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CHAPTER 1

Introduction

In many research situations in the social and behavioral sciences, data are collected
within hierarchically ordered systems. Examples are data sets on children nested within
schools, employees nested within teams or organizations, patients nested within therapists
or hospitals, citizens nested within regions, clients nested within stores, but also repeated
measurements nested within subjects. Multilevel analysis deals with these kind of nested
observations (Goldstein, 2011).

The added value of multilevel modelling compared to standard statistical techniques is
twofold. First, the dependencies among individuals within a group are taken into account.
For example, two employees working in the same organization might be more similar with
respect to work satisfaction than two employees working in different organizations. This
violates the assumption of independent errors as made in standard regression analysis.
Second, it allows investigating relationships among variables at different levels of such an
hierarchical structure; that is, relationships between characteristics of schools and children,
organizations and employees, or patients and therapists.

As far as the relationships between characteristics of individuals and groups are
concerned, depending on the research question at hand, one of two rather different
mechanisms may be of interest. The first option is that variables at the group level (or
macro level) are assumed to affect one or more outcome variables at the individual level (or
micro level). For example, the school’s teaching system affects the pupils’ learning rates,
or the team’s autonomy affects the work satisfaction of team members. Following Snijders
and Bosker (2012), we refer to these types of situations as macro-micro relationships. The
second possible mechanism concerns individual-level characteristics affecting group-level
outcomes. For example, the motivation of children affects the teaching style of teachers,
or the work load of employees affects the team’s productivity. These are referred to as
micro-macro relationships.

Although, both macro-micro and micro-macro relationships are of interest in social
and behavioral science research, the overwhelming majority of models developed for the
analysis of multilevel data sets concern the macro-micro situation. This dissertation will

1



2 CHAPTER 1. INTRODUCTION

contribute to the methodology for investigating micro-macro relationships, with a special
emphasis on discrete data. It contains data examples from a broad range of research fields
within the social and behavioral sciences such as sociology, educational measurement, and
organizational studies. This illustrates the need for, and the widely applicability of, these
statistical methods.

1.1 Micro-Macro Analysis

Traditionally, a micro-macro relationship is analyzed by a single-level analysis in one of the
following two ways. The first method involves aggregating the micro-level predictor to the
macro level using the group mean or any other measure of central location. Subsequently,
a group-level analysis is performed in which the group-level outcome is regressed on
the aggregated individual-level predictor. A serious problem with this approach is that
measurement error in the aggregated scores is not accounted for. This implies that
the group members are assumed to provide perfect information about their group, while
this assumption is unlikely to hold in practice (Lüdtke, Marsh, Robitzsch, & Trautwein,
2011). Sampling fluctuation might be an issue as well when not all individuals within a
group are investigated. In case of discrete data an additional problem arises, since it is
not clear how to aggregate discrete variables. For example, for nominal variables with
more than two categories, the group mean has no substantive interpretation. A group
mode can be used instead, but measurement and sampling error is still not accounted
for. Instead of aggregating, the second method for dealing with micro-macro situations is
that the macro-level outcome is disaggregated to the micro level and an individual-level
analysis is performed in which the disaggregated outcome is regressed on the individual-
level predictor. Disaggregation violates one of the basic assumptions of regression analysis,
namely that the units are independent (Keith, 2006). Consequently, Type-I errors are
severely inflated leading to too liberal tests (Krull & MacKinnon, 1999; MacKinnon,
2008).

Croon and van Veldhoven (2007) proposed a two-level latent variable model for micro-
macro analysis that appropriately handles the multilevel structure of the problem at hand.
The scores of the group members on a micro-level predictor Zij are used as exchangeable
indicators for a continuous group-level latent variable ζj . In this notation, the subscript
j refers to the group level and subscript i to the individual level. Since a latent variable
is used at the group level to represent the individual-level variable, measurement error
and sampling error in the (latent) aggregated scores are taken into account. This part
of the model is referred to as the within-group part of the model. In the between-group
part of the model, the group-level latent scores are related to the group-level outcome Yj ,
but it is also possible to include other (independent) group-level variables, represented by
Xj . A graphical illustration of a model with a single group-level predictor Xj , a single
individual-level predictor Zij and a single group-level outcome Yj is shown in Figure 1.1.

Whereas this latent variable approach has been an import ant step forward, its main
limitation is that it assumes that the endogenous variables in the model are continuous.
Though in certain applications this may (at least approximately) be correct, there are also
many situations in which an approach suited for discrete data is preferred. For example,
when the micro-level predictor or the macro-level outcome is discrete (dichotomous,
nominal, or ordinal), or when for theoretical or practical reasons it is warranted to classify
the groups into (latent) categories instead of placing them on a continuous scale. The aim
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Figure 1.1: Micro-Macro Latent Variable Model

of the current dissertation is to generalize the approach from Croon and van Veldhoven
(2007) to the situation in which the (latent) variables are not continuous, but discrete.

1.2 Discrete Data

To generalize the latent variable approach proposed by Croon and van Veldhoven (2007)
to discrete data, a latent class model, instead of a factor-analytic model, is used to
define a discrete latent variable at the group level. Aggregating a discrete individual-level
predictor to the group level with a latent class model does not only make it possible to
account for measurement and sampling error in the aggregates scores, it also overcomes
the difficulties that arise when a manifest mean or mode is used for the aggregation.

When the model shown in Figure 1.1 is formulated for categorical data, the latent
variable ζj is now a categorical variable which values define a set of C discrete latent
classes at the group level, c = 1, · · · , C. The individual scores Zij for a particular group
are denoted by the vector Zj and treated as ‘unreliable’ indicators of the group score
ζj . A discrete group-level predictor Xj is added to the model. In most applications
the relationships among the macro-level variables will be modeled by logit models or,
eventually, by more complex log-linear models. For an arbitrary group j, the relevant
conditional probability distribution for the manifest variables Yj and Zj given Xj is:

P (Yj ,Zj |Xj) =

C∑

c=1

P (Yj , ζj = c|Xj)P (Zj |ζj = c). (1.1)

The terms on the right hand side of the equation are the between and within part that
can be further decomposed as

P (Yj , ζj = c|Xj) = P (ζj = c|Xj)P (Yj |Xj , ζj = c), (1.2)

and

P (Zj |ζj = c) =

Ij∏

i=1

P (Zij |ζj = c). (1.3)

This model is the baseline model throughout the dissertation.
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1.3 Outline of the Dissertation

This dissertation consists of four journal articles that together give a coherent insight
in micro-macro multilevel analysis for discrete data. Since the chapters are stand alone
articles, they can be read independently. This creates some overlap in the text and some
inconsistency in notation. A short overview of the chapters is given below.

In Chapter 2, the latent variable approach is presented and compared to the single-level
aggregation and disaggregation methods in a simulation study. In a second simulation
study, the latent variable approach is evaluated in the baseline model from Figure 1.1 by
studying bias in the group-level parameter estimates, and the power and Type-I error rates
of the statistical tests. In the end of the chapter, the latent variable approach is applied
to personal network data. In the remaining chapters, the baseline model is extended to
more complex situations that can be found in applied research.

In Chapter 3, two extensions are presented to handle multiple individual-level variables,
so multiple Zij-variables. As in the baseline model, the individual-level data are
summarized at the group level using a single discrete latent variable ζj at the group
level. In the first extension, the multiple Zij-variables are directly used as indicators
for ζj , such as done in Figure 1.1 when the model contained a single Zij . To capture
the within-group (co)variation among the Zij-variables, either all two-way associations
among the Zij-variables or an individual-level latent variable needs to be incorporated in
the model. In the second extension, the Zij-variables are used indirectly at the group
level by using them as indicators for an individual-level variable. This individual-level
latent variable is aggregated to the group level by using it as a single indicator for ζj .
Both extensions are applied to empirical data from either marketing research or research
to human resource practices in small firms.

Thus far, the full models are estimated in one step and in Chapter 4 is explored how to
estimate the proposed latent class models in a stepwise matter by estimating the within-
group model before estimating the between-group model. This is in fact already done when
an individual-level predictor is aggregated with a manifest variable, but the stepwise latent
class approach also corrects the group-level estimates for error in the aggregated scores.
This is discussed first in the context of the baseline model from Figure 1.1 and second in
the context of a model with two group-level latent variables. The stepwise model with
two latent group-level variables is applied to empirical data from organizational research.

In Chapter 5, an application from the field of educational measurement is presented
in which the group-level latent classes are the main objective of the study. Schools are
classified into (latent) classes (ζj) based on multiple student-level items (Zij-variables).
Contrarily to the baseline model from Figure 1.1, ζj is not related to a group-level outcome
Yj . This can be seen as a micro-macro relationship in which the group-level outcome of
interest is a latent, instead of a manifest, variable. Furthermore, the latent classification
of schools is controlled for the ability of the students within the schools and can also be
used to detect uniform and nonuniform school-level item bias. This shows that ζj can also
be used for other purposes than aggregating the individual-level variables to the group
level.



CHAPTER 2

A Latent Variable Approach to Micro-Macro Analysis

Abstract

A multilevel regression model is proposed in which discrete individual-level variables are
used as predictors of discrete group-level outcomes. It generalizes the model proposed by
Croon and van Veldhoven for analyzing micro-macro relations with continuous variables
by making use of a specific type of latent class model. A first simulation study shows
that this approach performs better than more traditional aggregation and disaggregation
procedures. A second simulation study shows that the proposed latent variable approach
still works well in a more complex model, but that a larger number of level-2 units is
needed to retain sufficient power. The more complex model is illustrated with an empirical
example in which data from a personal network are used to analyze the interaction effect
of being religious and surrounding yourself with married people on the probability of being
married.

This chapter is published as Bennink, M., Croon, M. A., & Vermunt, J. K. (2013). Micro-macro
multilevel analysis for discrete data: A latent variable approach and an application on personal network
data. Sociological Methods & Research, 42(4), 431-457.

5
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2.1 Introduction

In many research situations in the social and behavioral sciences, data are collected within
hierarchically ordered systems. For example, data may be collected on individuals nested
within groups. Repeated measures carried out on the same individuals can also be treated
as nested observations within these individuals. Data collected in a personal or egocentric
network are hierarchical as well, since data are collected on individuals (egos) and on
persons from the network of these individuals (alters) or on ties (ego-alter relations). This
data collection procedure is an example of a multilevel design in which the observations
on the alters or ties are nested within the egos (Hox & Roberts, 2011; Snijders, Spreen,
& Zwaagstra, 1995). In the current article, data are considered hierarchical when both
the level-2 units and the level-1 units are a (random) sample of the population of possible
level-2 and level-1 units.

In these two-level settings, two basically different situations can be distinguished. In
the first situation, independent variables defined at the higher (macro) level are assumed
to affect dependent variables defined at the lower (micro) level. For example, whether
firms have a salary bonus system or not may affect the individual productivity of the
employees working in these firms (Snijders & Bosker, 2012). Snijders and Bosker (2012)
refer to these relationships as macro-micro relations, but they are also referred to as 2-1
relations since a level-2 explanatory variable affects a level-1 outcome variable. In the
last few decades many efforts have been made to develop multilevel models for this kind
of hierarchical ordering of variables, and although the bulk of this work has emphasized
multilevel linear regression models for continuous variables, multilevel regression models
for discrete response variables have also been proposed (Goldstein, 2011; Snijders &
Bosker, 2012). Standard multilevel software as implemented in, for instance, SPSS,
MLwiN (Rasbash, Charlton, Browne, Healy, & Cameron, 2005), and Mplus (Muthén &
Muthén, 1998-2012) is available to estimate these multilevel models.

In the second situation, referred to as a micro-macro situation by Snijders and Bosker
(2012), independent variables defined at the lower level are assumed to affect dependent
variables defined at the higher level. These relations, which can also be referred to as
1-2 relations, have received less attention in the statistical literature than the models for
analyzing 2-1 relations. This is rather odd since this type of relation occurs frequently in
the social and behavioral sciences. For instance, consider organizational research that tries
to link team performance or team effectiveness to some attributes or characteristics of
the individual team members (DeShon, Kozlowski, Schmidt, Milner, & Wiechmann, 2004;
van Veldhoven, 2005; Waller, Conte, Gibson, & Carpenter, 2001). Also in educational
psychology these micro-macro relations may be of interest when, for example, the global
school effectiveness is studied in relation to the attributes of the individual students and
teachers (Rutter & Maughan, 2002).

Two traditional approaches for analyzing micro-macro relationships are commonly
in use: either, the individual-level predictors are aggregated to the group level, or the
group-level outcome variables are disaggregated to the individual level and the analysis is
concluded with a single-level regression analysis at the appropriate level. More recently,
Croon and van Veldhoven (2007) presented an alternative latent variable approach for
analyzing micro-macro relations with continuous outcomes. This approach has only been
fully worked out yet for the case of linear relationships among continuous explanatory
and outcome variables. The present article discusses how to extend this latent variable
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approach to the analysis of discrete data.
In the remainder of this article, the aggregation, disaggregation and latent variable

approaches to deal with a micro-macro hypothesis are described, applied to discrete data
and evaluated and compared in a simulation study. Subsequently, a discrete group-level
predictor is added to the micro-macro model and this extended model is evaluated in a
second simulation study and illustrated with an empirical example on personal network
data.

2.2 Analyzing Micro-Macro Relations

2.2.1 Aggregation and Disaggregation

For the analysis of micro-macro relations, two traditional approaches are currently being
applied: either the individual-level predictors are aggregated to the group level or the
group-level outcome variables are disaggregated to the individual level, and the final
analysis is concluded with a single-level regression analysis at the appropriate level.

The first approach to deal with micro-macro relations is to aggregate the individual-
level predictors to the group level by assigning a mode, median or mean score to every
group based on the scores of the individuals within the group. It is then assumed that the
assigned scores perfectly reflect the construct at the group level. This assumption is not
realistic in practice, since the group-level construct does not represent the heterogeneity
within groups. Moreover, the group-level construct may be affected by measurement error
and sampling fluctuation (Lüdtke et al., 2011). Additionally, the number of observations
on which the final regression analysis is carried out decreases since the groups are treated
as the units of analysis. Consequently, the power of the statistical tests involved may
sharply decrease (Krull & MacKinnon, 1999). Aggregation also has the disadvantage that
the information about the individual-level variation within the groups is completely lost.

When disaggregating the outcome variable, each individual in a group is assigned his
group-level score, which in the further analysis is treated as if it was an independently
observed individual score. Since the scores of all individuals within a particular group
are the same, the assumption of independent errors among individuals (Keith, 2006), as
made in regression analysis, is clearly violated. This violation leads to inefficient estimates,
biased standard errors, and overly liberal inferences for the model parameters (Krull &
MacKinnon, 1999; MacKinnon, 2008). Moreover, by analyzing the data at the individual
level in this manner, the total sample size is not corrected for the dependency among
the individual observations within a group, which causes the power of the analysis to be
artificially high.

2.2.2 Latent Variable Approach

Recently, Croon and van Veldhoven (2007) presented an alternative approach for analyzing
micro-macro relations with continuous outcomes which overcomes many of the problems
associated with aggregation or disaggregation. Their latent variable approach is illustrated
by the model shown graphically in Figure 2.1. This model covers the situation with a
single explanatory variable at the individual level (Zij) affecting a single outcome variable
at the group level (Yj). In the notation used here, the subscript j refers to the groups,
while the subscript i refers to individuals within a group.
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individual level

Zij

group level

Yjζj

Zij

β2

β4

Zij

Figure 2.1: Graphical Representation 1-2 Model

To analyze the relationship between the individual-level independent variable and
the group-level outcome, the scores on Zij are treated as exchangeable indicators for
a latent group-level variable ζj . The exchangeability assumption implies that the relation
between the individual-level observation and the group-level latent variable is assumed
to be the same for all individuals within a group. In this way, all individuals are treated
as equivalent sources of information about the group-level variable, and none of them is
considered as providing more accurate judgments in this respect than his co-members.
This assumption is warranted when all group members play similar or identical roles in the
group and is probably less vindicated when the group members differ with respect to their
functioning in the group. The latent group-level variable ζj is treated as a predictor or
explanatory variable for the group-level outcome variable Yj . In this way, the individual-
level observations on Zij are not assumed to reflect the group-level construct ζj perfectly,
but within group heterogeneity, and sampling variability are allowed to exist. This model
actually consists of two parts: a measurement part which relates the individual-level scores
on Zij to the latent variable ζj at the group level, and a structural part in which Yj is
regressed on ζj .

The latent variable approach can be generalized to situations in which the variables
from the measurement or the structural part of the model are not necessarily continuous.
With respect to the measurement model, the four different measurement models which
are obtained by independently varying the scale type of the observed variable Zij and
the latent variable ζj , are shown in Table 2.1. The basic idea is that groups can be
classified or located on either a continuous or discrete latent scale at the group level and
that the group members are acting as ‘imperfect’ informants or indicators of their group’s
position on this latent group-level scale. Furthermore, the information the group members
provide about the group’s position can also be considered as being measured on either a
continuous or a discrete scale.

When both the observed variable Zij and the latent variable ζj are assumed to
be continuous, as in Croon and van Veldhoven (2007), a linear factor model links the
individual-level scores to the group-level score. Alternatively, one might assume that a
discrete latent variable at the group level underlies a continuous observed variable at
the individual level. In this situation the measurement part of the model is described
by a latent profile model (Bartholomew & Knott, 1999). In situations in which the
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Table 2.1: Measurement Model

ζj = continuous ζj = discrete

Zij = continuous linear factor model latent profile model
Zij = discrete item response model latent class model

observed explanatory variables at the individual level are discrete, either a latent class
model (Hagenaars & MacCutcheon, 2002) or an item response model (Embretson &
Reise, 2000) might be considered. A latent class model is appropriate when the underlying
latent variable at the group level is discrete as well, whereas an item response model is
appropriate when the underlying latent variable is assumed to be continuous.

With respect to the structural part of the model, the regression of Yj on ζj at the
group level can be conceived in different ways depending on the measurement level of
the outcome variable Yj . For a continuous outcome variable, Croon and van Veldhoven
(2007) defined a linear regression model, but when the group-level outcome variable Yj is
discrete, (multinomial) logit or probit regression models are more appropriate to regress
Yj on ζj , irrespective of the scale type of ζj . All these models fit within the general
framework of generalized latent variable models described by Skrondal and Rabe-Hesketh
(2004).

2.3 Discrete Variables

The focus of the current paper will be on the application of the latent variable approach
to discrete data by combining a latent class model for the measurement model with a
(multinomial) logistic regression model at the group level. Readers interested in specifying
a continuous latent variable underlying discrete observations are referred to Fox and Glas
(2003) and Fox (2005). Our discussion of the model for discrete variables first considers
the case in which all variables are dichotomous before discussing the more general case.

Consider again the model shown in Figure 2.1 but now assume that all variables in
the model are dichotomous with values 0 and 1. In this 1-2 model, the relationship
between a single dichotomous explanatory variable Zij at the individual level and a single
dichotomous outcome variable Yj at the group level is at issue. The type of models
that are discussed in this article and of which the model shown in Figure 2.1 is a very
basic example, can be seen as a two-level extension of the path models for discrete
variables as defined in Goodman’s modified path approach (Goodman, 1973). These are
extended to include latent variables by Hagenaars (1990) in the modified Lisrel approach.
Moreover, the way in which these models allow for the decomposition of joint probability
distributions in terms of products of conditional distributions, indicates their resemblance
to the directed graph approach as described by, among others, Pearl (2009) for variables
measured at a single level.

We opt for a latent class model with the number of latent classes set equal to the
number of response categories of the observed individual-level variable, implying that the
scores on Zij are treated as indicators for a dichotomous latent variable ζj at the group
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level (score 0 or 1).1 The number of latent classes at the group level does not necessarily
have to be fixed a priori, but could also be data driven by comparing fit indices for models
with varying number of latent classes.2

For dichotomous variables, the model can be formulated more formally in terms of
two logit regression equations:

Logit(P (Zij = 1|ζj)) = log

(

P (Zij = 1|ζj)

P (Zij = 0|ζj)

)

= β1 + β2ζj , (2.1)

and

Logit(P (Yj = 1|ζj)) = log

(

P (Yj = 1|ζj)

P (Yj = 0|ζj)

)

= β3 + β4ζj , (2.2)

in which β1 and β3 are intercepts and β2 and β4 slopes. The parameters β2 and β4 are
log odds ratios indicating the strength of the association between the latent variable ζj
and the observed variables Zij and Yj , respectively. For the general case of K nominal
response categories for Zij and M nominal response categories for Yj , multicategory logit
models can be formulated as described in Agresti (2013).

2.4 Estimation Methods

For continuous outcomes, Croon and van Veldhoven (2007) proposed a stepwise
estimation method in which the two parts of the model are estimated separately by
what they called an ‘adjusted regression analysis’. In this approach the aggregated group
means of the variables measured at the individual level are adjusted in such a manner
that a regression analysis at the group level using these adjusted group means produces
consistent estimates of the regression coefficients. Full information maximum likelihood
(FIML) estimates can be obtained by either the ‘Persons-as-Variables approach’ (Curran,
2003; Mehta & Neale, 2005) or by fitting the model as a two-level structural equation
model (Lüdtke et al., 2008) as made possible in software packages such as Mplus (Muthén
& Muthén, 1998-2012), LISREL (Jöreskog & Sörbom, 2006), or EQS (Bentler, 2006).
These maximum-likelihood methods estimate the parameters from the two parts of the
model simultaneously.

Applied to the 1-2 model with discrete data, let Zj be the vector containing the Ij
individual-level responses for group j. This implies Zj = {Z1j , Z2j , ..., ZIjj}. The joint

1It should be noted that the latent classes at the group level underlying Zij can not only be interpreted
as a measurement model for the items, but also as a group-level discrete random effect since the
dependence in the responses is summarized in one random score at the group level. This is how the
multilevel structure is taken into account. The predictor Xj , and the outcome Yj are observed at the
group level only, which means that these variables vary only between groups and not within groups.

2The number of latent classes could, for example, be determined with the BIC using the number of
groups as sample size in the formula (Lukočienė, Varriale, & Vermunt, 2010).
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density of Zj , Yj and ζj equals

P (Zj , Yj , ζj) = P (ζj)P (Yj |ζj)P (Zj |ζj)

= P (ζj)P (Yj |ζj)

︸ ︷︷ ︸

between

Ij∏

i=1

P (Zij |ζj)

︸ ︷︷ ︸

within

. (2.3)

Equation 2.3 consists of a product of a between and a within component. In the between
component only relations among variables defined at the group level are defined, whereas
in the within component the individual-level scores are related to the group-level variable.
By taking the product of P (Zj , Yj , ζj) over all groups, the complete-data likelihood is
obtained. This is the likelihood function if ζj would have been observed. The log-likelihood
function for the observed data are then obtained by summing log(P (Zj , Yj , ζj)) over all
groups.

Integrating out the latent variable ζj from the complete log-likelihood function by
summing over its possible values yields the log-likelihood function for the observed data
Zij and Yj ; that is,

log L =

J∑

j=1

log

( C∑

c=1

(

P (ζj = c)P (Yj |ζj = c)

Ij∏

i=1

P (Zij |ζj = c)
))

, (2.4)

in which C represents the number of latent classes, c = 1, · · · , C.
In practice, this incomplete data likelihood function can be constructed in two

equivalent ways: with the ‘Two-level regression approach’ and with the ‘Persons-as-
Variables approach’ (Curran, 2003; Mehta & Neale, 2005). For the first approach, data
need to be organized in a ‘long file’ while for the second approach the data need to
be organized in a ‘wide file’. More details about these equivalent approaches and the
construction of the likelihood accordingly, can be found in Appendix A. The Latent
GOLD software (Vermunt & Magidson, 2005a) can be used to estimate the model in
both ways.

2.5 Simulation Study 1-2 Model

2.5.1 Aim of the Simulation Study

This section reports the results of a Monte Carlo simulation study which evaluated the
(statistical) performance of the latent class approach for analyzing micro-macro relations
among dichotomous variables using the 1-2 model. A first aim of the simulation study is
to investigate the bias of the estimates of the relevant regression parameters describing
the micro-macro relationship. Additionally, the power and observed Type-I error rate of
the test of the regression coefficients are determined.

Two different procedures to test for the significance of individual parameters are
compared. First, significance is tested by means of the Wald test. This test is easy
to implement and only requires the maximum- likelihood estimation of the unrestricted
model (leaving the estimation of β free). However, evidence exists that in small samples
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the likelihood-ratio test may be preferred (Agresti, 2013). The latter testing procedure
requires estimating both the unrestricted model and restricted model with β = 0.

Besides looking at the absolute performance of the latent class approach, its relative
performance is assessed by comparing it to three more traditional approaches: mean
aggregation, mode aggregation, and disaggregation. The present simulation study
investigates how, for all four approaches, the bias in the parameter estimates, their Type-
I error rate and the power of the associated tests are affected by (1) the strength of
the micro-macro relation, (2) the degree to which the individual-level scores reflect the
(latent) group-level score, and (3) the sample sizes at both the individual and group level.

2.5.2 Method

Data were generated according to the 1-2 model shown in Figure 2.1 and formally
described by Equations 2.1 and 2.2. In the population model, four factors were
systematically varied. First, the micro-macro relation was assumed to be either absent,
(β4 = 0), moderate (β4 = 1), or strong (β4 = 2). Second, the individual-level observed
variable Zij was either a poor (β2 = 1), a good (β2 = 3), or a perfect indicator
(β2 = 200) of the construct at the group level. In most applications the latter assumption
is unrealistic, however it was included in order to compare the other two situations with the
perfect situation. Third, the number of groups was set to either 40 or 200, and fourth,
the number of individuals within a group was either 10 or 40. Finally, the intercept
values β1 and β3 were not varied independently, but were chosen such that uniform
marginal distributions for Zij and Yj were guaranteed. This implies that these marginal
distributions were held constant across simulation conditions. Completely crossing the
four factors resulted in 3× 3× 2× 2 = 36 conditions. For each condition, 100 data sets
were generated with Latent GOLD (Vermunt & Magidson, 2005a).

