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Introduction.

This paper consists of two parts. In part I the mathematical

concept of duality is analyzed and in part II duality is
applied to economics.
In the first part two types of dual sets are introduced,

upper and lower dual sets. Different properties are given
and their relation to dual cones is analyzed. The concept
of dual summation is defined and it is shown that the dual

of a sum of sets is equal to the dual sum of their duals.

Intersection properties of sets and their duals are considered.
Dual correspondences are defined as correspondences having

the duals of the image of the original correspondence as their
image and it is shown that, given certain assumptions, the
dual of a closed correspondence is lower hemi contínuous and
vice versa.

In the second part an economy ís defined and the dual repre-
sentation of this economy ís deríved. The original repre-
sentation being (mainly) in terms of commodity vectors, the
dual representation is in terms of price vectors. Upper dual
sets are applied to preferences, lower dual sets to production.
For the original representation and for the dual representation
a set of assumptions is given, the latter set being implied
by the first. For both economics an equilibrium is defined, a
dual equilibrium consisting of a price vector only. It is
shown that both equilibria are equivalent. The existence of
a dual equilibrium is proved.

This paper is an extension of [13]. The treatment of duality
is more systematic and the theorems on intersection properties
and dual summation are extended.
Dual correspondences are new. The economic model is more ga.neral,
since the assumptions are weakened. The existence proof is
different and based on the properties of dual correspondences.

~) I thank Pieter Kuys for hís comments and his helpful
suggestions.
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Duality was applied to utili[y functíons by F.oy [7], and applied
to preferences in [ 5] and [ 12] . An extensive study with respect
to production functions can be found in []0].
The mathematical concept of duality can be found in [4] and
[11]. Duality is applied in the [heory of public goods in
[S] and to the theory of adjoint correspondences in [9](see
remark section 11).
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PART I

l. Some definitions.

A set K C Rn is called a cone (with respect to the origin), if

x E K~ l x E K for all a ~ 0. It is called an aureoled set,

if x E K~~ x E K for all ~~ 1 and it is called a star shaped

set if x E K~~ x E K for all 0 ~~ ~ 1.

We define three closure operations, which associate the smallest

set of each type to any set C C Rn:

Cone C-{x E Rnl 3~ ~ 0, Sy E C:x-ay}

Au C -{x E Rnl 3a ~ l, 3y E C:x-ay}

St C -{x E Rnl 30 ~ a ~ 1, 3y E C:x-~y}.

Obviously, if C is convex, all three closures are also convex

and C- Au C n St C,We have Cone C- Au(St C) - St(Au C) -

Au C U St C. We also define the set Coneint C, i.e. the largest

cone, which is contained ín C:

Coneint C-{x E Rnl Va ~ 0:~ x E C}.

The sets C1 Cone C, i.e. the smallest closed cone, containing

K, and the set C1 Coneint K, the closure of the "interior cone"

happen to be nearly related to asymptotic cones.

We fírst define; let k E R and Ck -{x E Cllxl ? k}.

Then the asymptotic cone Asc C- k C1 Cone Ck.

Property 1.1.

a) If C is aureoled, then Asc C- C1 Cone C

b) if C is star shaped, the Asc C- C1 Coneint C.

Proof

a) Asc C C C1 Cone C: since tl k:Ck C C1 Cone C

Asc C~ C1 Cone C: if x E Cone C, then there exists k,
such that for any k' ~ k:x E CL Cone Ck, hence
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Asc C~ Cone C and so also its closure.

b) C1 Coneint C C Asc C: Vk:Coneint C C Ck
C1 Coneint C~ Asc C:Let x~ C1 Coneint C, then there
exists y~ C1 C, such that y-~x, for some a~ l.
So for some k, k' ~ k~ y~ Ck, so x~ Asc C.

2. Hyperplanes.

Let Rn and Rn~ be two "different" n-dímensional spaces, which
are distinguished only for reasons of interpretation. Rn is

~called the "original" space or the "commodity" space and Rn
is the "dual" space or the "price" space.n
On Rn X Rn~ the scalar product px - kEl pkxk is defined.
Now for p E Rn~` and a E R we define (p ~ 0)

H(P.a) - {x E Rn~Px-a}.

The n-l-dimensionalhyperplaneH(p,a) separates the half spaces
{x~px ~ a} and rx~px ~ a}. Similarly for x E Rn and a E R(p ~ 0)

Híx.a) - {p E Rn~`Ipx-a}.

We also define for p E Rn and p~ 0:

L(P) - {x E Rn~Px-1}

and we have L(p) - H(p,i) - H(ap,a) and H(p,a) - H(~p,l) - L(áp).
L(x) ís defined by interchanging x and p.
Given H n(p,a) and a set C C R, there are four possibilities:

1) The hyperplane intersects the set in its interior:
H(p,a) n Int C ~ ~

2) The hyperplane supports C in some point x:x E H(p,a) n C
and H(p,a) ~ Int C- 0. Now px - m~~ px-a or px - u~~ px-ax

3) The hyperplane asympiotically supports C:H(p,a) n C-~
and X~~ px - a or X~u~ px - a. Obviously C is unbounded.

4) Both sets do not intersect and H(p,a) is not an asymptotic
support. In this ease there existssome a' ~ a or a" ~ a
such that H(p,a') ~~ C-~ or H(p,a") n C-~.
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3. Closed, convex, aureoled sets, not containing 0.

A certaín type of set which will be frequently used in this
paper is called a type A set.

Definition 3.1

A set C C Rn(C C Rn~`) will be called a type A set if 0~ C and
C is closed, convex aureoled.

Type A sets have properties which are similar to properties of
cones. For a closed cone, we have K t K- K(see fig. 1).

Property 3.2

If C is a type A set, C t C1 Cone C- C.

Fig. I

Proof

Obviously C t C1 Cone C~ C t {0} - C.Conversely, we show
that C} Cone C C C. Let x E C and y E Cone C, where
ay E C, for ~~ l. Now ~ta (x}Y) - I~t~) x}(~ta,~ Y E C.

since C is convex and (x}y) E C, silllnce ~t~ ~ 1 and C is
aureoled. Since C is closed, we also have C t C1 Cone C C C.

For any a~ 0, we can define a C-{xlg y E C:x-ay}. It is
obvious that a C is also a type A set, and that C1 Cone a C-
C1 Cone C, and that a C C S C if a~ S.

It will be usefull to have a definition also for a C if a- 0.
First assume K ís a cone. Since for any a~ 0, a K- k, it seems



- 6 -

obvious to define OK - K. (See also [6], p 61). Further assume
C is a type A set, x E C and K- Cl Cone C.
Now we have, for all a~ 0:

{ax} t K ~ a C t K- a C ~ a K- K

So it seems obvious to require {Ox} t K C OC C K, or OC - K.

Definition 3.3

If C ís a cone, OC - C, if C is a type A set, OC - C1 Cone C.

If we have a finíte member of type A sets,their sum is convex
and aureoled. It is however not necessarily closed and it may

contain zero. However if the sum of their closed cones is
pointed, then the sum is a type A set.

Theorem 3.4

Let Ci (i-1,2,...,n) be type A sets and (E C1 Cone Ci)n
-(E C1 Cone Ci) -{0}, then E Ci is a type A set.

Proof
0~ E C.: assume 0- E x. and x. E C.. Now x. ~ 0 andni i i i i
x~ --~ x., hence x~ E E C1 Cone Cí and

Jn
x~ --F~ x. E- L C1 Cone Ci, which contradicts the

J
assumption. Convex: x- E x., y- E y., for x., y. E C.;i i i i i
now a x t(I-a)y - E(a xi t(1-a)yí~. Aureoled:
x- E xi, ax - E axi. Closed;in [2] is stated that a sum
of closed convex sets ís closed, if their asymptotic cones
have the property of the theorem and we have shown that
for type A sets the asymptotic cone is equal to the closed
cone.(see [2], 1.9(9))

Property 3.5

If Cí are type A sets, then C1 Cone E Ci - E C1 Cone Ci.

Proof
Ci C C1 Cone Ci, hence E Ci C E C1 Cone Ci and now
C1 Cone E C. C E C1 Cone C.i i
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Let x E E Cone Ci, hence there exist xi, such that
E xi - x and xi E Cone Ci. For som ~,~xi E Ci, hence
~x E E C., so E Cone C. C Cone E C. and now C1 E Cone C.-1 1 1 1
E C1 Cone C. C Cone E C..

