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Chapter 1

Introduction

This thesis consists of four chapters on two topics. The �rst topic, covered in chap-

ter 2, 3, and 4, is about subjective expectations. Economists have long understood

that expectations are important determinants of economic decisions. However, ex-

pectations are rarely observed. One way to overcome the problem is to elicit beliefs

of individuals, or so-called subjective expectations, directly from survey questions.

Data on subjective expectations can help us better understand how people form

expectations in reality, without imposing restrictions such as rationality or homo-

geneity. Subjective expectations in many domains are also found to have predictive

power for actual decisions, on top of observed socioeconomic and demographic fac-

tors. Recent years witnessed an increasing body of literature in measurement and

analysis of subjective expectations. See Manski (2004) and Hurd (2009) for excel-

lent overviews. Following this strand of literature, the three chapters study directly

measured expectations on two important assets: housing and stock. Home own-

ership is very high in many countries and housing is typically the largest asset in

most households' portfolios. Stock is often the major component of households'

�nancial wealth. Moreover, shocks of both assets are considered to have impacts

on households' consumption plans in the literature (Carroll et al., 2011). Chapter

2 investigate how house price expectations are related to macro and micro charac-
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teristics. Chapter 3 focuses on stock price expectations. Both chapters are based

on panel data analysis of individual expectations at the micro level. Chapter 4 is

also about house price expectations, but is from a macroeconomic perspective and

relies on time series analysis of aggregate data. The second topic, discussed in Chap-

ter 5, is about mortality trends. Increasing longevity is an important concern for

many developed countries. Forecasting future mortality trends is of great interest

for demographic projections and pension planning. However, mortality rates are not

easy to predict as the whole distribution might change over time, due to so called

(systematic) longevity risk. This chapter introduces a mortality forecasting model,

which links mortality trends to trends in economic growth, and studies mortality

dynamics for six developed countries. The remainder of this introductory chapter

presents the main results and implications of each paper.

1.1 House price expectations

In chapter 2, we explore the relationship between house price expectations, local eco-

nomic conditions, and households' individual characteristics, based on survey data

collected between 2009 and 2014. We also estimate the individual- and time-speci�c

subjective probability distributions for �ve-year-ahead home values. There are sev-

eral interesting �ndings. First, at the state level, we �nd that recent movements

in local house prices are positively related to one-year expectations. Meanwhile,

people in areas that experienced the most severe housing bust have higher expec-

tations of future home value changes, especially for the long-run. These results

suggest that both short-term momentum and long-term mean reversion might play

a role in expectations. Second, house price expectations are procyclical. For ex-

ample, expectations react positively to decreases in state unemployment rates. In

addition, expectations are also positively related to individuals' personal economic

experiences, even when local economic conditions and unobserved individual e�ects
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are controlled for. Third, there is large variation in both the central tendency and

the uncertainty of expectations on future home values across individuals. In general,

males, higher income families, and higher educated individuals are more optimistic

than others. Forth, individuals are overoptimistic about future home values during

the recession period, at least ex ante.

1.2 Subjective Expectations in Stock Market

Chapter 3 studies how households' subjective stock return and uncertainty vary

across individuals, time, and forecast horizons, using survey data from 2009 to 2011.

Stock ownership is rather limited compared to home ownership. However, stock

ownership can be an important determinant of retirement wealth, which is gain-

ing increasing attention as households around the developed countries are bearing

more responsibility on saving for retirement. Understanding stock market expecta-

tions can help better understand and instruct households' portfolio choice decisions.

We �nd that although long-term expectations do not match short-term expecta-

tions through simple annualization, expectations at di�erent horizons share several

common features. First, stock market expectations distribute unevenly across di�er-

ent socio-economic and demographic groups. Males, wealthier people, people with

higher education levels, and people that follow the stock market on average report

much more optimistic expectations. Moreover, both short-term and long-term ex-

pectations are very persistent over time. This persistence is mainly explained by

an unobserved individual e�ect rather than expectations of the previous period.

This implies that some �xed individual traits are crucial to understand individu-

als' views about the stock market. Future studies can investigate in more details

why individuals hold rather �xed level of optimism or pessimism about future stock

prices.
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1.3 The Dynamics of Households' House Price Ex-

pectations

This chapter is also on house price expectations, as in chapter 2. However, we focus

on the dynamics of aggregate expectations instead of individual expectations at the

micro level. The study follows closely the macroeconomic literature on in�ation ex-

pectations. In particular, we test whether house price expectations can be explained

by the model in Carroll (2003), which states that individuals form macroeconomic

expectations by probabilistically absorbing the views of experts, which are spread

through the news media. We extend the model by including past home value changes

as an additional factor that might in�uence expectations of future house prices, to

capture momentum e�ects. Based on monthly expectation data from 2007 to 2014,

we �nd that experts' forecasts positively Granger-cause households' house price ex-

pectations, but not vice versa. This observation is consistent with the prediction by

Carroll's model (Carroll, 2003). Moveover, perceived home value changes are also

positively related to future expectations. Besides, high-educated people are more

active in absorbing experts' forecasts than low-educated people Above all, the em-

pirical �ndings partly support Carroll's model. Future research might incorporate

more unique features regarding the housing market into models on macroeconomic

expectations.

1.4 Trends in Mortality Decrease and Economic Growth

Chapter 4 studies a separate topic, which is forecasting mortality trends. On the

one hand, the literature on extrapolative stochastic mortality models mainly focuses

on the extrapolation of past mortality trends and summarizes the trends by one or

more latent factors. On the other hand, models in health economics literature are

often linking mortality dynamics with observable factors. In this paper we combine
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insights from the two streams of literature. We begin with a comprehensive analysis

on the relationship between the latent trend in mortality dynamics and the trend

in economic growth represented by GDP. Subsequently, we extend the Lee-Carter

model, a famous stochastic mortality model, by introducing GDP as an additional

factor next to the latent factor. Based on data from 1950 to 2007 of six OECD

countries, we show that our extended model can provide a better �t for future

mortality rates. Our model can also generate more interpretable scenarios about

future longevity based on the forecast of future economic growth.
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Chapter 2

House price expectations

[Based on joint work with Arthur van Soest.]

Abstract Utilizing new survey data collected between 2009 and 2014,

this chapter analyzes American households' subjective expectations on

future home values. We explore the relationship between house price ex-

pectations, local economic conditions, and households' individual char-

acteristics. We examine the heterogeneity in expectations based on

panel data models. In particular, we estimate the individual- and time-

speci�c subjective probability distributions for �ve-year-ahead home val-

ues. House price expectations vary signi�cantly over time, and are posi-

tively related to past housing returns and perceived economic conditions.

There is large variation in both the central tendency and the uncertainty

of expectations on future home values across individuals, which is asso-

ciated with several socio-economic and demographic factors. Comparing

expectations and realizations shows that households only partially an-

ticipated the large downward changes in home values in the time period

2009 � 2011.
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2.1 Introduction

Housing is the dominant component of wealth for many households, and the housing

sector is an important part of the economy. House price expectations are impor-

tant for the functioning of the housing market and for life cycle decision making

of consumers. Still, the literature on measurement and analysis of house price ex-

pectations is sparse. Little research has been done on how households vary in their

forecasts of price movements, partly due to lack of data. Notable exceptions are the

studies by Case and Shiller (Case & Shiller, 1988, Case & Shiller, 2003, and Case

et al., 2012), who conducted surveys of home buyers in four metropolitan areas in

the US in the year 1988 and annually from 2003 to 2012. However, still very little

is known about subjective house price expectations at a national level.

In this paper we analyze households' expectations on house prices elicited from

probabilistic questions in a national longitudinal survey from 2009 to 2014. We

study the distribution of expectations across individuals, and link subjective expec-

tations to local house price trends, state-level economic indicators, and individual

and household characteristics. Furthermore, we elicit the subjective distribution

of future home values for each individual at each point in time and analyze how

the central tendency and uncertainty of these distributions vary with household,

regional, and business cycle characteristics. Finally, we compare expectations with

subsequent realizations to examine how well individuals forecast their home values.

This study adds several empirical �ndings to the literature. At the state level,

we �nd a certain level of momentum in one-year house price expectations: Re-

cent changes in local house prices are positively related to expected changes in the

near future. At the same time, there is evidence of mean-reversion in expectations:

People in areas that experienced most dramatic house prices declines have higher

expectations of future home value changes, especially for the long-run. Movements

in general local economic conditions, measured by unemployment rates, are also

positively related to expected changes in future home values. In addition, people
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with higher education levels are more responsive to changes in local house prices and

unemployment rates than others, which is consistent with �ndings in the existing

literature that reactions to macroeconomic news are heterogeneous.

At the individual level, expectations are related to current home values and vary

across socio-economic groups. Males, higher income families and higher educated

individuals are in general more optimistic than others. These associations may also

re�ect correlations between some socio-economic variables and unobserved individ-

ual e�ects re�ecting optimism or pessimism. After controlling for individual �xed

e�ects to capture this, the characteristics that remain statistically and economically

signi�cant are related to perceptions of the personal �nancial situation, so-called

�economic sentiment�. In addition to the central tendency, we also �nd substantial

heterogeneity in the subjective uncertainty about �ve-year-ahead home values across

individuals and over time. In particular, female and younger respondents are more

uncertain about their future home values. Finally, in all speci�cations, persistent

unobserved individual e�ects account for around 50% of the unobserved variation

in house price expectations.

We also compare expectations of future home values to subsequent realizations.

Ex post, households appear to have been overoptimistic about future home values

at both one-year and �ve-year horizons during the �nancial crisis. This can be due

to irrational expectations or unanticipated macroeconomic shocks. For one year

expectations, macroeconomic shocks are less likely to be the only explanation as the

forecast errors were of the same sign in several consecutive years.

From a methodological point of view, our paper exploits the panel feature of

the data and controls for �xed unobserved individual e�ects. This is di�erent from

previous studies on subjective expectations which mainly focus on cross-sectional

data. Our panel data analysis is better in identifying and measuring the e�ects that

are related to changes in expectations over time for a given individual. Besides, we

use two methods to elicit the subjective distribution of future home values based
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on answers to probabilistic questions. The �rst method follows the line of thoughts

in Dominitz and Manski (1997b) and �ts a parametric distribution for each respon-

dent separately. The second approach follows Bellemare et al. (2012) and uses spline

interpolation to �t the subjective distribution non-parametrically, with weaker as-

sumptions on the shape of the distribution. Using two di�erent methods provides

more robust inference.

Our paper is related to several strands of the literature. First, measurement

and analysis of households' beliefs about future outcomes have attracted increasing

attention over recent years. The literature has produced a fair amount of empirical

�ndings on how expectations vary across individuals and over time. Examples are

studies on survival expectations (Hurd & McGarry, 1995), future income (Dominitz,

2001), work status (Stephens Jr, 2004), in�ation (Bruine de Bruin & Manski, 2011),

pensions and retirement ages (Bissonnette & Van Soest, 2012), retirement income

replacement rates (De Bresser & van Soest, 2013), and returns on �nancial assets

(Dominitz & Manski, 2007). See also Manski (2004) and Hurd (2009) for excellent

overviews. Particularly, household's subjective expectations on stock price have been

investigated extensively. While participation in the stock market is limited, housing

is widely owned and remains the most signi�cant component of non-human wealth

for most households. Still, the survey evidence on house price expectations is rare.

The studies by Case, Shiller, and Thompson referred to above (e.g. Case & Shiller,

1988, Case & Shiller, 2003, and Case et al., 2012), include only a limited number of

recent home buyers in selected geographic areas, while our study is representative of

the US population. Moreover, our study controls for local economic factors and a rich

set of respondent characteristics, as well as unobserved individual e�ects. Our paper

therefore substantially extends the existing literature on house price expectations.

Second, this article is also related to a line of research that analyzes the segmen-

tation in housing return and risk, especially along the dimensions of property values

and income. For example, Kiel and Carson (1990) and Pollakowski et al. (1991) �nd
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that both low- and high-value homes appreciate more rapidly than middle-value

homes do, whereas Seward et al. (1992) �nd that high-value homes have higher

appreciation rates only during booming periods. In terms of risk, Peng and Thi-

bodeau (2013) �nd that in the Denver metro area, house price risk is signi�cantly

higher for low-income households. While ex-post house price returns and risk have

been discussed in a number of papers, our paper provides empirical �ndings on the

heterogeneity in the ex-ante expected returns and risk along various dimensions.

Third, there has been a growing interest in understanding the formation of house

price expectations. It has been found that in many areas households hold extrapola-

tive expectations in the sense of believing that recent changes will continue in the

future, but only a few papers provide direct evidence on such extrapolative expecta-

tions in housing. Case and Shiller found that expectations of future home values are

higher for home buyers in periods and locations with larger house price increases, and

the authors conjectured that optimistic expectations are an important force behind

house price appreciations during booms (Case & Shiller, 1988 and Case & Shiller,

2003). Using the Michigan Survey of Consumers, Piazzesi and Schneider (2009) also

found that the proportion of individuals that expect rising house prices increased

along with actual prices during the recent boom. Our paper links expectations of fu-

ture home values to state-level house price changes in di�erent time periods, showing

that recent changes in local house prices are positively associated with short-term

expectations, but have very weak impact on long-term expectations. Moreover, we

�nd that people in places that experienced prolonged house price declines actually

have higher expectations of future home values. Apart from past house prices, we

also found that expectations are positively related to local economic conditions and

people's economic well-being, which indicates an association between house price

expectations and the business cycle.

Finally, although this is something we do not address directly, the importance of

housing as a component of household wealth implies that data on subjective house

10



price expectations have the potential to make a substantial contribution to our un-

derstanding of life-cycle decisions. A large literature has documented a substantial

impact of house prices on households' intertemporal choices, including, for example,

housing demand (Han, 2010), consumption allocation (Campbell & Cocco, 2007 and

Browning et al., 2013), portfolio choice (Cocco, 2004 and Yao, 2004), and fertility

choice (Lovenheim & Mumford, 2013). Most papers focus on the impacts of realized

house price changes. However, expectations of future values are likely to also play

an important role, if decisions are made in an intertemporal context. Miller et al.

(2011) �rst tested the impacts of expected future house price changes, proxied by

the changes in the volume of home sales , on economic production. They argue

that anticipated house price changes a�ect life time wealth, and thus have a simi-

lar economic impact as realized house price changes. Using subjective expectations

data avoids assumptions on how expectations are formed. A number of studies have

attempted to include subjective expectations data in the analysis of decisions under

uncertainty. For example, Delavande (2008) combine data on probabilistic expecta-

tions about the realizations of method-related outcomes with observed contraceptive

decisions to estimate a model of birth control choice; Armantier et al. (2013) �nd

that subjective in�ation expectations help explain individuals' investment choices;

Arcidiacono et al. (2012) estimate a model of students' college major choice that

incorporates their subjective expectations on future earnings; and Van der Klaauw

(2012) uses respondents' expected future occupation to estimate a structural dy-

namic model of teacher career decisions under uncertainty. Besides, the analysis of

housing wealth e�ects, or models of life-cycle decisions, might take into account the

�ndings in our paper that house price expectations comove strongly with perceptions

of economic conditions.

The remainder of the paper is organized as follows. Section 2 describes the

data and the survey questions used in our analysis. Section 3 provides descriptive

statistics. Section 4 describes the time patterns of expectations. Section 5 studies

11



the heterogeneity in house price expectations at di�erent horizons based on raw

probabilistic answers. Section 6 elicits and analyzes the subjective distribution of

�ve-year-ahead home values. Section 7 compares house price expectations with

subsequent realizations. Section 8 concludes.

2.2 Data

2.2.1 House price expectations

The data in this paper is mainly from the Rand American Life Panel (referred as

ALP hereafter), which is an ongoing online survey of more than 6,000 individuals

aged 18 and over.1 Respondents in ALP are invited to continue to participate in

the surveys even if they miss one or more interviews, resulting in an unbalanced

panel. In November 2008, ALP began to include a routinely distributed survey

entitled �E�ects of the Financial Crisis�. The �nancial crisis survey covers a broad

range of topics and provides rich background information for each participant. 2

Of particular relevance for this paper are the questions on subjective home value

expectations. For home owners, the survey asks expectations of the respondents'

own home values. For renters, the questions are about local or national house prices.

To maintain comparability, we restrict our analysis to home owners (more than 70%

of the sample). There are six questions on expectations of house prices in each wave.3

The �rst one asks the percent chance that home value increases by next year. We

label it as Pr(H1>100). Asking expectations in �percent chance� format is shown to

be a better way to elicit subjective probability distribution of an individual than, for

instance, point expectations (Manski, 2004).4 The other �ve are about expectations

1See https://mmicdata.rand.org/alp/index.php?page=main for details.
2See, for example, Hurd and Rohwedder (2011) for early work using this data.
3Detailed descriptions of the questions can be found in the appendix.
4After March 2011, the sample size was slightly reduced and a random sub-sample was not asked

the subjective questions in percentage form but in the �bins and balls� format. See Delavande and
Rohwedder (2008) for a discussion of eliciting subjective probabilities in di�erent formats. We do
not use there in the current paper.
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of the house price in �ve years. The second question asks the percent chance that

home value increases in �ve years (Pr(H5 > 100)). If Pr(H5 > 100) > 0, a third

question asks the probability that the home value increases by more than 10% in

�ve years (�Pr(H5>110)�). Similarly, if Pr(H5 > 110) > 0, a forth question asks the

chance that home value increases by more than 20% in �ve years (Pr(H5 > 120)).

And there are two questions about the chance that the home value decreases by

10% and more than 20% in �ve years (Pr(H5 < 90) and Pr(H5 < 80)). For

every question, if the respondent does not provide a value immediately, a follow-

up question asks for the best guess. The �rst three waves are quarterly. From

May 2009 the major part of the survey is implemented on a monthly basis, while

every three months a �long survey� with more detailed questions on housing and

spending is administered. As house price expectations and house values are mainly

asked quarterly, we draw on the 19 quarterly surveys from February 2009 to January

2014.5

2.2.2 State-level variables

It is documented in the literature that �nancial attitudes and expectations are af-

fected by personal experiences (Malmendier & Nagel, 2011 and Nagel, 2012). The

housing market is localized and spatially segmented. Local economic experiences

might be particular important in shaping people's expectations on housing. The

ALP provides the state of residence for each respondent, which enables us to link

subjective expectations to a number of state-level economic variables. While there

are potentially many local factors can a�ect people' expectations, considering that

we only have state-level variations, we select only a few salient ones based on the

literature.

Many empirical studies have found that future house price movements are in�u-

5There was no data on �ve-year house price expectations in the second quarter of 2009. Besides,
the sample size for the wave in the second quarter of 2013 is unusually small so we do not use data
from this wave.
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enced by past trends. We use the quarterly state-level house price index from the

O�ce of Federal Housing Enterprise Ovesight (OFHEO) to construct measures of

(quarterly) house price growth rates for each state during the sample period.6

Local economic conditions are also found to be correlated to actual house price

dynamics (Clapp & Giaccotto, 1994), and may have a direct impact on house price

expectations (Favara & Song, 2014). We therefore also link expectations to changes

in local unemployment rates. Monthly state level unemployment rates are obtained

from Bureau of Labor Statistics.7

Arizona, California, Florida, and Nevada, the four so-called sand states, are the

states which were most hurt in the recent real estate collapse. There has been

signi�cant academic and media coverage of the situation in the sand states since the

great recession. Expectations in these areas with severe house price cycles may have

distinct features. Accordingly, we construct a dummy variable which is one if the

respondent lives in one of these four states and zero otherwise.

2.2.3 Measures of individual sentiment

Research in psychology and behavioral economics indicates that economic expec-

tations are related to sentiment or mood (Kaplanski et al., 2013a). Motivated by

this observation, we exploit questions that re�ect individual sentiment in the survey

and examine whether they are related to house price expectations. There are four

questions on di�erent aspects of satisfaction: life satisfaction, job satisfaction, total

household income satisfaction, and economic situation satisfaction. Every question

has a �ve-point scale from �Very satis�ed� to �Very dissatis�ed�. We reverse the

answers so that higher values indicate higher levels of satisfaction. In addition, two

questions ask about the feelings during the past 30 days: �how much of the time have

you felt worn out?� and �how much of the time have you been a happy person?�.

6See http://www.fhfa.gov/Default.aspx?Page=14 for details of the HPI. We cannot use the
S&P/Case-Shiller Home Price Indices since they do not cover all states.

7http://www.bls.gov
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Both questions have answers on a six-point scale from �All of the time� to �None

of the time�. We label the former question �Wornout� and the latter �Happiness�.

Finally, one question asks the change in �nancial condition: �We are interested in

how people are getting along �nancially these days. Would you say that you are

better o� or worse o� �nancially than you were a year ago?�. Answers are mea-

sured on a scale from 1 (�better-o��) to 3 (�worse-o��). The variable �Better o�

�nancially� is constructed by reversing the scales so that higher scores correspond

to better �nancial conditions.

Based on the individual measures de�ned above, we construct two composite

measures of sentiment. The �rst one, �economic sentiment�, is related to individu-

als' perceptions of their economic well-being, and consists of job satisfaction, total

household income satisfaction, economic situation satisfaction and being better o�

�nancially. The second measure, �non-economic sentiment�, is composed of life sat-

isfaction, happiness, and wornout.8

2.2.4 Other individual-level variables

The ALP provides a large amount of individual background information. We select

a number of individual variables that, as suggested in previous studies, may be

related to subjective expectations in general, or may a�ect people's perceptions on

housing and the economy. We include age, gender, race, marital status, education,

family income, health, house value, and work status. The variable �Age� is based on

the birth month and year. �Female�, �White�, �Marriage�, and �Bachelor� are binary

variables corresponding to a respondent's gender, race, current marital situation,

and education level, respectively. Self-reported health status is measured on a 1 to

5 scale. We reverse the answers so that higher values indicate better health, and

label this variable �Health�. �Home value� is based on the self-reported house value.

8The procedure to construct a certain composite sentiment measure is as follows: First, we
divide the score of each individual measure by the maximum possible scale to make it bounded
between zero and one. Second, we average individual measures in the same group to make the
corresponding composite measure of sentiment.

15



We also include a group of binary variables that are related to the work status of

the respondent (�unemployed�, �retired�, and �disabled�).

