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Multi-stage adjustable robust mixed-integer

optimization via iterative splitting

of the uncertainty set

Krzysztof Postek∗† Dick den Hertog∗

September 25, 2014

Abstract

In this paper we propose a methodology for constructing decision rules for in-

teger and continuous decision variables in multiperiod robust linear optimization

problems. This type of problems finds application in, for example, inventory man-

agement, lot sizing, and manpower management. We show that by iteratively split-

ting the uncertainty set into subsets one can differentiate the later-period decisions

based on the revealed uncertain parameters. At the same time, the problem’s com-

putational complexity stays at the same level as for the static robust problem. This

holds also in the non-fixed recourse situation. In the fixed recourse situation our

approach can be combined with linear decision rules for the continuous decision

variables. We provide theoretical results how to split the uncertainty set by iden-

tifying sets of uncertain parameter scenarios to be divided for an improvement in

the worst-case objective value. Based on this theory, we propose several splitting

heuristics. Numerical examples entailing a capital budgeting and a lot sizing prob-

lem illustrate the advantages of the proposed approach.

Keywords: adjustable, decision rules, integer, multi-stage, robust optimization

JEL codes: C61

1 Introduction

Robust optimization (RO, see Ben-Tal et al. (2009)) has become one of the main

approaches to optimization under uncertainty. One of its applications are mul-

tiperiod problems where, period after period, values of the uncertain parameters

are revealed and new decisions are implemented. Adjustable Robust Optimization

(ARO, see Ben-Tal et al. (2004)) addresses such problems by formulating the de-

cision variables as functions of the revealed uncertain parameters. Ben-Tal et al.

∗CentER and Department of Econometrics and Operations Research, Tilburg University, P.O. Box

90153, 5000 LE Tilburg, The Netherlands
†Correspondence to: k.postek@tilburguniversity.edu
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(2004) prove that without any functional restrictions on the form of adjustability,

the resulting problem is NP-hard. For that reason, several functional forms of the

decision rules have been proposed, with the most popular being the affinely ad-

justable decision rules. However, only for a limited class of problems do they yield

problems that can be reformulated to a computationally tractable form (see Ben-Tal

et al. (2009)). In particular, for problems without fixed recourse, where the later-

period problem parameters depend also on the uncertain parameters from earlier

periods, it is nontrivial to construct tractable decision rules. The difficulty level

grows even more when the adjustable variables are binary or integer. Addressing

this problem is the topic of our paper. We propose a method to construct com-

putationally tractable adjustable decision rules, applicable also to problems with

integer adjustable variables and to problems without fixed recourse. For problems

with fixed recourse our methodology can be combined with linear decision rules for

the continuous decision variables.

The contribution of our paper is twofold. First, we propose a methodology of

iterative splitting of the uncertainty set into subsets, for each of which a scalar

later-period decision shall be determined. A given decision is implemented in the

next period if the revealed uncertain parameter belongs to the corresponding subset.

Using scalar decisions per subset ensures that the resulting problem has the same

complexity as the static robust problem. This approach provides an upper bound

on the optimal value of the adjustable robust problem. Next to that, we propose

a method of obtaining lower bounds, being a generalization of the approach of

Hadjiyiannis et al. (2011).

As a second contribution, we provide theoretical results supporting the decision of

how to split the uncertainty set into smaller subsets for problems with continuous

decision variables. The theory identifies sets of scenarios for the uncertain parame-

ters that have to be divided. On the basis of these results, we propose set-splitting

heuristics for problems including also integer decision variables. As a side result, we

prove the reverse of the result of Gorissen et al. (2014). Namely, we show that the

optimal KKT vector of the tractable robust counterpart of a linear robust problem,

obtained using the results of Ben-Tal et al. (2014), yields an optimal solution to

the optimistic dual (see Beck and Ben-Tal (2009)) of the original problem.

ARO was developed to (approximately) solve problems with continuous variables.

Ben-Tal et al. (2004) introduce the concept of using affinely adjustable decision

rules and show how to apply such rules to obtain (approximate) optimal solutions

to multiperiod problems. Their approach has been later extended to other func-

tion classes by Chen et al. (2007), Chen et al. (2009), Ben-Tal et al. (2009) and

Bertsimas et al. (2011b). Bertsimas et al. (2010) prove that for a specific class

of multiperiod control problems the affinely adjustable decision rules result in op-

timal adjustable solution. Bertsimas and Goyal (2010) show that the static robust

solutions perform well also in stochastic programming problems.

Later, developments have been made allowing ARO to (approximately) solve prob-

lems involving adjustable integer variables. Bertsimas and Caramanis (2007) pro-

pose a sampling method for constructing adjustable robust decision rules ensuring,
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under certain conditions, that the robust constraints are satisfied with high prob-

ability. Bertsimas and Caramanis (2010) introduce the term of finite adaptability

in two-period problems, with a fixed number of possible second-period decisions.

They also show that finding the best values for these variables is NP-hard. In a

later paper, Bertsimas et al. (2011a) characterize the geometric conditions for the

uncertainty sets under which finite adaptability provides good approximations of

the adjustable robust solutions.

Vayanos et al. (2011) split the uncertainty set into hyper-rectangles, assigning to

each of them the corresponding later-period adjustable linear and binary variables.

Contrary to this, our method does not impose any geometrical form of the uncer-

tainty subsets. Bertsimas and Georghiou (2014a) propose to use piecewise linear

decision rules, both for the continuous and the binary variables (for the binary vari-

ables, value 0 is implemented if the piecewise linear decision rule is positive). They

use a cutting plane approach that gradually increases the fraction of the uncertainty

set that the solution is robust to, reaching complete robustness when their approach

terminates. In our approach, the decision rules proposed ensure full robustness after

each of the so-called splitting rounds, and the more splitting rounds, the better the

value of the objective function. In a recent paper, Bertsimas and Georghiou (2014b)

propose a different type of decision rules for binary variables. Since the resulting

problems are exponential in the size of the original formulation, authors propose

their conservative approximations, giving a systematic tradeoff between computa-

tional tractability and level of conservatism. In our approach, instead of imposing a

functional form of the decision rules, we focus on splitting the uncertainty set into

subsets with different decisions. Also, we ensure robustness precisely against the

specified uncertainty set and allow non-binary integer variables.

Hanasusanto et al. (2014) apply finite adaptability to two-period decision problems

with binary variables, where the decision maker constructs a fixed number of time-

2 policies and implements the best of them after the uncertain parameters are

observed. The resulting problems can be transformed to MILP problems of size

exponential relative to the number K of policies (in the non-fixed recourse situation

- for fixed recourse problems the reformulation is polynomial). They also study

the approximation quality provided by such reformulations and complexity issues.

Our approach applies to general multi-period problems and allows also explicitly

non-binary integer variables.

We test our methodology on problem instances from Bertsimas and Georghiou

(2014a) and Hanasusanto et al. (2014). The experiments reveal the our methodol-

ogy performs worse on small instances, where the ‘more exact’ approaches of other

authors can be solved fast to optimality. However, as the problems grow in size, it

is able to provide comparable or better results after a significantly shorter compu-

tation.

The composition of the remainder of the paper is as follows. Section 2 introduces

the set-splitting methodology for the case of two-period problems with adjustable

continuous variables. Section 3 extends the approach to multiperiod problems, and

Section 4 extends the multiperiod case to problems with integer decision variables.
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Section 5 proposes heuristics to be used as a part of the method. Section 6 gives two

numerical examples, showing that the methodology of our paper offers substantial

gains in terms of the worst-case objective function improvement. Section 7 concludes

and lists the potential directions for future research.

2 Two-period problems

For ease of exposition we first introduce our methodology on the case of two-period

problems with continuous decision variables only. The extension to multi-period

problems is given in Section 3, and the extension to problems with integer variables

is given in Section 4.

2.1 Description

Consider the following two-period optimization problem:

min
x1,x2

cT
1 x1 + cT

2 x2

s.t. A1(ζ)x1 + A2(ζ)x2 ≤ b ∀ζ ∈ Z,
(1)

where c1 ∈ R
d1 , c2 ∈ R

d2 , b ∈ R
m are fixed parameters, ζ ∈ R

L is the uncertain

parameter and Z ⊂ R
L is a compact and convex uncertainty set. Vector x1 ∈ R

d1 is

the decision implemented at time 1 before the value of ζ is known, and x2 ∈ R
d2 is the

decision vector implemented at time 2, after the value of ζ is known. It is assumed

that the functions A1 : RL → R
m×d1 , A2 : RL → R

m×d2 are linear. We refer to the

rows of matrix A1 and A2 as aT
1,i(ζ) and aT

2,i(ζ) respectively, with a1,i(ζ) = P1,iζ

and a2,i(ζ) = P2,iζ, where P1,i ∈ R
d1×L, P2,i ∈ R

d2×L (uncertain parameter can

contain a single fixed component, which would result in the intercepts of the affine

transformations A1(ζ), A2(ζ).

The static robust problem (1) where the decision vector x2 is independent from

the value of ζ makes no use of the fact that x2 can adjust to the revealed ζ. The

adjustable version of problem (1) is:

min
x1,x2(ζ),z

z

s.t. cT
1 x1 + cT

2 x2(ζ) ≤ z, ∀ζ ∈ Z

A1(ζ)x1 + A2(ζ)x2(ζ) ≤ b ∀ζ ∈ Z.

(2)

Since this problem is NP-hard (see [3]), the concept of linear decision rules has

been proposed. Then, the time 2 decision vector is defined as x2 = v + V ζ, where

v ∈ R
d2 , V ∈ R

d2×L (see [3]) and the problem is:

min
x1,v,V

z

s.t. cT
1 x1 + cT

2 (v + V ζ) ≤ z, ∀ζ ∈ Z

A1(ζ)x1 + A2(ζ) (v + V ζ) ≤ b ∀ζ ∈ Z.