1 1

4. Closed convex sets, containing 0

An other type of set, frequently used in this paper and having
properties similar to type A sets, will be called type S sets
(since they are star shaped).

Definítion 4.1

A set Y C Rn will be called a type S set, if 0 E Y and Y is
closed and convex (see fig. 2).
Properties, analogous to the ones given in the previous section
hold for these sets: Yt Coneint Y- Y; a sum of type S sets is
also a type S set, if the sum of their asymptotic cones is
pointed and we may define 0 Y- Coneint Y.
Note that Coneint Y is closed for type S sets and that
Coneint Y- Q~ if Y is compact.

Fig. 2

5. Upper dual sets.

Let C C Rn be any set. b1e define its upper dual set as Ct C Rn~,

where
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Definition 5.1

For C C Rn, Ct -{p E Rn ~ dx E C:px ~ 1}.

C~ contains allt
p E Rn~, such that the hyperplane L(p) (see section 2) separates

~
C and 0. This directly implies, that C} ~~ if and only if

C1 Conv C~ 0. If a hyperplane L(p) supports or asymptotically

supports C, then p is a boundary point of C}, if L(p) contains

an interior point of C, then p is not in C} (see fig. 3)

The above definition gíves C} as a subset of Rn~ for C C Rn.

If however B C Rn~, then Bi is in the original space:

g~ -{x E Rrl d p E B: px ~ 1}.t -
Hence (C})t - C}}, the dual of the dual, is in the original

space.

Property 5.2

~ ~
If C C D, then C} ~ D.

Fig. 3

Proof
p E D~, hence dx E D: px ~ 1 and therefore alsoLet }

y x E C: px ~ 1.

Property 5.3

~
For any C C Rn, C} is a type A set.
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Proof
~

0~ C}: obvious. Convex: if for all x E C,px ~ 1 and
qx ~ l, then also apxt(1-a)qx ~ l, for a E[0,1].
Aureoled: if ~~ l, then yx E C: px ~ I~ y x E C:~px ~ 1.- ~ - -
Closed: assume p E C1 C} and p~ C}. Now there exísts
xo E C, such that pxo ~ l, but then, for E sufficiently
small, q E BE(p) ~ qxo ~ 1, which is a contradictíon.

From this property it directly follows, that C}} is also a type
A set We have:

Property 5.4

For any C C Rn, C C C~~ If C is a type A set, then C- C~~tf' tt'

Proof
~

C C C}}: Let xo E C, then by definitíon, ~p E Ct:pxo ~ 1.
~

Hence xo E C}} -{x~F~p E C}:px ~ 1}. C~ C}t: Let xo ~ C,
and C a type A set. For T-{y-ax I a E[0,1]}, T n C-{b,0
since C is aureoled. As T is compact convex and C is
closed and convex, there exists a hyperplane L(p), strictly
separating T and C. Now p E C} and since pxo ~ l,Xo EC}t.

From this property it follows, that C} -(C1 C)} -(Conv C)t -
~

(Au C)} and if C1 C- C1 Int C, also C} -(lnt C)}. By applying
5.2, it also follows that C~ - C1 Au Conv C.

Property 5.5

If Ci (i E I) is a(possibly infinite) family of sets, than

a) (~ Ci)} - Í Cit

b) if Ci are type A sets, (Í Ci)} - C1 Conv Í Ci}.

Proof
a) From 5.2 it follows, that (U C.){ C Ci, for all i, hencei

(U Ci)t C n Ci~.Conversely , let p E ~~ C~~, hence for all
i, x E C. ~ px ~ l, and therefore, x E U C. ~ px ~ 1,i - i -
so p E (U Ci)f
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b) By substituting Cit for Ci in a), we get (U Ci})} -

n ~.~ - ~ C., since all C. are type A. By taking
ltt 1 1

duals on both sides: (n C. )~`-(U C.~`) ~~ - C1 Conv U C.~`,
1 t Lt tt Lt

the uníon of aureoled sets being aureoled.

Note that it is not excluded, that U C. or U C.~` contains 0.i it
In this case its dual, and therefore the intersection, must be

empty.

6. Lower dual sets.

With respect to lower dual sets~type S sets, as defined in

section 4, play the same role es type A sets play with respect

to upper dual sets. The difference between upper dual sets and

lower dual sets is, that in the definition ~ is replaced by ~.

Definition 6.1

For any non empty set Y C Rn, Y~ -{p E Rn~lyx E Y:px ~ 1}.

~` E y~ for any Y C Rn.
Now obviously Y- ~~ since 0 -

Apart from 0, Y~ contains all p, such that the hyperplane L(p)

has 0 and Y on one side. L(p) should not intersect Y in its

relatíve interior and if it supports or asymptotically supports

Y, p E Bnd Y~`.

All properties are similar to ones in section 5, as are their

proofs

Property 6.2

g C y~ X~ ~ y~`



Property 6.3

For any Y C Rn, Y~ is a type S set.

Property 6.4

Y C Y~~ ; if Y is a type S set, Y- Y~~

This implies that Y~~ - C1 Conv {{0}~y}

Property 6.5

~ ~
a) If Yi is a family of sets I, then (Í Yi)-- Í Yí-
b) If Yi are also tyl.e S, then (Í Yi)~ - C1 Conv Í Yi~

7. Dual Cones.

We distinguish upper dual cones and lower dual cones. Their
difference is however hardly relevant. An upper dual cone Co

of a set C, contains (besides 0) all p such the hyperplane
H(p,0) has C on its positive side. The lower dual cone contains
p, such that C is on the negatíve side of H(p,0).

Definition 7.1

For C C Rn,

Co -{p E Rn~l d x E C:px ~ 0}

Co -{p E Rn~l y x E C:px ~ 0}

Obviously Co --Co and 0 E Co and Co -~ if 0 E Int C1 Conv C.
Their properties are well known and similar to the ones for
upper dual se[s (section 5) and lower dual sets(section 6).
Their proofs parallel those of section 5. We only give the
properties for Co, those for Co followin~ by applying
Co - -Co.

f -
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Property 7.2

C C D~ Co ~ Ct

Property 7.3

For any C C Rn, Co is a closed convex cone.

Property 7.4

C C Coo; If C is a closed convex cone, C- Coo

and this implies

Coo -(C1 C)o -(Cone C)o and for C convex, C1 Cone C- Coo
tt t t tt

and

Property 7.5

a) If C. is a family of setsi

(U C. )o - n C o
i t it

and if all C. are closed convex cones:i

(n Ci)o - C1 Conv U Clo

Proof

a) By 7.3, (U Ci)o C ~~ Co}. Assume p E n Cio, then

yi:x E Ci ~ px ~ 0, so x E U Ci ~ px ~ 0, hence p E(U Ci)o

b) By a, (U C.o)o - n C.oo 3 n C., by 7.4. Solt f Itf 1(n C1)o -(U Clo)oo - C1 Conv U Cio (the convex hull of

a union of cones being a convex cone).

Finally we have

Property 7.6

If C is a closedconvex cone, and if C n- C-{0}, then

Int Co ~ (~.
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Proof
Assume Int Co - 0. Then there exists a subspace of
dimension m ~ n, containing Co. So there existsa vector
x E Rn, such that yp E Co:px - 0. By 7.4 x E Coo - C
and -x E Coo - C, which is a contradiction.

8. Dual sets and dual cones.

For any set, not containing the origin in its closed convex hull,
both the upper dual set and the upper dual cone are not empty.
It was shown (property 7.4), that then C1 Cone C- Coo. It is
also true that the closed cone of the dual set, equals its dual
cone (see fig 5).

Property 8.1

If C} ~~, then C1 Cone C} - Ca.

Proof
tIx E C:px ~ 1~ yx E C:px ~ l, heace C} C Co and since
Co is a closed cone, also C1 Cone C} C Co. Now let
p E Co. Since
Cone C}`{0} -{pl~a ~ O,y x ~ O:a px ~ 1}-

{p13r1 ~ 0, yx E C:px ~ rl}, we have for any q E Cone C}
and q~ 0: if 0 ~ a ~ l, then apt(]-a)q E Cone C}.
Since C1 Cone C} ís closed, also p E C1 Cone C}.

