refereed by Prof.dr. Th.M.M. Verhallen

556 Ton Geerts
Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems
Communicated by Prof.dr. J. Schumacher

17000011084754

[^0]: 527 A.G.M. van Eijs, M.J.G. van Eijs, R.M.J. Heuts Gecoördineerde bestelsystemen een management-georiënteerde benadering

 528 M.J.G. van Eijs Multi-item inventory systems with joint ordering and transportation decisions

 529 Stephan G. Vanneste Maintenance optimization of a production system with buffercapacity

 530 Michel R.R. van Bremen, Jeroen C.G. Zijlstra Het stochastische variantie optiewaarderingsmodel

 531 Willy Spanjers Arbitrage and Walrasian Equilibrium in Economies with Limited Information