Each data set was analyzed in four different ways. First, they were analyzed according
to the latent class approach and the estimate of the micro-macro regression coefficient is
represented by the term β4 from Equation 2.2. Second, the same data were analyzed at
the group level by aggregating the individual-level predictor scores using the group means,
Z̄.j , or third, using the group mode, denoted by Z̆.j . The logistic regression analyses at
the group level are defined by

Logit(P (Yj = 1|Z̄.j) = β5 + β6Z̄.j , (2.5)

and
Logit(P (Yj = 1|Z̆.j)) = β7 + β8Z̆.j . (2.6)

The estimate of the micro-macro regression coefficient is now represented by β6 and
β8, respectively. Finally, in the fourth analysis the group-level outcome variable Yj is
disaggregated to the individual level by assigning the group score to every group member
as if the score was unique to the individual, so Yij = Yj for each individual i in group
j. The disaggregated variable Yij is then regressed on Zij at the individual level and the
corresponding logistic regression equation becomes

Logit(P (Yij = 1|Zij)) = β9 + β10Zij . (2.7)

The estimate of the micro-macro regression coefficient is now represented by β10.
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Power was determined with a Wald test by computing the percentage of times that
the hypothesis β = 0 was rejected when in fact there was a non-zero effect present in
the population (β = 1 and β = 2). The observed Type-I error rate was given by the
proportion of significant results for the same hypothesis when there was zero effect in the
population (β = 0). The observed Type-I error rate and power of the likelihood-ratio
test were determined in a similar way. In order to assess the main effects of each of the
manipulated factors, the results were collapsed over the three other factors.

2.5.3 Results

Bias of the parameter estimates

The means and standard deviations of the estimates of the micro-macro relation are
summarized in Table 2.2. When the micro-macro relation was estimated with the latent
class approach, the micro-macro effect was estimated without severe bias in all conditions.
When Zij was aggregated to the group level using mean scores, the estimated micro-macro
effect was overestimated in all conditions where a micro-macro relation was present, except
when the individual-level scores perfectly reflected the construct at the group level. When
the mode instead of the mean was used to aggregate the individual-level scores, the bias
decreased. This method also seems to work when the individual-level scores were good,
and not necessarily perfect, indicators of the construct at the group level. When Yj was
disaggregated to the individual level, the estimated micro-macro effect is estimated with
a downwards bias, except when the individual-level scores perfectly reflected the construct
at the group level. When the true micro-macro relation was absent in the population, all
four approaches estimated the effect unbiasedly.

The results in Table 2.2 indicate that increasing the number of groups from 40 to 200
reduces the bias of the estimates a little and leads to much smaller standard deviations
of the estimates for all four approaches. Increasing the number of group members from
10 to 40, improving the quality of the individual-level scores to reflect the group-level
construct, or increasing the effect size of the micro-macro relation did not cause large
changes in the bias of the mean estimates, nor in the value of their standard deviations.

Power and observed Type-I error rates

The results with respect to power and Type-I error rates were also collapsed for each
factor over the three remaining factors and are shown in Table 2.3. The observed power
to detect the micro-macro effect could be determined in the 24 conditions in which an
effect was present in the population. For the latent class approach, mean aggregation,
and mode aggregation, the observed power was, larger than .70 when the true effect was
large. A moderate micro-macro effect could only be detected with power larger than .70
in samples with 200 groups. When disaggregating, power is always above .70, except
when the individual-level scores are poor indicators of the group-level construct.

The observed Type-I error rates could be evaluated in the 12 conditions with a zero
micro-macro effect in the population. In these conditions the observed Type-I error rate
was expected to lie between .02 and .09 with a probability of 0.935.3 When the data were
analyzed with the latent class approach, mean aggregation or mode aggregation, all the

3This probability is based on a binomial distribution with 100 trials and a success probability equal to
.05.
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Table 2.2: Means and Standard Deviations of Estimates of Micro-Macro Relationship
Estimated with Latent Class Approach, Mean Aggregation, Mode Aggregation, and
Disaggregation, after Collapsing

Latent class Mean aggregation Mode aggregation Disaggregation
β4 b̄4(S̄D) b̄6(S̄D) b̄8(S̄D) ¯b10(S̄D)

L2 = 40 0 0.00(0.79) 0.05(1.25) 0.00(0.64) -0.01(0.43)
1 1.06(0.77) 1.61(1.25) 0.92(0.63) 0.65(0.42)
2 2.18(0.84) 3.41(1.45) 1.87(0.70) 1.29(0.48)

L2 = 200 0 0.01(0.32) 0.03(0.50) 0.01(0.28) 0.00(0.19)
1 1.01(0.33) 1.58(0.56) 0.91(0.28) 0.64(0.19)
2 2.02(0.38) 3.18(0.62) 1.79(0.31) 1.23(0.20)

L1 = 10 0 0.02(0.61) 0.04(0.76) 0.03(0.46) 0.01(0.32)
1 1.08(0.60) 1.38(0.80) 0.88(0.44) 0.66(0.30)
2 2.13(0.65) 2.79(0.86) 1.71(0.48) 1.26(0.33)

L1 = 40 0 -0.01(0.50) 0.03(0.99) -0.01(0.46) -0.02(0.30)
1 0.99(0.50) 1.81(1.00) 0.96(0.48) 0.63(0.30)
2 2.07(0.56) 3.79(1.20) 1.96(0.53) 1.27(0.35)

β2 = 1 0 0.04(0.74) 0.14(1.47) 0.05(0.46) 0.01(0.16)
1 1.05(0.74) 2.25(1.55) 0.71(0.47) 0.23(0.16)
2 2.21(0.78) 4.79(1.79) 1.43(0.49) 0.47(0.14)

β2 = 3 0 0.00(0.47) 0.00(0.71) 0.00(0.47) 0.00(0.31)
1 1.02(0.46) 1.50(0.70) 1.00(0.45) 0.65(0.29)
2 2.07(0.50) 3.06(0.77) 2.03(0.49) 1.24(0.27)

β2 = 200 0 -0.02(0.45) -0.02(0.45) -0.02(0.45) -0.02(0.46)
1 1.03(0.46) 1.03(0.46) 1.03(0.46) 1.05(0.47)
2 2.03(0.54) 2.03(0.54) 2.03(0.54) 2.07(0.60)

observed Type-I error rates lay between these boundaries. When Yj is disaggregated to
the individual level, the observed Type-I error rates were unacceptably high, ranging from
.18 to .60, indicating that this approach leads to an unacceptably liberal significance test
for the micro-macro effect.

Increasing the sample sizes, the quality of the individual-level scores to reflect the
construct at the group level, or the effect size all lead to increased power, regardless of
the manner in which the micro-macro relation is modeled. The observed Type-I error rates
do not seem to vary as a function of the four manipulated factors. The results reported
above are very similar for the Wald and the likelihood-ratio test.

2.5.4 Conclusion

Overall the latent class approach obtains unbiased parameters even when the individual-
level scores poorly reflect the (latent) group-level score with reasonable power and Type-I
error rate. Aggregation only works with perfect (mean aggregation) or good (mode
aggregation) indicators, which are however rather unrealistic conditions in practice. Using
disaggregation, the observed Type-I error rates were unacceptably high so this approach
should be avoided anyhow. Since the latent class approach performed better than the
other 3 approaches, only this approach is evaluated in a more complex model.
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Table 2.3: Power and Observed Type-I Error Rates of Micro-Macro Relationship Estimated
with Latent Class Approach, Mean Aggregation, Mode Aggregation, and Disaggregation,
after Collapsing

Latent class Mean aggregation Mode aggregation Disaggregation
β4 Wald LR Wald LR Wald LR Wald LR

L2 = 40 0 .04 .05 .04 .05 .03 .04 .43 .43
1 .24 .28 .25 .29 .25 .27 .71 .71
2 .72 .78 .74 .78 .74 .76 .93 .93

L2 = 200 0 .05 .06 .05 .06 .05 .06 .41 .41
1 .86 .87 .84 .85 .85 .85 .93 .93
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

L1 = 10 0 .03 .05 .04 .05 .04 .05 .30 .30
1 .50 .54 .51 .53 .51 .52 .77 .77
2 .81 .87 .85 .88 .83 .85 .94 .94

L1 = 40 0 .06 .06 .05 .06 .05 .06 .54 .54
1 .60 .61 .58 .60 .59 .60 .87 .87
2 .90 .91 .89 .90 .90 .90 .99 .99

β2 = 1 0 .04 .06 .04 .05 .04 .04 .18 .18
1 .40 .45 .41 .43 .40 .42 .59 .60
2 .73 .82 .77 .81 .76 .77 .90 .90

β2 = 3 0 .05 .06 .06 .06 .05 .06 .48 .48
1 .61 .62 .59 .62 .61 .62 .92 .92
2 .94 .95 .94 .95 .95 .95 1.00 1.00

β2 = 200 0 .04 .05 .04 .05 .04 .05 .60 .60
1 .64 .65 .64 .65 .64 .65 .95 .95
2 .89 .91 .89 .91 .89 .91 1.00 1.00

2.6 Adding a Level-2 Predictor to the 1-2 Model

The 1-2 model can be extended to a 2-1-2 model by adding a predictor Xj at the group
level as shown in Figure 2.2. In the present discussion Xj is assumed to be dichotomous,
but the extension to the general case of Q response categories or to continuous variables
is straightforward.

At the group level two logistic regression equations are defined and a latent class
model is used to link the individual and group level, so that for dichotomous data the
model can be formulated in terms of three logit regression equations:

Logit(P (ζj = 1|Xj)) = β1 + β2Xj , (2.8)

Logit(P (Yj = 1|Xj , ζj)) = β3 + β4Xj + β5ζj + β6Xj · ζj , (2.9)

and

Logit(P (Zij = 1|ζj)) = β7 + β8ζj , (2.10)

in which β1, β3, and β7 are intercepts and β2, β4, β5, β6, and β8 slopes. The regression
model for Yj contains the main effects of ζj and Xj and their mutual interaction effect
represented by the product variable Xj × ζj . Furthermore, ζj itself is regressed on Xj .
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Figure 2.2: Graphical Representation 2-1-2 Model

The joint probability density of Xj , Zj , Yj , and ζj for an arbitrary group j is defined
as

P (Xj ,Zj , Yj , ζj) = P (Xj)P (ζj |Xj)P (Yj |Xj , ζj)P (Zj |ζj)

= P (Xj)P (ζj |Xj)P (Yj |Xj , ζj)

︸ ︷︷ ︸

between

Ij∏

i=1

P (Zij |ζj)

︸ ︷︷ ︸

within

, (2.11)

while the observed or incomplete data log-likelihood function is

log L =

J∑

j=1

log

( C∑

c=1

(

P (Xj)P (ζj = c|Xj)P (Yj |Xj , ζj = c)

I∏

i=1

P (Zij |ζj = c)
))

, (2.12)

in which C represents the number of latent classes, c = 1, · · · , C. The likelihood
function can be maximized in the same two ways as described for the 1-2 model in
Appendix A, namely the Persons-as-Variables approach and the Two-level regression
approach, requiring the data to be appropriately structured. The model can again be
estimated with the Latent GOLD software (Vermunt & Magidson, 2005a).

2.7 Simulation Study 2-1-2 Model

2.7.1 Aim of the Simulation Study

The latent class approach, which seems to work well for a simple micro-macro relation
with dichotomous variables, is now evaluated in the slightly more complex 2-1-2 model.
The Monte Carlo simulation study reported in this section intends to investigate how the
bias in parameter estimates, the Type-I error rates, and the power of tests for individual
regression coefficients are influenced by (1) the strength of the true relations, (2) the
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degree to which the individual-level scores reflect the latent group-level score, and (3) the
sample sizes at both the individual and group level. As in the previous simulation study,
the significance of the parameters is evaluated with both Wald and likelihood-ratio tests.

2.7.2 Method

Data are generated according to the 2-1-2 Model shown in Figure 2.2 and formally
described by Equations 2.8, 2.9, and 2.10. In the population models, all three main
effects at the macro level were assumed to be either absent (β = 0), moderate (β = 1), or
strong (β = 2). The interaction effect between Xj and ζj was either negative (β6 = −1),
absent (β6 = 0), or positive (β6 = 1). The scores on Zij were either poor indicators
(β8 = 1), good indicators (β8 = 3), or perfect indicators (β8 = 200) of the latent
group score ζj . The number of groups was set to either 40 or 200, and the number of
individuals within a group to either 10 or 40. The intercept values β1 and β3, and β7 were
determined in such a way that the marginal distributions of Zij , ζj , and Yj were uniform.
The marginal probability of Xj was made uniform. Crossing the 7 factors resulted in
3× 3× 3× 3× 3× 2× 2 = 972 conditions.

Again 100 data sets were generated for each condition using Latent GOLD (Vermunt
& Magidson, 2005a) and the data sets were analyzed with the latent class approach.
Power and observed Type-I error rates were determined for both the Wald and likelihood-
ratio tests as described in the method section of the previous simulation study. The power
for the main effects of Xj and ζj on Yj was only determined in those conditions in which
there was no interaction between Xj and ζj in the population. In order to assess the
(main) effect of a particular factor in the simulation study, the results obtained in the
different conditions were collapsed over the other factors.

2.7.3 Results

Bias in the parameter estimates

A summary of the estimated effects at the group level is given in Table 2.4. First, the
results in Table 2.4 indicate that there is some bias in the estimates. Moreover, the
magnitude of the bias seems to be proportional to the value of true effect since there
is no bias when the true effect equals zero. Bias slightly decreases when the number of
groups is increased, but remains similar when the number of individuals within a group is
increased, or when the quality of the individual-level scores reflecting the latent group-level
score is improved. The standard deviations of the estimates are quite large. Consistent
with the first simulation study, increasing the number of groups reduces the standard
deviations. Increasing the number of group members and the quality of the indicators
have only small effects on the standard deviations.

Power and observed Type-I error rates

The results with respect to power and Type-I error rates are summarized in Table 2.5.
The power of the macro-level effects could be observed in the 646 conditions in which
there was a non-zero effect in the population. The results can be summarized as follows.
First, the power of the test H0 : β2 = 0 for the main effect of Xj on ζj is larger than
0.70 when the true value of the effect is strong. When the true effect is moderate, power
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Table 2.4: Means and Standard Deviations of Estimates of Group-level Effects 2-1-2
Model Estimated with Latent Class Approach, after Collapsing

β2 b̄2(S̄D) β4 b̄4(S̄D) β5 b̄5(S̄D) β6 b̄6(S̄D)
L2 = 40 0 0.00(0.75) 0 -0.02(1.40) 0 -0.03(1.47) -1 -1.23(2.10)

1 1.05(0.78) 1 1.15(1.48) 1 1.19(1.52) 0 -0.03(2.15)
2 2.08(0.86) 2 2.38(1.60) 2 2.35(1.64) 1 1.17(2.30)

L2 = 200 0 0.00(0.32) 0 -0.02(0.53) 0 -0.01(0.55) -1 -1.05(0.80)
1 1.01(0.34) 1 1.02(0.54) 1 1.03(0.57) 0 0.01(0.82)
2 2.03(0.37) 2 2.06(0.60) 2 2.09(0.63) 1 1.07(0.92)

L1 = 10 0 0.00(0.58) 0 -0.02(1.01) 0 -0.02(1.09) -1 -1.14(1.55)
1 1.04(0.61) 1 1.08(1.07) 1 1.12(1.12) 0 0.00(1.58)
2 2.06(0.67) 2 2.20(1.14) 2 2.21(1.21) 1 1.12(1.72)

L1 = 40 0 -0.01(0.49) 0 -0.03(0.92) 0 -0.02(0.94) -1 -1.14(1.35)
1 1.02(0.51) 1 1.09(0.95) 1 1.11(0.97) 0 -0.03(1.38)
2 2.05(0.57) 2 2.24(1.05) 2 2.23(1.07) 1 1.13(1.50)

β8 = 1 0 0.00(0.68) 0 -0.02(1.12) 0 0.02(1.24) -1 -1.17(1.77)
1 1.06(0.70) 1 1.11(1.17) 1 1.17(1.27) 0 -0.04(1.80)
2 2.07(0.75) 2 2.22(1.24) 2 2.26(1.35) 1 1.10(1.92)

β8 = 3 0 -0.01(0.47) 0 -0.03(0.90) 0 -0.04(0.91) -1 -1.12(1.29)
1 1.02(0.49) 1 1.08(0.93) 1 1.07(0.92) 0 0.01(1.34)
2 2.04(0.55) 2 2.22(1.03) 2 2.20(1.05) 1 1.14(1.47)

β8 = 200 0 -0.01(0.46) 0 -0.02(0.88) 0 -0.03(0.89) -1 -1.12(1.29)
1 1.02(0.49) 1 1.07(0.93) 1 1.09(0.94) 0 -0.01(1.31)
2 2.04(0.55) 2 2.22(1.03) 2 2.20(1.02) 1 1.12(1.45)

is above .70 when the number of groups is 200 but for the other factors the power to
detect an moderate effect of Xj on ζj lies between .26 and .63. The results are similar
for the Wald and likelihood-ratio tests. Second, the power to test H0 : β4 = 0 for the
main effect of Xj on Yj and the power of the test H0 : β5 = 0 for the main effect of ζj
on Yj are above .70 when the true effects are strong except for β5 = 2 with 40 groups.
Moderate main effects can again only be detected with sufficient power when the number
of groups is 200. For the other factors the power to detect moderate main effects lies
between .22 and .61 and although the obtained power is a bit larger with a likelihood-ratio
test compared to a Wald test, the difference is rather small. Third, the power of the test
H0 : β6 = 0 for the interaction effect of Xj and ζj on Yj is very low but higher for the
likelihood-ratio test than for the Wald test, especially when there are only 40 groups. For
the Wald test the power to detect an interaction effect lies between .02 and .30 while for
the likelihood-ratio test power lies between .11 and .32.

The observed Type-I error rates could be evaluated in the 324 conditions in which the
macro-level effect was absent. As before, the Type-I error rate was expected to lie between
.02 and .09. This holds in all conditions, except that the observed Type-I error rates were
too low for the test of β6 when determined with a Wald test in the conditions with
40 groups. The observed Type-I error rates seem to be independent of the manipulated
factors. Within acceptable boundaries, the Wald test seems to be slightly too conservative
while the likelihood-ratio test seems to be slightly too liberal.
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Table 2.5: Power and Observed Type-I Error Rates of Group-level Effects 2-1-2 Model
with Wald Test and Likelihood-Ratio Test, after Collapsing

β2 Wald LR β4 Wald LR β5 Wald LR β6 Wald LR
L2 = 40 0 .04 .05 0 .03 .06 0 .03 .07 -1 .04 .12

1 .26 .30 1 .26 .29 1 .22 .29 0 .01 .06
2 .73 .78 2 .72 .73 2 .61 .69 1 .02 .11

L2 = 200 0 .05 .06 0 .05 .05 0 .05 .05 -1 .30 .32
1 .87 .88 1 .87 .86 1 .80 .81 0 .05 .06
2 1.00 1.00 2 1.00 .99 2 .99 .99 1 .24 .28

L1 = 10 0 .04 .05 0 .04 .06 0 .04 .07 -1 .15 .20
1 .52 .55 1 .54 .54 1 .46 .52 0 .03 .06
2 .82 .86 2 .84 .83 2 .75 .81 1 .11 .17

L1 = 40 0 .05 .05 0 .04 .06 0 .04 .06 -1 .19 .24
1 .61 .62 1 .59 .60 1 .55 .58 0 .03 .06
2 .91 .92 2 .88 .89 2 .85 .88 1 .15 .21

β8 = 1 0 .04 .06 0 .04 .06 0 .03 .07 -1 .11 .17
1 .46 .51 1 .52 .52 1 .39 .46 0 .02 .06
2 .75 .82 2 .82 .79 2 .66 .75 1 .08 .14

β8 = 3 0 .05 .05 0 .05 .06 0 .04 .06 -1 .20 .24
1 .62 .63 1 .58 .60 1 .57 .59 0 .03 .06
2 .92 .93 2 .88 .90 2 .87 .89 1 .16 .22

β8 = 200 0 .05 .05 0 .04 .05 0 .04 .06 -1 .20 .25
1 .62 .63 1 .59 .61 1 .57 .59 0 .03 .06
2 .92 .92 2 .88 .90 2 .87 .89 1 .16 .22

2.7.4 Conclusion

From this second simulation study, it can be concluded that the latent class approach
produces almost unbiased parameters in the 2-1-2 model but standard deviations are
quite high and can be reduced by using a large number of groups. Especially for the
interaction effect, the power is low in most conditions but can be improved by using a
likelihood-ratio test instead of a Wald test. The Type-I error rates seem correct with both
the Wald and the likelihood-ratio tests.

2.8 Empirical Data Example

The discrete latent variable approach is illustrated with an empirical application on data
from personal networks, in which individuals (egos) are interviewed together with persons
from their network (alters). Up till now only research questions could be answered when
the dependent variable was defined at the micro level, so at the level of the alters or ties
(Snijders et al., 1995; van Duijn, van Busschbach, & Snijders, 1999). The latent variable
approach allows to answer research questions with a dependent variable at the higher ego
level, so providing new possibilities for investigating a broad range of research questions
in studies of personal networks. More specifically, in the current example the effect of
belonging to a particular type of personal network on the behavior of the ego himself is
explored.
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2.8.1 Data

The data come from the Netherlands Kinship Panel Study (NKPS), which is a large-
scale database on Dutch families that yields information for individual respondents (the
egos) and some of their family members and friends (the alters). The data are publicly
available and can be retrieved from http://www.nkps.nl. For the present example, data
were available for 8161 egos with maximally six alters nested within each ego: the parents
in law, two siblings, two children, and a friend.

Kalmijn and Vermunt (2007) used these data to investigate whether selection in
networks is based on age and marital status. In the present paper a different perspective
is chosen. Instead of expecting that persons choose the persons in their network based on
their marital status, we assume that egos are members of a network in which either many
or few people are married. The latent variable ζj then represents latent class membership
of an ego’s network: ζj = 0 when the ego belongs to a network in which few members
are married versus ζj = 1 when the ego belongs to a network in which many members
are married. The marital status of the alters (Zij = 0 for unmarried alters and Zij = 1
for married alters) are taken as exchangeable indicators of the type of network an ego
belongs to. The dependent level-2 variable in this analysis is the dichotomous variable Yj

indicating whether an ego is married or not (Yj = 0 when the ego is not married versus
Yj = 1 when the ego is married). The religiosity of the ego (Xj = 0 when the ego j is
not religious and Xj = 1 when the ego is religious) is treated as the level-2 explanatory
variable that affects the probability of an ego to belong to a particular type of network.
Eggebeen and Dew (2009) already pointed out that religion is a very important factor
in family formation during young adulthood. In the present analysis it is expected that
non-religious persons rather belong to the latent class with few married members than
to the class with many married members. For religious people, we expect the opposite.
Furthermore, we allow for an interaction effect of type of network and religiosity on the
dependent variable, implying that the effect of the network on being married can be
different for religious and non-religious) persons. The model as formulated here can be
extended in several ways. First, the exchangeability assumption, stating that all alters are
equivalent indicators of the type of network, can eventually be relaxed if the parents in law,
siblings, children, and friend to the network provide (partly) different network information.
Second, if necessary, a model with more than two latent classes at the network level could
be considered. These extensions will not be further discussed here.

2.8.2 Method

The model, shown in Figure 2.2, is defined by Equations 2.8-2.10 and the model
parameters can be estimated with the software package Latent GOLD (Vermunt &
Magidson, 2005a) by applying either the Two-level regression or the Persons-as-Variables
approach as described in Appendix B.

2.8.3 Results

Since the Persons-as-Variables approach and the Two-level regression approach yield the
same results, only the results of the Two-level regression approach are presented here.
Looking at the regression coefficients in the second and third column of Table 2.6, it
can be seen that the Wald tests for the interaction effect of Xj and ζj on the level-2
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Table 2.6: Regression Coefficients Empirical Example

Interaction No interaction
Independent variable β SE β SE
Dependent variable: Network ego

Intercept (β1) -1.16** 0.16 -1.18** .16
Religion ego (β2) 4.49** 0.34 4.59** .33
Dependent variable: Married ego

Intercept (β3) -3.77** 1.16 -3.61** .96
Religion ego (β4) -0.01 2.92 -3.10** .30
Network ego (β5) 6.47** 1.16 6.30** .97
Religion ego * Network ego (β6) -3.10 2.94
Dependent variable: Married alter

Intercept (β7) -0.49** 0.05 -0.49** .05
Network ego (β8) 0.91** 0.05 0.91** .05
* p < .05, ** p < .01

outcome variable Yj is not significant. Therefore, a model without this interaction term
is presented in the last two columns of the table.

By substituting the estimated parameter values in the logit regressions equations 2.8,
2.9, and 2.10 and transforming them into the probability scale, the probabilities as given
in Table 2.7(a), 2.7(b), and 2.7(c) are obtained.
As can be seen from Table 2.7(a), alters in the two network classes have a probability of
being married of .38 and .60, respectively. So, the latent classes can be interpreted in
terms of the egos belonging to a network with either a minority or a majority of married
alters.

Second, Table 2.7(b) indicates that when an ego is not religious, the probability of
having a network in which the majority of the persons is married is .23 while it is .97 for
an ego that is religious.

Third, Table 2.7(c) shows that the probability of an ego being married depends on
whether he is religious or not, and on the type of network the ego belongs to. Since only
the main effect of the ego network is significant, only this effect is interpreted. Egos that
have a network in which a majority of alters is married, have a higher probability of being
married than egos that have a network in which a minority of alters is married and egos
that are religious have a lower probability of being married than non religious egos.

