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INVARIANT SUBSPACES AND INVERTIBILITY PROPERTIES FOR
SINGULAR SYSTEMS: THE GENERAL CASE

Ton Geerts x),
Tilburg University, Dept. of Econometrics,

P.O. Box 90153, NL-5000 LE Tilburg, the Netherlands.

ABSTRACT

Open-loop definitions and properties of several
subspaces for general singular systems are
characterized by means of a fully algebraic
distributional framework. Simple recursive algorithms
for producinq these spaces as well as related duality
aspects turn out to follow directly from these
definitions. Next, we provide definitions and
conditions for two notions of left (riqht)
invertibility of a general sinqular system in terms
of our distributions, subspaces, and Rosenbrock's
system matrix, and we show which conditions represent
the 'qap' between our invertibility concepts.
Finally, we prove that in many cases left (riqht)
invertibility is equivalent to left (right)
invertibility of the system matrix.

KEYWORDS

Sinqular system, impulsive-smooth distributions,
stronq controllability, duality, weak and strong left
and right invertibility.

1. Introduction.

ve consider linear time-invariant systems on a?` :- [0, ~)
in the qeneralized state space form

Ex(t) - Ax(t) t Bu(t), (l.la)
y(t) - Cx(t) f Du(t), (l.lb)

where E, A e A21~, B e~tl~, C e~r~, D e Rr~, and x(t) e~n,
u(t) e ~tm, ylt) E~tr for all t~ 0. No assumptions will be made
on E or on the matrix pencil (sE - A). Systems (1.1) are called
singular [1] - [4], implicit [5] - [6], descriptor systems [7] -
[8], degenerate [9] or generalized systems [10]. Various
contributors on sinqular systems have investiqated various
aspects under various assumptions - for the sake of brevity, we
refer to our own refer2nces as well as to those mentioned there.
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In this paper we will define and characterize several
subspaces of a~n for general sinqular systems (1.1). Since the
open-loop definitions of these spaces are in terms of (special)
distributions, their systemic interest (e.q. in view of optimal
control problems) becomes directly apparent. Our distributional
framework enables us to formulate and prove in a straiqhtforward
manner various statements on these spaces and our algorithms for
computing them are in line with earlier expectations (e.q.
[10]). Moreover, we will present definitions of and equivalent
statements (expressed in subspaces and Rosenbrock's system
matrix [24]) on our concepts of w~eak and strong left and right
invertibility for a system (1.1), and we will specify when the
two notions are equivalent as in [23]. To the best of our
knowledqe, our results on invertibility for continuous-time
singular systems are the most general and, perhaps, also the
most eleqant ones.

Before qoing into details in Section 2, we shall spend the
rest of this Introduction on the issue of consistency of initial

conditions and the interpretation of "initial conditions" in our
distributional setting.

It is well known that every initial condition x, :- x(0) is
~.onsistent [1] if 1- n and E is invertible. In case of a
sinqular matrix E, however, this need not be the case.

Example [3, p. 812].
Consider

LO O~ ~X2~ - ~O O~ ~X2~ t ~o 1 U.

It follows that x, -- u, xl`- - u. Hence, if u, sufficiently
smooth, is qiven, then there exísts only one consistent initial
condition, namely xo, -- u(0'), :cO2 -- u(0'). (Conversely, one
can say that if x,,, xO2 are given, then u is consistent if it
is sufficiently well-behaved and u(0`) -- xO2, u(0') -- xoi).

However, when modeling e.g. electrical circuits, it may
occur that the initial value xo need not be consistent, i.e.,
that xa x x(0'). For instance, in [3] it is stated that the
model of our Example with u- 0 corresponds to a simple circuit
with unit capacitor only, x2 denotinq its potential, xl the
current (see below).



If at t- 0 the switch is closed and x„ - x,(0') - 0, x02 -
x2(0") ~ 0{and hence inconsistent), then the solution is [3] x,
- 0, xl -- xO2b(t), b(t) denotinq the Dirac delta function. In
other words, for arbitrary initial conditions xo :- x(0') a
solution of (l.la) (if any) may exhibit imF~ulsive behaviour even
if the input u is an ordinary function.

Such observations led several authors on sinqular systems
(e.q. [8]) to the use of qeneralized functions (distribations

(11]), whereas others (e.q. [3]) based their analysis on the
Laplace transformation approach of Doetsch [12, i 22].

Recently ( 13], [30] it was demonstrated that both
viewpoints can be captured in one fully algebraic and therefore
easily understandable distributional framework without using
Kronecker canonical forms, state space decompositions,
unnecessarily involved distributions or artificial extra
parameters. The method's power lies in the combination of the
linear system structure and the eleqant class cimp of allowed

distributions. Loosely speakinq (for more details, see Section
2), an element of Cimp ia a linear combination of an iar~rl`e (a

distribution with support 0) and a distribution that can be
identified with a smuoth function on ~k' [15], and cimp is a

commutative alqebra over ~t with convolution of distributions as
multiplication (unit element b, the Dirac delta distribution),
see [14]. Instead of (l.la), we introduce in [13], [30] its
distributional version

8f1)~Ex - Ax t Bu f Exab,
with xo E Rn, a(1) denotinq the distributional
and x standing for convolutíon

(1.2)
derivative of 6,

of distributions.

