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Introduction.

This paper consists of two parts. In part I the mathematical
concept of duality is analyzed and in part II duality is
applied to economics.

In the first part two types of dual sets are introduced,

upper and lower dual sets. Different properties are given

and their relation to dual cones is analyzed. The concept

of dual summation is defined and it is shown that the dual

of a sum of sets is equal to the dual sum of their duals.
Intersection properties of sets and their duals are considered.
Dual correspondences are defined as correspondences having

the duals of the image of the original correspondence as their
image and it is shown that, given certain assumptions, the

dual of a closed correspondence is lower hemi continuous and
vice versa.

In the second part an economy is defined and the dual repre-
sentation of this economy is derived. The original repre-
sentation being (mainly) in terms of commodity vectors, the
dual representation is in terms of price vectors. Upper dual
sets are applied to preferences, lower dual sets to production.
For the original representation and for the dual representation
a set of assumptions is given, the latter set being implied

by the first. For both economics an equilibrium is defined, a
dual equilibrium consisting of a price vector only. It is

shown that both equilibria are equivalent. The existence of

a dual equilibrium is proved.

This paper is an extension of [13]. The treatment of duality

is more systematic and the theorems on intersection properties
and dual summation are extended.

Dual correspondences are new. The economic model is more general,
since the assumptions are weakened. The existence proof is

different and based on the properties of dual correspondences.

*) I thank Pieter Ruys for his comments and his helpful
suggestions.



Duality was applied to utility functions by Roy [7], and applied
to preferences in [ 5] and [12]. An extensive study with respect
to production functions can be found in [10].

The mathematical concept of duality can be found in [ 4] and
[11]. Duality is applied in the theory of public goods in

[ 8] and to the theory of adjoint correspondences in [ 9] (see

remark section 11).



PART I

1. Some definitions.

A set K C R" is called a cone (with respect to the origind, if
x € K= )X x € K for all X > 0. It is called an aureoled set,

if x € K=) x € K for all A > | and it is called a star shaped
seit. if ®* E K= X € K for @ll 0 2= & < 1;

We define three closure operations, which associate the smallest

set of each type to any set C C rR":

Cone C = {x € R"| ax > 0, a4y € C:x=Ay}

Au C {x € R"| ax > 1, &y € C:x=Ay}

st ¢ {x € R"| 30 < A <1, 3y € C:x=Ay}.

Obviously, if C is convex, all three closures are also convex
and C = Au C N St C ,We have Cone C = Au(St C) = St(Au C) =
Au C U St C. We also define the set Coneint C, i.e. the largest

cone, which is contained in C:
Coneint € = {x € Rn| vk 3 08X x € Gl

The sets Cl Cone C, i.e. the smallest closed cone, containing
K, and the set Cl Coneint K, the closure of the "interior cone"
happen to be nearly related to asymptotic cones.

We first define: let k € R and C, = {x € c||x] > 'kl

Cl Cone Ck'

=D =

Then the asymptotic cone Asc C =

Property 1.1.
a) If C is aureoled, then Asc C = Cl Cone C
b) if C is star shaped, the Asc C = Cl Coneint C.

Proof

a) Ase C € Cl Cone € ¥ singce Vk:Ck C Cl1 Cone C
Asc C D Cl Cone C; if x € Cone C, then there exists k,

such that for amy k' > k:ix € Cl Cone Ci, hence



Asc C DO Cone C and so also its closure.

b) Cl1l Coneint € C Asc C: Vk:Coneint C C Cx
Cl Coneint C D Asc C:Let x & Cl Coneint C, then there
exists y ¢ Cl C, such that y=Ax, for some A > 1.
So for some k, k' > k= y@g Ci, so x & Ase C .

2. Hyperplanes.

Let R™ and R™* be two "different" n-dimensional spaces, which
are distinguished only for reasons of interpretation. R" is

called the "original" space or the "commodity" space and g
is the “"dwal™ space or the "“price" space.

k

on R® X R"™  the scalar product px = . L x 1is defined.

k=2 P
Now for p € R"™ and o € R we define (p# 0)

H(p,a) = {x € R%/px=a}.

The n-1-dimensional hyperplaneH(p,a) separates the half spaces

{x/px > o} and {x/px < a}. Similarly for x € R" and « € R (p # 0)
H(x,o) = {p € R"*/px=a}l.
We also define for p € R" and p # 0:
n
L{p) = {x € R /px=1}.

1
and we have L(p) = H(p,1) = H(op,a) and H(p,a) = H(gp,!) = L(ép).
L(x) is defined by interchanging x and p.

Given H(p,a) and a set C C Rn, there are four possibilities:

1) The hyperplane intersects the set in its interior:
H(p,a) M Int C # ¢

2) The hyperplane supports C in some point x :x € H(pye) M C
N = 5 = = o = 1 =
and H(p,o) Iat € $. Now px max PX=0 or px mip px=a
3) The hyperplane asymptotically supports C:H(p,a) N C = @

and §§E PX = 0o or gée px = 0. Obviously C is unbounded.

4) Both sets do not intersect and H (p,a) is not an asymptotic
support. In this case there exists some a' > a or a" < a

such that H(p,a') O € = @ or H(p,a") N ¢ = @,



3. Closed, convex, aureoled sets, not containing 0.

A certain type of set which will be frequently used in this

paper is called a type A set.

Definition 3.1

A set C C Rn(c (= Rn*) will be called a type A set if 0 € C and

C is closed, convex aureoled.

Type A sets have properties which are similar to properties of

cones. For a closed cone, we have K + K = K (see fig. 1).
Property 3.2

If C is a type A set, C + Cl Cone C =

\\\\\\\\\\\\

Cone C\

Fig. 1 g

Proof

Obviously C + Cl Cone C 2 C + {0} = C.Conversely, we show
that C + Cone C € C. Let x € C and y € Cone C, where

A _ A 1
Xy € €5 for A > 1. Now IT)\(X"’y) = (m] X Tex Ay E B
since C is convex and (x+y) € C, since F < 1 and € is
aureoled. Since C is closed, we also have C + Cl Cone C C C.

For any a > 0, we can define a C = {x|g y € C:x=ayl}. It is
obvious that o C is also a type A set, and that Cl Cone a C =
€l Come €, and that w € C B € if o> B

It will be usefull to have a definition also for a C if a = 0.

First assume K is a cone. Since for any a > 0, o K = K, it seems



= f =

obvious to define OK K. (See also [6], p 61). Further assume
(& and K = Cl1 Cone C.
>

€ is a type A set, x €
o 0}

Now we have, for all

{ax} + KC o C+K=aCCaZK-=«K

[}
~

So it seems obvious to require {0x} + K C 0C C K, or 0OC

PDefinition 3.3

If C is a cone, 0C = €, if € is a type A set, 0C = Cl Cone C.

If we have a finite member of type A sets,their sum is convex
and aureoled. It is however not necessarily closed and it may
contain zero. However if the sum of their closed cones 1is

pointed, then the sum is a type A set.
Theorem 3.4

Let Ci (1=13250s03m) be type A sets and (Z C1 Cone Ci)n
=(%. €1 Cone Ci) = {0}, then Z c is a type A set:

Proof
0 & ¥ €.,s assume 0 = ¥ x, and x. € €,. Now x. # 0 .and
i 1 i i i

n
X, = —E X., henee =, € I €l Cone €., and
1 ] i

1
By = -g xj € - X Cl Cone Ci’ which contradicts the
assumption. Convex: X = I T % Vi for Xi5 ¥y € Ci;
now o x + (l-a)y = Z(a By & (l—a)yi) Aureoled:

X = 2 X Ax = I Xxi. Closed:in [ 2] is stated that a sum
of closed convex sets is closed, if their asymptotic cones
have the property of the theorem and we have shown that

for type A sets the asymptotic cone is equal to the closed

cone.(see [ 2], 1.9(9))

Property 3.5

i 3 Ci are type A sets, then Cl Cone L Ci = L Cl Cone Ci'

Proof
Ci C Cl Cone Ci’ hence I Ci C I Cl Cone Ci and now
Cl Cone I C, C ¥ Cl Cone Ci



Let x € I Cone Ci’ hence there exist X such that

E X, = x and x; € Cone Ci' For som X,Xxi € Ci’ hence
Ax € % Ci’ so L Cone Ci C Comne X Ci and now Cl I Cone Ci=
L Cl Cone Ci C Cone I Ci.

