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Abstract 

An interacting network coupling financial institutions’ multiplex (i.e. multi-layer) and 

financial market infrastructures’ single-layer networks gives an accurate picture of a financial 

system’s true connective architecture. We examine and compare the main properties of 

Colombian multiplex and interacting financial networks. Coupling financial institutions’ 

multiplex networks with financial market infrastructures’ networks removes modularity, 

which enhances financial instability because the network then fails to isolate feedbacks and 

limit cascades while it retains its robust-yet-fragile features. Moreover, our analysis highlights 

the relevance of infrastructure-related systemic risk, corresponding to the effects caused by 

the improper functioning of FMIs or by FMIs acting as conduits for contagion.  

JEL: D85, D53, G20, L14 

Keywords: multiplex networks, interacting networks, financial stability, contagion, financial 

market infrastructures.  
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1. Introduction 

Most transactions between financial institutions (FIs) require a financial market 

infrastructure (FMI) that settles the exchange of money, securities, foreign exchange and 

derivatives.5 Therefore, directly connecting financial institutions (FIs) to each other in a 

network or graph may be convenient and illustrative, but is incomplete as it ignores the role 

of additional networks of distinct financial and non-financial participants that are essential for 

the completion of financial transactions in terms of their settlement.6 Modeling the settlement 

of transactions between FIs without accounting for FMIs comes down to making the 

assumption that financial market infrastructures always work.  

Following Kurant and Thiran (2006), networks of FIs are logical networks, and the links 

between FIs are of a logical (i.e. virtual) nature. Additional layers of networks exist beneath 

logical networks, either of logical or physical nature. In the case of financial markets, due to 

their role in the settlement of financial transactions, FMIs may be considered as the financial 

system’s “plumbing” (Bernanke, 2011), or the “medium” in which FIs interact in the sense of 

Gambuzza et al. (2014). In this vein, FMIs that settle transactions between FIs are the first 

logical layer beneath the traditional FIs’ logical network. Accordingly, the well-functioning of 

those FMIs is not only crucial for financial markets and for financial stability, but FMIs should 

also be considered as critical infrastructures.7  

In spite of the fact that the critical role of FMIs for financial systems has been stressed before 

(CPSS and IOSCO, 2012; Dudley, 2012; Bernanke, 2012), most research on financial networks 

still focuses on single-layer FIs-only networks. Their linkages then correspond to transactions 

or exposures pertaining to a single market (e.g. interbank, foreign exchange, derivatives, etc.). 

Hence, the financial literature tends to ignore two sources of complexity in financial markets: 

(i) the simultaneous presence of FIs across different financial markets and their networks, 

                                                      
5 Financial institutions (FIs) correspond to depository institutions (e.g. banks), broker-dealers, investment 

companies (e.g. mutual funds), insurance companies, and credit unions. Financial market infrastructures (FMIs) 

correspond to multilateral systems providing trading, clearing, settling, recording, and compressing services for 

transactions between FIs. For the purpose of this paper we focus on FMIs providing settlement services. 
6 Correspondent banking is an alternative to the settlement role of FMIs, and thus can be modeled as a network of 

connected FIs. However, correspondent banking is only a minor channel compared to FMIs.  
7 To consider FMIs’ critical infrastructures means that they compose one of those systems that are essential for the 

maintenance of vital societal functions, health, safety, security, economy or social well-being of people (European 

Commission, 2008). 
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and (ii) the coupling of financial markets and their networks by means of the settlements 

across different FMIs. Furthermore, these two sources of complexity yield two unmapped 

sources of systemic risk, respectively: (i) cross-system risk (CPSS, 2008), corresponding to the 

potential effects caused by a FI experiencing problems across different markets or layers, and 

(ii) infrastructure-related systemic risk (Berndsen, 2011; p.15), corresponding to “the 

improper functioning of the financial infrastructure, or where the financial infrastructure acts 

as the conduit for shocks that have arisen elsewhere” (i.e. in another layer). 

Therefore, in order to gain a comprehensive and enhanced understanding of financial 

systems’ complex architecture, we implement the two existing approaches to interdependent 

or multi-layer networks modeling, namely multiplex networks and interdependent networks 

(D’Agostino and Scala, 2014). First, we build a financial multiplex network, consisting in a 

multi-layer network of FIs acting in different financial markets or environments. Second, by 

explicitly incorporating the role of the network of FMIs for the FIs’ multiplex network, we 

build an interacting financial network. This way, based on a unique dataset, we examine how 

FMIs provide the medium that allows FIs to interact across distinct financial markets. 

Additionally, this paper examines whether, or not, the interaction between different layers of 

FIs and FMIs preserves the main connective and hierarchical features of single-layer financial 

networks, which have been reported to exhibit features corresponding to a modular scale-free 

architecture (León and Berndsen, 2014; Bargigli et al., 2014). 

Five novel findings result from our paper. First, building a multi-market financial multiplex 

network has not been attempted before in the Colombian case. Second, to the best of our 

knowledge, coupling FIs and FMIs into an interacting network is a significant step forward in 

the examination of financial networks that has not been made before. Third, we verify that the 

multiplex network of FIs preserves the main connective and hierarchical features of single-

layer or monoplex networks (i.e. their modular scale-free architecture), and we suggest that 

this is a byproduct of positively correlated multiplexity in the sense of Lee et al. (2014). Fourth, 

coupling FIs and FMIs yields a scale-free but non-modular architecture, an outcome with 

noteworthy implications for financial stability purposes. Fifth, in the sense of Gao et al. 

(2012), our results confirm that the connections between FIs and FMIs correspond to 

dependence links (i.e. links that are critical for participants’ functions) instead of traditional 

connectivity links (i.e. links that enable to carry out functions), which emphasizes that the safe 

and efficient functioning of the FMIs’ network is critical for the FIs and for financial stability. 
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Together, these five findings make a significant contribution to the literature on financial 

networks and financial stability, and differentiate our work from other related single- or 

multi-layer financial network research. 

 

2. Literature review: from single- to multi-layer financial networks 

Interdependent or coupled networks’ modeling requires defining different networks (i.e. 

layers) and the interactions among them (D’Agostino and Scala, 2014). Two approaches to 

such multi-layer network modeling are available: multiplex networks and interacting 

networks. In the former case, each layer consists of a network containing distinct types of 

links but a common type of participant. In the interacting networks approach the different 

layers are explicitly modeled as separate networks and the links among them represent inter-

layer interactions. 

While from a graph-theory point of view, a multi-layer network is just a larger network, 

networks in real life are governed and operated separately, and interactions are only allowed 

at well-defined boundaries (D’Agostino and Scala, 2014). In the case of financial systems, in 

which FIs and FMIs coexist and are mutually dependent, the resulting network will not only 

be larger than the traditional –logical- FIs’ network, but it will also reveal how financial 

transactions are settled between FIs under the corresponding legal and operational 

framework. And, most importantly, it will reveal whether, or not, the main connective and 

hierarchical features of the constituent logical networks are preserved after their coupling. 

Our research is related to two strands within financial network analysis, namely how financial 

networks couple, and on how coupling affects the connective and hierarchical architecture of 

financial networks. These two topics are critical for the understanding of the organization and 

behavior of financial systems, which enhances our understanding of financial stability. In 

addition, our work also contributes to the broad set of network science applications. 

