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Abstract

We derive intrinsic Kriging, using Matherons intrinsic random func-
tions which eliminate the trend in classic Kriging. We formulate this
intrinsic Kriging as a metamodel in deterministic and random simulation
models. For random simulation we derive an experimental design that also
specifies the number of replications that varies with the input combina-
tions. We compare intrinsic Kriging and classic Kriging in several numer-
ical experiments with deterministic and random simulations. These ex-
periments suggest that intrinsic Kriging gives more accurate metamodel,
in most experiments.

Keywords: Gaussian process, Kriging, intrinsic Kriging, metamodel,
computer experiment, simulation

JEL: C0, C1, C9, C15, C44

1 Introduction

Kriging or Gaussian process (GP) modeling is popular in geostatistics (Krige
himself was a mining engineer), either deterministic or random simulation or
computer experiments (our focus), and machine learning. Classic textbooks in
these three areas are Cressie (1991), Santner et al. (2003) and Rasmussen and
Williams (2006).

Kriging has several variants; we focus on ordinary Kriging (OK) and uni-
versal Kriging (UK). OK assumes that the GP output (dependent variable) Y
is the sum of a constant mean β0 and a second-order stationary GP with zero
mean and covariance matrix ΣM . UK replaces this constant mean by some
specific function; e.g., a polynomial in the inputs (independent variables). We
focus on UK with a polynomial of a fixed order p in the d explanatory variables
xg (g = 1, . . . , d); e.g., if p = 2 and d = 1 so x1 = x, then E(Y ) = β0+β1x+β2x

2.
Obviously, OK is a special case of UK; i.e., OK is the same as UK with p = 0.

If the true input/output (I/O) function of the underlying simulation model
f(x) is monotonic, then intuitively it seems best to use UK with p = 1 or p = 2.
Unfortunately, in practice we do not know the true values of the p+1 regression
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coefficients in β = (β0, β1, . . . , βp)> so we estimate β from the simulation’s I/O

data. This estimate β̂ creates noise and bias, so in practice we might use OK
instead of UK because OK requires the estimation of the scalar β0 instead of
all the elements of the vector β. Anyhow, in general it is not clear whether OK
or UK is best ( so we might use cross-validation to estimate the best Kriging
metamodel; see the preceding references).

The idea of intrinsic random functions (IRFs) is to remove the trend from
data by linear filtration of data to remove dependence on the trend (as we
shall see in § 3). Originally, IRFs were introduced by the French mathematician
George Matheron in his seminal paper Matheron (1973). He not only formalized
Kriging but also extended it to IRFs. He developed IRFs to tackle the difficult
problem of estimating a variogram in a UK model where a spatial trend creates
bias that affects the variogram of the residuals; see Cressie (1991, pp. 299-306)
and Chilès and Delfiner (2012, pp. 238-298). It was known before Matheron
that in the presence of a polynomial trend of order k, the (k+ 1)th order differ-
ence of data annihilate the trend and turn non-stationary data into stationary.
Matheron extended this idea for higher-order stationary increments and defined
a general class of processes which he called intrinsic random functions of order
k (IRF-k). In the time series literature, these IRF-k’s are known as integrated
processes.

An IRF gives a metamodel with a generalized covariance matrix K which re-
places the covariance matrix for the stationary random functions in Kriging. K
needs to be conditionally positive definite and—unlike covariances of stationary
processes—K may be unbounded and can describe processes with unbounded
dispersion such as Brownian motion processes.

To the best of our knowledge, IRFs have not yet been applied in simulation,
neither deterministic nor random. Therefore it seems interesting to formalize
IRFs for a simulation readership, and to compare the performance of Kriging
and IRFs in experiments with test functions. For all these experiments we use
the root mean square error (RMSE) performance measure. In all these exper-
iments we also study the effects of the number of input combinations. These
experiments include simulation of test functions with different dimensionality.
The main conclusion is that in both deterministic and random simulation the
intrinsic Kriging give a more accurate metamodel than Kriging.

We organize the rest of this paper as follows. Section 2 summarizes UK.
Section 3 formalizes IRF-k. Section 4 uses this IRF-k to formalize intrinsic
Kriging (IK). Section 5 discusses the selection of the generalized covariance
matrix K in IK. Section 6 adapts IK for random simulation, including a design
of experiment for such simulation. Section 7 presents numerical experiments.
Section 8 summarizes our conclusions.