4. Closed convex sets, containing 0.

An other type of set, frequently used in this paper and having
pProperties similar to type A sets, will be called type S sets

(since they are star shaped).

Definition 4.1

A set Y C R" will be called a type S siet; iLf € Y and ¥ is
closed and convex (see fig. 2).

Properties, analogous to the ones given in the previous section
hold for these sets: Y+ Coneint Y = Y; a sum of type S sets is
also a type S set, if the sum of their asymptotic cones 1is
pointed and we may define 0 Y = Coneint Y.

Note that Coneint Y is closed for type S sets and that

Coneint Y = @ if Y is compact.

/

Bigs 2

Coneint C

S Upper dual sets.

*
Let C C R™ be any set. We define its upper dual set as c, C R

where -



Definition 5.1

n * n
Fer € C R C+ = {p € R vx € C:px > 1k,

C: contains all

p € Rn*, such that the hyperplane L(p) (see section 2) separates
C and 0. This directly implies, that C: # @ if and only if

Cl Conv C $» 0. If a hyperplane L(p) supports or asymptotically
supports C, then p is a boundary point of Cf, if L(p) contains

an interior point of C, then p is not in C: (see fig. 3)

The above definition gives C: as a subset of Rn* for ¢ C R".
If however B C Rn*, then B: is in the original space:

B* = {x € R"|vp € B: px > 1}.

Hence (Ct): = Cf:, the dual of the dual, is in the original

space.

Property 5.2

B oy ¥
If € € By then C+ D+.

Proof
*
Let p € D,, hence VX € D: px > 1 and therefore also

vV € C: px > 1.

Property 5.3

n * .
For any C € R, C_ 1s a type A set.



Proof
0 ¢ C:: obvious. Convex: if for all x € Cypx > | and
gx > 1; then alsdo ¥px#(l=a)gr = 1, for @ € [0,1]«
Aureoled: if A > 1, thenVvx € €C: px > 1 =y x € C:Apx > 1.
Closed: assume p € C1 C: and p & C:. Now there exists
X € €, such that px_ < 1, but then, for € sufficiently

small, q € B.(p) = ax < 1, which is a comtradiction.

From this property it directly follows, that C:i is also a type

A set We have:

Property 5.4

For any € C Rn, ce B*,. 18 € i @ type A set, then C = Cft.

++
Proof
** 2] e *
c € C, . Let X € C, then by definition, yp € C+:px0 2 1.
*% _ * *% .
Hence x € grs = {x/Vp € C,ipx > 1} & 2 CYi: Let X & €,
and C a type A set. For T = {y=ux0| g€ [ 0,1}ty T B 0 = i,
since C is aureoled. As T is compact convex and C is
closed and convex, there exists a hyperplane L(p), strictly
. * s *k
separating T and C. Now p € C+ and since PX < l,X0 €C++.
. g * * *
From this property it follows, that C_ = (Cl C)+ = (Conv C)+ =
*
(Au ), and if C1 C = C1 Int C, also C¥ = (Int C)}. By applying
5424 it also follows that C:: = €1 Au ConVv C.
Property 5.5

If Ci (i € I) is a (possibly infinite) family of sets, than
* = N *
a) (kf Ci)+ G

T “i¥

i : 0 og, )% = U i€, %,
b 1f C1 are type A sets, (I C1)+ Cl Conv Y C1+

Proof
a) From 5.2 it follows, that (U Ci)r c C;, for all i, hence
+’
iy &€ Ci = px > 1; and therefore, x € U Ci = px 2 A,

so p € (VU Ci)f

(VvepHren Ci:-Conversely s et p & N Ci* hence for all



b) By substituting Ci: for C; in a), we get (U Ci:): =

al Ci:: = nece;, since all C, are type A. By taking
£ . 8] *_ *y k% _ *
duals on both sides: ( Ci)+ (S Ci+)++ Cl Conv U Ci+’

the union of aureoled sets being aureoled.

Note that it is not excluded, that UV Ci or U Ci: contains 0.
In this case its dual, and therefore the intersection, must be

empty.

6. Lower dual sets.

With respect to lower dual sets, type S sets, as defined in
section 4, play the same role as type A sets play with respect
to upper dual sets. The difference between upper dual sets and

lower dual sets is, that in the definmition > is replaced by <.

Definition 6.1

For any non empty set Y C Rn, Yf = {p € ks vx € Yipx < Vs

Now obviously Yf # @ since O € Yf for any Y C R".

Apart from O, Yf contains all p, such that the hyperplane L(p)
has 0 and Y on one side. L(p) should not intersect Y in its
relative interior and if it supborts or asymptotically supports
Y, p € Bnd Yf.

All properties are similar to ones in section 5, as are their

proofs

Property 6.2

g £ % =x*3 ¢g*

Fig. & o




Property 6.3

For any Y C Rn, Yf is a type S set.

Property 6.4

YE Y » 4% ¥ 4§ a type S sefy ¥ = Yf*

This implies that Y** = Cc1 conv {{0},v)}

Property 6.5

* *
: : U =N Y.
a) If Yi is a family of sets I, then (I Yi)- T Yl_

* *
" N = U ;
b) 1f Yi are also type S, then (I Yi)— C1l Conw i Yl_

4z Dual Cones.

We distinguish upper dual cones and lower dual cones. Their
difference is however hardly relevant. An upper dual cone CS

of a set C, contains (besides 0) all p such the hyperplane
H(p,0) has C on its positive side. The lower dual cone contains

P, such that C is on the negative side of H(p,0).

Definition 7.1

For ¢ C R",

*
Cf = {per"| v x € crpx > 0}
*
c® = {pe rR"™| y x € cipx < 0}
g ) o o o :
Obviously C_ = -C_ and 0 € C, and C_ = @ if 0 € Int Cl Conv C.

Their properties are well known and similar to the ones for
upper dual sets (section 5) and lower dual sets (section 6).
Their proofs parallel those of section 5. We only give the
properties for Cg, those for C? following by applying

o

0.
co = -c?



Property 7.2

o

o]
cCcp=g e,

Property 7.3

n o
FPor any € C R C+ is a closed convex cone.

Property 7.4

¢ C Coo; If C is a closed convex cone, C = g¢=®
++ ++
and this implies
oo o o _ .00
C++ = (C1 C)+ = (Cone C)+ and for C convex, Cl Cone C = C_
and

Property 7.5

a)y 1If Ci is a family of sets

B i
I+

(o]
(U €00

and if all C; are closed convex cones:

o o
n Ci)+ = Cl Conv U C. |
Proof
a)y By 7.3 (V¢ )o cne? Assume € nc.%, then
> Fadh 4" i+ v T

vigx € C; = px 20, so x e U C; = px 2 0, hence p € (U Ci)i

0,0 oo
) By @ @ Q00 =0 g 00 = AL, by 7.4. So
o 0,00 o
n Ci)+ = (Y Ci+)*+ = Cl Conv U Ci+ (the convex hull of

a union of cones being a convex cone).
Finally we have

Property 7.6

If C is a closedconvex cone, and if C N - C = {0}, then

o
Int C_ # 0.



Proof
Assume Int Cg = f. Then there exists a subspace of
dimension m < n, containing CS. So there existsa vector
x € Rn, such that yp € Ciipx = 0. By 7.4 x € Cff = €

oo 8 2 " "
and -x € C++ = C, which is a contradiction.

83 Dual sets and dual cones.

For any set, not containing the origin in its closed convex hull,

both the upper dual set and the upper dual cone are not empty.

It was shown (property 7.4), that then Cl Cone C = CSS. IE 1§

also true that the closed cone of the dual set, equals its dual

cone (see fig 5).

Property 8.1

* X _ A0
If & # §, then Cl Cone Cp = Bos
Proof
vx € C:px > 1 = yx € C:px > 1, hence C: c Ci and since

Ci is a closed cone, also Cl Cone C: c Ci. Now let
p € Ci. Since

Cone C:\{O} = {plak = 0,% © » Dk px > 1}=

{plan > 0, vx € C:px > n}, we have for any q € Cone C:
and ¢ # 0: if 0 < a < 1, then ap+(l-a)q € Cone CX.