2.1. On interdependent financial networks 

Most efforts to characterize the topology of complex systems by means of network analysis 

have assumed that each system is isolated (i.e. non-coupled) from other networks. Yet, as 

highlighted by Cardillo et al. (2013; p.1), many biological and man-made networked systems 
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are characterized by the simultaneous presence of different sub-networks organized in 

separate layers, with connections and participants of qualitatively different types. Such multi-

layered nature of networks, also known as “interdependent networks” or “network of 

networks”, has been the focus of network scientists rather recently, and the work of Kurant 

and Thiran (2006) is among the first contributions to this field. 

Most literature on financial networks deals with a single type of participant: financial 

institutions (FIs). A customary financial network consists of FIs pertaining to a single-layer or 

monoplex network, in which the network comprises one sort of participant and a single type 

of connection.8 It is also possible to construct and analyze a financial monoplex composed by 

FMIs, as in León and Pérez (2014). 

Research on multi-layer financial networks has appeared rather recently. The standard multi-

layer framework in finance corresponds to the so-called multiplex network, which may be 

described as networks containing participants of one sort but several kinds of edges (Baxter 

et al., 2014).9 Figure 1 displays a two-layer network composed by layers X and Y, and the 

multiplex (Z) resulting from merging X and Y. Vertical lines connecting superimposed 

vertexes are the participants, whereas each vertex is a role in the corresponding layer. 

 

 

 

                                                      
8 Literature on single-layer financial institutions networks is abundant. A short list includes León and Berndsen 

(2014), Chinazzi et al. (2013), Martínez-Jaramillo et al. (2012), Markose et al. (2012), Markose (2012), 

Arinaminpathy et al. (2012), Gai and Kapadia (2010); Haldane (2009), Bech and Atalay (2010), Nier et al. (2008); 

Pröpper et al. (2008), May et al. (2008), Cepeda (2008), Renault et al. (2007), Soramäki et al. (2007), Cifuentes et 

al. (2005), Inaoka et al. (2004), Boss et al. (2004). 
9 Several applications of multiplex networks have been documented for non-financial complex systems, such as 

transport systems (Cardillo et al., 2013; Kurant and Thiran, 2006), electrical networks (Pahwa et al., 2014), 

physiological systems (Ivanov and Bartsch, 2014), critical infrastructures (Martí, 2014; Rome et al., 2014) and 

cooperation networks (Gómez-Gardenes et al., 2012). 
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Figure 1. A multiplex network. Two-layer networks, X and Y, and the multiplex (Z) resulting 

from merging X and Y. Vertical lines connecting superimposed vertexes are the participants, 

whereas each vertex is a role in the corresponding layer. 

Some financial networks have been treated as a multiplex network. Montagna and Kok (2013) 

model interbank contagion in the US market with a triple-layer multiplex network consisting 

of long-term direct bilateral exposures, short-term bilateral exposures and common 

exposures to financial assets. Bargigli et al. (2013) examine the Italian interbank multiplex 

network by transaction type (i.e. secured and non-secured) and by maturity (i.e. overnight, 

short-term and long-term). León et al. (2014) examine the connective properties of the 

multiplex network that results from the three different Colombian sovereign securities’ 

trading and registering platforms. In this sense, recent efforts to examine financial multi-layer 

networks regularly correspond to the multiplex network, with FIs as the usual participant.  

However, multi-layer networks models are not limited to the multiplex case. The coupled 

nature of layers of distinct participants may be decisively important. For instance, as depicted 

by Kurant and Thiran (2006), a first look at the World-Wide Web shows a network of 

interconnected IP vertexes, whereas a deeper examination will reveal that IP vertexes’ 

linkages are possible via IP routers, and those linkages between IP vertexes and IP routers 

depend on a physical network (e.g. fiber optic, cable). As a result, Kurant and Thiran motivate 

a multi-layer model of distinct types of participants, in which the disruption or malfunction of 
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concealed interacting layer(s) might destroy a substantial part of the most evident (i.e. the 

first) layer. 

Our research overlaps with the original motivation of Kurant and Thiran (2006) for multi-

layer networks, but departs from the standard multiplex network case. Our analysis 

acknowledges for the first time in financial networks literature that FIs would not be able to 

settle most of their transactions in the absence of FMIs. Accordingly, our research considers 

the existence of the medium that allows FIs to connect to each other across distinct financial 

environments. 

Figure 2 depicts an analytical representation of a two-layer interacting network of FIs and 

FMIs. Let the multiplex Z from Figure 1 represent a first layer of FIs participating in two asset 

markets (e.g. money and foreign exchange), and let the second layer represent the settlement 

FMIs for both markets, in which the direction of the linkages has been omitted for practical 

purposes. In this case, each FI connects to the corresponding FMI, and both FMIs connect to 

each other in order to instruct the delivery of money and foreign exchange that would settle 

any transaction of this oversimplified financial system, say buying or selling foreign exchange.  

 

Figure 2. Coupling FIs’ and FMIs’ networks. This analytical representation shows a two-layer 

interacting network of FIs and FMIs. Each FI connects to the corresponding FMI, and both 

FMIs connect to each other in order to instruct the delivery of money and foreign exchange 

that would settle any transaction of this overly simplified financial system. 

Unlike links in FIs’ monoplex networks (Figure 1), which enable FIs to carry out their 

functions, the links in the interacting network in Figure 2 are of a critical nature for FIs: if an 

inter-layer link is removed, the corresponding FI would not be able to settle its transactions, 

whereas the absence of the link between FMIs would endanger the settlement of all FIs’ 



7 

 

transactions. The links in the FIs’ and FMIs’ interacting network are dependence links, whereas 

links in a FIs-only network are connectivity links (Gao et al., 2012). This type of modeling 

emphasizes the critical role FMIs play in the financial system and the broader economy, as 

acknowledged by CPSS and IOSCO (2012). Furthermore, such dependence links are consistent 

with viewing the FMIs’ network as a first layer of a financial system’s critical infrastructure, 

and underscores the existence of a non-negligible critical infrastructure dependency in the 

sense of Rome et al. (2014).10 The presence of dependence links and the fundamental role of 

the FMIs’ network should be closely monitored by financial authorities in their quest to 

preserve financial stability. 

2.2. On the connective and hierarchical features of multi-layer networks 

Even to date, the literature concentrates on an inhomogeneous connective structure of single-

layer financial networks, typically in the form of the distribution of links –and their weights- 

approximating a power-law (e.g. León and Berndsen, 2014; Bech and Atalay, 2010; Pröpper et 

al., 2008; May et al., 2008; Cepeda, 2008; Renault et al. 2007; Soramäki et al., 2007; Inaoka et 

al., 2004; Boss et al., 2004).11 The power-law or Pareto distribution of links within a network 

is commonly referred as a scale-free network (Barabási and Albert, 1999), and it corresponds 

to a particular case in which there are a few heavily linked participants (i.e. high degree 

vertexes) and many poorly linked participants (i.e. low degree vertexes). This is precisely the 

most documented type of network in real-world complex systems (e.g. social, biological, man-

made). 