2 Universal Kriging

In this section we summarize UK, following Cressie (1991, pp. 151-182). Kriging
gives the optimal predictor of a random process Y at an unobserved or “new”
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point (or “input combination”, in simulation terminology) x0—given the value
of Y at the already observed “old” points x = (x1, . . . , xd). UK assumes

Y (x) = f(x)
>
β +M(x) with x ∈ Rd, (1)

where f(x) is a vector of p+ 1 regression functions or “trend”, β is a vector of
p + 1 parameters, and M(x) is a second-order stationary GP with zero mean
and covariance matrix ΣM .

ΣM must be specified such that it makes M(x) in (1) a second-order sta-
tionary GP; i.e., ΣM is a function of the distance between the points xi and xi′

with i, i′ = 0, 1, . . . ,m where the subscript 0 denotes a new point and m denotes
the number of old points. Anisotropic covariance functions use the distances
along the d axes hi;i′;g = |xi;g − xi′;g| (g = 1, . . . , d). Isotropic functions use

the Euclidean distance h between the points in Rd so h = ‖h‖ = (
∑d

g=1 h
2
g)1/2

(for notational simplicity we suppress the subscripts i and i′); also see (13).
Anisotropic functions are popular in simulation. The most popular choice for
the covariance function in M(x) is the so-called Gaussian covariance function:

cov(xi,xi′) = τ2
d∏

g=1

exp
(
−θgh2i;i′;g

)
with θg > 0, (2)

where τ2 is the variance of M(x).
Let Y = (Y (x1), . . . , Y (xm)) denote the m values of the metamodel in (1)

at the m old points. Kriging predicts Y linearly from the old I/O data (X,Y)
where X = (x1, . . . ,xm) is the d × m matrix with m old input combinations
xi = (xi;g) (i = 1, . . . ,m; g = 1, . . . , d):

Ŷ (x0) = λ>Y such that λ>F = f(x0)>, (3)

where F is the m × (p + 1) matrix with element (i, j) being fj(xi), f(x0) =

(f0(x0), . . . , fp(x0))
>

, and the condition for λ guarantees that Ŷ (x0) is an un-
biased predictor. The optimal linear unbiased predictor minimizes the mean
squared prediction error (MSPE), defined as

MSPE(Ŷ (x0)) = E(Ŷ (x0)− Y (x0))2.

Cressie (1991, pp. 151-157) shows how to use Lagrangian multipliers to solve
this constrained minimization, which gives the optimal weights:

λ> =
(
ΣM (x0, ·) + F

(
F>Σ−1M F

)−1 (
f(x0)− F>Σ−1M ΣM (x0, ·)

))>
Σ−1M (4)

with the m-dimensional vector with covariances between the outputs of the new
and the m old points ΣM (x0, ·) = (ΣM (x0,x1), . . . ,ΣM (x0,xm))

>
, and ΣM

the m ×m matrix with the covariances between the outputs of the old points
so element (i, i′) is ΣM (xi,xi′). The resulting minimal MSPE is

MSPE(Ŷ (x0)) = τ2 −ΣM (x0, ·)>Σ−1M ΣM (x0, ·)+(
f(x0)− F>Σ−1M ΣM (x0, ·)

)> (
F>ΣMF

)−1 (
f(x0)− F>Σ−1M ΣM (x0, ·)

)
. (5)
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Because the predictor is unbiased, this MSPE equals the predictor variance,
which is often called the “Kriging variance”.

Note: Kriging is an exact interpolator; i.e., (4) for the old points gives
a predictor that equals the observed output. For the old points the Kriging
variance (5) reduces to zero.

3 Intrinsic random functions of order k

In this section we formalize the IRF-k, following Cressie (1991, pp. 299-306)
and Chilès and Delfiner (2012, pp. 252-257). We rewrite (1) as

YYY (x) = Fβ + MMM (x) with x ∈ Rd, (6)

where YYY (x) = (Y (x1), . . . ,Y (xm))
>

, and MMM (x) = (M (x1), . . . ,M (xm))
>

.
We no longer assume M is second-order stationary. Let Q be an m×m matrix
such that QF = O where O is an m × (p + 1) matrix with all elements zero.
Together Q and (6) give

QYYY (x) = QMMM (x).

Consequently, the second-order properties of QYYY (x) depend on QMMM (x) and
not on the regression function Fβ.