(the m-vector version of Cimp), then we

pair (xo, u) the solution set

U E Cmimp
for every

If

can define

s(xo, u) :- (x E cimp~(a(1)E - Aa)~x - Bu t Exoal (1.3)
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and x is called a solution of (1.2) associated with (xa, u) if x
e Slxa, u). For many properties of our distributional setup, see
Section 2. Here, we would like to hiqhlight the presence of a
point x, in the distributional differential equation (1.2).

If 1- n and E is invertible, then we may assume without

loss of generality that E- I and (1.2) reduces to

b(1)xx - Ax f Bu t xoS. (1.4)
This distributional version of the ordinary differential
equation x- Ax t Bu on R` has been extensively studied in [15];
since (a(1}i - Aa) is within Cimp invertible w.r.t. convolution

xith inverse correspondinq to the smooth function exp(At) on R`,
see [15, p. 375], one can easily see that for every x, and every
smooth u the distributional differential equation (1.4) has
exactly one smooth solution x, corresponding to the function

exp(At)xo } ftexp(A(t-r))Bu(r)dr (1.5)
a

on R`. It follows that x(0') - xo - apparently, the arbitrary
point xo plays the role of initial condition if u is smooth and
E- I. In general, however, xo as well as u e cmmp may be

arbitrary in (1.2); consequently, the value of x immediately
after the impulse, x(0`), may be unequal to xo. iihat is more, we
will establish that not so much the property x, - x(0`) as its
qeneralization Ex, - Ex(0`) is strongly related to the question
of smoothness for solutions x of (1.2}.

Our approach of defining subspaces in Section 3 clearly
parallels the method followed in [15] - the claims in [15,
Section 3] turn out to be special cases of ours. One of the main
differences between singular systems and standard systems
(systems with E- I), however, is the fact, that, unlike any
solution x of (1.4), a solution x of (1.2) might be "more
impulsive" than the control u is. Our answer tn this extra
difficulty is the Hain Lemma, see Section 2. Part of our work
generalizes results in [10] as well as statements in [16] - in
particular, we do not preassume the existence of the transfer
function. Section 4 contains our main contributions on
invertibility for singular systems.
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2. Preliminaries.

As was stated in the Introduction, the distributional
framework based on Cimp allows a fully alqebraic treatment of
general sinqular systems - one miqht even forqet about beinq
involved with distributions at all. Iie will recall the headlines
only; for more details, see (14], [11].

Let ~- be the space of test functions with upper-bounded
support and let z,' denote the dual space of real-valued
continuous linear functionals on 2~-. Then the space ~r, of test
functions with loxer-bounded support can be considered as a
subspace of :z,~ by the identification ~p, p~ --~f}~(t)w(t)dt,

where ~u, p~ stands for the value of u e r,~ at p E~~-. It can
be shown that every u e~,~ has lower-bounded support. The
distributional derivatíve u(1) of u e~,~ is defined ~u(1), p~
.- - ~u, p~, p denotinq the ordinary derivative of w e m-. With
"pointwise" addition and scalar multiplication and with the
convolution ' as multiplication, r,~ is a commutative algebra
[17, vol. 2] over ~t with unit element a, defined by ta, p~ -
p(0) (p e~-). Also, we have u(1) - u(1? ~ a- (u ~ a) (1) - u ~
a(1). Any linear combination of a and its derivatives a(1?, 1~
1, is called impulsice. A distribution u e~,~ that can be
identified with an ordinary function (u!) is called sm~,~~th on s'`
if u is smooth on IR' [15] and zero elsewhere.

Linear combinations of impulsive distributions and smooth
distributions on At` will be called impul~is~e-smonth [15, Def.
3.1] and tha set Cimp of these impulsive-smooth distributions is

a subalqebra. In particular, this implies that cimp is closed

under differentiation (- convolution with a(1)) and under
inteqration (- convolution with the inverse of a(1), the
Heaviside distribution H). Also the next property of cimp is

important.

Proposition 2.1 [14, Theorem 3.11]..

Let u e c. . Then there exists a v E C. such that u~v - vxu -imp imp
a(i.e., v- u'`) if and only if u é,n,.
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Thus, every impulsive distribution u s 0 is invertible
within Cimp. Now if we define [14, Def. 3.1]

p:- 6(1) pk :- pk-1,,P (k ~ 2), Po :- ó, (2.1a)
p~` :- H, p-1 - p-(1-1),~p-~ (1 ~ 2), (2.1b)

then it is easily seen that pkfl - pk,~pl (k,l e 2) [14, Prop.
3.2] and thus (pk)"' - p-k and (p')'' - po - 6; we will write p'
- 1 and a8 - a(a e at). From now on, convolution will be denoted
by juxtaposition (recall that cimp is a commutative algebra).

Observe that the decomposition of u E Cimp in an impulsive and a
smooth part is uaique. If c denotes the subalgebra of purep-imp
impulses and csm the subalgebra of smooth distributions on rt'

and if u- ul f u~, u, E Cp-imp, u2 E Csm, then u(0') :- lim
t10

us(0'). If u e Cimp is smooth, and u stands for the distribution

that can be identified with the ordinary derivative of u on s'`,
then one can easily show that

pu - u t u(0') (2.2)
(with u(0') - u(0`)a!). In particular, p0 - 0(the derivative of
0 is 0), but also p''0 - p'`(p0) -(p~'p)0 - 0, i.e., the
primitive of 0 equala 0. Thus, pu - 0 s~ u- 0.~ p''u - 0. More
genarally, we even have

Proposition 2.2.

If u, v E CimP and uv - 0, then either u andlor v equals 0.