The inhomogeneity in scale-free networks yields a structure that is robust to random shocks 

but fragile to targeted attacks, as in the nowadays celebrated “robust-yet-fragile” 

characterization of financial networks by Haldane (2009). In this sense, a scale-free 

connective structure provides everyday stability and efficiency for complex systems, but 

exposes them to rare massive transformations (Miller and Page, 2007), as in a power-law 

                                                      
10 Additional critical layers for financial networks, mostly of physical nature (e.g. communications, power), are not 

considered in this paper.  
11 However, most literature that models the interactions between financial institutions is based on the assumption 

of a homogeneous connective structure, in which financial institutions tend to connect to each other in a dense and 

uniform manner that tends to diversify or disperse shocks (e.g. Battiston et al. (2012), Cifuentes et al. (2005), 

Freixas et al. (2000) and Allen and Gale (2000)). Therefore, observed financial networks’ inhomogeneous 

distribution of linkages and their weights contradict the traditional assumptions of standard contagion models. 



8 

 

distribution of events or a coevolution to the edge of chaos (Anderson, 1999).12 Consequently, a 

network approximating a scale-free connective structure tends to be robust because it is able 

to withstand random shocks, yet it is fragile if shocks target heavily connected participants. 

Some real-world networks also display a particular modular hierarchical organization, a 

defining feature of most complex systems according to Barabási (2003). In a modular 

hierarchy, there are densely connected clusters or communities that are sparsely connected to 

other clusters, resulting in systems composed by nearly decomposable systems in the sense of 

Simon (1962).  

This nearly decomposable architecture resembles that reported by Battiston et al. (2009) for 

describing credit networks: agents clustered in neighborhoods so that most of the time the 

action is at the local level, but with a few connections among neighborhoods that make the 

network sparse yet responsive to shocks hitting any participant. Such modularity has been 

documented to be a non-accidental feature that makes a system resilient due to its ability to 

isolate feedbacks and to limit cascades (Haldane and May, 2011; Kambhu et al., 2007). As 

most components or subsystems receive inputs from only a few of the other components, 

change can be isolated to local neighborhoods (Anderson, 1999). 

Yet, as acknowledged by Assenza et al. (2011), Craig and von Peter (2014), Ravasz and 

Barabási (2003) and Dorogovtsev et al. (2002), scale-free connective structures are not 

hierarchical in nature. Indeed, tiered or intermediated structures, namely in the form of a 

modular architecture, are not distinctive features of scale-free networks. Therefore, a network 

simultaneously displaying a scale-free connective structure and a modular hierarchical 

organization pertain to a particular type of network architecture, a modular scale-free 

architecture (Barabási, 2003), which tends to be robust-yet-fragile and resilient.  

Preliminary results show that analyzing complex systems as a network of coupled networks 

may alter the basic assumptions that network theory has relied on for single-layer networks 

(Kenett et al., 2014). The literature converges to non-additive and non-trivial effects arising 

from networks’ coupling, with a remarkable finding: coupling scale-free distributions may 

yield a less robust network (Gao et al., 2012; Buldyrev et al., 2010), unless the number of links 

                                                      
12 The ubiquity of scale-free networks has been related to its robustness (Strogatz, 2003; Barabási, 2003) and to 

systems’ self-organization (Barabási and Albert, 1999; Bak, 1996; Krugman, 1996) and adaptive features 

(Anderson, 1999; Holland, 1998). Economic and financial systems are particular cases of such structures and their 

corresponding features. 
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(i.e. the degree) of interdependent participants coincides across the layers. This signifies that 

the scale-free networks’ robustness is likely to be preserved if positively correlated 

multiplexity exists, such that a high-degree vertex in one layer likely is high-degree in the 

other layers as well (Lee et al., 2014; Kenett et al., 2014). On the other hand, to the best of our 

knowledge, there are no studies on how networks’ coupling affects their hierarchical 

modularity and their resilience. 

The literature on the effects of coupling networks is still preliminary, and particular cases are 

scarce. Our case is particular for two reasons. First, unlike most studies on multi-layer 

financial networks, our system consists of two distinct types of participants, FIs and FMIs; 

therefore, our case is not a multiplex network but an interacting network. Some examples of 

non-multiplex multi-layer financial networks are Kenett et al. (2014), who couple layers 

composed by financial institutions and assets for studying the US banking system, whereas 

Fujiwara et al. (2009) analyze coupled layers of banks and non-financial firms for studying the 

structure of the Japanese credit network. Yet, to the best of our knowledge, networks 

composed by FIs and FMIs have not been examined in the literature. 

Second, unlike most literature on multi-layer networks, one of the networks is not 

interconnected, and its participants depend on the other network for interacting. In our case 

FIs do not connect to each other due to the inevitable intervention of the FMIs’ network as the 

plumbing or medium that allows settling financial transactions, as depicted in Figure 2. 

Gambuzza et al. (2014) examines and analyzes the main theoretical properties of such type of 

networks in physics (i.e. synchronization of oscillators), but no literature exists for financial 

networks. 

 

3. Network analysis 

A network, or graph, represents patterns of connections between the parts of a system. The 

most common mathematical representation of a network is the adjacency matrix. Let   

represent the number of vertexes or participants, the adjacency matrix   is a square matrix of 

dimensions     with elements     such that 
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    {
1 if there is an edge between            and  ,
0 otherwise.                                                             

} (1) 

A network defined by the adjacency matrix in (1) is referred as an undirected graph, where 

the existence of the (   ) edge makes both vertexes   and   adjacent or connected, and where 

the direction of the link or edge is unimportant. However, the assumption of a reciprocal 

relation between vertexes is inconvenient for some networks. For instance, the deliveries of 

money between financial institutions constitute a graph where the character of sender and 

recipient is a particularly sensitive source of information for analytical purposes, in which the 

assumption of a reciprocal relation between both parties is unwarranted. Thus, the adjacency 

matrix of a directed network or digraph differs from the undirected case, with elements     

being referred as directed edges or arcs, such that 

                 {
1 if there is an edge from   to  ,
 0 otherwise.                                   

} (2) 

It may be useful to assign real numbers to the edges. These numbers may represent distance, 

frequency or value, in what is called a weighted network and its corresponding weighted 

adjacency matrix (   ). For a financial network, the weights could be the monetary value of 

the transaction or of the exposure. 

Regarding the characteristics of the system and its elements, a set of concepts is commonly 

used. The simplest concept is the vertex degree (  ), which corresponds to the number of 

edges connected to it. In directed graphs, where the adjacency matrix is non-symmetrical, in 

degree (  
  ) and out degree (  

   ) quantifies the number of incoming and outgoing edges, 

respectively (3); for undirected graphs,      
     

   .  

   
   ∑   

 

   

   
    ∑   

 

   

 (3) 

In the weighted graph case the degree may be informative, yet inadequate for analyzing the 

network. Strength (  ) measures the total weight of connections for a given vertex, which 

provides an assessment of the intensity of the interaction between participants. Akin to 

degree, in case of a directed graph in strength (  
  ) and out strength (  

   ) sum the weight of 

incoming and outgoing edges, respectively (4); for undirected graphs,      
     

   .    
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   ∑   

 

   

   
    ∑   

 

   

 (4) 

Some metrics enable us to determine the connective pattern of the graph. The simplest metric 

for approximating the connective pattern is density ( ), which measures the cohesion of the 

network. The density of a graph with no self-edges is the ratio of the number of actual edges 

( ) to the maximum possible number of edges (5). 