Since Cl Conme C} is closed, also p € Cl Cone C:

Fig:. 5



Corrollérz For any family c;

*
Cl Cone (VY Ci)+

N Cl Cone C?+
i

Proof
o o
. =
By 7:5% (Y Ci)+ C]._+

* o
By 8.1: Cl Cone (U Ci)+ = (VU Ci)+
o
i+
and now the corrolary follows.

. * =
by 8.1: Cl Cone Ci+ (&

Similarly lower dual sets and lower dual cones are related.
Instead of property 8.1, we get the two properties 8.3 and
8.4

Property 8.3

(¢]

Coneint C* = C

Proof
Coneint C*\ {0} = {p|¥x € Cc, VA > 0: A px < 1}
Let p € CS, hence Vvx:px < 1, and so ¥vx € C, VA > O:

A px < 0 < 1, hence p € Coneint CX.

TLE. p € CS, then for some x_ € @x pE. = o 2 0. Choose
A > % > 0, then A px > é px, = 1, hence p ¢ Coneint Cf.
Note that for C; such that 0 € Int €, CS = @ and Cf is compact.

Property 8.4

If C is a type S set: Cl Cone Cf = (Coneint C)g.

Proof
Replace C by C* in 8.3: Coneint (Ct)f = {*)°.
Since C is type S: Coneint Cft = Coneint C.
BY pxop Zab% (Cf)f = (Cl Cone Cf)f, hence Coneint C =
(€1 Conect)f. By taking dual cones (Coneint C)f =

(c1 cone €*)°.

Note that for C compact, 0 € Int Cf and hence C1l Cone Cf =

gt ¥



Remark

Our concept of dual cone, should be distinguished from another
(nearly related) concept, also called dual (or polar) cone:
F(C) = {p,A| x € C:px < A}. Now Cf is the projection of

Fi{cy O Lp,X | &
Ei¢ey m Lo,k X

n * 9 2 X
1} on R and C_ is the projection of

0} on Rn*.

9. Dual summation.

Let Ci (i=1,2,...,n) be a finite number of type A sets, such
that their sum I Ci is also a type A set, which is true, if
the sum of their dual cones is pointed. (theorem 3.4).

How to express the dual of the sum (I Ci)* in terms of C;?

In [ 13] we proved that

* n*
b = € 3 5 & . tp=ER P .= 5
(Z ¢l cl {p R /30.l > 0,3p; C;:p=0;Pjand Lo, 13

The operation between the braces is called inverse addition in

[ 6], where oy = 0 is not excluded.

Now it is easy to see that the right hand term is equal to
N a.c* = = o > g = H

cl X+ ] @;CY for A, {o; Rla1 0, T oy 1}

*
{plaa; € A ,ap; € i, v ip=a;p} =

*
& . (= ¢ . =
{plaa Asv;:p a; c;'}

*
€ .:p €N, C.} = & oo, ¥
{plad A+’v1 P al Cl} X I al C1

In def. 3.3 we defined 0C as Cl Con C ( for C type A).
Now it appears that we can allow o, to be 0; we denote dual
summation by 2 and 8.

Theorem 9.1

LE Ci (i€ 1 ={1,2,...,n})are type. A sets and if
9] n - =)
(¢ €1 cone C;) (Y €1 Cone C;) {0} then

D)* = uUunqg. c* = c*
(B c)¢ R i
for A = {a|ai >0, Za; =1, i€ 1}



Proof
* * *
= =uUn
Let C* 2 Ci)+ and S %7 ai Ci+
§C C": Let p € S, then there exists 0 € A, such that
* = 1 X oz
p € ai Ci+' For ui > 0,p € ai Ci+ and for o = 0,
pE 0C.*=2Cl Cone C.*. Hence for all i, we have
i+ i+
x. € By P px. P B.. So £o¥ X € Z €, &
i 1 i— i i 7
. = 5 o . = v
pl E X, Z P X, 2 % al | and p € (Z C1)+

S D c*: We first show: Cl Cone ¢* =N cl cone Ci::
* *
" n =
By 8«18 €l Coni Ci+ gl Cone (U Ci)+ ang
Cl Cone (I Ci)+ = (Z Cig+ = (Cl Cone I Ci)+’ .
* o =
Cl Cone (V Ci)+ = (VU Ci)+ (Conv €1 Cone U Ci)+’ whereas

€1l Cone I Ci L Cl Cone Ci = Conv Cl Cone UV Ci'

* .
Now let p € C_, soV x € & Ci:px > 1. Since p € Cl Cone Ct,

also p € N €1 Come Ci:.
; i
= > > L o=
Therefore 1géipx B, 20 and Z B, > 1. Choose a; ZBi’
:p € Pl ooy T o
ls Fo¥ a, > @sp BiC1+ a;Ci%s
* *
Cl Cone Ci+' Hence p € N ai Ci+

gos)

now o, > 0 and I oy
for a = 0,p € 0 Ci+
and p € S.

\L(p)

Remark

*
From (I Ci)+ = Cl UV ? a. C:, it follows (for type A sets)



: ko = U ™ g . %y =n Wl
by appl.prop.7.5 (I Ci)++ % Ci (A+ . oy C1+)+ A, Conv 47
for A,={a}la;, > 0 a Za, = 1% :
1
Not that for x = I x; we have for any -a > O, x = I ai(ET X,
i

10. Separation and intersection properties of a type A and a

type S set.

If C and Y are two convex sets, there are four cases:
- they intersect in their (relative) interiors

- they intersect in their boundaries, not in their interiors,
they "touch'": now a hyp. L(p) separates both sets and does

support them in their intersection.

- they do not intersect, but touch asymptotically: in this case
they can be separated by a hyperplane, which is an asymptotic
support of at least one of the sets; now any parallel hyper-

plane intersects one of the sets in its relative interior.

- they do not intersect, and do not touch asymptotically, and

they are strictly separated by a hyperplane.

In the rest of this section, we consider the intersection
properties of two sets, one being a type A set and the other

a type S set, and their duals, i.e. the upper dual of the type
A set and the lower dual of the type S set.

Given certain assumptions, we can state (theorem 10.3b)

If and only if the two sets are disjoint, their duals
intersect in their (relative) interiors (and the same holds

when the dual and the original sets are interchanged).

and (theorem 10.3c)
If and only if the two sets touch, their duals touch.

It is the possibility of asymptotic touching, whichspoils these
simple properties for the general case.

We now first give two lemma's necessary for the proof of theorem
10.3, and which allow to formulate conditions, which exclude

"asymptotic'" touching.

)



Note that if ¥ is a type S set, then for A < 1, AD is in the

relative interior of Y with respect to its closed cone.

Lemma

105 1

If C is a type A set and Y is a type S set, and if
Cl Cone C N Coneint Y € {0}, then

a) € N Y is compact

b) €

Proo

a)

b)

Lemma

NY=9p=3x >1: CNAY

[}
=

In [2], 1.9 (9),Debreu gives this property for
Asc C N - Asc Y C {0} and a) follows from prop. 1. 1.

Assume C N u Y # P for some u > 1. This intersection is
compact, since Coneint Y = Coneint g Y. Hence C N u Y and
are strictly separated by some hyperplanme L(p).

Let 0 = min {pxlx € € My Yk mow 1 € o < jl. Choose

1 < A < . Now L(%p) strictly separates X Y and C M i Y.
sifice CAX Y€ ¢cMa Y, and ¥ ¥ N (g-O0u ¥) = @B, we

have C N A Y = @.

102

If C is a type A set and Y is a type S set,
Cl Conme C N Coneint Y C {0} == C1 Cone C¥ and C1 Cone Y’

cannot be separated by a hyperplane.

Proof

By properties 8.1 and 8.3,

Cl Cone C: = CS and C1 Cone Yf = (Coneint Y)S;? Assume the
left hand side of the implication 1is true, but that the
dual cones can be separated, i.e. for some

x # 0: yp € Ci:px > 0 and yp € (Coneint Y)f:px < 0, so

x € Cif = 1 Cone € and x € (Coneint Y)fg = Coneint Y,

and that is a contradiction.