The ALP measures annual family income on a categorical 14 point-scale from

below $5,000 to above $75,000. For those with income more than $75,000, a follow-up

question is asked on a 4-point scale, from $75,000-$99,999 to $200,000 or more. We

combine the answers to the two questions and select the mid-point of each interval

as our family income measure, with the maximum value of family income set to

$250,000. We then divide this �gure by the number of total household members and

label the constructed variable �Income per capita�.

2.3 Sample selection and descriptive statistics

We exclude observations with missing or inconsistent responses with regard to the

individual demographic characteristic variables.9 We also exclude observations with

missing values on all six subjective probability questions. In total, there are around

18,000 person-wave observations with non-missing values on at least one of the six

variables on house price expectations, and complete information on the individual

characteristics. To remove the impact of possible outliers, we drop observations with

the top one percent or bottom one percent self-reported home values. Finally, to

guarantee that house price expectations of the same household refer to the same

house, we drop the small proportion of home owners who have moved since four

months prior to the �rst wave of our data.10

One concern with subjective probability questions is the fraction of 50-50 re-

9A small number of individuals report di�erent genders or races across survey waves.
10We exclude people whose state of residence changed during the sample period. Besides, from

October 2011, in every wave the following question is asked: �Looking back over the period since
October 1st, 2008: Have you moved (i.e. changed primary residence) any time since October 1st,
2008?�. We drop the observation if the answer is �Yes�. In total, around 10% of observations are
dropped. We could not exclude those home owners who moved within state between 2009 and 2011
and who only participated in the surveys prior to October 2011. However, given that the annual
mobility rate of US home owners is around 0.03 (Head & Lloyd-Ellis, 2012) and that respondents
are continuously invited in ALP, the number of such respondents is probably not big enough to
a�ect our analysis.
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Table 2.1: Descriptive statistics for expectations and individual speci�c character-
istics

Variable Mean Std. Dev. Min. Max. N
Pr(H1>100) 38.22 28.94 0 100 18010
Pr(H5>100) 54.6 30.95 0 100 17993
Pr(H5>110) 42.71 29.76 0 100 17975
Pr(H5>120) 23.71 23.33 0 100 17942
Pr(H5<90) 19 19.64 0 100 17946
Pr(H5<80) 12.04 16.53 0 100 17919
Female 0.57 0.5 0 1 18021
Age 56.03 12.53 19.5 94.25 17756
White 0.93 0.25 0 1 18021
Married 0.74 0.44 0 1 18021
Home value ($1000) 234.64 205.21 0.2 1300 17845
Income per capita ($1000) 56.72 46.17 0.31 250 17970
Household size 1.83 1.2 1 11 18021
Bachelor 0.47 0.5 0 1 18021
Unemployed 0.04 0.2 0 1 18021
Retired 0.26 0.44 0 1 18021
Disabled 0.04 0.2 0 1 18021
Non-Eco Sentiment 0.68 0.17 0 1 18014
Eco Sentiment 0.57 0.21 0 1 17853

sponses. 50-50 responses might indicate co-called epistemic uncertainty, which is the

tendency to choose the middle of a scale as the answer if the question is not under-

stood. The fractions of 50-50 responses range between 6% and 21% in the six ques-

tions about house price expectations. Furthermore, for the question Pr(H1>100),

a follow-up question is asked after a 50-50 answer, where participants could choose

between `equally likely' and `unsure'. Almost 70% of the respondents chose `equally

likely'. Thus the fraction of epistemic uncertainty responses seems to be rather small

in our sample and we will not accord for epistemic uncertainty in the models that

we estimate.

Table 2.1 presents descriptive statistics for the house price expectations and in-

dividual characteristics in our main sample. The average subjective probability of

an increase in the home value over the next year is 38%, which is far below the

subjective probability of a gain in �ve years (55%). Besides, for �ve-year expecta-
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tions, the average subjective probability of an increase above a given threshold is

more than twice the probability of the corresponding decrease. The results imply

that people on average believe that the house price will increase in the long run, but

short-term expectations are more pessimistic. Given the combination of mean and

standard variation, disagreement (dispersion) in short-term expectations seems also

to be larger than its long-term counterpart. On average, subjective expectations are

consistent with the monotonicity of the cumulative distribution in both sides. As

we only include home owners, people in our sample are on average wealthier, older,

and have higher levels of education compared to the US population.

2.4 Time patterns of house price expectations

Before further analysis, it is instructive to examine the time patterns of house price

expectations during the sample period. To do so, we take at each wave the mean

values of house price expectations. To check whether the time pattern in ALP is

speci�c to this survey, we also examine average house price expectations in two other

surveys during the similar period. The monthly Michigan Survey of Consumers is

a nationally representative survey based on approximately 500 telephone interviews

with adult U.S. people. The sample has a rotating panel feature. The Michigan

survey began to ask the expected house price change over the next year in January

2007 and over the next �ve years in March 2007. The Fannie Mae National Housing

Survey is a monthly survey implemented by Fannie Mae from June 2010. Each

month approximately 1,000 telephone interviews with Americans of ages 18 and

older are conducted. Every time a di�erent sample is drawn by Random Digit

Dialing telephone sampling. The sample represents the general population of the

United States. This survey has a question on the expected percentage change in

the one-year ahead house price, very similar to the one in the Michigan Survey of

Consumers. Detailed wordings of the questions can be found in the appendix.
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Time series of house price expectations in di�erent surveys are plotted in �gure

2.1. Visual inspection shows that time patterns across surveys are very similar.

Moreover, expectations for di�erent horizons show di�erent time series properties:

long-term expectations are always higher than short-term expectations and are less

volatile along time. This feature is also manifested in di�erent surveys. To sum up,

expected one-year housing returns decreased dramatically during the �nancial crisis,

then rose temporally from 2009 to 2010, fell until late 2011, and began to recover

afterwards; expected �ve-year returns kept decreasing until late 2011, when a recov-

ery started. For expectations data of annual-frequency, the temporal increase (only)

in short-term house price expectations between 2009 and 2010 is also documented

in Case et al. (2012).

The increase in short-term expectations between 2009 and 2010 is found in di�er-

ent surveys, accompanied by a recovery in house prices (as shown in the Case-Shiller

20-City Home Price Index) and a growth in short-term economic con�dence.11 This

recovery stopped after 2010. Five-year expectations remained unchanged during this

period. Similarly, Case and Shiller found in their annual home buyers survey that

home buyers' expected one-year housing returns increased temporarily from 2009 to

2010, but expected ten-year returns did not (Case et al., 2012). They also found

that the �home buyer tax credit� created by the American Recovery and Reinvest-

ment Act in February 2009 was often mentioned as the event that the home buyers

thought changed the trend in home prices. The tax credit might lure home buyers

into the market, and, in combination with other stimulus programs at the beginning

of Obama's presidency (from January 20, 2009), created temporal optimism. This

optimism in housing market was short-lived however, perhaps because there were no

signi�cant changes in underlying fundamentals and long-term expectations. On the

other hand, the ongoing recovery of the housing market as well as the economy as a

whole since 2012 has been widely discussed in the media. Some people believe that

11The time patterns of short-term economic con�dence can be examined by looking at relevant
questions in the Michigan Survey of Consumers or the Gallup survey.
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the recent recovery in housing market is largely driven by the monetary stimulus of

the Federal Reserve, while others argue that it is due to the recovery of the economy

as a whole. The data in the ALP indicate a recovery in both short-run and long-run

expectations.

2.5 Heterogeneity in house price expectations: panel

data analysis on probabilistic answers

In this section, we use panel data models to examine the impact of various observable

factors on people's short-term and long-term house price expectations. We are

mainly interested in the e�ects of two groups of variables. The �rst group of variables

is related to the state where the respondent resides, as people's perception on housing

market may be shaped by their local economic experiences. The second group

includes individual demographic characteristics, which are found to be correlated to

subjective expectations of di�erent events.

There are six questions on house price expectations in the ALP, we index them

j = 1, 2, . . . , 6. Let pj,it denote the answer (percent chance) by individual i at time

t for question j. Let k denote the state of residence for individual i. Formally, the

speci�cation corresponding to question j is:

pj,i(k)t = z′k,tγj + x′itβj + τjDt + αi + εit (2.5.1)

where zk,t is a vector of state-level variables, xit is a group of individual-level vari-

ables, Dt is a time dummy, αi is an unobserved individual e�ect, and εit is an

idiosyncratic error term.

The state-level variables include an indicator of whether the state is one of the

sand states, the quarterly percentage change in the unemployment rater, and the
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quarterly percentage change in the house prices (HPI).12 Changes in unemployment

rates are based on data of the most recent three months before a wave, and changes

in the house prices are based on data of the most recent two quarters before a wave.

This guarantees that the state-level variables are publicly known before the survey

date. The individual variables include the ones summarized in Table 2.1. We take

the logarithm of some variables to mitigate the impact of outliers.

We use both Random E�ects (RE) and Fixed E�ects (FE) models to investigate

the relationship between expectations and observed factors. Although the assump-

tions on unobserved individual e�ects are stronger, RE models are still helpful to

show how expectations vary across di�erent socioeconomic groups. In addition,

time variations of many covariates are rather limited in high-frequency surveys,

which makes FE models less precise. However, as some of the variables might

capture unobserved individual e�ects in RE models, the coe�cients should be in-

terpreted with caution. On the other hand, FE models are able to control for any

time-invariant unobserved factors. Table 2.2 show the estimation results for the

questions Pr(H1 > 100) and Pr(H5 > 100).13

We start from examining the e�ects of state-level variables. Recent movements

in state-level economic conditions are signi�cantly related to one-year expectations

only. This indicates that long-term expectations are less a�ected by temporal eco-

nomic �uctuations. The e�ects of changes in unemployment rates are negative as

expected, but rather weak. In contrast, recent house price changes have stronger

e�ects. The standard deviation of the state HPI during this period is around 2.5,

thus a one standard deviation increase in the quarterly house price growth rate is

12The timing of the house price index values does not exactly match the timing of the ALP
survey. In estimating the quarterly HPI, all observations within a given quarter are pooled. No
distinction is made between transactions occurring in di�erent months within a given quarter. In
ALP, the surveys of house price expectations are taken mainly in the beginning of January, April,
July, and October. For the January survey, we calculate the most recent growth rates in house
prices as the percentage change between the index level in the third and fourth quarters of the
previous year. House price growth rates in other quarters are calculated in a similar way.

13To save space, we do not report estimation results for the �ve-year expectations concerning
the other thresholds, as the results are similar across the �ve �ve-year questions.
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followed by approximately a 1 percent point increase in the subjective probability of

a gain in one year. These results indicate a certain level momentum e�ect in short-

run house price expectations. At the same time, during the sample period people in

sand states on average have higher expectations of future changes in house prices,

especially for the long-run. Those people might judge that current house prices are

too far below the fundamentals and will recovery in the end. �Momentum� and

�mean-reversion� in expectations might coexist if people tend to extrapolate recent

house price growth rates for short-term forecast horizons, while rely more on the

gap between prices and fundamentals for long-run forecasts. Our empirical results

are roughly consistent with this conjecture.

We now turn to the e�ects of individual-level variables. The e�ects of individual

characteristics vary between expectations at di�erent horizons, but there are some

common patterns. People living in houses with higher values are more optimistic

about changes in future house prices. Females tend to report lower changes of in-

creases in future home values. For example, the probability that the house price

will increase in one year is more than 5 percent points higher for males then for

females. This is consistent with the empirical �ndings that men are more optimistic

than women in a broad range of domains (Jacobsen et al., 2014). High income indi-

viduals, as well as people with higher level of educations, are also more optimistic.

This is in line with �ndings in a number of subjective �nancial expectations. See,

for example, Dominitz and Manski (2004) and Hurd et al. (2011a). Many of the

socio-economics variables are insigni�cant in the �xed e�ect speci�cations, suggest-

ing that they actually capture unobserved heterogeneity rather than causal e�ects.

One exception is household income, which is strongly positive and signi�cant in both

RE and FE models. While both non-economic sentiment and economic sentiment

are positively related to expectations under the RE speci�cation, only economic

sentiment is signi�cant in the FE speci�cation. The magnitudes of sentiment mea-

sures are also economically signi�cant. It seems that the economic sentiment index
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Figure 2.2: Time dummy coe�cients from FE speci�cations in table 2.2

re�ects more than merely a mood e�ect.

The estimate of ρ in the bottom row of the table shows that there is substantial

unobserved heterogeneity, in spite of the large number of variables that are controlled

for. Around 50% of the overall unexplained variation in the subjective probabilities

are captured by unobserved individual e�ects.

Time dummies are included for all speci�cations and are jointly signi�cant in all

cases.14 In the models we already control for local economic conditions and economic

sentiment, which are expected to capture the impact of general economic conditions.

Thus, shocks more speci�c to the housing market seem to play a role. Figure 2.2

plots the coe�cients of time dummy variables for the FE speci�cations in table 2.2.

The time patterns of expectations based on the regression results are similar to the

ones using raw data shown in �gure 2.1.

To test whether there is heterogeneity in the response to local economic condi-

tions, table 2.3 adds an interaction terms between local economic conditions and

an indicator for having bachelor degree.15 There is indeed a stronger relationship

14Many of the time dummies are highly signi�cant individually as well. Results are not reported
in the main text but are available on request.

15Other covariates are the same as in table 2.2 and corresponding coe�cients are not reported.
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Table 2.2: Heterogeneity in house price expectations: probabilistic answers

Pr(H1>100) Pr(H5>100)
RE FE RE FE

Sand states 2.687* 5.315**
(1.126) (1.289)

Change in unemployment -4.935+ -4.787+ 3.022 2.802
(2.602) (2.666) (2.153) (2.167)

Change in house prices 0.369* 0.373* 0.061 0.094
(0.154) (0.155) (0.117) (0.115)

Age -0.281** -0.289**
(0.035) (0.046)

Female -5.633** -8.575**
(0.995) (1.182)

White -2.039 0.547
(1.512) (1.560)

Log home value 0.538* 0.158 0.718** 0.260
(0.252) (0.259) (0.251) (0.265)

Log income per capita 2.838** 2.232* 4.913** 2.657*
(0.675) (1.020) (0.776) (1.007)

Household size 0.603+ 0.709 1.543** 0.986
(0.312) (0.620) (0.384) (0.659)

Bachelor 3.941** 0.410 8.065** -5.197
(1.092) (4.077) (1.104) (4.227)

Married -0.373 -1.004 -0.095 -1.477
(1.019) (1.982) (1.229) (2.602)

Unemployed 2.125+ 1.955 1.700 1.584
(1.282) (1.483) (1.125) (1.302)

Retired 0.056 -0.184 1.433 0.767
(0.873) (0.998) (0.971) (1.130)

Disabled -0.452 -1.628 1.112 1.682
(1.508) (1.336) (1.356) (1.486)

Health 0.187 0.215 0.184 -0.308
(0.405) (0.483) (0.416) (0.501)

Non-Eco Sentiment 4.840* 2.841 5.375** 4.279*
(2.317) (2.566) (1.733) (1.654)

Eco Sentiment 9.864** 8.390** 8.602** 7.489**
(1.815) (2.171) (1.429) (1.689)

Constant 29.097** 17.066** 39.596** 42.512**
(4.149) (4.806) (4.390) (5.071)

Num.Obs 17455 17455 17445 17445
Num.Ind 2029 2029 2029 2029

ρ 0.451 0.524 0.551 0.640
Rej Time dummies = 0 ? Yes** Yes** Yes** Yes**

Constant term and time dummies are included. Standard errors are clustered at the state level.
ρ is the fraction of the unsystematic variation due to unobserved heterogeneity. `Num.Obs ' is
the sample size. `Num.Ind ' is the number of individuals. Statistical signi�cance is indicated as
follows: + p<0.10, * p<0.05, ** p<0.01. 25



Table 2.3: Education level and response to local economic indicators

Pr(H1>100) Pr(H5>100)
RE FE RE FE

Change in unemployment -1.159 -0.924 4.794+ 4.842+
(2.852) (2.965) (2.461) (2.482)

× Bachelor -9.086** -9.289** -4.358 -5.004
(2.882) (3.006) (2.982) (3.004)

Change in house prices 0.237 0.241 -0.045 -0.022
(0.150) (0.150) (0.142) (0.143)

× Bachelor 0.288+ 0.289 0.229+ 0.250+
(0.169) (0.175) (0.124) (0.127)

Constant term and time dummies are included. Standard errors are clustered at the state level.
ρ is the fraction of the unsystematic variation due to unobserved heterogeneity. `Num.Obs ' is
the sample size. `Num.Ind ' is the number of individuals. Statistical signi�cance is indicated as
follows: + p<0.10, * p<0.05, ** p<0.01.

between local economic conditions and one-year house price expectations for people

with bachelor degrees. Only college graduates revise their expectations of home

value changes upward in response to a decrease in the unemployment rates. Expec-

tations in both the short-run and the long-run are also more responsive to recent

movements of local house prices for people with a bachelor degree.

2.6 Modeling subjective distribution of �ve-year house

price expectations

In this section we elicit the subjective probability distributions of future home values,

Fi,t(ξ) = Pri,t(Z ≤ ξ), of a respondent i at time t. Our inference is based on the

answers to J probability questions of the type �what is the percent chance that Z

is less (more) than or equal to ξj?�, where ξj-s are the threshold values. As there

is only one question about one-year expectations, we constrain our analysis to the

�ve probabilistic beliefs about �ve-year changes. For these data we have J = 5 and

(ξ1, . . . , ξ5) = (0.8, 0.9, 1, 1.1, 1.2); see Section 2.1.

With some additional assumptions, the answers to the probability questions can
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be used to elicit the subjective distribution of each respondent at each time period.

We use two approaches for this. The �rst follows Dominitz and Manski (1997b) and

assumes that the subjective distributions all belong to the same parametric family,

that of lognormal distributions. The second approach, avoiding this parametric

assumption, is the �exible approach developed by Bellemare et al. (2012), based on

cubic spline interpolation to get the subjective cumulative densities.

2.6.1 Modeling

The parametric approach

Following Dominitz and Manski (1997b), we assume that an individual answers the

probabilistic question on future house prices according to a lognormal distribution,

with individual- and time- speci�c mean and variance. The log-normality assump-

tion is roughly consistent to observed house price dynamics and is used in many

papers (e.g. Li & Yao, 2007).

Formally, denote hi,t the house price of individual i at time t, we assume that

the subjective distribution of hi,t+5 held by respondent i in year t is given by:

ln

(
hi,t+5

hi,t

)
= µi,t + σi,tui,t (2.6.1)

where µi,t is the subjective expectation of the �ve years log housing return, σi,t is

the subjective standard deviation, and the ui,t are independent standard normally

distributed error terms.

At time t the survey asks the probability that the home value of individual i

will increase or decrease by a certain percentage over the �ve years, which gives the

subjective probabilities that

hi,t+5

hi,t
< ξj (2.6.2)
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where j = 1, . . . , 5 and ξj = 0.8, 0.9, 1.0, 1.1, 1.2.

According to our model, the corresponding probabilities are

Prit

(
hi,t+5

hi,t
< ξj

)
= Prit

(
ln
hi,t+5

hi,t
< ln ξj

)
= Prit (µi,t + zi,t < ln ξj)

= Φ

(
ln ξj − µit

σit

)
(2.6.3)

Denoting the answer of individual i at time t to the probabilistic question with

threshold ξj by pjit, we �t the subjective distribution for each respondent in each

wave by nonlinear least squares:

Minimize
µit,σit

5∑
j=1

(
pjit − Φ

(
ln ξj − µit

σit

))2

(2.6.4)

The �exible approach

Individual i at time t answers J probability questions, giving J points of the sub-

jective distribution function Fi,t(z), (z1, Fi,t(z1)), . . . , (zJ , Fi,t(zJ)). We can approxi-

mate the complete function Fi,t using cubic spline interpolation. To be speci�c, we

assume that the function Fi,t(z) is given by a polynomial aj + bjz + cjz
2 + djz

3 on

the interval [zj−1, zj].

The objective is to estimate the 4(J−1) interval speci�c polynomial coe�cients in

the set (ai, bi, ci, di) : j = 1, . . . J − 1. The estimation is based on 4(J −1) equations

implied by three groups of restrictions:16

1. The distribution function is continuous on its support.

2. The �rst and second derivatives of Fi,t(·) are continuous at the interior thresh-

olds.

3. The boundary conditions: F ′′i,t(z1) = F ′′i,t(zJ) = 0.

16See Bellemare et al. (2012) for details.
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2.6.2 Heterogeneity in subjective distributions of future house

prices

To maintain comparability, we exclude a small number of observations (115, less

than 1%) in each wave who answered "don't know" to at least one of the �ve long-

term expectation questions. We also exclude observations with �50 percent chance�

answers to all �ve questions. Finally, as some inconsistent probability answers re-

sult in implausible distributions (e.g. negative second moment), we add lower and

upper bounds to the change in house prices, following the spirit in Bresser and

van Soest (2013). Speci�cally, we assume that the subjective probability of a more

than 90 percent decrease in �ve years is always zero (Pr(H5<10)=0) and that the

subjective probability that prices increase by more than 150 percent is also zero

(Pr(H5<250)=1).17

Table 2.4 shows the estimation results of a model with the same right hand side

variables as (2.5.1) and with the elicited subjective median as the dependent variable.

The results based on the parametric and �exible approaches are similar, and in line

with the results using raw probabilistic answers. Living in one of the sand states is

associated with a higher subjective median of the future house price change. Recent

changes in state-level economic conditions are not much related to long-run expec-

tations. Turning to the individual-level variables, we �nd that male and younger

respondents and those with higher self-reported home values, higher income, higher

education level, or more optimistic perceptions on personal �nancial conditions have

higher subjective medians of the �ve-year house price change in the RE speci�ca-

tions. In the FE speci�cations, only the coe�cients of economic sentiment variables

remain strongly signi�cant. Finally, time dummies are highly signi�cant under all

17The bounds are based on historical distributions of �ve-year house price returns and house
price depreciation rates: Five-year nominal housing net returns are in the range [−55%, 150%]
based on quarterly state-level house price index values from 1975 to 2013, and in�ation adjusted
net returns are in the range [−60%, 110%]. We can also take into account the depreciation rate
for housing, which can be assumed to be 0.05 annually, as in Iacoviello and Pavan (2013). In any
case, the interval [10%, 250%] seems to be a reasonably conservative support for the subjective raw
returns.
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speci�cations, suggesting a strong in�uence of nation-wide shocks.