(3)

In the general case such constraints are quadratic in ζ, because of the term

A2(ζ) (v + V ζ). Only for special cases the constraint system can be rewritten as

4



Z

Z1,1 Z1,2

x2

x
(1,1)
2 x

(1,2)
2

Figure 1: Scheme of the first splitting.

a computationally tractable system of inequalities. Moreover, linear decision rules

cannot be used if (part of) the decision vector x2 is required to be integer.

We propose a different approach. Its idea lies in splitting the set Z into a collection

of subsets Zr,s where s ∈ Nr and ∪s∈Nr
Zr,s = Z (r denotes the index of the splitting

round and s denotes the set index). For each Zr,s a different, fixed time 2 decision

shall be determined. We split the set Z in rounds into smaller and smaller subsets

using hyperplanes. The following example illustrates this idea.

Example 1. We split the uncertainty set Z with a hyperplane gT ζ = h into the

following two sets:

Z1,1 = Z ∩
{

ζ : gT ζ ≤ h
}

and Z1,2 = Z ∩
{

ζ : gT ζ ≥ h
}

.

At time 2 the following decision is implemented:

x2 =















x
(1,1)
2 if ζ ∈ Z1,1

x
(1,2)
2 if ζ ∈ Z1,2

x
(1,1)
2 or x

(1,2)
2 if ζ ∈ Z1,1 ∩ Z1,2.

The splitting is illustrated in Figure 1. Now, the following constraints have to be

satisfied:
{

A1 (ζ) x1 + A2 (ζ) x
(1,1)
2 ≤ b, ∀ζ ∈ Z1,1

A1 (ζ) x1 + A2 (ζ) x
(1,2)
2 ≤ b, ∀ζ ∈ Z1,2.

Since there are two values for the decision at time 2, there are also two ‘objective

function’ values: cT
1 x1 + cT

2 x
(1,1)
2 and cT

1 x1 + cT
2 x

(1,2)
2 . The worst-case value is:

z = max
{

cT
1 x1 + cT

2 x
(1,1)
2 , cT

1 x1 + cT
2 x

(1,2)
2

}

.

After splitting Z into two subsets, one is solving the following problem:

min z(1)

s.t. cT
1 x1 + cT

2 x
(1,s)
2 ≤ z(1), s = 1, 2

A1 (ζ) x1 + A2 (ζ) x
(1,s)
2 ≤ b, ∀ζ ∈ Z1,s, s = 1, 2.

(4)

Since for each s the constraint system is less restrictive than in (1), an improvement

in the optimal value can be expected. Also, the average-case performance is expected

to be better than in the case of (1), due to the variety of time 2 decision variants.
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Z1,1 Z1,2x
(1,1)
2 x

(1,2)
2

Z2,1 Z2,2

Z2,3
x

(2,1)
2 x

(2,2)
2

x
(2,3)
2

Figure 2: An example of second split for the two-period case.

The splitting process can be continued so that the already existing sets Zr,s are split

with hyperplanes. This is illustrated by the continuation of our example.

Example 1 (continuing from p. 5). Figure 2 illustrates the second splitting round,

where the set Z1,1 is left not split, but the set Z1,2 is split with a new hyperplane

into two new subsets Z2,2 and Z2,3. Then, a problem results with three uncertainty

subsets and three decision variants x(2,s) for time 2.

In general, after the r-th splitting round there are Nr uncertainty subsets Zr,s and

Nr decision variants x
(r,s)
2 . The problem is then:

min z(r)

s.t. cT
1 x1 + cT

2 x
(r,s)
2 ≤ z(r), s ∈ Nr

A1(ζ)x1 + A2(ζ)x
(r,s)
2 ≤ b, ∀ζ ∈ Zr,s, s ∈ Nr = {1, ..., Nr} .

(5)

The finer the splitting of the uncertainty set, the lower optimal value one may

expect. In the limiting case, as the maximum diameter of the uncertainty subsets

for a given r converges to 0 as r → +∞, it should hold that the optimal value of

(5) converges to zadj - the optimal value of (2). In [8] authors study the question of

finding the optimal k time 2 decision variants, and prove under several regularity

assumptions that as the number k of variants tends to +∞, the optimal solution to

the k-adaptable problem converges to zadj.

Determining whether further splitting is needed and finding the proper hyperplanes

is crucial for an improvement in the worst-case objective value to occur. The next

two subsections provide some theory for determining (1) how far the current opti-

mum is from the best possible value, (2) how to choose the splitting hyperplanes.

2.2 Lower bounds

As the problem becomes larger with subsequent splitting rounds, it is important to

know how far the current optimal value is from zadj or its lower bound. We use a

lower bounding idea proposed for two-period robust problems in [18], and used also

in [11].
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Let Z =
{

ζ(1), . . . , ζ(|Z|)
}

⊂ Z be a finite set of scenarios for the uncertain param-

eter. Consider the problem

min
w,x1,x

(i)
2 ,i=1,...,|Z|

w

s.t. cT
1 x1 + cT

2 x
(i)
2 ≤ w, i = 1, ..., |Z|

A1

(

ζ(i)
)

x1 + A2

(

ζ(i)
)

x
(i)
2 ≤ b, i = 1, ..., |Z|,

(6)

where each x1 ∈ R
d1 and x

(i)
2 ∈ R

d2 , for all i. Then, the optimal value of (6) is a

lower bound for zadj, the optimal value of (2) and hence, to any problem (5).

Since each scenario in Z increases the size of the problem to solve, it is essential to

include a possibly small number of scenarios determining the current optimal value

of problem (5). The next section indicates a special class of scenarios and based on

this, in Section 5 we propose heuristic techniques to construct Z.

2.3 How to split

2.3.1 General theorem

To obtain results supporting the decision about splitting the subsets Zr,s, we study

the dual of problem (5). We assume that (5) satisfies Slater’s condition. By result

of Ben-Tal and Beck (2010) the dual of (5) is equivalent to:

max
λ(r),µ(r),ζ(r)

−
∑

s∈Nr

m
∑

i=1
λ

(r)
s,i bi

s.t.
∑

s∈Nr

m
∑

i=1
λ

(r)
s,i a1,i

(

ζ(r,s,i)
)

+
∑

s∈Nr

µ
(r)
s c1 = 0

m
∑

i=1
λ

(r)
s,i a2,i

(

ζ(r,s,i)
)

+ µ
(r)
s c2 = 0, ∀s ∈ Nr

∑

s∈Nr

µ
(r)
s = 1

λ(r), µ(r) ≥ 0

ζ(r,s,i) ∈ Zr,s, ∀s ∈ Nr, ∀1 ≤ i ≤ m.

(7)

Because Slater’s condition holds, strong duality holds, and for an optimal x(r) to

problem (5), with objective value z(r), there exist λ
(r)

, µ(r), ζ
(r)

, such that the dual

optimal value is attained and equal to z(r). For each s ∈ Nr let us define

Zr,s

(

λ
(r)
)

=
{

ζ
(r,s,i)

∈ Zr,s : λ
(r)
s,i > 0

}

,

which is a set of worst-case scenarios for ζ determining that the optimal value for

(5) cannot be better than z(r). The following theorem states that at least one of

the sets Zr,s

(

λ
(r)
)

must be split in order for the optimal value z(r′) of the problem

after the subsequent splitting rounds to be better than z(r).

Theorem 1. Assume that problem (5) satisfies Slater’s condition, x(r) is the optimal

primal solution, and λ
(r)

µ(r), ζ
(r)

is the optimal dual solution. Assume that at a

splitting round r′ > r there exists a sequence of distinct numbers {i1, i2, ..., iNr
} ⊂

Nr′ such that Zr,s

(

λ
(r)
)

⊂ Zr′,is
for each 1 ≤ s ≤ Nr, that is, each set Zr,s

(

λ
(r)
)

remains not divided, staying a part of some uncertainty subset. Then, it holds that

the optimal value z(r′) after the r′-th splitting round is equal to z(r).

7



Proof. We shall construct a lower bound for the problem after the r′-th round with

value z(r) by choosing proper λ(r′), µ(r′), ζ(r′). Without loss of generality we assume

that Zr,s

(

λ
(r)
)

⊂ Zr′,s for all s ∈ Nr. We take the dual problem of the problem

after the r′-th splitting round in the form (7). We assign the following values:

λ
(r′)
s,i =

{

λ
(r)
s,i for 1 ≤ s ≤ Nr

0 otherwise

µ
(r′)
s =

{

µ
(r)
s for 1 ≤ s ≤ Nr

0 otherwise

ζ(r′,s,i) =

{

ζ̄(r,s,i) if s ≤ Nr, λ
(r)
s,i > 0

any ζ(r′,s,i) ∈ Zr′,s otherwise.

Such variables are dual feasible and give an objective value to the dual equal to z(r).

Since the dual objective value provides a lower bound on the primal problem after

the r′-th round, the theorem follows.

The above result provides an important insight. If there exists Zr,s

(

λ
(r)
)

with more

than one element, then at least one of such sets Zr,s

(

λ
(r)
)

should be divided in the

splitting process. On the other hand, if no such Zr,s

(

λ
(r)
)

exists, then splitting

should stop since, by Theorem 1, the optimal value cannot improve.

Corollary 1. If for optimal λ
(r)

, µ(r), ζ
(r)

it holds that:

∣

∣

∣Zr,s

(

λ
(r)
)∣

∣

∣ ≤ 1, ∀s ∈ Nr,

then z(r) = zadj, where zadj is the optimal value of (2).

Proof. A lower-bound program with a scenario set Z = ∪s∈Nr
Zr,s

(

λ
(r)
)

has an

optimal value at most zadj. By duality arguments similar to Theorem 1, the optimal

value of such a lower bound problem must be equal to z(r). This, combined with

the fact that z(r) ≥ zadj gives z(r) = zadj.