< Let 0 # x € Cl Cone C M Coneint Y. Now

vp € €1 Comne Cf:px > 0 and yvp € Cl Cone Pf:px < 0. Hence

L(x) separates the two sets.



Theorem 10.3

Let C be a type A set and Y a type S set.
a) CNY =0 and A > 1: CN XA Y = ¢ ==

CyNYX# panday < 1: c*xnu Y*¥ 4 ¢
b) If Cl Cone C and Coneint Y C {0} (or equivalently, if

Cl Cone Cf and Cl Cone Yf cannot be separated by a hyperplane),
then

*

. ,
CNY=p<=CcrXNY_#9 andau < I:C+"‘uYff0

c) If Cl Cone C and Coneint Y C {0} and Cl Cone C and Cl Cone Y

cannot be separated by a hyperplane, then

CNY # P and YA < 1:C N A Y = @ <=
Ct n Yf # § and Vu < lzcr Ny v*=¢g.

Note that we may replace C and Y by Cr and Yf and C: and Yf by

C and Y, in a) and b) getting the "dual" version of a) and b).

;§> c
NS

A\

Fig. 7

A




Proof. ©
a) ®. Since C and Y do not intersect, there exists some
hyperplane L(p) separating both sets and now p € C: N Yf.

By the same argument there exists some q € C: n (AY)t.
Since (AY)* = -;\-Y*, c¥ nouyX # @ for u=-;:.

< There exist p and u < 1, such that p € C: n Yi and

up € C: SR > C: N Y*. Hence Vx € C:px > upx 2 1 and
vx € Yi:upx<px<l],o0r Upx = PX = 0. Choose 0, such that
I 7y and A = ——
2 1+u
separates C and AY and therefore also C and Y, so

cNY =¢ and C N AY = 0.

B < a < 1. Now L(ap) strictly

b) Follows directly from letmma 10:2b,; since € N Y = g =
CN AY = P for some A > 1.

c) = Suppose C: N Yf = @¢. Then by b), (after interchanging
original and dual sets) :dA < 1:ct N XYf # @, which is a
contradiction. If Cf n XYt # @ for some A < 1, then by
a), CN Y = @, which is also a contradiction. The

converse follows by interchanging dual and original sets.

11. Continuity of dual correspondences.

Let C:S5 =+ R" be a correspondence}

*
We call dual correspondence: C::S = Rn , where, for s € §
* = *
c¥(s) = [C(a)1}

We discuss in this section correspondences, such that every set
C(s) is closed, convex and 0 € C(s), so we do not require C(s)

to be aureoled, however obviously any C*(s) is a type A set.

It will be shown that lower—hemi continuity (closedness) of C,
imply closedness (lower hemi continuity) of c*. This implies that
the correspondence Au C:S > Rn, when Au C(s) are the aureoled
closures of C(s), has the same continuity as C. Finally
continuity properties also hold for dual sums.

Remark.

In [ 9] the term dual correspondence is used in a different

sense. There it denotes F*:Rm*+Rn*, dual to a correspondence

n_ _m ; . a3
F:R -R , and can be considered as a generalized adjoint.



We use the following continuity definitions (see [1])

3 € o t o t t o (o}
~ closedness: df 8~ + 57y " * x and x € €(s ); thean x € €{s )

- upper hemi-continuity: C is closed and C(S) is compact

; : 2 ; t o o o
- lower hemi-continuity: if s =+ s and x € C(s ), then there

exists a sequences xt > xo, such that x° € C(st); or
equivalently: if A an open set and C(s°) N A # @, then there
exists some neighbourhood U of so, such that

s €EU = C(s) N A # 0.

- continuity: if € is beth l.h.e. and u.h.c.
Theorem 11.1

Let C:is » R® be a correspondence and C¥ its dual such that for all

s, C(s) is a closed, convex set and 0 € C(s).

1) If C is l.h.c., then C* is closed

2) 1If C is closed and if for some €, C*(s) N BE(O) =@ for all

s, then C* is 1l.h.c.

Proof .

t

t o t * t [o) .
a. Closednéess? for s 2> B8 5, p € € (8 ), > p 3 it has to

P
* O
be shown that po € C*(so). Suppose po & C (s ). Then there
1=a (for 0<e<l)s

; t o
By 1l.h.c. of C, there exists a sequence x > X , such

: o o o o
exists some x €C(s ), such that p x

that xt € C(st). Choose t aTd t2, gueh thats?

=0
£ = tl = ‘Pt‘Pol < min %a ]—h and t > t:2 - |xt—x°| =
; 1 e T
min [0 —|. For t > t and t Zt,§
3 |p0| 2 1

[
pExt = [p%+ (P - x%+ (x"-x")] =
| of £
p°x%+p° (x"-x2)+ (p -p%)x%+ (p -p°) (x"-x%) <
1y &
3
(1-a)+|p°| 2+ x°|
[p%] [x"|

2 o g-la-laz <

1
g 379

5 € t
Since xt € C(st), this implies that p € c*(s ) for t

sufficiently large, and that is a contradiction.



b) L.heea? we first prove the following lemma:
Lemma: If O,po (S Rn, Be(po) and Bn(po) are open neighbour-
hoods of 0 and po, then there exists an open convex set D,

such that D C B_(0) U st B (p°).
€N
P £ £ th 1 $Ch = d
roof o e lemma oose ¢ T;T:F an
D = {q|q =Ap, 0 <X < 1} & B¢(0). This set D is convex

and open. Let q € D. Now q = Ap + ¢z, for |z] < 1 and
0 <X < 1. .

1
For X > T;“:ﬁ’ we have q = X(p+r ¢z) = X (p¥pz), for

C1y Sl _en
e A - 5 1p|+ﬁ n.
Since p+pz € Bn(p), we have A (p+pz) € an(kp) & St Bn(p).

For A < T;%Tﬁ, it follows |[Ap+pz| < A[p|+¢ < p€+s|p|+
n
TE%TE = €. Hence q € BE(O)-

Proof of the theorem

{ <t 2 3
It is to be shown that s > s® and p0 € C*(so) implies
. £ o t o
the existence of p > P and p € C*(s ) s

Suppose this is not true. Then there exists a subsequence

sv * s0 and an n > 0, such that:

yv:c*(s’) N Bn(Po) = ¢

Since C*(sv) is aureoled, this implies C*(sv) N St B (p°)=0.
n

3 .
For some subsequence s , we have by assumption:

c*(s™ N B_(0) = ¢
Hence for the set D, as defined in the lemma, C*(sr) N D=9§.
Let EC D be a closed set containing O and po.
E is also compact. Obviously C*(sv) NE=60.
Further there must exist someju > 1, such that

*
u po E € (so) N D. Now C(sr) N L(u po) # @ and Ef N L(po)
is not empty and compact. This implies:
*

c(s™) N L(u p°) N E*C c™(s") nL(u p®) N EL

Hence

c(s¥) N L(u p°) N E: c Ef and compact.

. ‘ 2
Therefore there exists a sequence x' € c(s’) N L(u Po)nE_

; s *
which contains by the compactness of E_ a convergent



w o
subsequence X = x . By the closedness of C, we have

x° € C(so) and also xo,]} x° € C**(so), since the last set
is aureoled. Since C***(so) = C*(so), applying theorem
10.3, we get C*(so) N D = @. This is a contradiction.

Theorem 11.2

Let X D V, both being closed and convex and 0 € X.
*
Let C:S - X be closed and l.h.c. and C (s) 2 V for all -s.
sk
Then Conv Au C = C :S > X is closed and l.h.c.

Proof
c* is closed, l.h.c., since c*(s) @ Be(O) = @ for some
€ > 0, since c*(s) € V*. Therefore c**(s) is closed and
I.h.o. sinees ¢ is) © ¥ & 0.

Theorem 11.3

Let'Ci be a family of correspondences such that Ci:S > Xi’
closed and l.h.c. and Ci(s) is a type A set for all s and X,
is also a type A set, where B X, $ 0.

