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Multi-Sample Latent Logit Models with

Polytomous Effects Variables

Allan L. McCutcheon
University ofDelaware

Often we wish to study phenomena that are not directly observable. This has given rise to

a family ofineasurement models for estimating (unobserved) latent variables from a set of observed

variables. When the observable indicator variables are categorically measured, and theory and data

suggest that the latent object of study is categorical, the latent class model (LCM) is appropriate for

characterizing the latent variable. Such models may be of use in the study of learning and mastery

models in educational research (Rindskopf 1983, Dayton and Macready 1988a, 1988b), ideal types

in social research (Hagenaars and Halman 1989), mazket segmentation in mazketing research, as

well as many other areas of research involving categorical latent variables. In this paper we will

explore the use of the latent class model (LCM) to study trends in public opinion.

In recent years, researchers have also shown an interest in examining associations between

latent varaibles and non-indicator observed variables. In particular, models similar to Jóreskog and

Goldberger's (1969) multiple indicator-multiple cause (MIMIC) models are suitable for examining

such associations. These new models, which involve latent categorical variables and categorically-

scored observed variables, are often estimated within the framework of loglinear models.

The purpose of this paper is to extend prior developments concerning the measurement and

analysis of categorical latent variables to situations which include both indicator and non-indicator



observed variables that are collected from two or more mutually exclusive populations. Thus, these

models can be used in comparatíve research in which data on identical indicator and non-indicator

variables have been collected in multiple samples. As we will see, this model is a latent class model

derived from Haberman's (1979) loglinear parameterization of the LCM. Furthermore, it extends

the loglineaz LCM to include linear-by-lineaz restrictions on polytomous non-indicator variables.

This advance provides a more efficient test of lineaz associations between latent variables and

polytomous non-indicator variables than has previously been possible.

Bachgrorrnd

In his eazly writing on the topic of latent class models, Goodman (1974a, 1974b) introduced

an important breakthrough by demonstrating that the LCM could be estimated using the EM

algorithm (Dempster, Lairdand Rubin 1977). He further discussed how loglinear modelswith latent

variables, such as loglinear MIMIC models, could be estimated as latent class models with

restrictions on the model parameters (see also Clogg 1981). These models were readily estimated

by Clogg's widely available program MLLSA (Clogg 1979). Hagenaars (1990) extended

Goodman's original work with loglinear models with latent variables in two significant ways. First,

he introduced a modification to the EM algorithm to allow the estimation of non-saturated loglineaz

models with latent variables. This contribution allows the estimation of non-saturated MIMIC

models with a categorical latent variable. Second, he introduced a modification allowing for local

dependence among the indicator variables (Hagenaars 1988). These models can be readily estimated

using his widely available program LCAG (Hagenaars and Luijkx 1990).

Haberman (1976; 1979, chap. 10) provided another important breakthrough by showing how

the latent class model could be estimated as a loglinear model with restricted parameters. Haberman
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also showed how a non-indicator, grouping variable could be in included in the latent class model.

These models can be readily estimated with Haberman's widely available programs LAT (1979) and

NEWTON (1988).

Following these developments, this author presented a method for the estimation of latent

logit models ( i.e., logit models with unobserved response variables) which takes advantage of the

linearities that are potentially present in models with multilevel (i.e., polytomous) effects variables

(McCutcheon forthcoming). The approach is an extension and generaliration of earlier work

presented by Haberman (1974, 1979) and Clogg ( 1988); it also advances earlies work by Goodman

(1974a, 1974b) and more recent work by Hagenaars ( 1988, 1990). This latent logit model is closely

related to the linear-by-linear restricted model first presented by Habernian ( 1974). The present

paper is an extension of latent logit models to the multiple sample case in which one or more of the

non-indicator variables is polytomous. It also examines how the latent loglinear model can be

specified in an effort to overcome two of the common criticisms of loglinear models: parameter

interpretability and parameter inflation. Unlike the intuitive interpretation available for the

conditional and latent class probabilities of Lazarsfeld's LCM, the loglinear LCM is estimated as

a set of logs of odds ratios (lambdas). As we will see, however, many of the most common

parameter restrictions used with the Lazarsfeld LCM have equivalent forms in the loglinear LCM.

Thus, many of the usual restrictions on conditional and latent class restrictions are also available

with the loglinear LCM.

We will also consider a second common criticism of loglinear models--the parameter

inflation problern. Within the usual loglinear context, a variable with I levels requires the estimation

of I-1 parameters for every effect that includes that variable. As long as all variables in the analysis
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are dichotomous, the number of parameter estimates remains modest. When one or more

polytomous (multi-level) variables are included in the loglinear model, however, the number of

required parameters can grow rapidly. Dayton and Macready (1988a, 1988b) have conside:red

models such as concomitant-variable latent class models which include a continuous, non-indicator

effects variable in the latent class model. Formann (1992) has also recently exte~nded the linear

logistic latent class model (Formann 1982, 1985) to include polytomous data. This paper

generalizes the loglinear LCM to include polytomous non-indicator variables, with a special focus

on the rsulti-sample latent logit MIMIC model.