C

Cot

Fig. 5
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Corrollary For any family Ci

C1 Cone (U C. )~` - n C1 Cone C~1 ~ 1 t

Proof
By 7.5: (U Ci)o - n Cio

By 8.1: C1 Cone (v Ci)} -(U Ci)t

by 8.1: C1 Cone Cit - Clo

and now the corrolary follows.

Similarly lower dual sets and lower dual cones are related.
Instead of property 8.1, we get the two properties 8.3 and
8.4.

Property 8.3

Coneint C~` - Co

Proof
Coneínt C~` {0} -- {pl~x E C, V~ ~ 0: ~ px ~ I}

Let p E Co, hence Vx:px ~ 1, and so Vx E C, f1~ ~ 0:

~ px ~ 0 ~ 1, hence p E Coneint C~`.

If p~ Co, then forsome xo E C: pxo - a~ O. Choose
~~ á~ 0, then a px ~ á pxo - l, hence p~ Coneint C~.

Note that for C, such that 0 E Int C, Co -{b and C~ is compact.

Property 8.4

If C ís a type S set: C1 Cone C~` -(Coneint C)o

Proof
~

Replace C by C~` in 8.3: Coneint (C~)- -(C~)o

Since C is type S: Coneint C~` - Coneint C.

By prop. 7.4: (C~`)o -(C1 Cone C~`)o, hence Coneint C-

(C1 ConeC~`)o By taking dual cones (Coneint C)o s

(C1 Cone C~)o

Note that for C compact, p E Int C~ and hence C1 Cone C~ -
n~

F. .
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Remark

Our concept of dual cone, should be dístínguished from another
(nearly related) concept, also called dual ( or polar) cone:
F(C) -{p,al x E C:px ~ a}. Now C~ is the projection of
F(C) n{p,ala - 1} on Rn~ and Co is the projection of
F(C) n{p~~Ia - 0} on Rn~.

9. Dual summation.

Let Ci (i-1,2,...,n) be a finite number of type A sets, such
that [heir sum E C. is also a type A set, which is true, ifi
the sum of their dual cones is pointed. (theorem 3.4).
How to express the dual of the sum (E C.)~ in terms of C~`?i i
In [ 13] we proved that

(E C.)~ - C1 ip E Rn~~3a.. ~ p~3p, E C.:p-a.p.and Ea.-1}.1 f 1 1 1 1 1 1

Theoperation between the braces is called inverse addition in
[6], where a. - 0 is not excluded.i
Now it is easy to see that the right hand term is equal to

C1 Á Í aiCl for A} -{ai E Rlai ~ 0, E ai - 1}:
t

~
{PI3ai E A}~~Pi E Ci~ `di:P-aiP.} -

i

{PI~a E A~.yi:p E ai C~} -

{PI~ ~ Va E A E n a. C. }- A Í ai Cit'~i'p i i t

In def. 3.3 we defined OC as C1 Con C( for C type A).
Now it appears that we can allow ai to be 0; we denote dual
summation by ~ and ~.
Theorem 9.1

If Ci ( i E I-{1,2,...,n})are type.A sets and if
(Í C1 Cone Ci) ~i -(Í C1 Cone Ci) ~{0} then

(~ Ci)t - Á Í ai Ci -~ Ci

for A- {alai ~ 0, E ai - 1, i E I}
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Proof

Let C~ -(E Ci)} and S- Á Í ai Cit
S C C~: Let p E S, then there exists a E A, such that

p E a. C.~: For a. ~ O,p E~ C.~` and for a- 0,~ ~t ~ a. ~t
p E 0 C.~ - C1 Cone C.M. Hence for all i, we have

it it
x. E C. ~ px. ~ a.. So for x E E C. .i i i- i i K
p E x. - E p x. ~ E a. - 1 and p E (E C. )t

1 1 - 1 1

S~ C~: We first show: C1 Cone C~ - n C1 Cone Cit:

By 8.1: C1 Cone n Ci} - C1 Cone (U Ci)} and

C1 Cone (E C.)~ -(E C.)o -(C1 Cone E C.)o1 ~ 1 t 1 t'
C1 Cone (u C.)~ -(U C.)o -(Conv C1 Cone U C.)o, whereas1 t 1 f 1 t
C1 Cone E C. - F C1 Cone C. - Conv C1 Cone U C..

i i i
Now let p E C}, so`d x E E Ci:px ~ l. Since p E C1 Cone C},

also p E n C1 Cone Ci}. S.
Therefore ~~ px -(3i ~ 0 and E Ri ~ I. Choose ai -~~1 1 .

now a. ~ 0 and E a. - 1. For a. ~ O:p E G.C.~ C a.C.~,
i- i i i it i it

for a- O~p E 0 C. - C1 Cone C.~. Hence p E n a. C.~Lt lt 1 1}
and p E S .

Fig. 6

Remark

From (E Ci)~ - C1 U Í ai C~, it follows ( for type A sets)
A}
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by appl.prop.7.5 (E Ci)}} - E Ci -(A n ai Cit)}-A Conv U a. ~i
for At-{a}a. ~ 0 a Ea. - I}.i i
Not that for x- E xi we have for any .a ~ 0, x- E ai(á. xí)'~

]0. Separation and intersection properties of a type A and a
type S set.

If C and Y are two convex sets, there are four cases:

- they intersect in their ( rel.ative) interiors

- they intersect in theír boundaries, not in their interiors,

they "touch": now a hyp. L(p) separates both sets and does

support them in their intersectíon.

- they do not intersect, but touch asymptotically: in thís case
they can be separated by a hyperplane, which is an asymptotic
support of at least one of the sets; now any parallel hyper-
plane íntersects one of the sets in its relatíve interior.

- they do not intersect, and do not touch asymptotically, and
they are stríctly separated by a hyperplane.

In the rest of this section, we consider the íntersection

properties of two sets, one being a type A set and the other
a type S set, and their duals, i.e. the upper dual of the type
A set and the lower dual of the type S set.
Given certain assumptíons, we can state (theorem 10.3b)

If and only if the two sets are disjoint, their duals
intersect in their(relative) interíors (and the same holds

when the dual and the original sets are interchanged).

and (theorem 10.3c)

If and only if the two sets touch, their duals touch.

It is the possibility of asymptotíc touching, whichspoils these
simple properties for the general case.
We now first give two lemma's necessary for the proof of theorem
10.3, and which allow to formulate conditions, which exclude
"asymptotic" touching.,
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Note that if Y is a type S set, then for a ~ I, ~D ís in the

relative interior of Y with respect to its closed cone.

Lemma 10.1

If C is a type A set and Y is a type S set, and if

C1 Cone C n Coneint Y C{0}, then

a) C n Y is compact

b) C n Y-~~ 3~ ~ l: C n~ Y-~.

Proof

a) In [2], 1.9 (9)~Debreu gives this property for
Asc C n- Asc Y C{0} and a) follows from prop. l.l.

b) Assume C n U Y~~ for some u ~ 1. This intersection is
compact, since Coneint Y - Coneint }i Y. Hence C n u Y and Y
are strictly separated by some hyperplane L(p).
Let a- min {pxlx E C n U Y}; now 1 ~ a ~ U. Choose

1 ~ i~ ~ a. Now L(~p) strictly separates a Y and C n u Y.

Since C n a Y C C n u Y, and a Y n(C n'a Y) -~, we

have C n a Y-~.

Lemma 10.2

If C is a type A set and Y is a type S set,

C1 Cone C n Coneint Y C{0} C~ C1 Cone C} and C1 Cone Y~

cannot be separated by a hyperplane.

Proof
By properties 8.1 and 8.3,

C1 Cone Ct - Co and C1 Cone Y~ -(Coneint Y,)o;~ Assume the

left hand side of the implication is true, but that the

dual cones can be separated, i.e. for some

x~ 0: yp E Co:px ~ 0 and yp E(Coneint Y)o:px ~ 0, so

x E C}o - C1 Cone C and x E(Coneint Y)oo - Coneint Y,

and that is a contradiction.