Now the correspondence C = £ Ci is closed and l.h.c.
Proof
= N = =
c=Y0Qa, C,(s) for A {a]Za, 1, a;, > 0}.
l.h.c.t Since Ci are lahsCs s ai Ci(s) are l.h.c., 80
? ui Ci(s) is 1.h.c. (intersection of a finite number

of correspondences, see [ 1]p.120), hence g_(? Ci(s)) is
1.h.c. (union of a family of l.h.c. correspondences, see
Berge p.119).

Closedness: by theorem 11.1, CI(S) is 1.h.c. Obviously

L cf(s) is l.h.c. Therefore [Z cfe)I* = B c;(s ) is
closed, by theorem 11.1.

Corrollory

From this theorem the closedness of the ordinmary sum I Ci(s)

can be derived.



PART II

12 Definition of the economy.

. . . § n . *
We distinguish a commodity space R and a price space R

n n* s
For any x € R and p € R, the inner product

represents an amount of money.

The economy is defined by the following concepts:

1. A total production set Y C R® of all possible input output

combinations in the economy.

2. The set I = {1,2,...,n} of consumers.

3. An income distribution Xi(p), which assighns to the i'th
individual a fraction Xi(p) of the value py of the optimal
production y at price p € R". It is defined for all p, such

that max py exists. Obviously % Xi(p) = 1.
yE€Y
4. A consumption set X € B" for each i € L.

5. A preference relation ki on X, for each i € I.

The production set Y may be considered (see [3]) as the sum
of a technological production set Z and a vector of primary
resources: Y = Z + {w}. In this case Z = % Zj’ where Zj is
the production set of the j'th producer, and w = I Wi where
L is the vector of resources owned by i € I.

The income could possible be split up into two parts:
the value of primary resources owned by i and his part gi(p)

in net profit. In this case

P ow, + Ei(p)(py—Pw)

Ai(p) = where % Ei(p) = 1.

Yy

Neither Z nor w occur explicitelyin this paper.



Defindtion [2.1

A competitive equilibrium is an allocation x. € Xi’ a production
i

vector y € Y and a price vector p € Rn, such that:

nv
|
N

Yz € Y:B ;

L
]

. e ._ = = .
vi € I:p x; = A, (p)p ¥

1 € . _‘= = s=tp=]
Vi Lz >i L Pz >p X

Ix, =y
Il

13. The preference correspondence.

The preference relation can also be represented by a correspon-

dence, called preference correspondence Ci:X. + X., where
i i

Definition 13.1

- >
c, (x) {y € Xi]y o x} for x € X, .

We have z )iy = g 16 Ci(y) and y € Ci(z), and z vV y == z € Ci(y)
and y € Ci(z).
An allocation is an n-tuple xi(i=l,2,...,n) such that x. € Xi'

A feasible allocation is an allocation such that z X, € Y

The set I Xi N Y contains all vectors x, such that x corresponds
to a feasible allocation, i.e. x can be divided among the
consumers such that I X; = X for X, € Xi' An x, € X:H which

is a component of such a feasible allocation, is a feasible

consumption for the i'th consumer and

. = = . . N
F, {xi Xi|[.2. X 4 {xl}] Y # 0}

jti
is the set of feasible consumptions of i. We define a set Vi
of non-feasible consumptions, namely the set of non-feasible
consumptions that are strictly preferred to all feasible

consumptions.



Definition 13.2

- = € o g & . .
V1 {v Xl’Vx1 F1 v >i xl}

If % € PF,;we have V. € C.(x.) € X.»

i i i i>74 i
The equilibrium of definition 12.1 can also be expressed in
terms of the preference correspondence. If we assume that
Ai(p) > 0 for all i € I and py > 0, and if we normalize prices
in such a way that 5 ; = 1, then for the equilibrium as defined,

holds:

L(E) supports Y in y

y € L) N EC;(x))

1

z: € L(p; 3 N C;(x;) for p, = —— p
A (p)

37=z§i

;EL(Ei)=’z€ C(x) or x € C(z)

Obviously x. € X, \ V,
i i i

14. Representation of the economy in the price space.

The economy defined in section 12, can, by taking dual sets,

also be represented in the price space. This representation
could be considered as "equivalent'", if the original economy

can be reconstructed by taking duals of duals. In that case

no information is lost. However with respect to certain problems
as e.g. equilibrium as discussed below, it is sufficient if

all "relevant" information is preserved, which means in the

case of equilibrium, that any equilibrium in the commodity

space corresponds to an equilibrium in the price space and
conversely.

In the dual economy we distinguish two types of prices:
individual prices and general prices. This distinction parallels

the distinction in the commodity space, where there are



- individual consumption bundles X for each 1

- a total consumption x = I X
Total consumption is derived from individual consumptions
by summation (both of vectors and of sets). Only total
consumption is directly comparable with (total) production.

In the price space, we have
- individual prices P; for each i € 1

- general prices p, where p = Aipi.

General prices hold for total consumption and for (total)
production. They are chosen so that the value of total con-
sumption and production equals 1, hence they are expressed

with total income as unit: if 3 is a vector of prices expressed

in florins and M the income of the economy in florins, then

P = % %. Individual prices are chosen so that the value of
individual consumption equals 1, hence their unit is the in-
dividual's income: for M, = AiM the individual's income in
florins, p; = %T ; = %T p. General prices are derived from

individual pricés by the operation of dual summation (see

section 9) both for vectors and sets. We have
= K . i . B W
P Xl P with Xl 0 and I Xl i

The dual economy is defined below, without any assumptions,
so that no preservation of properties isguaranteed. Upper dual
sets will be used for consumption, lower dual sets for pro-
duction; therefore we shall generally omit the suffixes + and

1. XF= E* = {p, & Rn*| x € X.:p.x > 1} is the set of all
i i i i, ~@ =

individual prices of i, such that any consumption x € Xi

*
costs at least 1. Hence prices of Xi are either impossible

(i€ p; x > 1 for all x) or just possible (if p; x =1 for
some x), provided that the consumer's income is equal to
1. In the latter case some boundary point of X is

available. If P; € Int X;, then P, is impossible, since



- 28 -

pi'x > 1 for all x (the converse is not true). Obviously
x;‘ #9 == 0¢ X, and xi** = C1 Conmv Au X,. So if 0 € X,
all information is lost, otherwise only the smallest type

A set, containing Xi is preserved.
* *

Ve = ¥,
i gk
individual prices P> such that any consumption from Vi

% ;
= {pi e r" |Vx € Vi:pi x > 1} contains all

costs at least 1. Obviously any price, corresponding to
a feasible consumption must have this property. Hence
for an equilibrium price holds P; < V; N TntE X:. Note
that X: C V;. We may consider V: as the set of feasible

prieces for i

C?(xi) = [C(xi)]: is the set of all prices, such that any
commodity bundle preferred or indifferent to x, costs at
least 1. So such a bundle is not or just available at
such a price (the income being equal to 1). Obviously
ksee section 5), C:(x) # 9 = 0 €& Ci(x) and C;*(x) =

Cl Conv Au Ci(x).

The correspondence CI maps Xi into Rn*. If we restrict Ci

*
to X. \ V., then we have: C¥*:x, \ v, » v’ .
i i 3™ = i i

Fig. 8

* 3 * * * *
From Ci we derive a correspondence C :Vi \ Int Xi * Vi,



where
3 * ok % *
(= \ = N = (S =
if p VXD, C (p) R(p )C (x) for R(p)=1{plp Cl(x)}
; * % % *
(= = ; = € g 3
if p Bnd Xi,Ci(P) Rpr)Cl(x) for R(p)={p|p Bnd Cl(x)}
* * o
4e ¥ =%_ = {pE & |Vy € Y:py < 1} is the set of all general

prices, such that, no commodity bundle
from Y costs more than 1. Vectors
such that px=1 for some y € Y, are on the boundary of T2,
Obviously Y* # @ and 0 € Y*. Y* = c1 conv {{0},Y}. So only
points on the boundary of Y, that are also on the boundary
of Y**, are preserved as boundary points of Y.
In summary, the dual representation of the economy is defined
by the following concepts, discussed above.
We introduced Vi at once, however it would have been possible

to derive it, as we did for the original economy. For this

economy an equilibrium is defined in def1n1t10n 1644
This dual equilibrium is a point where the dual production set

and a dual sum of dual preference sets, touch, exactly as in
an equilibrium the productionand a sum of preference sets

touch. (see fig. 10).