  
 

 (   )
 (5) 

By construction, density is restricted to the       range. Formally, Newman (2010) states 

that a sufficiently large network for which the density ( ) tends to a constant as   tends to 

infinity is said to be dense. In contrast, if the density tends to zero as   tends to infinity the 

network is said to be sparse. However, as one frequently works with non-sufficiently large 

networks, networks are commonly labelled as sparse when the density is much smaller than 

the upper limit (   ), and as dense when the density approximates the upper limit (   ). 

The term complete network is used when    . 

An informative alternative measure for density is the degree probability distribution (  ). 

This distribution provides a natural summary of the connectivity in the graph (Kolaczyk, 

2009). Akin to density, the first moment of the distribution of degree (  ) measures the 

cohesion of the network, and is usually restricted to the          range. A sparse graph 

has an average degree that is much smaller than the size of the graph (      ).  

Most real-world networks display right-skewed distributions, in which the majority of 

vertexes are of very low degree, and few vertexes are of very high degree, hence the network 

is inhomogeneous. Such right-skewness of degree distributions of real-world networks has 

been documented to approximate a power-law distribution (Barabási and Albert, 1999). In 

traditional random networks, in contrast, all vertexes have approximately the same number of 

edges.13 

                                                      
13 Random networks correspond to those originally studied by Erdös and Rényi (1960), in which connections are 

homogeneously distributed between participants due to the assumption of exponentially decaying tail processes 

for the distribution of links –such as the Poisson distribution. This type of network, also labeled as “random” or 

“Poisson”, was –explicitly or implicitly- the main assumption of most literature on networks before the seminal 

work of Barabási and Albert (1999) on scale-free networks. 
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The power-law (or Pareto-law) distribution suggests that the probability of observing a 

vertex with   edges obeys the potential functional form in (6), where   is an arbitrary 

constant, and   is known as the exponent of the power-law.  

        (6) 

Besides degree distributions approximating a power-law, other features have been identified 

as characteristic of real-world networks: (i) low mean geodesic distances; (ii) high clustering 

coefficients; and (iii) significant degree correlation, which we explain below.  

Let     be the geodesic distance (i.e. the shortest path in terms of number of edges) from 

vertex   to  . The mean geodesic distance for vertex   (  ) corresponds to the mean of    , 

averaged over all reachable vertexes   in the network (Newman, 2010), as in (7). Respectively, 

the mean geodesic distance or average path length of a network (i.e. for all pairs of vertexes) 

is denoted as   (without the subscript), and corresponds to the mean of    over all vertexes. 

Consequently, the mean geodesic distance ( ) reflects the global structure; it measures how 

big the network is, it depends on the way the entire network is connected, and cannot be 

inferred from any local measurement (Strogatz, 2003). 

   
 

(   )
∑    

 (  )

   
 

 
∑  

 

 (7) 

The mean geodesic distance ( ) of random or Poisson networks is small, and increases slowly 

with the size of the network; therefore, as stressed by Albert and Barabási (2002), random 

graphs are small-world because in spite of their often large size, in most networks there is 

relatively a short path between any two vertexes. For random networks:       (Newman et 

al., 2006). This slow logarithmic increase with the size of the network coincides with the 

small-world effect (i.e. short average path lengths). 

However, the mean geodesic distance for scale-free networks is smaller than      . As 

reported by Cohen and Havlin (2010, 2003), scale-free networks with       tend to have 

a mean geodesic distance that behaves as        , whereas networks with     yield 

     (     )⁄ , and       when    . For that reason, Cohen and Havlin (2010, 2003) 

state that scale-free networks can be regarded as a generalization of random networks with 

respect to the mean average geodesic distance, in which scale-free networks with       

are “ultra-small”.  
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The clustering coefficient ( ) corresponds to the property of network transitivity. It measures 

the average probability that two neighbors of a vertex are themselves neighbors; the 

coefficient hence measures the frequency with which loops of length three (i.e. triangles) 

appear in the network (Newman, 2010). Let a triangle be a graph of three vertexes that is fully 

connected, and a connected triple be a graph of three vertexes with at least two connections, 

the calculation of the network’s clustering coefficient is as follows: 14 

  
(number of triangles in the network)   

number of connected triples
 (8) 

Hence, by construction, clustering reflects the local structure. It depends only on the 

interconnectedness of a typical neighborhood, the inbreeding among vertexes tied to a 

common center, and thus it measures how incestuous the network is (Strogatz, 2003). 

Intuitively, in a random graph, the probability of a connection between two vertexes tends to 

be the same for all vertexes regardless of the existence of a common neighbor. Therefore, in 

the case of random graphs the clustering coefficient is expected to be low, and tends to zero - 

in the limit – for large random networks. 

Contrarily, real-world complex networks tend to exhibit a large degree of clustering. Albert 

and Barabási (2002) report that in most –if not all- real networks the clustering coefficient is 

typically much larger than it is in a comparable random network. Accordingly, in 

inhomogeneous graphs, as those resulting from real-world networks, the probability of two 

neighbors of a vertex being themselves neighbors is reported to be in the 10% and 60% range 

(Newman, 2010). In this sense, scale-free networks combining particularly low mean geodesic 

distance and high clustering implies that the existence of a few too-connected vertexes plays a 

key role in bringing the other vertexes close to each other. It also indicates that the scale-free 

topology is more efficient in bringing the vertexes close than is the topology of random graphs 

(Albert and Barabási, 2002). 

Besides displaying low mean geodesic distances and clustering, real-world graphs also display 

a non-negligible degree correlation between vertexes. They are characterized by either a 

                                                      
14 If three vertices (i.e. a, b, c) exist in a graph, a triangle exists when edges (a,b), (b,c) and (c,a) are present (i.e. the 

graph is complete), whereas a connected triple exists if at least two of these edges are present. In this sense, a 

triangle occurs when there is transitivity (i.e. two neighbors of a vertex are themselves neighbors). The factor of 

three in the numerator arises because each triangle is counted three times when the connected triplets are counted 

(Newman, 2010). 
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positive correlation, where high-degree (low-degree) vertexes tend to be connected to other 

high-degree (low-degree) vertexes, or a negative correlation, where high-degree vertexes 

tend to be connected to low-degree vertexes. Positive degree correlation, also known as 

homophily or assortative mixing by degree, results in the core-periphery structure typical of 

social networks, whereas negative degree correlation (i.e. dissortative mixing by degree) is 

typical of technological, informational, and biological networks, which display star-like 

features that do not usually have a core-periphery but have uniform structures (Newman, 

2010). In contrast, the degree of random (i.e. homogeneous) networks tends to be 

uncorrelated.    

Degree correlation may be measured by means of estimating the assortativity coefficient 

(Newman, 2010). As before, let   be the number of edges, the degree assortativity coefficient  

of a network (  ) is estimated as follows: 

   
∑ (          ⁄ )      

∑ (            ⁄ )      

 
(9) 

Where  

    {
  if    
  if    

 
 

However, it should be noted that the assortativity coefficient is not limited to vertexes’ degree. 

Other characteristics of vertexes (e.g. age, income, gender, ethnics, size) may condition their 

tendency to be connected. In this case, the characteristics of connected vertexes may be 

correlated, which results in assortative mixing by scalar characteristics (Newman, 2010). For 

financial networks it is important to assess the intensity of the interaction between 

participants. As highlighted by Leung and Chau (2007) and Barrat et al. (2004), the inclusion 

of weights and their correlations may consistently change our view of the hierarchical and 

structural organization of the network. Based on (9), it is possible to estimate the assortative 

mixing by strength (10).  