In the following sections, we first briefly explore the LCM restricrions on the latent class and

conditional probabilities for MIMIC model using Lazarsfeld's parameterization. We also briefly

consider the multi-sample extension of this model. Next, we examine Haberman's loglinear

parameterization of LCM with extension to the MIMIC model with one or more polytomous non-

indicator variables (McCutcheon forthcoming). As we will note, this approach is similar to the

linear-by-linear parameter restrictions discussed by Habeiman (1974), as well as the row and column

effects in Goodman's Model I association models (Goodman 1979b, Agresti 1985). Special

attention willbe focused on: 1) how restricting the loglinear lambda parameters results in commonly

desired restrictions on conditional and latent class probabilities; and 2) the extension of the model

to the multi-sample case. In the third section, we consider the loglinear LCM as a latent logit model,

in which the multi-sample model can be presented as a logit model with a latent dependent

(response) variable. Finally, we consider an empirical example in which the latent logit model is

used to examine changes in the American public's attitudes toward legalized abortion for social

reasons during the two decades in ~W nic:~ such ab~mons have bcen legal.
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The Latent Class Model

In two early papers, Lazarsfeld presented a latent class model that would "explain" the

association among a set of categorically-scored indicator variables in a manner analogous to factor

analysis which "explains" the association among a set of continuously-scored indicator variables.'

Although conceptually analogous to factor analysis, latent class analysis presupposes a categorical

latent variable (X~ with a set of T mutually exclusive and exhaustive classes, rather than a

continuous latent variable as in factor analysis. Lazarsfeld's model assigns a probability for

assignment to each of the T classes (~cY~, with the restriction that ~~ xX-1.0 . Each level of the

indicator variables is also assigned a probability conditional on the class of the latent variable (e.g.

~r~ ), with the restriction that ~~ ~~- I.0 . Thus, Lazarsfeld's basic latent class model

expresses the crosstabulation of observed and unobserved variables as a function of the latent class

and conditional probabilities. For example, when there are three indicator variables (e.g., A;, B~, C,~,

the model is

ABCX X ÁX BX CX
TC~~~ -7C~ X7tu X7Ln X7C~ .

Goodman (1974a, 1974b, 1979a) made an important breakthrough by showing that the parameters

of the latent class could be reliably estimated using iterative proportional fitting, a variant of the EM

algorithm (Dempster, Laird, and Rubin 1977). Clogg ( 1979) implemented this algorithm in his

widely available program MLLSA.

6



In another early contribution to latent class analysis, Goodman noted that the latent class

probabiiities (~~`~ could be restricted to estimate loglinear models with latent variables (see esp.

Goodman, 1974a, 1256-1257). Clogg (1981) has shown how this approach allows forthe estimation

of multiple indicator, multiple cause (MIMIC) models for categorical data, similar to the models

introduced by Jóreskog for continuous data (Jóreskog and Goldberger 1969, Jóreskog 1973). Since

the latent class probabilities (~X~ in (1) can be restricted to include boLh non-indicator and latent

variables, it is possible to restrict a model with one latent (e.g., Z~) and two non-indicator (e.g., Em,

F~) variables to a T-R x M x N latent class model

n,~~-~rXxn~ xnn~x~~x~,~x~r,~ x~r~, (2)

where the conditional probabilities relating the latent variable XT to the latent variable Z~ ( ~r~ )

and the "quasi-latent," non-indicator variables Em and F~ (~r,~, ~r,~ ) are all restricted to either

0.0 or 1.0. In a case with dichotomous latent and quasi-latent variables (i.e., R-M-N-2), we restrict

the conditional probabilities, mapping the latent class probabilities for Xr (T-8) on to a latent

crosstabulation of the observed variables (E and F) and a dichotomous latent variable Z(see Figure

1). As can seen in Figure 1, we must impose the restrictions ~rIX-n~-n~-~r~-1.0, which

~



implies ~rIX-~c~ -~~ -~u -0.0. Once we have obtained estimates for the latent class

probabilities ~X~, we can use these values to estimate the parametess of the saturated2latent loglinear

model (EFZ), where E and F are observed, and Z is latent. This latent loglinear model is illustrated

in Figure 2. Models such as these can be estimated using several widely-available programs

including NII.LSA (Clogg 1979), LCAG (Hagenaars and Luijloc 1970), LAT (Haberman 1979), and

NEWTON (Haberman 1988).

In recent work, Hagenaars (1988, 1990) has extended the latent loglinear model to include

non-saturated models with latentand observed non-indicatorvariables. Hagenaars' method modifies

the EM algorithm to adjust the relevant marginals ofthe latent crosstabulation at the end of each M-

step (Hagenaars 1990, pg. 124). This mod~ed EM algorithm has been implemented in the widely

available program LCAG (Hagenaars and Luijla, 1990).

Hagenaars' approach represents an important advance over the earlier methodology for

estimating loglinear models with latent variables. His modification ofthe EM algorithm enables the

extension of latent loglinear and logit models to the estunation of hierarchical models in which

higher order terms are restricted to zero. Consequently, the range of non-saturated, hierarchical

loglinear models, which previously had been limited to manifest (observed) variables, now extends

to models having a combination of manifest and latent variables. Thus, Hagenaars' approach allows

for the estimation of categorical data models that are analogous to continuous data MIMIC models

(illustrated in Figure 3).