To generalize the model in (1), we need a stochastic process for which
QMMM (x) is second-order stationary; such processes are called intrinsically sta-
tionary processes. We assume that fj(x) (j = 1, . . . , p+1) are mixed monomials
xi11 · · ·x

id
d with x = (x1, . . . , xd)> and nonnegative integers i1, . . . , id such that

i1 + . . . + id ≤ k with k a given nonnegative integer. An IRF-k is a random
process Y for which

V (x∗) =

m∑
i=1

λiY (xi + x∗) with xi,x
∗ ∈ Rd

is second-order stationary, and λ = (λ1, . . . , λm)> is a generalized-increment
vector of real numbers such that

(fj(x1), . . . , fj(xm))λ = 0 (j = 1, . . . , p+ 1).

We give the following four examples of IRF-k following Matheron (1973) and Chilès
and Delfiner (2012).

1. The (k+ 1) integral of a zero-mean stationary random function Z(t) is an
IRF-k:

Zk(x) =

∫ x

0

(x− t)k

k!
Z(t)dt.

2. Integrating k times a Brownian motion B(x) gives an IRF-k:

Bk(x) =

∫ x

0

(x− t)k

k!
B(t)dt.
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3. An ARIMA process (autoregressive integrated moving average process) is
a process whose finite difference of order k is a stationary ARMA process,
so an ARIMA process is an IRF-(k − 1).

4. If Z(x) is a random function which is differentiable (k+ 1) times and if all
its derivatives of order (k + 1) are stationary with zero mean, then Z(x)
is an IRF-k. This example characterizes a differentiable IRF-k; of course
there are non-differentiable IRF-k’s.

4 Intrinsic Kriging

In this section we introduce intrinsic Kriging (IK) based on an IRF-k defined
in §3. Let M (x) be an IRF-k with mean zero and generalized covariance matrix
K. Then the IK metamodel is:

Y (x) = f(x)>β + M (x). (7)

Cressie (1991, pp. 299-306) derives a linear predictor for the IRF-k metamodel
defined in (7) with generalized covariance matrix K that is the analogue of

UK. We have the old outputs YYY = (Y (x1), . . . ,Y (xm))
>

. The optimal linear
prediction of Y at a new location x0 follows from minimizing the MSPE of the
linear predictor:

min
λ
E
(
Ŷ (x0)− Y (x0)

)2
such that Ŷ (x0) = λ>YYY . (8)

IK should meet the condition E
(
Ŷ (x0)

)
= E (Y (x0)), which is equivalent to

λ>F = (f0(x0), . . . , fp(x0)) . (9)

Note that this condition is not introduced as the unbiasedness condition but
as the condition that guarantees that the coefficients of the prediction error
λ1Y (x1) + . . . .+ λmY (xm) − Y (x0) create a generalized-increment vector

λ>m+1 =
(
λ>, λ0

)
with λ0 = −1. This gives the variance of the IK, denoted by

σ2
IK:

σ2
IK = var(λ>m+1YYY ) =

m∑
i=0

m∑
i′=0

λiλi′K(xi,xi′). (10)

In this section we assume that K is known, so the optimal linear predictor is
obtained through minimization of (10) subject to (9). This problem resembles
the previous UK objective function with ΣM now replaced by K. Hence, the
IK predictor is given by (8) with

λ> =
(
K(x0, ·) + F

(
F>K−1F

)−1 (
f(x0)− F>K−1K(x0, ·)

))>
K−1, (11)
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where K(x0, ·) = (K(x0,x1), . . . ,K(x0,xm))
>

and K is an m×m matrix with
(i, i′) element K(xi,xi′). The resulting σ2

IK is

MSPE(Ŷ (x0)) = K(x0,x0)−K(x0, ·)>K−1K(x0, ·)+(
f(x0)− F>K−1K(x0, ·)

)> (
F>K−1F

)−1 (
f(x0)− F>K−1K(x0, ·)

)
. (12)

Like UK, IK is an exact interpolator. Comparing the predictor and MSPE of
UK and IK shows that if M (x) is a second-order stationary process, UK and
IK give identical results.

5 Choosing a generalized covariance matrix K

In this section we discuss properties of generalized covariance matrices and
different functions for them. Following Matheron (1973), Cressie (1991, pp.
304-305), and Chilès and Delfiner (2012, pp. 257-269); we begin with isotropic
covariance functions for K(h = ‖h‖).

Obviously K is symmetric; i.e., K(xi,xi′) = K(xi′ ,xi), and it must be
conditionally positive definite so

var(λ>YYY ) =

m∑
i=1

m∑
i′=1

λiλi′K(xi−xi′) ≥ 0 such that (fj(x1), . . . , fj(xm))λ = 0,

where the condition must hold for j = 1, . . . , p + 1. Parametric models for K
are given by Matheron (1973).