~ Let 0~ x E C1 Cone C r` Coneint Y. Now

yp F C1 Cone C}:px ? 0 and dn E C1 Cone Y~~:px ~ 0. Hence

L(x) separates the two setA.
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Theorem ]0.3

Let C be a type A set and Y a type S set.
a) C n Y-~ and ~~ ~ 1: C n~ Y-~ K~

Ct n Y~ ~~ and 3u ~]: C} n u Y~` ~~

b) If C1 Cone C and Coneint Y C{0} (or equívalently, if
C1 Cone Ct and C1 Cone Y~` cannot be separated by a hyperplane),
then

C n Y-~~~ C} n Y~ ~~ and gu ~ I: Ct n u Y~ ~~

c) If C1 Cone C and Coneint Y C{0} and C1 Cone C and C1 Cone Y
cannot be separated by a hyperplane, then

C n Y~~ and d~ ~ I: C n a Y-~j G~

Ct ~~ Y~ ~ Ql and ~I~,~ ~ 1:C} n u Y~ -~.

Note that we may replace C and Y by C} and Y~ and Ct and Y~ by
C and Y, in a) and b) getting the "dual" version of a) and b).

Fig. 7
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Proof. ~

a) ~. Since C and Y do not intersect, there exists some

hyperplane L(p) separating both sets and now p E C} n Y~.
~

By the same argument there exists some q E C} n(~Y)-.
1

Sínce (aY)~` -~Y~, Ct n Uy~ ~~ for u-~.
p E C } ~t

c There exist p and U ~ 1, such that n Y- and

up E C} n uy~ C C} n Y~. Hence ~lx E C:px ~ UPx ? 1 and

yx E Yi;Upx~px~l,or upx - px - 0. Choose a, such that

u ~ a ~~ZU ~-1 and a-~tu ~ l. Now L(ap) strictly

separates C and ~Y and therefore also C and Y, so

C n Y-~j and C n aY -~.

b) Follows directly from lemma ]0.2b, since C

C n~y -~ for some a~ 1.

~ Y - 0 ~

c) ~ Suppose C~ n Y~ - 0. Then by b), ( after interchanging
} ~ ~

. }original and dual sets):~?~ ~ 1'C n aY- ~~, which is a

contradictíon. If Ct n~y~ ~ QJ for some ~ ~ I, then by

a), C n Y-~1, which is also a contradiction. The

converse follows by interchanging dual and original sets.

11. Continuity of dual correspondences.

Let C:S -} Rn be a correspondence.

We call dual correspondence: C}:S -~ Rn~, where, for s

Ct(s) - [ ~(s)] t

E S

We discuss in this section correspondences, such that every set

C(s) is closed, convex and 0~ C(s), so we do not require C(s)

to be aureoled, however obviously auy C~`(s) is a type A set.

It wi~l be shown that lower-hemi continuity (closedness) of C,

imply closedness (lower hemi continuity) of C~. This implies that

the correspondence Au C:S i Rn, when Au C(s) are the aureoled

closures of C(s), has the same continuity as C. Finally

continuity properties also hold for dual sums.

Remark.

In (9] the term dual correspondence is used in a different

sense. There it denotes F~:Rm~-~Rn~, dual to a correspondence

F:Rn-~Rm, and can be considered as a generalized adjoint.
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We use the following continuíty definitions ( see [1])
- closedness: if st -~ so, xt -~ xo and xt E C(st), then xo E C(so)

- upper hemi-continuity: C is closed and C(s) is compact

- lower hemi-continuity: if st ~ so and xo E C(so), then there
exists a sequences xt w xo, such that xt E C(st); or
equivalently: if A an open set and C(so) ~i A~~, then there
exists some neighbourhood U of so, such that
s E U~ C(s) n A~ Q.

- continuity: if C is both l.h.c. and u.h.c.

Theorem Il.l

Let C:S -~ Rn be a correspondence and C~ its dual such that for all
s, C(s) is a closed, convex set and 0~ C(s).

I) If C is l.h.c., then C~` is closed

2) If C is closed and if for some E, C~(s) n BE(0) -~ for all
s, then C~` is l.h.c.

Proof.
a. Closedness: for st i so, pt E C~(st)~ pt ~ po~

it has to

be shown that po E C~`(so). Suppose po ~ C~(so). Then there

exists some xo EC(so), such that poxo - 1-a (for O~a~l).

By l.h.c. of C, there exists a sequence xt -~ xo, such

that xt E C(st). Choose tl and t2, such that:
la

t~ tl ~ Ipt-pol ~ min 3a Iái and t~ t2 ~ Ixt-xol ~

min
1-a3 . For t ~ t2 and t~ t 1:

Ipol
~a

ptxt - [ po}(pt-po)]I xot(xt-xo)1 -

poxofpo(xt-xo)}(pt-po)xo}(pt-po)(xt'xo) ~
1 1a -a

(1-a)}Ipollpol}I3oIIxol}9 2 - I-3a-9aZ ~ 1
x

Since xt E C(st), this implies that pt ~ C~`(st) for t

sufficiently large, and that is a con[radiction.



- zz -

b) l.h.c.: we first prove the following lemma:

Lemma' If O,po E Rn, BE(po) and BH(po) are open neighbour-

hoods of 0 and po, then there exists an open convex set D,

such that D c Be(o) u st Bn(Po)

Proof of the lemma:Choose ~- Pn}n and
D-{qlq -ap~ p ~~ ~~} t B~(p), This set D is convex

and oPen. Let q E D. Now q- ap t~z, for ~zl ~ 1 and

0 ~ a ~ 1. `
1

For ~ ~ pe}n, we have q - ~ (pt~ ~z) - ~ (Ptp2), for

~ ~ tn en
P - ~ ~ - E p ~p - n.

Sínce ptpz E Bn(p), we have ~ ( ptpz) E g~n(ap) c St Bn(p).

For a ~ pE}n, it follows I~ P}Pz ~~~` ~ P ~}~ ~ pE~E ~ P ~ t

En
p}~ - E. Hence q E BE (0) .

Proof of the theorem

It is to be shown that st -~ so and po E C~`(so) implies

the existence of pt -~ po and pt E C~`(so) .

Suppose this is not true. Then there exists a subsequence

s~ -~ so and an r1 ~ 0, suCh that:

dv:C~(s~) n Bn(Po) - ~
~ ,t v o

Since C~(s ) is aureoled, this implies C(s ) n St Bn(p )-~.

For some subsequence sT, wé have by assumption:

C~(sr) ~ Be(o) - 0
,t r

Hence for the set D, as defined in the lemma, C(s ) n D-~.
0

Let E c D be a closed set containing 0 and p.

E is also compact. Obviously C~(s~) n E-~.
Further there must existsomeu ~ 1, such that

U Po E C~(so) n D. Now C(sr) n L(U Po) ~~ and E~ n L(po)
is not empty and compact. Thís implies:

n ~`C(sr) n L(u Po) n E~ C C~(sr) n L(U Po) E-
Hence

C(sr) n L(u Po) n E~ C E~ and compact.
~

Therefore there exísts a sequence x~ E C(s~) n L(u po)nE-
~

which contains by the compactness of E- a convergent
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subsequence xw -~ xo. By the closedness of C, we have

xo E C(so) and also xo, u xo E C~`~(so), since the last set
~~ o ~ 0 1 in theoremis aureoled. Since C (s )- C(s ), app y g

10.3, we get C~(so) n D- 0. This is a contradíction.

Theorem 11.2

Let X~ V, both being closed and convex and 0 E X.
~

Let C:S -~ X be closed and l.h.c. and C(s) ~ V for all.s.
~~

Then Conv Au C- C :S ~ X is closed and l.h.c.

Proof

C~` is closed, l.h.c., since C~(s) n BE(0) - ~ for some

E~ 0, since C~(s) C V~. Therefore C~~(s) is closed and

l.h.c. since C~`~(s) C X~` ,~ 0.

Theorem 11.3

Let Ci be a family of correspondences such that Ci:S -~ Xi,

closed and l.h.c. and Ci(s) is a type A set for all s and Xi

is also a type A set, where 9 Xi ~ 0.

Now the correspondence C-~ Ci is closed and l.h.c.

Proof

C-~ n a. C.(s) for A-{a~Ea. - 1, a. ~ 0}.
a i i i i-

l.h.c.: Since Ci are l.h.c., ai Ci(s) are l.h.c., so

n a. C.(s) is l.h.c. ( intersection of a finite number
I i 1
of correspondences, see [1]p.120), hence á(Í Ci(s)) is

l.h.c. (union of a family of l.h.c. correspor.dences, see

Berge p.119).
Closedness: by theorem 11.1, Ci(s) is l.h.c. Obviously

E Ci(s) is l.h.c. Therefore [ E Ci('s)j~ - B Ci(~ ) is

closed, by theorem 11.1.