Table 2.5 shows how the subjective interquartile range(IQR), a measure of un-

certainty, of the estimated subjective distribution, is related to the same set of

explanatory variables. People in the sand states, having experienced dramatic de-

clines in house prices, seem to feel more uncertain about the future house price

development. Moreover, females, the elderly, and less educated people have higher

uncertainty, which is similar to the �ndings of subjective uncertainty in stock market

expectations (Hurd et al., 2011a and Hudomiet et al., 2011). Finally, the joint sig-

ni�cance of the time dummies indicates that subjective uncertainty is also a�ected

by nationwide shocks.

2.7 House price expectations and reported realiza-

tions

In this section, we compare expected home value changes with subsequent changes

in self-reported home values over the same time-period, which may be interpreted

as �realizations,� where we use quotes because it should be noted that these self-

reported home values are not necessarily identical to objective market values. Still,

this comparison is worthwhile to get more insight in the nature of the subjective

house price expectations. First, previous studies found that time patterns of self-

reported home values and of transaction prices are quite similar (DiPasquale &

Somerville, 1995). This is particularly relevant since our analysis focuses on changes

rather than levels. Second, perceived house price changes can be more relevant

than objective changes if households make decisions based on perceived rather than

objective housing wealth. Lastly, self-reported home values are widely used in the

literature to measure housing wealth and are the only measure available at the

individual level in many cases. Out of the 19 quarterly waves, we can match 15

waves of expectations with corresponding �realizations� of home value changes in
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Table 2.4: Heterogeneity in house price expectations: elicited median

Parametric approach Flexible approach
RE FE RE FE

Sand states 0.031** 0.043**
(0.007) (0.009)

Change in unemployment 0.001 -0.000 -0.004 -0.005
(0.013) (0.013) (0.018) (0.019)

Change in house prices 0.000 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Age -0.001** -0.001**
(0.000) (0.000)

Female -0.019** -0.010+
(0.005) (0.006)

White 0.000 -0.012
(0.009) (0.011)

Log home value 0.002 -0.001 0.001 -0.002
(0.001) (0.001) (0.001) (0.002)

Log income per capita 0.015** 0.006 0.013** 0.002
(0.003) (0.005) (0.005) (0.008)

Household size 0.002 -0.002 0.002 -0.000
(0.002) (0.003) (0.003) (0.004)

Bachelor 0.029** -0.027 0.020** -0.042
(0.003) (0.027) (0.005) (0.039)

Married 0.001 -0.008 0.005 -0.011
(0.005) (0.010) (0.006) (0.010)

Unemployed 0.006 0.004 0.008 0.004
(0.005) (0.007) (0.007) (0.010)

Retired 0.004 0.001 0.008 0.006
(0.005) (0.005) (0.006) (0.007)

Disabled 0.014 0.016 0.023 0.016
(0.009) (0.012) (0.016) (0.020)

Health -0.000 -0.003 0.003 0.003
(0.002) (0.003) (0.003) (0.004)

Non-Eco Sentiment 0.015 0.003 0.019 0.008
(0.011) (0.010) (0.015) (0.016)

Eco Sentiment 0.043** 0.041** 0.037** 0.042**
(0.007) (0.008) (0.011) (0.012)

Constant 1.019** 1.079** 1.081** 1.128**
(0.018) (0.025) (0.032) (0.048)

Num.Obs 16774 16774 16774 16774
Num.Ind 2017 2017 2017 2017

ρ 0.478 0.570 0.402 0.496
Rej Time dummies = 0 ? Yes** Yes** Yes** Yes**

Constant term and time dummies are included. Standard errors are clustered at the state level.
ρ is the fraction of the unsystematic variation due to unobserved heterogeneity. `Num.Obs ' is
the sample size. `Num.Ind ' is the number of individuals. Statistical signi�cance is indicated as
follows: + p<0.10, * p<0.05, ** p<0.01. 31



Table 2.5: Heterogeneity in house price expectations: elicited IQR

Parametric approach Flexible approach
RE FE RE FE

Sand states 0.039** 0.034**
(0.009) (0.013)

Change in unemployment -0.033 -0.029 -0.069* -0.061+
(0.026) (0.027) (0.033) (0.034)

Change in house prices 0.000 0.000 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Age -0.002** -0.002**
(0.000) (0.001)

Female 0.019* 0.034**
(0.009) (0.009)

White -0.017 -0.028*
(0.014) (0.013)

Log home value 0.001 -0.000 -0.004* -0.005*
(0.002) (0.002) (0.002) (0.002)

Log income per capita -0.000 -0.004 -0.008 0.001
(0.007) (0.010) (0.007) (0.011)

Household size 0.002 -0.001 0.001 0.009
(0.004) (0.006) (0.005) (0.007)

Bachelor -0.009 0.042 -0.021* 0.066
(0.006) (0.051) (0.010) (0.072)

Married 0.016+ 0.019 0.014 0.009
(0.009) (0.016) (0.010) (0.020)

Unemployed 0.023+ 0.016 0.009 0.001
(0.013) (0.012) (0.012) (0.014)

Retired 0.003 0.013 0.001 0.011
(0.009) (0.009) (0.008) (0.010)

Disabled 0.023 0.038* 0.036+ 0.033
(0.015) (0.019) (0.022) (0.030)

Health -0.001 0.002 0.001 0.007
(0.003) (0.004) (0.005) (0.007)

Non-Eco Sentiment -0.001 0.003 -0.011 -0.005
(0.017) (0.018) (0.020) (0.023)

Eco Sentiment 0.006 0.019 0.016 0.027
(0.014) (0.015) (0.019) (0.021)

Constant 0.365** 0.240** 0.492** 0.269**
(0.042) (0.054) (0.054) (0.069)

Num.Obs 16769 16769 16769 16769
Num.Ind 2017 2017 2017 2017

ρ 0.417 0.494 0.351 0.449
Rej Time dummies = 0 ? Yes** Yes** Yes** Yes**

Constant term and time dummies are included. Standard errors are clustered at the state level.
ρ is the fraction of the unsystematic variation due to unobserved heterogeneity. `Num.Obs ' is
the sample size. `Num.Ind ' is the number of individuals. Statistical signi�cance is indicated as
follows: + p<0.10, * p<0.05, ** p<0.01. 32



one year, and one wave with �realizations� of home value changes in �ve years.

2.7.1 Comparing expectations and �realizations� using raw

probabilistic answers

If the unpredictable part of the realizations of future home values are independent

across respondents (implying the absence of aggregate shocks), then under rational

expectations, the average subjective probabilities should closely resemble the corre-

sponding fractions of �realizations�.18 Figure 2.3 plots the di�erences between the

average subjective probabilities that home values will increase over the next year

and the (corresponding) fraction of respondents whose self-reported home value

has increased over the same time period. The �gure shows that expectations were

consistently more positive than realizations during and shortly after the recession

period, and converged in more recent waves. In the period 2009-2011, subjective

expectations were much better than the corresponding realizations. For example,

in January 2010 the average subjective probability of a gain in home value over

the next year is 40%, but the reported home value one year later was larger than

the home value reported in January 2010 for only 25 percent of the sample. This

implies that ex post, respondents were too optimistic in January 2010. Perhaps they

did not have rational expectations, but it could also be that a nation-wide shock

that could not be anticipated reduced home values. We do not fully disentangle

these two explanations for the di�erence. However, even if negative shocks might

be correlated during a recession, rational expectations should have taken this into

account. The fact that the di�erence has the same sign in several consecutive years

suggests the former explanation (non-rational expectations) is more likely than the

latter (several unanticipated negative shocks in a row). Besides, a Newey-West test

controlling for serial correlations up to one year rejects the null that the systematic

18In a similar way, Dominitz and Manski (1997a) and Manski (2004) compare expectations and
realizations of health insurance, burglary, and job loss, though they use repeated cross-sectional
data with one wave of realizations only.
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Figure 2.3: One-year house price expectations and �realizations�

Table 2.6: Five-year expectations in Feb 2009 and �realizations� in Jan 2014

Average subjective probabilities in 2009 Realized fractions in 2014
Pr(H5>100) 0.58 0.39
Pr(H5>110) 0.50 0.24
Pr(H5>120) 0.29 0.14
Pr(H5<90) 0.18 0.30
Pr(H5<80) 0.11 0.18

part of the di�erence is zero.

Table 2.6 compares expectations and �realizations� over the �ve year period Jan-

uary 2009 - January 2014. It shows that the average subjective probabilities that

home values in �ve years will increase, increase by more than 10%, increase by more

than 20%, decrease by less than 10%, or decrease by less than 20%, are all much

larger than the corresponding realized fractions of respondents reporting an increase

in the value of their home, an increase by more than 10%, etc. Again, this suggests

that realizations over the complete �ve year-period were worse than expected. Many

people did not anticipate the negative in�uence of the crisis on the values of their

home.

The above results imply that households are in general too optimistic about
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changes in future home values during and shortly after the �nancial crisis. While

it is di�cult to pin down the exact reasons behind this overoptimism, we note that

similar patterns are found in pervious works concerning other �nancial expectations

of households. For example, Souleles (2004) found that individuals in the Michigan

survey were repeatedly negatively surprised by recessions, in the sense that realiza-

tions of �nancial position, business condition, and income were systematically worse

than expected around recessions.

2.7.2 Comparing expectations and �realizations� using elicited

distributions

We can further investigate the relationship between expectations and realizations by

using the entire subjective probability distribution of �ve-year expectations, along

the lines of thought in Dominitz (1998) who examined earnings expectations and

realizations. Around 1500 individuals reported home values and �ve-year house

price expectations in February 2009. We base our analysis on the 653 among these

who also reported home values in January 2014.

To obtain Table 2.7, we use the estimated 0.25, 0.50 and 0.75 quantiles of each

respondent's subjective distribution, using the parametric as well as the �exible

estimator from Section 2.6. We then compute for how many respondents the �real-

ized� changes in the reported home values are below each given quantile. Under the

joint hypothesis that expectations are rational, that there are no common shocks,

and that the sample for which we can do these calculations is not selective with

respect to expectations or reported realizations, approximately 25% of the respon-

dents should have a �realization� below their subjective 25% quantile, approximately

50% should have a �realization� below their subjective median, and approximately

75% should have a �realization� below their 75% quantile. The numbers in the table

show that this is not the case, particularly for the 0.25 quantile. About half of the

respondents report an increase in home value below their subjective 25% quantile,
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suggesting that many respondents underestimated the chances of a negative out-

come, that is, a substantial decrease of the value of their home over the �ve years

period. On the other hand, the fractions of people with a realized change below their

subjective 0.75 quantile is close to 75%, suggesting that the respondents anticipated

the possibilities of home value increases much better. The results for the median

are in between. Assuming that the underlying distribution is Bernoulli, Wald tests

also reject the null that the calculated probabilities are not signi�cantly di�erent

from the corresponding subjective quantile (0.25, 0.5, or 0.75). Overall, the results

con�rm that ex post, the majority of the respondents were over-optimistic, in line

with what we saw in the previous subsection. As explained before, this may be due

to non-rational expectations or to common shocks that could not be anticipated.

To see whether the performance of expectations varies across socio-economic

groups, the �nal columns of the table present the same fractions separately for the

subsamples of lower and higher educated respondents, as Dominitz (1998) did for

earnings expectations. The outcomes for the two groups are actually very similar.

Assuming that the probabilities for the high educated and the low educated people

come from two independent Bernoulli distributions, they are not statistically dif-

ferent from each other based on Wald tests. In the previous section we saw that

the higher educated have higher subjective medians (the random e�ects estimates

in Table 2.4). The results in Table 2.7 show that this di�erence is re�ected in the

�realized� �ve-year changes so that ex post, both groups have been equally over-

optimistic.19

Figure 2.4 plots the same fractions of respondents whose realized change exceeds

their subjective quantiles, but now as a function of the respondents' subjective

median home value in 2009, using nonparametric kernel regressions. Again, if people

have rational expectations and there are no macroeconomic shocks, we would expect

the curves to be roughly constant at 0.25, 0.5, and 0.75, respectively. In contrast,

19We have also experimented with separating people by gender and found no signi�cant di�er-
ence.
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Table 2.7: Probability that home values in 2014 (Pr(HV2014) do not exceed selected
subjective quantiles (qα)

Subjective Quantile qα Pr(HV2014 ≤ qα)
all No Bachelor Bachelor

Parametric Flexible Parametric Flexible Parametric Flexible
0.25 0.48 0.52 0.49 0.52 0.48 0.53
0.50 0.67 0.71 0.66 0.69 0.68 0.73
0.75 0.78 0.80 0.77 0.78 0.80 0.82

Statistical signi�cance is indicated as follows: + p<0.10, * p<0.05, ** p<0.01.

the estimated conditional probabilities are almost always above the corresponding

values, particularly for the 0.25 quantile. This is in line with what we saw in Table

2.7 and suggests that the respondents did not correctly anticipate the downward

home value risk over the �ve-year period. The �gure shows that this applies to all

groups, irrespective of the anticipated value of their homes in 2014, although the

problem is somewhat smaller for owners of houses with very low or very high value

than for the intermediate group.

2.8 Conclusion

In this paper we have studied the expectations of US home owners of future changes

in the values of their homes. The analysis was based on survey data that directly

measure expectations. Our study contributes a number of empirical �ndings to the

literature on subjective expectations in general and on house price expectations in

particular.

We have documented a certain level of momentum in short-run house price ex-

pectations, but not in the long-run expectations. The long-run expectations seem

to be characterized by mean-reversion e�ects, in that people living in sand states

are particularly optimistic about �ve-year ahead home values. Our sample period

however covers mainly the bust period. Using data over a longer period, Case et al.

(2012) observed that home buyers are more optimistic about long-term house price

changes than one-year changes in early 2000s. The mean-reversion e�ect seems to
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Figure 2.4: Conditional probability that self-reported home values in 2014 (HV) do
not exceed 0.25, 0.50, and 0.75 subjective quantiles in 2009
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be absent during the boom period. Combing their �ndings with ours suggests some

kind of asymmetry in expectations between the boom and the bust periods. Several

facts might be related to these phenomena. Some studies found that house prices

show downward rigidity during periods of decline (Gao et al., 2009). It might be

the case that house price expectations also have downward rigidity: people are less

likely to extrapolate downward trends during price decline than they extrapolate up-

ward trends during price increase. Many people may believe that housing is a good

investment in the long run. Alternatively, households might learned a more compre-

hensive picture of the house price dynamics after the bust and began to realize the

potential mean-reversion. This is consistent with the �ndings in the lab experiment

in Beshears et al. (2013), that for a process featured by short-run momentum and

long-run mean reversion, individuals are more likely to realize the existence of mean

reversion if the mean reversion dynamics unfold faster. Although these conjectures

are interesting, we leave the detailed mechanism behind for future research.

Our �ndings show that house price expectations are strongly procyclical. At

the state level, expectations and unemployment rates move oppositely. At the indi-

vidual level, expectations comove with people's individual economic situations and

economic sentiment, even when unobserved individual e�ects, nationwide shocks,

and local economic conditions are controlled for. This indicates that economic ex-

pectations are in�uenced by personal economic experiences, as emphasized in Nagel

(2012).

There is substantial heterogeneity across socio-economic groups in terms of both

the central tendency and the uncertainty of subjective distributions of house price

changes. The heterogeneity may represent the segmented nature of the housing

market and the heterogeneity in outlooks of the economy, which deserves further

studies. Besides, studies on wealth distributions might also take into account this

heterogeneity, as expected changes in asset prices are related to perceived future

wealth levels and housing is the dominant asset for most households.
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Finally, future theoretical and empirical work may also try to set up a more struc-

tural model that explains expectations and �ts the data, and may investigate how

house price expectations can a�ect households' decisions on, for example, mortgage

borrowing and consumption.
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Appendix

2.9 Questions on house price expectations

2.9.1 Rand American Life Panel

If the respondent owns the home in which he lives (answer �yes" to the home own-

ership question) and is willing to have probability questions, then the following

questions are asked in sequence:

Pr(H1>100):

On a scale from 0 percent to 100 percent where 0 means that you think

there is no chance and 100 means that you think the event is absolutely

sure to happen, what do you think are the chances that by next year at

this time your home will be worth more than it is today?

Pr(H5>100):

What are the chances that over the next 5 years your home will be worth

more than it is today.

Pr(H5>110)(If Pr(H5>100)>0):

What are the chances that 5 years from now the value of your home will

have gone up by more than 10 percent?

Pr(H5>120)(If Pr(H5>110)>0) :

What are the chances that 5 years from now the value of your home will

have gone down by more than 20 percent?

Pr(H5<90)(If Pr(H5>100)<100):

What are the chances that 5 years from now the value of your home will

have gone up by more than 10 percent?
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Pr(H5<80)(If Pr(H5>90)<100) :

What are the chances that 5 years from now the value of your home will

have gone down by more than 20 percent?

2.9.2 Michigan Survey of Consumers

From January 2007, the survey started to ask expected percentage chance in house

prices. The question on one-year expectation reads:

[Michigan one year] By about what percent do you expect prices of

homes like yours in your community to go (up/down), on average, over

the next 12 months?

The question on �ve-year expectation reads:

[Michigan �ve year] By about what percent per year do you ex-

pect prices of homes like yours in your community to go (up/down), on

average, over the next 5 years or so?

2.9.3 The Fannie Mae National Housing Survey

This survey has a question on the expected percentage change in house prices, very

similar to the one in the Michigan Survey of Consumers, which reads:

[Fannie Mae one year] By about what percent do you think home

prices in general will go (up/down) on the average over the next 12

months?

2.10 Determinants of home value changes

As self-reported home values of the respondents are observed, we can also study

how home value changes are related to local economic conditions and socio-economic
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characteristics of the individuals. To be speci�c, we construct a dummy variable,

which is one if the self-report home value of the individual increase after one year

and zero otherwise. We take this dummy variable as the dependent variable in a

Logit panel data model and include the same group of regressors as in model (2.5.1).

Table 2.8 shows the estimation results. The sample size reduces as the panel is not

balanced and not every individual's self-reported home value in one year can be

tracked. Changes in local house prices are positively related to future changes in

self-reported home values, although the coe�cient under the FE speci�cation is not

statistically signi�cant. Home values of individuals with higher income and higher

education levels are more likely to increase. In contrast, people with higher self-

reported values at the current period are less likely to report an increase in home

values one year later. This could be expected if there are transitory measurement

errors in the self-reported home values.
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Table 2.8: Logit panel data model: home value increases in one year

RE FE
Sand states 0.117

(0.088)
Change in unemployment 0.200 0.044

(0.379) (0.414)
Change in house prices 0.032* 0.024

(0.015) (0.016)
Age 0.001

(0.003)
Female 0.033

(0.064)
White 0.060

(0.129)
Log home value -0.534** -2.311**

(0.029) (0.161)
Log income per capita 0.359** 0.054

(0.053) (0.127)
Household size 0.181** -0.108

(0.036) (0.085)
Bachelor 0.286** 0.573

(0.067) (0.719)
Marriage 0.102 -0.255

(0.076) (0.243)
Unemployed 0.073 -0.112

(0.132) (0.180)
Retired 0.086 0.076

(0.081) (0.131)
Disabled -0.016 0.335

(0.160) (0.328)
Health 0.016 0.001

(0.039) (0.065)
Non-Eco Sentiment -0.392+ -0.560+

(0.212) (0.301)
Eco Sentiment 0.139 0.249

(0.166) (0.250)
Constant 0.324

(0.366)
Num.Obs 12100 10150
Num.Ind 1728 1144

ρ 0.147

Constant term and time dummies are included. Standard errors are clustered at the state level.
ρ is the fraction of the unsystematic variation due to unobserved heterogeneity. `Num.Obs ' is
the sample size. `Num.Ind ' is the number of individuals. Statistical signi�cance is indicated as
follows: + p<0.10, * p<0.05, ** p<0.01.

44



Chapter 3

Subjective Expectations in Stock

Market

[Based on joint work with Bertrand Melenberg.]

Abstract Using high-frequency survey data, this chapter investigates

how households' expected stock return and volatility vary across indi-

viduals, time, and forecast horizons. Long-term expectations seem to

be more optimistic than short-term expectations. Both short-term and

long-term expectations are very persistent over time, and are distributed

unevenly across socioeconomic and demographic groups. In particular,

economic sentiment is positively related to stock market expectations.

Time-invariant unobserved individual e�ects explain a large fraction of

the unexplained variation in expectations, while we do not �nd that

current expectations strongly in�uence future ones. Finally, an analy-

sis of revisions of expectations suggests that information is interpreted

di�erently across individuals and forecast horizons.
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3.1 Introduction

Stock market expectations are important determinants of households' risk taking be-

havior. However, expectations of private households are often not observable. One

approach to overcome the problem is to elicit stock market expectations directly

from survey questions. Recent years witnessed an increasing body of literature in

this direction, especially after the seminal work by Manski (2004). Using data of the

2004 Health and Retirement Study, Dominitz and Manski (2007) found substantial

heterogeneity in expected equity returns in the population, where the expected eq-

uity returns are positively related to the probability of stock ownership. Hurd et al.

(2011b) found similar results in the Dutch population based on data from the 2004

and 2006 waves of the DNB Dutch household panel. Hudomiet et al. (2011) inves-

tigated how the recent �nancial crisis a�ected expected returns, uncertainty about

returns, and disagreement about expected return in the US population, based on one

wave of data in the Health and Retirement Study that was collected between 2008

and 2009. Dominitz and Manski (2011) claimed that individuals form stock market

expectations in an intrapersonally stable way, as a large fraction of people in the

Michigan survey reported the same or very similar beliefs about future stock returns

after six months. Using microdata in the Michigan Survey of Consumers, Amromin

and Sharpe (2013) found that subjective expectations of stock returns and risk are

strongly positively related to households' perceptions of economic conditions.