If there is more than one dual optimal λ
(r)

, then each of them may imply different

sets Zr,s(λ
(r)

) to be divided. Hence, determining exactly the sets of points to be

divided is a difficult task. The next section proposes efficient methods of finding

approximate sets of scenarios to be split.

2.3.2 Finding the sets of scenarios to be split

Active constraints. The first method of constructing approximate scenario

sets relies on the remark that for a given optimal solution x(r) to (5), a λ
(r)
s,i > 0

corresponds to an active primal constraint. That means, for each s ∈ Nr we can

define the set:

Φr,s

(

x(r)
)

=
{

ζ : ∃i : aT
1,i(ζ)x1 + aT

2,i(ζ)x
(r,s)
2 = bi

}

.
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Though some Φr,s

(

x(r)
)

may contain infinitely many elements, one can approximate

it by finding a single scenario for each constraint, solving the following problem for

each s, i:

min
ζ

bi − aT
1,i(ζ)x1 + aT

2,i(ζ)x
(r,s)
2

ζ ∈ Zr,s.
(8)

If for given s, i the optimal value of (8) is 0, we add the optimal ζ to the set

Zr,s

(

x(r)
)

. However, such a set could include ζ’s for which there exists no λ
(r)
s,i > 0

being a part of optimal dual solution.

Using the KKT vector of the robust problem. As explained above,

it would be beneficial to find a way to obtain the values of λ
(r)

to choose only the

scenarios ζ(r,s,i) for which it holds that λ
(r)
s,i > 0. To do this, one needs to remove

the nonconvexity of problem (7) or solve it in some other way. To do this, we shall

assume that each Zr,s is representable by a finite set of convex constraints:

Zr,s = {ζ : hr,s,j(ζ) ≤ 0, j = 1, ..., Ir,s} , ∀s ∈ Nr, (9)

where each hr,s,j(.) is a closed convex function. For an overview of sets representable

in this way we refer to [4], mentioning here only that such formulation entails also

conic sets. With such a set definition, by results of [15], we can transform (7) to

an equivalent convex problem by substituting λ
(r)
s,i ζ(r,s,i) = ξ(r,s,i). Combining this

with the definition of the rows of matrices A1, A2, we obtain the following problem,

equivalent to (7):

max
λ(r),µ(r)

ξ(r)

−
∑

s∈Nr

m
∑

i=1
λ

(r)
s,i bi

s.t.
∑

s∈Nr

m
∑

i=1
P1,iξ

(r,s,i) +
∑

s∈Nr

µ
(r)
s c1 = 0

m
∑

i=1
P2,iξ

(r,s,i) + µ
(r)
s c2 = 0, ∀s ∈ Nr

∑

s∈Nr

µ
(r)
s = 1

λ(r), µ(r) ≥ 0

λ
(r)
s,i hs,j

(

ξ(r,s,i)

λ
(r)
s,i

)

≤ 0, ∀s ∈ Nr, i = 1, . . . , m, j = 1, ..., Ir,s.

(10)

Problem (10) is convex in the decision variables. Optimal variables for (10), with

substitution

ζ(r,s,i) =







ξ(r,s,i)

λ
(r)
s,i

for λ
(r)
s,i > 0

ζ(r,s,i) ∈ Zr,s for λ
(r)
s,i = 0,

are optimal for (7). Hence, one may construct the sets of points to be split as:

Zr,s

(

λ
(r)
)

=







ξ
(r,s,i)

λ
(r)
s,i

: λ
(r)
s,i > 0







.

Thus, in order to obtain a set Zr,s

(

λ
(r)
)

, one needs the solution to the convex

problem (10). It turns out that this solution can be obtained at no extra cost

9



apart from solving (5) if we assume representation (9) and that the tractable robust

counterpart of (5) satisfies Slater’s condition - one can use then its optimal KKT

vector.

Tractable robust counterpart of (5) constructed using methodology of [4] is:

min
z(r),x1,x

(r,s)
2 ,vs,i,j ,us,i,j

z(r)

s.t. cT
1 x1 + cT

2 x
(r,s)
2 ≤ z(r), s ∈ Nr

∑Ir,s

j=1 us,i,jh
∗
s,i,j

(

vs,i,j

us,i,j

)

≤ bi, ∀s ∈ Nr, ∀1 ≤ i ≤ m
∑Ir,s

j=1 vs,i,j = P T
1,ix1 + P T

2,ix
(r,s)
2 , ∀s ∈ Nr, ∀1 ≤ i ≤ m.

(11)

Let us denote the Lagrange multipliers of the three subsequent constraint types by

µ
(r)
s , λ

(r)
s,i , ξ(r,s,i), respectively. Now we can formulate the theorem stating that the

KKT vector of the optimal solution to (11) gives the optimal solution to (10).

Theorem 2. Suppose that problem (11) satisfies Slater’s condition. Then, the

components of the optimal KKT vector of (11) yield the optimal solution to (10).

Proof. The Lagrangian for problem (11) is:

L (z, x1, x2, v, u, λ, µ, ξ) = z(r) +
∑

s
µ

(r)
s

{

cT
1 x1 + cT

2 x
(r,s)
2 − z(r)

}

+

+
∑

s,i

λ
(r)
s,i

(

∑

j

us,i,jh
∗
s,j

(

vs,i,j

us,i,j

)

− bi

)

+

−
∑

s,i

(

ξ(r,s,i)
)T
(

∑

j

vs,i,j − P T
1,ix1 − P T

2,ix
(r,s)
2

)

We now show that the Lagrange multipliers correspond to the decision variables with

the corresponding names in problem (10), by deriving the Lagrange dual problem:

max
λ≥0,µ≥0,ξ

min
z,x1,x2,

vs,i,j ,us,i,j

L (z, x1, x2, v, u, λ, µ, ξ) =

= max
λ≥0,µ≥0,ξ







min
z(r)

(

1 −
∑

s

µ
(r)
s

)

z(r) + min
x1

(

∑

s

µ
(r)
s c1 +

∑

s,i

P1,iξ
(r,s,i)

)T

x1

+ min
x

(r,s)
2

∑

s

(

µ
(r)
s c2 +

∑

i

P2,iξ
(r,s,i)

)T

x
(r,s)
2

+
∑

s,i,j

min
vs,i,j ,us,i,j

{

λ
(r)
s,i us,i,jh∗

s,j

(

vs,i,j

us,i,j

)

−
(

ξ(r,s,i)
)T

vs,i,j
}

}

= max
λ≥0,µ≥0,ξ

{

−
∑

s

µ
(r)
s,i bi

∣

∣

∣

∣

∣

1 −
∑

s

µ
(r)
s = 0,

∑

s

µ
(r)
s c1 +

∑

s,i

P1,iξ
(r,s,i) = 0,

µ
(r)
s c2 +

∑

i

P2,iξ
(r,s,i) = 0, ∀s, λ

(r)
s,i hs,j

(

ξ(r,s,i)

λ
(r)

s,i

)

≤ 0 ∀s, i, j

}

Hence, one arrives at the problem equivalent to (10) and the theorem follows.

Due to Thorem 2, we know that the optimal solution to (10), and thus to (7), can

be obtained at no extra computational effort since most of the solvers produce the

KKT vector as a part of output.

Sets Zr,s

(

λ
(r)
)

or Zr,s

(

x(r)
)

obtained using the methods above may only be some

of many possible sets for a given problem. Hence, there is no guarantee that by

10



splitting Zr,s one splits ‘all the ζ scenarios that must be split.’ However, these

approaches are computationally tractable and may already give a good practical

performance, as shown in the numerical examples of Section 6.

3 Multiperiod problems

3.1 Description

In this section we extend the basic two-period methodology to the case with more

than two periods, which requires a more extensive notation. The uncertain param-

eter and the decision vector are:

ζ =









ζ1

...

ζT −1









∈ R
L1 × ... × R

LT −1 , x =









x1

...

xT









∈ R
d1 × .... × R

dT .

Value of the component ζt is revealed at time t. The decision xt is implemented

at time t, after the value of ζt−1 is known but before ζt is known. We introduce a

special notation for the time-dependent parts of the vectors. The symbol xs:t, where

s ≤ t shall denote the part of the vector x corresponding to periods s through t.

We also define L =
T −1
∑

t=1
Li and d =

T
∑

t=1
dt.

The considered robust multi-period problem is:

min
x

cT x

s.t. A(ζ)x ≤ b, ∀ζ ∈ Z,
(12)

where the matrix A : RL → R
m×d is linear and its i-th row is denoted by aT

i . In

the multi-period case we also split the set Z into a collection of sets Zr,s where

∪s∈Nr
Zr,s = Z for each r. By Projt(Zr,s) we denote the projection of the set Zr,s

onto the space corresponding to the uncertain parameters from the first t periods:

Projt(Zr,s) = {ξ : ∃ζ ∈ Zr,s, ξ = ζ1:t} .

Contrary to the two-period case, every subset Zr,s shall correspond to a vector

x(r,s) ∈ R
d, i.e. a vector including decisions for all the periods.

In the two-period case, the time 1 decision was common for all the variants of

decision variables. In the multi-period notation this condition would be written as

x
(r,s)
1 = x

(r,s+1)
1 for 1 ≤ s ≤ Nr − 1. In the two-period case each of the uncertainty

subsets Zr,s corresponded to a separate variant x
(r,s)
2 , and given a ζ, any of them

could be chosen if only it held at time 2 that ζ ∈ Zr,s. In this way, it was guaranteed

that

∀ζ ∈ Z ∃x
(r,s)
2 : A1(ζ)x1 + A2(ζ)x

(r,s)
2 ≤ b.