Proof. If u E x~, then v- 0 and if v E~" then u- 0 by
Proposition 2.1. If u and v are both smooth, then the claim
follows from Titchmarsh's Theorem [18, Th. 152].

Next, let Cf denote the set of fractiana! impulses:

ef :- lu E Cimp~u - ulu~-', u,,, e cp-imp, u2 x 01. (2.3)

If u- ulu,"', v- v,v,"' ( u2, v2 s 0) are both in cf, then

u t v- (u,v, t uZV,)(v2u2)'' e cf, uv - ulv,(u2v,)'` e cf and

Cf is again a subalgebra of Cimp. Moreover,
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Proposition 2.3.

The commutative field Cf is isomorphic to the commutative field
of rational functions ~t(s).

Proof. Let ~t[s] denote the integral domain (with unit element)
of polynomials xith real coefficients. Then it is clear that
IR(s] and Cp-imp are isomorphic (see (2.1) ). Now et(s) and Cf can

be identified xith the quotient fields of pt(s) and cp-imp'
respectively (17, vol. 1, 4 13].

Corollary 2.4.

Let k,, k, be any nonnegatíve integers and let Mk~xkz(s),
Mf'xk'(p) denote the sets of klxkZ matrices with elements in
IR(s) and Cf, respectively. If T(s) E Mk'~Z(s) and T(p) is the
corresponding distributional matrix in Hf'xk2(p), then

3L(s) e Mk'xk'(s) : L(s)T(s) - Ik2 c. 3L E Ck2xk~ : LT(p)
imp

and also

3R(s) E Mk2~'(s) : T(s)R(s) - Ik' Q 3R e Ck2xkl : T(P)R - Ik'.
imp

In particular, T(s) is left (right) invertible as a rational
matrix if and only T(p) is left (right) invertible as a matrix
with elements in Cf.

Proof. Assume that L(s)T(s) - I1, let Llp) be the correspondinq
matrix xith elements in cf. Then L(p)T(p) - I1 (- Ila!) because

of Proposition 2.3. Conversely, assume that Tls)~(s) - 0 for
some 1-vector of rational functions. It follows that T(p)q(p) -
0. Since Cimp is a commutative rinq ( even an integral domain
Nith unit element 6, see Proposition 2.2), we establish that
f(p) - Ilf(P) - [LT(DI]f(D) - L[T(p)f(p)] - 0, i.e., f(s) - 0
and hence T(s) ís left invertible as a rational matrix (for
references on linear algebra and matrix computations, we refer
to [17], [19], [20]). The proof for the second claim runs
analoqously.
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Ye are ready for the diatributional version of (1.1) on ~t'
( see (1.2)1

pEx - Ax t Bu t Ex,, (2.4a)
y - Cx } Du, (2.4b)

together with the solution set S(x„ u) for every pair ( xo, u) E
IRn x C~mp ((1.3)), lie stress that this way of defining a general
sinqular system on ~t' unifies e.g. [3] - (4], [8], [10], [12],
[25], [28], but also the well-known (15] for standard systems
(see Section 1). In addition, if the arbitrary point xo is
consistent (see Section 1), then it can be proven [13, Th.
2.13], [30, Sec. 2] that (2.4a) has a functional solution x with
x(0') - x,. For instance, consider the distributional version of

Exanple (continued).
Consider D[0 O] [xz, -[0 1, [x2, }[1]u }[0 0, LxO2, and let u,

smooth, be qiven. If x„ -- u(0') and xO2 -- u(0'), then x2 -

- u and x~(0') - xoZ and xi - p(- u) - x„ -- u((2.2)) and

x,(0`) - xo,.

Note that u- 0 yields x2 - 0, x, -- xO2, which agrees with [3]
(see Section 1).

Apparently, singular systems, unlike standard systems, may
qenerate impulsive solutions even if the inputs are smooth. We
will deal with this aspect by means of the next basic result.

Main Lemma 2.5.

Let Xp E IRn, ll - lil t U2, ul E Cp-imp, ui E CSm, X- X1 t X2 E

S(xa, u), xl E Cp-imp, x2 E Csm. Then

pEx, t E(x2(0')) - Ax, } Bu, f Ex „ (2.5a)
pEx2 - Ax, t Bu, t E(x2(0')). (2.5b)

Proof. We have pEx, } E(x2(0')) } [E(pxz - xZ(0')1] - Ax~ t Bu,

t Exo t[Ax2 t Buz] and px2 - x,(0`) is smooth ((2.2)).
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Corollary 2.6.

Let u e Csm, x, e IRn. If x e S(xo, u) n Csm, then Exo -

EfxlO`)).

Remark 2.7.

In [13, Prop. 3.5] it is proven that the converse of Corollary
2.6 is true if (sE - A) is invertible as a rational matrix. In
general, however, x may be impulsive even if Exo - E(x(0`)).
Example: P [0 0, [x,] - [10 0] [x,] } [O,u } [0 O] [xo2,.
If xo, - 0, then xol - xl(0`) (xl - 0), but xZ may be arbitrary.

Remark 2.8.

In principle it is possible to allow distributional inputs that
are linear combinations of impulses and distributions associated
with more qeneral functions with support on ~`. However, the
class of these distributions does not have such nice properties
as Cimp, and, moreover, it is lonq recoqnized that smoothness
requirements do not limit the possibilities for the treatment of
feedback ( pole placement, e.q. [4]), associated optimal control
problems [15], [9], [8], [28], [21], qeometric approaches and
invertibility properties [15], [22], [10], [23], realization
theory [5], [16], or solvability aspects (13], [30].