2.8.4 Conclusion

An interesting aspect emerging from this analysis is that there is a direct effect of whether
an ego is religious on the probability that the ego is married and an indirect effect that runs
through the network of the ego. The direct effect is counter intuitive since the probability
of being married is higher for non religious than for religious egos. The indirect effect is
more intuitive since religious egos have a higher probability to have a network in which the
majority of alters is married than a network in which the minority of the alters is married.
Egos that belong to a network in which the majority of alters is married have a higher
probability to be married themselves compared to egos that belong to a network in which
the minority of the alters is married.
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Table 2.7: Estimated Probabilities Empirical Data Example

(a)

Network ego P(Married alter = 1 | Network ego) (SE)
0 .38 (0.01)
1 .60 (0.00)

(b)

Religion ego P(Network ego = 1 | Religion ego) (SE)
0 .23 (0.03)
1 .97 (0.01)

(c)

Religion ego Network ego P(Married ego = 1 | Religion ego, Network ego) (SE)
0 0 .03 (0.03)
0 1 .94 (0.01)
1 0 .00 (0.00)
1 1 .40 (0.03)

2.9 Discussion

Although a wide variety of research questions in the social and behavioral sciences involve
micro-macro relations, specific methods to analyze such relationships are not yet fully
developed. The current article is contributing to this development by showing how a
latent variable approach which was originally proposed for continuous outcomes (Croon
& van Veldhoven, 2007) can be modified for the application to discrete outcomes.

We showed that, in a simple 1-2 model, the latent variable approach outperforms more
traditionally aggregation and disaggregation strategies with respect to bias with reasonable
power and correct observed Type-I error rates. In a more complex 2-1-2 model, there is
small bias and standard deviations are a little higher. These can be reduced by using a
larger number of groups. Power is acceptable for the main effects but relatively low for
the interaction effect, while the observed Type-I error rates are correct. The low power for
the interaction effect could be due to general power problems associated with detecting
interaction effects by including product terms in the regression equation (McClelland &
Judd, 1993; Whisman & McClelland, 2005). Using a likelihood-ratio test instead of a
Wald test increases power. Overall, the latent variable approach seems to work well
for analyzing micro-macro relations with discrete variables and this enables investigating
research questions that could not be addressed appropriately before.

The current research was restricted to models with only one micro-level predictor.
Further research should be devoted to models with multiple level-1 variables. In this
context it could be explored whether it is more practical to use three-step estimation
procedures as described by Bakk, Tekle, and Vermunt (2013), instead of the currently
suggested one-step estimation procedure. this would disentangle the aggregation from
the group-level analysis. Furthermore, in the current article the focus was set at two-
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level situations in which the predictors and outcome variable were observed variables. It
would be interesting to explore the possibilities to extend the model to the situation in
which the outcome variable and/or predictors are latent constructs measured with multiple
indicators.





CHAPTER 3

Micro-Macro Analysis with Multiple Micro-Level Variables

Abstract

An existing micro-macro method for a single individual-level variable is extended to the
multivariate situation by presenting two multilevel latent class models in which multiple
discrete individual-level variables are used to explain a group-level outcome. As in the
univariate case, the individual-level data are summarized at the group level by constructing
a discrete latent variable at the group level and this group-level latent variable is used as
a predictor for the group-level outcome. In the first extension, that is referred to as the
Direct model, the multiple individual-level variables are directly used as indicators for the
group-level latent variable. In the second extension, referred to as the Indirect model, the
multiple individual-level variables are used to construct an individual-level latent variable
that is used as an indicator for the group-level latent variable. This implies that the
individual-level variables are used indirectly at the group level. The within and between
components of the (co)variation in the individual-level variables are independent in the
‘Direct model’, but dependent in the ‘Indirect’ model. Both models are discussed and
illustrated with an empirical data example.

This chapter is submitted for publication as Bennink, M., Croon, M. A., Kroon, B. & Vermunt, J.
K. (2014). Micro-macro multilevel latent class models with multiple discrete individual-level variables.
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3.1 Introduction

In many research areas, data are collected on individuals (micro-level units) who are
nested within groups (macro-level units) (Goldstein, 2011). For example, data can be
collected on children nested in schools, on employees nested in organizations, or on
family members nested in families. The variables involved may be either measured at
the individual level or at the level of the groups. Following Snijders and Bosker (2012),
one can distinguish between macro-micro and micro-macro situations. In a macro-micro
situation, the outcome or dependent variable is measured at the individual level, while in a
micro-macro situation, the outcome variable is measured at the group level. The current
article focuses on the latter type of multilevel analysis that is needed when, for example,
characteristics of household members are related to household ownership of financial
products, or when psychological characteristics of employees are related to organizational
performance outcomes. Furthermore, attention is focused on micro-macro analysis for
discrete data.

In micro-macro analysis, the individual-level data need to be aggregated to the group
level, so the aggregated scores can be related to the group-level outcome. When a
group mean or mode is used for aggregation, measurement and sampling error in the
individual scores is not accounted for and Croon and van Veldhoven (2007) showed that
this neglect of random fluctuation in the individual scores causes bias in the estimates
of the group-level parameters. Moreover, this type of aggregation ignores all individual
differences within the groups. It is well known that the variability of the group means and
modes not only represents between-group variation but also partly reflects within-group
variation. Therefore, the analysis of observations from micro-macro designs requires an
appropriate methodology that takes into account the measurement and sampling error of
the individual scores and separates the within- and between-group association among the
variables (Preacher, Zyphur, & Zhang, 2010).

Such techniques have been developed by using a group-level latent variable for the
aggregation. For continuous data, Croon and van Veldhoven (2007) provide a basic
example of this methodology. The scores of the individuals i from group j on an
explanatory variable Zij are interpreted as exchangeable indicators of an unobserved
group score on the continuous latent group-level variable ζj . Furthermore, the latent
variable is treated as a group-level mediating variable between a group-level predictor
Xj and a group-level outcome Yj . Figure 3.1 represents this model graphically. Any
hypothesis in which a group-level intervention is not only expected to influence a group-
level (performance) measure directly, but also indirectly through a characteristic of the
group members, can be tested with this model.

The model belongs to the general framework of generalized latent variable models
described by Skrondal and Rabe-Hesketh (2004) and can also be formulated for categorical
data (Bennink, Croon, & Vermunt, 2013), by using a latent class model instead of a factor-
analytic model that was used for continuous variables. The latent variable ζj then becomes
a categorical variable with C categories, c = 1, · · · , C. The scores Zij of the Ij individuals
in group j (collected in the vector Zj) are treated as ‘unreliable’ indicators of the group
score ζj . For an arbitrary group j, the relevant conditional probability distribution for the
manifest variables Yj and Zj given Xj is:
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Figure 3.1: Micro-Macro Latent Variable Model with One Micro-Level Variable

P (Yj ,Zj |Xj) =

C∑

c=1

P (Yj , ζj = c|Xj)P (Zj |ζj = c). (3.1)

The terms on the right hand side of the equation are the between and within part that
can be further decomposed as

P (Yj , ζj = c|Xj) = P (ζj = c|Xj)P (Yj |Xj , ζj = c), (3.2)

and

P (Zj |ζj = c) =

Ij∏

i=1

P (Zij |ζj = c). (3.3)

In the social and behavioral sciences it is very common to use multiple individual-level
variables instead of only a single one. Therefore, two multilevel latent class models are
presented that extend the univariate case to the situation with multiple Zij-variables.
As in the existing method, the Zij-variables are summarized by a single discrete latent
variable at the group level (ζj). In the first model, that is referred to as the Direct model,
the Zij-variables are directly used as indicators for ζj . In the second model, that is referred
to as the Indirect model, this is done indirectly through an individual-level latent variable
(ηij). The Direct model can, for example, be used to construct a latent classification of
households based on the age, gender, and educational level of the household members to
predict household ownership of financial products. The Indirect model can, for example,
be used when multiple individual-level items on the satisfaction of employees with respect
to their relationships at work are used to construct the individual-level latent variable ηij
that is used as an indicator for ζj to predict organizational performance measures, such
as the level of organizational conflicts. In the remainder of the article, both methods and
their estimation procedures are discussed and applied to empirical data examples.
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Figure 3.2: Direct Models with Multiple Micro-Level Variables

3.2 Direct Model

Figure 3.1 is extended to a situation with K individual-level variables. These individual-
level variables Z1ij , Zkij · · ·ZKij , can be directly used as indicators of the discrete latent
group-level variable ζj , as done in the model with a single Zkij . In this way, a (latent)
typology of groups is constructed based on the multiple individual-level variables. For
example, the age, gender, and educational level of household members can be used to
construct a classification of households. This classification of groups is used as a predictor
for the observed group-level outcome Yj , for example, the household ownership of a
financial product. Also other (observed) group-level predictors represented by Xj , can be
included in the model. For instance, the household income can be used as an additional
group-level predictor.

Although not necessarily in a model with a single Zkij , in a model with multiple Zkij-
variables it needs to be accounted for that the individual-level variables can be dependent
within individuals. It is not reasonable to assume that all of the association between the
individual-level indicators is explained by ζj . This can be done in two ways. As a first
alternative, all two-way within associations among the Zkij-variables can be incorporated
in the model as shown in the left panel of Figure 3.2. This model is referred to as the
‘Directass model’. A second alternative consists of defining a discrete individual-level latent
variable ηij with D categories, d = 1, · · · , D, as shown in the right panel of Figure 3.2.
This model is referred to as the ‘Directlv model’.4

As in Equation 3.1, the probability distribution of an arbitrary group j contains a
between and a within term. For both models, the between part is still represented by
Equation 4.3, but they differ with respect to the within part. For the Directass model, the

4ηij does not necessarily need to be discrete, but can be defined continuous as well.
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within part is

P (Zj |ζj = c) =

Ij∏

i=1

P (Z1ij , Zkij , · · ·ZKij |ζj = c), (3.4)

whereas for the Directlv model, the within part is

P (Zj |ζj = c) =

Ij∏

i=1

D∑

d=1

P (ηij = d)

K∏

k=1

P (Zkij |ζj = c, ηij = d). (3.5)

The group members are used as exchangeable indicators, this implies that P (Z1ij , Zkij ,

· · ·ZKij |ζj = c) in the Directass model and P (Zkij |ζj = c, ηij = d) in the Directlv
model, are identical for all individuals. In the Directass model, there is by definition local
dependency among the indicators given ζj , but in the Directlv model, the indicators are
locally independent given ηij and ζj . It is also important to note is that ηij and ζj are
assumed to be independent.

3.3 Indirect Model

When the K individual-level variables were intended in the first place to measure an
individual-level construct, the relationship between the group-level latent variable and the
individual-level items is specified indirectly rather than directly. For example, suppose
that the satisfaction of employees with their relationships at work is measured by three
indicators: (1) their satisfaction with the relation with their supervisor, (2) the satisfaction
with their relation with other coworkers, and (3) the degree in which they experience a
family culture at their working environment. These three Zkij-variables may be treated
as indicators of an underlying latent construct at the individual level (ηij). In the current
article ηij is a discrete variable with D categories, d = 1, · · · , D.5 Since there may exist
group differences on ηij , a group-level latent variable (ζj) may be invoked to represent
these between-group differences on ηij . This model is graphically shown in Figure 3.3
and referred to as the ‘Indirect model’.

Referring to the formal general description in Equation 3.1, the between part of this
model is represented again by Equation 4.3, but the within part is now:

P (Zj |ζj = c) =

Ij∏

i=1

D∑

d=1

P (ηij = d|ζj = c)

K∏

k=1

P (Zkij |ηij = d). (3.6)

The group members are again treated as exchangeable, so that P (Zkij |ηij = d) has the
same form for all individuals. The individual-level variables are locally independent given
ηij and the two latent variables are dependent since the distribution of ηij depends on
ζj . In this model there is no immediate need to allow for residual association among the
individual indicators since ηij is assumed to account for all of the associations that exist
among the indicators.

5Varriale and Vermunt (2012) proposed a similar model with a continuous ηij and no group-level
outcome.
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Figure 3.3: Indirect Model with Multiple Micro-Level Variables

3.4 Estimation, Identification, and Model Selection

The micro-macro models presented above are extended versions of the multilevel latent
class model proposed by Vermunt (2003). The extension involves that, in addition to
having discrete latent variables at two levels, these models contain an outcome variable
at the group level. Vermunt (2003) showed how to obtain maximum-likelihood estimates
for multilevel latent class models using an EM algorithm, and a very similar procedure
can be used here. The log-likelihood to be maximized equals:

log L =

J∑

j=1

logP (Yj ,Zj |Xj)

=
J∑

j=1

log

(
C∑

c=1

P (ζj = c|Xj)P (Yj |Xj , ζj = c)

Ij∏

i=1

D∑

d=1

P (ηij = d|ζj = c)P (Zij |ζj = c, ηij = d)

)

. (3.7)

The expected complete-data log-likelihood, which is computed in the E-step and
maximized in the M-step, has the following form:
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E(log Lcomp) =

J∑

j=1

C∑

c=1

πc
j log P (ζj = c|Xj)

+

J∑

j=1

C∑

c=1

πc
j logP (Yj |Xj , ζj= c)

+

J∑

j=1

Ij∑

i=1

C∑

c=1

D∑

d=1

πcd
ij logP (ηij = d|ζj = c)

+

J∑

j=1

Ij∑

i=1

C∑

c=1

D∑

d=1

πcd
ij logP (Zij |ζj = c, ηij = d). (3.8)

Here, πc
j and πcd

ij denote the posterior class membership probabilities P (ζj = c|Yj ,Zj , Xj)
and P (ζj = c, ηij = d|Yj ,Zj , Xj), respectively. These posterior probabilities can be
obtained in an efficient manner using an upward-downward algorithm. In the upward step
we obtain πk

j and in the downward step we obtain πcd
ij as πc

jP (ij = d|ζj = c, Yj ,Zij , Xj).
This algorithm is implemented in the Latent GOLD program (Vermunt & Magidson, 2013)
that we used for parameter estimation in the empirical examples presented in the next
section.

Since the four sets of model probabilities are parameterized using logit models, the M
step involves updating the estimates of a set of logistic parameters in the usual way. Note
the three special cases of the micro-macro model are all restricted versions of the general
model for which we defined the expected complete-data log-likelihood. The Directass
model does not contain a lower-level latent variable, which can be specified by setting
D = 1. In this model, the joint distribution of Zij is modeled with a multivariate logistic
model containing the two-variable associations between the responses. In the Directlv
model and the Indirect model, we assume responses Zkij to be locally independent,
meaning that the associations between the responses are fixed to zero. Moreover, in
the former Zkij is assumed to be independent of ζj and in the latter ηij is assumed to
be independent of ζj , which are restrictions that can be obtained by fixing the logistic
parameters concerned to zero.

As regards the identifiability of the models proposed in this article, similar conditions
apply as for regular latent class models. A sufficient condition for identification is that
both the individual- and the group-level part of the model are identified latent class models
(Vermunt, 2005). For the individual-level model this means that we need at least three
Zkij-variables (K ≥ 3), whereas for the group-level model this means that most groups
should have at least three individuals (Ij ≥ 3). However, also when these conditions
are not fulfilled, the micro-macro model concerned may be identified. For example, The
Directass model, which contains only a group-level latent variable, is also identified with
two individuals per group when K ≥ 2, and the Indirect model is also identified with
K = 2 and Ij ≥ 3. A formal procedure to check identification is to determine the rank
of the Jacobian matrix, which can be done using Latent GOLD.

Another important issue concerns the selection of the number of classes at the
individual and the group level. For multilevel latent class models, Lukočienė et al. (2010)
recommended based on simulation studies to use either the BIC (with the number of
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groups as sample size in the formula) or the AIC3 for making this decision. In the
Directass model, there is only a group-level latent variable, meaning that we can simply
select the model with the number of group-level classes that provides the best fit. For the
Directlv model and the Indirect model, on the other hand, the number of classes at both
levels have to be determined simultaneously. Here, we follow the suggestion by Lukočienė
et al. (2010) to first determine the number of classes at the individual level (D), keeping
the number of group-level classes fixed to one (C = 1). The second step is then to fix D

at this value to determine the number of group-level classes (C). In the final step, the
number of individual-level latent classes (D) is reconsidered again while fixing C at the
previously determined value.

3.5 Empirical Data Examples

In this section, the Directass model and the Indirect model are applied to empirical data.
In the first example, data on Italian households are used to investigate how demographic
characteristics of the household members affect household ownership of financial products.
Contrarily to Figure 3.2, this example does not contain an additional group-level predictor
Xj . In the second example, data on small firms are used to investigate how the perceived
quality of employees of their relationships at work affects organizational performance
measures, and whether this relationship is moderated by organizational size. All analyses
are carried out in Latent GOLD 5.0 (Vermunt & Magidson, 2013).

3.5.1 Example Direct Model

From the 2010 Survey of Italian Household Budgets (Bank of Italy, 2012), information
is available on the ownership of financial products by 7951 Italian families. Three such
financial products are taken here as group-level outcomes: the number of postal and bank
accounts (ACC), the number of postal and bank savings accounts (SAV), and the number
of credit cards (CRD). In the same survey, information is available on various demographic
characteristics, such as age (AGE), educational level (EDU), and sex (SEX) of the 19836
individual family members. These individual-level variables are used to construct a latent
typology of the families (ζj). The research question of interest is whether these different
types of households show significant differences with respect to ownership of the three
financial products.

For the analysis, the variables on ownership of the financial products were categorized
into two categories: either the family owned the financial product (score = 1) or it did
not (score = 0). For the variables measured at the individual level, age and educational
level were categorized into five categories (1=<30, 2=30-40, 3=41-50, 4=51-65, 5=>65;
1=none, 2=elementary school, 3=middle school, 4=high school, 5=bachelor or higher)
and sex was coded: 1=male and 2=female.

For the Latent GOLD analyses, six multinominal logit equations were defined, one for
each group-level outcome and one for each individual-level variable. In all equations, a
discrete group-level variable ζj was used as a predictor. All two-way associations among
the group-level outcomes and all two-way associations among the individual-level variables
were specified as well. Both the selection criteria BIC (based on the number of groups)
and AIC3 suggested a model with at least eighteen household-level classes. This large
number of latent classes required to obtain an acceptable statistical fit is probably a
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Table 3.1: Class Proportions and Class-Specific Probabilities Direct Model

Class ζ 1 2 3
Class size .36 .32 .32
AGE = 1 .02 .46 .28
AGE = 2 .06 .17 .05
AGE = 3 .05 .29 .07
AGE = 4 .16 .06 .47
AGE = 5 .71 .02 .12
EDU = 1 .10 .19 .01
EDU = 2 .49 .13 .06
EDU = 3 .30 .40 .31
EDU = 4 .09 .21 .41
EDU = 5 .02 .07 .20
SEX = 1 .43 .50 .49
SEX = 2 .57 .50 .51
ACC = 0 .28 .15 .03
ACC = 1 .72 .85 .97
SAV = 0 .75 .81 .84
SAV = 1 .25 .19 .16
CRD = 0 .92 .62 .47
CRD = 1 .08 .38 .53

consequence of the size of the sample on which the analyses were carried out (n=7951),
but it simply precludes a straightforward and illuminative interpretation of the results.
For illustrative purposes, the solution with three classes is interpreted here. These classes
are well separated as indicated by the Entropy R-squared measure (Vermunt & Magidson,
2005b), R2

entr = .74, that is in general labeled to be good when it is larger than .70.
The estimates of the logit parameters of the fitted model are all significant at the 1%

significance level. The corresponding class-specific response probabilities together with
the class proportions are given in Table 3.1. The first group-level class contains 36% of
the households. The household members in this class are relatively old, lowly educated and
a small majority of the family members is female. The second group-level class contains
32% of the households. The members from this class are relatively young, moderately
educated with an equal balance between males and females. Finally, the third group-level
category contains also 32% of the households. The members are relatively old, highly
educated and gender is again equally distributed.

Compared to the other two classes, the households from the first class have a lower
probability to own bank accounts (.72), a higher probability to own savings accounts (.25),
and the lowest probability to own credit cards (.08). The households from the second
class have a higher probability to own bank accounts than the households from the first
class but a lower probability than the households from the third class (.85). They have
a lower probability to own savings accounts than the first class but a higher probability
than the third class (.19). With regard to credit cards, the second type of households is
in the middle of the other two classes as well (.38). The households from the third class
have the highest probability to own bank accounts (.97) and credit cards (.53) but the
lowest probability to own savings accounts (.19).

To conclude, our analysis yielded a classification of the households in three types
that especially differ in composition with respect to age and educational level of the
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family members. Moreover, the different types of households show clear differences with
respect to ownership of financial products. The households with older, lower educated
members have a higher probability of owning savings accounts than the other two types
of households, but a lower probability of owning bank accounts or credit cards. The
households with relatively young and moderately educated members have the highest
probability to own savings accounts and is located between the other two classes with
respect to owning bank accounts and credit cards. The households with relatively old and
highly educated members have the highest probability to own bank accounts and credit
cards, and are located in between the other two classes with respect to savings accounts.

3.5.2 Example Indirect Model

In the literature on small-firm Human Resource Management (HRM), it is often
assumed that working in a small firm is either fantastic or gruesome (Wilkinson, 1999).
This assumption is tested on data collected by dr. B. Kroon by administering two
questionnaires. In the first questionnaire, 91 HR managers of small organizations provided
information about their HR system and other organizational characteristics. In the second
questionnaire, 463 employees provided information about their perceptions of work-related
issues, such as their experience of positive relationships at work. The research question
of interest is how the perception of employees on their relationships at work affects two
organizational performance measures: the level of absenteeism and the amount of conflict
in the organization. At the same time, it is investigated whether this relationship is
moderated by organizational size.

Organizational size (SIZE) was measured by the total number of employees in the
organization, including working owners and part-time employees, as reported by the HR
manager. The variable is dichotomized into two categories; one with firms having less
than 10 employees (very small firms) and one with firms having 11-50 employees (small
firms). This categorizations is adopted from the European Commission (2005), although
they refer to firms from the first category as micro organizations. The level of absence
(ABS) and industrial conflict (CON) was originally measured on a five point Likert scale
ranging from very low to very high (Guest & Peccei, 2001). Since the scores reported
by the HR managers were very skewed, the variables are dichotomized to organizations
that have very low levels (Cat=1) and low to very high levels (Cat=2) of absenteeism or
conflict.

At the individual level, the perception of work relationships were measured by three
indicators: (1) satisfaction with the direct supervisor (SUP), (2) satisfaction with
colleagues (COL), and (3) the perception of the degree in which the individual experience
a family culture at work (FAM). These three indicators were originally measured with
multiple items. However, to keep the illustration simple and as close as possible to
Figure 3.3, the mean scale scores of each of the three scales is used as an indicator
variable in the latent class analysis. Satisfaction with the direct supervisor was originally
measured by nine items on a four point Likert scale ranging from never to always (Van
Veldhoven, Meijman, & Broersen, 2002). An example item is: “Can you count on your
supervisor when you come across difficulties in your work?”. Satisfaction with colleagues
was originally measured with the same four answer categories on six items (Van Veldhoven
et al., 2002). An example item is: “If necessary, can you ask your colleagues for help?”.
The perception of a family culture at work was originally measured by three items on a
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Table 3.2: Class Proportions and Class-Specific Probabilities Indirect Model

(a)

Class η 1 2
Class size .53 .47
SUP = 1 .67 .01
SUP = 2 .30 .46
SUP = 3 .03 .53
COL = 1 .58 .05
COL = 2 .34 .41
COL = 3 .08 .55
FAM = 1 .40 .15
FAM = 2 .36 .32
FAM = 3 .24 .53

(b)

Class ζ 1 2 3 4 5
Class size .17 .13 .20 .39 .10

η = 1 .81 .65 .53 .39 .18
η = 2 .19 .35 .47 .61 .82

SIZE = 1 .09 .10 .17 .56 .07
SIZE = 2 .28 .18 .23 .17 .14
ABS = 1 .00 1.00 .00 1.00 .00
ABS = 2 1.00 .00 1.00 .00 1.00
CON = 1 .00 .00 1.00 1.00 .00
CON = 2 1.00 1.00 .00 .00 1.00

five point scale ranging from totally disagree to totally agree (Goss, 1991). An example
item is: “People here are like family to me”.

The model can be formally described with seven multinomial logit models: (1) two for
the group-level outcomes in which the main effect of ζj , the main effect of organizational
size and their interaction effect are used as predictors, (2) one for the group-level latent
variable ζj in which organizational size is used as a predictor, (3) one for the individual-
level latent variable ηij for which ζj is a predictor, and (4) three for the individual-level
variables for which ηij is a predictor. Furthermore, a two-variable association among the
two firm-level outcomes is added to the model. The number of classes for the two latent
variables are determined following the stepwise procedure of Lukočienė et al. (2010) using
BIC based on the number of groups. This resulted in two classes at the individual level
and five classes at the group level. The class separation of the latent variables is sufficient
to good (Rη

entr = .67 and R
ζ
entr = .92).

All effects were significant at the 5% level, except the main effect of organizational
size and its interaction effect with ζj on both group-level outcomes. Therefore, these
effects were removed from the model. The class proportions and class-specific response
probabilities based on the final fitted model are given in Table 3.2. Table 3.2(a) shows
that at the individual level, there is one class that contains 53% of the employees and
these employees are not very satisfied with their relationships at work. The second class
of individuals contains 47% of the employees that are satisfied with their relationships at
work.