COrTOllOry

From this theorem the closedness of the ordinary sum E Ci(s)

can be derived.



- 24 -

PART II

12 Definition of the economy.

We distinguish a commodity space Rn and a príce space Rnx-.

For any x E Rn and p E Rn~, the inner product
n

px - E pi xi

1

represents an amount of money.

The economy is defined by the following concepts:

1. A total production set Y C Rn of all possible input output
combinations in the economy.

2. The set I -{],2,...,n} of consumers.

3. An income distribution ai(p), which assighns to the i'th
individual a fraction ai(p) of the value py of the optimal
production y at price p E Rn. It is defined for all p, such
that max py exists. Obviously E a.(p) - 1.

yE Y I i

4. A consumption set Xi C Rn for each i E I.

5. A~reference relation Zi on Xi for each i E I.

The production set Y may be considered (see [3]) as the sum
of a technological production set Z and a vector of primary
resources: Y- Z}{w}. In thís case Z- E Zj, where Zj is
the production set of the j'th producer, and w- E w., wherei
w. is the vector of resources owned by i E I.i

The income could possible be split up into two parts:
the value of primary resources owned by i and his part ~i(p)
in net profit. In thís case

P wi t ~í(P)(py-pw)
~i(P) - p y where E~í(p) - l.

I

Neíther Z nor w occur explicitelyin this paper.
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Definition ]2.1

A competitive equilibrium is an allocation xi E Xi, a production

vector y E Y and a price vector p E Rn, such that:

~lz E Y:p y? P z

di E I:P xi -~i(P)P Y

`di E I: z~ x. ~ p z~ p x.
i i 1

E X. -
I 1

Y

13. The preference correspondence.

The preference relation can also be represented by a correspon-
dence, called preference correspondence C.:X. -r X., where

i i i

Definition 13.1

Ci(x) -{Y E Xi~Y }i x} for x E Xi.

We have z}iy C~ z E Ci(Y) and y~ Ci(z), and z ti y~~ z E Ci(Y)

and y E Ci(z).

An allocation is an n-tuple xi(i-1,2,...,n) such that xi E Xi'
A feasible allocation is an allocation such that E xi E Y.

The set E Xi n Y contains all vectors x, such that x corresponds

to a feasible allocation, i.e. x can be divided among the

consumers such that E xi - x for xi E Xi. An xi E Xi, which

is a component of such a feasible allocation, is a feasible

consumption for the i'th consumer and

F. -{x. E X. ~~ E X. t{xi}] n Y~~l}
i i i ~~i J

ís the se[ of feasible consumptions of i. We define a set Vi

of non-feasíble consumptíons, namely the set of non-feasible

consumptions that are strictly preferred to all feasihle

consumptions.
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Definítion 13.2

V. -{V E X.~~ix. E F.:v }. x.}
1 1 1 1 1 1

If x. E F.,we have V. C C.(x.) C X..1 1 1 1 1 1
The equilibrium of definition 12.1 can also be expressed in
terms of the preference correspondence. If we assume that
~i(p) ~ 0 for all i E I and py ~ 0, and if we normalize príces
in such a way that p y- l, then for the equílibrium as defined,
holds:

L(p) supports Y in y

y E L(P) n E Ci(xí)

x. E L(p.) ~ C.(x.) for -- 1
1 1 1 1 pi - P

~i(P)

y - E Xi

z E L(pi) ~ z~ C(x) or x E C(z)

Obviously x. E X. ` V.1 1 1

14. Representation of the economy in the príce space.

The economy defined in section lZ,can, by taking dual sets,
also be represented in the príce space. This representation
could be considered as "equívalent", if the original economy
can be reconstructed by taking duals of duals. In that case
no information is lost. However with respect to certain problems
as e.g. equilibrium as díscussed below, it is sufficient if
all "relevant" information is preserved, which means in the
case of equilibrium, that any equilibrium in the commodity
space corresponds to an equilibríum in the price space and
conversely.
In the dual economy we distinguish two types of príces:
individual prices and general prices. This distinction parallels
the distinctíon in the commodity space, where there are



- individual consumption bundles xi for each i

- a total consumption x- E xi

Total consumption is derived from individual consumptions

by summation (both of vectors and of sets). Only total
consumption is directly comparable with (total) production.

In the price space, we have

- individual prices p. for each i E Ii

- general prices p, where p-~`ipi~

General prices hold for total consumption and for ( total)
production. They are chosen so that the value of total con-
sumption and production equals l, hence they are expressed
with total income as uni[: if p is a vector of prices expressed
in florins and M the income of the economy in florins, then

1 `~p- M p. Individual prices are chosen so that the value of
índividual consumption equals 1, hence their unit is the in-
dividual's income: for M. - a.M the individual's income ini i
florins, pi - M p-~ p. General prices are derived from
individual pricés by the operatíon of dual summation (see

section 9) both for vectors and sets. We have

p-~i pi with ai ~ 0 and E ai - 1.

The dual economy is defined below, without any assumptions,
so that no preservatíon of properties isguaranteed. Upper dual

sets will be used for consumption, lower dual sets for pro-
duction; therefore we shall generally omit the suffíxes t and

~
1. X~ - X.~ z{p. E Rn ~ x E X.:p.x ~ 1} is the set of alli it i i i -

individual prices of i, such that any consumptíon x E Xi
~

costs at least 1. Hence prices of Xi are either impossible
(íf pi x ~ 1 for all x) or just possible (if pi x- i for
some x), provided that the consumer's income is equal to
1. In the latter case some boundary poínt of Xi is
available. If pi E Int Xi, then pi is impossible, since
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p. x~ 1 for all x(the converse is not true). Obviouslyi
Xi ~ 0~~ 0~ Xi, and Xi~ - C1 Conv Au Xi. So if 0 E Xi,
all information is lost, otherwise only the smallest type
A set, containing Xi is preserved.

2. V~ - V.~ -{p. E Rn~IV x E V.:p. x~ 1} contains alli it i i i -
individual prices p., such that any consumption from V.i i
costs at least l. Obviously any price, correspondíng to
a feasible consumption must have this property. Hence
for an equilibríum price holds pi E Vi ` Int Xi. Note

~ ~ ~
that Xi C Vi. We may consider Vi as the set of feasíble
prices for i.
~

3. Ci(xi) -[C(xi)]} is the set of all prices, such that any
commodity bundle preferredor indifferent to x, costs at
least l. So such a bundle is not or just available at

such a price (the income being equal to 1). Obviously
(see section 5), Ci(x) ~~ G~ 0~ Ci(x) and Ci~`(x) -
C1 Conv Au C.(x).i
The correspondence Ci maps Xi into Rn~. If we restrict Ci
to X. ` V. , then we have: C~`:X. ` V. -~ V~.

i i i i i i

From C~ we derive a correspondence C~:V~`` Int X~ -~ V~,i i i i
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where

if p E Vi`Xi, C~(P) - RiP)C~(x)
for R(P)-{P~P E Ci(x)}

if p E Bnd Xi,Ci(p) - R~p)C~`(x) for R(P)-{P~P E Bnd C1(x)}.i
~

4, y~ - y~` -{p E RnIVy E Y:py ~ 1} is the set of all general

prices, such that, no commodity bundle

from Y costs more than l. Vectors

such that px~l for some y E Y, are on the boundary of Y~.

Obviously Y~ ~~ and 0 E Y~. Y~~ - C1 Conv {{p}~y}, So only

points on the boundary of Y, that are also on the boundary

of Y~~`, are preserved as boundary poínts of Y.

In summary, the dual representation of the economy is defined

by the following concepts, discussed above.

We introduced Vi at once, however it would have been possible

to deríve it, as we did for the original economy. For this

economy an equilibrium is defined ín definition 16.4.
This dual equilibrium is a point where the dual production set

and a dual sum of dual preference sets, touch, exactly as in

an equilibrium the productionand a sum of preference sets

touch. (see fig. 10).

Concepts in the dual space.

l. Y~, dual total production set (set of impossible or just

possible prices).

2. I-{1,2,...,n}, set of consumers.
t

3. ai:Cone Y-~ R, íncome distribution function.