We start with isotropic polynomial functions developed by Matheron (1973).
K in an IRF-k with isotropic polynomial covariance functions equals

K(h) =


−θ1h, k = 0

−θ1h+ θ2h
3, k = 1

−θ1h+ θ2h
3 − θ3h5, k = 2,

(13)

where for k = 0, 1, or 2 we have the constraints θ1 ≥ 0, θ3 ≥ 0, and θ2 ≥
[(20/3)(1 + (2/(d + 1))θ1θ3]1/2 in Rd; obviously, for k = 0 we have θ2 = 0 and
θ3 = 0 and for k = 1 we have θ3 = 0. For general k the isotropic polynomial
generalized covariance function is

K(h) =

k∑
l=0

(−1)l+1θl+1h
2l+1 with h = ‖h‖ ≥ 0,

where θ1, . . . , θl+1 must satisfy

k∑
l=0

θl+1Γ ((2l + 1 + d)/2)

π2l+2+(d/2)Γ (1 + (1/2)(2l + 1))
ρ−d−2l+1 ≥ 0 for any ρ ≥ 0,

where Γ(·) denotes the Gamma function.
We use the first two examples of IRF-k that we gave in § 3, to introduce

new generalized covariance functions.
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1. The (k + 1) integral of a zero-mean stationary random function with co-
variance C(h = x− x′) is an IRF-k with generalized covariance function

K(h) = (−1)k+1

∫ h

0

(h− u)2k+1

(2k + 1)!
C(u)du.

There are many choices for C. The common choices are exponential
C(h) = exp(−θh), Gaussian C(h) = exp(−θh2), or Matern. Now we
derive the generalized covariance functions for k = 0 in two cases of C(·).

(a) Gaussian C(·):

K(h) = (−1)

∫ h

0

(h− u) exp(−θu2)du

=
(

1− exp(−θh2)− h
√
πerf(

√
θh)
)
/2θ,

where erf(·) is the error function.

(b) Exponential C(·):

K(h) = (−1)

∫ h

0

(h− u) exp(−θu)du

=
h

θ
(exp(−θh)− 1) +

1

θ2
(1− (1 + θh) exp(−θh)) .

2. Integrating k times a Brownian motion B(x) with covariance function
C(x, x′; θ) = θmin(x, x′) with x, x′ ∈ [0, 1] and θ ≥ 0 gives an IRF-k with
generalized covariance function

K(x, x′; θ) = θ

∫ 1

0

(x− u)k+(x′ − u)k+
(k!)2

du, (14)

where θ ≥ 0; see Berlinet and Thomas-Agnan (2004, p. 92). Salemi et al.
(2013, pp. 546-547) suggest to add polynomial terms to this covariance
to avoid B(x) becoming zero at x = 0. In our experiments we add a
constant term θ0 ≥ 0 to 14. Note that Brownian motion is a special
case of fractional Brownian motion BH which is an IRF-0 with covariance
function

cov (BH(x), BH(x′)) =
1

2

(
x2H + x′

2H − (x− x′)2H
)
, 0 < H < 1,

where H = 1/2 gives the usual Brownian motion.

We are also interested in anisotropic generalized functions. We use the same
idea which we used to handle anisotropy for covariances of stationary random
function; see (2) for the Gaussian case. The idea is that the multiplication of
valid covariance functions gives a valid covariance function, so we multiply the
covariance functions per input dimension.
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Below we give the anisotropic version of K for the covariance function of the
integrated Brownian motion defined in (14):

K(x,x′;θ) =

d∏
g=1

(
θ0;g + θ1;g

∫ 1

0

(xg − ug)
kg

+ (x′g − ug)
kg

+

(kg!)2
dug

)
, (15)

where θ = (θ0;1, θ1;1, θ0;2, . . . , θ0;d, θ1;d) ≥ 0.
The anisotropic covariance function accepts different k for different input

dimensions, so we have a vector of the orders k = (k1, . . . , kd)> instead of a
single scalar k for all the input dimensions in the isotropic covariance functions.
Anisotropic covariance functions handle each input dimension separately and
this make them more flexible than isotropic covariance functions. However, this
comes with the cost of estimating more parameters.

In practice, K is unknown so we estimate the covariance function parameters
θ. For this estimation we use restricted maximum likelihood (REML). So we
assume Y is a Gaussian IRF-k. The REML estimator of θ is then found through
minimization of the negative log-likelihood function

`(θ) = (m− q)/2 log(2π)− 1

2
log
∣∣F>F

∣∣+
1

2
log |K(θ)|+ 1

2
log
∣∣F>K(θ)−1F

∣∣
+

1

2
YYY >Ξ(θ)YYY , (16)

where q = rank(F) and Ξ(θ) = K(θ)−1 −K(θ)−1F
(
F>K(θ)−1F

)−1
F>K(θ)−1.