Table 3.2(b) provides the conditional probabilities of the discrete categories of the
indicators given the discrete categories of the group-level latent variable ζj , and the
conditional probabilities of the latent categories of ζj given the categories of the group-
level predictor organizational size. From the first two rows of the table can be seen that
at the group level, the five classes differ with respect to the composition of employees
from the two individual-level classes. The group-level latent classes are ordered from the
lowest probability of an employee belonging to the satisfied individual-level class (.19)
through the highest (.82). The first and second group-level classes contain firms with
employees from the unsatisfied individual-level classes (.81 and .65, respectively). The
class sizes are 17% and 13%. The fourth and fifth group-level classes contain firms that
have the highest probability of employees from the satisfied individual-level class (.61 and
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.82, respectively). These classes contain 39% and 10% of the firms. The remaining 20%
of the firms belong to the third group-level class. In this class a mixture of employees
from the two individual-level classes is found.

In the third and fourth row of the table is shown that, the very small firms with
maximum 10 employees (SIZE=1), have the highest probability to belong to the fourth
group-level class (.56) and the small firms with 11-50 employees (SIZE=2) have the
highest probability to belong to the first group-level class (.28). The very small firms
have a higher probability to belong to the fourth class than the small firms, though for the
remaining four classes it is the other way around. The fourth group-level class contains
firms with very low probabilities of absenteeism (.00) and conflict (.00). The second
and third group-level classes have, respectively, high probabilities on either absenteeism
(1.00) or conflict (1.00). The first and fifth group-level classes have high probabilities to
encounter both (1.00 and 1.00).

To conclude, at the individual level, the assumption that working at a firm with less
than 50 employees is either fantastic or gruesome is supported, since the two individual-
level classes could be interpreted as a satisfied and an unsatisfied class of employees. At the
group level the situation is more complex. Although about half of the organizations contain
mostly employees from the satisfied individual-level class, these organization belong either
to a group-level class that encounters low or high levels of absenteeism and conflict.
Thus at the group level, there is no clear positive effect of having satisfied employees
on organizational levels of absenteeism and conflict. Organizational size matters in this
context, since very small firms have a higher probability to belong to the group-level class
without a lot of absenteeism and conflict than small firms.

3.6 Discussion

In the current article, two latent class models, referred to as the Direct model and the
Indirect model, are presented that can be used to predict a group-level outcome by means
of multiple individual-level variables by extending an existing method for micro-macro
analysis with a single individual-level variable to the multivariate case. Both models
involve the construction of a group-level latent class variable based on the individual-
level variables to summarize the individual-level information at the group level. The
group-level latent variable can then be related to other group-level variables, such as
a group-level outcome. In the Direct model, the group-level latent classes affect the
individual-level variables directly, while in the Indirect model these are affected indirectly
via an individual-level latent variable. The Direct model seems most appropriate when the
aim of the research is to construct a typology of groups that affect one or more group-
level outcomes. In this situation the within and between component of the individual-
level variables are independent. The Indirect model seems more appropriate when the
individual-level variables are intended to measure an individual-level construct and groups
are allowed to differ on the individual-level variable. The within and between component
of the individual-level variables are now dependent. Both methods are applied to real data
examples.

In the models with a discrete latent variable at each level, the number of classes of
the latent variables had to be decided simultaneously since the full model was estimated
at once. Although Lukočienė et al. (2010) provided guidelines on how to make this
decision, further research should be devoted to study whether their approach is also
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optimal in the current context. Especially when the latent variables are dependent, one
might prefer to determine the number of latent classes of the two variables independently.
A stepwise procedure to do this without introducing bias in the group-level parameter
estimates, is presented in Bolck, Croon, and Hagenaars (2004), Vermunt (2010), and
Bakk et al. (2013). A further limitation of the current method is that the group-level
outcome functions as an additional indicator of the latent group-level variable. This
implies that the formation of the group-level classes is affected by the outcome variable.
This may be counter intuitive since the latent variable is intended to predict the outcome.
An additional advantage of using the stepwise procedure just referred to, is that the latent
classes can not only be defined independent of each other, but also independent of the
group-level outcome.





CHAPTER 4

Stepwise Micro-Macro Analysis

Abstract

Explaining group-level outcomes from individual-level predictors requires aggregating the
observed scores on these predictors to the group level and accounting for the measurement
error in the aggregated scores to prevent biased estimates. However, it is not clear yet how
to perform the aggregation and the correction for measurement error when the individual-
level predictors are discrete variables. It is shown how to overcome this problem by a
stepwise latent class analysis. In the first step, a latent class model is estimated in which
the scores on a discrete individual-level predictor are used as indicators for a group-level
latent class variable. In the second step, this latent class model is used to aggregate the
individual-level predictor to the group level by assigning the groups to the latent classes.
In the final step, a group-level analysis is performed in which the aggregated measures are
related to the remaining group-level variables while correcting for the measurement error
in the class assignments. The proposed stepwise model is compared to existing methods in
a simulation study and extended to a situation with multiple group-level latent variables.
Finally, the approach is applied to an empirical data example.

This chapter is submitted for publication as Bennink, M., Croon, M. A., & Vermunt, J. K. (2014).
Stepwise latent class models for explaining group-level outcomes using discrete individual-level predictors.
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4.1 Introduction

Though typically multilevel models attempt to explain an individual-level dependent
variable by means of individual- and group-level predictors (Goldstein, 2011; Hox, 2010;
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), the prediction of group-level
outcomes is equally important. For example, a health psychologist might be interested
in whether students’ attitudes (micro-level predictor) affect teacher’s stress (macro-
level outcome), or a developmental psychologist wishes to investigate whether parenting
practices (macro-level predictor) affect their children’s study habits (micro-level mediator),
which in turn affects children’s achievement (micro-level mediator), which subsequently
affects parental stress (macro-level outcome) (Bovaird & Shaw, 2012). Snijders and
Bosker (2012) refer to this type of multilevel analysis as micro-macro analysis since a
micro (or individual)-level predictor is assumed to affect a macro (or group)-level outcome.
These micro-macro relationships cannot be addressed within the mainstream multilevel
framework (Preacher et al., 2010).

Traditionally, data from micro-macro designs are analyzed by aggregation; that is, the
group means of the individual-level variables are assigned to the groups and subsequently
a group-level analysis is performed using the aggregated individual scores and group-
level variables. Note that this is in fact a stepwise procedure since the aggregation
(measurement model) is separated from the group-level analysis (structural model). An
example from group-performance research is provided by van Veldhoven (2005), who
studied the relationships between perceived human resource practices, work climate, and
job stress on the one hand, and prospective and retrospective financial performance on the
other hand. Because the financial performance indicators are only available at the business
level, individual survey scores were aggregated to mean scores to perform a single-level
analysis at the business level.

Although this seems intuitive, the above aggregation approach has various serious
drawbacks. One of them is that it is implicitly assumed that the group members provide
perfect information about their group, while in practice it is more realistic to expect that
the group means contain measurement error. Croon and van Veldhoven (2007) showed
that ignoring this measurement error causes a bias in the estimates of the parameters from
the structural model. Another problem of the aggregation approach is that it is unclear
how to aggregate categorical predictors to the group level. For example, for nominal
variables with more than two categories, the group mean has no substantive meaning. It
might be more appropriate to use the group modes instead, but even then the problem
of ignoring measurement error remains.

To overcome the measurement error issue, Croon and van Veldhoven (2007) proposed
using a latent variable model for two-level data in which the individual-level responses
serve as indicators for a continuous latent variable which in turn is used as a predictor
of the group-level outcome variable (Croon & van Veldhoven, 2007). In this way, the
multilevel structure of the data is correctly accounted for and the measurement error of
the group-level scores is incorporated in the model. Bennink et al. (2013) extended this
latent variable approach to the situation in which the individual predictors are categorical
variables. They proposed performing micro-macro multilevel analysis with categorical
variables using latent class models.

The most important downside of the latent variable approaches is that these require
the measurement and structural part of the corresponding latent variable model to be
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estimated simultaneously. This is less intuitive and less practical than the traditional
procedures in which the aggregation and the group-level analysis are separate steps. In
the current article, we demonstrate how to bridge the gap between the traditional and
latent variable approaches by showing how to use the latent class model for discrete
micro-macro relations in a stepwise manner. More specifically, in the first step, a latent
class model is estimated in which the scores on the discrete individual-level predictor are
used as indicators for a group-level latent class variable (measurement model). In the
second step, this latent class model is used to aggregate the individual-level predictor to
the group level by assigning the groups to the latent classes. In the final step, a group-
level analysis is performed in which the aggregated measures are related to the remaining
group-level variables (structural model), while adjusting for the measurement errors in the
class assignments. The latter adjustments, which are based on earlier work by Bakk et
al. (2013), Bolck et al. (2004), and Vermunt (2010), are applied to the current research
context and tested in a simulation study.

The organization of the article is as follows. First, the latent class model for discrete
micro-macro analysis is introduced using a model that contains a single individual-level
variable. Second, it is shown how this model can be applied in a stepwise manner. Third,
a simulation study is presented to evaluate the performance of the proposed stepwise
procedure. Fourth, the stepwise procedure is applied to a more complex model with
two individual-level variables and applied to a real data example in which enriched job
design (macro-level predictor) affects team productivity (macro-level outcome) directly
and indirectly through job control (micro-level mediator) and job satisfaction (micro-level
mediator).

4.2 Micro-Macro Latent Class Model

To illustrate the multilevel latent class model for micro-macro analysis, let us consider a
simple model that contains a single group-level outcome Yj , a single group-level predictor
Xj , and a single individual-level predictor Zij . Subscript j is used to denote a particular
group and subscript i to denote the individuals within a group. The group-level predictor
is expected to affect the group-level outcome directly and indirectly via the individual-level
predictor. Any theory in which a group-level intervention is not only expected to influence
a group-level (performance) measure directly, but also indirectly through a characteristic of
the group members, can be tested with this model. These kinds of models are sometimes
referred to as 2-1-2 models since the effect of the level-2 independent variable on the level-
2 dependent variable is mediated by a level-1 variable. Also, the term ‘bathtub model’
is in use here because of the shape of the conceptual model that is shown in Figure 4.1.
In this conceptual model, the latent variable is presented in a circle and the manifest
variables in rectangles.

The model of interest is a latent class model for two-level data in which the scores
of the individual-level units i within group j on the micro-level predictor Zij are treated
as indicators of a discrete latent class variable defined at the group level, ζj . Thus, the
number of indicators of the latent variable equals the number of individuals within a
group. This part of the model is referred to as the measurement part. All group members
are treated as equivalent sources of information about the group-level variable; therefore,
no one is considered as providing more accurate judgments in this respect than his co-
members. This implies that the relationship between the individual-level variable and the
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Figure 4.1: Micro-Macro Latent Variable Model with One Individual-Level Predictor

group-level latent variable can be assumed to be the same for all individuals within a
group. According to the local independence assumption commonly made in latent class
analysis, the individual responses of group members are independent given the score of
their group on the latent variable. In the structural part of the model, the group-level
latent classes are related to the group-level independent variable Xj and the group-level
dependent variable Yj .

For the general case where all variables in the latent class model are discrete, the
model can be formally described with three multi-category logit models (Agresti, 2013).
Let there be P , Q, R, and S nominal response categories for, respectively, Zij , ζj , Xj ,
and Yj and a particular category is denoted by p, q, r, and s. Then there are P −1, Q−1,
and S− 1 different logit equations defined for, respectively, Zij , ζj , and Yj in which each
category is compared to an arbitrary baseline category. When the first categories are used
as baselines, the multinomial logit equations are:

log

(

P (Zij = p|ζj = q)

P (Zij = 1|ζj = q)

)

= βZ
p + βZ

p
ζ
q , (4.1)

log

(

P (ζj = q|Xj = r)

P (ζj = 1|Xj = r)

)

= βζ
q + βζ

q
X
r , (4.2)

and

log

(

P (Yj = s|ζj = q,Xj = r)

P (Yj = 1|ζj = q,Xj = r)

)

= βY
s + βY

s
ζ
q + βY

s
X
r . (4.3)

Each equation contains an intercept term (βZ
p , β

ζ
q , and βY

s ) and an effect for each of the

predictor variables (βZ
p
ζ
q , β

ζ
q
X
r , βY

s
ζ
q , β

Y
s

X
r ).

Equation 4.1 describes the measurement part of the model in which the scores of the
individual-level units on the micro-level predictor Zij are treated as exchangeable indicators
of a discrete latent class variable defined at the group level, ζj . The structural part of
the model is defined in Equations 4.2 and 4.3 in which the group-level latent variable is
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Figure 4.2: Graphical Representation of Stepwise Procedure

related to the other group-level variables: ζj is regressed on Xj , and the outcome Yj is
regressed on ζj and Xj .

The parameters of this latent class model can simultaneously be estimated by full
information maximum likelihood estimation and, therefore, this method is further referred
to as the one-step approach. This approach mainly has two drawbacks. First, it is less
intuitive compared to a stepwise approach that separates the aggregation and group-level
analysis. Second, the definition of the latent group-level variable is not only determined
by the micro-level indicators, but also by the remaining variables in the structural model.
Thus, when the structural part of the model is adapted, say a level-2 covariate or outcome
is added or removed, the full model has to be re-estimated and the measurement model
may thus change. Especially, the fact that the meaning and possibly also the number of
the latent classes is affected by the outcome variable is very undesirable since the latent
classes were theoretically intended to predict this outcome. These problems associated
with the simultaneous estimation of the model are circumvented with a stepwise approach.

4.3 Stepwise Estimation

A stepwise estimation procedure of the micro-macro latent class model consists of the
following three steps:

• First step: Estimate the measurement model (i.e., relate the micro-level predictor
to the latent group-level variable).

• Second step: Aggregate the micro-level predictor to the group level by assigning
groups to latent classes.

• Third step: Estimate the structural part of the model while correcting for the
classification errors that were made in the second step.

So, as graphically illustrated in Figure 4.2(a), a measurement model is defined for ζj
and the corresponding latent class model is estimated in the first step of the analysis:
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P (Zj) =

Q
∑

q=1

P (ζj = q)

Ij∏

i=1

P (Zij |ζj = q). (4.4)

Here, the vector Zj contains the Ij responses Zij of the members of group j. The model
parameters are the class proportions P (ζj = q) and the conditional response probabilities
P (Zij |ζj = q), which, as shown in Equation 4.1, are typically parameterized using a logit
equation. As in the one-step model, the responses of the individual group members on
Zij are assumed to be exchangeable and independent given the latent classes, but the
meaning of the latent classes is now only determined by the individual-level scores on
the micro-level predictor and no longer by the scores on the group-level variables. The
number of latent classes of ζj is also determined during this step.

In the second step, the groups are assigned to the Q latent classes based on their
scores Zj . We denoted the assigned class for group j by Wj . The assignment process in
which the new variable Wj is constructed is graphically illustrated in Figure 4.2(b). As in a
standard latent class analysis, the class assignments are obtained using the posterior class
membership probabilities P (ζj = q|Zj) from the first step. Several types of deterministic
and probabilistic assignment rules have been proposed. In the current article, we focus on
modal and proportional assignment. With modal assignment, each group is assigned to the
latent class for which the posterior probability is largest. With proportional assignment,
a group is assigned to each of the Q classes with a probability equal to the posterior
membership probability for the class concerned.

Unless the micro-level predictor is a perfect indicator for the group-level latent class
variable, classification errors will be made during the assignment. In order to account for
these classification errors (in step three), we use the Q×Q classification table with entries
P (Wj = t|ζj = q). Note that P (Wj = t|ζj = q) is the conditional probability that a
group belonging to class q is assigned to class t of Wj (t = 1, · · ·Q). The off-diagonals of
this table represent classification error probabilities. In Appendix C, we show how these
probabilities can be obtained from the latent class model parameters.

In the third step, the structural model is estimated; that is, the assigned scores Wj

are related to the other group-level variables, in this case Xj and Yj . As shown by Bolck
et al. (2004) biases are caused by the classification errors introduced in the second step;
that is, by the fact that we have Wj instead of ζj . However, they also indicated that
it is possible to adjust for the classification errors, which prevent biases. Key for their
adjustment method is the following relationship between P (Yj ,Wj |Xj) and P (Yj , ζj |Xj):

P (Yj ,Wj |Xj) =

Q
∑

q=1

P (Yj , ζj = q|Xj)P (Wj |ζj = q)

=

Q
∑

q=1

P (ζj = q|Xj)P (Yj |Xj , ζj = q)P (Wj |ζj = q). (4.5)

This equation shows that a model for P (Yj , ζj |Xj) is obtained by estimating a model
for P (Yj ,Wj |Xj) and correcting for the probabilities P (Wj |ζj = q). Note that the
P (Wj |ζj = q) were computed in step two. The resulting model is shown graphically in
Figure 4.2(c).

The model defined in Equation 4.5 can be estimated by maximum likelihood (ML).
This involves performing a latent class analysis in which Wj is used as a single indicator.
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The probabilities P (ζj = q|Xj) and P (Yj |Xj , ζj = q) (see Equation 4.2 and 4.3) are
freely estimated and P (Wj |ζj = q) is treated as known and thus fixed. We refer to
this approach as the ML three-step method (Bakk et al., 2013; Vermunt, 2010). An
alternative proposed by Bolck et al. (2004) - and that we therefore call the BCH three-step
approach - involves reformulating the problem into a weighted analysis (see also Vermunt
(2010)). More specifically, by weighting the data points by the inverse of the classification
probabilities P (Wj |ζj), we adjust for the fact that the Wj contain classification errors.
The reweighted data can be used as observed data to estimate the structural parameters
of interest.

From previous research on three-step latent class analysis, it is known that the
bias adjusted stepwise approaches work very well in situations encountered in practice.
However, this approach may fail when a small sample size is combined with a very
large proportion of classification errors, where the latter can also be quantified as class
separation (Bakk et al., 2013; Vermunt, 2010). In such situations, the maximum-
likelihood estimates of the first step latent class model will tend to yield classes being
more different than they truly are (Galindo-Garre & Vermunt, 2006). Consequently, the
amount of classification errors is underestimated and the structural parameters are not
adjusted to a sufficient degree.

The proportion of classification errors and the class separation is mainly a function
of the number of indicator variables (in micro-macro analysis, this equals the number
of individuals within each group), the number of classes, and the response probabilities
for the most likely response. Since all group members are assumed to be exchangeable,
the response probabilities for the most likely response are the same for individuals within
the same group, which makes the measurement model of a micro-macro model more
parsimonious than a regular latent class analysis. In the following simulation study, we
investigate under which conditions class separation is large enough to perform an unbiased
stepwise analysis for the current model.

4.4 Simulation Study

In this section, the performance of the stepwise approaches is first evaluated and compared
to manifest aggregation with a group mode, one-step latent aggregation, and stepwise
latent aggregation without correcting for measurement error. Second, the lower boundary
of the separation between classes is explored at which still unbiased results are obtained
with the stepwise approaches. All analyses were carried out with Latent GOLD 5.0
(Vermunt & Magidson, 2013).

Data are generated according to the model shown in Figure 4.1 with all dichotomous
variables. An average situation is created by fixing the between-group effects from the
structural part of the model to .40 on a logistic scale using effect coding (βY X = βζX =
βY ζ = .4). The number of groups was fixed to 100 (J = 100) and the number of
individuals within a group to 10 (nj = 10) which are minimum sample sizes for this
type of analysis (Bennink et al., 2013). It is expected that larger samples provide slightly
better results. The relationship between the scores on the micro-level predictor and the
latent variable is varied from weak to strong, again using effect coding (βZζ =.20, .40,
.60, or .80). This corresponds to class separations, measured with the entropy based
R-square, of R2

entr = .24, .64, .88, and .97. For each of the four conditions, 500 datasets
were generated and analyzed with manifest mode aggregation, the latent variable one-step



46 CHAPTER 4. STEPWISE MICRO-MACRO ANALYSIS

Table 4.1: Estimates Between Effects Simple Micro-Macro Model

Mode One-step Three-step
None BCH ML

Modal Prop Modal Prop Modal Prop
Estimates of βY X(SD)1

True βZζ =.20 .49(.12) .41(.19) .49(.12) .50(.11) .45(.17) .43(.18) .45(.17) .45(.13)
True βZζ =.40 .46(.12) .41(.14) .46(.12) .47(.12) .42(.14) .41(.14) .42(.14) .42(.14)
True βZζ =.60 .42(.12) .40(.13) .42(.12) .42(.12) .41(.13) .41(.13) .41(.13) .41(.13)
True βZζ =.80 .41(.13) .41(.14) .41(.13) .41(.13) .41(.14) .41(.14) .41(.14) .41(.14)

Estimates of βζX(SD)1

True βZζ =.20 .18(.10) .45(.25) .19(.14) .12(.08) .36(.28) .42(.26) .37(.26) .34(.18)
True βZζ =.40 .31(.11) .42(.14) .32(.11) .28(.09) .41(.15) .41(.14) .41(.16) .41(.14)
True βZζ =.60 .40(.12) .40(.12) .37(.12) .36(.11) .40(.13) .40(.12) .40(.12) .40(.12)
True βZζ =.80 .40(.11) .41(.11) .40(.11) .40(.11) .41(.11) .41(.11) .41(.11) .41(.11)

Estimates of βζY (SD)1

True βZζ =.20 .17(.12) .50(.33) .19(.16) .12(.09) .38(.34) .43(.30) .40(.33) .34(.21)
True βZζ =.40 .30(.13) .42(.17) .31(.13) .27(.11) .42(.19) .42(.18) .41(.18) .41(.16)
True βZζ =.60 .37(.12) .41(.13) .38(.12) .36(.11) .41(.13) .41(.13) .41(.13) .41(.13)
True βZζ =.80 .39(.13) .40(.13) .39(.13) .39(.12) .40(.13) .40(.13) .40(.13) .40(.13)
J = 100, nj = 10, True value between-group effects = .40
1The estimates are averaged over 500 replications
ζ should be replaced by the manifest group mode of Z in case of mode aggregation

approach, and the latent variable three-step approaches. The three-step procedures were
applied with both modal and proportional assignment.6

The average estimated structural parameters in each condition are presented in
Table 4.1 and should be compared with their true value of .40. As expected, the one-step
and the corrected three-step procedures provide unbiased results, regardless whether the
modal or proportional assignment rule was used. Only when the quality of the indicators
is extremely poor (βZζ = .20), both methods perform less well. This occurs, as shown
below, in the situation in which classes are estimated as being more different than they
truly are. Furthermore, as can be seen, the standard deviations of the estimates decrease
when the quality of the indicators increases.

The other methods fail. When the uncorrected three-step method is used, the
estimates of the group-level relationships in which ζj is involved are underestimated in line
with Bolck et al. (2004), regardless whether the modal or proportional assignment rule
was used. Because the indirect effect is underestimated, the direct effect is overestimated.
The bias decreases when the strength of the relationship between Zij and ζj increases.
When Zij is aggregated to the group level using the manifest group mode, the estimates
of the between-group parameters are biased and this bias decreases when the quality of the
indicators improves. In line with previous research (Bennink et al., 2013), the parameter
estimates are only unbiased when the strength of the relationship between the individual-
level predictor and the corresponding group-level variable is very good (βZζ = .80). The
standard deviations of the estimates obtained with mode aggregation and the uncorrected

6In the one-step and the three-step ML methods, we used weakly informative priors for the model
probabilities to prevent boundary estimates for the logit parameters. Because this does not work in the
three-step BCH method, 82 datasets with the modal assignment rule and 73 datasets with the proportional
assignment rule did not converge and were excluded from the further analysis.
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Table 4.2: True and Estimated Proportion of Classification Errors

Modal Proportional
R2

entr True βZζ True Estimated (SD)1 True Estimated (SD)1

.24 .20 .27 .21(.08) .35 .29(.09)

.35 .25 .22 .18(.05) .30 .25(.06)

.45 .30 .18 .15(.03) .24 .22(.04)

.55 .35 .14 .13(.03) .19 .18(.04)

.64 .40 .11 .10(.02) .15 .15(.03)

.88 .60 .04 .03(.01) .05 .05(.01)

.97 .80 .01 .01(.00) .01 .01(.01)
J=100, nj = 100, True value between-group effects = .40
1The estimates are averaged over 500 replications

three-step procedure are stable over the true quality of the indicators.
As shown above, the corrected three-step approaches perform less well with poor

indicators, the situation corresponding with an extremely low class separation of .24.7 To
illustrate why this occurs, the true and estimated proportion of classification errors are
shown in Table 4.2 for each condition. As can be seen, the proportion of classification
errors is underestimated in the condition in which R2

entr = .24 resulting in third-step
parameters which are not sufficiently corrected. To explore what would be a sufficiently
high class separation, also indicators with βZζ values of .25, .30, and .35, corresponding
to R2

entr values of .35, .45, and .55, are added to the table. As can be seen, with a class
separation of .45, the estimated proportion of classification errors gets close to the actual
proportion. This applies to both modal and proportional assignment. It can also be seen,
that the variability (the standard deviation) of the estimated proportion of classification
error decreases when the true quality of the indicators increases.

To conclude, the adjusted three-step approaches provide estimates that are as good as
the estimates from a one-step analysis, as long as the parameters as the class separation
is sufficient (R2

entr = .45). It does not matter whether a BCH or ML correction is used
or whether modal or proportional assignment is used. When the relationship between
the micro-level predictor and the group-level variable is very strong, all methods provide
unbiased estimates, but this is not a realistic situation in practice. When the relationship
between the micro-level predictor and the group-level variable is moderate, a latent variable
should be used for the aggregation since the manifest mode aggregation provides biased
estimates. When the relationship between the micro-level predictor and the group-level
variable is extremely weak, all methods may provide biased estimates for the group-level
sample size investigated in the current simulation study.