4. Xi, set of ímpossible or just possible prices for i E I.
~

5. Vi, set of feasible prices for i E I.
~

6. Ci:Vi`Int Xi i Vi correspondence associating worse and

equivalent prices to each (individual) price.

Note that in these concepts commodities do not explicitely

occur.
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15. The assumptions.

The assumptions with respect to the consumer are stronger than
the usual ones. It is required, that the consumption set does
not contain the origin ( bl). Assumption cl is expressed in
terms of closed cones and not in terms of asymptotic cones.
Equívalence classes with non-empty interiors are excluded,
unless such a class contains all "best" commodity bundles (the
case of satiation).The assumption b5 is largely technical.
Further it is required that all consumers have a strictly
positive income at all feasible prices ( d 2)(That total income
py is strictly positive follows som c6).
However if some of these assumptions are not fullfílled, it
might be possible to transform the economy by choosíng a
different origin such that the assumptions are true.
The assumptíons with resnect to production sets are rather
weak. The ( total) production set needs not contain the origin,
however the set St Y~~ E X should be equal to the intersection
of the closed convex hull of St Y and E X(c4). Assumption c3
requires, that for some individual, there is a non-feasible
consumption x. E V., whichlays on aray from the origin oni i
which non-zero production is possible. Figure 9 depicts a
situation, which is excluded.

Fig. 9
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Note that c3 always holds if 0 E Int Y.

The assumptions with respect to the income distribution-must

hold for those prices that are feasible both with respect to

production and consumptíon. This means that at such a price, pro-

duction must have a maximum value and that at such a price

and a positive income,no budget set may intersect the set Vi

of non feasible consumptions. Hence the assumptions hold for

p E Cone Y~ n Í Cone Vi - P

Assumption d5 requíres that at any feasible price an interior

point of Xi is avaílable.

Assumptions (in the commodity space).

bl Xi is closed and convex, 0~ Xi

b2 ~i is a preordering

b3 yxi E Xi:Ci(xi) and {y E Xilxi ~i y} are closed and if there

exists y, such that y~. x., then x. E Bnd C.(x.).
i i i i i

b4 Ci(xi) is convex for all xi E Xi'

b5 If some hyperplane supports or asymptotícally supports

Ci(x) and Ci(y), and if it does not (asymptotically)

support Xi, then Ci(x) - Ci(y).

cl [ E C1 Cone Xi] n-[ E C1 Cone Xi] -{p},

c2 [E C1 Cone Xi] n Coneint [Conv {y~{p}}] C{p}

c3 There exists no hyperplane H(q,o), that separates Y and

Í Vi'

c4 If there exists x E Xi, such that for all y E X, x~ y,
i 1

then [ Ci(xi) } E Xj] n Y- Q.
j~i

c5 E Xi n Y~~

c6 C1 Conv Y n E Xi - St Y n E Xi

dl ai(p) is continuous for all i and for p E P.

dz for u ~ 0 and p E P: ai(p) -~i(up)
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d3 E ai(p) - 1 for p E P
I

d a. (p) ~ 0 for p E p
4 i

d5 Int Xi n{xIP xi ~ ai(P)Iy~a~PYI} ~~ for all p E P.

The assumptions with respect to the consumer are in terms of
the preference relation ~. They ímply for the preferencei
correspondence:

Theorem 15.1

Given assumptions bl,b2,b3, and b4.

a. for all i and x. E X.:C.(x.) is closed and convex andi i i i
0 ~ Ci(xi)

b. xi E Bnd Ci(xí) or VY E Xi:xi E Ci(Y)

c. for all x,y E Xi:x E Ci(y) or y E Ci(x)

d. Y E Ci(x) ~ Cí(Y) C Ci(x).

e. the correspondence Ci:Xi -~ Xi ís closed and l.h.c.

Proof.

a,b,c,d: obvious
e: closedness: let xt i xo, yt -~ yo and ytE Ci(xt). Suppose

0 0 0 0y~Ci(x ). So y~i x and for some z, such that
xo ~ z~ Yo, xo E Ci(z) and yo ~ Ci(z).
So for some tx:t ~ tx ~ xt E Ci(z) and for some t,

t yt 5 ty ~ y ~ C.(z) and for t~ max lt ,t ),t ty~ Ci(x ) C Ci(z), which is a contradiction.

l.h.c.: Let A be an open set, such that A n C(xo) ~~.
Let y E A, such that y? xo.(Sínce A is openand C(xo) is
closed, there ex.ists y E A and y~ Bnd C(xo), so y~ xo).
Now o{xly ~~ I is open and for all x of this set y E C(x)
and y E A.

1 x Y

For xí E Xi, the sum F. Ci(xi) of preference sets is closed
and convex. That it is closed follows from assumption c; since
Asc Ci(xi) C C1 Cene Ci(xi), we have
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E Asc Ci(xi) n- E Asc Ci(xi) C{0} and by property 1.9 (9)
in [ 3 ], sums are closed.
If z E Bnd E Cí(xi), then for some allocation z,z - E zi and

zi E Bnd Ci(xi). If z E Int E Ci(xi), then there exists an

allocation zi, such that zi E Ci(xi) for all i and for at least

one i, zi E Int Ci(xi), hence zí Yi xí~
These propertíes permit to define an equilibrium(seefig.l0a)for

the economy merely by supporting hyperplanes, since interior

poínts are always strictly preferred:

Theorem 15.2

Given bl,b2,b3,b4 and d2, p,(x.) and y are an equilibríum ifi

L(p) supports Y and E Ci(xi) in y- E xi

su orts C. x.) in x., forL(Pi) PP 1( -1 -1 Pi - 1- P
~.(P)

L(p) supports Ci(xí) in z~ z E Ci(zí) 1

By the last statement a quasi-equilibrium is excluded:

the case that L(pi) still contains a better consumption xi

is ruled.out; thís could occur only on the boundary of Xi,

L(pi) supporting Xi in xi and z.

The equilibria are not changed, if the preferencesets are

replaced by C~~`(xí) - C1 Conv Au Ci(xi) - Au Ci(xi) and the

production set is replaced by Y~ - C1 Conv {y~{p}},

Theorem 15.3

Gíven assumptions bl,b2,b3,b4,d4 and c6:

If and only if y(xi),p is an equilibrium, it is also an

equilibrium for the case that Ci(xi) ís replaced by Au Ci(xi)

and Y by C1 Conv {y~{p}},

Proof.
If L(p) supports Y in y, then it also supports Y~ in y.
Conversely, if L(p) supports Y~`~ in y it also supports

~-,t
Y and since Y n E Xi - Y n E Xi, now y E Y. If L(pi)

supports Ci(xí) in xi,,it supports Ci (xi) in xi, and
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conversely, since C.(x.) is convex, a point ofi i
Ci~(xi`Ci(xi) cannot be supported by a hyperplane L(p),
but only by hyperplanes of the type H(p,0).

Since we shall restrict the dual correspondence to the set
Vi`Int Xi, we have to show that Vi ~~.

Theorem 15.4

Given assumption bl,b2,b3,b4,cl,c2,c4 and c5

V. ~ ~ for all i.i

Proof.
If X. contains a best point, i.e. a point xo, such thati
xo ~ xi for all xi E Xi, then by assumptíon c4,
~~iXj t Ci(xo)] ~~ Y-~ and hence xo E Vi.

So let Xi not contain a best poínt, which by the
continuity of ,~l,i and the closedness of Xi, implies that

X. is not compact.i
We first show:

~Int Í Xi n Cone Y~~ (i)
~ ~ ~By S.Sa, n 7ii -(U Xi) -(Conv U Xi) :

Conv U Xi C E C1 Cone Xi, so by assumption cl, 04~ConvUXi.
By assumption c2, E C1 Cone Xi n Y is compact, hence for
some U ~ 1, (Conv U X.) n u Y- Q! and so by theorem 10.3bi

Int (Conv U Xi)~ n( U Y)~ ~~
~ ~and Cone (u Y) - Cone Y, which proves ( i). So we can

~choose some point r E Bnd Y, such that u r E Int n X.~i
for some U ~ l.