In the multi-period case the main obstacle is the fact that the information about

subsequent components of ζ is revealed period after period, whereas at the same

11



time decisions need to be implemented. In general up to time T one may not know

to which Zr,s the vector ζ will surely belong to.

For instance, suppose that at time 1 the decision x1 is implemented. At time 2,

knowing only the value ζ1 there may be many potential sets Zr,s to which ζ may

belong and for which x1 = x
(r,s)
2 - all the Zr,s for which ζ1 ∈ Proj1(Zr,s). Suppose

that a decision x2 = x
(r,s)
2 is chosen at time 2, for some s. Then, at time 3 there

must exist a set Zr,s such that ζ1:2 ∈ Proj2(Zr,s) and for which x1:2 = x
(r,s)
1:2 , so that

its decision for time 3 can be implemented.

In general, at each time period 2 < t ≤ T there must exist a set Zr,s such that

the vector ζ1:t−1 ∈ Projt−1(Zr,s), and for which it holds that x1:t−1 = x
(r,s)
1:t−1, where

x1:t−1 stands for the decisions already implemented. This is our version of a re-

quirement that in Ben-Tal et al. (2009) is called ‘non-anticipativity restriction.’ We

propose an iterative splitting strategy ensuring this postulate is satisfied.

In this strategy, the early-period decisions corresponding to various sets Zr,s are

identical, as long as it is not possible to distinguish to which of them the vector ζ will

belong. Our strategy facilitates simple determination of these equality constraints

between various decisions and is based on the following notion.

Definition 1. A hyperplane defined by a normal vector g ∈ R
L and intercept

term h ∈ R is a time t splitting hyperplane (called later t-SH) if:

t = min
{

u : gT ζ = h ⇔ gT
1:uζ1:u = h, ∀ζ ∈ R

L
}

.

In other words, t is the smallest number such that for any ζ ∈ R
L it is sufficient to

know the part ζ1:t to determine if it holds that gT ζ ≤ h or gT ζ ≥ h. We shall refer

to a hyperplane by the pair (g, h).

We illustrate with an example how the first splitting can be done and how the

corresponding equality structure between decision vectors x(r,s) is determined.

Example 2. We split the uncertainty set Z with a 1-SH (g, h). Then, two subsets

result:

Z1,1 = Z ∩
{

ζ : gT ζ ≤ h
}

and Z1,2 = Z ∩
{

ζ : gT ζ ≥ h
}

.

Now, there are two decision vectors x(1,1), x(1,2) ∈ R
d. Their time 1 decisions should

be identical since they are implemented before the value of ζ1 is known, allowing to

determine whether ζ ∈ Z1,1 or ζ ∈ Z1,2. Thus, we add a constraint x
(1,1)
1 = x

(1,2)
1 .

This splitting is illustrated in Figure 3.

The problem to be solved after the first splitting round is analogous to the two-

period case, with the equality constraint added:

min
z(1),x(1,s)

z(1)

s.t. cT x(1,i) ≤ z(1), i = 1, 2

A (ζ) x(i) ≤ b, ∀ζ ∈ Z1,s, s = 1, 2

x
(1,1)
1 = x

(1,2)
1 .

12



Z

Z1,1 Z1,2

x2

x
(1,1)
2 x

(1,2)
2

Figure 3: A multi-period problem after a single splitting with a time-2 splitting hyperplane.

The splitting process may be continued and multiple types of t-SHs are possible.

To state our methodology formally, we define a parameter tmax(Zr,s) for each set

Zr,s. If the set Zr,s is a result of subsequent splits with various t-SH’s, the number

tmax(Zr,s) denotes the largest t of them. By convention, for the set Z it shall hold

that tmax(Z) = 0. The following rule defines how the subsequent sets can be split

and what the values of the parameter tmax for each of the resulting sets are.

Rule 1. A set Zr,s can be split only with a t-SH such that t ≥ tmax(Zr,s). For

the resulting two sets Zr+1,s′ , Zr+1,s′′ we define tmax(Zr+1,s′) = tmax(Zr+1,s′′) =

t. If the set is not split and in the next round it becomes the set Zr+1,s′ then

tmax(Zr+1,s′) = tmax(Zr,s).

The next rule defines the equality constraints for the problem after the (r + 1)-th

splitting round, based on the problem after the r-th splitting round.

Rule 2. Let a set Zr,s be split with a t-SH into sets Zr+1,s′, Zr+1,s′′ . Then the

constraint x
(r+1,s′)
1:t = x

(r+1,s′′)
1:t is added to the problem after the (r + 1)-th splitting

round.

Assume the problem after splitting round r includes sets Zr,s and Zr,u with a

constraint x
(r,s)
1:ks

= x
(r,u)
1:ks

, and the sets Zr,s, Zr,u are split into Zr+1,s′

, Zr+1,s′′

and

Zr+1,u′

, Zr+1,u′′

, respectively. Then, the constraint x
(r+1,s′)
1:ks

= x
(r+1,u′)
1:ks

is added to

the problem after the (r + 1)-th splitting round.

The first part of Rule 2 ensures that the decision vectors x(r+1,s′), x(r+1,s′′) can

differ only from time period t + 1 on, since only then one can distinguish between

the sets Zr,s′ , Zr,s′′ . The second part of Rule 2 ensures that the dependence structure

between decision vectors from stage r is not ‘lost’ after the splitting. Rule 2 as a

whole ensures that x
(r+1,s′)
1:ks

= x
(r+1,s′′)
1:ks

= x
(r+1,u′)
1:ks

= x
(r+1,u′′)
1:ks

. We illustrate the

application of Rules 1 and 2 with a continuation of our example.

Example 2 (continuing from p. 12). By Rule 1 we have tmax(Z1,1) = tmax(Z1,2) =

1. Thus, each of the sets Z1,1, Z1,2 can be split with a t-SH where t ≥ 1. We split

the set Z1,1 with a 1-SH and the set Z1,2 with a 2-SH. The scheme of the second

splitting round is given in Figure 4.

We obtain 4 uncertainty sets Z2,s and 4 decision vectors x(2,s). The lower part of
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1-SH 2-SH

Z1,1 Z1,2x(1,1) x(1,2)

x
(1,1)
1 = x

(1,2)
1

Z2,1 Z2,2
Z2,3

Z2,4x(2,1) x(2,2) x(2,3) x(2,4)

x
(2,1)
1 = x

(2,2)
1 x

(2,2)
1 = x

(2,3)
1 x

(2,3)
1:2 = x

(2,4)
1:2

Figure 4: Example of second splitting round for the multi-period case.

Figure 4 includes three equality constraints. The first constraint x
(2,1)
1 = x

(2,2)
1 and

the third constraint x
(2,3)
1:2 = x

(2,4)
1:2 follow from the first part of Rule 2, whereas the

second equality constraint x
(2,2)
1 = x

(2,3)
1 is determined by the second part of Rule

2. The equality constraints imply that x
(2,1)
1 = x

(2,2)
1 = x

(2,3)
1 = x

(2,4)
1 .

The problem after the second splitting round is:

min
z(2),x(2,s)

z(2)

s.t. cT x(2,s) ≤ z(2), s = 1, ..., 4

A (ζ) x(2,s) ≤ b, ∀ζ ∈ Z2,s, s = 1, ..., 4

x
(2,1)
1 = x

(2,2)
1

x
(2,2)
1 = x

(2,3)
1

x
(2,3)
1:2 = x

(2,4)
1:2 .

The time structure of decisions for subsequent time periods is illustrated in Figure 5.

All the decision variables within a single cell are equal, for instance, all the decisions

x
(2,s)
1 . The decision making process goes as follows.

At time 1 there is only one possibility for the first decision. Then, at time 2 the

value of the parameter ζ1 is known and one can determine if ζ is within the set Z1,1

or Z1,2, or both.

If ζ ∈ Z1,1, further verification is needed to determine whether ζ ∈ Z2,1 or ζ ∈ Z2,2,

to choose the correct variant of decisions for time 2 and later.

If ζ ∈ Z1,2, the time 2 decision x
(2,3)
2 = x

(2,4)
2 is implemented. Later, the value of ζ2

is revealed and based on it, one determines if ζ ∈ Z2,3 or ζ ∈ Z2,4. In the first case

from time 3 on the decisions x
(2,3)
3 , x

(2,3)
4 , ..., x

(2,3)
T are implemented. If otherwise,

the decisions x
(2,4)
3 , x

(2,4)
4 , ..., x

(2,4)
T are implemented.

If ζ ∈ Z1,1 ∩ Z1,2, then a further verification is needed to determine whether ζ ∈

Z1,2 ∩ Z2,1 or ζ ∈ Z1,2 ∩ Z2,2 (or both).

For example, if ζ ∈ Z1,2 ∩ Z2,1, then at time 2 one can implement either x
(2,1)
2 or

x
(2,3)
2 = x

(2,4)
2 . It is best to choose the decision for which the entire decision vector

x(r,s) gives the best worst-case objective. If one chooses x
(2,3)
2 = x

(2,4)
2 , then after

time 2 it is known if ζ ∈ Z2,3 or ζ ∈ Z2,4, and the sequence of decisions for later pe-
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x
(2,1)
1

x
(2,2)
1

x
(2,3)
1

x
(2,4)
1

x
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x
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x
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2

x
(2,4)
2

x
(2,1)
3

x
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3

x
(2,3)
3

x
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x
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4
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4

x
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4

x
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T
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T
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(2,3)
T

x
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T
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Figure 5: Time structure of the decision variants after the second splitting. Decision vectors within

the same cell are equal.

riods is chosen. If one has chosen x
(2,1)
2 then the sequence of decisions x

(2,1)
3 , ..., x

(2,1)
T

is implemented later. Analogous procedure holds for other possibilities.