This paper analyzes households' stock market expectations after the �nancial

crisis, using a recently introduced longitudinal dataset, based on answers to prob-

abilistic questions. We expand previous studies on this topic in several new direc-

tions. First, we study di�erent characteristics in households' subjective distributions

of future stock returns (mean and standard deviation) at both short (one-year) and

long (ten-year) horizons, while the previous literature mostly focuses on short-term

expectations. Many households only own stocks indirectly through retirement ac-

counts. Those who own stocks directly do not tend to rebalance their portfolios
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frequently. Therefore, long term expectations might be more important for house-

holds. Second, while previous studies focus on a cross-sectional analysis, we exploit

the panel nature of the dataset. By doing so, we are able to examine how individuals

update expectations over time. In particular, we study the magnitude and source of

persistence in stock market expectations over time. Third, we study the dynamics

of revisions in expectations at di�erent horizons. In a recent paper, Ho�mann and

Post (2013) also studied the dynamics of individual investors' subjective stock re-

turn and risk beliefs, based on a panel of active individual investors. However, our

paper is di�erent from theirs in some important aspects. Most importantly, while

Ho�mann and Post (2013) focused on how individual investors' personal stock re-

turn and risk experiences explain the variations in subjective one-month stock return

expectations, we mainly focus on the dynamic patterns of stock return expectations

at di�erent horizons per se. Besides, Ho�mann and Post (2013) use qualitative mea-

sures of expectations of return and risk and include only stock traders, while we rely

on quantitative measures and use a sample that is representative for the whole US

adult population over a longer time period. Thus, the two papers can be regarded

as complementary.

We have a the following �ndings. First, we �nd that on average long-term

expected returns (volatility) are higher (lower) than their short-term counterparts.

While some papers also found that expected returns at longer horizons are higher

(Amromin and Sharpe (2013)), we provide further empirical results regarding higher

moments in the subjective distribution.

Second, as in the previous literature, we also �nd that there is a substantial

amount of heterogeneity in households' stock market expectations, which is related

to a number of observed demographic and socio-economic variables. The distribution

of expected returns in the population is found to be similar to the patterns found in

the previous literature: males, wealthier, higher educated people, and people that

follow the stock market tend to report higher expected returns. Furthermore, age is
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found to be negatively related to expected volatility, which is also documented in the

previous literature. However, our sample indicates that higher educated people and

people who follow the stock market are more uncertain about future stock returns,

which is in the opposite direction of the �ndings in Hudomiet et al. (2011). Thus, in

contrast to expected returns, how expected volatility varies across di�erent groups

of people is still not very clear. An additional new �nding is that the patterns of

heterogeneity in the population regarding stock market expectations are very similar

at di�erent horizons.

Third, we �nd that the subjective distributions of future stock returns are quite

persistent both in the short run and in the long run. People tend to report similar

values of expected returns and volatility at di�erent time points and their relative

ranks in terms of stock market expectations do not change very much over time. We

further distinguish the roles of unobserved individual e�ects and state-dependence

by estimating dynamic panel data models. We �nd that the high persistence is

mainly due to unobserved time-invariant individual characteristics, while the impact

of state-dependence is quite small. This indicates that most households hold a rather

�xed belief on future stock returns and revise this belief only slightly over time.

Forth, apart from the levels of expectations, we also �nd that households revise

expectations in a substantially di�erent way. Moreover, households revise expec-

tations quite di�erently across horizons. As revisions in expectations are related

to how people process new information, and stock market relevant information is

mostly publicly available, the results suggest that similar information might be in-

terpreted quite di�erently across people and across forecast horizons.

The paper is organized as follows. In section 4.3, we describe the data used in this

paper and how we measure stock market expectations. In section 3.3, we provide

some descriptive analysis of the elicited mean and volatility of households' subjective

distributions of future stock returns. In section 3.4 we use static panel data models

to study how stock expectations vary across di�erent groups of people. In section
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3.5, dynamic panel data models are applied to further study the relationship between

expectations at di�erent periods. Section 3.6 studies the dynamics of revisions in

expectations at di�erent horizons. Section 3.7 concludes.

3.2 Data

The data is mainly obtained from the Rand American Life Panel (ALP). This panel

is an ongoing online survey of a group of more than 6,000 individuals aged 18 and

over.1

Beginning at November 2008, Rand routinely distributed a survey entitled `Ef-

fects of the Financial Crisis' in the ALP. The �nancial crisis survey covers a broad

range of topics, see Hurd and Rohwedder (2011) for a recent work using this survey.

The �rst three waves are quarterly. From May 2009 on the major part of the survey

is implemented at a monthly frequency. The key variables we are interested in are

the expectations about stock market returns at a one-year horizon and at a ten-year

horizon.

3.2.1 Data on expectations

There are three questions on one year ahead stock market expectations in every

wave. The �rst one asks the percent chance that mutual fund shares will be worth

more than they are today by next year. We label it the �Pr(R1 > 1)� question. If

Pr(R1 > 1) > 0, a second question asks the chance that stock price increases by

more than 20% by next year. We label it the �Pr(R1 > 1.2)� question. Similarly,

if Pr(R1 > 1) < 100%, another question asks the chance that stock price decreases

by more than 20% by next year. We label it the �Pr(R1 < 0.8)� question. Detailed

descriptions of the questions can be found in the appendix. There are also three

questions on ten year ahead stock market expectations, which are designed in a sim-

1The data is publicly accessible at https://mmicdata.rand.org/alp/index.php?page=main
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ilar way as in the one year expectations. We label the three long-term expectations

as �Pr(R10 > 1)�, �Pr(R10 > 1.2)�, and �Pr(R10 < 0.8)�, respectively.

The attrition rate is low in this survey. However, after March, 2011, the sample

size was reduced as a random sub-sample was not asked the subjective questions

in percentage form anymore. Instead, they were asked to express expectations by

allocating balls into di�erent bins. To maintain a more balanced panel, we focus on

the data up to March, 2011. In addition, while the questions Pr(R1 > 1), Pr(R1 >

1.2), Pr(R1 < 0.8), and Pr(R10 > 1) are asked monthly, the questions Pr(R10 >

1.2) and Pr(R10 < 0.8) are asked every three months. To make expectations of

di�erent horizons comparable, we only include waves that have observations for all

six probabilistic questions, which results in nine waves of (roughly) quarterly data

from February 2009 to March 2011.2

3.2.2 Data on individual characteristics

The surveys in the ALP also provide a large amount of individual demographic and

socio-economic variables. We focus on a number of individual variables that might

be related to stock market expectations as suggested in the previous literature.

These variables include age, gender, race, education, family income, health, and

work status. �Female�, �White�, and �Bachelor� are dummy variables corresponding

to a respondent's gender, race, and education attainment, respectively. Self-reported

health status is measured on a 1 to 5 scale from �Excellent� to �Poor�. We reverse the

answers so that higher values indicate a better health status, and name this variable

�Health�. The ALP records annual household income on a 1 to 14 scale from below

$5,000 to above $75,000. For those with income more than $75,000, an additional

question is asked to code income on a 1 to 4 scale from the range $75,000-$99,999 to

the range $200,000 or more. We combine answers in the two questions and choose

the middle point of each interval as our family income measure. The upper bound

2There is no observation between February 2009 and July 2009.
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of family income is set to be equal to $250,000. We label this variable �Household

income�. We further divide �Household income� by the total number of people in a

household to construct a variable with the label �Income per capita�, which is mainly

used in our analysis.3

The literature on psychology and behavioral economics suggests that expecta-

tions on economic variables are related to sentiment or mood (Kaplanski et al.

(2013b)). Therefore, we also investigate whether individual sentiment is related to

stock market expectations at di�erent horizons based on various sentiment measures

in the survey. The questions we consider as measures of sentiment include four ques-

tions about di�erent aspects of satisfaction (�Life satisfaction�, �Job satisfaction�,

�Total household income satisfaction�, and �Economic situation satisfaction�), one

question about changes in household �nancial conditions over a year (�Better o�

�nancially�), one question about feeling happiness (�Happiness�), and one question

about feeling worn out (�Wornout�). Satisfaction levels are measured on a �ve-point

scale from 1 (�Very satis�ed�) to 5 (�Very dissatis�ed�). Changes in household �-

nancial conditions are measured as either 1 (�Better o��) , 2 (�About the same�), or

3 (�Worse o��). Questions on happiness and wornout are both about feeling during

the past 30 days and are measured on a six-point scale from 1 (�All of the time�)

to 6 (�None of the time�). Furthermore, we combine responses to the questions

�Job satisfaction�, �Total household income satisfaction�, and �Better o� �nancially�

to construct a variable labeled as �Economic sentiment�. Similarly, we combine re-

sponses to the questions �Life satisfaction�, �Happiness�, and �Wornout� to construct

a variable labeled as �Non-economic sentiment�. The procedure is as follows. If nec-

essary, we �rst reverse the measures of individual questions so that higher values

indicate better situations. Then we divide the measure corresponding to each in-

dividual question by the maximum possible scale. Finally, we average the answers

to each question in a group. The resulting measures of �Economic sentiment� and

3The empirical results in the paper barely change if we use the variable �Household income�
instead.
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�Non-economic sentiment� both lie in between zero and one.

3.2.3 Eliciting expected mean and volatility

As we have observations of di�erent points on the distribution of individual's subjec-

tive stock expectations, we can elicit individuals' subjective distributions of future

stock prices. In the literature currently there are mainly two ways to make infer-

ence on subjective distributions of respondents using probabilistic questions. The

�rst way is to elicit the individual-speci�c subjective distributions based purely on

answers to probabilistic questions, and then link the elicited location and dispersion

of the subjective distributions to other observed variables to study the relationship

between them. See, for example, Dominitz and Manski (1997b), and Hurd et al.

(2011b). This method ignores issues on sample selection, rounding and focal points

in respondents' answers, and other survey behaviors. The second strategy is to

construct and estimate a structural model that explicitly takes into account the

answering process in surveys, and to elicit the subjective distribution and estimate

its relationship with other variables simultaneously, see, for example, Hudomiet et

al. (2011), and De Bresser and van Soest (2013). However, the second way usually

involves complex nonlinear dynamics in the underlying model and requires stronger

assumptions on unobserved individual e�ects. As in this paper we will investigate

the relationship between stock market expectations and other variables with di�er-

ent assumptions on the unobserved individual e�ects, we choose the �rst strategy

to make estimations feasible. Moreover, Kleinjans and van Soest (2013) compared

results of their model that incorporates reporting behavior with models without this

feature, and found that signs and signi�cance levels are quite similar.

We elicit individuals' subjective distributions using a parametric model. Follow-

ing Dominitz and Manski (1997b) and Hurd et al. (2011b), we assume that stock

(log-)returns are normally distributed. We further assume that expected return and

volatility are time- and horizon-speci�c. Denote st the stock market price at time t,
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then have

ln

(
st+τ
st

)
= µt,τ + zt,τ , (3.2.1)

where µt,τ is the drift term and zt,τ is the volatility term. We assume that zt,τ is

normally distributed with mean 0 and variance σ2
t,τ .

The probability that the stock market price will increase by ξ or more in τ years

is

P

(
st+τ
st

> ξ

)
= P

(
ln
st+τ
st

> ln ξ

)
= Φ

(
µt,τ − ln ξ

σt,τ

)
. (3.2.2)

For each survey time t and each forecast horizon τ , there are two unknown

parameters, µt,τ and σt,τ . For a given respondent i, we observe the subjective prob-

ability for three values of ξ (1.0, 1.2, and 0.8). We can estimate µt,τ and σt,τ using

nonlinear least squares based on the following equation

∑
j

(
pijt − Φ

(
µt,τ − ln ξj

σt,τ

))2

, (3.2.3)

where j ∈ (1, 2, 3) , with ξ1 = 0.8, ξ2 = 1, and ξ3 = 1.2.

We �t model (3.2.3) at the individual- and wave- level at both horizons. In

the model we allow for inconsistent probabilistic answers.4 However, sometimes the

magnitudes of the estimated µ and σ from inconsistent answers are implausibly large.

To have stable estimates, we add a lower and an upper bound to the probabilities of

changes in stock prices. To be speci�c, we assume that stock prices will not decrease

by more than 90 % and will not increase by more than 500 % in ten years. This is

equivalent to assuming that P
(

0.1 ≤ st+τ
st
≤ 6
)

= 1.5

4The fractions of inconsistent probabilistic answers are 15% and 25% for the one-year expecta-
tions and the ten-year expectations, respectively.

5The bounds are based on historical distributions of the Dow Jones Industrial Average (DJIA)
index values. The results in the following analysis are robust to modest variations of the boundaries.
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3.3 Descriptive analysis and sample selection

We start with looking at some general patterns of households' stock market expecta-

tions. Table 3.1 presents some descriptive statistics of our sample. While questions

on one-year expectations are asked monthly, questions on ten-year expectations are

asked in the survey roughly every three months. To maintain comparability, we se-

lect only waves with all the six questions regarding expectations at the two horizons.

Besides, although we allow for inconsistent probabilistic answers when �tting the

subjective distributions, we exclude responses that correspond to only one point on

the distribution curve. For example, we drop observations with �50%� answers to

all the three questions regarding the same forecast horizon. Compared to one-year

expectations, people in the survey are more likely to report that, in ten years, the

chance of an increase and the chance of a more-than-20% increase are both 100, and

that the chance of a more-than-20% decrease is 0. This results in a larger reduction

in sample size for the ten-year expectations, as seen in table 3.1. We annualize the

subjective ten-year return and ten-year uncertainty to make the �gures comparable

across forecast horizons. The elicited subjective stock returns (µ) are rather low

compared to the stock returns from historical data Previous literature gives similar

�ndings (Hurd & Rohwedder, 2011), and this observation is used to explain the

�stock participation puzzle�, that is, only a limited amount of people have stocks in

reality, while by theory everyone should holds a certain amount of stocks. There is

a large variation in most variables, including the expected return and volatility at

both horizons. Besides, the ten-year expected return is much higher than the one-

year counterpart, even after annualization. The range of the elicited uncertainty (σ)

is rather wide. We also have investigated which kine of people tend to report very

large subjective uncertainty. The results are shown in the appendix.

Figure 3.1 shows the scatter plots of the elicited subjective µ and σ for di�erent

horizons. It seems that the subjective uncertainty is positively related to the ab-

solute value of the subjective return, at both horizons. The correlation coe�cients
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Table 3.1: Summary statistics

Variable Mean Std. Dev. Min. Max. N
µ (%, one-year) -0.89 17.5 -119.47 88.51 15470
σ (%, one-year) 27.32 27.26 0.02 168.58 15470
µ (%, ten-year annualized) 1.4 2.59 -11.27 9.1 14497
σ (%, ten-year annualized) 11.5 9.79 0.01 53.31 14497
Female 0.56 0.5 0 1 16019
White 0.91 0.29 0 1 16019
Age 51.12 14.59 17 97 16019
Bachelor 0.46 0.5 0 1 16019
Health 3.47 0.91 1 5 16018
Income per capita ($1000) 50.45 44.26 0.36 250 15977
Follow stock 1.69 0.62 1 3 15553
Understand stock 3.3 1.18 1 6 15553
Eco Sentiment 0.55 0.22 0 1 15970
Non-Eco Sentiment 0.66 0.16 0 1 16014

between the subjective uncertainty and the absolute value of the subjective return

is 0.43 and 0.45 for the one-year horizon and the ten-year horizon, respectively. This

implies that people who expect very large changes in stock prices also have higher

uncertainty.

In the following we examine how stock market expectations at di�erent horizons

vary over time. Figure 3.2 plots the mean values of elicited expected stock return

(µ) and volatility (σ) at both one-year and ten-year horizons. One-year expected

returns are almost always negative while ten-year expected returns are always posi-

tive. Besides, the (annualized) ten-year volatility is much smaller than the one-year

volatility. Thus, it seems that long-term expectations are constantly more optimistic

than one-year expectations. In addition, while the one-year mean �uctuates over

time, the long-run mean is more stable, showing a declining trend. Recently, Pástor

and Stambaugh (2012) argued that stock returns are more risky over longer hori-

zons. They show that annualized subjective volatility of long-term stock returns is

much higher than the volatility of one-year returns, based on a survey for corporate

Chief Financial O�cers (CFOs).6 This is not the case for households' expectations

6They use a survey that asks CFOs to give the 10th and 90th percentiles of a con�dence
interval for the annualized excess equity return for both one-year and ten-year horizons. A given
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Figure 3.1: Subjective return and uncertainty: scatter plot

if we simply annualize the ten-year volatility by dividing it by
√

10. Our results

also indicate expected return and volatility are horizon-speci�c, as the estimates at

di�erent horizons cannot be matched by simple annualization.

Table 3.2 shows the frequency of µ in each quintile for the one-year horizon and

the ten-year horizon. Table 3.3 shows the frequency distribution for σ. These tables

indicate that expectations at di�erent horizons are highly correlated with each other.

respondent's subjective probability distribution is elicited based on the normal distribution.

Table 3.2: Frequency distribution of µ in each quintile

µ (ten-year)
µ (one-year) 1 2 3 4 5 Total
1 57.7 16.8 10.1 8.4 6.4 20.4
2 20.2 36.6 21.7 14.4 11.4 21.5
3 10.3 22.7 30.3 24.2 18.8 21.4
4 6.0 15.3 23.2 29.6 25.5 19.6
5 5.7 8.6 14.8 23.3 37.9 17.2
Total 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 3.2: Time patterns of stock market expectations

Table 3.3: Frequency distribution of σ in each quintile

σ (ten-year)
σ (one-year) 1 2 3 4 5 Total
1 61.9 23.3 12.4 7.2 4.5 22.1
2 13.5 42.1 24.7 16.5 10.9 21.8
3 11.6 21.9 30.5 23.2 18.7 21.3
4 7.0 9.7 22.9 31.5 26.3 19.3
5 5.9 3.1 9.5 21.6 39.6 15.5
Total 100.0 100.0 100.0 100.0 100.0 100.0
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Table 3.4: Transition matrices: elicited µ (one year)

µ quantile 1 2 3 4 5 Total
1 57.7 16.8 10.1 8.4 6.4 20.4
2 20.2 36.6 21.7 14.4 11.4 21.5
3 10.3 22.7 30.3 24.2 18.8 21.4
4 6.0 15.3 23.2 29.6 25.5 19.6
5 5.7 8.6 14.8 23.3 37.9 17.2
Total 100.0 100.0 100.0 100.0 100.0 100.0

We are also interested in how persistent individuals' views on stock market re-

turns are. The degree of persistence in expectations can be examined descriptively

by transition matrices. Tables 3.4 and 3.5 present the transition matrices for the

subjective mean and the volatility at the one-year horizon, respectively. Tables 3.6

and 3.7 show corresponding transition matrices for the ten-year expectations. The

rows indicate expectations at time t− 1 while the columns indicate expectations at

time t.

If there is no persistence in subjective expectations, we are likely to observe

that entries in the transition matrix are all approximately one-�fth. In contrast,

numbers on the diagonal are much larger than 0.2. Furthermore, the further from

the diagonal, the smaller the numbers are. The results indicate a high level of

persistence in both the expected mean and volatility at di�erent horizons. For

those categorized into the �rst quintile (the most pessimistic) of the distribution

of expected one-year returns (µ) in a give wave, there is a 58% chance that they

stay at the �rst quintile in the following period (after three months). The chance

of remaining to be the most optimistic in the following period is 38%. It could

also be expected that long-term expectations will be more persistent than short-

term expectations, as the former might be less a�ected by short-term �uctuations.

For example, Dräger and Lamla (2012) found that households' long-term in�ation

expectations are updated less frequently than short-run expectations. The transition

matrices in general support this argument, although the di�erences are modest.
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Table 3.5: Transition matrices: elicited σ (one year)

σ quantile 1 2 3 4 5 Total
1 52.4 18.4 11.4 8.7 8.2 20.2
2 20.7 32.5 22.6 15.6 11.1 20.9
3 12.0 23.7 29.7 24.5 16.8 21.5
4 8.8 16.3 22.2 28.8 24.2 19.9
5 6.1 9.1 14.2 22.4 39.6 17.6
Total 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.6: Transition matrices: elicited µ (ten year)

µ quantile 1 2 3 4 5 Total
1 61.0 24.9 9.0 3.2 2.5 20.7
2 25.0 41.0 20.5 8.9 6.2 20.7
3 7.1 20.5 34.8 24.5 13.8 20.3
4 4.6 8.6 21.7 40.5 25.3 19.8
5 2.3 5.0 14.0 22.8 52.1 18.5
Total 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.7: Transition matrices: elicited σ (ten year)

σ quantile 1 2 3 4 5 Total
1 57.7 16.8 10.1 8.4 6.4 20.4
2 20.2 36.6 21.7 14.4 11.4 21.5
3 10.3 22.7 30.3 24.2 18.8 21.4
4 6.0 15.3 23.2 29.6 25.5 19.6
5 5.7 8.6 14.8 23.3 37.9 17.2
Total 100.0 100.0 100.0 100.0 100.0 100.0
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3.4 Sources of persistence: static panel data model

One explanation for the persistence in stock market expectations is that expectations

are related to observed or unobserved time-invariant individual characteristics. To

examine this issue, in this section we estimate a static panel data model, which has

the following general form:

yit = X ′itβ + Z ′iλ+ ui + εit, (3.4.1)

where yit is some characteristic of the subjective distribution (µ or σ in our case)

of individual i at time t, Xit is a column vector of time varying covariates, Zi is a

column vector of time invariant regressors, ui is the unobserved individual e�ect, εit

is an idiosyncratic term, and β and λ are unknown parameter vectors. In the next

section we will also consider dynamic panel data models.7

We estimate model (3.4.1) using both the random e�ects speci�cations (RE)

and the �xed e�ects speci�cations (FE). The RE speci�cation assumes that there

is no correlation between observed regressors and the unobserved individual e�ect

while the FE speci�cation allows for arbitrary correlation between the unobserved

individual e�ect and the observed covariates. In both cases εit is an idiosyncratic

error term, with mean zero and constant variance. A Hausman test will be used to

test which speci�cation is more appropriate.

Table 3.8 reports the estimation results for the elicited µ at both the short- and

long-run horizons. The results of the Hausman tests suggest that the random ef-

fects estimates are not consistent. Males, wealthy people, higher educated people

and people, who follow and understand the stock market, on average have a higher

µ at both horizons. These �ndings regarding the demographic variables are largely

consistent with those in previous studies. Our contribution is that we show that this

pattern of heterogeneity exists for expectations at both the short and the long hori-

7In the appendix we estimate a similar model, replacing time dummies with past stock returns.
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zons. It can also be seen that the gap in terms of stock market expectations between

di�erent socio-demographic groups is larger for long-term expectations. In addition,

measures of sentiment, especially economic sentiment, are positively related to stock

market expectations under di�erent speci�cations. This can be related to the recent

�nding in Kaplanski et al. (2013b) that happy people tend to have more optimistic

stock return expectations. Our results do not only provide additional empirical

evidence in this direction, but also highlight the relative importance of economic

sentiment vs. the noneconomic sentiment. Moreover, the coe�cients of the socio-

economic variables are in general of a larger magnitude for the ten-year expectations.