Remark 2.9.

By application of Kronecker's canonical form, it can be shown
(e.q. [8]) that (pE - A) is invertible within Cimp if and only

if det(sE - A) ~ 0. Note that this result follows directlv from
Proposition 2.3 (or Corollary 2.4). The combination of this
result with Lemma 2.5 turns out to be a successful one in the
sequel.
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3. Yeak unobservability and atronq controllability.

Given the system F: pEx - Ax f Bu t Ex „ y- Cx f Du, with
xo e ri and u e Cmmp. The followinq definitions qeneralize

associated concepts in [15, Section 3].

Definition 3.1.

A point xo is called Keakly unobservable if there exists an
input u e Cm and a state trajectory x e S(xo, u) n cn suchsm sm
that y- 0. The space of these points is denoted by ~(E).
A point x, is called stronqly controllable if there exists an
input u E Cp-imp and a state trajectory x e S(xo, u) n cp- pim
such that y- 0. The space of these points is denoted by w(E}.
A point xo is called distributionally Meakly unobservable if
there exists an input u e Cimp and a state trajectory x e

S(xo, u) such that y- 0. The space of these points is denoted
by w~( i) .

A point xo is called weakly unobservable stronqly controllable
if there exists an input u e C~mp and a state trajectory x e

S(0, u} such that y- 0 and Ex, - E(x(0')). The space of these
points is denoted by ~t(ï).

For further use, we recall Rosenbrock's system matrix [24]
P~(s) - (A C sE Dl. (3.1)

PE(p) denotes[the corresJpondinq distributional matrix. The first

theorem on the four subspaces of Definition 3.1 follows directly
from the liain Lemma 2.5.



Theorem 3.2.

Yi(E) - Y(E) f w(z) ,~e(E) - Y(a1 n w(E) .

Proof. First statement. c Trivial, by definition. a Let xa be
such that for certain ~u I E ~imp' PE(p) ~u~ - I-Ep'~- Arite x-

x, } x,, u- u, t u,, u,1and xl impulsive, u2 alnd x, smooth. It
follows that pEx, - Axl f Bul t E(xo - x2(0')), Cxl t Du, - 0
and hence (x, - x2(0`)) E w(E). In addition, pEx2 - Ax~ t Buz t
E(x2(0')), Cx2 f Du, - 0 and hence xz(0') E Y(E). We establish
that xo e Y(E) f w(I). Second statement. c Let xa be such that
PE(P) fuil - I-~x"I, x, and ul-iXpu}sXVe, andD PE(p) ~U~l - ~-Qx"l,

x, andl uJ2 smollloth.111Then PE(p) f- u' } u31 - fOl, in othelr words, Jx
l ~ :J l 1

.- - xl t x2 e S(0, u) with u:- - u, f uz, Cx t Du - 0 and

E(x(0')) - E(x,(0')) - Ex, by Corollary 2.6. Thus, xo e 5e(E). ~

There exist f~l e cimp such that PE(p)IuJ - fÓ~ and E(x(0`)) -

Ex,. If x- xl~ Jf xZ, u - u, t u„ x, andLu, imlpulsive, x2 and u2

smooth, then pEx2 - Ax2 t Bua f Exa, CxZ f Du, - 0(hence xo e

Y(E)) and pE(- x~) - A(- x,) t B(- u,) t Exo, C(- x,) t D(- ul)

- 0(hence xo e w(E)). This completes the proof.

Remark 3.3.

Theorem 3.2 generalizes [23, Theorem 3.4] and [15, Propositions
3.23 and 3.25].

Of interest in the sequel is also the space YC(E) of points

x, for which there exist smooth x and u such that PE(p) fu~ -

f-~x'1 and xl0') - x,. YC(E) is a subspace of Y(z). ltiore

pLrecisJely,

Proposition 3.4.

~y(I) - g-C(F) t ker(E).
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Proof. ~ Let P~(p) ~ui -~-Oxo~, i 1 smooth. Then x(0`) E YC(I)

(yes, see (2.5b)!) aJnd x, - x(0'L)uJE ker(E) by Corollary 2.6.

Thus, xo - x(0') f(xo - x(0`)) e wC(E) t ker(E). c Ker(E) c

We establish from Theorem 3.2 and Proposition 3.4 that
v~( F) ,~.( E) and rdl f) are knoHn if rC ( E) and ~r( E) are. For these

latter spaces we have the next statements and alqorithms.

Proposition 3.5.

Let t be any subspace of Rn. Then
~~lt c ~tl f im( ~l) cs
3FJE ~mhm": J(A t BFL) 1L c EL, (C f DF) L- 0.

Proof. See e.q. the proof of [15, Theorem 3.10].

Theorem 3.6.

v~C(F) is the larqest subspace t for which

Moreover, if 5[ is any subspace of ~tl such that
yc c EI~I-~I IÓ~ } im( IDJ)), then 9c c E~C(i).