In general, the problem after the r-th splitting round has Nr subsets Zr,s and

decision vectors x(r,s). Its formulation is:

min
z(r),x(r,s)

z(r)

cT x(r,s) ≤ z(r), s ∈ Nr

A (ζ) x(r,s) ≤ b, ∀ζ ∈ Zr,s, s ∈ Nr

x
(r,s)
1:ks

= x
(r,s+1)
1:ks

, s ∈ Nr \ {Nr},

(13)

where ks is the number of the first time period decisions that are required to be

identical as a result of applying Rule 2.

3.2 Lower bounds

Similar to the two-period case, one can obtain lower bounds for the adjustable

robust solution. The lower bound problem differs from the two-period case since the

uncertain parameter may have a multi-period equality structure of the components

that can be exploited.

Let Z =
{

ζ(1), . . . , ζ(|Z|)
}

⊂ Z be a finite set of scenarios for the uncertain param-

eter. Then, the optimal solution to

min
w,x

(i)
2 ,i=1,...,|Z|

w

s.t. cT x
(i)
2 ≤ w, i = 1, ...,

∣

∣

∣Z
∣

∣

∣

A
(

ζ(i)
)

x(i) ≤ b, i = 1, ...,
∣

∣

∣Z
∣

∣

∣

x
(i)
1:t = x

(j)
1:t ∀i,j,t : ζ

(i)
1:t = ζ

(j)
1:t

(14)

is a lower bound for problem (13).

In the multi-period case it is required that for each decision vectors x(i), x(j) whose

corresponding uncertain scenarios are identical up to time t the corresponding de-

cisions must be the same up to time t as well. This is needed since up to time t one

cannot distinguish between ζ(i) and ζ(j) and the decisions made should be the same.

The equality structure between the decision vectors x(i) can be obtained efficiently

(using at most
∣

∣

∣Z
∣

∣

∣ − 1 vector equalities) if uncertain parameter is one-dimensional

in each time period - one achieves it by sorting the set Z lexicographically.
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3.3 How to split

3.3.1 General theorem

We assume that (13) satisfies Slater’s condition. By the result of Ben-Tal and Beck

(2010) the dual of (13) is equivalent to:

max −
∑

s∈Nr

m
∑

i=1
λ

(r)
s,i bi

s.t.
m
∑

i=1
λ

(r)
s,i ai

(

ζ(r,s,i)
)

+ µ
(r)
s c +

[

ν
(r)
s

0

]

−

[

ν
(r)
s−1

0

]

= 0, ∀1 < s < Nr

m
∑

i=1
λ

(r)
1,i ai

(

ζ(r,1,i)
)

+ µ
(r)
1 c +

[

ν
(r)
1

0

]

= 0

m
∑

i=1
λ

(r)
Nr ,iai

(

ζ(r,Nr,i)
)

+ µ
(r)
Nr

c −

[

ν
(r)
r,Nr−1

0

]

= 0

∑

s∈Nr

µ
(r)
s = 1

λ(r), µ(r) ≥ 0

ζ(r,s,i) ∈ Zr,s, ∀s ∈ Nr, ∀1 ≤ i ≤ m.

(15)

Because of Slater’s condition, strong duality holds and for an optimal solution x(r)

with objective value z(r) there exist λ
(r)

, µ(r), ν(r), ζ
(r)

such that the optimal value

in (7) is attained and equal to z(r). For each subset Zr,s we define:

Zr,s

(

λ
(r)
)

=
{

ζ
(r,s,i)

∈ Zr,s : λ
(r)
s,i > 0

}

.

Then, the following result holds, stating that at least one of the sets Zr,s

(

λ
(r)
)

, for

which
∣

∣

∣Zr,s

(

λ
(r)
)∣

∣

∣ > 1, should be split.

Theorem 3. Assume that problem (13) satisfies Slater’s condition, x(r) is the the

optimal primal solution, and that λ
(r)

, µ(r), ν(r), ζ
(r)

are the optimal dual variables.

Assume that at any splitting round r′ > r there exists a sequence of distinct numbers

{i1, i2, ..., iNr
} ⊂ Nr′ such that Zr,s

(

λ
(r)
)

⊂ Zr′,is
and for each 1 ≤ s ≤ Nr it holds

that Zr′,is
results from splitting the set Zr,s. Then, the optimal value z(r′) is the

same as z(r), that is, z(r′) = z(r).

Proof. We construct a lower bound for the problem after the r′-th round with

value z(r). Without loss of generality we assume that Zr,s

(

λ
(r)
)

⊂ Zr′,s for all

1 ≤ s ≤ Nr. By Rule 2, problem after the r′-th splitting round implies equality

constraints x
(r′,s)
1:ks

= x
(r′,s+1)
1:ks

, where 1 ≤ s ≤ Nr − 1. Take the dual (15) of the

problem after the r′-th splitting round. We assign the following values for λ(r′), µ(r′):

λ
(r′)
s,i =

{

λ
(r)
s,i for 1 ≤ s ≤ Nr

0 otherwise

µ
(r′)
s =

{

µ
(r)
s for 1 ≤ s ≤ Nr

0 otherwise

ν
(r′)
s =

{

ν
(r)
s for 1 ≤ s ≤ Nr − 1

0 otherwise

ζ(r′,s,i) =

{

ζ̄(r,s,i) if 1 ≤ s ≤ Nr, λ
(r)
s,i > 0

any ζ(r′,s,i) ∈ Zr′,s,i otherwise.
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These values are dual feasible and give an objective value to the dual problem

equal to z(r). Since the dual objective value provides a lower bound for the primal

problem, the objective function value for the problem after the r′-th round cannot

be better than z(r).

Similar to the two-period case, one can prove that if each of the sets Zr,s has at

most one element, then the splitting process may stop since the optimal objective

value cannot be better than z(r).

3.3.2 Finding the sets of scenarios to be split

For the multi-period case, the same observations hold that have been made in the

case of the two-period problem. That is, one may construct sets Zr,s

(

x(r)
)

by

searching for the scenarios ζ corresponding to active primal constraints, or sets

Zr,s

(

λ
(r)
)

by using the optimal KKT variables of the tractable counterpart of (13).

The latter approach is preferred for its inclusion only of the ‘critical scenarios’ in

the meaning of Theorem 3.

4 Problems with integer variables

4.1 Methodology

A particularly difficult application field for adjustable robust decision rules is when

some of the decision variables are integer. Our methodology can be particularly

useful since the decisions are fixed numbers for each of the uncertainty subset Zr,s. A

general multiperiod robust adjustable problem with integer and continuous variables

can be solved through splitting in the same fashion as in Section 2 and 3.

Suppose, taking the notation of Section 3, that the indices of components of the

vector x to be integer belong to a set I. Then, the mixed-integer version of problem

(13) has only an additional integer condition:

min
z(r),x(r,s)

z(r)

cT x(r,s) ≤ z(r), s ∈ Nr

A (ζ) x(r,s) ≤ b, ∀ζ ∈ Zr,s, s ∈ Nr

x
(r,s)
1:ks

= x
(r,s+1)
1:ks

, i ∈ Nr \ {Nr}

x
(r,s)
i ∈ Z, ∀s ∈ Nr, ∀i ∈ I.

(16)

To obtain lower bounds, we propose the analogues of the strategies given in Sections

2.2 and 3.2, with the integer condition.

4.2 Finding the sets of scenarios to be split

For mixed integer optimization the available duality tools are substantially weaker

than for problems with continuous variables. One can utilize the subadditive duality
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theorems to derive results ‘similar’ to the ones from Section 2.3 and 3.3, but they

are not applicable in practice. Two approaches that seem intuitively correct are:

(1) separating scenarios responsible for constraints that are ‘almost active’ for the

optimal solution x(r), (2) separating scenarios found on the basis of the LP relaxation

of problem (16). We now discuss these two approaches.

Almost active constraints. In the continuous case, the sets Zr,s

(

x(r)
)

were

found by identifying ζ’s generating active constraints for the optimal primal solution.

One can also apply this approach in the mixed-integer case, with a correction due

to the fact that in mixed-integer problems the notion of ‘active constraints’ loses

its proper meaning - in general case the worst-case value of a left-hand side is not a

continuous function of the decision variable x. For that reason, it may happen that:

sup
ζ∈Zr,s

ai(ζ)T x(r,s) < bi,

even for constraints that are critical - being elements of a set of constraints pro-

hibiting the optimal objective value of (16) from being better than z(r). However,

for each s ∈ Nr one can define an approximate set Zr,s

(

x(r), ǫ
)

of ζ’s correspond-

ing to ‘almost active’ constraints. To find such ζ’s, for a precision level ǫ > 0 and

s ∈ Nr, 1 ≤ i ≤ m one solves the following problem:

min
ζ

bi − ai (ζ)T x(r,s) − ǫ

s.t. ζ ∈ Zr,s.
(17)

If the result is a nonpositive optimal value, then one can add the optimal solution ζ

to the set Zr,s

(

x(r), ǫ
)

. However, this strategy may be subject to scaling problems

since ǫ may imply a different degree of ‘almost activeness’ for different constraints.

One may try to mitigate this issue by normalizing the coefficients of each constraint

before solving problem (17).

KKT vector of the LP relaxation. Another approach for problems with

integer variables, less sensitive to scaling issues, is to determine the sets Zr,s

(

λ(r)
)

corresponding to the LP relaxation of problem (16). This approach is expected to

perform well in problems where the optimal mixed integer solution is close to the

optimal solution of the LP relaxation.

5 Heuristics

In this section we propose heuristics for choosing the hyperplanes to split sets Zr,s

(by splitting their corresponding sets Zr,s) in the (r + 1)-th splitting round, for

constructing the lower bound scenario sets Z , and for deciding when to stop the

splitting algorithm.