Concepts in the dual space.

* s . . ;
1. Y, dual total production set (set of impossible or just

possible prices).
2, T = {1;2;,¢s.;n}; set of consumers.

*
3. \A.:Cone Y = R, income distribution function.

i

4. X:, set of impossible or just possible prices for i € I.
*

5. V;, set of feasible prices for 1 € 1.
* % * * : .

6. Ci:Vi\Int Xi + Vi correspondence associating worse and
equivalent prices to each (individual) price.

Note that in these concepts commodities do not explicitely

occur.



15. The assumptions.

The assumptions with respect to the consumer are Stronger than
the usual ones. It is required, that the consumption set does
not contain the origin (bl). Assumption cl is expressed in
terms of closed cones and not in terms of asymptotic cones.
Equivalence classes with non-empty interiors are excluded,
unless such a class contains all "best" commodity bundles (the
case of satiation).The assumption b5 is largely technical.
Further it is required that all consumers have a strictly
positive income at all feasible prices (d 2)(That total income
py 1s strictly positive follows som c6).

However if some of these assumptions are not fullfilled, it
might be possible to transform the economy by choosing a
different origin such that the assumptions are true.

The assumptions with respect to production sets are rather
weak. The (total) production set needs not contain the origin,
however the set St Y W Z X should be equal to the intersection
of the closed convex hull of St Y and I X(c4). Assumption c3
requires, that for some individual, there is a non-feasible
consumption X € Vi’ which lays on aray from the origin on
which non-zero production is possible. Figure 9 depicts a

situation, which is excluded .




Note that c¢3 always holds if 0 € Int Y.

The assumptions with respect to the income distribution.must

hold for those prices that are feasible both with respect to
production and consumption. This means that at such a price, pro-
duction must have a maximum value and that at such a price

and a positive income,no budget set may intersect the set V:.L

of non feasible consumptions. Hence the assumptions hold for

* *
p € Cone Y N ? Cone Vi = P

Assumption d5 requires that at any feasible price an interior

point of Xi is available.

Assumptions (in the commodity space).

b, Xi is closed and convex, 0 € X

b2 ki is a preordering

b VX € Xi:Ci(xi) and {y € Xilxi k y} are closed and if there

i

exists y, such that y )i X., then X € Bnd Ci(xi).

1

b C.(x.) is convex for all x. € X..
Uk | i i

b If some hyperplane supports or asymptotically supports
Ci(x) and Ci(y), and if it does not (asymptotically)
support Xi, then Ci(x) = Ci(y).

¢ [Z Cl Cone X;] N - [Z C1 Cone xi] = {0}

cy [Z Cl1 Cone Xi] N Coneint [ Conv {Y,{0}}] C {0}
g There exists no hyperplane H(q,0), that separates Y and

&)

i Vi'
N If there exists x € Xi, such that for all y € X, xki 5

i
n =
then [Ci(xi) + .Z. Xj] Y 0.
iFa
(]

cg L Xi Y # @
c Cl Conv ¥ N T X. = 8§t Y N I X,
6 i i
d, Xi(p) is continuous for all i and for p € P.

d for @i = 0 and p € P: Xi(p) = Xi(pp)



d3

L

dS
The
the

L X.4p) = 1 for p€ P
1 &
Xi(p) > 0 for p € P

Int X; N {x]p x; < Xi(P)[$é§Py]} # § for all p € P.

assumptions with respect to the consumer are in terms of

preference relation ki' They imply for the preference

correspondence:

Theorem 15.1

Given assumptions bl,b2,b3, and b4.

a. for all i and X, € Xi:Ci(xi) is closed and convex and
OE C.x,)
R
. E 5 3 € LR, € "
b. X, Bnd Cl(xl) or Vy X1 X, Cl(y)
(3 for all x,y ‘€ Xi:x € Ci(y) oY y E Ci(x)
€ €
e. the correspondence Ci:Xi = Xi is closed and 1l.h.c.
Proof.
a,b,c,d: obvious
t o E o t o
€: closedness: let x =+ x , y +y and y € Ci(x ). Suppose
yo &Ci(xo). So yo <i x° and for some z, such that
= m » yo, x° € Ci(z) and yo ¢ Ci(z).
So for some ERE ¥ By @ = Ci(z) and for some ty,
t >ty = yt & Ci(Z) and for t > max (tx,ty),
t t ; : ; g
y ¢ Ci(x ) e Ci(z), which 1is a contradiction.
l.h.c.: Let A be an open set, such that A N C(xo) £ 0.
Let y € A, such that y » x°.(Since A is openand C(x°) is
closed, there exists y € A and y ¢ BndC(xo), so y > xo).
Now {x]|y > xol is open and for all x of this set y € C(x)
and y € A,
For X € Xi’ the sum I Ci(xi) of preference sets is closed
and convex. That it is closed follows from assumption c; since
: 2 C ; >
Asc C1(x1) Cl Cone Cl(xl), we have



L Asc Ci(xi) Nn - ¢ Asc Ci(xi) C {0} and by property 1.9 (9)

in [ 3 ], sums are closed.

i
z; € Bnd Ci(xi)' If =z '€ Iat E Ci(xi)’ then there exists an

If z € Bnd I Ci(xi)’ then for some allocation z,z = I z., and

allocation z;s such that z; € Ci(xi) for all i and for at least
one i, z; Int Cl(xl), hence z; >1 X,

These properties permit to define an equilibrium(seefig.IOa)fOr
the economy merely by supporting hyperplanes, since interior

points are always strictly preferred:
Theorem 15.2
Given bl,b2,b3,b4 and d2, ;,(;i) and ; are an equilibrium if

L(p) supports Y and I Ci(;i) iny =2 ;i

- - . - - l -
L(pi) supports Ci(xi) in x,, for p;. = — p

: . oo
L(p) supports Ci(xi) i 2 =g € Ci(xi)'

By the last statement a quasi-equilibrium is excluded:

the case that L(Ei) still contains a better consumption X
is ruled.out; this could occur only on the boundary of Xi,
L(pi) supporting Xi i X and z.

The equilibria are not changed, if the preference sets are
replaced by C**(xi) = Cl Conv Au C;(x;) = Au C,(x;) and the
production set is replaced by Y** = ¢1 Conv {Y,{0}}.

Theorem 15.3

Given assumptions bl,b2,b3,b4,d4 and cb:

1f and only if ; (;i),s is an equilibrium, it is also an
equilibrium for the case that Ci(xi) is replaced by Au Ci(xi)
and Y by Cl1 Conv {¥,{0}}.

Proof.
If L(E) supports Y in ;, then it also supports Y** in ;.
Conversely, if L(B) supports Y** in y it also supports
Y and since Y** Nz K, = Yy n g Xi’ now ; € Y. TE L(Bi)

= g = T *% = _—
supports Ci(xi) in x;,it supports cy (xi) in x,, and



conversely, since Ci(;i) is convex, a point of
C;*(;i\ci(;i) cannot be supported by a hyperplane L(p),
but only by hyperplanes of the type H(p,0).

Since we shall restrict the dual correspondence to the set

V;\Int X:, we have to show that V. # 0.

Theorem 15.4

Given assumption bl,b2,b3,b4,cl,c2,c4 and c5

Vi ¢ P for all i.

Proof .
If Xi contains a best point, i.e. a point xo, such that
x° > X, foxr all Xy € Xi, then by assumption cé4,
%;in + Ci(xo)] N'Y = @ and hence x° € Vi.
So let Xi not contain a best point, which by the
continuity of Zi and the closedness of Xi’ implies that
X. 1is not compact.

i
We first show:

*

Int Q x: N Cone Y # 9 (i)

* * *
By 5«53, 0 X, = (v Xi) = (Conv U Xi) 3

Conv U Xi € I €61 Cone X, so by assumption cl, OQCoanXi.
By assumption c2, Z Cl Cone X, N'Y is compact, hence for

some U < 1, (Conv U Xi) N u Y = @ and so by theorem 10.3b
* *
Int (Conwv U Xi) N ¢p Y) # 0
*
and Cone (U Y)* = Cone Y , which proves (i). So we can
*
choose some point r € Bnd Y , such that g r € Int N X:

for some u > 1,

Now if there exists X; such that r € C;(xi), then
certainly r € Int [ . X10C}(x;)] hence

oy x;."*+ ¢(x;)1 N Y = # and also [jF; X5+ (xp1 N Y = 0.
So Ci(xi) C Vi'

Hence it remains to prove that r € C:(xi) for some L

’ » s *
given that )(.l 1s not compact: Since U T € Int Xi’ X; and



the set {r} cannot be separated by a hyperplane H(q,0).