Finally, we replace K by K(θ̂) in (11) to obtain λ̂ and in (12) to obtain σ̂2
IK.

We could require REML to estimate the optimal (integer) orders k∗, but this
would make the optimization difficult. In our methodology, the user has to try
different values for k and pick the one which gives a better fit. The development
of a procedure to find k∗ without user intervention is a topic for future research.

6 Stochastic simulation and IK: SIK

In this section we extend the theory of IK to account for a situation where the
simulation output is random and its variance changes across the input space.
We mentioned earlier that IK is an interpolator; this is not a good property
for random simulation. Random simulation has sampling variability or internal
noise besides the external noise that is the spatial uncertainty created by the
fitted metamodel.

The extension of IK that assumes internal noise with a constant variance
of simulation output has already been studied in the literature as nugget effect
(geostatistics) or jitter (machine learning). Indeed, Cressie (1991, p. 305) briefly
discusses IK in case of a nugget effect, replacing K by K + c0δ(h) where c0 ≥ 0,
δ(h) = 0 if h > 0, and δ(h) = 1 if h = 0. Our contribution considers the case
of heteroscedastic variance.
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Our methodology is similar to the one that is used to incorporate internal
noise in Kriging and is published under different names; see Opsomer et al.
(1999); Ankenman et al. (2010); Yin et al. (2011).

We suggest a new metamodel which extends the IK metamodel defined in (7)
and incorporates the internal noise. The value of this metamodel at replication
r of the random output at x is

Yr(x) = f(x)>β + M(x) + εr(x) with x ∈ Rd, (17)

where ε1(x), ε2(x), . . . denotes the internal noise at input combination x. We
assume that the internal noise has a Gaussian distribution with mean zero and
variance V(x) and that this internal noise is independent of M(x).

Our experimental design consists of pairs (xi, ni), i = 1, . . . ,m, where ni is
the number of replications at input combinations xi. The replications enable us
to compute the classic unbiased estimators of the mean output and the internal
variance:

Y(xi) =

∑ni

r=1 Yi;r

ni
and s2(xi) =

∑ni

r=1

(
Yi;r − Y(xi)

)2
ni − 1

. (18)

Because we assumed that the external noise M(x) and the internal noise ε(x)
in (17) are independent, the stochastic intrinsic Kriging (SIK) predictor and its
MSPE can be derived similarly to the IK in (8) and (12) except that KM will
be replaced by K = KM + Kε, where Kε is a diagonal matrix (so no common
random numbers are used) with the variances of the internal noise V(xi)/ni
on the main diagonal, and KM still denotes the generalized covariance matrix
of IK without internal noise. We also have to replace YYY in (8) and (12) by

Y = ( Y(x1),. . .,Y(xm) )
>

. So the stochastic intrinsic Kriging predictor is

Ŷ(x0) = λ>Y where

λ> =
(
KM(x0, ·) + F

(
F>K−1F

)−1 (
f(x0)− F>K−1KM(x0, ·)

))>
K−1 (19)

and its MSPE is

MSPE(Ŷ(x0)) = KM(x0,x0)−KM(x0, ·)>K−1KM(x0, ·)+(
f(x0)− F>K−1KM(x0, ·)

)> (
F>K−1F

)−1 (
f(x0)− F>K−1KM(x0, ·)

)
. (20)

Note: In our experiments we estimate the MSPE from the known mean output
of our test functions; see (23).

We use REML (see § 5) to estimate the parameters of the generalized co-

variance θ, and replace KM by KM(θ̂). We also need to estimate the internal
noise V which is typically unknown. Inspired by Ankenman et al. (2010) we use
an IK metamodel for the internal noise.

V(x) = f(x)>σ + Z(x),

9



where Z is an IRF-k independent of M. We know that V(x) is not observable,
even at old points xi (i = 1, . . . ,m), so we let s2(xi) defined in (18) stand for
V(xi). We use IK to model the internal noise, so we assume the s2(xi) have no

noise and V̂(xi) = s2(xi). We replace Kε by K̂ε =
(
V̂(x1)/n1, . . . , V̂(xm)/nm

)
.

Finally, we replace K = KM + Kε by K̂ = KM(θ̂) + K̂ε in (19) and (20). In the
next section we explain how we choose the number of replications at each point
ni.