Goodman's and Hagenaars' approaches, however, are best suited to instances in which all

variables other than Xr are dichotomous; neither approach is able to exploit potential linearities in
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associations between latent response vaziables and non-indicator variables that are ordered

polytomies. This problem has been addressed in several recent papers. Dayton and Macready

(1988a, 1988b) have examined concomitant-latent class models in which the latent class

probabilities (~r~`~ depend on some multi-level covariate(s). Formann (1992) has also recently

extended the linear-logistic LCM (Formann 1982, 1985) to include polytomous data. In a recent

paper (McCutcheon, forthcoming) I have examined latent loglineaz LCMs which include linear-by-

linear restrictions on the parameters of polytomous effects variables. The current work is the multi-

sample extension of the earlier work; both are d'uectly related to the lineaz-by-linear restrictions in

loglineaz models first presented by Haberman (1974), as well as recent work by Goodman (1979b,

see also Agresti 1985) on Model I association models.

Before turning to the loglinear LCM, we note Clogg and Goodman's (1985, 1986, 1987)

extension of the LCM to multi-sample analyses. Where responses to the same stimuli are obtained

in two or more mutually exclusive populations, such as samples from two or more nations, states,

regions, or points in time, one of the non-indicator variables in the LCM (e.g., E~ can be a sample

variable. Thus two or more samples can be compared as simultaneous LCMs. With these

simultaneous latent class models it is possible to restrict the measurement portion of the LCM

relating the indicator variables to the latent variable, but it is somewhat more difficult to restrict the

structural portion of the model which relates the non-indicator variables to the latent variable.
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The Loglinear Latent Class Model

As Haberman notes (1979), the basic loglinear parameterization of the latent class model is

lo ~,t~,x}AA~~,ef~,c}~`'~c}~ax}~cx (3)g Ï:j~- t ~, k~ n ~.

where Xr is the latent variable with T classes (t-1, ..., T), and A;, B~, and Ck are observed indicator

variables. As with conventional loglinear models, we must impose the restriction that the lambdas

sum to zero

~ ~X-~ ~~ -~ ~B ~ ~C ~ ~~-~ ~~-~ ~~ -t- ~ i- j I- k k- ~- t 1t -
~` ,u 87[ ~` CX ~` ~AX ~BX ~CX~

L.ri ~u -~j ~n -L~k ~~ -`u ~ -~~j n -~~ ~

As Haberman also notes, a non-indicator variable may be introduced into the loglinear latent class

model

g,fi- ~ r i j k n ~tlo ~~~- }~X }~A}~B}~c}~~}~Bx}~~ }~~ '
(4)

where ~ - ~. t ~uq

In a manner analogous to Goodman's, we can extend Haberman's latent loglinear model by

reparameterizing the non-indicator variable (LJ) into two or more quasi-latent variables. For

example, we can define Uq as thejoint distribution of two observed, non-indicator variables Em and

Fn, where Q- M x N, and (q-1, .., N, Nf 1, ..., Q) is mapped onto m,n as [(1,1), ..., (1,N), (2,1), ...,

(M,N)]. Thus the model in (4) may be rewritten as the loglinear MIMIC model

~ (5)
log f ,~inn-~l ~-í~.1 }A~a}tij }í~ktti1L~tí~.j~ }~.~ }~~~`}~m}~~.ij

~o



Using the model presented in (5), it is possible to impose restrictions on the lambda

parameters that are identical to resnictions on the conditional probabilities of L,ar~trsfeld's

parameteriration, especially as these relate to the restrictions of interest for loglinear I~IIC

~ models. As Hagenaars (1990) has noted, equality restrictions are oftea imposed to obtain equal

"error rates" for each of the indicatorvariables with respect to the latem variable; this is equivalent

to the restriction thatthe indicators have identical rates for false positives andfalse negatives. To

test this hypothesis using. L,ararsfeíd's parameterization, we- impose equality restrictions on the

conditional probabilities such as

;~c ;u éz áx- cz~ cx ( 6)~t 1-1rr~ ~ru '~r~ ~1i -,t22-

(Mooijaartandvan derHeijdea (1992), however, havecautionedagainstsuch across-class equality

restrictions when using the ~I algorithm.) Using the equivalence noted by Habezman (1979, ~51),

when T-2with dichc'c~~rr!.ous indicatorvariables

~ac ~~~Í }~ii)

~tl - e~(~,i t~lii) teaP(-,ti -~~) ~
(7)

it is ciear that by substituting (7) into (6), and recalling the restrictions on the lambdas, the equal

error rate restrictions of (6) are equivalent to imposing the restriction that ~.{ -~1f-,Lk -0. Thus,

when we impose equal error rate restrictions on each of the indicator variables in the model in (5),

ít becomes
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It is also possible to test the "parallel indicator" hypothesis-that particular indicators are

equally reliable. As Hagenaars notes (1990, 110), we can test the hypothesis that two indicator

variables are parallel indicators by imposing equality constraints on their conditional probabilities,

such as ~c~-~~ aná ~-~. In the loglinear LCM this is equivalent to imposing the

equality constraints ~i-~B` and- ~`'~-,Lt~ .