   
∑ (          ⁄ )      

∑ (            ⁄ )      

 
(10) 
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Regarding the existence of hierarchies in networks, Simon (1962, p.468) suggests a narrow 

definition of “hierarchical system”: “a system that is composed of interrelated subsystems, 

each of the latter being, in turn, hierarchic in structure until we reach some lowest level of 

elementary subsystem”. 

Some authors link the hierarchical structure of networks to the existence of communities or 

modules. For instance, Newman (2003) defines that a network displays community structures 

when groups of vertexes have a high density of edges within them and a lower density of 

edges between groups. Likewise, Barabási (2003) labels modularity in real-world networks as 

an architecture where the more connected a vertex is, the smaller is its clustering coefficient. 

Moreover, Barabási (2003) pinpoints that such low clustering from central vertexes 

contradicts the standard scale-free model.  

Hence, in order to quantitatively measure the hierarchical modularity of a network Barabási 

(2003) suggests assessing whether (or not) the most connected vertexes display low local (i.e. 

individual) clustering, as real-world observed hierarchical modularity suggests. Newman 

(2010) defines local clustering as in (11): 

   
(number of pairs of neighbors of   that are connected)

(number of pairs of neighbors of  )
 (11) 

If there is no dependence between degree and clustering (i.e. clustering is democratically 

distributed), then the network has no hierarchical modularity, as expected from both 

standard random and scale-free networks. However, if degree and clustering display an 

inverse relation (i.e. the higher the degree, the smaller the clustering coefficient), there is 

evidence of hierarchical modularity, in which central vertexes tend to be heavily connected to 

vertexes in their module and to other central vertexes in other modules, but not to non-

central vertexes in other modules.    

Barabási (2003) and Dorogovtsev et al. (2002) suggest that hierarchical modularity may be 

captured by fitting a power-law to the distribution of local clustering as a function of average 

degree (  ) (12): 

   
    

   (12) 
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Barabási (2003) highlights that the existence of hierarchical modularity in real-world 

networks is a defining feature of most complex systems, but it is not caused and may not be 

explained by the mere presence of scale-free properties. Consequently, because the standard 

scale-free model presumes the existence of a few central vertexes connected to vertexes in 

numerous modules (i.e. against the evidence of modularity in real-world networks), Barabási 

(2003) introduces a new type of network: a modular scale-free network. According to 

Barabási (2003) and Dorogovtsev et al. (2002), the clustering coefficient of a network and its 

local distribution by degree may confirm –or reject- the presence of a hierarchy within the 

system. 

 

4. The data sets 

Two main data sources have been used in the financial networks literature: (i) financial 

transactions (i.e. flows), and (ii) financial exposures (i.e. stocks). Networks of financial 

transactions correspond to the delivery of money, securities or currencies, or to the 

corresponding trades among financial institutions, which are automatically registered and 

safeguarded by FMIs (e.g. large-value payment systems, clearing houses, securities settlement 

systems, central securities depositories, trading platforms, trade repositories) whenever a 

transaction occurs. As highlighted by some authors (e.g. Uribe, 2011a,b; Kyriakopoulos et al., 

2009), the information conveyed in financial transactions is particularly valuable due to its (i) 

granularity, with informative details such as sender, recipient, amount, type of transaction, 

underlying asset, etc.; (ii) completeness, because all financial transactions ineludibly involve 

the delivery of money or a financial asset, or a trade; (iii) reliability from a supervisory 

perspective because payments and settlements cannot be –easily- falsified; and (iv) 

opportunity, with data usually available in real-time (or with a minimal lag).  

On the other hand, financial exposures ordinarily emerge from reports prepared and 

delivered by each financial firm to the corresponding authorities (e.g. financial statements), 

where the most commonly used for building financial networks are interbank credit and 

derivatives exposures. This type of information tends to be aggregated (i.e. details of 

individual exposures, counterparties, instruments, etc. are usually unavailable) and lagged, 

and its completeness, consistency, and validity depend on accounting practices by each 
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financial firm and the corresponding jurisdiction.15 Yet, as highlighted by Craig and von Peter 

(2014), because exposures do not cease to exist as payments do, they convey relevant 

information for financial stability purposes. 

In order to analyze and understand the structure of the Colombian financial system three 

FMIs were selected as sources of financial transactions: the large-value payment system (CUD 

– Cuentas de Depósito), the sovereign securities settlement system (DCV – Depósito Central de 

Valores) and the spot market foreign exchange settlement system (CCDC – Cámara de 

Compensación de Divisas de Colombia). The rationale behind this selection follows four facts: 

first, these three FMIs account for 88.4% of the gross value of the payments and deliveries 

within the local financial market infrastructure during 2012 (Banco de la República, 2013); 

second, based on León and Pérez (2014), they are the three most systemically important local 

FMIs; third, the sovereign securities settlement system (DCV) and the foreign exchange 

settlement system (CCDC) provide detailed data for the two largest local financial markets (i.e. 

local sovereign securities and foreign exchange); and, fourth, the large-value payment system 

(CUD) provides aggregated data for all financial transactions occurring in the local market (i.e. 

from all financial market infrastructures). Therefore, this selection may be considered 

comprehensive and representative, yet parsimonious. 

The dataset used for our research is unique, and particularly useful for extending the 

examination and understanding of financial markets’ connective architecture. As emphasized 

by D’Souza et al. (2014), being able to use factual data related to the role of critical 

infrastructure networks has been elusive because they are independently owned and 

operated, with poor incentives for owners or operators to share data, and because the 

linkages between them are often only revealed during extreme events.  

4.1. Financial institutions’ monoplex and multiplex networks 

The information obtained from these three FMIs serve the purpose of building three 

monoplex networks corresponding to three different environments or markets in which 

Colombian FIs interact: (i) sovereign securities market; (ii) foreign exchange market; (iii) 

other markets (i.e. equity, non-sovereign securities, derivatives, interbank funds). In that 

                                                      
15 Smith (2011) reports strong evidence of non-trivial debt masking in audited financial statements of Enron and 

Lehman Brothers prior to their failures. This confirms the lack of completeness, consistency, and validity of 

reported exposures as a rigorous source of information for financial network building.  
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order, they represent 75.7%, 3.4% and 20.9% of the payments in the local financial market.16 

The three monoplex networks are displayed in Figure 3.17  

Sovereign securities market Foreign exchange market Other markets 

   

Figure 3. Monoplex networks. A vertex corresponds to a FI fulfilling its role in the corresponding network, whereas 

each arrow and its width represent the existence of a payment between FIs and its monetary value, respectively.  

Each monoplex network is a weighted directed graph that accumulates payments made 

throughout 2012. Every single vertex in a particular monoplex network corresponds to a FI 

fulfilling its role in the corresponding network, whereas each arrow (i.e. arc) and its width 

represent the existence of a payment between FIs and its monetary value, respectively. 

Aggregating the three monoplex networks of Figure 3 yields a network containing 

participants of one sort (i.e. FIs) but several kinds of edges (i.e. sovereign securities, foreign 

exchange, interbank, etc.). Therefore, according to Baxter et al. (2014), Figure 4 exhibits the 

Colombian financial multiplex network. 