This indicate that the gap in expectations across socio-economic groups are larger

in the long-term. As long-term stock market expectations might be more impor-

tant for the stock holding decisions, the result is consistent with the fact that lower

educated people rarely participate in the stock market.

Table 3.9 presents the panel data estimation results for the elicited volatility.

We use log σ instead of σ as the dependent variable to mitigate the impacts of

outliers and truncation. The �nding that older people expect lower volatility of

future stock returns is also documented in Hurd et al. (2011b) and in Hudomiet

et al. (2011). However, we also �nd that more educated people and people who

follow the stock market have high volatility about stock returns, which is in the

opposite direction to the �ndings in Hudomiet et al. (2011) who use data from the

Health and Retirement Study. As there is little theory to guide us at this point, we

conclude that the subjective volatility is not always consistently explained and more

empirical evidence is required. In addition, we also �nd that economic sentiment

is negatively related to volatility. While Kaplanski et al. (2013b) �nd that non-

economic sentiment can negatively a�ect risk expectations, we �nd that only the

e�ects of economic sentiment are signi�cant.
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Table 3.8: Static panel data model estimates:µ (%)

One-year Ten-year
RE FE RE FE

Female -1.446** -4.964**
(0.507) (0.766)

White -0.034 2.945*
(0.816) (1.226)

Age 0.027 0.825* 0.028 0.454
(0.017) (0.328) (0.026) (0.438)

Bachelor 3.758** 3.868+ 9.987** 3.933
(0.508) (2.323) (0.761) (3.117)

Health 0.378+ 0.263 -0.304 -1.076**
(0.224) (0.296) (0.319) (0.404)

Income per capita ($1000) 0.023** 0.020* 0.028** -0.011
(0.005) (0.009) (0.008) (0.012)

Follow stock 0.425 -0.981* 2.937** 0.329
(0.360) (0.446) (0.508) (0.609)

Understand stock 0.807** 0.433+ 1.656** 0.232
(0.196) (0.263) (0.277) (0.355)

Eco Sentiment 3.766** 2.646* 4.341** 4.832**
(0.913) (1.110) (1.288) (1.521)

Non-Eco Sentiment 3.037* 2.651+ 3.651* 3.770*
(1.203) (1.380) (1.679) (1.885)

Num.Obs 14930 14930 13985 13985
Num.Ind 2508 2508 2483 2483
σu 10.304 17.115 15.909 20.922
σe 13.576 13.576 17.717 17.717
ρ 0.366 0.614 0.446 0.582
Hausman p-value 0.000 0.000

A constant term and time dummies are included but the coe�cients are not reported to save space.
ρ is the fraction of variance due to unobserved individual e�ect. �Num.Obs � refers to the number
of total observations. �Num.Ind � refers to the number of individuals. Statistical signi�cance is
indicated as follows: + p<0.10, * p<0.05, ** p<0.01.
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Table 3.9: Static panel data model estimates:log σ (%)

One-year Ten-year
RE FE RE FE

Female 1.007 4.871
(3.454) (3.787)

White 10.232+ 13.429*
(5.552) (6.063)

Age -0.532** 0.161 -0.302* 2.019
(0.118) (2.081) (0.129) (2.150)

Bachelor 15.460** 4.041 14.219** 3.831
(3.439) (14.753) (3.758) (15.288)

Health 3.482* 5.140** 2.825+ 4.199*
(1.460) (1.882) (1.560) (1.982)

Income per capita ($1000) 0.006 -0.028 -0.015 -0.033
(0.035) (0.058) (0.038) (0.061)

Follow stock 7.729** 3.157 10.158** 5.774+
(2.330) (2.832) (2.484) (2.988)

Understand stock 5.491** 2.101 3.901** 0.436
(1.278) (1.672) (1.354) (1.739)

Eco Sentiment -20.442** -21.716** -23.861** -22.308**
(5.901) (7.051) (6.299) (7.458)

Non-Eco Sentiment -6.039 -0.982 -1.181 9.250
(7.730) (8.762) (8.197) (9.242)

Num.Obs 14930 14930 13985 13985
Num.Ind 2508 2508 2483 2483
σu 72.218 86.157 79.645 98.524
σe 86.215 86.215 86.890 86.890
ρ 0.412 0.500 0.457 0.562
Hausman p-value 0.000 0.004

A constant term and time dummies are included but the coe�cients are not reported to save space.
ρ is the fraction of variance due to unobserved individual e�ect. �Num.Obs � refers to the number
of total observations. �Num.Ind � refers to the number of individuals. Statistical signi�cance is
indicated as follows: + p<0.10, * p<0.05, ** p<0.01.
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3.5 Sources of persistence: dynamic panel data mod-

els

Apart from unobserved time-invariant e�ects, persistence in expectations can also

result from state-dependence, which is the impact of current expectation on expec-

tations in future periods. This might be relevant if households form expectations

based on some Bayesian learning strategies so that they update their forecasts by

combining old forecast with new information, or, if some shocks to expectations

can last for more than one period, because households learn information in these

shocks gradually. In this section we further exploit the dynamics in stock market

expectations based on dynamic panel data models.

3.5.1 Models

To better understand the sources of persistence in stock market expectations and the

relationship between expectations and other observed factors, we specify a dynamic

panel data model, which has the following general form:

yit = γyi,t−1 +X ′itβ + Z ′iλ+ ui + εit. (3.5.1)

The model is similar to model (3.4.1). The di�erence here is that we add the lagged

dependence variable as a regressor to capture the level of state dependence, with a

regression coe�cient γ satisfying |γ| < 1. To check the robustness of the result, we

compare di�erent estimators for the general model (3.5.1). These estimators will be

consistent under di�erent assumptions, which are summarized in the following:

� Ordinary Least Squares estimation. The OLS estimation will be consistent in

the absence of an unobserved individual e�ect ui. Otherwise, the estimation

of γ by OLS will be biased upwards, as the estimated γ will re�ect both state

dependence and unobserved heterogeneity (Hauck and Rice (2004)).
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� Fixed E�ects with lagged dependent variable (FE). The FE estimation will

be consistent if γ is zero (no state-dependence). In the presence of state-

dependence, FE estimation is still consistent when T is allowed to go to in�nity.

For short panels with state dependence, FE estimation of γ will be biased

downwards (Nickell (1981)).

� Conditional maximum likelihood estimation (CMLE). The CMLE uses a likeli-

hood function based on the joint distribution of the observations conditional on

initial observations (yi,0). We parameterize the distribution of the unobserved

individual e�ects as

ui = θ1 + θ2yi,0 + X̄ ′iθ3 + ξi, (3.5.2)

where X̄i is a column vector of the within-individual mean values of the time-

varying covariates over the sample period. This method is consistent if the

distribution of the unobserved individual e�ects is correctly speci�ed.

� Arellano and Bond's GMM method (GMM). This method utilizes levels of the

lagged dependent variable to construct instruments for the �rst-di�erenced

lagged dependent variables. The GMM estimator is consistent if the moment

conditions are valid, which can be checked based on overidenti�cation tests

and tests of serial autocorrelation in the residuals.

Table 3.10 shows coe�cient estimates and other relevant statistics for the one-

year expectations based on the four speci�cations, respectively. Table 3.11 presents

the results for the ten-year expectations. The OLS estimates for the lagged de-

pendent variable are largest for expectations at both horizons, likely due to the

existence of an unobserved individual e�ect. The coe�cient for one-year µ is 0.4

while for ten-year µ is 0.5. Once the unobserved heterogeneity is controlled for, as

in the other three speci�cations, the coe�cients in front of the lagged dependent
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variable become substantially lower. The �xed e�ect estimates of this coe�cient

are the smallest and are slightly negative. This is consistent with the fact that FE

estimation of state-dependence is biased downwards (Nickell (1981)). The GMM

estimates are only signi�cant at the 10% level for the one-year expectations and

not signi�cantly di�erent from zero for the ten-year expectations. The instruments

in the GMM estimations seem to be appropriate as the models pass the Sargan

test of over-identifying restrictions and the test for second-order serial correlation

in the residuals. The levels of state-dependence based on the CMLE speci�cation

are around 0.15 for both horizons. The proportion of variance due to time-invariant

unobservable factors is 0.28 for the one-year expectations and 0.35 for the ten-year

expectations under CMLE. Above all, the estimation results from the di�erent spec-

i�cations suggest that the level of state-dependence in the stock market expectations

is most likely around 0.2 (based on the GMM estimation) and the unobserved time-

invariant individual e�ects seem to be more important to explain the persistence in

expectations.

Tables 3.12 and 3.13 present the dynamic panel data estimation results for the

log-volatility, represented by log(σ), for the expectations at di�erent horizons. The

levels of state-dependence in the volatility are similar to the ones in the expected

returns. The OLS and FE estimates provide upper and lower bounds, respectively.

Again, unobserved individual e�ects are more important.

3.6 Revisions of expectations

In the previous sections we focused on the levels of stock market expectations. As

we have documented, levels of expectations at di�erent horizons are strongly related

to time-invariant individual e�ects. In addition, the previous literature on hetero-

geneity in stock market expectations across people focuses on the heterogeneity in

the levels of the expectations. As our results suggest, this heterogeneity is likely to
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Table 3.10: Dynamic panel data model estimates:µ (one year)

OLS CMLE FE GMM
µt−1 0.405** 0.149** -0.019* 0.229+

(0.008) (0.010) (0.009) (0.119)
µ0 0.137**

(0.011)
Female -0.780** -1.061*

(0.285) (0.454)
White 0.138 -0.103

(0.478) (0.735)
Age -0.004 0.588+ 0.637+ 0.281

(0.010) (0.314) (0.330) (0.407)
Bachelor 2.200** 1.457 -0.807 -3.540

(0.291) (2.875) (3.023) (5.075)
Health 0.330+ 0.037 -0.028 0.069

(0.180) (0.329) (0.331) (0.451)
Income per capita ($1000) 0.010** 0.017 0.022* 0.022

(0.003) (0.011) (0.011) (0.018)
Follow stock 0.803** -0.889+ -0.804 -0.190

(0.295) (0.498) (0.500) (0.901)
Understand stock 0.411** -0.061 0.023 0.285

(0.155) (0.298) (0.301) (0.530)
Eco Sentiment 2.600** 3.507** 3.082* 5.845**

(0.781) (1.221) (1.225) (1.772)
Non-Eco Sentiment 2.371* 1.460 2.277 -0.120

(1.078) (1.513) (1.516) (2.078)
Num.Obs 11198 11198 11198 8494
Num.Ind 2184 2184 1852
σu 0.077 0.158
σe 0.122 0.120
ρ 0.284 0.634
AR(2) 0.132
Sargan 0.309

A constant term and time dummies are included but the coe�cients are not reported to save space.
ρ is the fraction of variance due to unobserved individual e�ect. The GMM estimation uses all
available lags of the dependent variable in levels dated t − 1 or earlier as instruments. �Sargan�
reports the p-value of the Sargan test of over-identifying restrictions. �AR(2) � reports the p-value
of the test of autocorrelation in residuals of order 2. We found that the residuals from the CMLE
estimation are autocorrelated. �Num.Obs � refers to the number of total observations. �Num.Ind�
refers to the number of individuals. Statistical signi�cance is indicated as follows: + p<0.10, *
p<0.05, ** p<0.01.
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Table 3.11: Dynamic panel data model estimates:µ (ten year)

OLS CMLE FE GMM
µt−1 0.495** 0.161** -0.044** -0.176

(0.008) (0.012) (0.010) (0.170)
µ0 0.189**

(0.014)
Female -2.044** -2.564**

(0.424) (0.712)
White 1.090 1.626

(0.700) (1.141)
Age -0.023 -0.095 0.046 -0.284

(0.015) (0.473) (0.468) (0.492)
Bachelor 4.610** -0.867 1.290 1.904

(0.437) (4.106) (4.212) (6.430)
Health 0.123 -0.227 -0.397 -0.405

(0.266) (0.481) (0.482) (0.548)
Income per capita ($1000) 0.020** 0.014 0.018 0.017

(0.005) (0.016) (0.016) (0.021)
Follow stock 2.765** 0.982 1.231+ 1.763+

(0.442) (0.729) (0.731) (1.065)
Understand stock 0.804** -0.137 -0.070 -0.015

(0.229) (0.424) (0.427) (0.621)
Eco Sentiment 1.428 3.214+ 2.453 4.811*

(1.156) (1.790) (1.793) (2.110)
Non-Eco Sentiment 2.593 1.969 2.048 -0.364

(1.591) (2.242) (2.243) (2.518)
Num.Obs 10147 10147 10147 7538
Num.Ind 2100 2100 1750
σu 0.122 0.213
σe 0.168 0.164
ρ 0.346 0.627
AR(2) 0.299
Sargan 0.100

A constant term and time dummies are included but the coe�cients are not reported to save space.
ρ is the fraction of variance due to unobserved individual e�ect. The GMM estimation uses all
available lags of the dependent variable in levels dated t − 1 or earlier as instruments. �Sargan�
reports the p-value of the Sargan test of over-identifying restrictions. �AR(2) � reports the p-value
of the test of autocorrelation in residuals of order 2. We found that the residuals from the CMLE
estimation are autocorrelated. �Num.Obs � refers to the number of total observations. �Num.Ind�
refers to the number of individuals. Statistical signi�cance is indicated as follows: + p<0.10, *
p<0.05, ** p<0.01.
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Table 3.12: Dynamic panel data model estimates:log(σ) (one year)

OLS CMLE FE GMM
log(σt−1) 0.418** 0.138** -0.051** 0.224

(0.008) (0.011) (0.010) (0.229)
log(σ0) 0.152**

(0.013)
Female 0.190 0.797

(1.903) (3.120)
White 4.829 7.639

(3.198) (5.045)
Age -0.349** 0.828 -1.344 -0.886

(0.067) (2.092) (2.183) (2.744)
Bachelor 8.844** -20.927 -19.607 -29.233

(1.945) (19.126) (19.979) (34.621)
Health 2.048+ 5.422* 4.806* 6.461*

(1.202) (2.186) (2.186) (3.167)
Income per capita ($1000) -0.007 0.029 -0.006 0.071

(0.022) (0.072) (0.072) (0.119)
Follow stock 5.387** 1.429 2.684 7.431

(1.973) (3.307) (3.305) (6.143)
Understand stock 3.551** 0.409 0.721 1.856

(1.036) (1.978) (1.992) (3.564)
Eco Sentiment -15.856** -20.671* -19.456* -17.300

(5.223) (8.111) (8.104) (12.150)
Non-Eco Sentiment 2.167 3.092 5.042 -7.880

(7.204) (10.049) (10.025) (13.791)
Num.Obs 11198 11198 11198 8494
Num.Ind 2184 2184 1852
σu 0.539 0.928
σe 0.813 0.793
ρ 0.306 0.578
AR(2) 0.470
Sargan 0.197

A constant term and time dummies are included but the coe�cients are not reported to save
space. ρ is the fraction of variance due to unobserved individual e�ect. . �Sargan� reports the
p-value of the Sargan test of over-identifying restrictions. �AR(2) � reports the p-value of the test
of autocorrelation in residuals of order 2. We found that the residuals from the CMLE estimation
are autocorrelated. �Num.Obs � refers to the number of total observations. �Num.Ind� refers to
the number of individuals. Statistical signi�cance is indicated as follows: + p<0.10, * p<0.05, **
p<0.01.
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Table 3.13: Dynamic panel data model estimates:log(σ) (ten year)

OLS CMLE FE GMM
log(σt−1) 0.468** 0.185** -0.031** -0.157

(0.009) (0.012) (0.011) (0.179)
log(σ0) 0.171**

(0.015)
Female 2.490 5.030

(2.042) (3.275)
White 5.472 10.374*

(3.378) (5.261)
Age -0.277** 1.352 1.983 2.886

(0.072) (2.333) (2.297) (2.407)
Bachelor 11.587** -19.454 -8.307 -12.767

(2.087) (20.183) (20.697) (32.810)
Health 1.962 5.281* 4.908* 1.469

(1.286) (2.371) (2.368) (2.717)
Income per capita ($1000) 0.003 -0.017 -0.022 -0.089

(0.024) (0.077) (0.077) (0.105)
Follow stock 6.908** 1.823 2.147 6.078

(2.125) (3.589) (3.594) (5.517)
Understand stock 3.028** 1.859 1.759 4.892

(1.104) (2.090) (2.099) (3.107)
Eco Sentiment -6.317 -16.773+ -19.884* -4.942

(5.582) (8.824) (8.808) (10.329)
Non-Eco Sentiment -0.971 0.280 0.587 -18.321

(7.675) (11.052) (11.023) (12.808)
Num.Obs 10147 10147 10147 7538
Num.Ind 2100 2100 1750
σu 0.546 1.008
σe 0.832 0.807
ρ 0.301 0.610
AR(2) 0.344
Sargan 0.001

A constant term and time dummies are included but the coe�cients are not reported to save space.
ρ is the fraction of variance due to unobserved individual e�ect. The GMM estimation uses all
available lags of the dependent variable in levels dated t − 1 or earlier as instruments. �Sargan�
reports the p-value of the Sargan test of over-identifying restrictions. �AR(2) � reports the p-value
of the test of autocorrelation in residuals of order 2. We found that the residuals from the CMLE
estimation are autocorrelated. �Num.Obs � refers to the number of total observations. �Num.Ind�
refers to the number of individuals. Statistical signi�cance is indicated as follows: + p<0.10, *
p<0.05, ** p<0.01.
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Figure 3.3: Time patterns of updates in stock market expectations

re�ect di�erences in terms of time-invariant factors, which says little about di�er-

ences in the formation of expectations. In this section we examine the dynamics of

updates or revisions in expectations, which are the di�erences between expectations

in two subsequent periods. This is more related to how individuals react to news or

shocks.

3.6.1 How changes in expectations vary across people and

horizons

Figure 3.3 plots the fractions of people that update expectations upwards at each

period. The fractions �uctuate around 0.5 during our two-year sample period.

Furthermore, heterogeneity in expectation revisions does not only occur between

respondents, but also exists across horizons within individuals. Table 3.14 shows

contemporarily the frequency of ∆µ in each quintile at one-year and ten-year expec-

tations. Unlike the case for levels, changes in expected return at di�erent horizons

are not that closely related. For example, there is more than 15% chance that up-

dates in one-year and ten-year expected returns lie in two extreme quintiles. Similar

patters are found for the updates in the expected volatility, which are shown in Ta-
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Table 3.14: Frequency distribution of changes in µ in each quintile

∆µ (ten-year)
∆µ (one-year) 1 2 3 4 5 Total
1 33.6 20.0 11.9 13.0 16.2 18.9
2 20.5 26.4 21.9 19.2 14.8 20.6
3 14.9 20.6 33.4 20.3 14.3 20.8
4 15.2 19.3 20.0 27.4 20.0 20.4
5 15.8 13.6 12.9 20.1 34.7 19.4
Total 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.15: Frequency distribution of changes in σ in each quintile

∆σ (ten-year)
∆σ (one-year) 1 2 3 4 5 Total
1 37.1 20.1 12.2 13.7 13.3 19.2
2 20.8 29.7 20.3 17.6 14.8 20.7
3 13.7 19.8 38.5 19.8 12.0 20.9
4 15.2 17.4 19.2 28.4 22.3 20.5
5 13.1 13.0 9.9 20.6 37.6 18.7
Total 100.0 100.0 100.0 100.0 100.0 100.0

ble 3.15. The results indicate that individuals update expectations quite di�erently

across horizons.

3.6.2 A vector autoregressive model for expectation revisions

To investigate how shocks to expectations last over time, we estimate the following

vector autoregressive model:

∆Yit = α +
τ∑
τ=1

Bτ∆Yi,t−p + CXit + εit, (3.6.1)

where α is a vector of constant terms, ∆Y is a column vector including expectations

at one-year and ten-year horizons, X refers to a vector of control variables that are

assumed to be exogenous, and εit is an error term with mean zero and constant

variance. Bτ and C are matrices of unknown parameters.

Table 3.16 presents the results of model (3.6.1).8 We observe negative autocor-

8Demographic variables and time dummies are included as exogenous variables. However, coef-
�cients of demographic variables are not signi�cant. The coe�cients of the demographic variables

72



Table 3.16: Panel vector autoregression

∆µ (1y) ∆µ (10y)
∆µ−1 (1y) -0.532** -0.015

(0.012) (0.019)
∆µ−2 (1y) -0.215** -0.003

(0.011) (0.017)
∆µ−1 (10y) 0.020* -0.555**

(0.008) (0.013)
∆µ−2 (10y) 0.007 -0.258**

(0.008) (0.012)
Num.Obs 5489 5395

∆µ−τ refers to the ∆µ lagged τ period. �Num.Obs � refers to the number of total observations.
Statistical signi�cance is indicated as follows: + p<0.10, * p<0.05, ** p<0.01.

relation with a magnitude smaller than one for expectations at each horizons. In

addition, shocks to long-run expectation updates positively Granger-cause short-run

expectation updates. This implies that a positive shock to long-term expectations

will also increase short-term expectations in the next period, but not the reverse.

To further investigate the dynamics of changes in expectations, �gure 3.4 plots

the impulse response of the one-year µ and the ten-year µ, both in �rst di�erences

and in levels, to a 0.18 shock in the ten-year ∆µ respectively.9 The graph indicates

that for �rst di�erence, the e�ect of the shock on the expected ten-year return tends

to die o� after one year, while the e�ect on the expected one-year return is only

marginal. For levels, there is a permanent increase in the ten-year µ.