4.5 Multiple Macro-Level Latent Variables

Since stepwise modelling could be especially useful in large and complex models, the simple
model discussed so far is extended to a more complex model. As shown in Figure 4.3, this

7As stated before, class separation is not only a function of the quality of the indicators but also of
the number of indicators which in our application equals the number of individuals within a group. For
example, an indicator with a βZζ -value of .20 yields a R2

entr = .42 when nj = 20 and R2

entr = .55 when
nj = 30.
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Figure 4.3: Micro-Macro Latent Variable Model with Multiple Macro-Level Latent
Variables

model contains two micro-level predictors, Z1ij and Z2ij , and thus two latent variables,
ζ1j and ζ2j . The corresponding multinomial logit equations for Z1ij and Z2ij are the
same as described in Equation 4.1, and the ones for ζ1j and ζ2j are the same as described
in Equation 4.2.

When Xj , ζ1j ζ2j , and Yj contain, respectively, R, W , Q, and S categories and a
particular category is denoted by r, w, q, and s, the multinomial logit equation for Yj is:

log

(

P (Yj = s|ζ1j = w, ζ2j = q,Xj = r)

P (Yj = 1|ζ1j = w, ζ2j = q,Xj = r)

)

= βY
s + βY

s
ζ1
w + βY

s
ζ2
q + βY

s
X
r . (4.6)

The first categories are used as baseline categories, βY
s is the intercept of the response

variable, and βY
s

ζ1
w , βY

s
ζ2
q , and βY

s
X
r are the regression parameters of the predictor

variables.
When the two individual-level predictors would be continuous variables, it would be

common practice to include both their between- and within-group correlation in the model.
In the case of discrete variables, this concept is translated by incorporating an association
between Z1ij and Z2ij (aZ1Z2

), and between ζ1j and ζ2j (aζ1ζ2). Thus, Z1ij and Z2ij

are not expected to be independent given the latent group-level variables. Instead, while
keeping the latent group-level variables constant, there may still be some residual within-
group association between the micro-level predictors. At the between level, it is also
expected that there is some residual association between ζ1j and ζ2j , after controlling for
Xj .

While estimating this model in a single step is straightforward, when estimating it
stepwise, it has to be decided how to define the first-step model(s). The first option
would be to formulate a separate measurement model for ζ1j and ζ2j as described in
Equation 4.4. By formulating two measurement models, the meaning of the latent classes
is only influenced by the individual-level scores on the corresponding micro-level predictors.
The number of latent classes for ζ1j and ζ2j can be determined without being influenced
by the variables from the structural part of the model, but the eventual residual within-
group association among Z1ij and Z2ij is ignored.

An alternative would be to formulate a single simultaneous measurement model for
the two latent variables which includes the residual within-group association between Z1ij
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and Z2ij :

P (Z1j ,Z2j) =

W∑

w=1

Q
∑

q=1

P (ζ1j = w, ζ2j = q)

Ij∏

i=1

P (Z1ij , Z2ij |ζ1j = w, ζ2j = q). (4.7)

By doing so, the meaning of the latent classes is still not influenced by the group-level
variables from the structural part of the model, but the number of latent classes for ζ1j
and ζ2j should be determined simultaneously.

An analysis is carried out to explore whether the misspecification of the measurement
model arising from ignoring the residual within-group association among Z1ij and Z2ij

affects the estimates of the between-level parameters. Since sampling fluctuation is not of
primary interest here, one very large data set (J = 10000, Ij = 100) is generated in each
of the investigated conditions. If it turns out that ignoring the within-group association
provides biased estimates in such very large samples, the estimates in smaller samples can
be expected to be even worse because of sampling fluctuation.

The population models varied in the strength of the relationship between the latent
variables and the corresponding micro-level predictors (indicators) and the strength of the
within-group association among the micro-level predictors (within-group association):

• indicators (βZ1ζ1 and βZ2ζ2): .20, .40, or .60

• within-group association (aZ1Z2
): .00, .20, .40, or .60

Similar to the previous simulation study, all variables, including the latent ones, are
dichotomous and the between-group effects from the structural part of the model are
fixed to .40 on the logistic scale using effect coding (βζ1X = βζ2X = aζ1ζ2 = βY ζ1 =
βY ζ2 = βY X = .40). Note that because of the large number of individuals within a
group, the R2

entr value will be very high (>.90) in all conditions.
The generated datasets were analyzed with the one-step and the bias adjusted three-

step approaches. In the one-step procedure, we used both the correct specification
containing the residual within-group association and the incorrect model excluding this
association. In the first step of the BCH and ML bias adjusted stepwise procedures,
we used either a single joint measurement model with the association between Z1ij and
Z2ij or two separate measurement models which ignore this association. Both modal
and proportional assignment rules were used to assign the groups to latent classes in
the second step of the analysis. The manifest mode aggregation and uncorrected three-
step procedures were not used because the previous simulation study showed that these
methods already fail in a simpler model.

Table 4.3 presents the results for the conditions in which aZ1Z2
is varied and βZ1ζ1

and βZ2ζ2 are fixed to .40. The reported results concern the between-level parameter
which is most strongly affected by ignoring the within-group association; that is, the
association between ζj1 and ζj2 (aζ1ζ2), which has a true value of .40. As can be seen,
when the within-group association among Z1ij and Z2ij is correctly modeled, both the
one-step and the bias adjusted three-step methods provide unbiased estimates. However,
when this within-group association is not taken into account, the between association
estimate is biased with all estimation procedures. The larger the value of the ignored
within-group association among Z1ij and Z2ij , the more the between-group association
among ζ1j and ζ2j is overestimated. Note that the estimates obtained with the one-
step and the various types of bias adjusted three-step estimates are all very similar. The
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Table 4.3: Estimates Between Association ζ1j and ζ2j (aζ1ζ2 )

One-step BCH modal BCH prop ML modal ML prop
aZ1Z2

Yes No Yes No Yes No Yes No Yes No
.00 .40 .40 .39 .40 .40 .40 .39 .40 .40 .40
.20 .40 .44 .40 .43 .40 .44 .40 .43 .40 .44
.40 .40 .50 .40 .48 .40 .50 .40 .48 .40 .50
.60 .41 .60 .42 .56 .43 .59 .42 .56 .43 .59

J = 10000, nj = 100, True value aζ1ζ2 = .40
Yes = aZ1Z2

is incorporated in measurement model
No = aZ1Z2

is not incorporated in measurement model

Table 4.4: Estimates Between Effects when Within-Group Association is not Modelled

One-step BCH modal BCH prop ML modal ML prop
βZζ .60 .20 .60 .20 .60 .20 .60 .20 .60 .20
aZ1Z2

.20 .60 .20 .60 .20 .60 .20 .60 .20 .60
βζ1X .41 .34 .41 .35 .41 .35 .41 .35 .41 .35
βζ2X .39 .33 .39 .34 .39 .34 .39 .34 .39 .34
aζ1ζ2 .38 .91 .38 .81 .38 .88 .38 .81 .38 .87
βY ζ1 .40 .32 .40 .34 .40 .33 .40 .33 .40 .33
βY ζ2 .40 .30 .40 .32 .40 .31 .40 .32 .40 .31
βY X .44 .45 .44 .44 .44 .44 .44 .45 .44 .44
J = 10000, nj = 100, True value between-group effects = .40

estimates of the remaining between-group effects are not as much biased as the between-
group association. When there is bias in the remaining between-group parameters it is
a downwards bias that probably compensates the overestimation of the between-group
association among ζ1j and ζ2j .

Table 4.4 shows how the bias that is caused by ignoring the within-group association
among the micro-level predictors interacts with the quality of the micro-level scores as
indicators for the group-level latent variables. With bad indicators and a strong ignored
within-group association (βZ1ζ1 = βZ2ζ1 = .20 and aZ1Z2

= .60 ), the estimates of the
between-group association among ζ1j and ζ2j are very biased, while with good indicators
and a small ignored within-group association (βZ1ζ1 = βZ2ζ1 = .60 and aZ1Z2

= .20 )
the estimates are still good.

Altogether, these results show that the bias adjusted three-step procedures can be
used for this micro-macro model without introducing more bias compared to the one-step
procedure, as long as the within-group association among the micro-level predictors is
modeled in the first step. The within-group association can only be ignored when the
micro-level scores are very good indicators of the group-level latent variables and the
within-group association is small.
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4.6 Data Example

The stepwise micro-macro model with two micro-level predictors is now applied to a
real data example. Since the BCH and ML correction procedures and the modal and
proportional assignment rules provided similar results in the simulation study, only one
method is applied here, namely the ML three-step approach with modal assignment. The
inspiration for the current data example comes from a paper by Croon, van Veldhoven,
Peccei, and Wood (2014). These authors show the relevance of bathtub multilevel
mediation models, such as the one discussed in this paper, for research on human resource
management (more specifically on job design) and organizational performance by using
an example from the Workplace Employment Relations Survey 2004 (WERS2004). This
is a publicly available large-scale dataset from the United Kingdom with representative
sampling at both the employee and the workplace level. More information about the
survey can be found at www.wers2004.info. Croon et al. (2014) investigated to what
extent the relationship between the adoption of enriched job designs at the level of the
workplace, on the one hand, and workplace labor productivity, on the other hand, was
mediated, at the individual level, by employees’ experienced sense of job control and job
satisfaction. For the current application, all measures from Croon et al. (2014), enriched
job design, job control, and job satisfaction, were categorized into variables with three
categories of approximately equal size (low, medium, and high), while labor productivity

was transformed into a variable with two approximately equally sized categories (low and
high). To keep the discussion simple, the current illustration ignores that the variables were
originally measured with multiple items. The analyses were performed with Latent GOLD
5.0 (Vermunt & Magidson, 2013) on 18,505 employees nested within 1,455 workplaces.
More information about the syntax used in this analysis is given in Appendix D. Also, the
syntax for performing a very similar analysis in Mplus (Muthén & Muthén, 1998-2012) is
provided in Appendix E.

In the first step of the procedure, a measurement model is formulated in which the
individual-level scores on job control (Z1ij) and job satisfaction (Z2ij) were used as
exchangeable indicators for two latent variables at the group level (ζ1j and ζ2j) with
a residual within-group association (aZ1Z2

) among the individual-level measures on job

control and job satisfaction included as well. The optimal number of latent classes for
the two latent variables was determined simultaneously by comparing fit indices of models
with all possible combinations of one to five classes for each latent variable. Because the
decision is about the number of classes at the group level, the fit indices that incorporate
the sample size are based on the number of groups (Lukočienė et al., 2010). BIC, AIC3,
CAIC, and SABIC were lowest for the model with three latent classes for both job control

and job satisfaction. Contradictorily, AIC was lowest when both latent variables contained
four latent classes. Since most fit indices point towards this direction and the individual-
level observed variables had three response categories, the three-class solutions for both
group-level latent variables were retained.

Table 4.5 displays the class sizes and the class-specific response probabilities for both
latent variables. These can be used to interpret the latent classes. Table 4.5(a) shows that
the first latent variable has a class that contains 35% of the groups, and these workplaces
contain mostly employees with a high probability of scoring low (p = .70) on job control.
There is a second latent class that contains 56% of the groups and in these workplaces
employees have the highest probability to score medium on job control (p = .84). The
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Table 4.5: Class Sizes and Class-Specific Response Probabilities Measurement Model First
Step

(a) Job control

Group-level
latent classes
1 2 3 Overall

Size .35 .56 .09
Job control

Low .70 .13 .01 .32
Medium .30 .85 .66 .64
High .00 .02 .33 .04

(b) Job satisfaction

Group-level
latent classes
1 2 3 Overall

Size .61 .23 .16
Job satisfaction

Low .88 .38 .34 .69
Medium .08 .62 .00 .19
High .04 .00 .66 .12

final class of workplaces contains 9% of groups that contain individuals that, like the ones
from the second latent class, have the highest probability to score medium (p = .66), but
they have a larger probability to score high (p = .33) on job control. From Table 4.5(b) it
can be seen that the second latent variable has a class that contains 61% of the groups and
these workplaces have the highest probability to score low on job satisfaction (p = .88).
The second class contains 23% of the workplaces with employees having the highest
probabilities to score medium (p = .62) on job satisfaction. The last class contains 16%
of the workplaces in which employees have the highest probability to score high on job

satisfaction. The groups from the third class also have quite a high probability to score
low (p = .34), but this is probably caused by the fact that overall most groups score low
on job satisfaction (p = .69). Based on these posterior probabilities, all workplaces are
assigned to a particular latent class using a modal assignment rule. The class separation
was .39 for the latent variable job control and .43 for job satisfaction which is relatively
low for a three-step analysis.

In the third step, the assigned latent class variables were related to the group-level
measures of enriched job design (Xj) and labor productivity (Yj) in a latent class model
in which the assigned class membership scores from the second step were used as single
indicators with known measurement errors, namely the classification errors from the second
step. The group-level parameters obtained with the ML bias adjusted three-step approach
are presented in Table 4.6, from which the estimates of the parameters for the main effects
of the response variables are omitted. For all effects, dummy coding was used with the
first categories as reference categories. Only the significance of the global effects are
reported since the significance of the category-specific parameters depends on coding.

The overall effect of enriched job design on ζ1j (job control) is significant (χ2 =
23.71, df = 4, p < .001) and the category-specific parameters are presented in
Table 4.6(a). All category-specific parameters are positive implying that the reference

category scores lower than the other categories. Both β
ζ1
2

X
3 and β

ζ1
3

X
3 differ more from

the reference category than β
ζ1
2

X
2 and β

ζ1
3

X
2 . The overall effect of enriched job design

on ζ2j (job satisfaction) is also significant (χ2 = 29.82, df = 4, p < .001). The

category-specific parameters from Table 4.6(b) show that the βζ2
2

X
2 and β

ζ2
2

X
3 are positive

while β
ζ2
3

X
2 and β

ζ2
3

X
3 are negative. Hence, the first two categories score higher than the

reference group and the latter two score lower than the reference group.
The overall association among ζ1j and ζ2j is significant (χ2 = 13.92, df = 4, p =
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Table 4.6: Bias-Adjusted ML Parameters Structural Model

(a)

β
ζ1
l

X
q b se

β
ζ1
2

X
2 0.18 0.29

β
ζ1
3

X
2 1.54 0.57

β
ζ1
2

X
3 0.98 0.31

β
ζ1
3

X
3 1.96 0.58

(b)

βζ2
n

X
q b se

β
ζ2
2

X
2 0.67 0.34

β
ζ2
3

X
2 -0.79 0.45

β
ζ2
2

X
3 1.31 0.32

β
ζ2
3

X
3 -0.32 0.44

(c)

a
ζ1
l

ζ2
n b se

a
ζ1
2

ζ2
2 -0.79 0.49

a
ζ1
2

ζ2
3 -1.23 0.77

a
ζ1
3

ζ2
2 -0.15 1.04

a
ζ1
3

ζ2
3 1.68 0.87

(d)

βY
p b se

βY
2

ζ1
2 0.26 0.25

βY
2

ζ1
3 0.18 0.41

βY
2

ζ2
2 1.08 0.28

βY
2

ζ2
3 -0.20 0.34

βY
2

X
2 0.27 0.15

βY
2

X
3 0.30 0.15

Note: X = Enriched job design, ζ1 = Job control,
ζ2 = Job satisfaction, and Y = Labor productivity

.008), but the category-specific variables from Table 4.6(c) are not significant. It is,
therefore, difficult to interpret the association.

The overall effect of ζ1j (job control) on labor productivity is not significant (χ2 =
1.37, df = 2, p = .51) , while the overall effects of ζ2j (job satisfaction) and enriched job

design are significant (χ2 = 22.87, df = 2, p < .001 and χ2 = 4.97, df = 2, p = .08),
although the latter only at a significance level of 10% and not at 5%. The category-
specific parameters are presented in Table 4.6(d). All categories except βY

2
ζ2
3 score higher

than the reference group.
To conclude, there is a significant direct effect of enriched job design on labor

productivity. The two paths of the indirect effect of enriched job design (macro level)
on labor productivity (macro level) through job satisfaction (micro level) are significant,
while only the first part of the indirect path through job control (micro level) is significant
and the second part is not significant.

4.7 Discussion

A stepwise multilevel latent class model was proposed to predict group-level outcomes
by means of discrete individual- and group-level predictors. In the first step, a latent
class model was estimated in which the individual-level predictor was used as an indicator
for a group-level latent class variable (measurement model). In the second step, the
individual-level predictor was aggregated to the group level based on the latent class
model from the first step. This had two important advantages. First, the measurement
error in the aggregated scores is known. Second, it is a more elegant way of aggregating a
discrete variable than using a mean or mode. Next, the aggregated scores are related
to the remaining group-level variables while correcting for the known measurement
error (structural model). It is shown that the bias adjusted stepwise procedures work
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without introducing bias since the results of the stepwise approaches were very similar
to the parameters that are obtained when the measurement and structural model are
simultaneously estimated in a one-step analysis. Since researchers are used to working in
a stepwise manner when they aggregate with a manifest mode, they can continue to work
in the way they are used to while accounting for measurement error in the aggregated
scores and still get unbiased results.

Two issues are of importance when the stepwise procedures are applied. First, in case
the model contains multiple macro-level latent variables, the within-group association
among the micro-level indicators needs to be included in the first step of the stepwise
procedure, unless the within-group association is small and the micro-level scores are
very good indicators of the group-level latent variables. Conceptually, it would suit the
philosophy of stepwise estimation better to formulate two separate measurement models
in the first step, one for each latent variable, but the simulation study showed that ignoring
this within-group association provides biased estimates of the between-group association
among the latent variables. It is unrealistic to assume that there is no residual within-group
association among the predictors since that would imply that all associations among the
micro-level predictors can be explained through the group-level latent variables. Second,
class separation needs to be sufficiently high (R2

entr = .45 ) since results with poorly
separated classes are only correct with large sample sizes. In practice, this is no problem,
since it is of little use to aggregate a variable that will not or only weakly be related to
the group level.

The stepwise ML procedure is applied to a real data example in which labor productivity
(group-level outcome) is explained by enriched job design (group-level predictor), job
control (individual-level predictor), and job satisfaction (individual-level predictor). All
variables from the example were constructed from multiple items but were used as single
variables in the model. For the continuous version of the current application, Croon et
al. (2014) found that the factor analytic model was better equipped to detect bathtub-
type linkages than a model using scale scores. An interesting direction for further research
would be to see whether this is also the case for discrete variables, thus study micro-macro
models in which especially the micro-level predictors, but also the group-level outcome
and predictor, are latent variables measured with multiple items.

Finally, in the current article, only attention is paid to the parameter estimates of the
model and not to the standard errors of these parameters. Theory suggest that when fixed
parameter estimates, obtained in the first step of the stepwise procedure, are plugged into
the likelihood function, the effect of their sampling variability on the uncertainty about the
estimates in the third step should be accounted for (Murphy & Topel, 1985). Fortunately,
an easily accessible correction method for the standard errors is already made available by
Bakk, Oberski, and Vermunt (2014). In situations with a large sample size, such as the
current simulation study and data example, correction of the standard errors is not needed
because the uncertainty about the estimates from the first step is very small (Bakk et al.,
2014).



CHAPTER 5

Micro-Macro Analysis with a Latent Macro-Level Outcome

Abstract

In educational measurement, responses of students on items are not only used to measure
the ability of students, but also to evaluate and compare the performance of schools.
Analysis should ideally account for the multilevel structure of the data, and school-level
processes not related to ability, such as working climate and administration conditions,
need to be separated from student and school ability. However, in educational studies
such as PISA, TIMMS and COOL5−18, this is seldomly done. This study presents a
model that simultaneously accounts for the nested structure, controls student ability for
processes at school level, classifies schools to monitor and compare schools, and tests for
school-level item bias.

This chapter is accepted as Bennink, M., Croon, M. A., Keuning, J. & Vermunt, J. K. (2014).
Measuring student ability, classifying schools, and detecting item bias at school level based on student-
level dichotomous items. Journal of Educational and Behavioral Statistics, 39(3), 180-201.
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5.1 Introduction

A growing number of studies aim at the monitoring of student achievement across schools
and countries. In the United States, for example, students are tested in grades 3 through 8,
and at one grade in high school as required by the No Child Left Behind Act of 2002. Other
examples are (a) the Programme for International Student Assessment (PISA) in which
15-year-old students from approximately 70 countries are tested to evaluate and compare
educational systems, (b) the Trends in International Mathematics and Science Study

(TIMSS) in which the mathematics and science achievements of fourth- and eighth-grade
students from the United States are compared to those of students in other countries,
and (c) the Progress in International Reading Literacy Study (PIRLS) that reports every
five years on the reading achievements of fourth-grade students worldwide.

The different studies share several characteristics. First, data are collected on
individual students that are nested within higher level units such as classrooms, schools
or countries. Analyses of these data should take this multilevel structure into account
(Goldstein, 2011; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). Moreover, in
many studies of this kind, the student level data are not only used to measure the ability
of students, but also to evaluate and compare the performances of higher level units (see,
for example, Goldstein et al. (1993) and Leckie and Goldstein (2009)). Finally, in all these
studies the item responses for the students might not only be considered as a reflection
of ability but also as a reflection of processes that take place at the higher level. Some of
these higher level processes are related to ability differences among the higher-level units,
but other processes may be related to nonability differences between the units (Borghans,
Meijers, & ter Weel, 2008). At classroom level, for instance, the working climate might,
either positively or negatively, affect the item responses of the students. At school level,
the administration condition might affect the students’ behavior. If it was a low-stakes
administration in which the test results have no severe consequences for the students, the
data might not only reflect ability but also a lack of motivation by the students taking the
test. At country level, the political environment might affect the students’ performances
to some extent.

These characteristics are not covered when the student responses are related to ability
with the (one-level) item response theory models that are commonly used (Embretson
& Reise, 2000). Student ability should ideally be modeled in relation to variables such
as the overall ability at schools, working climate, administration conditions, and political
environment to be able to disentangle student ability from school-level ability and school-
level processes not related to ability. By doing so, the student ability measures are
not confounded with school-level processes when student performance is evaluated, and
schools can be compared based on processes that are not related to ability. This is
all possible within an existing general multilevel latent variable framework (Muthén &
Asparouhov, 2011; Skrondal & Rabe-Hesketh, 2004; Vermunt, 2008) by formulating a
model with latent variables at two levels: a student level and a higher level such as school
or country. The model that is presented in this study fits within this framework and has
several advantages over common item response theory models. First, the model explicitly
accounts for the multilevel structure of the data. Second, the model controls student
ability for processes that may occur at higher levels, and finally, the model allows for a
comparison between schools as it classifies schools into groups that can be interpreted as
school types, according to their performances and characteristics not related to ability. A
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Table 5.1: Nine Fold Classification of Multilevel Latent Variable Models

Student-level School-level latent variable(s)
latent variable(s)

Continuous Discrete Combination
Continuous A1 A2 A3
Discrete B1 B2 B3
Combination C1 C2 C3

potential additional advantage of the model is that both uniform and nonuniform higher-
level item bias can be studied. This can be useful in improving school performance as
it clarifies which items functioned differently at which type of school, regardless of the
ability level of the students at the schools. For instance, schools from school types in
which some items function worse than in schools from other school types, could devote
more time to teaching the topics covered by these items. In the model it is assumed that
ability is unidimensional and therefore a continuous latent variable is used to measure
ability. The nonability component is most probably multidimensional since it captures
various types of school-level processes. Therefore, this part is modeled with a discrete
latent variable.

The general latent variable framework is first described, providing the statistical
background of the approach proposed in this article and illustrating the flexibility and
general applicability of the general framework. The method is then applied to data
obtained from the Dutch study COOL5−18 in which the achievements of 5- to 18-year-old
students are studied on the basis of a test with dichotomous educational items. In the
current context, the main goal of the analysis was to classify schools but also to discuss
uniform and nonuniform school level item bias. Finally, the necessity of using a complex
(multilevel) model is demonstrated by comparing the fit of the model to the fit of less
complex alternative models such as the two-parameter item response theory model.

5.2 General Framework

The general multilevel latent variable framework as referred to in the present study
was described by Skrondal and Rabe-Hesketh (2004). It was later extended by, among
others, Vermunt (2008) and Muthén and Asparouhov (2011). The framework allows for a
definition of latent variables at the student level and/or the higher level. These variables
can be either continuous or discrete, or even a combination of a continuous and a discrete
latent variable at one or both levels. These three alternatives at both levels result in nine
possible models presented in Table 5.1. Model C3 can be considered the most general
model, whereas the eight remaining models are special cases of this more general model.

The nine-fold classification was already presented in Vermunt (2008), Palardy and
Vermunt (2010) and Varriale and Vermunt (2012), and there are too many modelling
options to discuss them all. Therefore, the framework is not discussed extensively again
but only shortly presented to be able to place the A3 model from the current article into a
broader context. In this model schools are classified into unobserved groups because they
are homogeneous with respect to their item response theory models. This is combined
with continuous latent variables at both the student and the school level.

Most models formulated within the framework can be estimated with existing software
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such as WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), GLLAMM (Rabe-
Hesketh, Skrondal, & Pickles, 2004), Latent GOLD (Vermunt & Magidson, 2005a),
or Mplus (Muthén & Muthén, 1998-2012). More information about the estimation
procedures can be found in Fox and Glas (2001), Goldstein, Bonnet, and Rocher (2007),
Vermunt (2008), Fox (2010), Palardy and Vermunt (2010), Muthén and Asparouhov
(2011), and Varriale and Vermunt (2012). In the present study, the software package
Latent GOLD (Vermunt & Magidson, 2013) was used to estimate the models.

5.3 Method

5.3.1 Data

The general multilevel latent variable framework was applied to the Dutch cohort study
COOL5−18 in which, over three waves, measurements are conducted on various academic
subjects from children from four grades on different academic tracks (more information
about COOL5−18, although in Dutch, can be found at www.cool5-18.nl and in Zijsling,
Keuning, Naayer, and Kuyper (2012)). For the present study, only the data collected
during the second measurement wave in Grade 9 on the subject of English was used. The
test was administered to 3,458 students from 60 different schools and included a total of
24 dichotomous scored multiple choice items. Each item contains a short English text and
in a single multiple choice question it was tested whether the student globally understood
the text. An unofficial translation of the items that students found easiest (item 1) and
most difficult (item 17) is presented in Appendix F.