Proof. Without proof ( compare e.q. [15, (3.12)]) we state

~X E Y( E)3U E aim: AXo t Bu0 E EYC(E), CX, t Dup - U.
o C o

It follorrs that f~1rC(F) c~~C(E) l f im( ~l}. Next, let t be

any space such thaltlfor certain F EJ~tm~ (ProJposition 3.5), (A t
BF) t c Et, (C } DF) t- 0. Then there exist a matrix K and a
basis matrix L for tl) such that ( A f BF)L - ELK and (C f DF)L -
0. Nor:, let 1- Lx e t. ey verification rre establish that
pt(P) IuJ - f-~ll With ful -(F ~L(PI - K) ' 'x and x(0') - Lx z 1

(15, Lp. 375)L. HJence lleJ vC(lE). This proves the first claim.

f~lt c ~tl t im(~ J ).
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Next, we have x- E(E'lx) since x c im(E) (always E(E"`x) c 5[).
Now, assume that Ex c E.l with At ~- ~~ -~1 ~x~ f im( ~l) f. TheÁ x

c~ t ker(E). In addition, ~tc rCl i 0 ll`t' im(~l)l,Ji.e., fC~a

c~~l f im( ~l), since Ex c E~t.l BJut thenJ, by theJforegoinq, L~ c

YC (lVE) J and hencJe x c YC ( z) t ker (E) and Ex c EYC ( F) . Taking x-

E"'x completes the proof (1) this observation was found in
[25] ) .

Remark 3.7.

Our space YC(i) corresponds to the so-called supremal Output

Nulling (A, E, im(B))-invariant subspace of [25] - however, we
do not require sE - A to be invertible. If D- 0, then YC(Z)

.equals the supremal (A, E, B)-invariant subspace Y in [10, Sec.
2] (see Proposition 3.8) - yet, unlike as in [10, Sec. 3], we
allow sE - A to be arbitrary in our dynamical subspace
interpretations.

Proposition 3.8 contains the same Molinari-type alqorithm [26]
for the construction of YC(Z) as e.g. [10].

Proposition 3.8.

Consider the algorithm
Yo '- ~n' Yifl :- f~~-11 ~Óil } im( ID~) I.

Then Y, ~ Y ~ ~ . . . ~ Yi h Yitl` ' .1. . ' rn` - YC ( E) .

Proof. The inclusion is clear by induction. Next, we have YC(z)

c Yi for all i, since if Yi ~ YC(F), then Yi}1 ~ YCIE) by

Theorem 3.6. Now assume that Yi - Yitl. Then Yi c YC(Z), again

by Theorem 3.6. It follows that Yi - YC(z) and thus Yn - YC(E).

Next, we investiqate t1(E).



Theorem 3.9.

w(E) is the smallest subspace t for Nhich
E'`[A B]I(t ~ Rm) n ker([C D])I c L. (3.2)

Proof. Assume that xo is such that Exo ~ AW t Buo vrith Cx t Duo
- 0, uo E ~tm and rr e w(z). There exist impulsive ul and x, such
that pExl - Axl t Bu, t Ex, Cx, t Dul - 0, by definition of
w(F). Nox, define u:- pul - uo, impulsive, and x : - pxl - w,
impulsive. Then pEx ~ Ax t Bu t Ex„ Cx t Du - 0, i.e., xo e
w(Z). Next, let t c IRn satisfy ( 3.2) and let xo e w(E). Then
there exist impulsive u, and x, such that pEx, - Axl t Bu, t Exo

k kfj
and Cx 1 t Du 1- 0. Suppose u, - i p. pl and x 1 - E a. pl rrith

i-0 1 i-0 1

ai, ~ti real column vectors and j ~ 0. Then Eaktj - 0, Eakt 1-j'
Aaktj, Caktj - 0, .. , Eak - Aaktl. Cak}1 - 0, Eak-1 - A~ t

B~, Cak t D~ - 0, . . , Eao - Aal t B~31, Cal t DR1 - 0, 0- Aao

t Bpo t Exo, Cao f Dpo - 0. Hence ak}j e t, akt 1 e t, .. , ak
j-

E t, ak-1 E t, .. , ao e t and xo e t. If j-- k, ..., - 1, the

proof runs similarly.

Theorem 3.10.

Consider the alqorithm
wo :- ker(E),
witl :- E'' [A Bl ((wi el Atm) n ker ([C D] ) I.

Then wo c wl c... c wn - w(z).

Proof. Since ker(E) c wl, the inclusions are clear by induction.
Also, wo c w(Z). Now, suppose that wi c w(E). Then wi}1 c w(E)

by Theorem 3.9 and thus all wi c w(E) . If wi - wi~l, then wi c

w(r) c wi (Theorem 3.9) and thus wi - w(Z) - in particular, wn -

w(F) since our system is finite-dimensional.
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Remark 3.11.

.
Our subspace w(i) is the qeneralization of Kalabre's . in [10,
Definition 12] , where sE - A is assumed invertible. If D- 0,
w(E) may be called the infimal (C, A, E)-invariant subspace
related to im(B) (10], see also Corollary 3.13. Note that every
point in wi (Theorem 3.10) can be "controlled impulsively" by an

impulsive (Xl -~(p), where r(s) is polynomial of deqree ~ i-1

(and a polLynJomial of degree -1 is assumed to be zero). This
follows directly from the proof of Theorem 3.9. In terms of
ilillems [27], w(F) stands for the controllable L2-almost output
nullinq subspace and Yd(E) stands for the L,-almost output

nullinq subspace. Our ~(z) corresponds to Willems' controllable
output nullinq subspace. See also [6, p. 1291].

There exist certain duality (see e.q. [22, Ch. 0.12]) results
between rC(Z) and w(F), but not the usual ones [15, p. 380] of

course, as 1 may be unequal to n. Theorem 3.12 qeneralizes
duality statements in [10], since we start from open-loop
subspace definitions (Definition 3.1) rather than from algebraic
representations as Theorems 3.6 and 3.9.