So the intersection of X** and the upper dual set of T;
{x|rx < 1} = {r}* is compact. So also X, N {r} is

compact and this intersection certainly contains a best
point x°.

Since Xi is not compact and does not contain a best point,
there exists a point x; L TR {r}o such that x, > x°.

Hence Ci(xi) N L(E) = 0 and r € C (x )&

16. The dual preference correspondence.

We restrict the correspondences C; and C¥ to X.\Int V Since
. X, NERE W, ® K. dE lobh.ge dnd closed c¥ix™ Int v¥ > V islshiec.
o LA 1 il i 1°=4 Ld

and closed, by theorem 11.1 (Sane V é 0). From C: is derived

- 4 -
a correspondence Ci, mapping V. \Int X into V:. The set C:(p.)

1

contains all prices; equlvalent or worse" then P> i.e,; such
that at such a price only commodity bundles can be bought,
that are equivalent or worse then the best bundle available

at the price P; (and income 1).

Definition 16.1

If pE WV, \x .C*(p) T?p)C:(x) for T(p) = {x € Xilp € c] *(x)}
if p € Bnd x :C.(p.)= C¥(x) for T(p) = {x€X,\Int V.lpGBnd C(x)}
117 Tp) i i il

It will be shown below that for all p there exists some x,
. o
such that Ci(p) = Ci(x).
The properties of C; are the same as those of Ci’ as given in

theorem 15,1
Theorem 16.2

Given assumptions bl,b2,b3,b4 and b5:

a. C (p) is closed and convex and 0 & C (p) for all
) e V. \Int x

b. p; € Bnd ci(p)



(o fot
d: q €
e. The
Proof.

) . * * - Ak
all psq € Vi\Int XI:p € Ci(q) or q € Ci(p)

~ % ~% ~%
g () = Eita) © B )

B - * *
correspondence C; is elosed and l.h.c:; for p € Vi\Int Xi

a)directly follows from the definitions; b) is proved in

lemmal6.3; c) and d) follow from the properties of dual

sets and from assumptions b,

Before we prove the continuity, we first give a lemma. Note

that only in the proof of e) assumption b is used.

Lemma 16.3

For all

suech that a:(p)

Proof .

1
Let X

for po

* % - .
p € Vi\X., p E C;(p) and there exists x € Int X,

1
= c’i‘(x).

{x € Xi|p0 € C;(x)} and X2 = {x € Xi|po ¢ Ci(x)}

Int X?. Obviously x!' U X2 = X, and x! n i = @

e
1 5 *
and X # @, since p € Int X,.

We

C(y)CX]; if y € U

=

1 .
have X = U1 C(x) = ﬁz Clx): 1f w € Xl, then
X X 1
) C(x), then y € X ; Obviously
€ Cx) for % € XXz.
(o} E o

o
Let 2z° € 02 C(x)s For z =2 53 2z =+ 2 =« Cheoose

(o}
X

oy 2 t o t 2
€ Bnd X N Bnd X @and x =+ x , for x € X . Now for
t o

all €, 2° = 2 € C(xo). So by the closedness of C,

o
z

Now E*(po) =N

. 1 .
= C(xo), which proves X 2 02 €(x). So X‘ is closed.
* X * 1%
| C (x) = (Ul C(x)) =X
X X

Since for any x,ysC(x) € C(y) or C(x) 2 C(y), we also

1%

have 6*(p0) = X = (ﬁ2 c(x))Y* = €1 UZ C*(x). Since by
X

X

*
definition of Xz, po € U2 C*(x), and po € Xl , we have

o
P

If

= X

€ Bnd C*(p) = X
o 1 2 o 1 G B
x € Bnd X M Bnd X", then €(x ) = X . By definition



- 37 -
C(xo) = Xl. Suppose for some xl € Xl,xl & C(xo). Then
C(x ) 2O C(xo) and x° € Bnd C(xl), but this contradicts
continuity.
For p € Bnd X:, L(p) supports X1 If L(p) supports C:(xi)
for any X € Xi’ then Ci(pi) - V If not, there exists
some x € Xi, such that E:(pi) = (x . I
Now we are able to prove the cont1nu1ty properties.
Lower hemi continuity: Let B be an open set and
C¥p%h A B 4§, Lek q° & AN Tk e*(s%). Zinee
po € Bnd C*(po), E*(qo) c E*(po) and, po ¢ Bnd C*(qo),
otherwise by definition E*(po) C E*(qo). V*\C*(qo) = U

is an _open ne1ghbourhood of p . For p € U,we have

q° € C*(p), C*(p) N B # 9.

Closedness: Let ps -> po, qs > q0 and q = C (p ), all
points of V. \X Suppose q° ¢ E (p ¥ Hence c (p ) € C*(q Na
Choose r € Int C(q )\C(p ). Now C (p ) C C *(r) C C*(q )

and p € Imnt C(r) since C*(p ) cannot support more then

one pPreference set by ass. B5,q & c (r). )

For some s > n, ps (= E*(r) and for some s > m, qS & E*(r).
Hence if s > n and s > m qs & 6*(ps), which is a contra-

diction.

We are now able to define the concept of dual equilibrium.

A dual equilibrium only consists of a price vector, which
represents a general price. Individual prices follow from
this general price, using the income distribution. Commodity
vectors do not explicitely occur in this definition. They can
be derived from the equilibrium price.

In this definition we use the concept of dual summation defined

in section 9 and we repeat:

* *
. = U N 5 . = . " . = .
B C % 7@ C for A {allal 2 0 and I oy 1}

Definition 16.4

A dual equilibrium is a price vector 5, such that for

1 -
P = === P
1 )\I(P)



- “~ % *
€ N
P E Ci(pi) ¥

i &
] = 4
Int E Ci(pi) Y [}

L(p)

L(Pz)

Theorem 16.5

A Given assumption b]’bz’bS’bA 5:

and d
5, ;, X, is an equilibrium = 5 is a dual equilibrium

b. ; is a dual equilibrium = there exist x and ;i’ such that

P, X, X is an equilibrium.

Proof.,

a. By theorem 15.3, L(;i) supports Au Ci(xi) in ;i and L(E)
supports I Au Ci(xi) and Y in x. Hence ;i € Bnd C;(;i)
and p € Bnd E C}(x;) N Bnd Y*. Now C;(p,) C Ci(x;): for

P
this holds, because L(p) does not contain any point

= *
¢ Bnd X;, this is true by definition, for P; € Bnd Xi

preferred to ;i' Hence B C;(Ei) c & C;(xi) and therefore,
applying theorem 10.3, p € B E:(;i) N Y*, whereas
Int E c;<5i> ny* = g.

b. Since p € C* N Y* and Int ¢* N Y* = @, for c* = & c, (),

some hyperplane L(x) separates c* and Y* and hence L(p)

*k , .
separates C and Y** and supports these sets in some



point X. There exists ;i’ such that x = I ;i and L(Ei)
A** = = g O . =

supEorEs Ci (Ei) C (xi) in x,.

Sio % X, and p are an equilibrium of the economy with

preference correspondence C:* and Y**, so they are also

an equilibrium of the original economy by theorem 15.3.

Before we give a proof of the existence of an equilibrium for
the dual economy, we first note that this dual economy can be
considered independentely. This economy is defined by the
concepts given in section 3. We give a set of assumptions,
that follow from the assumptions given for the original eco-
nomy and these assumptions are sufficient for the existence
of a dual equilibrium.

In the proof of theorem 16.6 we refer to these assumptions.
Theorem 16.6 ensures the existence of an equilibrium in the

original economy together with theorem 16.5.