The first part of the test (Item 1-10) was designed to be easier than the second
part (Item 11-24). To provide a sense of the degree of school-level clustering in the
data, the mean of the aggregated number of correct answers is 13 out of 24, with a
standard deviation of 1.4. The latter standard deviation is not an unbiased estimate of
the between-school variation, since it is also a function of the within-school variability.

The Grade-nine students were recruited from different school tracks. Slightly less
than half of the students were recruited from pre-vocational secondary education while
the remaining students were recruited from either senior general secondary education or
pre-university education. The students were not equally divided across the participating
schools. Some schools participated with a very small number of students (< 10) in the
most recent wave of data collection, while other schools participated with several hundreds
of students. The reason for this is that some secondary schools chose for a relatively small
participation with only the students who also participated in grade 6 of elementary school
(i.e., ‘individual participation’), while other schools chose to participate at a larger scale
with not only the students who had already been involved in COOL5−18 during a previous
wave of measurement but also with their classmates (i.e., ‘collective participation’). The
schools were located in different regions of the Netherlands, covering all 12 provinces.
The urbanization level for the schools varied from rural (1) to moderately urbanized (3)
to very strongly urbanized (5).

5.3.2 Model for Uniform Item Bias at School Level

The items in COOL5−18 were designed to measure a continuous latent ability trait. From
a substantive point of view it thus seemed natural to model the students’ responses on
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the test items by an item response theory (IRT) model. Basically, all IRT models could be
used but in the present application the two-parameter logistic model (2PLM) (Embretson
& Reise, 2000) was chosen. In this model, the continuous latent ability score for student
i nested within school j is labeled θij and the responses of the students on the P test
items are used as indicators. For the current application, there is no need to define latent
classes at the level of the students.

The school-level processes are captured by a discrete latent variable at the school level,
Cj , which represents the clustering of schools into one of K (latent) school types based
on the responses of the students on the test items. Measurement error in the classification
is accounted for because a latent variable is used.

Modelling the heterogeneity between groups as discrete has two important advantages.
First, a model-based grouping of schools is best for the purpose of comparison. It is more
feasible to compare a manageable number of groups of schools than all individual schools.
Second, the effect of Cj on the item responses can also be interpreted as uniform item
bias at the school level since the probabilities of a correct response for students going
to different types of schools, keeping their ability levels constant, are allowed to differ.
Therefore, Cj is a discrete random effect that assumes there are homogeneous groups of
schools with similar intercepts.

The relations between ypij , θij and Cj can formally be described by the following logit
equation:

Logit(P (ypij = 1|θij , Cj)) = b1pθij +

K∑

k=1

b2pk × ICj=k, (5.1)

in which ICj=k is an indicator function that equals 1 if Cj = k and 0 otherwise, and θij
and Cj are assumed to be statistically independent.

As can be seen, the logit of the conditional probability of student i from school j to
answer item p correctly is related to the latent ability θij of the student and the latent class
Cj the school belongs to. The slope parameter b1p is the discrimination parameter for
item p, which is controlled for the effect of the latent classes at the level of the schools.8

In the uniform bias model, this slope parameter does not vary across the latent classes
indicating that the effect of the individual latent trait θij on the item responses remains
the same in all classes and only differs with respect to the overall response tendency.
For identification purposes, b1p is fixed to 1 for the first item. The intercept parameter
b2pk is related to the difficulty parameter for item p for a student from a school in class
k, Cj = k. The intercept parameter is controlled for the effect of the latent ability of
students.

Item Response Function (IRF) graphs can be constructed by plotting the response
probabilities on the y-axis and θij on the x-axis. The response probabilities can be obtained
by transforming Logit(P (ypij = 1|θij , Cj)) into a probability by

P (ypij = 1|θij , Cj) =
exp(b1pθij +

∑K

k=1 b2pk · ICj=k)

1 + exp(b1pθij +
∑K

k=1 b2pk · ICj=k)
. (5.2)

A separate IRF graph can be constructed for each item for each of the K latent classes.
Because only the intercept is class specific, the joint representation of all IRFs for the

8b1p is assumed to multiply both the level-1 and level-2 parts of theta shown in Equation 5.3. This
common IRT assumption can be relaxed as discussed in Muthén and Asparouhov (in press).
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Figure 5.1: IRF Item 10 (Uniform School-Level Item Bias)

same item shows a set of K nonintersecting parallel curves. An example IRF graph is
shown in shown in Figure 5.1.

In the model described so far, the latent class variable is assumed to capture all
relevant differences among the schools. Some of these differences may pertain to a
general ability level, whereas others may relate to higher-level (school) characteristics -
such as working climate and administration conditions - which are independent of the
general ability level of the schools. Therefore, the ability and the nonability components
of the school differences are separated by postulating a continuous latent variable at the
school level, θj , to represent the ability component of the between-school differences.

The relationship between θj and θij is given by

θij = θj + eij (5.3)

in which both latent variables are treated as continuous normally distributed variables. In
this way, a student’s individual ability is expressed as a deviation from the average ability
of the school, implying that the ability differences among students are decomposed into
two components. One component captures the differences in ability levels between schools
(θj) while the other component captures the ability differences within schools (eij) and
their variances express the strength of both components. In this way, school ability is
measured indirectly, while an alternative would be to allow θj to affect the student-level
item responses directly. The latter implies that individual-level responses can be broken
down directly into a between and a within part. Since the current items were designed to
measure an individual-level trait, the first option was chosen.

The linear relationship between θj and θij is a special case of a more general linear
relationship between the two latent variables: θij = b3 + b4θj + eij , with the intercept
b3 and the slope b4 fixed to 0 and 1 respectively. These restrictions are needed for
identification purposes. Without these restrictions, alternative identification constraints
would be required, such as fixing both the within-school variance of θij and the between-
school variance of θj to 1. Opting for the constraints on the parameters of the linear
relation between θij and θj instead of on the variances, allows for a direct comparison of
the variation in the student’s abilities within the schools and the variation at the school
level.

A common problem in comparing schools is that school effects on student learning are
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confounded with differences between schools in their intake achievements. Therefore, the
latent variable θj is assumed to be independent of the latent class variable Cj to separate
the ability and nonability components of the between school variation. It is possible to
relax or test this assumption by allowing an association between θj and Cj . This could be
done by adding a direct effect of θj on Cj or by adding a direct effect of Cj on θj .

9 Both
options would make the interpretation of the latent variables dependent on each other
while in the current application ability and nonability need to be separated to control the
classification for general ability. Otherwise it cannot be disentangled whether ability is
caused by learning or intake effects. That Cj now represents nonability gives an additional
reason to model Cj as discrete rather than continuous since it is not realistic to assume
that nonability is unidimensional.

To summarize, in a ‘regular’ one-level IRT model, a continuous latent trait (θij) is
assumed to underlie the item responses of students and this latent trait is interpreted
as student ability. When responses are collected from students from different schools, a
multilevel model is needed to adjust for the dependency among students from the same
school. This is done by decomposing θij into its within and between components. It
is expected that all variability in the item responses that remains after controlling for
the relations discussed so far can be attributed to nonability issues. These are modeled
as discrete because the main goal was to classify schools, but keep ability out of this
classification. Besides, it is not realistic to assume that all processes that are related to
nonability are unidimensional.

Two manifest school-level variables were included in the model as explanatory variables
for latent class membership. The first variable, X1j , is dichotomous and represents the
form of the school’s participation, i.e., individually or collectively. This variable was
included in the analysis because it might have affected the motivation for the schools to
participate in COOL5−18. For the collective participants, the report they receive upon
completion of the measurement was most likely the primary reason to participate, while
for the individual participants the social and scientific relevance of the study was probably
the decisive factor. This difference might (unintentionally) have had an impact on the
administration conditions. The second variable, X2j , represents the urbanization level for
the schools. This variable was included in the model because it is found to have an impact
on student ability on a rather regular basis (Tekwe et al., 2004). As mentioned before,
the urbanization level for a school was defined on a 5-point Likert scale. In the present
analysis it was treated as a continuous variable. Given the two explanatory variables, the
probabilities of latent class membership are given by:

log

(

P (Cj = k|X1j , X2j)

P (Cj = K|X1j , X2j)

)

= b5k + b6kX1j + b7kX2j . (5.4)

As can be seen, the equation relates the manifest school-level predictors, X1j and X2j , to
the latent school-level classes, Cj . Category K of Cj is used as a reference category. With
only two categories, this multinomial logit equation simplifies to a binary logit equation.
The intercept is denoted by b5k while the effects of X1j and X2j are captured by b6k and
b7k, respectively.

According to the nine-fold classification from Table 5.1 the model as presented so far
is an A3 model as it includes one continuous variable at the student level (θij) and both

9In the current application, both directs effects proved not significant.
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Figure 5.2: Conceptual Model (Uniform School-Level Item Bias)

a continuous (θj) and a discrete (Cj) latent variable at the school level. The model is
graphically illustrated in Figure 5.2 in which the rectangles represent manifest variables
and the circles latent variables.

After fitting the model, schools may be assigned to one of the K latent classes of
Cj . Several deterministic and probabilistic classification methods have been proposed
such as modal, random, and proportional assignment (Dias & Vermunt, 2008; Goodman,
1974a, 1974b; McLachlan & Peel, 2000). We would recommend modal assignment for the
purpose of classifying schools, since it minimizes the total probability of misclassification.

5.3.3 Model for Nonuniform Item Bias at School Level

Up to now, only uniform item bias at the school level was allowed. In order to examine
the occurrence of nonuniform item bias at school level, an interaction effect between θij
and Cj is added to the item equations. Such a model can be defined in the following
manner:

Logit(P (ypij = 1|θij , Cj)) =

K∑

k=1

(b8pkθij + b9pk) · ICj=k, (5.5)

θij = θj + eij , (5.6)

and

log

(

P (Cj = k|X1j , X2j)

P (Cj = K|X1j , X2j)

)

= b12k + b13kX1j + b14kX2j . (5.7)

This is represented graphically in Figure 5.3. The relations from the model for uniform
item bias at school level are shown in gray and the added interaction effects are shown in
black.

The interaction effects can be interpreted in two equivalent ways. The first
interpretation is that the item bias at school level can be stronger (or weaker) for students
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Figure 5.3: Conceptual Model (Nonuniform School-Level Item Bias)

−3 −2 −1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

k=1

k=2

Figure 5.4: IRF Item 10 (Nonuniform School-Level Item Bias)

with higher (or lower) individual latent ability. The second interpretation is that the
association between the individual latent ability of students and the item responses can
be stronger or weaker depending on the class to which the school of the student belongs.
In both cases it implies that both the discrimination and the difficulty parameter are
class dependent, while only the difficulty parameter is class dependent in the model for
uniform item bias at school level. For students from a school in class k, the discrimination
parameter for item p is represented by b8pk and the difficulty parameter is represented
by b9pk. The interpretation of the other parameters in the model is equivalent to the
interpretation of the parameters included in the previous model, which only allowed for
the detection of uniform item bias. The IRF graphs can be constructed in the same way
as described for the uniform item bias model, but they are no longer parallel because the
slopes are class specific, as shown in an example in Figure 5.4.
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5.3.4 Less Complex Alternative Models

The two models for the analysis of the COOL5−18 data presented above are both rather
complex A3 models (see Table 5.1). In order to evaluate the explanatory power of these
models and to ascertain that their complexity is justified, they should fit better than less
complex models. In this article, three simplified models derived from the basic starting
model are considered.

A first simplification consists of removing the continuous latent variable at the school
level θj from the model. The model then reduces to a so-called A2 model (see Table 5.1).
However, ignoring a random effect at the higher level could result in an overextraction of
the number of latent classes (Palardy & Vermunt, 2010). This is due to the fact that
the classification of the schools is no longer controlled for the overall ability level of the
schools. This may thwart the substantive interpretation of the school classifications.

A second simplification of the original model consists of the removal of the discrete
latent variable Cj from the model. The A1 model (see Table 5.1) that we obtain in this
way is a two-level item response theory model. This model no longer allows classifying
schools in discrete classes, or to study school-level item bias. The individual scores of the
students, however, are still controlled for the overall ability within the schools.

A one-level item response model, finally, can be obtained by removing both the
continuous and the discrete latent variable at the school level. This model could be
labeled as ‘A0 model’ as no single latent variable at the school level is included in the
model anymore but only a continuous student-level latent variable is used. This type of
model is currently used in studies like PISA, TIMMS, PIRLS and COOL5−18. In contrast
to the models presented in this study, these models do not control the latent ability for
the students in any way for processes that might occur at the level of the classroom,
school or country.

The fit of these three less complex models will be compared to that of the two original
A3 models in which the between-school differences are modeled by a continuous and a
discrete latent variable.

5.4 Results

5.4.1 Uniform Item Bias at School Level

Applying the A3 uniform school-level item bias model to the data first required the
determination of the optimal number of latent school types (i.e. the optimal number
of categories for Cj). This was achieved by comparing BIC and CAIC values of models
with various numbers of latent classes. Lukočienė et al. (2010) recommend using BIC
and CAIC values based on the number of schools if the number of latent classes at the
school level has to be determined. When in Table 5.2 the fit indices for the A3 model
with uniform school-level item bias are compared, the model with two latent classes at
the school level proved to fit best because both the BIC and CAIC values were relatively
low for this number of latent classes.
A way of getting around the decision of whether fit indices should be based on the number
of students or on the number of schools, is to use AIC or AIC3 values as these are not a
function of sample size. In the present analysis, however, these fit indices led to the same
conclusion as BIC and CAIC. Given the results from Table 5.2, it was decided to continue
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Table 5.2: Fit Indices for Models Fitted on the COOL5−18 Data

Model Classes Item bias LL BIC CAIC AIC AIC3 Parameters
A3 1 Nonuniform -50998 102197 102246 102094 102143 49
A3 2 Nonuniform -50864 102138 102238 101928 102028 100
A3 3 Nonuniform -50828 102275 102426 101958 102109 151
A3 4 Nonuniform -50777 102380 102582 101957 102159 202
A3 1 Uniform -50998 102197 102246 102094 102143 49
A3 2 Uniform -50912 102135 102211 101976 102052 76
A3 3 Uniform -50891 102204 102307 101988 102091 103
A3 4 Uniform -50907 102346 102476 102073 102203 130
A2 1 Uniform -51157 102511 102559 102411 102459 48
A2 2 Uniform -50968 102244 102319 102086 102161 75
A2 3 Uniform -50912 102242 102344 102028 102130 102
A2 4 Uniform -50860 102249 102378 101979 102108 129
A1 - - -50998 102197 102246 102094 102143 49
A0 - - -52086 104363 104410 104265 104312 47

BIC and CAIC are based on the number of schools, LL=log-likelihood

with the two-class model.
In this two-class model, the majority of the schools was classified in the first latent

class (87%), whereas only a small minority of the schools was classified in the second
class (13%). The entropy R2 is .82, indicating a good class separation. The regression
parameters for the items can be found in Table 5.3.
The discrimination parameters, b1p, were all positive and significant at the 1% level. This
demonstrates that higher individual latent ability increases the conditional probability of
answering an item correctly. The intercept parameters, b2pk, are higher for the first part
of the test compared to the second part of the test, for both classes. As designed, the
first part of the test was easier than the second part.

Moreover, for all but one item the intercept parameters for the students from schools in
the second class (b2p2) were lower than the difficulty parameters estimates for the students
from schools in the first class (b2p1). The differences in intercepts proved significant for
almost all items, which means that uniform item bias was detected for almost all items.
No significant school-level item bias was detected for Item 15, 21, and 22.

To give an impression of the substantive importance of these differences, the expected
number of correct answers for an average student (θij = 0) attending a school from the
first class is 13.6, while it is 10.6 for an average student from a school of the second
class. Furthermore, the largest difference in intercept is -1.44, implying that the odds of
answering item 10 correctly is exp(1.44) ≈ 4 times smaller for schools in the second class
compared to schools from the first class.

The relative importance of ability and the school classification for the item responses
can be assessed by comparing the absolute effects of θij and Cj on the same scale or, in
other words, to compute the standardized regression coefficients. The standard deviation
of θij is fixed to 1 for identification purposes and the standard deviation of Cj can be
transformed to 1 using the class proportions:

SD(Cj) =
√

P (Cj = 1)× (1− P (Cj = 1)) =
√

.87× (1− .87) = 0.34. (5.8)

Therefore,
(b2pk−b1pk)

0.34 is on the same scale as b1p and both are presented in Table 5.3.
For an average student (θij = 0), during the first part of the test, school type is more
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Table 5.3: Regression Parameters Items Uniform Item Bias

Item (p) P(correct) b1p SE b2p1 SE b2p2 SE b2p2 − b2p1 SE b2p2 − b2p1
1

1 .83 1.00 NA 1.82* .06 0.50* .12 -1.32* .13 -3.88
2 .77 1.13* .19 1.34* .05 0.87* .13 -0.46* .14 -1.35
3 .61 1.05* .17 0.51* .04 0.04 .12 -0.47* .13 -1.38
4 .70 1.24* .20 1.02* .05 0.11 .13 -0.91* .14 -2.68
5 .70 1.67* .25 1.02* .06 0.17 .14 -0.85* .15 -2.50
6 .77 0.92* .17 1.32* .05 0.81* .13 -0.51* .13 -1.50
7 .69 2.70* .39 1.15* .07 -0.01 .17 -1.16* .19 -3.41
8 .71 0.74* .14 0.98* .04 0.22 .12 -0.76* .13 -2.24
9 .55 1.61* .24 0.24* .05 -0.11 .14 -0.36** .15 -1.06
10 .74 2.02* .30 1.35* .06 -0.09 .15 -1.44* .16 -4.24
11 .49 1.45* .22 0.03 .05 -0.78* .14 -0.81* .15 -2.38
12 .41 1.94* .28 -0.42* .06 -0.96* .16 -0.54** .17 -1.59
13 .54 2.54* .36 0.23* .06 -0.30 .17 -0.54** .19 -1.59
14 .60 1.66* .24 0.53* .05 -0.25 .14 -0.79* .15 -2.32
15 .45 1.06* .17 -0.20* .04 -0.39** .12 -0.19 .13 -0.56
16 .58 1.68* .25 0.37* .05 0.05 .14 -0.31** .15 -0.91
17 .33 1.27* .20 -0.76* .05 -1.10* .14 -0.34** .14 -1.00
18 .42 1.44* .21 -0.36* .05 -0.65* .13 -0.29** .14 -0.85
19 .39 1.43* .21 -0.49* .05 -0.65* .13 -0.16 .14 -0.47
20 .35 0.99* .16 -0.64* .04 -0.91* .13 -0.27** .14 -0.79
21 .42 1.30* .20 -0.36* .05 -0.53* .13 -0.17 .14 -0.50
22 .33 0.81* .14 -0.76* .04 -0.60* .12 0.16 .13 0.48
23 .42 1.19* .19 -0.32* .04 -0.81* .13 -0.49* .14 -1.44
24 .45 0.83* .14 -0.19* .04 -0.55* .12 -0.35** .12 -1.03

b1p = slope and b2pk = intercept, * = p < .001, ** = p < .05, 1 = standardized difference.

important than ability. As the difficulty of the items increases in the second part of the
test, ability becomes more important than school type.

Although there were reasons to believe that the form of participation and urbanization
level could eventually predict latent class membership, neither the effect of X1j nor that
of X2j was significant: for participation, the regression coefficient was estimated as b6 =
−0.37 (SE = 2.20, p = .87); for urbanization level the coefficient was b7 = −0.45 (SE =
0.35, p = .20).

Finally, it was found that the between-school variance of θj was equal to 0.02 (SE =
0.01, p < .001) and the within-school variance of θij was equal to 0.20 (SE = 0.05, p <

.001). As could be expected, the differences on the latent ability trait among students
within schools were much larger than the differences across the mean school levels since
only 9% of the variability in individual latent ability is due to differences between schools
( .02
.02+.20 = .09).
The main conclusion of this analysis is that the two-class model indicates a small

group of schools that performed worse than the other schools and that there is severe
uniform item bias at the level of the schools. This bias could not have been detected with
the item response theory models that are normally used in comparable studies.
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5.4.2 Nonuniform Item Bias at School Level

In a further analysis of the same data, the model with nonuniform item bias was fitted.
Looking at the fit statistics of the A3 model with nonuniform item bias in Table 5.2,
all fit indices point to a two-class solution. The fit of this model was compared to the
fit of the previous model with uniform item bias using a likelihood-ratio test. The test
showed the interaction effect to improve the fit of the uniform item bias model significantly
(X2 = 96, df = 100 − 76 = 24, p < .001). Therefore, based on this test, the model
with nonuniform item bias at school level is to be preferred over the model with uniform
item bias. Table 5.2 also shows that the AIC and AIC3 model selection criteria favored
this model, but the BIC and CAIC values based on the number of schools pointed towards
the model with uniform item bias. Overall, these results indicate that the model with
nonuniform item bias can be preferred over the model with uniform item bias at school
level.

Under the nonuniform item bias model, more schools were classified into the group of
poorly performing schools. The size of the second class increased from 13% to 21% and
the entropy R2 increased to .87. The regression parameters for the items can be found in
Table 5.4. The discrimination parameters for item p are represented by b8p1 and b8p2 for,
respectively, the first and the second class. As can be seen in Table 5.4, b8p1 is positive
and significant at the 1% level for all items. This means that higher individual latent
ability increases the conditional probability of answering an item correctly for students
from schools in the first class. The estimates of b8p2 were not significant for Item 20-22
and 24, implying that for these items ability is not related to the probability of answering
an item correctly in schools from the second latent class. These items were maybe too
difficult for students from schools of the second school type so that these students might
have simply guessed the answers.

For thirteen items (Item 1-5, 9-10, 12, and 14-18) the discrimination parameters were
not significantly different across classes. This means that nonuniform item bias was not
present for these items. The nonuniform bias was detected, however, for some of the
other items. Whereas for Item 6, 8, and 11 the discrimination parameter was significantly
larger for students from schools in the second class, the discrimination parameter was
significantly smaller for these students for Item 7, 13, and 19-24.

The intercept parameter for item p is b9p1 for a student from a school in the first class
and b9p2 for a student from a school in the second class. As before, the intercepts were
higher for the first part of the test than for the second in both classes. Moreover, b9p2 was
significantly smaller than b9p1 for sixteen items, which means that these items were more
difficult for students from schools in the second class. Please note that this difference in
intercepts between the classes can only be interpreted for an average student (θij = 0)
since the IRFs are nonparallel. The intercept parameters for the remaining eight items
proved not significantly different between the two classes.

The expected number of correct answers for an average student attending a school
from the first class is 13.6, while it is 11.3 for an average student from a school of the
second class. The relative importance of ability and school type is not shown in Table 5.4,
but the same pattern as for the model for uniform item bias emerged. For an average
student, in the first part of the test, school type is more important than ability, but as
the difficulty of the items increases in the second part of the test, ability becomes more
important than school type.

The conclusions about the effects of the school-level predictors and about the



68 CHAPTER 5. LATENT GROUP-LEVEL OUTCOME

Table 5.4: Regression Parameters Items Nonuniform Item Bias

Item (p) b8p1 SE b8p2 SE b8p2 − b8p1 SE b9p1 SE b9p2 SE b9p2 − b9p1 SE
1 1.00 NA 1.59* .40 0.59 .40 1.84* .06 0.76* .12 -1.08* .13
2 1.20* .25 1.60* .42 0.40 .37 1.35* .05 1.01* .12 -0.34** .14
3 1.16* .23 1.01** .32 -0.15 .31 0.54* .05 0.05 .10 -0.49* .11
4 1.39* .27 1.49* .38 0.11 .32 1.04* .05 0.31** .11 -0.73* .12
5 1.78* .33 2.42* .54 0.64 .40 1.02* .05 0.41** .13 -0.61* .15
6 0.91* .20 1.90* .47 0.99** .41 1.31* .05 1.10* .13 -0.21 .14
7 3.16* .56 2.18* .50 -0.98** .43 1.18* .08 0.20 .12 -0.99* .15
8 0.77* .18 1.63* .41 0.85** .36 0.97* .04 0.54* .11 -0.43* .12
9 1.83* .33 1.44* .37 -0.39 .32 0.25* .05 -0.05 .10 0.30** .12
10 2.12* .39 2.84* .62 0.73 .45 1.37* .06 0.20 .14 -1.17* .16
11 1.51* .28 2.77* .60 1.26** .46 0.03 .04 -0.54* .14 -0.57* .15
12 2.19* .39 2.09* .49 -0.10 .37 -0.41* .06 -0.83* .13 -0.42** .14
13 3.03* .54 2.23* .50 -0.81** .41 0.22** .07 -0.06 .12 -0.28 .15
14 1.80* .33 2.21* .50 0.41 .38 0.54* .05 -0.02 .13 -0.56* .14
15 1.21* .23 1.08* .32 -0.13 .29 -0.20* .04 -0.33* .10 -0.13 .11
16 1.88* .34 1.82* .43 -0.06 .34 0.37* .05 0.14 .11 -0.23 .13
17 1.50* .28 0.87** .32 -0.63 .33 -0.75* .05 -1.07* .11 -0.32** .12
18 1.65* .30 1.44* .37 -0.21 .32 -0.36* .05 -0.56* .11 -0.20 .12
19 1.77* .32 0.70** .29 -1.07** .34 -0.49* .05 -0.65* .10 -0.16 .11
20 1.19* .23 0.55 .28 -0.64** .32 -0.63* .05 -0.89* .10 -0.26** .11
21 1.69* .31 0.27 .26 -1.42* .37 -0.35* .05 -0.56* .09 -0.21 .11
22 1.09* .22 -0.06 .25 -1.15* .34 -0.77* .05 -0.69* .10 0.08 .11
23 1.48* .28 0.64** .28 -0.83** .32 -0.32* .05 -0.67* .10 -0.36* .11
24 1.08* .21 0.06 .25 -1.01** .32 -0.19* .04 -0.52* .09 -0.33** .10

b8pk = slope and b9pk = intercept, * = p < .001, ** = p < .05

differences between the between- and within-school variances were the same as in the
first analysis. Latent class membership at the school level could not be predicted from
the predictors at the school level as both the effect ofX1j andX2j were not significant: for
participation it was found that b13 = −1.43 (SE = 1.11, p = .20), while for urbanization
level b14 = −0.58 (SE = 0.31, p = .07) was obtained. Since the predictors were already
not significant in the previous model, they could obviously have been removed from the
present analysis. They were nevertheless included in the model in order to ensure that
the two models differ only in the manner the item bias at school level was modeled (i.e.,
uniform or nonuniform).