3.7 Conclusion

In this paper we have studied the dynamics of households' expected stock return

and volatility across time and horizons. On the one hand, expectations are found

to be horizon speci�c and long-term expectations do not match short-term expecta-

tions after simple annualization. It seems that households apply di�erent strategies

to form stock market expectations at di�erent horizons. On the other hand, ex-

are shown in the appendix.
90.18 is approximately one standard deviation of ∆µ in the sample.
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pectations at di�erent horizons share several common features. First, stock market

expectations distribute unevenly across di�erent socio-economic and demographic

groups. Males, wealthier people, people with higher education levels, and people

who follow the stock market on average report much more optimistic expectations.

While this socio-economic and demographic heterogeneity in stock market expec-

tations has been documented before, we show that this pattern is quite profound.

The heterogeneity exists for both expected returns and volatility at di�erent hori-

zons, and is quite persistent over time. When further investigating the sources of

persistence, we �nd that the time-invariant unobserved individual e�ects are quite

important compared to the state-dependence in expectations. A further question is

why certain groups of people always have more optimistic expectations, when a large

part of information in stock market should be publicly available. This might be due

to social interactions, di�erence in �nancial literacy, or di�erent interpretations of

common information. Our study of the revisions of expectations also indicates that

households might use di�erent information or interpret information di�erently when

updating expectations.

The �ndings in this paper suggest several avenues for future research. First,

since we show that stock market expectations are horizon speci�c, it is of interest

to examine the mechanism behind this pattern. One possibility is that long-term

expectations are mean-reverting, so expected returns at di�erent horizons can have

opposite signs. Second, what is exactly the unobserved time-invariant e�ect that

explains a large amount of the variation in the stock market expectations? Is it

related to some personal trait of general optimism/pessimism, or exposure to di�er-

ent levels of �nancial education, or some peer e�ects? What kind of information is

actually used and how does the information shape the beliefs? With current data

we are not able to provide de�nitive answers to these questions. Future research can

ask more speci�c and detailed questions in surveys to better elicit the information

content of stock market expectations.
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Appendix

3.8 Questions on subjective stock market expecta-

tions

The questions about one-year expected change in stock prices reads:

By next year at this time, what is the percent chance that mutual fund

shares invested in blue chip stocks like those in the Dow Jones industrial

average will be worth more than they are today?

By next year at this time, what are the chances that mutual fund shares

invested in blue-chip stocks like those in the Dow Jones Industrial Av-

erage will have increased in value by more than 20 percent compared to

what they are worth today?

By next year at this time, what are the chances that mutual fund shares

invested in blue-chip stocks like those in the Dow Jones Industrial Aver-

age will have fallen in value by more than 20 percent compared to what

they are worth today?

The questions about ten-year expected change in stock prices reads:

What are the chances that mutual fund shares invested in blue chip

stocks like those in the Dow Jones Industrial Average will be worth more

in 10 years than they are today?

What are the chances that mutual fund shares invested in blue-chip

stocks like those in the Dow Jones Industrial Average will have increased

in value by more than 20 percent in 10 years compared to what they are

worth today?
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What are the chances that mutual fund shares invested in blue-chip

stocks like those in the Dow Jones Industrial Average will have fallen in

value by more than 20 percent in 10 years compared to what they are

worth today?

3.9 Additional empirical results

3.9.1 People with very large uncertainty

Table 3.17: Determinants of very large σ: Probit Panel data Model

One-year Ten-year
Female 0.136* 0.233**

(0.064) (0.060)
White -0.330** -0.090

(0.092) (0.088)
Age -0.011** -0.009**

(0.002) (0.002)
Bachelor -0.138* -0.173**

(0.065) (0.060)
Health -0.010 -0.028

(0.034) (0.032)
Income per capita ($1000) -0.001 -0.001+

(0.001) (0.001)
Follow stock 0.047 0.025

(0.057) (0.055)
Understand stock -0.002 -0.005

(0.029) (0.028)
Eco Sentiment -0.139 -0.282*

(0.143) (0.136)
Non-Eco Sentiment -0.028 -0.139

(0.198) (0.186)
Num.Obs 14930 13985
Num.Ind 2508 2483
σu 0.837 0.717
ρ 0.412 0.339

A constant term and time dummies are included but the coe�cients are not reported to save space.
ρ is the fraction of variance due to unobserved individual e�ect. �Num.Obs � refers to the number
of total observations. �Num.Ind � refers to the number of individuals. Statistical signi�cance is
indicated as follows: + p<0.10, * p<0.05, ** p<0.01.
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It is interesting to examine what kind of people tend to report very large level of

uncertainty (σ). We create a dummy variable, which is one if the elicited uncertainty

ranks in the top 90th percentile and zero otherwise, for the one-year and ten-year

expectations respectively. We regress this indicator on a number of demographic and

socio-economic variables, using probit random e�ects model. Table 3.17shows the

estimation results. In general, female, the younger, and the lower educated people

tend to have very large uncertainty regarding future stock prices, for both forecast

horizons.

3.9.2 Impact of past stock returns

Previous literature indicates that stock market expectations are a�ected by past

stock returns. We do not investigate this issue as the focus of the paper is not

on the impact of macroeconomic variables on stock market expectations. Besides,

we include a full set of time dummies in the regressions, so including past stock

returns would cause multi-collinearity. In this section we replace time dummies in

the static panel models with past stock returns, based on the Dow Jones Industrial

Average. Table 3.18 reports the estimation results. Past stock returns are not

signi�cantly related to the subjective one-year returns, and are negatively related

to the subjective ten-year returns. However, as we only have nine periods and the

stock return of a given month is the same for every individual,the results are only

suggestive.

3.9.3 VAR model

Table 3.19 shows the estimated coe�cients of the demographic variables in model

(3.6.1).
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Table 3.18: Static panel data model estimates:µ (%)

One-year Ten-year
RE FE RE FE

Past stock return -0.000 0.001 -0.038** -0.029**
(0.001) (0.002) (0.002) (0.003)

Female -1.428** -4.853**
(0.508) (0.768)

White -0.018 2.926*
(0.817) (1.230)

Age 0.023 -0.273 0.013 -1.508**
(0.017) (0.222) (0.026) (0.297)

Bachelor 3.759** 3.586 9.861** 3.279
(0.508) (2.335) (0.763) (3.132)

Health 0.349 0.245 -0.194 -0.992*
(0.225) (0.298) (0.320) (0.406)

Income per capita ($1000) 0.021** 0.014 0.025** -0.018
(0.005) (0.009) (0.008) (0.013)

Follow stock 0.526 -0.859+ 3.448** 0.772
(0.357) (0.443) (0.503) (0.604)

Understand stock 0.808** 0.418 1.668** 0.280
(0.197) (0.265) (0.278) (0.356)

Eco Sentiment 3.603** 2.422* 4.496** 4.866**
(0.916) (1.115) (1.292) (1.527)

Non-Eco Sentiment 3.549** 3.261* 1.554 1.061
(1.193) (1.364) (1.663) (1.861)

Num.Obs 14930 14930 13985 13985
Num.Ind 2508 2508 2483 2483
σu 10.318 13.635 15.961 31.876
σe 13.649 13.649 17.805 17.805
ρ 0.364 0.499 0.446 0.762

A constant term and time dummies are included but the coe�cients are not reported to save space.
ρ is the fraction of variance due to unobserved individual e�ect. �Num.Obs � refers to the number
of total observations. �Num.Ind � refers to the number of individuals. Statistical signi�cance is
indicated as follows: + p<0.10, * p<0.05, ** p<0.01.
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Table 3.19: Panel vector autoregression: additional results

∆µ (1y) ∆µ (10y)
∆µ−1 (1y) -0.532** -0.015

(0.012) (0.019)
∆µ−2 (1y) -0.215** -0.003

(0.011) (0.017)
∆µ−1 (10y) 0.020* -0.555**

(0.008) (0.013)
∆µ−2 (10y) 0.007 -0.258**

(0.008) (0.012)
Bachelor 0.499 0.101

(0.342) (0.527)
Income per capita ($1000) -0.002 0.002

(0.004) (0.006)
Female -0.255 -0.635

(0.338) (0.521)
Follow stock -0.502 -0.369

(0.355) (0.547)
Understand stock -0.209 -0.419

(0.185) (0.285)
Eco Sentiment -0.168 1.770

(0.968) (1.489)
Non-Eco Sentiment 0.789 0.182

(1.176) (1.813)
Num.Obs 5489 5395

∆µ−τ refers to the ∆µ lagged τ period. �Num.Obs � refers to the number of total observations.
Statistical signi�cance is indicated as follows: + p<0.10, * p<0.05, ** p<0.01.
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Chapter 4

The Dynamics of Households' House

Price Expectations

Abstract Based on monthly survey data between 2007 and 2014, this

chapter studies whether and how households' house price expectations

are related to experts' forecasts and perceived home value changes. We

�nd that households follow experts when forming expectations of one-

year ahead home values, and respond positively to perceived home value

changes in the past. In addition, highly educated people absorb experts'

house price forecasts more actively than lower educated people do.
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4.1 Introduction

Households' economic expectations are important in determining future economic

outcomes. The dynamics of several key macroeconomic expectations, such as in�a-

tion and unemployment expectations, have been widely investigated in the literature.

The importance of expectations in the housing market is also gaining increasing

recognition. House price expectations might a�ect households' decisions in many

aspects (home purchase, consumption, mortgage default, and so forth), and in�u-

ence the whole economy. For example, Miller et al. (2011) found that anticipated

house price changes, as proxied by changes in home sales, can have a sizable e�ect

on the economic productions at the metropolitan level. However, households' house

price expectations are much less studied. Especially, the literature lacks studies

that test models of house price expectations using data on directly observed survey

expectations.

This paper attempts to �ll this gap by testing one well-recognized model on

households' economic expectations, developed by Carroll (2003), in the context of

housing market. The model, often labeled as �epidemiological model of macroeco-

nomic expectations�, assumes that individual people form macroeconomic expecta-

tions by probabilistically absorbing the views of professional forecasters , which are

spread through the news media. Individuals are also assumed to be inattentive to

new information, so each period a proportion of the population will stick to expecta-

tions of the previous period. We also extend the model by including past home value

changes as an additional factor that might in�uence expectations of future house

prices. By estimating the model based on monthly expectation data from 2007

to 2014, we �nd that experts' forecasts positively Granger-cause households' house

price expectations, both in the short-run and in the long-run. This observation is

consistent with the predication by Carroll's model (Carroll, 2003). We also �nd that

experts' forecasts and households' lagged expectations do not fully capture the dy-

namics of households' house price expectations, as opposed to some �ndings based
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on in�ation expectations.1 At the same time, households' expectations respond pos-

itively to their perceived changes in home values, which indicates an extrapolative

element in expectations. 2 Besides, households absorb experts' forecasts hetero-

geneously. High-educated people follow experts' forecasts much more closely than

low-educated people do. The �ndings in this paper are robust to the stationarity

assumptions about the underlying time series.

To the best of our knowledge, this paper is the �rst that studies the relation-

ship between expectations of the households and of the experts regarding future

home values. The paper provides the �rst test of Carroll's macroeconomic expecta-

tions model in the housing market, which extends the literature to a new domain

beyond in�ation and unemployment expectations. More importantly, the �ndings

shed lights on how households' house price expectations are formed. First, the posi-

tive relationship between past home value changes and future expectations suggests

extrapolative behaviour in the housing market, which has long been suggested in

the literature but is rarely studed using data on directly measured expectations.

Notable exceptions include Piazzesi and Schneider (2009) and Case et al. (2012).

Piazzesi and Schneider (2009) found that in the Michigan Survey of Consumers the

fraction of people that considers it is a good time to buy a house, because house

prices will increase, doubled towards the end of the housing boom. Case et al. (2012)

observed that house price expectations are higher in areas and periods with higher

house price appreciation rates, based on annual survey data for recent home buyers

in four cities. While the above two paper are largely descriptive on this issue, this

1Carroll (2003) found that experts' forecasts and households' lagged expectations adequately
capture households' in�ation expectations in US and Doepke et al. (2008) found similar results
using European data.

2This observation is consistent with the theory that people tend to extrapolate past trends
when forming expectations of future asset prices. Based on this theory, people are overoptimistic
during the booming period. This overoptimism induces people to overinvest in housing and make
house prices far above the fundamentals. This is regarded as an explanation for housing booms
in some literature (e.g. Case et al., 2012 and Piazzesi & Schneider, 2009). However, there are
also alternative explanations for the housing bubble. One alternative is that the loosening of lend-
ing standards and supply constraints in the early 2000s raised the e�ective demand for housing
and caused the increase in house prices, as suggested in Duca et al. (2011).
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paper incorporates the potential extrapolative element into a well-established model

of macroeconomic expectations and �nd that it still a�ects expectations, even after

controlling for the in�uence of experts' forecasts. Moreover, instead of constructing

past home value changes based on actual house price index, we examine the role

of perceived changes based on survey questions. Second, the �nding that experts'

forecasts (Granger) cause the households' expectations indicate a potential role of

news media in the housing market. Also, policy makers, sometimes acting as ex-

perts themselves, might be able to anchor the households' expectations. Third, the

positive impact of lagged expectations on current expectations is consistent with a

large body of literature stating that households are inattentive to new macroeco-

nomic information and expectations are sticky. Inattention is considered to be able

to explain several important macroeconomic phenomena, whereas its role in the

housing market is not clear. Finally, the di�erence in the dynamics of expectations

between the higher educated people and the lower educated ones suggests that the

assumption of homogeneous expectations should be taken with cautions. Above all,

the paper contributes to the microfoundations of how households form house price

expectations, an important yet largely unexplored topic.

The paper proceeds as follows. In section 4.2, We set up a parsimonious model

that describes the dynamics of households' house price expectations. Section 4.3 in-

troduces the data. Section 4.4 provides the empirical results. Section 4.5 investigates

the heterogeneity in house price expectations. Section 4.6 concludes.

4.2 A model of households' house price expecta-

tions

In this section we introduce a variation of the model on households macroeco-

nomic expectgations in Carroll (2003). Carroll (2003) suggests that households

form macroeconomic expectations by sluggishly absorbing experts' forecasts. We
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tailor this model to the housing market as house price expectations are also found

to be related to recent house price changes (Piazzesi & Schneider, 2009 and Case et

al., 2012). To be speci�c, we assume that the evolution of the aggregate households'

τ -month-ahead house price expectations can be modeled as follows:

EH
t (hgt,t+τ ) = λ0 + λ1E

H
t−1(hgt−1,t+τ−1) + λ2E

E
t (hgt,t+τ ) + λ3hg

P
t−τ,t + ετ,t (4.2.1)

where EH
t (hgt,t+τ ) and EE

t (hgt,t+τ ) represent the expected τ -month growth rate

in house price (hg) according to households (H) and to experts (E), respectively,

and where hgPt−τ,t denotes the past τ -month change in house price perceived by

households. ετ,t is an identically and independently distributed idiosyncratic error

term, which re�ects random shocks to expectations.

The model features some well-known theories in macroeconomic expectations and

incorporates both backward- and forward-looking behavior in expectations. The pa-

rameter λ1 captures the level of the inattention e�ect, which says that a proportion

of households does not update information and sticks to the previous period's ex-

pectations. The parameter λ2 captures the in�uence of the experts' forecasts. This

parameter is typically interpreted as the fraction of people that absorbs experts'

forecasts each period. People are assumed to learn experts' forecasts from the news

media and social interactions. Finally, the parameter λ3 allows past house price

realizations to have an impact on the expectations of the future. In particular,

we assume that it is the house price change perceived by households, rather than

the objective change, that plays a role, as households may not always be aware of

objective measures of house prices.

Model (4.2.1) incorporates the epidemiological model of macroeconomic expecta-

tions suggested in Carroll (2003). This is the case when λ0 = λ3 = 0 and λ1+λ2 = 1.

This speci�c model assumes that in each period a fraction λ2 of households forms

expectations based on the experts' forecasts, while the remaining fraction λ1 of
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households sticks to their own expectations in the past as it is costly to update

information.

However, model (4.2.1) speci�es the relationship between di�erent time series

variables in levels, which might be problematic if these variables are nonstationary.

To better handle the potential nonstationarity, we further generalize model (4.2.1)

into the following Vector Error-Correction Model (VECM):

∆yt = λα′yt−1 + β(L)∆yt + εt, (4.2.2)

where yt = (EH
t (hgt,t+τ ), E

E
t (hgt,t+τ ), hg

P
t−τ,t)

′ denotes the vector of endogenous vari-

ables, ∆ denotes the �rst-di�erent operator, λ = (λH , λE, λP )′ and α = (αH , αE, αP )′

are vectors of unknown parameters related to the long-run equilibrium, and β(L)

denotes a matrix of coe�cients related to the short-run dynamics. To be speci�c,

the vector α describes the long-run relationship between the (endogenous) variables

and λ describes the speed of adjustment towards the long-run relationship. In this

error correction form, the epidemiological model of macroeconomic expectations in

Carroll (2003) would imply a cointegrating vector

(
1 −1 0

)′
. In such a case, the

households' expectations fully adapt to the experts' forecasts in the long-run.

Apart from taking into account nonstationarity, model (4.2.2) generalizes model

(4.2.1) in several ways. First, model (4.2.2) does not predetermine which variable

is exogenous and allows variables in the system to a�ect each other. This might be

relevant if, for example, the households' expectations can have feedback e�ects on

the experts' forecasts. Second, model (4.2.2) distinguishes between the short-term

dynamics, as captured by the �rst di�erences terms, and the long-term relationship,

as represented by the cointegration relationship.

The error-correction model (4.2.2) also allows us to test the existence and di-

rection of (Granger) causality. From equation (4.2.2), the dynamics of a certain
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variable yi,t in the vector yt can be represented as

∆yi,t = λiα
′yt−1 +

q∑
τ=1

βi,τ∆yi,t−τ +

q∑
τ=1

βj,τ∆yj,t−τ +

q∑
τ=1

βk,τ∆yk,t−τ + εi,t, (4.2.3)

where yj,t and yk,t are the other two variables in the vector yt. There are potentially

two sources of (Granger) causality in equation (4.2.3). First, joint signi�cance of βj,τ -

s would indicate that the dependent variable yi,t responds to short-term shocks to

the variable yj,t, which can be interpreted as short-term Granger causality from yj,t

to yi,t. This hypothesis can be evaluated using a Wald test. Second, signi�cance of λi

would indicate that the dependent variable yi,t is driven by the long-run equilibrium

relationship, which can be interpreted as long-run Granger causality from α′yt−1 to

yi,t. This hypothesis can be evaluated by a t-test.3

4.3 Data

4.3.1 Expectations of households

House price expectations are not regularly asked in major US household surveys

starting until the recent housing burst. We obtain households' house price expec-

tations from the Michigan Surveys of Consumers, which covers the longest time

span.4 The Michigan survey is a monthly survey of approximately 500 randomly

chosen individuals and is representative of the U.S. adult population. In January

2007, this survey added a question about expected changes in home values, which

reads: �By about what percent do you expect prices of homes like yours in your

community to go (up/down), on average, over the next 12 months?� To examine

the representativeness of the expectation data in the Michigan survey, we also uti-

3See, for example, Kleibergen and van Dijk (1994), Oh and Lee (2004), and Soytas and Sari
(2003) for the concept and application of Granger causality in error correction models.

4Case and Shiller began to survey house price expectations from the late eighties. However,
their sample only includes recent home buyers in four cities and the frequency is annual. Thus, the
data is not approximately for a rigorous time-series analysis of national house price expectations.
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lize data in the Fannie Mae National Housing Survey, which covers a shorter time

period. From June 2010 on, in each month Fannie Mae surveyed a random sample

of approximately 1,000 Americans, who also represent the U.S. adult population.

One of the survey questions asks about expected one-year changes in general house

prices, which reads: �By about what percent do you think home prices in general

will go (up/down) on average over the next 12 months?� The time pattern of the

general house price expectations from the Fannie Mae survey is quite similar to the

time pattern of the home value expectations from the Michigan survey. See section

4.4.1 for details.

4.3.2 Expectations of experts

We obtain experts' forecasts of future house prices from the Wall Street Journal eco-

nomic forecasting survey (WSJ survey). This survey collects and reports predictions

of several U.S. macroeconomic variables from a group of professional forecasters. The

survey results are published online regularly. From late 2006, on a monthly basis

(with some gaps), the WSJ survey asks around 50 forecasters to predict the annual

percentage change in the U.S. Federal Housing Finance Agency (FHFA) house price

index over the current and the next calendar year.5

In each month the WSJ survey contains a pair of forecasts, EE
t (hgt,t+s) and

EE
t (hgt,t+12+s), where s ∈ {1, 2, . . . , 12} is the number of months to the end of the

current year.6 Thus, for a given year the forecast horizon varies from month to

month as the forecast target is �xed. To match the data to the expectations in the

household surveys mentioned above, we transform the WSJ survey predictions into

�xed-horizon (one-year-ahead) forecasts. To be speci�c, we construct the expected

housing return in one year as a weighted average of the forecasts of the current and

5See Zhang (2013) for a recent work that also uses the WSJ house price forecast data.
6The value of s depends on the month of time t. For example, if the month of time t is January,

s = 12.
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the next year's housing return. To be speci�c, EE
t (hgt,t+12) is constructed as follows:

EE
t (hgt,t+12) =

s

12
EE
t (hgt,t+s) +

12− s
12

EE
t (hgt,t+12+s).

This method to transform �xed-event forecasts into �xed-horizon forecasts fol-

lows a standard practice in the literature. For example, Dovern et al. (2012) use

this method to construct �xed-horizon GDP growth and interest rates predications,

and Easaw et al. (2013) use this method to study the in�uence of experts' forecasts

on households' in�ation expectations.

4.3.3 Perceived changes in home values

We derive households' perceived changes in home values from the Michigan survey.

This means that the perceived and expected changes in home values investigated in

this paper are from the same group of people. The following question is asked in

the Michigan survey:

Do you think the current value of your home�I mean, what it would

bring if you sell it today�has increased compared with a year ago, has

decreased compared with a year ago, or has it remained about the same?

An aggregate index of perceived home value change based on responses to the above

question is constructed by the Michigan survey center according to the formula:

Perceived home value change = 100 + up− down

where �up�, and �down� denote the percentage of individuals reporting increased

and the percentage responding decreased, respectively. In addition, to make the

magnitudes of the perceived and expected changes comparable, we rescale the index

of the perceived home value change according to the 12-month growth rates in the

national house price index of the Federal Housing Finance Agency.
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4.4 Empirical results

4.4.1 Time patterns of the underlying time series

Figure 4.1 presents the time patterns of the underlying time series. In panel (a), it

can be seen that the two series of households' expectations, namely, the one from

the Michigan survey and the one form the Fannie Mae survey, are quite similar.