6.1 Design of experiments

Like Ankenman et al. (2010) we are interested in an experimental design which
has low integrated MSPE (IMSPE) introduced in Sacks et al. (1989), but our
approach is slightly different. Ankenman et al. (2010) use MSPE for the case of
simple Kriging where the trend is known, whereas we use MSPE for the general
case of universal Kriging where the trend is unknown; we also correct an error
in Ankenman et al. (2010), as we shall see below (22).

In our design we have to allocate N replications among m old points xi such
that this design minimizes the IMSPE. Let X be the design space. Then our
goal is

min
n

IMSPE(n) =

∫
x0∈X

MSPE(x0,n)dx0, (21)

subject to n>1m ≤ N , and n = (n1, . . . , nm)> where ni ∈ N.
We formulate IMSPE as

IMSE(n) =

∫
KM(x0,x0)dx0−

trace

{[
O F>

F K(n)

]−1 ∫ [
f(x0)f(x0)> f(x0)KM(x0, ·)>

KM(x0, ·)f(x0)> KM(x0, ·)KM(x0, ·)>
]
dx0

}

=

∫
KM(x0,x0)dx0 − trace

{
S(n)−1

∫
Γ(x0)dx0

}
= κ− trace

{
S(n)−1W

}
= κ−

p+1+m∑
i,i′=1

[S(n)−1]i,i′Wi,i′

= κ− 1>
[
S(n)−1 ◦W

]
1,

where ◦ is the Hadamard product.
Then we write the Lagrangian function for the minimization problem

L(n) = IMSPE(n) + η(N − 1>n).

The first-order optimality conditions are

∂L(n)

∂ni
=
∂IMSPE(n)

∂ni
+ η = 0, (i = 1, . . . ,m).
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Application of linear algebra gives

∂IMSPE(n)

∂ni
= −1>

[
W ◦ ∂S(n)−1

∂ni

]
1

= −V(xi)

n2i
1>
[
W ◦

(
S(n)−1J(ii)S(n)−1

)]
1,

where J(ii) is a (p+1+m)×(p+1+m) matrix with 1 in position (p+1+i, p+1+i)
and zeros elsewhere.

Suppose N is large enough that K ≈ KM. We solve the first-order optimality
conditions to find n∗. Relaxing the integrality condition, we get the optimal
allocation of total number of replications N over m old points:

n∗i ≈ N
√

V(xi)Ci∑m
i=1

√
V(xi)Ci

, with Ci = 1>
[
W ◦

(
S−1J(ii)S−1

)]
1, (22)

so both the internal and the external noises affect the allocation. Note that Anken-
man et al. (2010) wrongly simplify further Ci to

[
S−1WS−1

]
qq

where q =
p+ 1 +m.

Because we need to estimate KM and Kε, we use the two-stage approach
proposed in Ankenman et al. (2010, p. 378). In Stage 1, we obtain a pilot
sample of m1 < m input combinations and allocate n0 > 10 replications to
each point. This enable us to estimate KM(θ̂) and V̂. In Stage 2, we first
select m −m1 input combinations jointly, and then we optimally allocate the
N −m1n0 additional replications over m input combinations using (22). In the
next section we discuss the application of this approach for the M/M/1 example.

7 Numerical experiments

In this section we present our numerical experiments for both deterministic and
random simulations. In all of our experiments we use a zero degree polynomial
for the trend (p = 0), so UK becomes OK. In deterministic simulation we study
the performance of OK versus IK. In random simulation we study the random
metamodels developed based on OK and IK which account for internal noise;
we call them SK (stochastic Kriging) and SIK.

We tried to use the MATLAB code developed by Ankenman et al. (2010)
and Yin et al. (2011) to experiment with these Kriging variants (OK for deter-
ministic simulation and SK for random simulation), but their MATLAB code
crashed in experiments with d > 1. So we use the R package mlegp to imple-
ment OK and SK; see Dancik (2013) for more details. We implemented our
code for IK and SIK in MATLAB.

Initially we tried several generalized covariance matrices that we discussed
in § 5. We decided to use the integrated Brownian motion generalized covariance
in (15) for IK and SIK. We use the Gaussian covariance function defined in (2)
for OK and SK.
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(a) Monotonic one-dimensional function

45 46 47 48 49 50 51 52 53 54 55
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m

R
M

S
E

 

 

IK−(0,0,0,0,0)
IK−(1,1,1,1,1)
IK−(2,2,2,2,2)
IK−(0,1,0,1,0)
OK−mlegp

(b) Ackley-5 function

Figure 1: RMSE versus m with IK-k and OK

We study several values for the number of old points m; namely, all integers
between 10d−5 and 10d+5, where m = 10d is popular in Kriging; see Loeppky
et al. (2009).