The variances for θj and θij were equal to 0.02 (SE = 0.01, p < .001) and 0.16
(SE = 0.05, p < .001) respectively, which means there was less variation in the overall
latent ability of schools than in the latent ability of the students within the schools. In
fact, 11% of the variability in individual latent ability is due to differences among schools
( .02
.02+.16 = .11).

5.4.3 Less Complex Alternative Models

In addition to the two models that were proposed in this study, three other - less complex
- models were estimated, including the standard one-level item response theory model
that is usually used in comparable studies (A0 model). As can be concluded from Table
5.2, all fit indices show that the most complex A3 models provide the best fit. Table 5.2
also shows that more classes would be needed if the random effect of θj was ignored as
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in the A2 model. As indicated by all fit indices except CAIC, the number of latent classes
at the school level increases from two to three (BIC) or even four (AIC and AIC3) if θj
had not been included in the model. The results of these alternative analyses show that
the more complex A3 models provide a better fit to the data than the simplified models
considered here.

5.5 Discussion

A model was presented to analyze data sets that are typical for large-scale studies such as
PISA, TIMMS, and COOL5−18. This model has several advantages over the models that
are currently in use because it allows for a simultaneous modelling of student performance
and school performance. First, the nested structure of the data has been handled correctly.
Second, student ability is controlled for processes that may occur at the school level.
Third, schools are classified after controlling for ability and this can be useful monitoring
and comparing schools. Fourth, schools can improve their education by focusing on
specific topics that are covered by items that induce school-level item bias.

The current models can also be applied when teachers (or classrooms) instead of
schools are used as higher-level units to measure and inform teachers which parts of
the curriculum they teach well and which parts they teach poorly, as evidenced by their
students’ achievements. Then teachers are classified, but this classification is controlled
for the ability of students and the average ability of the children being educated by the
teachers. At the same time, teacher-level item bias is studied. With large samples, it is
even possible to consider models with three nested levels: students within teachers within
schools.

As the model fits within the general framework of multilevel latent variable models,
software is already available to estimate the model. The relative complexity of the model
should not be an impediment to its application in multilevel situations as considered here.
The present study clearly shows that the complex model provides a better fit than the
simpler alternatives. In the light of the similarities between the research designs employed
in the field of educational research, it is unlikely that the present results are specific to the
COOL5−18 study. Although the current model is compared to less complex alternatives, it
has not been compared to even more complex alternatives such as using a three-parameter
IRT model instead of a two-parameter IRT model. Another more complex model would
take into account the longitudinal features of the COOL5−18 data. With these models,
change in student and school ability could be studied providing even more information
about school performance. It would especially provide the possibility to disentangle intake
and learning effects, which is not possible in a cross-sectional dataset.

In studies where latent variables are used, it is often rather difficult to establish the
meaning of the variables. In the present model, the interpretation of θij and θj as
student ability and the overall ability of a school are rather straightforward. However,
the interpretation of the latent classes at the school level is less clear. The two manifest
school-level variables that were included in the model to predict class membership - that
is, the form of participation and the urbanization level for the schools - proved unrelated
to latent class membership of the schools. A level-2 sample size of 60 may not have
provided enough power to demonstrate these between-school effects.

Motivation could also have been related to the performances of students. This would
mean that there is one large latent class of schools that was motivated to participate (high-
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stakes schools) and a small latent class of schools that was less motivated to participate
in the study (low-stakes schools). The negative uniform item bias at school level could
then easily be explained: students from schools in the second class had lower probabilities
of answering the items correctly because they were less stimulated to do well by their
school. This could be an interesting direction for future research.



CHAPTER 6

Discussion

In micro-macro multilevel analysis, a group-level outcome is explained by individual- and
group-level predictors. The aim of the current dissertation was to contribute to the
development of statistical methods for micro-macro analysis by making a latent variable
approach for continuous data (Croon & van Veldhoven, 2007) applicable to discrete data.
To reach this goal, latent class models were presented in which a latent discrete group-
level variable was used to aggregate the discrete individual-level data to the group level.
This group-level latent class variable can be related to other group-level predictors and
group-level outcomes in a group-level analysis.

Chapter 2 showed that, for nominal data, this latent class approach outperforms more
traditional methods such as aggregating the individual-level data with a manifest mean
or mode. The simulation study in this chapter showed that the estimates of the group-
level parameters were unbiased when a latent class model was used. When the manifest
group means or modes were used, these estimates were biased, because measurement and
sampling error in the aggregated scores was not accounted for. Measurement error can be
caused by group members providing imperfect information about their group and sampling
error can occur when information is not gathered from all group members. The more error
the group means and modes contained, the more biased the group-level estimates were.
When the unrealistic situation occurs that there is no error at all, the manifest approaches
provided unbiased results as well. It was also shown that the power and Type-I error rates
of the group-level estimates were reasonable good with the latent variable approach. This
was not the case when the group-level outcome was disaggregated to the individual level
and therefore this method should be avoided at any time. Besides providing unbiased
estimates for the group-level parameters, the latent class approach solves another specific
issue with respect to discrete data, namely that it is unclear how to aggregate a discrete
variable. Using the group means has only a substantive meaning for dichotomous data
since the mean can be interpreted as a proportion. For discrete data with more than
two categories, the group mode seems more appropriate than the group mean, but still
measurement and sampling error is not accounted for. Altogether, Chapter 2 showed that,
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in basic models, the latent class approach provides an elegant way to aggregate discrete
data to the group level while taking measurement and sampling error into account.

In Chapter 3, more advanced models were proposed to simultaneously aggregate
multiple individual-level variables to the group level by means of a discrete latent group-
level variable. In the first model, the group-level latent variable affected the multiple
individual-level variables directly, but in the second method this was modelled indirectly
via an individual-level latent variable. The key difference between the methods is that
the within and between part of the (co)variation in the individual-level variables are
independent in the first method and dependent in the second method.

Instead of estimating the full models in one step, a more practical stepwise estimation
procedure was proposed in Chapter 4 that separates the aggregation from the group-level
analysis. In the first step, a latent class model was estimated in which the scores on
the individual-level variable served as indicators for a discrete latent group-level variable.
In the second step, the individual data were aggregated by assigning the groups to the
group-level latent classes based on the model from the first step. In the final step, the
assigned group scores were related to the group-level outcome, while correcting for the
classification errors made during the aggregation step. These classification errors were
known from the previous steps. As long as the correction in the final step was used, the
group-level parameters were unbiased. When multiple latent group-level variables were
specified, unbiased estimates were only obtained when a single model for both group-
level latent variables was estimated in the first step of the analysis since then a residual
within-group association among the individual-level variables could be included.

In Chapter 5, an application from educational testing was presented. Schools were
classified into discrete latent classes based on student-level attainment items and this can
be interpreted as a micro-macro situation in which the group-level outcome is latent and
the individual-level variables are observed. Student ability was modelled and controlled
for school-level processes and, at the same time, the multilevel structure of the data was
correctly handled. An additional benefit of the models presented is that the latent group-
level classes could also be used to detect uniform and nonuniform school-level item bias.
This could be useful for schools to improve their teaching on specific topics covered by
the items showing school-level item bias.

To conclude, a very flexible framework for micro-macro multilevel analysis for discrete
data was developed that is able to handle multiple individual-level predictors and multiple
latent group-level variables. The estimation can be done in either one or three steps and
the applications are very diverse. Since the model fits within a more general framework,
software is already available and all analysis can be performed in Latent GOLD 5.0
(Vermunt & Magidson, 2013).

A limitation of the method is that class separation, measured by the entropy R-square
value, should be sufficient (R2

entr ≥ .45 ). Otherwise classes are estimated to be more
different than they truly are and this causes bias in the group-level estimates. This is
not only an issue when stepwise estimation is used, but a general issue in latent class
analysis (Galindo-Garre & Vermunt, 2006). Besides the practical issues related to low
class separation, it should also be considered whether it is warranted from a theoretical
point of view to aggregate individual-level data to the group level when the individual-level
data are only weakly related to the group-level latent classes. Since class separation is a
function of the number of indicators and in micro-macro analysis the number of indicators
equals the number of individuals within a group, class separation is never a problem when
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the sample size at the individual-level is large.
Five points are important to discussion. First, in the simulation study in Chapter 2

on basic micro-macro models, the number of groups seemed more important to obtain
sufficient power for the estimates of the group-level effects than the number of individuals
within a group. In the conditions with 200 groups, power was sufficient. Since the
simulation study was limited, future research could be devoted to power calculations
to obtain minimum sample sizes for the current type of analysis. Muller, LaVange,
Landesman Ramey, and Ramey (1992), Tu, Kowalski, Zhang, Lynch, and Crits-Christoph
(2004), and Snijders (2005) already started to study power in (multilevel) latent class
models, but did not include a group-level outcome.

Second, in the current chapters, all individuals were treated as equivalent sources of
information about the group-level variable. This exchangeability assumption is warranted
when all group members play similar or identical roles in the group but is probably less
vindicated when the group members differ with respect to their functioning in the group.
For example, when data from multiple family members are aggregated to the family level,
the information from the parents and siblings could also be treated differently. This implies
that all family members do not contribute equally to the (latent) family-level score.

Third, most models discussed in the dissertation contain an indirect effect of a group-
level predictor (Xj) on a group-level outcome (Yj) via a group-level latent variable (ζj),
but no formal test for this indirect effect was provided nor available. The two paths that
form the indirect effect were only tested separately. Future research could be devoted
to develop statistical tests for an indirect effect with categorical variables. This line of
research is already started by Pearl (2012) and Vansteelandt (2012).

Fourth, only within-group models with discrete variables were discussed and future
research could look into hybrids of continuous and discrete (latent) variables in this part
of the model as discussed in Chapter 2. For example, one might assume that a discrete
latent variable at the group level underlies a continuous observed variable at the individual
level by using a latent profile model (Bartholomew & Knott, 1999). In situations in which
the observed explanatory variables at the individual level are discrete, also an item response
model (Embretson & Reise, 2000) with a continuous latent group-level variable might be
considered for the aggregation. Examples are provided in Fox and Glas (2003) and Fox
(2005). A more general framework for combining discrete and continuous latent variables
at different levels of an hierarchical model is discussed in Vermunt (2008), Palardy and
Vermunt (2010) and Varriale and Vermunt (2012).

Last, only two-level models were studied, while it might be interesting to add time
as a third level so longitudinal micro-macro research questions can be answered. For
example, individual-level data can be measured over time so that time points are nested
within individuals and the individuals are nested within groups. Another example would
be to observe the group-level outcome over time. This makes it possible to study whether
micro-macro relationships change over time. At the moment, there are no such methods
available.





APPENDIX A

Two Equivalent Estimation Procedures

This appendix shows how the likelihood function of the 1-2 model as defined in
Equation 2.4 can be constructed in two equivalent ways, that is, with the ‘Two-level
regression approach’ and with the ‘Persons-as-Variables approach’ (Curran, 2003; Mehta
& Neale, 2005).

Two-Level Regression

The Two-level regression approach is illustrated in Figure 2.1. In practice, the group-level
variables are treated as individual-level variables but the group-level score of a particular
group is assigned to a single individual from that group, while the scores of the other
individuals within that group on this variable are defined as missing. Note that this is
not the same as disaggregating the group-level variable since that would come down to
assigning the group score to each and every group member. Since the individuals within
the same group are exchangeable, it does not matter to which individual the group-level
score is assigned, but for convenience it will be assumed here that assignment is to the
first individual in a group.

The data are stored in a long file in which each row of the data matrix corresponds
to an individual, but an additional group identification variable is defined that indicates
to which group an individual belongs. The group-level outcome defined as an individual-
level variable is denoted by Y ∗

ij , so that Y ∗

ij = Yj for i = 1, and Y ∗

ij is missing for i 6= 1.
The variables originally measured at the individual level are simply reproduced in the data
matrix. Table A.1 provides an example data matrix with three groups, the first two groups
consisting of three individuals, and the third group of two individuals.

The joint density of Zj , Y
∗

j and ζj equals
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Table A.1: Example Data Matrix Two-Level Regression Approach

Groupid Y ∗

ij Zij

1 Y1 Z11

1 . Z21

1 . Z31

2 Y2 Z12

2 . Z22

2 . Z32

3 Y3 Z13

3 . Z23

P (Zj ,Y
∗

j , ζj) = P (ζj)
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P (Y ∗

1j |ζj). (A.2)

The latter simplification follows from the fact that
∑

Y ∗

ij
P (Y ∗

ij |ζj) = 1. Since Y ∗

1j =

Yj , this is equivalent to the log-likelihood function described Equation 2.4.

Persons-as-Variables

The Persons-as-Variables approach is illustrated in Figure A.1 for the case that each group
consists of maximum three members.
Each of the three individuals within a group defines a different variable at the group
level and as a consequence, there are as many ‘person variables’ as there are individuals
in the groups. A separate equation is needed to describe the relationship between each
person variable and ζj . Since the individuals from the same group are assumed to be
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Yj
ζj

β2

β4

Z2j Z3jZ1j

β2β2

Figure A.1: Persons-as-Variables Approach

Table A.2: Example Data Matrix Persons-as-Variables Approach

Yj Z1j Z2j Z3j

Y1 Z11 Z21 Z31

Y2 Z12 Z22 Z32

Y3 Z13 Z23 .

exchangeable, the relationships between the different person variables and ζj are required
to be completely identical. As a consequence of these exchangeability constraints, it does
not matter who is assigned to Z1, who to Z2, et cetera. This approach can still be applied
with unequal group sizes: the number of person variables needed is equal to the largest
group size and smaller groups have missing scores on the unused person variables. In this
way, the log-likelihood function described Equation 2.4 is obtained.

The Persons-as-Variables approach requires the data matrix to be structured in a wide
file format in which each of the rows represent a group, while its columns correspond to
the person variables as defined above. As an example Table A.2 shows the data matrix
with three groups, the first two groups consisting of three individuals and the third group
of two individuals.





APPENDIX B

Latent GOLD Syntax Empirical Example

This appendix explains how the 2-1-2 model from the Latent GOLD software (Vermunt
& Magidson, 2005a) by either the ‘Persons-as-Variables approach’ or the ‘Two-level
regression approach’. Estimation by the Two-level regression approach requires that the
data are structured in a long file format with 8161 (# level-2 units) × 6 (# level-1 units)
= 48966 rows. An indicator variable egoid is needed for identifying the different egos
within which the alters are nested.

The relevant parts of the syntax for this approach are:

options

bayes categorical=1

missing includeall;

variables

caseid egoid;

dependent z nominal, y nominal;

independent x nominal;

latent zeta nominal 2;

equations

zeta <- (b1)1 + (b2)x;

y <- (b3)1 + (b4)x + (b5)zeta + (b6)x*zeta;

z <- (b7)1 + (b8)zeta;

In the options section of syntax, all default settings can be accepted with two
exceptions. First, bayes categorical=1 is declared to prevent boundary solutions.
Second, by default Latent GOLD applies listwise deletion of cases with missing data.
For obtaining maximum-likelihood estimates with missing data, missing includeall

should be declared. In the variables section the egoid variable should be defined as
the caseid. In the same section a list of the dependent, independent, and latent variables
should be provided. For nominal latent variables, the number of latent classes is specified
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after the definition of the scale type. The regression equations defining the model are
formulated in the equations section of the syntax.

When the same model is estimated with the Persons-as-Variables approach, the results
will be the same but the data file is constructed as a wide file with 8161 (level-2 units) rows
corresponding to the different egos and with the columns corresponding to the variables
defined on the egos and their alters. A separate equation has to be specified for each alter
as shown in the part of the syntax that differs from the syntax of the Persons-as-Variables
approach:

variables

dependent z1 nominal, z2 nominal, z3 nominal,

z4 nominal, z5 nominal, z6 nominal,

y nominal;

independent x nominal;

latent zeta nominal 2;

equations

zeta <- (b1)1 + (b2)x;

y <- (b3)1 + (b4)x + (b5)zeta + (b6)x*zeta;

z1 <- (b7)1 + (b8)zeta;

z2 <- (b7)1 + (b8)zeta;

z3 <- (b7)1 + (b8)zeta;

z4 <- (b7)1 + (b8)zeta;

z5 <- (b7)1 + (b8)zeta;

z6 <- (b7)1 + (b8)zeta;

To establish that the alters are exchangeable indicators of the latent variable at the
ego level, the regression coefficients are restricted to be equal using the arbitrary chosen
value labels (b7) for the intercepts and (b8) for the indicator loadings. It is also possible
to substitute the last six equations by z1-z6 <- (b7)1 + (b8)zeta.



APPENDIX C

Technical Details on the Computation of P (W = t|ζ = q)

This Appendix shows how P (W = t|ζ = q) is computed using the classification
information from the second step of the stepwise analysis. A more detailed description is
provided by Bakk et al. (2013) and Vermunt (2010).

Let P (ζj = q|Zj) denote the posterior class membership probability for group j and
P (Wj = t|Zj) denote the probability by which a group is assumed to belong to class
t given the applied assignment rule. Using the modal class assignment rule, also called
modal a posterior assignment (MAP), groups are assigned to that category of Wj for
which P (ζj = q|Zj) is largest:

P (Wj = t|Zj) =

{
1 if P (ζj = t|Zj) > P (ζj = s|Zj) ∀s 6= t

0 otherwise
(C.1)

Using the proportional assignment rule, each group is assumed to belong to a particular
latent class with a probability equal to the posterior membership probability for the class
concerned implying

P (Wj = t|Zj) = P (ζj = t|Zj). (C.2)

The probability of being assigned to class t conditional on belonging to the true class
q, P (W = t|ζ = q), is theoretically defined as:

P (W = t|ζ = q) =

∑

Z
P (Z)P (ζ = q|Z)P (W = t|Z)

P (ζ = q)
. (C.3)

Note that the sum is taken over all possible patterns of Z. Because the number of possible
patterns can be very large, it is more practical to take the sum over the data pattern of
the groups present in the available data sets, which yields:

P (W = t|ζ = q) =

∑J

j=1 P (ζj = q|Zj = zj)P (Wj = t|Zj = zj)
1
J

P (ζj = q)
. (C.4)

As shown by Vermunt (2010), when the specified model is correct, the theoretical and
empirical definition of P (W = t|ζ = q) provide very similar results.
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Latent GOLD 5.0 Syntax Empirical Data Example

To perform a bias adjusted stepwise analysis on a micro-macro model with two micro-
level predictors in Latent GOLD 5.0 (Vermunt & Magidson, 2013), the data need to be
structured in a long file format with the number of rows equal to the number of individuals.
An identifier variable, here labeled id, is needed to identify which individuals belong to
which group. The scores on the group-level variables are only assigned to a single group
member, for convenience the first group member. Therefore, Yij = Yj for i = 1 and Yij

is missing for i 6= 1, and Xij = Xj for i = 1 and Xij is missing for i 6= 1.
The relevant parts of the syntax for the first-step measurement model are:

options

<default settings>

outfile ‘step3data.txt’ classification keep y, x;

variables

caseid id;

dependent z1 nominal, z2 nominal;

latent zeta1 nominal 3, zeta2 nominal 3;

equations

zeta1 <- 1;

zeta2 <- 1;

z1 <- 1 + zeta1;

z2 <- 1 + zeta2;

z1 <-> z2;

To save the posterior class membership probabilities to a data file, one has to add the
command outfile ‘datastep3.txt’ classification to the options section. The
command keep is used to add the variables from the structural part of the model, that
are not used in the first-step model, to the output dataset datastep3.txt as well. For
the remaining part, one can use the default settings for the options.
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In the variables section, the id variable should be defined as the caseid. In the
same section, a list of the dependent and latent variables should be provided. For nominal
latent variables, the number of latent classes is specified after the definition of the scale
type.

The regression equations of the first step model are formulated in the equations

section of the syntax. These include the equations defining the measurement part of the
model (z1 <- 1 + zeta1 and z2 <- 1 + zeta2), together with the intercepts for the
latent variables (zeta1 <- 1 and zeta2 <- 1), and an equation describing the within-
group association among the micro-level predictors (z1 <-> z2).

The relevant parts of the syntax to estimate the bias corrected third-step structural
model are:

options

<default settings>

step3 ml modal simultaneous;

variables

dependent y nominal;

independent x nominal;

latent zeta1 nominal posterior=(zeta1#1 zeta1#2 zeta1#3),

zeta2 nominal posterior=(zeta2#1 zeta2#2 zeta2#3);

equations

zeta1 <- 1 + x;

zeta2 <- 1 + x;

zeta1 <-> zeta2;

y <- 1 + zeta1 + zeta2 + x;

This syntax needs to be run on the data file datastep3.txt, that was created in the
previous step of the analysis. By default, records with missing values are excluded from the
analysis, which results in keeping only the first record of each group, and thus ensures that
the analysis is performed at the group level. The step3 command specifies the options
to be used in the third-step analysis. These concern the correction method (either none,
ml, or bch) and the assignment rule (modal or prop). The command simultaneous

is needed to make sure that all equations from the equations section are estimated at
once rather than one by one.

In the variables section, the dependent, independent and latent variables from
the structural part need to be specified. The two latent variables are connected to
the stored posterior membership probabilities from the data file using the commands
posterior=(zeta1#1 zeta1#2 zeta1#3) and posterior=(zeta2#1 zeta2#2

zeta2#3). Finally, all equations from the structural part of the model are specified under
equations.



APPENDIX E

Mplus Syntax Empirical Data Example

A similar bias adjusted stepwise analysis can also be done in Mplus (Muthén & Muthén,
1998-2012), although results will not be identical since a slightly different measurement
model needs to be used in the first step and a slightly different structural model needs
to be used in the third step of the analysis. Additionally, only the ML procedure can be
applied since the BCH correction is currently not available in Mplus.

To start, the data need to be structured in a long file format. However, it does matter
whether the group-level variables are assigned to a single group member or to all group
members since a new group-level data set needs to be created manually for the third step
of the analysis. The relevant parts of the syntax to run the first-step measurement model
on the data file just described are:

ANALYSIS:

TYPE = TWOLEVEL MIXTURE;

VARIABLE:

NAMES ARE id x z1 z2 y;

USEVARIABLES id x z1 z2 y;

CLASSES = zeta1(3) zeta2(3);

CATEGORICAL = z1 z2;

BETWEEN = zeta1 zeta2;

CLUSTER = id;

AUXILIARY = x y;

MODEL:

\%WITHIN\%

\%OVERALL\%

e by z2_r@1 z3_r@1;

e*1;
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\%BETWEEN\%

MODEL zeta1:

\%BETWEEN\%

\%zeta1#1\%

[z1$1* z1$2*];

\%zeta1#2\%

[z1$1* z1$2*];

\%zeta1#3\%

[z1$1* z1$2*];

MODEL zeta2:

\%BETWEEN\%

\%zeta2#1\%

[z2$1* z2$2*];

\%zeta2#2\%

[z2$1* z2$2*];

\%zeta2#3\%

[z2$1* z2$2*];

SAVEDATA: FILE=inddatastep3.dat;

SAVE = CPROB;

The first-step model is a TWOLEVEL MIXTURE analysis. In the VARIABLE section,
the latent variables and the number of latent classes are defined after the command
CLASSES and the indicators are defined after the command CATEGORICAL. It did not
seem possible to define the indicators as nominal; therefore, a cumulative logit model
is used instead of a multinomial model. It needs to be stated that the latent variables
are group-level variables after the command BETWEEN. The id variable is defined as the
CLUSTER variable, and with the command AUXILIARY, the structural variables are saved
in the file inddatastep3.dat.

The equations from the measurement model are stated in the MODEL section. It is
not possible to specify a within association among the discrete micro-level predictors;
therefore, a continuous latent variable at the individual level is defined with the two
micro-level predictors as indicators. Separate models are specified for the group-level
latent variables in which the last categories of the indicator variables are used as reference
categories.