In asecentpape~r, I haveshown thatthe model irr (5) caa be parameteri~ed to includeliaear-

by-linear resttictions on the. association between polytomous, non-indicator variables and a latent-

variable(s) (McCutcheon forthcomiag). When oneormore ofthe non-indicatorvariables in (S) have

three ormore orderedcategories, the latent loglinear model can be reparameterized in amannerthar

differs significantly from Goodman's and Hagenaars' approaches. With their approaches estimating

the saturated model, when E, F, and X are polytomous, reqtrires the estimation of (T-1)(M-1)

parametersforthe {XE} relationship, (T-1)(N-1) forthe {XF} relationsiup, and(T-1)(M-1)(N-1)

for the {~C'rF} relationship. In contrast, linear-by-linear restrictions (Habeiman 1974) on these

lambda parameters may be tested for the loglinear model in (5). In this case, the model in (5) may

be estimated with three linearrestricted parameters (~) instead of the (T-1)(MN-1) lambda

parameters previously required for the {XE}, {XF}, and {XEF} associations. Spec~cally:
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log f~~-~f~,if~,at,j,bt~l.k~-,1u fíln fí~,~
}~~`(ut-u)(v,~ -v) }~~(ur-u)(wn -w) }~X`f(u~-t)(vM -v)(w„ -w),

(9)

where vm is the score assigned to category m of the ordered polytomous variable E, ut is the score

assigned to class t of the latent variable X, and wo is the score assigned to category n of the non-

indicator variable F. Thus, this approach avoids the parameter inflation problem by requiring the

estimation offewermodel parameters; these linear-by-linear restrictions allow us to incorporate into

our estimation the information that may be inherent in the ordering of the polytomous variables.

The latent loglinear model in (9) is analogous to several loglinear models considered by

Agresti (1984, see esp. chap 5). As Agresti notes, when model (9) does not fit the data well, but

model (5) does, there may be intermediate models that are simpler than (S). For instance, if the

relationship between E and X is not linear, ~~(u~-u)(v~-v) may be replaced by either of the

more general terms ,l~ or r~(v~-v) , where the t~ effects reflect the deviation in the t

levels of log( f~ ) from independence as a linear function of E, with slope r~ and

~ t~-0. If E and F are ordered polytomies and X is an unordered polytomy,
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~~(u~-u)(v~-v) and ~~(ut-u)(v~-v)(w~-w) would be replaced by t~(v~-v) and

t~(v~-v)(w~-w) .

The Multi-sample L.atent Logit MIMIC Model

Latent loglinear models may also be used to analyze data from several samples

simultaneously. This is done by constraining some or all parameters to be equal over the groups,

and testing for model invariance over the samples. Examples of multiple group analysis for usual

latent class models have been discussed by Clogg and Goodman (1984, 1985, 1986). The groups

may be different nations, states, regions, cultural subgroups, or--to examine social change-separate

samples drawn from the same population at two or more time points (see e.g., McCutcheon 1987);

indeed, the groups may be any mutually exclusive set of observations on which identical variables

are measured.

In this section we demonstrate first how the measurement and structural sets of model

coefficients can be used to test the equivalence of models in two or more populations. Later in this

section, we consider the multi-sample latent loglinear model as a multi-sample latent logit model

with manifest effects variables and a latent response variable. As we will see, the coefficients of the

latent logit model are readily divided into sets that are analogous to the measurement model

coefficients (e.g., ,1~ ) and the structural model coefficients (e.g., ,L;` ) in the continuous data

MIMIC model; thus, we will refer to this model as the multi-sample latent logit MIMIC rnodel.
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We begin by considering the multi-sample extension of the model in (5). Consider a sample

variable G with S(s-1,...,S) mutually exclusive sets of observations on the manifest variables A~,

B~, Ck, Em, and F~. The multi-sample extension of (5) may be written as

log f~~-~ t~1Xt,1~Gt,1" t~,ft~.k ~-~,uGt~,fcf~,~
}~.~x}~sx}~cx}~AacG}~Bxc}~~c ~ 10 )u ~c kr us ~rs krr
}~XE}~XF}~XEF}~XEG}~XFG}~XEFG

rm t~r tin~ r~ss tnr tm~rs -

Here we see that the sample variable (G~ is allowed to have associations with each of the variables

in the model. Since our initial goal is usually to establish that the latent variable is identical (or at

least similar) in all of the samples, our first step is usually to test the "across-sample parallel

indicators" hypothesis. This step is equivalent to testing the factor invariance hypothesis in the

continuous data MIMIC model (Marsh and Hocevar, 1985; Byrne et al., 1989). To test the

hypothesis that the indicator variables (A~, B~, C,~ are parallel indicators over the S samples, we

impose the restrictions

~~c-~ac-~cc ~~xc-~axc-~cxc-~
u ~s - ks - tts ~ts - kts

When the across-sample parallel indicators hypothesis can be accepted for most, or all, of the

indicator variables, we can accept that the latent variable is identical in the S samples. In this case

(10) reduces to a variant of (5)

log f~~-~ },lX}íl~G}~.A t~.B}~,~ }~.t~~-~.BX }~.;~
}~XE}~XF}~XEF}~XEG}~XFG}~XEFG

tm rn rmn tins tns trnr~s '