                                                      
16 The construction of the networks to be analyzed here differs from that of León and Berndsen (2014). As their 

aim didn’t include aggregating the three networks in a multiplex, León and Berndsen (2014) examined the 

networks corresponding to the three FMIs (i.e. CUD, DCV, CCDC) independently, disregarding that the CUD network 

contains data from DCV and CCDC. For the purpose of our paper, which includes building the multiplex by 

aggregating networks, it is imperative to work on non-overlapping networks. Accordingly, our results must differ 

from theirs. 
17 Yet, it is possible to successively decompose each single-layer network or monoplex into several single-layers. 

For example, the sovereign securities market monoplex network may be decomposed by type of transaction (e.g. 

buy/sell or repos), by term to maturity of the security, by origin of the transaction (e.g. over-the-counter or trading 

platform), etc. The existence of such interrelated subsystems is characteristic of complex systems (Simon, 1962) 

and a rough measure of their complexity (Casti, 1979). 
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Figure 4. Multiplex network. Each vertex corresponds to a FI potentially fulfilling multiple 

roles in the Colombian financial system, whereas each arrow and its width represent the 

existence of a payment between FIs and its monetary value, respectively. 

Unlike traditional monoplex financial networks that limit to a single market (e.g. interbank, 

derivatives), each vertex in Figure 4 corresponds to a FI potentially fulfilling multiple roles in 

the Colombian financial system. Hence, as the simultaneous presence of FIs across different 

markets is captured in the multiplex network, the potential effects of a FI failing across 

different markets (i.e. cross-system risk) are also considered. 

4.2. Coupling financial institutions’ and financial market infrastructures’ networks 

In the sense of Kurant and Thiran (2006), acknowledging the role of FMIs reveals that, from 

the settlement point of view, links between FIs are of a logical or virtual nature. Therefore, the 

FIs’ and FMIs’ interacting network consists of including the in-between role of FMIs for 

accomplishing the settlement of financial transactions. Accordingly, coupling FIs and FMIs 

entails breaking down each payment (i.e. each arrow) into its settlement constituents. 
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For example, the purchase of a sovereign security by FIA from FIB and the corresponding 

payment from FIA from FIB, which is customarily depicted as a single arrow from FIA to FIB, 

would consist of three different arrows18: (i) an arrow from FIA to the sovereign securities 

system (DCV), corresponding to the order to buy the security;19 (ii) an arrow from DCV to the 

large-value payment system (CUD), corresponding to an instruction to debit FIA’s money 

account and credit FIB’s money account after verifying the availability of securities and 

money; and (iii) an arrow from CUD to FIB, corresponding to the payment received by FIB for 

the sale. This breakdown corresponds to the typical involvement of FMIs in any payment in 

the local financial system, as described in Banco de la República (2013) and León and Pérez 

(2014).20 

Breaking down all financial transactions in the multiplex network in Figure 4 yields the two-

layer interacting network in Figure 5, in which the first (upper) and second (lower) layer 

corresponds to FIs and FMIs, respectively. The diameter of all vertexes is determined by their 

strength (i.e. the value of the ingoing and outgoing weighted connections). The number of 

links and the size of vertexes in each layer and across layers are particularly dissimilar, 

consistent with the inhomogeneous distribution of degree and strength of real-world 

networks. 

                                                      
18 Berndsen (2013) develops solutions to several types of settlement problems, including the case here depicted 

(i.e. a transaction involving two agents and two financial assets). 
19 Orders received by a settlement FMI usually arrive from other types of FMIs, such as trading or registering 

platforms. This additional layer is not considered in this paper; however, its role should not be underestimated.  
20 Alternatively, this same transaction could be examined from the securities’ delivery point of view –instead of the 

payment’s. However, this would be impractical because payments with central bank’s money is the numeraire for 

all financial transactions in the local market; this is, all transactions in Colombia ultimately involve the delivery of 

local currency irrespective of the financial asset involved (e.g. securities, foreign exchange, derivatives, etc.). 
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Figure 5. Interacting FIs’ and FMIs’ networks. Each vertex in the first (upper) layer 

corresponds to a FI potentially fulfilling multiple roles in the Colombian financial system, 

whereas each vertex in the second layer corresponds to a FMI. The diameter of all vertexes is 

determined by their strength (i.e. the value of the ingoing and outgoing weighted 

connections). Each arrow corresponds to a part of the settlement process.  

There are no intra-layer connections in the first layer.21 Indirect connections between FIs are 

possible through FMIs in the second layer. Also, due to its role as the FMI responsible for the 

money settlement of all financial transactions, the diameter of CUD is much greater than any 

other FMI or FI; the second largest vertex is DCV, consistent with the relevance of the 

sovereign securities market in the Colombian financial system. Moreover, following Kurant 

and Thiran (2006), it is evident that the failure of CUD in the second layer would destroy a 

substantial part of the first layer, rendering the whole system useless in practice. 

 

5. Main results 

Table 1 presents the main properties of the three monoplex networks and the multiplex 

exhibited in Figure 5 and 6, respectively. Statistics correspond to the estimated mean on the 

whole sample (January 3rd to December 28th 2012), with the expected values for random (i.e. 

                                                      
21 Under Colombian regulatory framework securities and foreign exchange must be settled in a FMI. Thus, 

correspondent banking in the form of intra-layer connections in the first layer of Figure 5 is limited to marginal 

transactions (e.g. settlement of checks between banks pertaining to the same conglomerate). 
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homogeneous) networks included –in brackets- when feasible. Using the sample mean for 

every statistic is rather safe because the sign and level of daily statistics is consistent along the 

whole sample. 

Table 1 

Basic statistics of the networksa 

Statistic 

Monoplex networks 

Multiplex network Sovereign  

securities market 

Foreign exchange  

market 
Other markets 

  134  46  143  143  

  0.04  0.24  0.05  0.07  

   5.19  10.66  6.44  9.75  

        
 8.60/8.51  8.47/8.43  10.23/10.17  13.41/13.44  

        
 3.12/3.01  3.83/3.89  2.22/2.06  2.81/2.49  

        
 1.77/1.75  3.76/3.69  2.22/2.20  1.96/1.99  

  2.24 [      1.83 [      2.34 [      2.19 [      

  0.15 [      0.24 [      0.11 [      0.17 [      

   0.17 [      0.28 [      0.20 [      0.25 [      

        
 0.31/0.32 [      0.59/0.60 [      0.23/0.22 [      0.38/0.36 [      

        
 0.19/0.20 [      0.34/0.37 [      0.12/0.09 [      0.15/0.13 [      

   
 4.72  4.24  5.43  5.67  

This table shows that the basic statistics of the monoplex networks and the resulting multiplex 

approximate to those of a modular scale-free network.  a Statistics presented are: number of 

vertexes ( ); density ( ); average degree (  ); in/out degree standard deviation (        
); in/out 

degree Power-law exponent (        
); in/out strength Power-law exponent (        

); mean 

geodesic distance ( ); clustering coefficient ( ); degree correlation (        
); strength correlation 

(        
); local clustering power-law exponent (   

)  Expected values for large random networks 

are reported in brackets. 