The aggregated home value expectations in the Michigan survey closely approxi-

mate the general house price expectations.7 Henceforth, we only use expectations

from the Michigan survey in my analysis and refer to this series as �Households' ex-

pectations�, given its longer time period. The time pattern of the experts' forecasts,

shown in panel (b), looks also similar to the one of the households' expectations.

In general, one-year house price expectations kept declining during the �nancial

crisis, rebounded temporally between 2009 and 2010, and started to recover after

bottoming at the end of 2011. The dynamics of the perceived home value changes,

plotted in panel (c), show a similar pattern. For comparison, panel (d) depicts the

12-month percentage changes of the Case-Shiller national Home Price index during

the sample period, which are very similar to the perceived home value changes over

time.

4.4.2 Stationarity tests

As a �rst step in the econometric analysis, we test all variables for stationarity. We

apply di�erent tests and the results are summarized in table 4.1. The null hypothesis

in each test is that the variable contains a unit root. �ADF� refers to the Augmented

Dickey-Fuller test (Dickey & Fuller, 1979), �DF-GLS � refers to a modi�ed version of

the Dickey-Fuller test that detrends the series by generalized least squares (Elliott

et al., 1996), and �Phillips-Perron� refers to the Phillips-Perron test which controls

for serial correlation using Newey-West standard errors (Phillips & Perron, 1988).

7For the Fannie mae survey only the aggregated level data are publicly available.
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Figure 4.1: Time patterns of house price expectations and home value changes

Phillips and Perron (1988) provide two test statistics, which correspond to the τ

test and the ρ test in table 4.1, respectively. Each unit root test is performed with

and without including a time trend. The test results do not reject the null of a unit

root. However, my sample might not be long enough to make conclusive inference

as unit root tests in general lack power in small samples. We take this issue into

account by estimating model (4.2.1) under di�erent stationarity assumptions.

4.4.3 Empirical results based on the time series in levels

Although We cannot reject the existence of a unit root in the underlying time series,

we begin with estimating model (4.2.1) using data in levels for several reasons. First,

unit root tests are found to lack power in small samples. Thus, the test results

in section 4.4.2 might not be conclusive. Second, even if the time series are not

stationary, the coe�cients can still be consistent if the time series are cointegrated.

Third, it is easier to compare the results from model (4.2.1) to the previous literature

91



Table 4.1: Unit root tests

Households Experts Home value changes
Method Statistic 5% CV Statistic 5% CV Statistic 5% CV
Without a time trend

ADF -2.516 -2.908 -1.176 -2.910 -1.322 -2.906
DF-GLS -1.286 -2.181 -1.297 -2.132 -0.908 -2.129
Phillips-Perron ( τ test) -9.547 -13.532 0.283 -13.532 -3.133 -13.532
Phillips-Perron ( ρ test) -2.524 -2.907 0.127 -2.907 -1.398 -2.907
With a time trend

ADF -2.870 -3.473 -3.118 -3.475 -0.274 -3.470
DF-GLS -1.293 -3.096 -2.218 -3.043 -1.107 -2.811
Phillips-Perron ( τ test) -8.941 -20.322 -5.685 -20.304 -0.680 -20.340
Phillips-Perron ( ρ test) -2.585 -3.471 -1.956 -3.472 -0.384 -3.470

The number of lags in the ADF test and the DF-GLS test are selected based on BIC and Ng-Perron
MAIC, respectively. �CV� refers to the critical value.

on households' macroeconomic expectations, as Carroll's original model (Carroll,

2003) and many other models of in�ation expectations are estimated using data in

levels. However, the results in this section are in general illustrative and should be

interpreted with caution. A more rigorous analysis is presented in section 4.4.4.

Table 4.2 presents the estimation results of some variations of model (4.2.1). The

�rst variation (M1) includes only the lagged households' expectations and experts'

forecasts, both of which are statistically signi�cant with a positive sign. However,

the sum of the two coe�cients are signi�cantly below one.8 Thus, Carroll's epidemi-

ological model (Carroll, 2003) does not seem to capture adequately the dynamics of

house price expectations. The second variation (M2) includes the lagged households'

expectations and households' perceived house price changes, showing that expecta-

tions are positively related to home value changes. The third one (M3) includes

both experts' opinions and perceived house price changes as regressors. The results

indicate that when forming expectations of future home values, households in part

learn from experts and in part extrapolate past house prices. In all speci�cations the

coe�cient of the lagged expectation variable is always the largest. A possible inter-

8A Wald test is performed but the results are not shown to save space.
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pretation is that in each period a large fraction of households is inattentive to new

information and sticks to the expectations at the previous period. This phenomenon

is widely documented for households' macroeconomic expectations. Model 4 adds

the actual 12-month home value growth rate, based on the Case-Shiller national

home value index, as an additional regressor. Its coe�cient turns out to be neither

economically nor statistically signi�cant. This is consistent with the assumption

that the perceived home value changes, rather than the actual movements of the

house prices, in�uence future expectations. Given that the two series are also highly

correlated, hereafter we will only use the perceived home value changes in the analy-

sis. We also test whether the residuals are stationary in each speci�cation, following

the cointegration method in Engle and Granger (1987) to take into account the non-

standard test statistics. The test statistics, reported in the last row of table 4.2,

indicate that the residual series are stationary in each speci�cation. However, there

is no particular reason to specify the households' expectations as the only exogenous

variable. In the following sections we focus on vector error correction models, which

do not restrict the direction of causality ex ante.

4.4.4 Estimation results in a Vector Error-Correction form

As discussed in section 4.2, a Vector Error-Correction model is better suited at han-

dling the potential nonstationarity and endogeneity problems. In this section we will

present the estimation results based on model (4.2.2). We �rst examine the number

of cointegration relationships in the system based on the Johansen cointegration test

(Johansen, 1991). Table 4.3 shows the test results. The null of no cointegration and

the null of one cointegration relationship are both rejected while the the null of two

cointegration vectors are not rejected. Thus, we proceed under the assumption of

two cointegration vector.

The estimation results of the VECM (4.2.2) are shown in table 4.4. As cointe-

gration vectors in a VECM are not determined without restrictions, we normalize
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Table 4.2: Estimation results of model (4.2.1)

Model 1 Model 2 Model 3 Model 4
Lagged Households' Exp. 0.73** 0.62** 0.41** 0.45**

(0.07) (0.09) (0.10) (0.10)
Experts' Exp. 0.07** 0.08** 0.08*

(0.02) (0.02) (0.04)
HomeValueChange (perceived) 0.09** 0.11** 0.10**

(0.03) (0.03) (0.03)
HomeValueChange (actual) -0.01

(0.03)
constant 0.03 0.17* 0.21** 0.18**

(0.05) (0.07) (0.06) (0.07)
Num.Obs 83 83 83 82
R2 0.802 0.798 0.836 0.836
adj. R2 0.797 0.793 0.830 0.828
H0: Non-stationary residuals -7.5** -5.5** -6.2** -4.6*

�Num.Obs� refers to the number of total observations. Statistical signi�cance is indicated as follows:
+ p<0.10, * p<0.05, ** p<0.01. The last row shows the the test statistics for the Engle-Granger
cointegration tests.

Table 4.3: Johansen cointegration test

H0 Eigenvalue Trace 1% CV Max-eigen 1% CV
rank=0 0.326 55.50 35.65 33.42 25.52
rank≤1 0.214 22.07 20.04 18.19 18.63
rank≤2 0.053 3.87 6.65 3.87 6.65

Variables in the system: households' expectations, experts' expectations, and households' perceived
home value changes. Number of lags is selected based on BIC. �Trace� refers to the trace statistics,
�Max-eigen� maximum-eigenvalue statistic, and �CV� refers to the critical value.
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the coe�cient in front of Households' expectations to be unity in each cointegra-

tion vector. The number of lags in �rst-di�erences is selected according to the BIC

criterion.

The �rst cointegration vector, describing the relationship between households'

expectations and experts' forecasts, suggests that the two series are positively related

to each other in the long-run. Again, this �nding is in the spirit of the model

about households' macroeconomic expectations in Carroll (2003). However, the

cointegration vector (

(
1 −0.49 0

)′
) indicates that the correspondence between

the households' expectations and the experts' forecasts is not one-to-one in the long-

run. The second cointegration vector describes the relationship between households'

expectations and their perceived home value changes in the long run, which turn out

to be also positive. To be speci�c, above one quarter of the change in the perceived

home values is transmitted to the expectations.

Let us now turn to the loading parameters. For the �rst cointegration vector, the

loading parameter (λ) in front of the households' expectations is signi�cantly nega-

tive while the one in front of the experts' forecasts is not signi�cant. This suggests

that the households adjust expectations towards the experts' forecasts. This can also

be interpreted as the experts' forecasts Granger-cause the households' expectations

in the long run, but not vice versa. In addition, the households' perceived home

value changes are also a�ected by the �rst cointegration vector, as the correspond-

ing loading parameter is signi�cantly negative. One potential reason for this is that

the households' perceived home values changes are in�uenced by news in the media,

which might be positively correlated to the experts' expectations. For the second

cointegration vector, the loading parameters in front of the households' expectations

and home value changes are both signi�cantly negative, indicating that there exists

bidirectional causality between the two series. Besides, the experts' forecasts also

in�uence the households' expectations positively in the short-run, evidenced by the

relevant coe�cients in the lag polynomial of the �rst-di�erenced terms. Finally,
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Table 4.4: Estimation results of Vector Error-Correction model (4.2.2)

Cointegration equation Households' Exp. Experts' Exp. HomeValue Change
CE1 1 −0.4421** 0

(0.064)
CE2 1 0 −0.274**

(0.024)
∆ Experts' Exp. ∆ HomeValueChange ∆ Households' Exp.

Loading parameters (CE1) -0.017 -0.244** -0.211**
(0.063) (0.079) (0.053)

Loading parameters (CE2) 0.231+ 0.376* -0.332**
(0.128) (0.161) (0.109)

Lag ∆ Experts' Exp.& 0.061 0.330* 0.273*
(0.128) (0.160) (0.108)

Lag ∆ HomeValueChange -0.025 -0.388** -0.145*
(0.087) (0.109) (0.073)

Lag ∆ Households' Exp. 0.105 -0.110 -0.082
(0.150) (0.189) (0.127)

Num.Obs 81 81 81
LM test for residual autocorrelation (P-value )
AR(1) 0.597
AR(6) 0.884

�CE1� and �CE2� refer to the �rst and second cointegration vectors, respectively. �Num.Obs� refers
to the number of total observations. Statistical signi�cance is indicated as follows: + p<0.10, *
p<0.05, ** p<0.01.

we do not �nd that the residuals are autocorrelated, indicating that the Vector

Error-Correction model we estimated seems to be appropriate.

4.5 Heterogeneous dynamics of house price expec-

tations

While so far we have found that households as a whole follow experts when forming

house price expectations, we have not investigated the potential heterogeneity across

households, which has been documented in the previous literature with regard to

other macroeconomic expectations. For example, Easaw and Roberto (2010) have

shown that some groups of people more actively absorb professional forecasters'

in�ation expectations than some other groups. Similarly, Pfajfar and Santoro (2013)
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found that not all households in the Michigan survey adjust in�ation expectations

towards experts' predictions.

Motivated by these �nding, in this section we investigate the possible hetero-

geneity in the way households absorb experts' house price forecasts. We use the ed-

ucation level to classify respondents in the Michigan survey into two groups, those

with bachelor degrees (the high-educated) and those without (the low-educated),

and average the house price expectations of the two groups over time, respectively.

We choose education level as the group identi�er since education might be related

to the way information is processed. It is indeed found in the previous literature

that, for example, higher-educated people follow experts more closely when forming

in�ation expectations (Easaw et al. (2013)).

4.5.1 Bivariate VECM

Now there are three time series of expectations, one from the experts, one from

the high-educated people, and one from the low-educated people. We begin with

examining the piecewise relationship between each pair of expectation series through

the following bivariate VECM:

∆Ei
t(hgt,t+12)

∆Ej
t (hgt,t+12)

 =

αi
αj

[1 β]
Ei

t−1(hgt−1,t+11)

Ej
t−1(hgt−1,t+11)

 (4.5.1)

+

q∑
τ=1

Bτ

∆Ei
t−τ (hgt−τ,t−τ+12)

∆Ej
t−τ (hgt−τ,t−τ+12)

+

εit
εjt

 (4.5.2)

where Ei
t(hgt,t+12) ( Ei

t(hgt,t+12)) is the 12-month-ahead house price expectations

from group i (j). The cointegration relationship is normalized for group i.

Here we start with the bivariate cointegration analysis rather than a multivariate

cointegration analysis that includes all the three time series simultaneously. This is

mainly because that the number of observations is limited and including too many
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Table 4.5: Cointegration tests for bivariate VECMs

Experts and high-educated people
H0 Trace 5% CV Max-eigen 5% CV
rank=0 19.84 15.41 19.82 14.07
rank≤1 0.02 3.76 0.02 6.65
Experts and low-educated people
H0 Trace 5% CV Max-eigen 5% CV
rank=0 12.61 15.41 12.60 14.07
rank≤1 0.02 3.76 0.02 6.65
high-educated and low-educated people
H0 Trace 5% CV Max-eigen 5% CV
rank=0 21.79 15.41 18.90 14.07
rank≤1 2.89 3.76 2.89 6.65

Number of lags is selected based on BIC. �Trace� refers to the trace statistics, �Max-eigen�
maximum-eigenvalue statistic, and �CV� refers to the critical value. Statistical signi�cance is
indicated as follows: + p<0.10, * p<0.05, ** p<0.01.

variables reduces the degrees of freedom in the estimation of an error correction

model. Moreover, the inclusion of too many variables also makes it di�cult to give

economic meaning to the estimated cointegration results as the choice of normal-

ization is arbitrary. Thus, the results of the bivariate cointegration analysis in this

section will be complementary to the multivariate cointegration analysis in the next

section.

Table 4.5 presents the results of Johansen cointegration test (Johansen, 1991) for

the bivariate system (4.5.1) with regard to each pair of expectation series, respec-

tively. The null of no cointegration is rejected at the 5 % signi�cance level for the

pair including the experts and the high-educated people, as well as the pair includ-

ing the high-educated and the low-educated people. In contrast, the null that there

is no cointegration between expectations from the low-educated people and the ex-

perts' forecasts is not rejected. These results already indicate that the high-educated

people and the low-educated people perceive experts' forecasts di�erently.

Table 4.6 shows the estimated bivariate cointegration vectors for each pair of

expectations.9 The result indicates that there is a positive, though less than one-to-

9Although the null of no cointegration between the low-educated peole' expectations and the
experts' forecasts is not rejected at the 5 % signi�cance level, for the sake of completeness, we still
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Table 4.6: Bivariate cointegration relationships

Low-educated High-educated Experts
1 −0.298**

( 0.038)
1 −0.159*

( 0.067)
1 −0.668**

( 0.113)

Statistical signi�cance is indicated as follows: + p<0.10, * p<0.05, ** p<0.01.

one, relationship between house price expectations from di�erent groups of people.

The cointegration vector in the �rst row indicates that in the long run 30% of

the experts' forecasts are absorbed by high-educated people, which is more than

double the absorption rate of the low-educated people (14.7%) shown in the second

row. Finally, the third row of the table suggests that the house price expectations

between the high-educated and the low-educated people are highly correlated in

the long term. Although the above comparisons have not fully taken into account

the interactions among all the three groups of expectations together, which will

be investigated in the multivariate analysis in the next section, the results provide

suggestive evidence that the long-run relationship between forecasts from the experts

and those from the low-educated people is the weakest.

To see the direction of causality, table 4.7 shows the loading parameters for the

bivariate cointegration vectors in system (4.5.1). Each �gure in the table corresponds

to a loading parameter for a bivariate cointegration relationship between the group

of people indicated by the row name and the group indicated by the column name.

For each cointegration vector, the �gure above the diagonal refers to the estimated

loading parameter αi in the VECM (4.5.1), whose cointegration relationship is nor-

malized for group i in the row. The corresponding �gure below the diagonal is the

estimated parameters αj of the same VECM. The results in the last row show that

show the estimated VECM parameters for this pair. Moreover, as cointegration tests lack power in
small samples and the test statistic for the pair including the low-educated people and the experts
is close to the 10 % signi�cance level, a cointegration relationship may still exist.
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Table 4.7: Estimated loading parameters in bivariate VECMs

Group Low-educated High-educated Experts
Low-educated −0.498** −0.313**
High-educated −0.020 −0.436**
Experts −0.069 −0.107

Each �gure in the table corresponds to a loading parameter for a bivariate cointegration relationship
between the group of people indicated by the row name and the group indicated by the column
name. For each cointegration vector, the �gure above the diagonal refer to the estimated loading
parameter αi in the VECM (4.5.1), whose cointegration relationship is normalized for group i in
the row. The corresponding �gure below the diagonal is the estimated parameter αj of the same
VECM. Statistical signi�cance is indicated as follows: + p<0.10, * p<0.05, ** p<0.01.

experts' forecasts are always weakly exogenous, in the sense that the corresponding

loading parameter is never signi�cant. The results can also be interpreted as ex-

perts' forecasts Granger cause expectations of other groups of people, but not vice

versa. On the contrary, the results in the �rst row indicate that when expectations

from the low-educated people are part of a VECM, the error-correction process is

always driven by the adjustment in their expectations rather than expectations of

another group. The results in the second row suggest that expectations from the

high-educated people follow the experts' forecasts and are followed by expectations

from the low-educated people. Furthermore, the high-educated people also follow

the experts more closely than the low-educated people do, as evidenced by the mag-

nitudes of the corresponding loading parameters (−0.425 for the former and −0.292

for the latter).

4.5.2 Multivariate analysis

To further investigate the relationship among expectations from di�erent groups,

we resort to a multivariate analysis in this section. We �rst test the number of

cointegration vectors in the three expectations series, the results of which are shown

in table 4.8. The null of no cointegration relationship is rejected. The null of one

cointegrations vector cannot be rejected at the 5% signi�cance level for the trace test

but can be rejected for the maximum eigenvalue test. The null of two cointegrations
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Table 4.8: Tests of cointegration ranks in three expectation series

H0 Trace 5% CV Max-eigen 5% CV
rank=0 49.81 29.68 34.80 20.97
rank≤1 15.01 15.41 14.99 14.07
rank≤2 0.022 6.65 0.022 6.65

Variables in the system: households' expectations, experts' expectations, and households' perceived
home value changes. Number of lags is selected based on BIC. �Trace� refers to the trace statistics,
�Max-eigen� maximum-eigenvalue statistic, and �CV� refers to the critical value.

vectors cannot be rejected for both tests. According to the sequential testing rule

suggested in Johansen (1992), the trace test results would imply the existence of one

cointegration relationship while the maximum eigenvalue test results would imply

two cointegration vectors. Here we assume that there exists two cointegration vectors

in the system for several reasons. First, if we hold the assumption in the previous

bivariate analysis that any two among the three expectation series are cointegrating,

theoretically there should exist two cointegration vectors in the multivariate system

(Hall et al., 1992). Second, the trace test comes very close to reject the null of only

one cointegration vector at the 5% signi�cance level. Third, the Schwarz Bayesian

information criterion (SBIC) is 4.78 for the model with one cointegration vector and

is 4.76 for the model with two cointegration vectors, supporting the latter model.

Next, we estimate a multivariate VECM including expectation series from all the

three groups. To identify the parameters the following normalization restrictions

are imposed: The �rst cointegration relationship contains expectations from the

two groups of households where the coe�cient in front the low-educated people's

expectations is one; The second cointegration relationship contains expectations

from the high-educated people and from the experts where the coe�cient in front

the former is one. These restrictions are motivated by the �ndings in the bivariate

analysis that the relationship between the low-educated people's expectations and

the experts' forecasts is rather weak.

The estimated cointegration vector and loading parameters are shown in table

4.9. The estimated cointegration relationships are similar to those obtained in the
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Table 4.9: Multivariate error correction models

Cointegration equation Low-educated High-educated Experts
CE1 1 −0.523** 0

(0.102)
CE2 0 1 −0.302**

(.034)
∆ Experts' Exp. ∆ High-edu' Exp. ∆ Low-edu' Exp.

Loading parameters (CE1) -0.038 0.199+ -0.629**
(0.120) (0.121) (0.141)

Loading parameters (CE2) -0.077 -0.542** 0.208
(0.117) (0.118) (0.137)

Num.Obs 81 81 81

�CE1� and �CE2� refer to the �rst and second cointegration vectors, respectively. �Num.Obs� refers
to the number of total observations. Statistical signi�cance is indicated as follows: + p<0.10, *
p<0.05, ** p<0.01.

bivariate analysis in section 4.5.1. To be speci�c, the �rst cointegration vector

suggests that expectations from the two groups of households are positively related

in the long run, which can be compared to the third row in table 4.6; the second

cointegration vector implies that the high-educated people's expectations and the

experts' forecasts are positively linked, which can be compared to the �rst row in

table 4.6.

Turning to the loading parameters. First, the loading parameters in front of the

experts' forecasts are insigni�cant for both cointegration vectors, indicating that

this variable is weakly exogenous in the system. For the �rst cointegration vector,

the loading parameter in front of the low-educated peoples' expectations is nega-

tively signi�cant at the 1% level while the one in front of the high-educated people

is only signi�cant at the 10% level, suggesting that the former group follows the

latter group. For the second cointegration vector, the loading parameter in front

of the high-educated peoples' expectations is negatively signi�cant at the 1% level,

which indicates that this group of people follows the experts. Besides, the expec-

tations of the low-educated peoples are hardly a�ected by the second cointegration

vector, as the corresponding loading parameter is only signi�cant at the 10% level,

which implies that in general they do not directly follow the experts when forming
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expectations.

The results from both the bivariate and the multivariate analysis suggest that,

when forming house price expectations, high-educated people follow experts' fore-

casts more closely compared to low-educated people. This �nding is consistent with

the previous literature on households' in�ation expectations (Easaw et al., 2013).