We experiment with several values for d (input dimensionality). The simplest
case is d = 1, so this case may give valuable intuitive insight (obviously, for
d = 1 isotropic and anisotropic covariance functions are the same). In practice,
however, d > 1 so we also study test functions with such d values.

To evaluate the performance of OK versus IK and SK versus SIK, we select
m0 = 100d new points x0. For d = 1 we select m and m0 equispaced points; for
d > 1 we use Latin hypercube sampling (LHS) to select m and m0 space-filling
points. For this LHS we use the MATLAB function lhsdesign.

We quantify the performance of different metamodels through RMSE for the
m0 new points:

RMSE =

√∑m0

t=1(Yt − Ŷt)2
m0

. (23)

7.1 Deterministic simulation experiments

In this (sub)section we present the results of our experiments with deterministic
test functions of different dimensionality; namely d = 1, 2, 3, 5.

We start with a monotonic function with d = 1; namely, f(x) = 1/[x(x−1)]
and 1 < x ≤ 2, which inspired by the mean steady-state waiting-time as a
function of the service rate x with the arrival rate equal to 1 in a single-server
queue with Markovian arrival and service processes (denoted by M/M/1). This
function increases monotonically, and increases drastically as x ↓ 1.

For this function, Figure 1a shows the RMSE of IK-k and OK versus different
values for m. We observe that IK with k = 2 performs better than OK for
m ≤ 11; for larger m the difference between IK-2 and OK becomes small.
Next we experiment with several functions that are popular in optimization;
see Dixon and Szego (1978) and http://www.sfu.ca/~ssurjano/index.html.
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We experiment with (1) Six-hump camel-back with d = 2 (2) Hartmann-3 with
d = 3 (3) Levy-3 with d = 3 (4) Ackley-5 with d = 5. We define the first three
functions in the appendix, and discuss the Ackley-5 function in detail. The
Ackley-5 function is defined as

f(x) = −20 exp

−0.2

√√√√1

5

5∑
i=1

x2i

− exp

(
1

5

5∑
i=1

cos(2πxi)

)
+ 20 + exp(1),

with −2 ≤ xi ≤ 2, i = 1, . . . , 5.
For this function, Figure 1b shows that IK-(0, 0, 0, 0, 0) gives the lowest

RMSE for all values of m. We also experimented with different k, and found
that the RMSE deteriorated compared with k = (0, 0, 0, 0, 0)>.

The results for the other test functions show that IK performs better than
OK except for the Hartmann-3 function; to be the winner, IK needs an appro-
priate value for the parameter k (which is not always k = 0). The figures for
these functions can be found in Figure 4 in the appendix.

7.2 Random simulation experiments

In this (sub)section we first discuss the two-stage approach detailed in § 6.1 for
the M/M/1 model (defined in § 7.1) to show how to use SIK in real applications.
Then we compare the performance of SIK and SK for different test function
simulations. However, in the comparison of SIK and SK for these functions, we
do not use the two-stage approach to compute the optimal number of replications
at each point; instead we select ni proportional to the true value of the internal
noise at each point. The reason for this approach is that we focus on comparing
SIK and SK, and not on the selection of the number of replications.

We design our M/M/1 experiment as follows. We fix the arrival rate at 1
and vary the service rate. This gives the traffic rate ρ = 1/x. In each replication
we calculate the average waiting time of customers in the system from time 0
to T = 3, 000 (run-length). To avoid the tactical problem of selecting an initial
state and a warm-up period, we do not start in the empty state but we start in
the steady state; i.e., the initial number of customers in the system at T = 0
equals the mean steady-state number ρ/(1 − ρ). We keep the run-length per
replication T the same for all x, so the internal noise is controlled through the
number of replications.

In Stage 1, we select ρ = 0.3, 0.5, 0.7, 0.9 and make 20 replications of length
T at each point. Then we fit a SIK-0 metamodel to the simulated data. Fig-
ure 2a shows the the average waiting time in the queue metamodel from Stage
1. The circles represent the simulated data, the solid curve represents the SIK-0

metamodel, surrounded by ±
√

MSPE(Ŷ(x0)). The dashed curve represents the
true function.
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(b) IK-0 metamodel for the internal noise
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(c) Stage 2

Figure 2: Two-stage approach for the M/M/1 queue; the dotted curve denotes
the true function, and the solid curve denotes the metamodel

SIK is not an interpolator, so it does not pass through the data points,

especially at x = 0.8. Note that the ±
√

MSPE(Ŷ(x0)) intervals which account
for internal and external noise cover the true function except for the region
between x = 0.7 and x = 0.9. Figure 2b shows the IK-0 metamodel for the
internal noise V(x0). Here the metamodel is an interpolator and goes through
the data points. It can be seen that the simulation gives a poor estimate of
V(0.9). This figure shows the classic shape of these intervals; namely, their
length is close to zero at the old points, and increases away from these points;
however, Figure 4 in Ankenman et al. (2010) shows “nearly constant” length.