From now on we fix the optimal primal solution after the r-th splitting round x(r)

and the sets Zr,s, making no distinction between the sets Zr,s

(

x(r)
)

obtained by us-

ing the optimal KKT vector of the problems’ LP relaxations and the sets Zr,s

(

λ
(r)
)
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obtained by searching constraint-wise for scenarios that make the constraints (al-

most) active. We only consider splitting of sets Zr,s for which
∣

∣

∣Zr,s

∣

∣

∣ > 1.

5.1 Choosing the t for the t-SHs

In multi-period problems one must determine the t for the t-SH, and this choice

should balance two factors. Intuitively, the set Zr,s should be split with a t ≥

tmax(Zr,s) for which the components ζt are most dispersed over ζ ∈ Zr,s. On the

other hand, choosing a high value of t in an early splitting round reduces the range

of possible t-SHs in later rounds because of Rule 1.

We propose that each Zr,s is split with a t-SH for which the components ζt show

biggest dispersion within the set Zr,s (measured, for example, with variance) and

where tmax(Zr,s) ≤ t ≤ tmax(Zr,s)+ q, with q being a predetermined number. If the

dispersion equals 0 for all tmax(Zr,s) ≤ t ≤ tmax(Zr,s)+ q then we propose to choose

the smallest t ≥ tmax(Zr,s) such that the components ζt show a nonzero dispersion

within Zr,s.

5.2 Splitting hyperplane heuristics

In this subsection we provide propositions for constructing the splitting hyperplanes.

Heuristic 1. The idea of this heuristic is to determine the two most distant

scenarios in Zr,s and to choose a hyperplane that separates them strongly.

Find the ζ(a), ζ(b) ∈ Zr,s maximizing
∥

∥

∥ζ
(i)
1:t − ζ

(j)
1:t

∥

∥

∥

2
over ζ(i), ζ(j) ∈ Zr,s. Then, split

the set Zr,s with a t-SH defined by:

gj =

{

ζ
(a)
j − ζ

(b)
j if j ≤ t

0 otherwise
, h =

gT
(

ζ(a) + ζ(b)
)

2
.

If Zr,s is a result of search for the (almost) active constraints, ζ ∈ Zr,s may be an

element of the optimal facet for the search problem. Separation of entire facets may

then give better results than of single ζ’s. Then, the heuristic would separate the

two most distant facets with, for example, their bisector hyperplane.

Heuristic 2. The idea of this heuristic is to divide the set Zr,s into two sets whose

cardinalities differ by as little as possible.

Choose an arbitrary normal vector g for the t-SH. Then, determine the intercept

term h such that the term
∣

∣

∣

∣

∣

∣Z
−
r,s

∣

∣

∣−
∣

∣

∣Z
+
r,s

∣

∣

∣

∣

∣

∣ is minimized, with

Z
−
r,s = Zr,s ∩

{

ζ : gT ζ ≤ h
}

, Z
+
r,s = Zr,s ∩

{

ζ : gT ζ ≥ h
}

.

The best h can be found using binary search.

Heuristic 3. The idea of this heuristic is to split the set Zr,s with a hyperplane,

and to manipulate the late period decisions while keeping the early-period decisions
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fixed, in such a way that the maximum worst-case ‘objective function’ for the two

sets is minimized. We describe it for the multi-period case.

Choose an arbitrary normal vector g for the t-SH. For a given intercept h define the

two sets:

Zh−
r+1,s = Zr,s ∩

{

ζ : gT ζ ≤ h
}

, Zh+
r+1,s = Zr,s ∩

{

ζ : gT ζ ≥ h
}

.

For a fixed g and h we define the following function:

τ(h) = min
x(r,s′),x(r,s′′),w

w

s.t. cT
1 x1 + cT

2 x
(r,s′)
2 ≤ w

cT
1 x1 + cT

2 x
(r,s′′)
2 ≤ w

A1(ζ)x1 + A2(ζ)x
(r,s′)
2 ≤ b, ∀ζ ∈ Zh−

r+1,s

A1(ζ)x1 + A2(ζ)x
(r,s′′)
2 ≤ b, ∀ζ ∈ Zh+

r+1,s

x
(r,s′)
1:tmax(Zr,s) = x

(r,s′′)
1:tmax(Zr,s) = x

(r,s)
1:tmax(Zr,s).

(18)

Equality constraints ensure that the decision variables related by equality con-

straints to other decision vectors stay with the same values (not to lose the fea-

sibility of the decision vectors for sets Zr,p, where p 6= s). The aim is to minimize

τ(h) over the domain of h for which both Zh−
r+1,s and Zh+

r+1,s are nonempty. Function

τ(h) is quasiconvex in h, which has been noted in a different setting in [8].

5.3 Constructing the lower bound scenario sets

The key premise is that the size of the set Z
(r)

(the lower bound scenario set after the

r-th splitting round) should be kept limited since each additional scenario increases

the size of the lower bound problem. Hence, it is important that the limited number

of scenarios covers set Z well.

Summing the scenario sets. One approach is to use Z
(r)

= ∪s∈Nr
Zr,s after

each splitting round, since the sets Zr,s approximate the set of the scenarios not

allowing the objective value to improve. To reduce the size of Z
(r)

, we propose that

Z contains at most k elements of each Zr,s, where k is a predetermined number.

This approach implies that the lower bound sequence
{

w(r)
}

, where w(r) is the

optimal value of the lower bound problem after the r-th splitting round, needs not

be nondecreasing in r.

Incremental building of a scenario set. To ensure a nondecreasing lower

bound sequence, one can construct the sets incrementally, starting with Z
(1)

after

the first splitting round and enlarging it with new scenarios after each splitting

round. We describe a possible variant of this idea for the multi-period case. Assume

that problem (14) has been solved after the r-th splitting round, the lower-bounding

scenario set is Z
(r)

and the optimal value of the lower-bounding problem is w(r).

Suppose that after the (r + 1)-th splitting round one wants to add ζ ′ ∈ Zr+1,s to
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the set Z
(r+1)

. We add the scenario ζ ′ if (1) there is no 1 ≤ i ≤ |Z
(r)

| such that

A(ζ ′)
(

x(i)
)

≤ b and (2) there is no x(ζ′) such that

{

x
(ζ′)
1:t = x

(i)
1:t ∀1 ≤ i ≤ |Z

(r)
|, ∀t : ζ ′

1:t = ζ
(i)
1:t

}

, cT x(ζ′) ≤ w(r),

where x(i) are the decision vectors from the lower bound problem after the r-th

splitting round. Condition (1) excludes the case when Z
(r)

already contains a

scenario whose decision vector in the lower bound problem after the r-th round is

robust to ζ ′. Condition (2) excludes the case when it is possible to construct a

decision vector for ζ ′ that would have the same decisions as the vectors x(i) for the

time periods where ζ is the same as elements of Z
(r)

, and would give at most the

same objective value.

Simple heuristic. We propose also an approach that combines approximately

the properties of the two propositions above and is fast at the same time. The

idea is to build up the lower-bounding set iteratively and add from each Zr,s the

k scenarios whose sum of distances from the elements of Z
(r−1)

is largest. The

distance between two vectors is measured by the 2-norm.

5.4 Stopping the algorithm

As the splitting continues, the computational workload related to solving the split

problem grows because of the number of variables and uncertainty subsets. We

propose three stopping rules for the splitting method: (1) when the objective value

is closer to the lower bound than a predetermined threshold level, (2) when the limit

of total computational time is reached, (3) when the maximum number of splitting

rounds is reached.

6 Numerical experiments

6.1 Capital budgeting

The first numerical experiment involves no fixed recourse and is the capital bud-

geting problem taken from Hanasusanto et al. (2014). In this problem, a company

can allocate an investment budget of B to a subset of projects i ∈ {1, . . . , N}.

Each project i has uncertain costs ci(ζ) and uncertain profits ri(ζ), modelled as

affine functions of an uncertain vector ζ of risk factors. The company can invest

in a project before or after observing the risk factors ζ. A postponed investment

in project i incurs the same costs ci(ζ), but yields only a fraction θ ∈ [0, 1) of the

profits ri(ζ).
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The problem of maximizing the worst-case return can be formulated as:

max R

s.t. R ≤ r(ζ)T (x + θy), ∀ζ ∈ Z

c(ζ)T (x + y) ≤ B, ∀ζ ∈ Z

x + y ≤ 1

x, y ∈ {0, 1}N ,

where the decisions xi and yi attain value 1 if and only if an early or late investment

in project i is undertaken, respectively. The uncertainty set is Z = [−1, 1]F , where

F is the number of risk factors.

We adopt the same random data setting as Hanasusanto et al. (2014). In all

instances we use F = 4. The project costs and profits are modelled as:

ci(ζ) = (1 + ΦT
i ζ/2)c0

i , ri(ζ) = (1 + ΨT
i ζ/2)r0

i , i = 1, . . . , N.

Parameters c0
i and r0

i are the nominal costs and profits of project i, whereas Φi and

Ψi represent the i-th rows of the factor loading matrices Φ, Ψ ∈ R
N×4 as column

vectors. The nominal costs c0 are sampled uniformly from [0, 10]N , and the nominal

profits are set to r0 = c0/5. The components in each row of Φ and Ψ are sampled

uniformly from the unit simplex in R
4. The investment budget is set to B = 1T c0/2,

and we set θ = 0.8. Table 1 gives the results of Hanasusanto et al. (2014), who

apply a K-adaptability approach and sample 100 instances for each combination of

N and K (the number of time-2 decision variants) and try to solve it to optimality

within a time limit of 2h per instance.

Table 1: Results of Hanasusanto et al. (2014). K is the number of time-2 decision variants allowed

and N is the number of projects. The columns are (1) - percentage of instances solved to optimality

within 2h, (2) - average solution time of the instances solved within 2h, (3) - average objective

improvements (including the suboptimal solutions from Gurobi for the instances not solved within

2h.