 

About the three monoplex networks, several features typical of real-world networks are 

evident: First, they are sparse, with     and       . Second, they are inhomogeneous, 

which is verified by degree’s dispersion (        
) and approximate power-law distribution, 

with power-law exponents (        
) approaching typical values22, hence consistent with the 

                                                      
22 Values in the range       are typical of scale-free networks, although values slightly outside it are possible 

and are observed occasionally (Newman, 2010). The exponents for the foreign exchange market display some 

departure from typical values, which may be due to the small number of participants. We use the algorithm 
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scale-free architecture of real-world networks. Third, the distribution of strength in the three 

monoplex networks approximates a power-law distribution. Fourth, agreeing with the scale-

free features of the networks, the observed mean geodesic distances ( ) are much lower than 

the expected for random networks of the corresponding size, and they are consistent with the 

“ultra-small” characterization of Cohen and Havlin (2010, 2003). Fifth, there is evidence of 

positive degree correlation (i.e. assortative mixing by degree,         
  ) and positive strength 

correlation (i.e. assortative mixing by strength,         
  ), which suggests that high-degree 

(low-degree) vertexes have a larger probability to be connected to other high-degree vertexes 

(low-degree), and supports the presence of a core-periphery structure (Newman, 2010). 

Sixth, they display clustering coefficients (  and   ) much larger than expected for random 

networks. Seventh, the distribution of local clustering coefficients as a function of average 

degree approximates a power-law distribution, which is consistent with the characterization 

of modular networks by Barabási (2003) and Dorogovtsev et al. (2002). 

Accordingly, concurrent with León and Berndsen (2014), the three monoplex networks may 

be characterized as modular scale-free networks in the sense of Barabási (2003). Such 

characterization matches the description of credit networks as sparsely connected 

neighborhoods by Battiston et al. (2009). Furthermore, this characterization is consistent 

with real-world biological and social networks, and it also agrees with the existence of 

hierarchies and nearly decomposable systems. As said, the literature points out that the 

modular scale-free architecture is by no means accidental, but follows the organization of 

systems towards structures that favor systemic resilience and robustness.  

The multiplex network preserves the modular scale-free architecture of its constituent 

monoplex networks. Based on the literature on multiplex networks, this feature should be 

related to the existence of positively correlated multiplexity, in which a vertex with large 

degree in one layer likely has more links in the other layer as well (Lee et al., 2014; Kennet et 

al., 2014). In our case, the correlation matrix estimated on FIs’ degree and strength across the 

three networks (Figure 7) verifies that there is significant evidence of positively correlated 

multiplexity. 

                                                                                                                                                                  
developed by Clauset et al. (2009) for estimating the power-law exponents; this algorithm avoids several issues 

related to traditional estimation by ordinary least squares. 
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Figure 7. Monoplex networks’ degree and strength correlation matrix. 

The correlation matrix was estimated based on the contribution of 

each FI to the total degree or strength in the whole samples. 

Visual inspection of each FIs’ degree and strength across the three monoplex networks is 

presented in Figure 8. Graphical inspection matches the numerical results in the correlation 

matrix presented in Figure 7: there is a clear tendency of high-degree and high-strength FIs 

overlapping across layers. Thus, Figures 7 and 8 together suggest that positively correlated 

multiplexity may explain why the modular scale-free features of the three monoplex networks 

is preserved in the resulting multiplex network. 

By degree By strength 

  

Figure 8. Positively correlated multiplexity. Participating FIs in each layer are ranked in decreasing order of degree 

(left) and strength (right) in the corresponding horizontal axis. High-degree and high-strength FIs in one layer tend 

to be the high-degree in the other two layers, which confirms the presence of positively correlated multiplexity. 

Table 2 compares the main properties of the multiplex and the interacting networks. The 

multiplex corresponds to the network of FIs acting in different financial markets (Figure 4), 

whereas the interacting network incorporates the role of FMIs for the multiplex network 

(Figure 5). As before, the statistics correspond to the estimated mean on the whole sample 

(January 3rd to December 28th 2012), with the expected values for random (i.e. homogeneous) 

networks included –in brackets- when feasible. 
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Table 2 

Basic statistics of the networks a 

Statistic 
Multiplex  

network 

Interacting  

networks 

  143  146  

  0.07  0.02  

   9.75  2.57  

        
 13.41/13.44  13.04/9.75  

        
 2.81/2.49  3.42/3.36  

        
 1.96/1.99  1.78/1.77  

  2.19 [      1.99 [    ] 

  0.17 [      0.01 [      

   0.25 [      0.14 [      

        
 0.38/0.36 [      -0.43/-0.17 [      

        
 0.15/0.13 [      -0.31/-0.15 [      

   
 5.67             

This table shows that the basic statistics of the multiplex 

network approximate to those of a modular scale-free 

network, whereas the interacting network’s to those of a 

scale-free network only. a Statistics presented are: 

number of vertexes ( ); density ( ); average degree 

(  ); in/out degree standard deviation (        
); in/out 

degree Power-law exponent (        
); in/out strength 

Power-law exponent (        
); mean geodesic distance 

( ); clustering coefficient ( ); degree correlation 

(        
); strength correlation (        

); local clustering 

power-law exponent (   
). Expected values for large 

random networks are reported in brackets.  

 

Results reported in Table 2 verify that the FIs’ and FMIs’ interacting network is (i) sparse, 

with low density (   ) and low average degree (      ); (ii) inhomogeneous and 

scale-free, with the distribution of degree and strength being disperse (            ) and 

approximating a power-law (     ); and (iv) approximately “ultra-small” (       ). 

These features are shared by the three monoplex and the multiplex networks. 
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However, there are three main differences between the architecture of the three monoplex 

networks, the multiplex network, and the FIs’ and FMIs’ interacting networks. First, degree 

correlation         
 and strength correlation         

 turned negative in the FIs’ and FMIs’ 

interacting network case. Second, clustering vanished as FMIs’ role is considered. Third, as a 

byproduct of the lack of clustering, the distribution of local clustering (  ) as a function of 

average degree is homogeneous and it does not distribute as a power-law, as exhibited in 

Figure 9. Therefore, based on Barabási (2003) and Dorogovtsev et al. (2002), the FIs’ and 

FMIs’ interacting network has no hierarchical modularity. 

 

Figure 9. Distribution of local clustering as a function of average degree. Based on the entire 

data sample, there is evidence of an inverse relation between average degree and clustering 

for the FIs’ multiplex, whereas such relation is absent in the FIs’ and FMIs’ interacting 

network. 

All in all, comparing the numerical evidence between the FIs’ and FMIs’ interacting network 

and the FIs’ monoplex and multiplex networks suggests that the modular scale-free 

architecture of FIs’ networks fades as the role of FMIs is considered. Hence, including the next 

layer of complexity changed the architecture of the networks from displaying social network 

type features (e.g. assortative mixing, clustered, modular) to a network displaying 

technological networks’ features (e.g. dissortative mixing) along with a non-clustered 
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connective structure. As discussed next, the lack of modularity results in the interacting 

network’s limited ability to isolate feedbacks and limit cascades, with noteworthy 

implications for financial stability. 