In Stage 2, we use the information obtained in Stage 1 to apply (22) and
optimally allocate N = 500 replications over the four old points and three
new points x = 0.4, 0.6, 0.8. The metamodel for the internal noise help us for
these three new points which were not simulated in Stage 1. The estimated
optimal allocation is n∗ = 1, 1, 2, 3, 12, 126, 355. In some points we have already
simulated more replications than is optimal, and in other points we have to
simulate additional replications. We fit a SIK-0 metamodel to data obtained
from Stage 2. Figure 2c shows the SIK-0 metamodel for the data obtained from
Stage 2. This figure shows that the new metamodel is close to the true function,
and the MSPE intervals cover the true function.

We continue this section with the comparison of SIK and SK in our test
functions. In all the test functions we select the number of replications at
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each point proportional to the true value of internal noise. In the M/M/1
example, the internal noise function is V(xi)/T ≈ 4/(Txi(1−1/xi)

4); see Whitt
(1989, p. 1350) so ni = BbV(xi)/

∑m
i=1 V(xi)c where B is the total number of

replications. In the other test functions with higher dimensionality we augment
the deterministic response with heteroscedastic noise; namely, V(xi) = (1 +
|y(xi)|)2, like Wan et al. (2010) doe in an experiment with linear regression
metamodels.

Figure 3a shows the RMSE of SIK-k and SK versus m for the M/M/1 sim-
ulation. SIK-0 gives smaller RMSE for all m. Figure 3b shows the results for
all three k values for the Ackley-5 simulation. We also observe that changing
k from 0 to 1 or 2 in all coordinates give almost identical results. In other test
functions SIK-0 gives smaller RMSE in almost all m points except in the Levy-3
function where SIK and SK give almost identical RMSEs for all m. The figures
for these test function can be found in Figure 4 in the appendix.
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Figure 3: RMSE versus m with SIK and SK

8 Conclusions

Using IRFs, we derived IK for deterministic simulation, and SIK for random
simulation. Next we numerically compared the performance—measured by
RMSE—of IK with OK and SIK with SK. Additionally, we derived a two-stage
approach for sample size allocation in SIK in random simulation. The main
conclusion is that in most experiments IK and SIK give smaller RMSEs than
OK and SK.

In general, it is well-known that Kriging requires the selection of a specific
covariance function (e.g., Gaussian or exponential) and parameters (e.g., θ). In
IK and SIK we also must select a specific covariance matrix K, and parameter
value k. Theses issues require more research.
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A Test functions with d > 1

In this appendix we define the test functions with d > 1 , and give the results
of our simulation experiments.

1. Six-hump camel-back with −2 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 1

f(x1, x2) = 4x21 − 2.1x41 + x61/3 + x1x2 − 4x22 + 4x42

2. Hartmann-3 function with 0 ≤ xi ≤ 1, i = 1, 2, 3

f(x1, x2, x3) = −
4∑

i=1

αi exp[−
3∑

j=1

Aij(xj − Pij)
2],

with α = (1.0, 1.2, 3.0, 3.2)> and Aij and Pij given in Table 1.

Table 1: Parameters Aij and Pij of the Hartmann-3 function

Aij Pij

3 10 30 0.36890 0.1170 0.26730
0.1 10 35 0.46990 0.43870 0.74700
3 10 30 0.10910 0.87320 0.55470

0.1 10 35 0.03815 0.57430 0.88280

3. Levy-3 function with −10 ≤ xi ≤ 10, i = 1, 2, 3

f(x) = sin2(πw1) + (w2 − 1)2[1 + 10 sin2(πw2 + 1)] + (w3 − 1)2[1 + sin2(2πw3)],

where wi = 1 +
xi − 1

4
.
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(c) IK-k and OK in Hartmann-3 function
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(d) SIK-k and SK in Hartmann-3 function
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(e) IK-k and OK in Levy-3 function
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Figure 4: RMSE versus m in deterministic (left panels) and random simulation
(right panels)
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