Theorem 3.12.

Let I' .- ( E', A', C', B', D'). Then
w(F) - (E'YC(F'))1 - E-`(YCIF')I1

and (w(i'))1 - EwCIE).

Proof. Accordinq to Theorem 3.6, we have
E'9'C(r') c E' rB~l `I ~E'óC(E') 1 t im( ID,J) {,

and hence x :- (E'IrCJ(Z' ) )ll ~ E" `[JA B] ( (xl ~ Rm) n ker ( [C D] ) i .
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Thus, w(F) c x by Theorem 3.9, i.e., E'rC(F') c(w(F))l. On the

other hand, (w(E))1 c E' fB,l 11 I(w(Ó))1~ f im(~D,l}), again by

Theorem 3.9, and hence (wl(E)J)1
clll

E'rC(z') by the lJast claim of

Theorem 3.6! It follows that (w(E))1 - E'rC(E') and thus w(f) -

(E'rC(E))1 - E'`(rC(E'))1. Hence also w(E'? - (ErC(F))l.

Corollary 3.13.

w(E) is the smallest subspace t for which there exists a matrix
G E ~lxr such that

E''I(A t GC)t f im(B t GD)I c t.

Proof. By Proposition 3.5 and Theorem 3.6, there exists a G' e
~rxl such that

(A' t C'G')rC(F') c E'rC(Z'), ( B' t D'G')rC(F') - 0.

Hence, by Theorem 3.12, ( A f GC)w(F) c(rC(z'))1, im(B t GD) c

(rC(E'))l, i.e., (A t GC)w(E) f im(B f GD) c ( rC(E'))1 and thus

E''I(A t GC)w(F) f im(B f GD)} c w(F); w(E) satisfies the claim.

Next, let t c~tn and G e R1~ such that

tl c E'I(A' f C'G')'`tl n ker(B' } D'G'1},
1

then tl c E' fB ,l-1! fp l f im((D,~}) and hence tl c E'rC(F')

(last statemenlt oJf ThleorJem 3.6) ,l i.e., t~ w(T) (Theorem 3.12) .

In this Section we have defined 5 different subspaces in
terms of distributions and we have seen how they can be computed
- note, that all results reduce directly to correspondinq ones
in [15] if E - I.

In the final Section 4 we will define our concepts of
sinqular system invertibility and relate these notions to the
subspaces as well as to the system matrix.
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4. System invertibility.

Invertibility concepts in terms of distributions for
stai~ar~i systems, i.e., systems with E- I, were introduced in
[15, Section 3], see also [27]. Now we propose the followinq
straightforward qeneralizations of these concepts for an
arbitrary singular system E of the form

pEx - Ax } Bu t Exa, y- Cx f Du, (4.1)
with ( xo, u) E ~Rn x Cmmp. As in Corollary 2.4, we denote the set

of k,xk2 matrices with elements in ~t(s), the field of rational
functions, by Mk,xk2(s).

Definition 4.1.

A system E-(E, A, B, C, D) is called left invertible in the

weak sense if

x, - 0 and y- 0 a u- 0.

Theorem 4.2.

i is left invertible in the weak sense if and only if for every
x(s) E M(ntm)xl(s),

[u(s)

P~(s)[uls), - 0 ca fA C sElx(s) - 0, u(s) - 0.

Proof. ~ Assume that (Proposition 2.3) Pr(p) fu~p~l - 0. Then, by

definition, u(p) - 0 and also (A C pElx(p) -LO. aJAssume without

loss of qenerality that fA l~ sEl J- f4`~s~~[In X(s)] with
l J L 2 ~

fQ'(s)1 e M(1}r)~'(s), left invertible as a rational matrix,lQ1ls) J
X(s) E Mn,x(n-n,)(s) Then the claim is equivalent to

~Q1(s) B 1 ~Q,(s) B l ~xl(s) 1 -
left-invertibility of Q2(s) D1 (Proof: Let QZ(s) D1 u(s) J

0, then (QZ~s)1[In X(s)] IxÓ(s)1 }~lu(s) - 0 and hence u(s) -
` J ~ L J
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0, x,(s) - 0. Conversely, let fQ3~s~l[In` X(s)]x(s) t~lu(s) -

0 then [In X(s)]x(s) - 0, u(s)L - O,1and thus (A é sEjxlsJ) - 0,

u(s) - 0.)1Hence, if P~(p)(u~ - 0 for certain lful E ci~p, then

[4,(P)J[ln. X(P)]x
t fDlu -l 0. Let L(s) E M(n'tlm)Jxlltr)(s) be a

left inverse of ~QZ(s)`DJ,, then (Corollary 2.4) [Inl X(p)]x - 0,

u- 0 since cimp is a commutative ring. This completes the

proof .

Definition 4.3.

A system Z-(E, A, B, C, D) is called right invertible in the

weak sense if

~y ECr 3U ECm 3X ES(O, ll)' y-y'
imp imp

Theorem 4.4.

F is right invertible in the weak sense if and only if for every

[~(s) gls)] E Mlx(ltr)(s),

[q(s) f(s)]PFIs) - 0 r~ q(s)[A - sE B] - 0, gls) - 0.

Proof. ~ Assume that (Proposition 2.3) [q(p) flp)]PE(p) - 0.

Since for every standard basis vector ei in R1 (i - 1, .. , 1)

there exists a fXil E Cntm such that P(p)(xi~ - fD 1(nith e.
lui J imp E lui lei J i

noN standing for eia:), we find that f(p) - 0 and thus also

q(p)[A - pE B] - 0. C Dualize the second part of Theorem 4.2.
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Remark 4.5.