 

6. The critical role of financial market infrastructures in financial stability 

The role of FMIs in financial stability is still an abstract issue. Despite the fact that financial 

authorities (i.e. supervisors, regulators) highlight the importance of FMIs, the literature has 

not addressed how the interaction between FIs and FMIs affects financial stability from the 

perspective of a rigorous quantitative framework. It is clear that the safe and efficient 

functioning of FMIs is critical for the functioning of financial markets (e.g. CPSS and IOSCO, 

2012; Dudley, 2012; Bernanke, 2012), but FMIs are typically disregarded when examining and 

analyzing the structure of financial markets.  

The evidence here reported confirms that ignoring the connective role of FMIs within 

financial networks may mislead the analysis of the connective architecture of financial 

systems. The main consequence of coupling FIs’ and FMIs’ networks is the removal of modular 

hierarchy, which invalidates the presumption of a financial architecture that favors systemic 

resilience by means of limiting cascades (Haldane and May, 2011) and isolating feedbacks 

(Kambhu et al., 2007).  

The absence of modularity in the FIs’ and FMIs’ interacting network contradicts the existence 

of sparsely connected financial neighborhoods that keep most of FIs’ actions at the local level 

(as in Battiston et al., 2009). In the absence of modularity, there are no subsystems of FIs, and 

they tend to receive inputs from all other FIs via FMIs, thus changes are not isolated and tend 

to spread across markets and their participants. As demonstrated by the failure of Bankhaus 

Herstatt in 1974, the technical problems of Fedwire (i.e. the U.S. large-value payment system) 

on October 20 1987, and Bank of New York’s technological disruption in November 21 1985, a 

modest local shock may reverberate throughout financial markets by means of the 
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connections between FIs and FMIs23. These cases showed that payments and settlement 

systems could play a major role in causing or amplifying financial shocks (Davis, 1995). 

Explicitly incorporating the FMIs’ role in the settlement of FIs transactions shows that the 

local financial system is not a nearly decomposable system in the sense of Simon (1962). This 

finding concurs with the economics behind settlement FMIs: the centralized extinction of 

claims between FIs. FMIs provide an alternative to the frictions that arise when money and 

financial securities are traded directly (Manning et al., 2009); hence their purpose is to stand 

as central participants that ensure the efficient and safe flow of money and financial securities 

to all FIs. Therefore, it is not surprising that FMIs remove modularity and may act as conduits 

for widespread contagion. 

Accordingly, the benefits of the modular scale-free architecture of FIs’ networks are of a 

logical or virtual nature, and depend critically on the functioning of the plumbing provided by 

the network of FMIs. In this sense, the FMIs’ network should be considered a critical 

infrastructure for the financial system, and its contribution to financial stability should not be 

underestimated.  

Furthermore, not only the well-functioning of the FMI network determines the extent to 

which the benefits of the modular scale-free architecture of FIs’ networks apply, but it also 

determines whether the settlement of financial transactions is carried out or not. For instance, 

it is most likely that the malfunction of the FMI responsible for the settlement of the cash leg 

of financial transactions (i.e. payments) impedes the proper functioning of all financial 

markets; this is, if the buyers are unable to pay for the financial assets they are purchasing, no 

transactions could be completed and financial markets would halt.  

Eliminating the large-value payment system (CUD) or the sovereign securities settlement 

system (DCV) would certainly impede the functioning of Colombian financial markets, and 

would threat the stability of the local financial system. This concurs with the main findings of 

                                                      
23 On June 26th 1974 the failure of Bankhaus Herstatt, a small German bank (i.e. around 50,000 customers and DM 

2.0 billion in assets) caused an overseas chain reaction that forced the U.S. Clearing House Interbank Payments 

System (CHIPS) to halt and the U.S. clearing banks to barter checks. As documented by Davis (1995), this local 

event resulted in the collapse of the U.S. payments system. On Tuesday 20 October, 1987, Fedwire, the U.S. large-

value payment system, had to shut down the day after black Monday (i.e. U.S. stock market largest one-day 

decline), causing uncertainty and the injection of funds by the U.S. Federal Reserve (Manning et al., 2009). Bank of 

New York’s technological disruption in November 21 1985, led the U.S. Federal Reserve to provide liquidity to 

avoid widespread financial difficulties (Davis, 1995; Manning et al., 2009). 
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León and Pérez (2014) regarding the systemic importance of CUD and DCV in the Colombian 

financial market, which results from their centrality and non-substitutability. Following 

Baxter et al. (2014), Kennet et al. (2014), and Kurant and Thiran (2006), the 

interdependencies between FIs’ and FMIs’ networks make the financial system more fragile: 

damage to one FMI (e.g. operational or financial) can trigger a catastrophic cascade of events 

that propagates across the global connectivity.24 Moreover, due to the evidence of correlated 

multiplexity, the failure of one central FI may reverberate across financial markets by the 

linkages provided by FMIs, reinforcing the fragile nature (i.e. exposed to targeted attacks) of 

the examined financial system. 

 

7. Final remarks 

Our research constitutes a step forward in the examination and understanding of local 

financial markets’ connective architecture, and goes beyond the study of single-layer financial 

institutions’ (FIs’) networks. Our results confirm that aggregating three single-layer FIs’ 

networks preserves their modular scale-free architecture due to the evidence of positively 

correlated multiplexity. This finding is essential for financial stability. First, it reveals that 

central FIs tend to overlap across financial networks, thus their systemic importance may be 

even greater than envisaged by studying each network in isolation due to cross-system risk. 

Second, the evidence of modularity within a scale-free connective structure suggests that the 

network is robust-yet-fragile and resilient. 

When we integrate the financial market institutions’ (FMIs’) network to the FIs’ network, 

which gives a much more realistic picture consistent with FMIs’ role in financial markets, we 

obtain a scale-free but non-modular architecture. This outcome is essential for financial 

stability as well. First, it stresses that the main benefit of modularity in FIs’ networks, namely 

the resilience resulting from their ability to isolate feedbacks and isolate cascades, is 

dependent on the well-functioning of FMIs. Second, it emphasizes the relevance of 

infrastructure-related systemic risk, corresponding to the effects caused by the improper 

functioning of FMIs or by FMIs acting as conduits for contagion.   

                                                      
24 Most FMIs are liable to operational risk only (e.g. technological failure, human error, terrorism, natural 

disasters). However, some FMIs are also exposed to financial risk. For instance, the safe and efficient functioning of 

central counterparties depend on the market value, liquidity, and creditworthiness of the assets comprising the 

margins and other layers of protection against the default of a member.  
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Additional layers of complexity are readily available to expand our interacting network of FIs 

and FMIs. For instance, as acknowledged by D’Souza et al. (2014), global financial markets are 

increasingly intertwined and implicitly dependent on power and communication networks. 

Therefore, physical critical infrastructures are obvious candidates for examining the stability 

of financial systems from an operational perspective. As demonstrated by 9/11 terrorist 

attacks or 2011 Tohoku-Pacific Ocean Earthquake, the well-functioning of physical critical 

infrastructures should not be taken for granted.  

Likewise, due to linkages between different countries’ financial markets, multi-layer networks 

may not be limited by geographical or jurisdictional boundaries. For instance, the settlement 

of foreign exchange transactions in other countries’ FIs or FMIs; local FIs with subsidiaries in 

other countries; local FIs being subsidiaries of foreign FIs; and the foreign component of 

investment portfolios, are some obvious examples of how local networks may be linked to 

other networks beyond national frontiers. To be finished 
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