15



In addition, when all, or some, of the indicator variables can be characterized as parallel indicators

over the S samples, we may be interested in testing the hypothesis of "equal error rates," which

states that the likelihood of a"false positive" for an indicator variable is equal to the líkelihood of

a"false negative" for the same variable. To test the "equal error rate" hypothesis, we impose the

restrictions that ~li -~1j-.1k ~. When both the across-sample parallel indicator and equal error

rate hypotheses can be accepted, the model in (10) reduces to a variant of (8)

log ,~~~-W }~X }~~G}~~}~n~}~~
}~.YE}~XF}~XEF}~XEG}~XFG}~XEFG

trn tn trnn tins rns tn~rs '

We can, of course, also test the usual parallel indicator hypothesis that ,~."~x-,~nx-~~

c12~

Once we have established that the latent variable is (reasonably) equivalent in the S samples,

we may also examine models (10) -(12) for structural equivalence in the parameters relating the

manifest, non-indicator variables to the latent variable.' Specifically, to test the hypothesis that E

and X are equivalently related in the S samples, we restrict ~l;~0-0. Similar hypotheses may be

tested by imposing restrictions on each of the remaining structural parameters that involve the

sample variable (i.e., ~1~ , ~t~ ).

Finally, consider the case where the latent variable X is a dichotomous response (dependent)

16



variable. Following the argument based on Bishop (1969), the logit model may be derived by

subtracting the latent loglinear model for f~~ from the model for fy~~ Thus, for (5) we

obtain

fjlog ~~~Í-ao}aA}aB}ak}~M}~n}a~
fjk2ntn

(13)

where the a coefficients equal twice the respective lambda coefficients (e.g., ao211X~, aA~-2.t`~`~~,

aEm2~.~,~ and each of the variables is effects-coded. As we see, M-1 logit parameters must be

estimated for the {XE} association, N-1 logit parameters must be estimated for the {XF}

association, and (M-1)(N-1) logit parameters must be estimated for the {XEF} association; thus, a

total of (MN-1) must be estimated for these associations in the latent logit model presented in (13).

For (9), on the other hand, we obtain

A

f~kl n,ns A B C

log ~ -aota~}p;}a~
fj~I2mns

} Rm(Vm -V) f (3 n(Wn -yy) -~- ~3~íym -v)(y~R -y~)

(14)

where ao, a A~, aB~, and R`~ are defined as in ( 13), and (3 E, (3 F, and p~ are equal to twice theirrespective

~(or t) coefficients. When {XE}, {XF}, and {XEF} are linear-by-linear associations ( i.e., when

they are calculated from the ~'s), it is necessary to estimate only a single parameter for each of these

associations; thus, MN-4 fewer estimated parameters are required than in equation (13). When

either E or F is an unordered polytomy, the respective {3's are calculated from the estimated t's; thus,

17



the number of estimated parameters is greater than when all associations are linear-by-linear. For

example, if E is an ordered and F is an unordered polytomy, then the {XF} and {XEF} each require

the estimation of N-1 parameters. This model, then, would require the estimation of 2N-1

parameters, and would result in the estimation of NiN-2N-2 fewer parameters than in (13).

The multi-sample latent logit MIMIC model with linear-by-linear restrictions on the

polytomous effects variables can also be expressed in terms similar to that of(14). Thus, the model

in (10) becomes

Jijklmns -po{,~G~.AAt~jB~~jk t~iyGt~BG~, pkt

10 ~ 'Ïk2mns F, F'- - - , (15 )

f w -w ~- v -m w -ng }aE~vm-V) aF( n ) F'~~ m )~ n-)

} p Ec(vM -v) } aSG(wn -w) -~ p ~c(vm -v)(wn-w)

As with the model in (14), the a coefficients for the indicator variables in (15) aze equal to twice the

corresponding Jl, and the R coeffcients for the non-indicator variables are equal to twice the

corresponding ~(or z) parameter. While linear-by-linear restrictions may also be applied to

polytomous sample (G~, latent (X~, and indicator (A~, B~, Ck) variables, only polytomous effects

(non-indicator) variables are considered here.

An Empirical Eaample

The current example focuses on changes in Americans' attitudes towazd legal abortions for

social reasons over the past twenty years; this example extends the research on this topíc that I have

reported elsewhere (McCutcheon 1987b, forthconung). The data analyzed here come from the 1972
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and 1991 General Social Surveys (GSS). The GSS is conducted each spring (March and April) by

the National Opinion Research Center (NORC) at the University of Chicago. The first of these two

years (1972) includes data collected just prior to the 1973 U.S. Supreme Court decision in Roe v.

Wade which legalized abortion during the first 6 months of pregnancy as long as the procedure was

performed by qualified medical personel at appropriate medical facilities.

In the 1972 and 1991 GSS, respondents were asked a series of questions regarding their

opinions about legal abortion. Three of these questions asked respondents about their approval

(disapproval) of legalized abortion for women wanting an abortion for social (non-medical) reasons.

Responses to these three questions serve as the indicator variables in the analyses reported here.

Specifically, respondents were asked

"Should it be possible for a pregnant woman to obtain a~~ abortion if ..."
"If she is not married and does not want to marry the man?" (S;)
"If the family has a very low income and cannot afford any more children?" (P.)
"If she is married and does not want any more children?" (N~ '

Responses of "yes" or "no" were allowed for these questions.