K = 2 K = 3 K = 4

N (1) (%) (2) s (3) (%) (1) (%) (2) s (3) (%) (1) (%) (2) s (3) (%)

5 100 <1 48.67 100 1 68.71 100 36 79.50

10 100 4 59.34 74 1210 86.91 0 - 102.48

15 100 512 63.69 0 - 91.75 0 - 106.93

20 2 5232 64.78 0 - 93.20 0 - 108.61

25 0 - 64.85 0 - 93.72 0 - 109.10

30 0 - 64.98 0 - 94.08 0 - 109.42

We sample 50 instances for each N and conduct 8 splitting rounds for N = 5, 10,

6 for N = 15, 20 and 4 for N = 25, 30 (for smaller problems one can allow more

splitting rounds to obtain better objectives and still operate within reasonable time

limits). To split the uncertainty sets we use the worst-case scenarios coming from

the optimal KKT vector of the LP relaxation of the robust MILP problems (see

Section 2.3.2). In each splitting round we split all subsets Zr,s for which |Zr,s| > 1.

The splitting hyperplanes are constructed using Heuristic 1 (see Section 5.2). The

upper bound scenario sets are constructed according to the ‘simple heuristic’ (see

Section 5.3) with k = 2. The after-splitting robust MILP problems are solved with
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Table 2: Our results for the capital budgeting problem. ‘Splitting rounds’ denotes the number

of splitting rounds conducted. ‘Average case improvement’ denotes the increase of the average-

case objective value obtained with the adjustable decisions, relative to the one yielded by the static

solution. The relative optimality gaps are computed as
(UB−LB)

0.5(UB+LB)
∗100%, where OB is the objective

function value and UB is the upper bound value. Remaining terminology is the same as in Table 5.

Splitting

rounds
N Obj improvement (%) Initial gap (%) Final gap (%)

Average

case

improvement (%)

Mean time (s)

8
5 57.89 106.09 39.00 12.11 5.40

10 93.81 100.15 27.68 20.36 26.81

6
15 102.63 100.00 24.29 23.13 4.72

20 107.81 100.00 22.24 24.79 5.43

4
25 105.33 100.00 23.48 24.30 3.96

30 106.88 100.00 22.93 24.80 6.54

Gurobi precision set to 0.5%. All problems were formulated using CVX package

and solved with Gurobi solver on an Intel Core 2.66GHz computer.

Apart from the worst-case results, for each instance we conduct a simulation study

by sampling from [−1, 1]4 uniformly 500 scenarios of the risk factors’ values and

computing the objective function values obtained using the static robust solution

and our splitting-based adjustable solution.

Table 2 gives the results of our methodology. All the instances have been solved fast,

with the largest average time equal to 26.81s. We remark here that, typically for

problems with binary variables, the distribution of the solution times is heavy-tailed,

and whereas most of the instances are solved within 2-3s, some instances take much

more time and influence the average times in this way. Our methodology performs

worse on the small instances, which the ‘more exact’ method of Hanasusanto et al.

(2014) can solve efficiently in short time. For larger instances our improvements

in the objective value are close to the best values of Hanasusanto et al. (2014)

for larger instances N = 20, 25, 30 - ours being 107.81, 105.33, 106.88% versus their

108.61, 109.10, 109.42%, respectively.

We also compare the running time performance of our method to the results of

Hanasusanto et al. (2014) though we should mention that the main objective of

Hanasusanto et al. (2014) was to find the best solution using a fixed number of

time 2 policies. For larger instances (N ≥ 15) the results of Hanasusanto et al.

(2014) are based on suboptimal solutions from Gurobi obtained after 2 hours of

computation per instance (see Table 1), whereas our method uses on average less

than 27s per instance, with most of the mean times being less than 7s. Upon

request, we obtained the Gurobi output of Hanasusanto et al. (2014). It reveals

that in majority of instances studied by them, the objective value obtained by the

solver after 60s is within 5% of the end objective value obtained after the time limit

of 7200s, given in Table 1.

The right part of Table 2 gives the average-case improvements obtained using the

adjustable decisions. The improvements are significantly smaller than the worst-case

improvements, stabilizing around the level of 25% for larger N .

Figure 6 shows the average (over problem instances for given N) improvements of
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the worst-case objective functions and the upper bounds for all N . One can see

that the relative gap between the upper bound values and the worst-case objective

values decreases significantly with the number N of projects.
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Figure 6: Plots of initial and final upper bound on the worst-case objective function values and the

initial and final worst-case objective function values (average over all problem instances for each N).

We summarize now the results of the first numerical example. Hanasusanto et al.

(2014) give good worst-case objective value improvements with a small number of

time-2 decision variants (at most 4) after a longer computation time, whereas our

splitting method gives such improvements after a short computation time, but with

more time-2 decision variants. For example, 9 splitting rounds typically result in

a division of the uncertainty set Z into more than 10 parts, each with a corre-

sponding time-2 decision variant. Thus, our methodology is preferred when it is the

computation time, and not the number of decision variants, that is to be kept low.

6.2 Lot sizing problem

As the second numerical experiment we consider a multi-stage lot sizing problem

taken from Bertsimas and Georghiou (2014a). The problem entails a single product,

T time periods, and the following parameters:

• ζt, where t = 1, . . . , T , is the uncertain demand in period t

• lt, where t = 2, . . . , T , is the lowest possible demand in period t

• ut, where t = 2, . . . , T , is the highest possible demand in period t

• cyn
, where n = 1, . . . , N , is the cost of buying a fixed quantity qn of the product

• cx is the ordering cost per product unit for purchases that are delivered in the

subsequent period

• ch is the holding cost per product unit

• xtot,t, where t = 2, . . . , T , is the cumulative orders limit up to time period t.
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The variables are:

• It, where t = 1, . . . , T , is the level of available inventory after period t

• xt, where t = 1, . . . , T − 1 is the product amount ordered in period t, after

ζ1, . . . , ζt is known, and delivered in period t + 1, at unit price cx

• ynt, where n = 1, . . . , N , t = 2, . . . , T , is a binary decision made after ζ1, . . . , ζt

is known, whether to buy a fixed quantity qn of the product in time period t,

delivered in the same time period.

The problem is to minimize the worst-case combined ordering and holding costs

(referred later to as the ‘total cost’), subject to cumulative ordering constraints:

min z

s.t.
T
∑

t=2

(

cxxt−1(ζ1:t−1) + chIt(ζ1:t) +
∑N

n=1 cyn
qnynt(ζ1:t)

)

≤ z, ∀ζ ∈ Z

It(ζ1:t) = It−1(ζ1:t−1) + xt−1(ζ1:t−1) +
∑N

n=1 qnynt(ζ1:t) − ζt

0 ≤ xt−1(ζ1:t−1)

0 ≤ It(ζ1:t)
t−1
∑

j=1
xj(ζ1:j) ≤ xtot,t































∀t = 2, . . . , T,

∀ζ ∈ Z

ynt(ζ1:t) ∈ {0, 1} , ∀n, t

xt(ζ1:t) ≥ 0, ∀t

(19)

where

Z = {ζ : ζ1 = 1, lt ≤ ζt ≤ ut, t = 2, . . . , T } .

The above problem is transformed by eliminating the variables It for t = 2, . . . , T .

The adjustable variables are xt, allowed to depend on ζ1:t for t = 1, . . . , T − 1 and

ynt, allowed to depend on ζ1:t for t = 2, . . . , T .

Problem parameters are sampled as in Bertsimas and Georghiou (2014a). Ordering

costs are chosen from cx ∈ [0; 5] and cyn
∈ [0; 10], separately for all n = 1, . . . , N ,

such that cx < cyn
. Holding costs are elements of ch ∈ [0; 10] with the fixed ordering

quantities set to qn = 100/N for all n = 1, . . . , N . The cumulative ordering budget

is set to xtot,t =
∑t−1

s=1 x̄s for t = 2, . . . , T , with x̄t ∈ [0; 100] and the lower and upper

bounds for the demand are sampled uniformly as lt ∈ [0; 25] and ut ∈ [75; 100],

t = 2, . . . , T . We assume that the initial inventory level I1 equals zero. Table 3 gives

the results obtained by Bertsimas and Georghiou (2014a) using their methodology

of piecewise linear decision rules for the decision variables.

We sample and solve 50 instances of the problem for N = 2, 3 and T = 2, 4, . . . , 10.

Since qn = 100/N for all n and the splitting method facilitates use of integer non-

binary variables, we substitute zt(ζ1:t) =
∑N

n=1 ynt(ζ1:t) for all t = 2, . . . , T , such

that 0 ≤ zt(ζ1:t) ≤ N for all t. In this way we switch from binary to integer variables

in order to reduce the problem size.

Since problem (19) involves fixed recourse only, we study also the impact of using

linear decision rules for the continuous variables xt(ζ1:t). In such case we set xt(ζ1:t)
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Table 3: Results of Bertsimas and Georghiou (2014a). The relative optimality gaps are computed as
(OB−LB)

0.5(OB+LB)
∗

100%, where OB is the objective function value and LB is the lower bound value. ‘Nonadaptive gap’ denotes the

relative optimality gap computed for the solution where the integer decisions are static and the linear decision rules

are implemented for the continuous decision variables. ‘PBt(1) gap’ denotes relative optimality gap computed for

the solution obtained using the binary adjustability technique used by the authors and where the linear decision

rules are implemented for the continuous decision variables. 1% and 5% at the top of the Table are two variants of

solver precision used when solving the MILP problems.