Assumptions. (for the dual representation of the economy)

; *
A Y* is closed and convex, 0 € Y

* *
Bl X; and Vi are closed, convex, aureoled, 0 €& Vi
B2 xFc yd
i i
B3 All sets C:(pi) are closed, convex, aureoled and 0 € C:(pi)

B4 for p,q € Vi\Int X :p, € Ef(q J o g € E?(p.) and
-; i £a 171, 1 i i il =L
B5 C; is closed and l.h.c.
*
Cl  (Int E X)) NY* =9
%
C2  For all i: (E X; @ V) NY" 49
c3 ¥ n g V; is compact.
DI The functions Ai(p) are continuous in P

D2 for i > 0, Ai(p) = Ai(up)

D3 I A (p) =1



1

*
D4 _— X. for € P
Agues E T By T E

D5 Xi(p) > 0 for p e P

These assumptions are implied by the ones given in section 4:
A is true by definition of lower dual sets. Bl is true by
definition of upper dual sets an d Vi # @ was proved in
theorem 15.4. B2 and B3 hold by definition and B4 and B5 were
proved in theorem 16.2. Cl follows from assumption ¢5, by
applying theorem 10.3. C2 follows from the definition of Vi’
applying theorem 10.3. C3 is implied by c3:

Since U Vi and Y cannot be separated by some H(q,0), neither
U Au Vi and Y cin be separatei. So by theorem 10.2,

Cl Cone (M Au Vi) N Coneint Y C€ 0 and therefore also

€l Eorne E V; N Coneint Y* C 0. Now the assumption follows by
theorem 10.1.

The assumptions D directly follow from d.

Theorem 16.6

Given the assumptions for the dual economy there exists an

equilibrium price p.

Proof of theorem 16.6

* .

By assumptions C2 and C3 the set Y* N v' is non-empty and

compact. Since 0 € V*, 0¢ Y*n v®, Any equilibrium price
-

must be in V* N Bnd Y  Cc v¥ny .l)

We define two functions:

*
a:€l Cone Y™ N wN{0} + R

%
p:Cl Cone Y* N v*\ {0} > Bnd Y* N v

x . . :
1) Bnd Y is the boundary of Y* with respect to Cone Y*, 1.8

*
the set {p € Y*|vu < 1:up € ¥ }



where

a(q) max {a € R|la ¢ € Y* }

p(q) a(q)q

< * *x . .
Since Y M V" is convex, compact and does not contain o. (by

assumption A),
. * *
a(q) > 0 and p(q) # 0 if ¢ € Cone Y N V \0

and both functions are continuous and o is quasi concave.

. x : =
Obviously p(q) € Bnd Y*, since Y* is star shaped and V 1is
aureoled, so with any arbitrary non zero price vector q of

* . :
Cl Cone Y 1is associated the general price p(q) on the ray

from the origin through q.

Let H = {p € Rn*|p h = 1} for h € R", be a hyperplane which
strictly separates v* 0 ¥* and {0} and S=H N Cone (v¥ n x*)

is called the set of standard prices. S is convex and compact:
that it is bounded follows, by theorem 10.1 from the fact that
Coneint St H N C1 Come V¥ N v* = {0}.

We define the inverse functions
* * * *
S$:Bnd Y NV > S and Y = Bnd Y NV =+ R, where

s(q) = p(q) = {s|q = p(s)}

S | S
Y = sGE@n

Now s(q) = Y(q)q and both functions are continuous.

p(q)




An individual price (for the i'th individual) is related to a

general price by a number JU, representing an income:pi = % P.

The income distribution function assigns for q € Cone Y*, an

income Ai(q) to each individual. By assumption D2, Ai(q) =
Ai(a(q)q)) = Ai(p). With any standard price s and general
price p(s) can be associated an individual price pi(s), by
deflating the general price with the income. Hence we map
the set of standard prices into the,individual price space'.

Let pi:S s Rn, where

a(s)

=—]——' = —_———
P41 = Tty PO T A (e

g 1Ff 88 € @

The function is continuous. This follows from the continuity
of a(s), p(s) and Ai(s) (assumption D1) and from assumption

D5 which requires Ai(s) = 9.

Figs 12



; * *
We now define a correspondence Di:S -+ Vi

5o . "
c;(p;(s)) if p,(s) € V,

Df(s) =
' v¥ if p.(s) & V'
p U : & 1

Hence to any s is assighned the set of individual prices not
"bettef" than pi(s). or the whole set of feasible prices VI.
Since C: is a closed, 1l.h.c. correspondence by B5 and Pi(s)
is a continuous function, its composition D: is also closed,
Lihets

* * * _ * *
Let D™§S + W , ok V™ = B Vi’ be the dual sum of the Di
p¥(s) = &8 D} (s)

By theorem 10.3 this correspondence is closed and l.h.c.

Lemma a.

Vs € SiD¥(s) N ¥¥ £ 9.

Proof.
o * E3 *
If vl:pi(s) € Vi’ then pi(s) € Di(s), p(s) € Y and
p(s) = Xip(s) € Ai D;(s). Since L Xi = l,pi(s) € B D:(s)=

U n *
& T %y Dyisa.

If 3j:p;(s) ¢ v¥, then D;(s) = v?. Now

D*(s) N Y*=[ B D¥(s)eviI n ¥* o[ B xievi] N ¥* # ¢ by
it t i it b

assumption C2.

Lemma b.

ke vi:pi(s) (= V: = p(s) € Bnd D*(s)
b. gi:pi(s) 3 V: = p(s) ¢ D*(s).



Proof.
8, For all i: pi(s) € Bnd E;(pi) = Bnd D;(s) and p(s) =
Xi(s) pi(s), or pis) & Bnd*ki(s) D:(s). Therefore for
any ¢ < 1, ¢p(s) € Xi(s) Di(s), fioie @ll e

; 1 * * *
s ! m———— . = 5 i € 3
b. For j Ai(p(s)) p(s) €& VJ DJ(s) Suppose p(s) D (s)
Then for some u(ui > 0, X “i = ) pls) € p D;(p(s)) for
all i. Now p(s) € uj V;,hence My < Aj. So for some i # ]

. *
T Ai' But then p(s) € g D?(S)’ since p(s) € Bnd Xi Di(S)‘

n* * * Ak 3
Let D (s)=D (s) " Y . D (s) is compact, convex, non-empty

for all s.Soit is upper hemi continuous and l.h.c., hence

continuous.

Let

B(s) max {a(q)]|q 51575)}

and

B(s)

{qla(q) = B(s) and q € B;(s)}

By the maximum theorem ([ 1] p. 122), we have
a. B(s) is a continuous function

b. Bi(s) is &b UshsCs correspondénce.

We have, for all s € S:

1. Bis)

| v

1

2. B(s) € Y¥

since D:(s) i g* ¢ 8.
Now the points of B(s) are mapped into S,F:S8 + S

for

F(s) {r € s|q € B(s) and q € Cone r}

{r € S|q € B(s) and r = Y(q)}

Since Y is a continuous function and B(s) is an u.h.c.

correspondence F(s) is u.h.c.



Further F(s) is convex:

F(s) = S N Cone D*(s) n E%ET Y*

which is a convex set.

Now F is an u.h.c. correspondence of S into itself with convex
image.

Hence we can apply Kakutani's fixed point theorem: there exists
s € S, such that s € F(s).

Now

a. It is impossible that for some i, pi(s) & V:, since in this

case, by lemma 2, p(s) € D*(s) 3 B(s).

b. So by lemma b, p(;) € Bnd D*(g) and B(s) = a(p(E)) = 1 and
a(q) < 1 for all q € D*(s). Therefore Int D*(;) N Y* = @

and p(;) is an equilibrium price. Q.E.D.

The argument of the proof implies that it possible to find the
equilibrium by a procedure of minimizing and maximizing a
continuous function-

Let Q:S X S » R, where

max N)I% plr) € b ()} if 2 plr) € D™(s)
$(r,s) =

i otherwise

This function is continuous and, by lemma a, for each s, there

exists r, such that ¢(r,s) > 1.

Also max ¢(r,s) = B(s) and min B(s) = 1 = p(s) for the
equilibrium price p(s).

Hence

Corrolory.

p(;) is an equilibrium price for

min max ¢(r,s) = ¢(s,s) = 1.

M.v.d.B.
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