In each of these two surveys, respondents were also asked about their attitudes toward

premarital sex. One question asked:

"If a man and woman have sex relations before marriage, do you believe that it is always
wrong, almost always wrong, wrong only sometimes, or not at all wrong?" (M~)

For the analysis presented here, the "almost always wrong" and "wrong only sometimes" responses

were combined, yielding a three-level polytomous response variable. A second non-indicator

variable, religion (R~, was also included in the analysis; only Protestants and Catholics were

included in the analysis, however. Finally, only white respondents were included in the current

analysis.
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Typically, the first issue that we should address in any analysis has to do with the appro-

priateness of the proposed analytic model. The categorically-scored responses for the indicator and

non-indicator variables suggest that the LCM is appropriate; however, we must also consider the

- likely nature of the latent construct. As the bi-modal distribution in Figure 4 illustrates, American

public opinion is highly polarized on the issue of legalized abortion for social reasons. In 1972, the

year prior to the U.S. Supreme Court's controversial Roe v. Wade decision, nearly 80010 ot the

respondents reported either approval or disapproval of legalized abortion in all three scenarios

depicted in the indicator questions; only one in five gave mixed responses. Sy 1991, the level of

polarization appears to have risen, with 85a1o of the respondents indicating consistent approval or

consistent disapproval. Consequently, it appears that for both samples, it is plausible to hypothesize

acategorical latent variable in which respondents either approve or disapprove of legal abortions

for social reasons. In this case, nuxed responses are assumed to be erroneous.

The initial step is to test whether a T-class model fits the samples adequately. As the data

reported in Table 1 indicate, the saturated latent loglinear model with a two class latent abortíon

variable fits the observed, multi-sample data reasonably well (L2-70.87, 60 df, p~.l). Since this

model is unrestricted, however, we can infer only that the two-class latent variable model is

plausible for the two samples; there is no assurance, however, that the latent abomon attitude

variable for 1972 is similar to the same variable in 1991.

Without some assurance that the dependent variable is the same in each of the samples,

further analysis is of questionable value. Thus, the next concern in multi-sample analyses such as

these is to establish construct invariance across the samples. Consequently we focus our attention

on the measurement portion of the latent loglinear model: that is, on those lambda parameters that
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include both the indicator variables (i.e., S;, P~, N,~ and the sample variable (Y~.

The first in our hierarchy of hypotheses (Ht) addresses the issue of whether there has been

a significant change in the distribution of the indicator variables that is independent of the latent

SY PY NYvariable. Restricting the three lambda parameters (,~ ,1l ,~1 ) equal to zero nets amodest increase

in the LZ (73.72 - 70.87 - 2.85, 63 - 60 - 3 df, p~.2). Thus, these data indicate that between 1972

and 1991 any change in the distribution of the indicator variables is attributable to changes in the

latent variable.

As with multi-sample linear structural equation models, the optimal case for multi-sample

latent loglinear models is that in which there is complete invariance in the latent construct (see e.g.,

Marsh and Hocevar 1985, Jóreskog 1971). Thus, the second hypothesis (HZ) tests whether the

indicator variables maintain a constant level of association with the latent variable across the two

years. As the data in Table 1 indicate, restricting the three lambda parameters (~1~"`, ~.P"", ~1`~"`) to

equal zero results in an unacceptable erosion of the model LZ (83.04 - 73.72 - 9.32, 66 - 63 - 3 df,

p~.03). Thus, one or more of the indicator variables have experienced a significant change with

respect to their association to the latent variable.

Although complete across-sample invariance in the latent construct is desired, it is not

required (see e.g., Byrne et al. 1989). H, tests the partial invariance of the latent variable from 1972

to 1991. Here we allow the parameter for the "single woman" indicator (~ts~) to vary freely,

resulting in an acceptable increase in the model L` (77.47 -73.72 - 3.75, 65 - 63 - 2 df, p~.1). From

the negative sign of the parameter estunate reported ín Table 2 it appears that the association of the

"single woman" indicator was lower in the first sample (1972) than in the second ;1991); other than

the increase in the strength of the asso~iation between the latent variable and the "single woman"
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indicator, the latent variable for the 1972 sample is identical to the latent varíable in 1991. This

idicates a very high degree of across-sample invariance.

Once we have established the level of invariance in the measurement portion of the model,

we turn to the final set of hypotheses regarding the measurement of the latent variable. In H, we test

the "equal error" rate hypothesis by restricting the indicator lambdas (~1s, ~tP, A") to zero. As

discussed earlier in (6) and (7), these restrictions can be interpreted as the "equal error rate"

hypothesis in Lazarsfeld's parameterization of the LCM. There is another, equally interesting aspect

of these restrictions: they test the hypothesis that the latent variable is the sole sotuce of deviation

rrom an equiprobable distribution for the indicator variables. As we can see from the results

reported in Table 2, the unacceptably large increase in the model LZ (97.77 - 77.47 - 20.30, 68 - 65

- 3, p~.001) indicates that we must reject H,. In model HS which tests the equal error rate

hypothesis for the "single woman" and "no more children" indicator variables only, we see that the

hypothesis may be accepted (79.56 - 77.47 - 2.09, 67 - 65 - 2, p~.3); the association between the

latent variable and legalized abortion for "poor women" can not be restricted in this manner. As the

,~P estimate of -.278 indicates, after accounting for the respondents' latent attitude toward social

reasons for abortion, the log odds-ratio 2"~.S --.556 and the odds-rario is é 556 -.573. Thus, after

accounting for the latent attitude, the odds are estimated to be .573 that respondents have non-

favorable attitude (disapproval) towards legal abortion for women who aze married and feel they

cannot afford anymore children.