1% optimality 5% optimality

N T PBt(1) gap (%)
Nonadaptive

gap (%)
Mean time (s) PBt(1) gap (%)

Nonadaptive

gap (%)
Mean time (s)

2

2 0 17.6 0.1 0.6 17.6 0.4

4 24.2 68.6 50.6 27.3 68.6 45.5

6 37.4 62.0 4833.8 38.9 62.1 956.8

8 37.9 84.4 27531.1 38.0 84.4 19573.1

10 39.7 89.9 35716.6 42.0 89.9 31464.1

3

2 0 27.6 0.1 1.2 27.6 0.1

4 17.2 73.3 3381.8 23.9 73.3 781.6

6 34.5 66.2 9181.0 38.4 66.1 3298.1

8 37.6 83.4 28742.7 38.1 83.7 21885.5

10 - 89.7 - 41.1 90.7 39141.5

to be an affine function of ζ1, . . . , ζt:

xt(ζ1:t) = αt,0 +
t
∑

j=1

αt,jζj , ∀t = 1, . . . , T − 1,

where αt,j are then treated as decision variables implemented in period t.

Each problem instance is solved in four ways: 1) applying static decisions to all

variables 2) applying linear decision rules to the continuous variables and static

decisions to the integer variables 3) applying only the splitting methodology to

all variables 4) applying the splitting methodology to all variables, combined with

linear decision rules for the continuous decisions (the parameters αt,j can also differ

after splitting of the uncertainty set).

For each instance we conduct 4 splitting rounds. For splitting we use the worst-case

scenario sets obtained using optimal KKT vectors from the robust counterpart of

the LP relaxation of the problem (see Sections 2.3.2 and 3.3.2). In each splitting

round we split all subsets Zr,s for which |Zr,s| > 1. Time periods t for the t-SHs

are chosen according to the biggest variance of uncertain demands from subsequent

periods with q = 2 (see Section 5.1). Splitting hyperplanes are constructed using

Heuristic 1 (see Section 5.2). The scenario sets for the lower bound problems are

constructed according to the ‘simple heuristic’ (see Section 5.3) with k = 2. For

T = 2, 4 the lower bound scenario sets include also all vertices of the uncertainty

set Z. The after-splitting robust MILP problems are solved with Gurobi precision

(the relative duality gap when the solver stops) equal to 0.1%. All problems were

formulated using CVX package and solved with Gurobi solver on an Intel Core

2.66GHz computer.

Tables 4 and 5 give our results for N = 2 and N = 3, respectively. All methodologies

offer substantial improvements in the objective value compared to the static robust

solution. Also, combination of our splitting methodology with linear decision rules
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Table 4: Our results for the lot sizing problem for N = 2. LDR stands for the solution with linear

decision rules for the continuous decision variables and static decisions for the integer variables, S

stands for only our splitting methodology applied to all variables, S+LDR stands for a combination

of set splitting with linear decision rules for the continuous variables. ‘Objective improvement’ is

the the decrease in the average worst-case objective value reduction, relative to the static robust

solution. Optimality gaps are computed as in Table 3. ‘Initial gap’ is the optimality gap for the

static robust solution and the lower bound obtained after the first splitting round. ‘Final gap’ is the

optimality gap computed with the objective value and lower bound after the last splitting round.

The asterisk indicates the fact that for T = 2, 4 the lower bound scenario sets include also all vertices

of the uncertainty set Z. All the static robust problems were solved in less than 2s.

Objective improvement (%) Initial gap (%) Final gap (%) Mean time (s)

T LDR S S+LDR LDR S S+LDR S S+LDR

2 0 11.39 11.38 51.02∗ 51.02∗ 15.49∗ 15.51∗ 2.36 2.77

4 31.64 28.07 42.32 85.78∗ 52.46∗ 57.34∗ 34.04∗ 5.67 7.69

6 43.77 30.29 54.94 113.14 69.22 87.51 47.39 5.64 10.09

8 48.91 26.32 61.01 125.59 78.73 107.17 54.68 7.54 15.03

10 52.09 22.43 64.21 134.65 86.16 121.02 61.85 9.23 24.23

Table 5: Our results for the lot sizing problem for N = 3. Terminology is the same as in Table 4.

Objective improvement (%) Initial gap (%) Final gap (%) Mean time (s)

T LDR S S+LDR LDR S S+LDR S S+LDR

2 0 22.94 22.94 61.90∗ 61.90∗ 17.64∗ 17.64∗ 2.25 2.61

4 32.66 31.70 47.22 95.06∗ 62.30∗ 65.09∗ 39.14∗ 5.24 7.39

6 43.99 29.41 56.86 118.38 78.36 96.55 54.14 5.85 9.80

8 50.14 25.13 62.05 129.06 85.27 113.58 61.48 7.11 14.18

10 53.21 21.42 64.82 136.55 92.22 125.08 68.88 9.18 55.82

(S+LDR) gives a strong combined effect - the objective value improves significantly

more than using any of the methods S or LDR separately - by as much as 64.82%

for N = 3, T = 10, compared to 53.21% for LDR and 21.42% for S. For T = 2

the linear decision rules cannot bring any improvement because x1 is a scalar. One

can observe that for problems with larger T our methodology gives better objective

improvements. Also, the relative optimality gaps decrease significantly in all cases,

mostly due to improvements in the objective function. All problems have been

solved fast, with the maximum mean time equal to 55.82s.

We compare now our results to those of Bertsimas and Georghiou (2014a). The

main difference between the methods lies in the fact that decision rules proposed

by Bertsimas and Georghiou (2014a) satisfy the problem’s constraints with a high

probability (99%), obtained using Hoeffding bounds, whereas our methodology en-

sures 100% robustness by design. Comparing the numbers from Tables 3 (column

’PBt(1) gap’), 4, and 5 (columns ’Final gap (%) - S+LDR’), one can see that our

methodology performs worse in terms of the final optimality gap. For example, for

N = 2, T = 4 our result is 39.16% compared to their 24.2% for N = 2, T = 4. This

can be partly explained by the difference between the types of robustness, and also

by different way of choosing the scenarios for the lower bounding problems. On

the other hand, our method provides significantly faster computation times which,

combined with full robustness, may be an appealing property. In particular, this is

visible on larger instances, with our mean solution times being significantly lower,

e.g., our 55.82s compared to 39141.5s for N = 3, T = 10.
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Table 6: Average-case performance of the solutions obtained using the three methodologies in com-

parison to the static robust solution. ‘Average-case improvement’ is the average reduction of the

total cost, relative to the total cost obtained with the static solution for the given demand scenario.

Average-case improvement (%)

N = 2 N = 3

T LDR S S+LDR LDR S S+LDR

2 0.00 18.55 18.55 0.00 14.59 14.13

4 21.87 22.91 31.90 24.51 26.51 37.65

6 30.80 23.24 41.02 33.69 22.72 45.81

8 35.23 20.00 48.05 40.94 18.83 51.56

10 39.67 16.95 51.68 43.79 15.78 55.07

In addition to the worst-case results, for each solved instance we conduct a simula-

tion study. In each of them we sample uniformly 500 demand scenario realizations

l ≤ drealized ≤ u and compute the average total cost incurred by 1) the static robust

policy 2) the linear decision rules for the continuous variables and static decisions

for the integer variables (LDR) 3) splitting-based decisions for all variables (S)

4) combination splitting based decisions with linear decision rules for all variables

(S+LDR). Table 6 gives the results on average-case improvements relative to the

static robust solution. The table shows that our method not only offers substantial

improvements on the worst-case basis, but also in terms of the average-case total

cost, in particular when combined with the linear decision rules for the continuous

variables.

To sum up the results of this numerical example, the main benefits of our approach

have been: 1) fast computation time even for large problems, corresponding to the

number of splitting rounds (the more splitting rounds, the better the improvement

in the objective, but also the longer computation time), 2) substantial improvements

in the objective function value, 3) robustness to the entire uncertainty set after each

splitting round. Due to the 100% robustness of our method, one can set the MILP

solver precision to a non-default value, obtaining robust feasible solutions with only

slightly worse objective value than using higher precision, after a significantly shorter

time.

7 Conclusions

In this paper we have introduced the method of iterative splitting of the uncertainty

set for multi-period robust mixed-integer linear optimization problems. We have

provided theory on how to determine efficiently which scenarios of the uncertain

parameter are more important to be separated than others and how to obtain lower

bounds for the adjustable worst-case value. Based on these theoretical results, we

have proposed several heuristics for each part of the method.

Our approach can be used to a variety of problems. In particular, this applies

to problems with a non-fixed recourse and adjustable integer variables (also non-

binary), where implementation of other decision rules may not be possible or may

involve large computational effort. For adjustable continuous variables in the non-

fixed recourse setting, our method bypasses the challenge of dealing with interactions
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of uncertain parameters, as would be the case with linear or polynomial decision

rules.

For fixed recourse problems the splitting method can be combined with other deci-

sion rules, such as linear decision rules, allowing them to take different forms over

different parts of the uncertainty set. The second numerical experiment reveals that

such a combination gives a strong joint effect. Our iterative method guarantees ro-

bustness of the decisions to the entire uncertainty set after each of the splitting

rounds. Thus, depending on time constraints, the decision maker can set how many

splitting rounds to conduct, with each additional round costing additional effort but

bringing potentially extra improvements in the objective value.

Numerical experiments conducted on problems from Bertsimas and Georghiou (2014a)

and Hanasusanto et al. (2014) have shown our methodology to perform well in

practice. In both cases was our method outperformed on small problem instances.

However, as the problems grow, our methodology was giving comparable results

after only a fraction of the computation time of other authors.

We give now potential directions for further research. First, more theoretical results

can be obtained regarding the choice of best splits of the uncertainty sets, and in

particular, the ‘best’ distribution of the splits in time. Secondly, it is important to

obtain better lower bound values, possibly by combining our method with results

of other authors, e.g., Kuhn et al. (2011). Last, it is interesting to investigate

whether our method, combined with the results of Ben-Tal et al. (2014), can be

used efficiently in multistage nonlinear robust optimization problems.
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