Fully independently, several kinds of invertibility were defined
and characterized for discrete-time sinqular systems in [29].
Apparently, left (riqht) invertibility in [29] coincides with
our left (riqht) invertibility in the weak sense (compare [29,
Corollaries 3.1, 4.1] with our Theorems 4.2, 4.4), althouqh our
definitions for continaoas-tlme systems are qiven in terms of
distributions. However, one should recall in this context that
left (riqht) invertibility for standard systems (- left (ríqht)
invertibility of the associated transfer function) was
formulated within a distributional framework earlier [15].
Finally, observe that weak left and weak riqht invertibility are
dual concepts.

IJeak riqht invertibility can also be quantified with the
set ~ of points x, from where every y E Cimp is attainable:

~:- Ix, E Atn iv- r 3 m 3y E Cimp u E Cimp X E S(Xo, u) Y - Yi.
(4.2)

It is clear that ~ ~ Yd(z), the distributionally weakly

unobservable subspace. The converse is true if and only if Z is
riqht invertible in the weak sense, i.e., if 0 E~.

Theorem 4.6.

E is riqht invertible in the weak sense if and only if J-
wd( ï) .

Proof. ~ Let x, E Y~j(E), i.e., let fu 'l E Cimm be such thatl 11 P
P~(p) (~'~ - f-~x'~ and let y E cim . Then there also exists a

l~ L p r
~~l such that P~(p)(~21 - (Yl. It follows that P~(p)Lul -

-yxJol with (ul - fui ~l uJ21 andL hJence x, E~. c 0 E Yd(E).
L J
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The case ~- rtn turns out to be of special interest.

Definition 4.7.

A system z is called right invertible in the strong sense if
v nv- r 3 m 3 ' y- y.

Xa E R y E Cimp U E Cimp X E S(Xo, U).

Proposition 4.8.

~ is right invertible in the strong sense if and oi,ly if Z is
riqht invertible in the weak sense and wi(E) - Rn.

Proof. ~ 2- atn c wd(F) c Rn. c From Theorem 4.6, s- - Rn.

If sE - A is invertible, then, according to Proposition 4.8
and [23, Theorem 3.8], weak riqht invertibility implies stronq
riqht invertibility (see also [15, Theorem 3.24] for the case E
- I). In qeneral, hoHever, this is not the case. More precisely,

Theorem 4.9.

The folloWinq statements are equivalent.
i) z is right invertible in the stronq sense.
ii) 4~d(Z) - Rn,

v[q(s) f(s)] E Mlx(ltr)(s)'

[g(s) f(s)l lo C D] - 0 c. q(s)[E A B] - 0, f(s) - 0.

iii) v[g(s) f(s)l E Mi`x(lfr)(s)'
Iq(s) ~(s)]P~ls) - 0 o q(s)[E A Bl - 0, f(s) - 0.

Proof. i) ~ ii). For every standard basis vector ei án R1 there

exist uá and Xi in Cimp and Cnmp, respectively, such that pExi -

Axá t Bui, ei - Cxá } Duá. If [q(s) g(s)] ~ C Dl - 0, then 0-
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q(p)pExi - q(p)LAxi t Bui] - - f(p)[Cxi t Dai] - - f(P)ei

lProposition 2.3) and hence f(p) - 0. ii) ~ iii). Assume that
[q(s) f(s)]PE(s) - 0. Since rd(a) - Rn, it follows that q(p)Exo
- 0 for all xo, i.e., q(p)E - 0. Thus, by ii) and Proposition
2.3 „ q(s)[E A B] - 0 and f(s) - 0. iii) ~ i). Nithout loss of
qenerality, assume that [E A B] Y11~[Ti TZ T,] with Ti E
~1'xn ( i - 1, 2) , T, E ~Rl'~, Y E R( -1,) xl t , [T1 T2 T,] riqht
invertible. Then it follows that ~' ~ sT' D'1 is riQht
invertible ( compare second part of proof of TheoreJm 4.2). If
R(s) is any right inverse, then for every x, E Rn, y E Cimp it
can be easily seen that P~(p)ful - (-yx'l with (ul .-
R(p) (-y'x'l. This completes the proLofJ.

L J l J

Not surprisinqly, the dual counterpart of strong riQht
invertibility will be called strong left invertibility.

Definition 4.10.

A system E will be called left invertible ia the strong sense if
xo-0, y-0~u-0, Ex-O.

Theorem 4.11.

The followinq statements are equivalent.
i) i is left invertible in the stronq sense.
ii) 5t(E) - ker (E) ,

X(S) E N(ntm)Xl(s)~
[U(3),

A B x(s) - 0 ca A x(s) - 0, u(s) - 0.
C D [u(s), C

iii) v
~X(3)1

E PI(nfID)xl(S).
U(S) J

P~(s) [uig~ ]- o b In Ix(s) - o, u(s) - 0.~
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Proof. i) ~ iii). By Proposition 2.3, we establish that u(p) -

0, fA C pElx(p) - 0 and Ex(p) - 0. iii) ~ i). Ae may write ~Al -` J lC J
Q, 4,
Qz [I XJ with Q, left invertible. As earlier, we establish

that fQ' Q3sQ' D~'ás left invertible. Now let P~(p) (ul - 0, (Ul
e Cimp`, i.e., let fQ~ Q~sQ'~[I X]x t~~u - 0. Then L[IJ X]x -LO,J

u- 0 and hence Exl- 0, u- 0. ii) b iii). If E' :- (E', A',
C', B', D'), then it follows from the above and Theorem 4.9 that
X' is stronqly right invertible if and only if F is stronqly
left invertible. Since v(E') t w(E~) - ~Rl o YC(E') f w(i') -~tl
(Proposition 3.4) r~ (vC(E'))1 n EYC(E) - 0 (Theorem 3.12) .~

(YC(E'))1 n Ew(r) - 0 o E"'(vC(E'))1 n Y(E) - ker(E) o w(E) n

Y{E) -~{ï) - ker(E) (Theorems 3.12, 3.2), the proof is now
complete.