With H6 we shift the focus from the measurement model to the structural portion of the

model. Specifically, we test the hypothesis that ~.~-0: that between 1972 and 1991 there were no

significant shifts in the distribution of the latent variable that are unaccounted for by the effects
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variables of religion and attitudes toward premarital sex. As the results in Table 1 indicate (79.60 -

79.56 -.04, 68 - 67 - 1, p~.75), we can accept this hypothesis. In H, we report tests of hypotheses

that the higher order effects in the structural portion of the model can be restricted to zero. These

hypotheses include tests of the effects of interactions among the independent variables on the latent

variable (,1~~), as well as tests of hypotheses that the strength of the associations between the

independent and latent variables have remained constant over the past 20 years.' As the results for

H, indicate (reported in Table 1), we can accept the hypotheses that 1) the interaction between

religion and premarital sex attitudes does not have a significant effect on the latent abortion attitude

variable, and that 2) between 1972 and 1991 there were no significant shifts in the effects of religion

and attitudes towazd premarital sex on attitudes toward social reasons for abortion (88.07 -79.60 -

8.47, 75 - 68 - 7 df, p~.3).

The final hypothesis tests a linear-by-linear restríction on the association between the

polytomous attitude toward premarital sex variable and the latent variable reflecting attitudes toward

social reasons for abortion. As the results reported in Hg indicate, this hypothesis must be rejected

because it results in an unacceptably large erosion of the L~ (94.44 - 88.07 - 6.37, 76 - 75 - 1 df,

p~.025). Although we would normally reject the model of H8 on empirical grounds, we will use this

model to illustrate the interpretation of the model parameters.

Using (7) we can obtain the modeled conditional probabilities of approval for each of the

indicator variables in the two latent classes in each of the two samples. As we see from the

measurement model portion of the data reported in Table 3, the "poor women" indicator variable

does not maintain an equal error rate over this time period; the significant ~.P parameter results in the

probability of a"false negative" (.033) being substantially lower than the probability of a"false
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positive" (1.00 -.905 -.095). Although the remaining two indicator variables do maintain equal

error rates in both samples, we note that the signif'icant ~.5~ parameter results in a decrease in the

error rate from .054 in 1972 to .021 in 1991.

We can also use the parameter estimates from the structural portion of the model to estimate

the latent logit pazameters (a), as well as the probability that a respondent will be at level 1(class

I) of the latent variable, given their position with respect to the effects variables. These probabilities

are reported in Table 4. As these data show, at each level of the attitude toward premarital sex

variable, Protestants are less likely than Catholics to hold disapproving attitudes toward legal

abortion for social reasons. Only among those Protestants who believe that premarital sex is "not

at all wrong," however, do we see a less than .50 likelihood of disapproval of legal abortion for

social reasons. Finally we note from both Tables 2 and 4 that attitudes toward premarital sex have

a substantially greater impact than does religion on the likelihood of disapproving (approving) of

legal abortions for social reasons; among Catholics there is a difference in the likelihoods of more

than .3 between the extremes of the premarital sex variable, and among Protestants there is a

difference of nearly .4.

Summary and Conclusions

The advent of loglinear and logit modles has extended to the analysis of categorically-scored

data much of the power and flexibility that was once available only through regression analysis of

continuously-scored data. The application of regression models to categorical data, however, has

long been lrnow to result in mis-estimation (Aldrich and Nelson 1984, Hosmer and Lemeshow 1989,

Nerlove and Press 1973). Consequently, logit models have played an especially important role in

categorical data analysis, because logit models are most directly analogous to regression analysis.
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Unlike the usual loglinear models, in which all of the variables have the same status, in logit models

one ofthe variables is designated as the dependent (response) variable and the others are designated

as causal (effects) variables (Agresti 1990, Aldrich and Nelson 1984, Bishop, Feinburg, and Holland

1975, Haberman 1979, Hagenaars 1990, Hosmer and Lemeshow 1989, Nerlove and Press 1973).

Unlike regression analysis, however, logit models have discrete, categorically scored dependent

variables. Consequently, researchers who wish to investigate causal models with categorically

scored dependent variables often rely on logit analysis.s

The multi-sample latent logit model presented here, while closely related to those of Goodman

and Hagenaars, derives directly from the latent class model first presented by Haberman (1979).

Haberman examined the latent class model as a restricted loglinear model in which the indicator

variables (e.g., A, B, C) are locally independent with respect to the latent variable (X). Thus,

Haberman's basic model is analogous to Goodman's basic model. As I have shown elsewhere

(McCutchéon forthcoming) Haberman's model can be extended to include observed variables (e.g.,

Em, F~) which are not indicator variables. The multi-sample latent logit model presented here

illustrates that a non-indicator sample variable may also be included in the analysis.