Last, the commands SAVEDATA: FILE=inddatastep3.dat; and SAVE = CPROB;

create a disaggregated individual-level dataset that contains the observed group-level
variables needed in the structural model, the group-level posterior probabilities, and the
group-level modal assignments. Since the posterior probabilities and the assigned scores
are disaggregated, a new group-level data file needs to be created. Two dummy variables
for the three categories of x that are to be used as independent variables in the structural
model are added to this dataset. Also, the classification table needs to be constructed
manually in the way that is explained in Appendix C. We used the following script in R
(version 3.0.1) to do this:

###Make a group-level dataset for third-step analysis
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inddata<-as.matrix(read.table("inddatastep3.dat"))

# colnames: z1 z2 y x p11 p12 p13 p21 p22 p23 p31 p32 p33 w1 w2 w g

groupdata<-matrix(0,length(table(inddata[,17])),ncol(inddata))

groupdata[1,]<-inddata[1,]

z<-1

for (i in 2:nrow(inddata)){

if(inddata[i,17]!=inddata[(i-1),17]){

z<-z+1

groupdata[z,]<-inddata[i,]}}

#Make two dummy variables for x with last category as reference category

dummies<-matrix(0,nrow(groupdata),2)

for (i in 1:nrow(groupdata)){

ifelse(groupdata[i,4]==1,dummies[i,1]<-1,dummies[i,1]<-0)

ifelse(groupdata[i,4]==2,dummies[i,2]<-1,dummies[i,2]<-0)}

groupstep3<-cbind(groupdata[,c(3,4,14,15,17)],dummies)

# colnames: y x w1 w2 g xd1 xd2

write.table(groupstep3,"step3.dat", row.names = FALSE,col.names = FALSE)

### Construct classification tables (based on modal assignment)

##zeta1

dat1<-matrix(0,nrow(groupdata),16)

# P(zeta1|z1)

dat1[,1]<-(groupdata[,5]+groupdata[,6]+groupdata[,7])

dat1[,2]<-(groupdata[,8]+groupdata[,9]+groupdata[,10])

dat1[,3]<-(groupdata[,11]+groupdata[,12]+groupdata[,13])

#w1

dat1[,4]<-groupdata[,14]

# P(w1|z1)

for (i in 1:nrow(groupdata)){

ifelse(dat1[i,4]==1,dat1[i,5]<-1,dat1[i,5]<-0)

ifelse(dat1[i,4]==2,dat1[i,6]<-1,dat1[i,6]<-0)

ifelse(dat1[i,4]==3,dat1[i,7]<-1,dat1[i,7]<-0)}

dat1[,8:10]<- c(dat1[,1]*dat1[,5], dat1[,2]*dat1[,5], dat1[,3]*dat1[,5])

dat1[,11:13]<-c(dat1[,1]*dat1[,6], dat1[,2]*dat1[,6], dat1[,3]*dat1[,6])

dat1[,14:16]<-c(dat1[,1]*dat1[,7], dat1[,2]*dat1[,7], dat1[,3]*dat1[,7])

t<-matrix(0,3,3)

t[1:3,1]<-c(sum(dat1[,8]),sum(dat1[,9]),sum(dat1[,10]))
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t[1:3,2]<-c(sum(dat1[,11]),sum(dat1[,12]),sum(dat1[,13]))

t[1:3,3]<-c(sum(dat1[,14]),sum(dat1[,15]),sum(dat1[,16]))

tt<-cbind(t,as.matrix(apply(t,1,sum)))

Dzeta1<-matrix(0,3,3)

Dzeta1[1,]<-tt[1,1:3]/tt[1,4]

Dzeta1[2,]<-tt[2,1:3]/tt[2,4]

Dzeta1[3,]<-tt[3,1:3]/tt[3,4]

res1<-c(log(Dzeta1[1,1]/Dzeta1[1,3]), log(Dzeta1[1,2]/Dzeta1[1,3]),

log(Dzeta1[2,1]/Dzeta1[2,3]), log(Dzeta1[2,2]/Dzeta1[2,3]),

log(Dzeta1[3,1]/Dzeta1[3,3]), log(Dzeta1[3,2]/Dzeta1[3,3]))

##zeta2

dat2<-matrix(0,nrow(groupdata),16)

dat2[,1]<-(groupdata[,5]+groupdata[,8]+groupdata[,11])

dat2[,2]<-(groupdata[,6]+groupdata[,9]+groupdata[,12])

dat2[,3]<-(groupdata[,7]+groupdata[,10]+groupdata[,13])

dat2[,4]<-groupdata[,15]

for (i in 1:nrow(groupdata)){

ifelse(dat2[i,4]==1,dat2[i,5]<-1,dat2[i,5]<-0)

ifelse(dat2[i,4]==2,dat2[i,6]<-1,dat2[i,6]<-0)

ifelse(dat2[i,4]==3,dat2[i,7]<-1,dat2[i,7]<-0)}

dat2[,8:10]<- c(dat2[,1]*dat2[,5], dat2[,2]*dat2[,5], dat2[,3]*dat2[,5])

dat2[,11:13]<-c(dat2[,1]*dat2[,6], dat2[,2]*dat2[,6], dat2[,3]*dat2[,6])

dat2[,14:16]<-c(dat2[,1]*dat2[,7], dat2[,2]*dat2[,7], dat2[,3]*dat2[,7])

q<-matrix(0,3,3)

q[1:3,1]<-c(sum(dat2[,8]),sum(dat2[,9]),sum(dat2[,10]))

q[1:3,2]<-c(sum(dat2[,11]),sum(dat2[,12]),sum(dat2[,13]))

q[1:3,3]<-c(sum(dat2[,14]),sum(dat2[,15]),sum(dat2[,16]))

qq<-cbind(q,as.matrix(apply(q,1,sum)))

Dzeta2<-matrix(0,3,3)

Dzeta2[1,]<-qq[1,1:3]/qq[1,4]

Dzeta2[2,]<-qq[2,1:3]/qq[2,4]

Dzeta2[3,]<-qq[3,1:3]/qq[3,4]

res2<-c(log(Dzeta2[1,1]/Dzeta2[1,3]), log(Dzeta2[1,2]/Dzeta2[1,3]),

log(Dzeta2[2,1]/Dzeta2[2,3]), log(Dzeta2[2,2]/Dzeta2[2,3]),

log(Dzeta2[3,1]/Dzeta2[3,3]), log(Dzeta2[3,2]/Dzeta2[3,3]))

The vectors res1 and res2 contain the logit parameters needed in the third-step analysis
for which the relevant parts of the syntax are:

DATA:

FILE IS step3.dat;
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ANALYSIS:

TYPE = MIXTURE;

VARIABLE:

NAMES ARE y x w1 w2 g xd1 xd2;

USEVARIABLES y w1 w2 xd1 xd2;

CLASSES = zeta1(3) zeta2(3);

NOMINAL = y w1 w2;

MODEL:

\%OVERALL\%

y on zeta1 zeta2 xd1 xd2;

zeta1 on xd1 xd2;

zeta2 on xd1 xd2;

zeta2 on zeta1;

MODEL zeta1:

\%zeta1#1\%

[w1#1@1.8941224];

[w1#2@-2.5387260];

\%zeta1#2\%

[w1#1@4.4133758];

[w1#2@3.6361397];

\%zeta1#3\%

[w1#1@-0.8973495];

[w1#2@-10.3883285];

MODEL zeta2:

\%zeta2#1\%

[w2#1@6.6811118];

[w2#2@6.2972301];

\%zeta2#2\%

[w2#1@0.4932635];

[w2#2@2.8635253];

\%zeta2#3\%

[w2#1@-5.1415522];

[w2#2@-0.2323258];

This syntax needs to be run on the data file step3.dat that was created with the R-
script presented and defines a single-level MIXTURE analysis. In the VARIABLES section,
the nominal dependent variable y and the assigned scores that function as indicators with
known measurement error w1 and w2 need to be specified as NOMINAL. In the MODEL

section, the structural equations are defined.
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Due to differences in software implementations, there are two differences with the
third-step model used in Latent GOLD. First, the model for y is saturated and contains
the interaction effect of zeta1 and zeta2, while in Latent GOLD only main effects are
included. Second, it is not possible to include an association among two categorical
variables; therefore, zeta1 is regressed on zeta2.



APPENDIX F

Example Items

1. At what age did David start playing chess?
A 5
B 9
C 11

KING DAVID
David Howell, now 11, was nine when he broke the world record for the youngest player
to beat a grandmaster in an official game. The youngster beat Dr John Nunn in a game
of ‘blitz’ chess. David started playing at the age of five when he got a second-hand chess
set. Soon he began beating his father and became British under-9, under-10 and under-11
champion.
Source: Funday Times

17. What does this advertisement point out?
The fact that
A the export of tropical wood from Ghana needs to be confined.
B Ghana needs a lot of development funds to renew the forests.
C Ghana handles the cutting and export of wood in a responsible manner.
D Ghana puts a lot of effort into countering illegal cutting down of wood.

OUR FORESTS ARE OUR CHILDREN’S FUTURE
Ghana’s permanent Forest Reserves provide an annual sustainable timber Harvest of 1.2
million cubic meters. Selective logging systems and fallow periods offer renewable wood
supplies as well as environmental and social benefits.

Whilst some forest has to give way to other needs, our permanent reserves are a
principal source of jobs, supporting over 250,000 people; they are part of Ghana’s own
economic and social development.

Wood is in our homes, schools, hospitals, and offices; it is used on land, sea, rivers
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and for fuel.
Wood experts are important too. They go to many African countries with less forest

areas.
Ghana believes in the future of its forest and is making its own decisions about land

use.
Some people in the developed world want to stop importing tropical wood. Why? For

sure, bans do not help under-resourced tropical countries and they certainly do not ensure
good forest management.
For full details of our forest management systems, please contact:
Ghana timber export development board
P.O. Box 515, Takoradi, GHANA
Tel: 239 31 2921-6
Fax: 233 31 4690

102 Park Street, London, W1Y 3RJ
UNITED KINGDOM
Tel: 0171 493 4901-4
Fax: 0171 493 9923
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Summary

This dissertation deals with multilevel models for predicting outcomes at the group level
from predictors measured at the individual level. This form of multilevel analysis, which
is rather common in social sciences, is referred to as micro-macro analysis. Croon and
Van Veldhoven already proposed a latent variable model for micro-macro analysis with
continuous (latent) variables. The aim of the current project was to generalize their
approach so that it can also be applied to discrete (latent) variables, by using a latent
class model instead of a factor-analytic model.

Characteristic of the latent class approach is that the scores of the group members on
an individual-level variable are used as exchangeable indicators of a discrete latent class
variable at the group level. This part of the model is referred to as the within-group model
and makes it possible to aggregate a discrete individual-level variable to the group level
while accounting for measurement and sampling error in the aggregated scores. In the
between-group model, the group-level latent classes are related to other (manifest) group-
level variables. For example, a group-level outcome can be regressed on the group-level
latent classes.

In Chapter 2, this approach was presented in more detail by applying it to a simple
model with a single dichotomous individual-level predictor and a single dichotomous group-
level outcome. In a simulation study, the method was compared to two more traditional
approaches, namely aggregation of the individual-level scores with a (manifest) mean or
mode and disaggregation of the group-level outcome. Both would imply to perform a
single-level analysis at either the group or individual level. Mean aggregation is only
substantively meaningful when the individual-level variable is dichotomous since the mean
can be interpreted as a proportion. For nominal variables with more than two categories,
a group mean has no substantive meaning and using the group mode instead might
be an alternative. A simulation study showed that the latent class approach performed
better than the more traditional procedures, since the latent class approach obtained
unbiased group-level parameters even when there was measurement and sampling error
in the latent group-level scores. Also the power and Type-I error rate of the tests of the
estimates of the group-level parameters were reasonably good. Aggregation with a mean
or mode only worked when there was no measurement and sampling error, which is rather
unrealistic in practice. Disaggregation provided Type-I error rates that were unacceptably
high. The simple model was extended to a more complex model by adding a manifest
group-level predictor to the model. A second simulation study showed that the proposed
latent variable approach still worked well in this more complex situation, but a larger
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number of groups was needed to retain sufficient power. Especially for an interaction
effect between the group-level predictor and the group-level latent classes, power was
low in most conditions. The latent variable approach was illustrated with an empirical
example in which data from a personal network were used.

The models from Chapter 2 are limited in the sense that they contain only a single
individual-level variable while in social research it is very common to use multiple observed
individual-level variables or to use individual-level constructs that are indirectly measured
with multiple items. In Chapter 3, two latent class models were presented that can
be used for micro-macro analysis with multiple individual-level variables. In the first
model, the individual-level variables were used directly as indicators for the group-level
latent class variable. In this way, a typology of groups was constructed based on the
individual-level variables. It was unrealistic to assume that the individual-level variables
only contained between-group variation. Therefore, associations among the individual-
level variables were used to capture the residual within-group association among the
individual-level variables. In the second model, the multiple individual-level variables
intended to measure an individual-level construct. In this situation, it is not very intuitive
to model the within-group association among the micro-level variables as a residual. It
is more appropriate to treat the micro-level variables as indicators for an individual-level
latent variable on which groups can differ. This implies that the group-level latent variable
had an indirect effect on the individual-level variables. The most important difference
between the two models is that the within and between component of the (co)variation in
the individual-level variables were independent in the first situation and were dependent
in the second. A real data example was provided to illustrate both situations. For the
first situation an example from marketing research was used and for the second situation
an example from research to small firm human resource practices.

Thus far, all models were estimated in one step using maximum-likelihood estimation.
In Chapter 4, a more practical stepwise estimation procedure of the micro-macro latent
class model was proposed in which the latent class model that was used to aggregate
the discrete individual-level variables (within-group model) and the group-level analysis
(between-group model) can be estimated separately without introducing bias in the
estimates of the group-level parameters. In the first step, a latent class model was
estimated in which the scores on a discrete individual-level predictor were used as indicators
for a group-level latent class variable (within-group model). In the second step, this latent
class model was used to aggregate the individual-level predictor to the group level by
assigning the groups to the latent classes. In the final step, a group-level analysis was
performed in which the aggregated measures were related to the remaining group-level
variables while correcting for the classification error in the class assignments (between-
group model). Two methods were presented to do so, both using the same underlying
model. These methods were compared to the one-step latent class approach presented in
Chapter 2 and provided estimates that were as good as the estimates from the one-step
analysis, as long as the class separation was sufficient. A second simulation study showed
that when a model contains two group-level latent variables with one individual-level
variable as an indicator each, the within-group association among these individual-level
predictors needed to be modelled in the within-group model. The within-group association
could only be ignored when the individual-level scores were very good indicators of the
group-level latent variables and the within-group association was small. At the end of the
chapter, the stepwise approach was applied to an empirical data example in which team
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productivity (macro level) was explained by job control (micro level), job satisfaction

(micro level), and enriched job design (macro level).
Chapter 5 showed an application from educational measurement in which test data on

students were used to classify schools. This is a micro-macro situation since individual-
level data are used to explain a group-level characteristic, but the group-level variable of
interest is a latent class variable instead of an observed variable. As in a regular one-
level Item Response Theory model, a continuous latent trait was assumed to underlie the
item scores of the students and this latent trait was interpreted as student ability. Since
the scores were collected from students from different schools, a multilevel model was
needed to adjust for the dependency among students from the same school. This was
done by decomposing student ability into its within and between components. It was
expected that all variability in the item scores that remained after controlling for student
and school ability could be attributed to the latent classification of schools. At the same
time, the latent group-level classes could be used to study uniform and nonuniform school-
level item bias. This can be useful to improve school performance as it clarifies which
items functioned differently at which type of school, regardless of the ability level of the
students at the schools. For instance, schools from school types in which some items
functioned differently, could devote more time to teaching the topics covered by these
items. Because the models simultaneously (1) accounted for the nested structure of the
data, (2) controlled student ability for processes at school level, (3) classified schools to
monitor and compare schools, and (4) tested for school-level item bias, the model was
rather complex. When applying the models to data from the Dutch study COOL5−18, in
which the achievements of five- to eighteen-year-old students are studied on the basis of
a test with dichotomous educational items, the complex models provided better global fit
than simpler alternative models.

To conclude, a flexible method that handles micro-macro situations with discrete data
was provided. A broad range of applications was shown and when not straightforward,
syntax was provided to stimulate the use of the method.





Samenvatting (Summary in Dutch)

Dit proefschrift gaat over multilevelmodellen die toegepast kunnen worden om uitkomsten
op groepsniveau (bijvoorbeeld teamprestatie) te voorspellen op basis van predictors die
gemeten zijn op het niveau van individuen (bijvoorbeeld de motivatie en vaardigheden
van werknemers). Dit veelvoorkomende type multilevelanalyse wordt micro-macroanalyse
genoemd. Croon en van Veldhoven hebben een latentevariabelemodel voorgesteld voor
micro-macroanalyse met continue (latente) variabelen. Het doel van dit proefschrift is
hun methode te generaliseren zodat deze ook toegepast kan worden op discrete (latente)
variabelen. Hiervoor wordt een latenteklassenmodel in plaats van een factormodel
gebruikt.

De scores van de groepsleden op een variabele die is gemeten op het individuele niveau
worden gebruikt als inwisselbare indicatoren van een discrete latenteklassenvariabele
op groepsniveau. Dit deel van het model wordt het ‘binnengroepenmodel’ genoemd
en zorgt ervoor dat het mogelijk is om een discrete variabele te aggregeren naar het
groepsniveau, terwijl rekening wordt gehouden met de meet- en steekproeffouten in
de geaggregeerde scores. In het ‘tussengroepenmodel’ worden de latente klassen op
groepsniveau gerelateerd aan andere (geobserveerde) variabelen op groepsniveau. Er kan
bijvoorbeeld een regressieanalyse uitgevoerd worden met de uitkomst op het groepsniveau
als afhankelijke variabele en de latente klassen op het groepsniveau als onafhankelijke
variabele.

In Hoofdstuk 2 wordt de methode in meer detail besproken en toegepast op een
eenvoudig model met een dichotome predictor op het individuele niveau en een dichotome
uitkomst op het groepsniveau. In een simulatiestudie wordt de methode vergeleken met
twee meer traditionele methoden, namelijk het aggregeren van de scores op het individuele
niveau met een (geobserveerd(e)) gemiddelde of modus en het disaggregeren van de
groepsuitkomst. Beide methoden impliceren een analyse op één niveau, namelijk of op
groepsniveau of op het individuele niveau. Aggregeren met een gemiddelde is alleen
inhoudelijk zinvol wanneer de individuele variabele dichotoom is, omdat het gemiddelde
dan gëınterpreteerd kan worden als een proportie. Voor nominale variabelen met meer dan
twee categorieën heeft het gemiddelde geen inhoudelijke betekenis en is het gebruiken van
de modus een alternatief. De simulatiestudie laat zien dat de latenteklassenmethode beter
presteerde dan de meer traditionele methoden, omdat zuivere schatters van de parameters
op het groepsniveau verkregen werden, zelfs als er meet- en steekproeffouten in de latente
klassen op het groepsniveau zaten. Ook de power en Type-I fouten van de testen voor de
schatters van de groepsparameters waren goed. Aggregeren met een gemiddelde of modus
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werkte alleen goed wanneer er geen meet- en steekproeffouten waren, wat in de praktijk
zeer onrealistisch is. Disaggregeren gaf onacceptabel hoge Type-I fouten en kan daarom
het beste vermeden worden. Het eenvoudige model is uitgebreid naar een complexer
model door een geobserveerde predictor op het groepsniveau toe te voegen. Een tweede
simulatiestudie laat zien dat de voorgestelde latentevariabelemethode nog steeds goed
werkte in deze complexere situatie, maar er waren meer groepen nodig om voldoende
power te hebben. Vooral voor een interactie-effect tussen de predictor op groepsniveau
en de latente klassen op groepsniveau, was de power laag in de meeste condities. De
latenteklassenmethode wordt gëıllustreerd met een empirisch voorbeeld waarin data over
persoonlijke netwerken werden gebruikt.

De modellen uit voorgaand hoofdstuk zijn beperkt in die zin dat ze maar één variabele
op het individuele niveau bevatten, terwijl het binnen de sociale wetenschappen vaak
voorkomt dat er gebruik wordt gemaakt van meerdere geobserveerde variabelen op het
individuele niveau of van individuele constructen die indirect gemeten zijn door middel
van meerdere items. In Hoofdstuk 3 worden twee latenteklassenmodellen gepresenteerd
die gebruikt kunnen worden voor micro-macroanalyse met meerdere variabelen op het
individuele niveau. In het eerste model worden de individuele variabelen direct gebruikt
als indicatoren voor de latenteklassenvariabele op groepsniveau. Op deze manier werd
een typologie van groepen geconstrueerd die gebaseerd is op de individuele variabelen.
Het is onrealistisch om aan te nemen dat de variabelen op het individuele niveau alleen
(co)variatie op het individuele niveau bevatten. Daarom werd de (co)variatie binnen de
individuele variabelen opgenomen door middel van associaties op het individuele niveau.
In het tweede model waren de individuele variabelen ontworpen om een construct op het
individuele niveau te meten. In deze situatie is het minder intüıtief om de samenhang
tussen de individuele variabelen te modelleren als een residu. Het is gepaster om de
individuele variabelen te gebruiken als indicatoren voor een individueel construct, waar
groepen op kunnen verschillen. Dit houdt in dat de variabele op het groepsniveau een
indirect effect had op de variabelen op het individuele niveau. Het belangrijkste verschil
tussen de twee modellen is, dat de samenhang tussen groepen en de samenhang binnen
groepen van de variabelen op het individuele niveau onafhankelijk zijn in het eerste model
en afhankelijk in het tweede. Een empirisch voorbeeld wordt gegeven om beide situaties te
illustreren. Voor het eerste voorbeeld werd data uit marktonderzoek gebruikt en voor het
tweede voorbeeld data uit onderzoek naar humanresourcepraktijken in kleine organisaties.

Tot zo ver werden alle modellen geschat in één enkele stap door middel van
maximumlikelihoodschattingen. In Hoofdstuk 4 wordt een meer praktische en stapsgewijze
schattingsmethode voor het micro-macro latenteklassenmodel voorgesteld waarin het
latenteklassenmodel dat gebruikt werd om de discrete individuele variabelen te aggregeren
(het binnengroepenmodel) en de analyse op het groepsniveau (het tussengroepenmodel)
afzonderlijk van elkaar geschat kunnen worden, zonder dat de schattingen van de
groepsniveauparameters onzuiver worden. In de eerste stap werd een latenteklassenmodel
geschat waarin de scores op de discrete predictor op het individuele niveau gebruikt werden
als indicatoren voor een latenteklassenvariabele op groepsniveau (het binnengroepenmodel).
In de tweede stap werd dit latenteklassenmodel gebruikt om de predictor op het individuele
niveau te aggregeren door de groepen toe te wijzen aan de latente klassen. In de
laatste stap werd een groepsniveauanalyse gedaan waarin de geaggregeerde metingen
werden gerelateerd aan de overige groepsniveauvariabelen, terwijl rekening gehouden
werd met de meetfouten in de klassentoewijzigingen (het tussengroepenmodel). Er
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werden twee methoden gepresenteerd om dit te doen, die beide gebruik maken van
hetzelfde onderliggende model. Deze methoden werden vergeleken met de eenstaps
latenteklassenmethode uit Hoofdstuk 2 en daaruit bleek dat ze schattingen produceerden
die net zo goed waren als de schattingen van de eenstapsanalyse, zolang de klassen
goed van elkaar konden worden onderscheiden. Een tweede simulatie laat zien dat in
een model met twee latente variabelen op groepsniveau (met elk een variabele op het
individuele niveau als indicator), de samenhang tussen de predictors op het individuele
niveau opgenomen moet worden in het binnengroepenmodel dat geschat wordt in de eerste
stap. De samenhang tussen de predictors op het individuele niveau kon alleen genegeerd
worden wanneer de individuele scores zeer sterke indicatoren van de latente variabelen op
groepsniveau waren en de samenhang tussen de predictors klein was. Aan het einde van
het hoofdstuk wordt de stapsgewijze methode toegepast op een empirisch datavoorbeeld
waarin team productivity (groepsniveau) verklaard werd door jobcontrol (individuele
niveau), job satisfation (individuele niveau) en enriched jobdesign (groepsniveau).

Hoofdstuk 5 is een toepassing vanuit onderwijskundig onderzoek waarin data die
verzameld werden onder leerlingen, werden gebruikt om scholen te classificeren. Dit
is een micro-macrosituatie omdat data op het individuele niveau gebruikt werden om
een groepskenmerk te voorspellen, maar de groepsuitkomst waarin men gëıntereseerd is,
is een latenteklassenvariabele in plaats van een geobserveerde variabele. Zoals in een
standaard Item-Response-Theory-model op één niveau, werd verondersteld dat er een
continue latente variabele aan de itemscores van de leerlingen ten grondslag ligt en deze
werd gëınterpreteerd als de vaardigheid van de leerlingen. Omdat de scores verzameld
waren bij leerlingen van verschillende scholen, was een multilevelmodel nodig om de
afhankelijkheid tussen leerlingen van dezelfde school op te nemen. Dit werd gedaan
door de vaardigheid van de leerlingen te splitsen in een gedeelte dat verklaard werd
binnen scholen en een gedeelte dat verklaard werd tussen scholen. Aangenomen werd
dat alle variatie in de itemscores die overbleef na de constanthouding van de vaardigheid
van de leerlingen en scholen, kon worden toegewezen aan de latente classificering van
scholen. Tegelijkertijd konden de schoolniveauklassen gebruikt worden om uniforme en
niet-uniforme item bias op het niveau van de scholen te onderzoeken. Dit kan nuttig zijn bij
het verbeteren van schoolprestaties omdat het duidelijk maakt welke items anders gemaakt
worden op welk type school, ongeacht de vaardigheden van de leerlingen. Bijvoorbeeld,
scholen van het schooltype waarin sommige items slechter werden gemaakt, kunnen meer
tijd besteden aan het onderwijzen van de onderwerpen die in deze items aan bod komen.
De modellen zijn vrij complex omdat ze gelijktijdig (1) rekening houden met de geneste
structuur van de data, (2) de vaardigheid van de leerlingen controleren voor processen die
zich afspelen op het schoolniveau, (3) de scholen classificeren om deze scholen te kunnen
volgen en te kunnen vergelijken en (4) het bestuderen van item bias op schoolniveau
mogelijk maakt. Wanneer de modellen werden toegepast op data uit de Nederlandse
COOL5−18 studie, waarin vijf- tot achttienjarige leerlingen bestudeerd worden op basis
van een test met dichotome vaardigheidsitems, bleek dat deze complexere modellen de
data beter verklaarden dan eenvoudigere alternatieven.

Alles samengenomen is er een flexibele methode ontwikkeld om te kunnen omgaan met
micro-macrosituaties met discrete data. Er is een breed scala aan toepassingen getoond
en om het gebruik van de methode te stimuleren werd de benodigde syntax beschreven
wanneer deze niet evident was.
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