Proposition 4.12.

E is left invertible in the strong sense if and only if z is

left invertible in the weak sense and ~t(F) - ker(E).

Proof. E' :- (E', A', C', B', D') is strongly right invertible
if and only if E' is weakly right invertible and Y~(E') -~tl, by

Proposition 4.8.

Hence weak and stronq left invertibility are equivalent,
just as weak and stronq riqht invertibility are, if sE - A is
ínvertible [23, Theorem 3.9]. Our final Corollaries consider two
more general situations where weak and strong left (riqht)
invertibility are equivalent.
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Corollary 4.13.

Assume that [E A B] is of full roW rank. Then the followinq
statements are equivalent.
i) ï is riqht invertible in the stronq sense.
ii) Yd(Z) - IRn, ~ ~ Dl is of full row rank.

iii) PE(s) is riqht invertible as a rational matrix.

Horeover,
[A - sE B] riqht invertible o

vx E Rn3u e Cm : S(xa, u) ~ 0,
o lmp

amd if [A - sE B] is right invertible, then weak and stronq
riqht invertibility are equivalent.

Proof. The first claim is immediate from Theorem 4.9. If R(s) -
R'(s) is a right inverse of [A - sE B], then u :- RZ(p)(-Ex,)[R,(s)

is such that x:- R,(p)(-Ex,) e Slx,, u). Conversely, assume
that q(s) [A - sE B] - 0 (q(s) rational) , then q(p)Ex, - 0 for
all x, and hence q(p) - 0. Finally, apply Theorem 4.4.

Remark 4.14.

In [13, Definition 2.4], [30, Definition 3.1] the system pEx -
Ax t Bu t Ex, is called (C)-ontrol solvable if

~x E~n 3 u e cm : S (x„ u) m 0.
' imp

Indeed, if for a certain xa, S(xo, u) - 0 for all u, then e.q.
linear-quadratic optimal control problems [15], [27], [21], [8],
[281, [31] are not well posed. Since one may assume rrithout loss
of qenerality that [E A B] is of full rorr rank in (2.4a), we
observe from Corollary 4.13 that riqht invertibility (in either
sense) is equivalent to right ínvertibility of Rosenbrock's
system matrix if the system (2.4a) is C-solvable.
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Corollary 4.15.

Assume that
[C ,

is of full column rank. Then the followinq

statements are equivalent.
i) E is left invertible in the stronq sense.
ii) if x,-0 andy-0, then u-0, x-0.

0
iii) ~.(E) - ker(E), A B is of full column rank.

C D
iv) PE(s) is left invertible as a ratíonal matrix.

Moreover, if rA C sEl is left invertible, then weak and stronq

left invertibi[lity arJe equivalent.

Proof. Straightforward, by dualizinq Corollary 4.13; observe
E

that, if PE(p)ful - 0 yields u- 0 and Ex - 0, then also A x-
L J C

0 and hence u- 0, x- 0.

Remark 4.16.

Observe that, if sE - A is invertible, then left (riqht)
invertibility of the system matrix PE(s) is equivalent to left

(right) invertibility of T(s) - D t ClsE - A) - 'B, the transfer
function of E[23, Theorems 3.8, 3.9].

Remark 4.17.

In the recent [16], conditions for left and right invertibility
of sinqular systems were qiven in the case of existence of the
transfer function, that naturally arises when startinq from a
realizational point of view, that is, when one tries to find a
suitable state-space representation for a linear system qiven by
autoregressive equations.
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Here, however, xe consider the "reversed" situation: A system is
given in state-space form as a result of its mere nature (an
electrical circuit or an econometrical model, for instance) and
one is interested in the system's behaviour under the influence
of diverse control inputs. Moreover, we do not require the
transfer function to exist. For example, if E-(0, 0, I, I, 0),
then the transfer function does not exist according to [16,
Theorem 4.3], whereas in our context the (pathological) system E
is both left and right invertible in the strong sense.

5. Conclusions.

By means of our fully algebraic distributional framework
and without any assumptions on the coefficients of the singular
system Z-(E, A, B, C, D), we have defined and characterized in
full detail

several subspaces of interest (e.g. with respect to optimal
control problems) and their relative connections, and

several concepts of left and right invertibility for the
system E and the 'gaps' between these notions.

Moreover, we have proven various relations between these
subspaces, the concepts of invertibility and Rosenbrock's system
matrix.

In future papers such as [31] we hope to present a complete
treatment of general linear-quadratic optimal control problems
subject to general linear systems along the lines of the
distributional approach and the results exposed here and in
[30] .

~t)
This paper was xritten in Spring 1991, xhen the author was with
the Mathematical Institute of iluerzburg University, Am Hubland,
D-8700 iluerzburg, Germany, as an Alexander von Humboldt-research
fellow.
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