Finally, when one or more of the non-indicator variables have three or more ordered

categories, the multi-sample latent loglinear model can be reparameterized in a manner that differs

significantly from Goodman's and Hagenaars' approaches. In the saturated model, for example,

when 1~1, N, and T are all greater than 2, the previous approaches require the estimation of

(T-1)(M-1) lambda parameters for the {XE } relationship, (M-1)(N-1) lambda parameters for the

{EF} relationship, and (T-1)(N-1)(M-1) for the {XEF} relationship. In contrast, single

linear-by-linear restrictions on these lambda parameters may be tested for the loglinear model. This

~~



approach allows us to incorporate into our estimation the information that may be inherent in the

ordering of the polytomous effects variables, thereby requiring the estimation of fewer model

parameters and thus reducing the parameter inflation problem. Because the presence if linerities is

directly tested, the approach is recommended for all instances involving ordered polytomies.

Notes

` Good introductions to the Lazarfeld's parameterization of the LCM can be found in McCutcheon
(1987), Shockey (1988), and Langeheine ( 1988).

Z Unlike saturated loglinear models, saturated latent loglinear models require certain parameters to
be restricted to zero; the axiom of local independence allows indicator variables to have associations
to have non-zero associations with only the latent variable(s).

3 Marsh and Hocevar (1985) argue that there should be complete factoral invariance across the
samples, though Byrne et. al (1989) make the case for partial invariance.

' Although reported here as a single 7 di test, each of the parameter constraints implied in H, were
tested individually, and were acceptable at the .OS alpha level.

5 Probit models provide an alternative to logit models (see e.g., Finney 1971). Since these models
tend to yield similar results, the relative computational ease of the logit model and the greater ease
in interpretation of the logit parameters have led most researchers to prefer the logit to the probit
model.
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Fi~ure 2: Saturated Loglinear Model with A Latent Dependent Varia~le (Z)
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Table 1: Likelihood-ratio Chi-Squares for Selected Latent Logit MIMIC Models

Model

Ho: Saturated Latent Logit

Hl: ASY-~.~-~.~~

H2: Hl f I~~-Á.P~-Á.~`~

~- H~ } ~~-~P~~

H4: H, -~ ~ls-~lP-~."~

Hs: H, t,l"-~ls~

H6: HS f- ,~~"`~

H,: H6 ~- ,l~Y-~.~`-~.~Y-.1~~

Hg: H, t Linear Restriction on Axi"

LZ df

70.87 60

73.72 63

83.04

77.47

97.77

79.56

79.60

88.07

94.44

66

65

68

67

68

75

76



Table 2: Parameter Estimates (and ASE) for Selected Models

Model
Parameter Ho H, H6 H, H8

~x
1

~ií

.430~.ia9~ .546~.isa~ .575~.oaz~ .542~.om .528~.om

-.220~.,~~ .040~.049~

~li -.221~.~~ -.262~.on~ -.278~.0~3~ -.278~.o,3i -.278~.~~

N~L1 -.026~.o~i~ -.061~.oei~ ~ ~ ~

s~1 .086~.ii9~ .064~.os9~ -- -- ~

PY~11 .114~.~~ ~ ~ -- --

~íí

PX
~I1

NXY
~I11

. l l l~.o~z~

.084~.izi~

1.417~.oae~ 1.402~.0,.~ 1.410~.078~ 1.409~.o,s~ 1.407~.o~s~

1.314~.0,1~ 1.294~.~1~ 1.261~.0~~ 1.260~.osa~ 1.258~.osa~

1.614~.1L7~ 1.646~.138~ 1.674~.13z~ 1.671~.1,1~ 1.680~.,,3~

.060~.o~v~ --- --- --- ---

.OSl~.o~t) --- --- --- --

-.167~.ii9~ -.257~.iao~ -.256~.i3o~ --245~.iso~ -.247~.isz~



Table 2(cont.): Parameter Estimates (and ASE) for SelectPd Models

Model
Parameter Ho H, H6 H, Hg

~~ -.549(.o8z) -.549(.oa~) -.557(.om -.532(.007) - .478(.o.~)a

,1~ .088(.oóz) . 083(.063) . 086(.osz) .106(.o,z) -

~.~ .132(.o,e) . 132(.oa9) .139(.oss) .145(.o3a) . 146(-0~)

~iu

-.046(.oez) -.051(.oss) -.061(.ms~

.006( 06z) .007( ob,) . O 10( oóz)

~1111 -'003(.OBZ) -'002(.083) -'O12(.074)

XAlY
~i2i -.012(.oóz) -.018(.063) -.014(.os~)

xRr
~ t ~ ~ -.O11( oaa) -.O 10( o4v) .049(.039)

-.024(.oaz) -.028(.oa3) -.040(.o~z)

.093( 06z) .093( oó,) .098( ob,)

' Estimate for ~~.



Table 3: Estimated Probability of Disapproval of Indicator
Variables by Latent Class and Year

Indicator 1971 1991
Variable Class I Class II Class I Class II

Poor Couples .905 .033 .905 .033

No More Children .925 .075 .925 .075

Single Women .946 .054 .9"l9 .021



Table 4: Estimated Probability of Disapproval of Latent Variable
(Class I) by Religion and Attitude Toward Premarital Sex

Premarital Sex Catholic

Not Wrong .597

Sometimes Wrong .794

Always Wrong .909

Protestant

.4~2

.682

.848
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