~Now if there exists xi, such that r E Ci(xi), then
certainly r E Int [j~, X~~Ci(xi)] hencei

[ X~~ t C~(x. ) ] n Y-~ and also [ X.}C. (x. )] n Y-~.
i~j ~ i i i~j ] i i

So C.(x.) C V..i i i
Hence ít remains to prove that r E C~(x.) for some x.,i i i
given that Xi is not compact. Since u r E Int X~, Xi and
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the set {r} cannot be separated by a hyperplane H(q,0).
So the intersection of Xi~ and the upper dual set of r,
{x~rx ~ 1} -{r}~` is compact. So also xi n{r}~ is
compact and this intersection certainly contaíns a best

0poínt x .
Since Xi is not compact and does not contain a best point,
there exists a point xi ~ Xi n {r}o such that xi ~ xo.
Hence Ci(xi) n L(r) -~ and r E Ci(xi).

16. The dual preference correspondence.
We restrict the correspondences C. and C~ to X.`Int V.. Sínce
Ci:Xi` Int Vi -~ Xi is l.h.c. and closed, Ci:Xi` Int Vi -~ Vi isl.h.c.
and closed, by theorem 11.1 (since V~ ~ 0). From C~ is derivedi i
a correspondence Ci`, mapping V~`Int R~ irito V~`. The set C~(p.)i i i i i i
contaíns all prices, "equivalent or worse" then p., i.e. suchi
that at such a príce only commodity bundles can be bought,
that are equivalent or worse then the best bundle available
at the price p. (and income ]).i

Definition 16.1
~ ~ ~ ~

If p E Vi~Xi~C~x~p) - T~P)C~(x) for T(P) -{x E Xi~P E Ci(x)} .~
if p E Bnd Xi:Ci(pi)ST~P)Ci(x) for T(P) ~{xEXi`Int Vi~pEBndCí(i)}

It will be shown below that for all p there exists some x,~ ~
such that Ci(p) - Ci(x).

The propertíes of Ci are the same as those of Ci, as given in

theorem 15.1.

Theorem 16.2

Given assumptions bl,b2,b3,b4 and b5:

a. Ci(p) is closed and convex and 0~ Ci(p) for all
p E V~` Int X~`.i i~~

b. pi E Bnd Ci(P)
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n~
c. for all P,q E Vi`Int Xi:P E Ci(q) or q E Ci(P)

d. q E Ci(P) ~ Ci(4) C Ci(P)

e. The correspondence C~ is closed and l.h.c. for p E V~`Int X~
1 1 1

Proof.
a)directly follows from the definitions; b) ís proved in

lemma16.3; c) and d) follow from the properties of dual

sets and from assumptions bz.

Before we prove the continuíty, we first give a lemma. Note
that only in the proof of e) assumptíon b5 is used.

Lemma 16.3

For all p E Vi`Xi, p E Ci(p) and there exists x E Int X,

such that Ci(p) - Ci(x).

Proof.
Let X1 - {x E X.Ipo E C~(x)} and XZ - {x E X.Ipo ~ C~(x)}i i i i
for po E Int Xi. Obviously X1 U X2 - Xi and X1 n XZ -~

and X1 ~~, since p E Int X~.
We have X1 - vl C(x) - nZ C(x): if y E X1, then

1 X X 1
C(y) C X; if y E U1 C(x),.then y E X; Obviously
X1 C C(x) for x E XX2.

Let zo E r12 C(x). For zt - zo, zt -~ zo Choose
X

xo E Bnd X1 ~i Bnd XZ and xt -~ xo, for xt E X2. Now for

all t, zt - zo E C(xo). So by the closedness of C,

zo E C(xo), which proves X1 ~ n2 C(x). So X1 is closed.
X

Now C~(Po) - nl C~(x) -(U1 C(x))~ - X1~.
X X

Since for any x,y~C(x) C C(y) or C(x) ~ C(y), we also
have C~(po) - X1~ -(n2 C(x))~` - C1 U2 C~(x). Since by

X X ~
definition of X2, po E VZ C~(x), and po E X1 , we have

X~
po E Bnd C~(p) - X .

If xo E Bnd X1 ~~ Bnd X2, then C(xo) - X1. By definition
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C(xo) C X1. Suppose for some xl E Xl,xl ~ C(xo). Then
C(xl) ~ C(xo) and xo E Bnd C(x~), but this contradicts
continuity.
For p E Bnd X,i, L(p) supports Xi. If L(p) supports Ci(xi)
for any xi E Xí, then Ci(pi) - Vi. If not, there exists
some x E Xi, such that Ci(pi) - C~~(xi).

i
Now we are able to prove the continuíty properties.
Lower hemi continuity: Let B be an open set and
C~`(Po) n B~(~. Let qo E A n Int C~(po). Since
po E Bnd C~(Po) , C~(qo) C C~`(Po) and, po ~ Bnd C~(qo) ,
otherwise by definition C~(po) C C~`(qo). V~`C~(qo) - U
is an open neighbourhood of po. For p E U,we have

qo E C~ (P) ~ C~ (P) n B~~1.

Closedness: Let ps -T po, qs ~ qo and qs E C~(ps), all

points of Vi`Xí. Suppose qo ~ C~(po). Hence C~(po) ~ ~.~(qo).

Choose r E Int C(qo)`C(po). Now C~(po) C C~`(r) C C~(qo)
and po E Int C(r)~since C~`(po) cannot support more then
one preference set by ass. BS,qo ~ C~(r).
For some s~ n, ps E C~(r) and for some s~ m, qs ~ Ct(r).

s ~~` s which is a contra-Hence if s~ n and s~ m q ~ C(p ),

diction.

We are now able to define the concept of dual equilibrium.
A dual equilibrium only consists of a price vector, which
represents a general príce. Individual prices follow from
this general price, using the income distribution. Commodity
vectors do not explicitely occur in this definition. They can
be derived from the equilibrium price.
In this definition we use the concept of dual summation defined
in section 9 and we repeat:

~
Ê Ci - Á Í

ai Ci for A-{ai~ai ~ 0 and E ai - I}.

Definition 16.4

A dual equilíbrium is a price vector p, such that for
- 1
pi - ~i(P) p:
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p E~ C~(p.) n Y~i i

Int iï Ci(Pi) n Y~ -~.

Theorem 16.5
Fig. 10

a. Given assumption b1,b2,b~~,b4 and d5:
p, x, xi is an equilibrium ~ p is a dual equilibrium

b, p is a dual equilibrium ~ there exist x and x., such that- - - i
p, x, xi is an equilibrium.

Proof.

a. By theorem 15.3, L(pi) supports Au Ci(xi) in xi and L(p)
supports E Au C.(x.) and Y in x. Hence p. E Bnd C~(x.)1 1 ~ 1 1 1
and p E Bnd E Ci(xi) n Bnd Y~`. Now C1(Pi) C C1(xi): for
- ,t - ~rpi ~ Bnd Xi, this is true by definition, for p. E Bnd X.i i
this holds, because L(p) does not contaín any point
preferred to xi. Hence ~ C~.~`(pi) C~ Ci(xi) and therefore,
applying theorem ]0.3, p E~ C1(pi) n Y~, whereas
Lnt E Ci(pi) n Y~ -~.

b. Since p E C~ n Y~ and Int C~ n Y~ -~, for C~ z Ë Ci(Pi)'
some hyperplane L(x) separates C~ and Y~ and hence L(p)
separates C~~ and Y~~' and supports these sets in some
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point x. There exists xi, such that x- E xi and L(pi)
supports Ci~(pi) - C~~`(xi) in xi.
So x, xi and p are an equilibrium of the economy with
preference correspondence C~ and Y~ , so they are also
an equílibrium of the original economy by theorem 15.3.

Before we give a proof of the existence of an equilibrium for
the dual economy, we first note that this dual economy can be
considered independentely. This economy is defined by the
concepts given in section 3. We give a set of assumptions,
that follow from the assumptions given for the original eco-
nomy and these assumptions are suffícient for the existence
of a dual equilibrium.
In the proof of theorem 16.6 we refer to these assumptions.
Theorem 16.6 ensures the existence of an equilibríum in the
original economy together with theorem 16.5.

Assumptions. (for the dual representation of the economy)

A Y~ is closed and convex, 0 E Y~
~ ~

B1 X~ and Vi are closed, convex, aureoled, 0~ Vi

B2 X~ C V~i i

B3 All sets Ci(pi) are closed, convex, aureoled and 0 E Ci(pi)~~
B4 for P,9 E Vi`Int Xi:piwE Ci(qi) or qi E Ci(pi) and

q E Ci(pi) ~ Ck(qi) C Ci(Pi)

B5 C~ is closed and l.h.c.i

Cl (Int ]a X1) n Y~ - {6

C2 For all i: (Ë Xi ! Vi) n Y~ ~~

C3 Y~ n~ Vi is compact.

D1 Thefunctions a,(p) are continuous in Pi
D2 for u~ 0, ai(p) - ai(up)

D3 E ai(p) - 1
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D4 ~. (P) p~ Xi for p E P
i

DS ~i(p) ~ 0 for p E P

These assumptions are implied by the ones given in section 4:

A is true by definition of lower dual sets. Bl is true hy

definitíon of upper dual sets an d Vi ~ 0 was proved in

theorem 15.4. B2 and B3 hold by definitionand B4 and BS were

proved in theorem 16.2. CI follows from assumption c5, by

applying theorem 10.3. C2 follows from the defínition of Vi,

applying theorem 10.3. C3 is implied by c3:

Since U Vi and Y cannot be separated by some H(q,0), neither

U Au V. and Y can be separated. So by theorem ]0.2,
1 ~ ~

C1 Cone (~~ Au Vi) n Coneint Y C 0 and therefore also

C1 Cone 8' V~ n Coneínt Y~` C 0. Now the assumption follows by
i

theorem 10.1.

The assumptions D directly follow from d.

Theorem 16.6

Given the assumptions for the dual economy there exists an
equilibrium price p.

Proof of theorem 16.6

By assumptions C2 and C3 the set Y~` n V~ is non-empty and

compact. Since 0~ V~`, 0 ~ Y~ ~~ V~. Any equilibrium price
~t )

must be in V~ n Bnd Y~ C V~` ~' Y. 1

We define two functions:

~ ~
a:Cl Cone Y ~ i V`{0} -~ R

~
p:Cl Cone Y~ n V~` {0} y Bnd Y~` n V

~ ~ ~
I) Bnd Y is the boundary of Y with respect to Cone Y, i.e.

~ ~
the set {p E Y IVU `]:up E y}
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where

a(q) - max {a E Rla q E y~ }

P(q) - a(4)q

Since Y~ n V~ is convex, compact and does not contain o(by
assumption A),

a(q) ~ 0 and p(q) ~ 0 if q E Cone Y~ n V~`0

and both functions are continuous and a is quasi concave.
Obviously p(q) E Bnd Y~, since Y~ is star shaped and V~ is
aureoled, so with any arbitrary non zero price vector q of

~
C1 Cone Y is associated the general price p(q) on the ray
from the origin through q.
Let H-{p E Rn~lp h- 1} for h E Rn, be a hyperplane whích
strictly separates V~ n Y~ and {0} and S-H n Cone (V~ n Y~)
is called the set of standard prices. S is convex and compact:
that it is bounded follows, by theorem 10.1 from the fact that
Coneint St H n C1 Cone V~ n Y~ -{p},

We define the inverse functions

s:Bnd Y~ ~ V~ i S and y- Bnd Y~ n V~ i R, where

s(q) - P'(q) - {sl9 - P(s)}

Y(q) - 1

Now s(q) - Y(q)q and both functions are continuous.

Fig. I]
H
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An individual price (for the i'th individual) is related to a

eneral rice b a number re resentin an income: ~g P Y U. P g Pi - u P.
The income dístribution function assigns for q E Cone Y~`, an

income ai(q) to each individual. By assumption D2, ~i(q) -

ai(a(q)q)) - ai(p). With any standard price s and general

price p(s) can be assocíated an individual price pi(s), by

deflating the general price with the income. Hence we map

the set of standardprices into the„individual price space".
Let pi:S -T Rn, where

Pi(s) -~i(P(q)) P(s) -~a~s~ s if s E S

The function is continuous. This follows from the conticiuity

of a(s), p(s) and ai(s) ( assumption DI) and from assumption

D5 which requires ai(s) ~ 0.

Fig. 12
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~We now define a correspondence D.:S -~ V~`i i

Ci(Pi(s)) lf Pi(s) E Ví

~Vi if pi(s) ~ Vi

Hence to any s is assighned the set of individual prices not
"better" than s ~pi( ), or the whole set of feasible prices Vi.~~
Since Ci is a closed, l.h.c. correspondence by BS and Pi(s)
is a continuous function, its composition Di is also closed,
l.h.c.

Let D~`: S-~ V~, for V~ -~ V~, be the dual sum of the D~i i

D~(s) - ~ D~` (s)
i

By theorem 1~.3 this correspondence is closed and l.h.c.

Lemma a.

ys E S:D~(s) r Y~` ~~1.

Proof.
If yi:pi(s) E Vi, then Pí(s) E Di(s), P(s) E Y~ and
p(s) -~ip(s) E ai Dí(s). Since E ai - l,p(s) E ~ D~(s)-
á Í ai Di(s).
If gj:pj(s) 4E V~, then D~(s) - V~. Now
D~(s) n Y~-I ~ D~(s)~V~~ ~~ Y~ ~~ E X~~V,~~ n Y~ ~~ by

J~1 1 J j~i 1 J
assumption C2.

Lemma b.

a. yi:Pi(s) E Vi ~ P(s) E Bnd D~(s)

b. gi:Pi(s) ~ Vi ~ P(s) ~ D~(s).
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Proof.

a. For all i: pi(s) E Bnd Ci(pi) - Bnd Di(s) and p(s) -

~i(s) pi(s), or p(s) E Bnd ~i(s) Di(s). Therefore for
~t

any ~ ~ l, ~p(s) ~ a.(s) D.(s), for all i.
i i

b. For j: ~(p(s)) p(s) ~ V~ - D~(s). Suppose p(s) E D~(s).
i

Then for some U(Ui ~ 0. E Ui - 1), p(s) E U Dï(p(s)) for

all i. Now p(s) E Uj V~,hence }1j ~~j. So for some i~ j~

U. ~ a.. But then p(s) ~ U. D~`(s), since p(s) E Bnd ai Di(s).
i i i i

ti~ ~ ~ ti~
Let D(s)-D (s) r Y. D(s) is compact, convex, non-empty

for all s.Soit ís upper hemi continuous and l.h.c., hence

continuous.

Let

'L~

~(s) - max {a(9)~q E D(s)}

and

B(s) -{q~a(q) -~(s) and q E Di(s)}

By the maximum theorem ([1] p. 122), we have

a. Q(s) is a continuous function

b. B(s) is an u.h.c. correspondence.

We have, for all s E 5:

]. R(s) ~ 1
,~

2. B(s) C Y

since D~`(s) r' Y~ ~ ~.i
Now the points of B(s) are mapped into S,F:S -~ S

for

F(s) -{r E Slq E B(s) and q E Cone r}

-{r E Slq E B(s) and r s Y(q)}

Since Y is a continuous function and B(s) is an u.h.c.

correspondence F(s) is u.h.c.
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Further F(s) is convex:

F(s) - S n Cone D~(s) n S(s) Y~

which is a convex set.
Now F is an u.h.c. correspondence of S into itself with convex
image.
Hence we can apply Kakutani's fixed point theorem: there exists
s E S, such that s E F(s).
Now

a. It is ímpossible that for some i, pi(s) ~ Vi, since ín thís
case, by lemma 2, p(s) ~ D~`(s) ~ B(s).

b. So by lemma b, p(s) E Bnd D~(s) and s(s) - a(p(s)) - 1 and
a(q) ~ 1 for a11 q E D~(s). Therefore Int D~(s) n Y~ -~
and p(s) is an equilibrium price. Q.E.D.

The argurment of the proof implies that it possible to find the
equilibrium by a procedure of minimizing and maximizing a
continuous function.
Let Q:S x S-~ R, where

max {~I~ P(r) E D(s)} if 2 P(r) E D~(s)
~(r,s) - j

l } otherwise

This function is continuous and, by lemma a, for each s, there
exists r, such that ~(r,s) ~ 1.
Also mrx ~(r,s) - ~(s) and msn ~(s)
equilibrium price p(s).
Hence

- 1 - p(s) for the

Corrolory.

p(s) is an equilibríum price for

msn mix ~(r.s) - ~(s,s) - 1.

M.v.d.B.
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