One explanation is that high-educated people in general have better access to the

news media and are more willing to absorb macroeconomic news, which re�ects

experts' forecasts. Besides, this group of people is also more likely to encounter

experts via social interactions.

4.6 Conclusion

This paper studies the dynamics of households' house price expectations during

and after the �nancial crisis, based on survey data that are available only recently.

The paper contributes new empirical �ndings on households' macroeconomic ex-

pectations in general, and house price expectations in particular. We show that

households' house price expectations are in�uenced positively by both experts' fore-

casts and past home value changes. Besides, high-educated people are more active

in absorbing experts' forecasts than low-educated people and low-educated people

also follow the high-educated when forming expectations.

There is literature arguing that some deviations from rational expectations are

necessary to understand the movements of house prices, especially the bubble and

burst. This paper tests one alternative model of macroeconomic expectations in the

housing market. The results suggest that models on formations of house price ex-

pectations might incorporate features such as extrapolative behaviour, the in�uence

of news media, the inattention of households, and heterogeneous dynamics between

socio-economic groups. Some of the features, such as the role of news media and

social interactions, can be addressed more directly if data are available. Besides, the
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empirical �ndings only partly support Carroll's model. The households' expecta-

tions do not fully correspond to the experts' forecasts in the long-run. There might

exist some unique features regarding house price expectations, which are worth in-

vestigating.

From a practical point of view, experts' forecasts can potentially serve as early

signals to monitor house price expectations of the whole population. Besides, the

expects' forecasts about macroeconomic variables are on average better than the

household' own expectations.10. The policy makers might want to anchor house-

holds' house price expectations for the sake of �nancial stability. We �nd that

although households follow experts' forecasts, the absorbing rate seems to be rather

low. Thus, more e�ective communication is required, especially towards the low-

educated people.

10This has been documented in for example in�ation expectations. Recently, Zhang (2013)
analyzed the experts' forecast of future house prices in the WSJ survey, and found that most of
the forecasts are unbiased.
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Appendix

4.7 Lagged experts' forecasts

Model (4.2.1) includes the households' expectations and the experts' forecasts in the

same month, which follows the settings in related literature on in�ation expectations

(e.g. Carroll, 2003, Doepke et al., 2008, and Easaw et al., 2013 ). One concern is

that the households might not be aware of the experts' forecasts in the current

month. To address this issue, we replace the experts' forecasts with their forecasts

in the previous month in model (4.2.1). The estimation results with lagged experts'

forecasts are shown in table 4.10. The coe�cients are very similar to the ones in

table 4.2. Thus, the conclusion does not change if we use lagged experts' forecasts.

Table 4.10: Estimation results of model (4.2.1) using lagged experts' forecasts

Model 1 Model 2 Model 3 Model 4
Lagged Households' Exp. 0.72** 0.62** 0.42** 0.48**

(0.07) (0.09) (0.10) (0.10)
Experts' Exp. 0.07** 0.08** 0.03

(0.02) (0.02) (0.04)
HomeValueChange (perceived) 0.09** 0.10** 0.07*

(0.03) (0.03) (0.03)
HomeValueChange (actual) 0.03

(0.02)
constant 0.03 0.17* 0.20** 0.17*

(0.05) (0.07) (0.07) (0.07)
Num.Obs 82 83 82 81
R2 0.785 0.798 0.817 0.820
adj. R2 0.779 0.793 0.810 0.811

�Num.Obs� refers to the number of total observations. Statistical signi�cance is indicated as follows:
+ p<0.10, * p<0.05, ** p<0.01.

4.8 Impulse response analysis

In this section we perform some impulse response analysis regarding the vector

error-correction model (4.2.2), based on the estimation results shown in table 4.4.
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Panel (a) of �gure 4.2 shows that the households' expectations raise to a new level

permanently in response to a positive innovation in the experts' forecasts. This is

consistent with the fact that there is a positive long-run relationship between the

two series and the experts' forecasts Granger-cause the households' expectations.

Panel (b) shows the impact of an innovation in the perceived home value changes

on the households' future expectations, which is also positive but of a lower magni-

tude. Panel (c) and panel (d) show the in�uence of innovations in the households'

expectations, which in general die o� quickly.
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Figure 4.2: Impulse Response Analysis
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Chapter 5

Trends in Mortality Decrease and

Economic Growth

[Based on joint work with Bertrand Melenberg: Niu, G., & Melenberg, B. (2014).

Trends in Mortality Decrease and Economic Growth, Demography, forthcoming.]

Abstract The vast literature on extrapolative stochastic mortality mod-

els mainly focuses on the extrapolation of past mortality trends and

summarizes the trends by one or more latent factors. However, the in-

terpretation of these trends is typically not very clear. On the other

hand, explanation methods are trying to link mortality dynamics with

observable factors. This chapter serves as an intermediate step between

the two methods. We have performed a comprehensive analysis on the re-

lationship between the latent trend in mortality dynamics and the trend

in economic growth represented by GDP. Subsequently, the Lee-Carter

framework is extended through the introduction of GDP as an additional

factor next to the latent factor, which provides a better �t and better

interpretable forecasts.
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5.1 Introduction

The twenty century has seen a remarkable increase in average human lifetime com-

pared to previous centuries. For most developed countries, mortality rates have

fallen dramatically at all ages. By the beginning of the twenty-�rst century, the av-

erage life span has reached about 70 years, while in the middle of the twenty century

the number was between 60 and 65 years and in the middle of eighteenth century the

number was around 40 to 45 years. The average lifetime among early humans was

considered to be between 20 and 30 years, as suggested by archaeological evidence.

Roughly speaking, the average life span increased by 25 years in the 10,000 years

before the middle of eighteenth century and increased by another 25 years between

the end of eighteenth century and the twenty century century. The recent longevity

improvement is rather impressive. For more details of the mortality trend, see, for

example, Pitacco et al. (2009).

The fast increase of longevity is accompanied by an increasing attention on risk

management for insurance companies and pension funds. For example, the Solvency

slowromancapii@ project, which aims at redesigning �nancial regulation of insurance

companies in Europe, imposes a risk-based capital requirement. The tightening of

regulation and supervision makes longevity risk a signi�cant factor related to the

sustainability of pensions and insurance companies, as well as the whole society.

In response to the increasing role of longevity risk and the demand for more accu-

rate projections of future mortality rates, a vast literature on mortality forecasting

has been produced during the recent decade. The mortality forecasting methods

can be divided into three categories, see Booth and Tickle (2008): expectation, ex-

trapolation, and explanation. The expectation method is based on expert opinions,

the explanation method tries to link mortality dynamics to some risk factors, and

the extrapolation method assumes that past mortality trends will continue in the

future.

Most of the models lie in the category of extrapolation. In general, these mod-
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els focus on the historical mortality changes, and extract some latent factors from

historical data. In general, each latent factor summarizes a trend in mortality rates

along some dimension, for example, period or cohort. However, how these trends

will behave in the future is hard to determine, as long as it is not fully understood

what kind of forces are behind them. Most studies focus on an ARIMA modeling

of these latent factors; only few have confronted them with some observable socio-

economic variables. In contrast, we try to examine and understand the latent trends

in mortality in terms of observable trends. One of the well observed and heavily

studied trends, accompanying the mortality decline in recent centuries, is the rapid

growth in output.1 This comovement, which clearly seems to last for centuries, is

not likely to be a coincident, not to mention the widely documented role of economic

growth on the long-term mortality decline (see, for example, Brenner (2005)). Even

if there is not a strong direct link between mortality rates and economic levels, the

trends in the two series might be a�ected by some similar underlying factors and

are bundled in the long-term.

The main goal of this paper is to examine the �equilibrium� relationship between

the trend in mortality and the trend in economic growth. In the �rst part of this

paper, we investigate to what extent the trend in mortality, as quanti�ed by the

Lee and Carter (1992) model, is captured by the trend in economic growth, as

represented by real GDP. More speci�cally, using data from 1950 to 2007 of six

OECD countries, namely, the United States, the United Kingdom, the Netherlands,

Canada, Australia, and Japan, the �rst part of the paper compares the latent factor

of the Lee-Carter model with real GDP per capita. Here, the main �ndings are:

First, Johansen cointegration tests indicate that the two series have a long-run

relationship. Second, the two series have comparable performance in terms of �tting

historical mortality rates. Third, the two series imply similar mortality projections.

In short, the real GDP series is quali�ed to be a substitute for the latent factor in the

1See the section �Economic growth and mortality rates� for an overview of related literature.
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Lee-Carter model. This part of our paper is most closely related to Hanewald (2011).

She mainly studies the relationship between mortality rates and the �uctuations in

macroeconomics, while we present a comprehensive analysis on the trends, which

can be associated with the long-term dynamics of these series.

Based on these �ndings, we propose a stochastic mortality model that includes

both latent and observable factors, which aims at better interpreting and predict-

ing mortality dynamics. Forecasting mortality rates is a natural application of our

model. Our mortality forecasting method can be seen as a combination of the ex-

planation and extrapolation methods in Booth and Tickle (2008). Firstly, from the

perspective of explanation methods, we include real GDP per capita as an observ-

able factor, witch captures the correlation between long term trends in mortality

dynamics and economic growth. Secondly, from the perspective of the extrapola-

tion methods, our model captures the trend in mortality rates and forecast future

mortality rates based on historical trends. The results from applying the model

to our sample data show that, compared to the original Lee-Carter approach, the

proposed model �ts the data better.

5.2 Literature Review

5.2.1 Extrapolative mortality modeling

One of the most well-know extrapolative mortality models is the Lee and Carter

(1992) model (hereafter referred to as �Lee-Carter model�), which we will brie�y

discuss in this section. The central death rate with age x in year t is denoted by

mx,t = Dx,t/Ex,t, where Dx,t is the number of deaths at age x and time t and Ex,t,

the exposure-to-risk, is the number of person-years at age x and year t. Lee and

Carter (1992) postulate a log bilinear form for the central death rate:

ln(mx,t) = αx + βxκt + εx,t (5.2.1)
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with time-invariant parameters αx and βx, and a homoskedastic error term εx,t

with mean 0 and variance σ2
ε . The parameters in the Lee-Carter model cannot

be identi�ed without additional constraints. Lee and Carter (1992) impose that∑
t κt = 0 and

∑
x βx = 1, where κt is summed over all time periods and βx is

summed over all available ages in the sample.

Model (5.2.1) can be estimated using singular value decomposition (SVD) as

in Lee and Carter (1992). Moreover, to match the estimated death rates with the

observed number of deaths in a given year, D(t) =
∑

xDx,t, Lee and Carter propose

to adjust κt after the �rst step estimation such that

D(t) =
∑
x

[
Ex,t exp(α̂x + β̂xκt)

]
(5.2.2)

where α̂x and β̂x are estimated parameters from SVD.

The parameter κt, often labeled as mortality index, or mortality reduction factor,

is a one-dimensional time-dependent latent process that quanti�es the variation in

the level of mortality over time. The parameters αx, by construction, represent the

average log mortality at given ages, while the parameters βx capture the sensitivity

of the log central death rate at age x to variations in κt. Finally, the error terms εx,t

represent the age and time speci�c variations, not captured by the systematic part.

Mortality prediction is based on the estimated parameters and projection of κt.

In most studies, the latent variable κt is modeled as an ARIMA(p, d, q) process with

best �tting form (p, d, q)=(0,1,0), which is a random walk with drift (Lee & Carter,

1992, Lee & Miller, 2001, and Hanewald, 2011), i.e.,

κt = θ + κt−1 + δt (5.2.3)

where θ is a drift term and δt is a white noise error term.

Many modi�cations of the original Lee-Carter model have been proposed, see,

for example, Lee and Miller (2001), Booth et al. (2002), Cairns et al. (2006), Currie
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et al. (2004), Plat (2009), and O'Hare and Li (2012), to name a few. A recent review

(including many references) is provided by Booth and Tickle (2008).

Despite of the popularity of these stochastic models with latent variables, they

also have common limitations. Although the stochastic models are able to identify

some historical trends in mortality rates, they are not aiming at explaining what

underlies the historical trends nor whether these trends will continue in the future.

A more ambitious model might take into account the impact of some exogenous

factors (such as biomedical, environmental, or socio-economic factors) on mortality

rates. Although it is not easy to identify all relevant variables and to comprehend

their mechanisms, it is instructive to start with a few. In the following section,

we discuss the relationship between trends in mortality rates and in one of the

potential factors, namely economic growth. By choosing GDP as the proxy for

economic growth, our approach can be associated with both the extrapolation and

the explanation methods. The next section elaborates the reasons.

5.2.2 Economic growth and mortality rates

The relationship between economic growth and health and mortality has been stud-

ied for several decades. It is generally accepted that the two variables are closely

linked, with causation often going in both directions. In this paper we use GDP to

forecast mortality. However, there is also an extensive literature discussing an alter-

native pathway - the impacts of health on economic outcomes, at both the micro-

and the macro- levels. The debate is still ongoing. For example, Bloom et al. (2004)

�nd that good health has a positive and sizeable e�ect on aggregate output. Bloom

et al. (2004) also provide an overview of works that include health as a determinant

of economic growth and the magnitude of the e�ect. Besides, both De la Croix and

Licandro (1999) and Bhargava et al. (2001) claim that the e�ect of life expectancy

on growth is positive in low-income countries. On the other hand, Acemoglu and

Johnson (2007) �nd no evidence that exogenous increase in life expectancy resulted
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in a signi�cant increase in per capita economic growth. While we acknowledge the

controversy in the literature, our analysis is based on the hypothesis that in the

long run, the trend in economic growth and the one in longevity growth should not

diverge from each other to a large extent.

After emphasizing that studying the direction of causality is beyond the scope of

this paper, in the following we continue to review the literature on the relationship

between economic growth and health. Using cross-country and time series data on

health and income per capita, Pritchett and Summers (1996) found a signi�cant

positive e�ect of income on health in the long run. Using individual level data from

several surveys, Ettner (1996) documented that increases in income signi�cantly

improve mental and physical health, based on both ordinary and IV estimates.

Brenner (2005) suggests that economic growth not only reduces poverty through

an increase of real income, but also stimulates the investments in new medicines,

surgery and prosthetics, and hospital services, which may dramatically increase life

expectancy. Applying time series analysis to US data, Brenner (2005) also shows

that over the medium- to long-term GDP is strongly negatively related to mortality.

Birchenall (2007) argues that improvements in economic conditions are an important

force behind mortality decline. The author uses income per capita to measure the

economic condition, which is similar to the real GDP per capita in our paper. The

e�ects of wealth on health are not constrained to developing countries. Recently,

Swift (2011) applied cointegration analysis to investigate the relationship between

health and GDP for 13 OECD countries over the last two centuries, and found that

GDP per capita and total GDP have a signi�cant impact on life expectancy for most

countries. Nandi et al. (2012) found that monthly rates of death by suicide in New

York City are negatively associated with levels of economic activity in New York

State.

However, there is only a very limited number of papers studying the role of

macroeconomic variables and other observable factors in the context of stochastic
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mortality models such as the Lee and Carter (1992) model. Recently, using data

for six OECD countries over the period 1950 to 2006, Hanewald (2011) studies

the impact of macroeconomic �uctuations on mortality dynamics in the Lee-Carter

mortality forecasting model, �nding that the mortality index κt in this model and

GDP levels are signi�cantly correlated for the considered time periods and countries.

This paper follows the idea that the latent factors in mortality might be related

to some macroeconomic variables. However, instead of building a structural model

to study causality, we �rst begin with a reduced-form approach to study the rela-

tionship between the latent factor and the observable factor. By doing so, we aim to

provide an alternative perspective on understanding the existing stochastic models

and pave the way for future developments of models including explanatory elements.

Among a number of potential factors, we focus on the role of economic growth where

real GDP per capita is applied as proxy. In the long run, the trend in economic

growth, as measured by real GDP per capita, is very likely to be associated with the

trend in mortality reduction, which is the main component captured by many of the

stochastic mortality models. The use of real GDP as a measure of economic growth

is widely documented. Besides, GDP data has a number of merits in a forecasting

model. Firstly, GDP is relatively objective and easy to access, making the model

more transparent. Secondly, the dynamics of the GDP process has been widely

studied in the literature. Moreover, the trend in GDP may capture the trend in the

overall economy.

5.3 Mortality and GDP

5.3.1 Data and mortality �tting by the Lee-Carter model

Our analysis in this paper is based on six industrialized countries, namely the United

States, the United Kingdom, the Netherlands, Canada, Australia, and Japan, whose

mortality dynamics are often investigated in the literature and whose pension sys-
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tems are exposed to increasing longevity risk. Annual death rates from 1950 to

2007 are obtained from the Human Mortality Database.2 The time period we select

covers the recent mortality trends after World War Two. As mortality data at very

old ages are not very reliable, we set the maximum age in our sample to 99, thus

the total range of age investigated is 0 − 99.3 The time series of real GDP per

capita for each country of the corresponding period is obtained from the Maddison

Data on the World Economy.4 Due to the exponential growth patterns, we take

the natural logarithm of the real GDP series. Our dataset is similar to the one in

Hanewald (2011). However, we choose real GDP per capita instead of total GDP

since the former seems to be a more appropriate measure of economic well-being, as

the former is more closely related to individuals' purchasing power.

The Lee-Carter model is estimated under the settings in Lee and Carter (1992)

for each country and gender combination. Males and females are treated separately

as they show di�erent mortality patterns. In line with the previous literature, the

mortality index, κt, shows a decreasing trend in each case and can explain a large

amount of variance in historical mortality rates. We plot the estimated κt in Fig. 5.1.

The proportion of the variance explained by the Lee-Carter model (R2) is given in

Table 5.1. There are some di�erences in terms of model �tting across countries. The

mortality rates of Japan are �tted best, with more than 96% of the variance being

explained for both genders, followed by the United States, while the Netherlands

comes in last (85%). This might not be surprising, given that the Netherlands has

the smallest population size.

Compared to the other �ve countries, the mortality index (κt) of Japan also

shows a deeper decline for each gender. On the whole, the mortality index shows a

decreasing trend in each case and explains a large amount of variance in historical

2http://www.mortality.org/
3In this regard the probability of survival beyond 99 will be set equal to zero. However, in this

paper we focus on life expectancy at early ages so that the survival probability beyond 99 has little
impact.

4http://www.ggdc.net/MADDISON/oriindex.htm
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mortality rates, which is in line with the previous literature.

Table 5.1: Proportion of variance explained by Lee-Carter model (R2)

United States Canada United Kingdom
Female 0.9561 0.9258 0.9176
Male 0.9379 0.9256 0.9209

Netherlands Australia Japan
Female 0.8569 0.9079 0.9627
Male 0.8562 0.9067 0.9651

5.3.2 Long run relationship between mortality and GDP

In this section we examine the time-series properties of the latent factor in the

Lee-Carter model and the GDP process, with a focus on the long run relationship

between the two series.

We start with testing the stationarity of the mortality index (κt) and the real

GDP per capita in logarithm (gt) in each country. First, we apply the Phillips-Perron

test (Perron, 1988) in the most general setting, with the inclusion of a constant

and a linear time trend.5 The results of the tests are in panel A of Table 5.2. For

female κt, we can only reject the null of nonstationarity for UK and Japan at the 1%

signi�cance level. For male κt, the null of nonstationarity is rejected for Japan at the

5% signi�cance level. For GDP, we can only reject the null of nonstationarity for US

and UK, at the 10% and at 5% signi�cance level, respectively. For those stationary

series, we �nd that they are trend stationary. However, in a �nite sample it is very

di�cult to distinguish between di�erence-stationary and trend-stationary behavior,

and the assumption of di�erence-stationarity might be more prudent. In general,

the results indicate that most of the series are not stationary. As a supplementary

analysis, we perform the KPSS test developed by Kwiatkowski et al. (1992) with

5Hanewald (2011) performs similar unit root tests. The main di�erences are, �rst, that she
uses the Brouhns et al. (2002) variant of the Lee-Carter model while we maintain the original
settings. Second, she uses real GDP in levels while our analysis is based on real GDP per capita
in logarithm. However, the main results are similar.
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Figure 5.1: Mortality index (κt) of each country ( 1950-2007)
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Table 5.2: Results of unit root tests: test statistics

United States Canada United Kingdom Netherlands Australia Japan

Panel A: Levels of the Time Series (Phillips-Perron Test)

κt,female -7.06 -11.10 −28.67??? -7.98 -8.05 −32.74???

κt,male -1.69 0.96 0.40 4.07 -1.23 −22.13??

gt −18.96? -4.84 −22.35?? -8.92 -9.18 -0.35

Panel B: Levels of the Time Series (KPSS Test)

κt,female 0.40??? 0.38??? 0.43??? 0.45??? 0.53??? 0.23???

κt,male 0.59??? 0.68??? 0.71??? 0.64??? 0.70??? 0.39???

gt 0.23??? 0.54??? 0.13? 0.56??? 0.31??? 0.72???

Panel C: First Di�erence (Phillips-Perron Test)

κt,female −66.95??? −74.49??? −78.76??? −70.48??? −80.20??? −65.14???

κt,male −66.68??? −69.98??? −76.40??? −74.50??? −78.04??? −63.10???

gt −50.28??? −42.00??? −35.55??? −43.18??? −40.42??? −30.64???

Note: ?p < 0.10, ??p < 0.05, and ???p < 0.01.

the null hypothesis that the time series is trend-stationary, the results of which

are shown in Panel B of Table 5.2. The null of stationarity is rejected at the 1%

signi�cance level without exception. Therefore, we proceed under the assumption

of the presence of a unit root in the time series. We perform a similar analysis on

the �rst di�erences of the series. Panel C of Table 5.2 gives the test statistics of the

Phillips-Perron test. The null of nonstationarity is rejected at the 1% signi�cance

level for each series. In brief, the above analysis indicates that the time series are

I(1) processes.

The nonstationary series κt and gt can be analyzed in �rst di�erences. However,

as also argued in Hanewald (2011), such a transformation might miss the long term

properties of the data. A common strategy to study the long-run relationship among

time series data is a cointegration analysis. Two or more nonstationary series are said

to be cointegrated if they are integrated of the same order and a linear combination

of them is stationary. The linear combination can be interpreted as a long-run

equilibrium among the series.
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Hanewald (2011) applied the Engle-Granger procedure ( Engle & Granger, 1987)

to test the cointegration between the mortality index, κt, and real GDP level in

six OECD countries and di�erent age groups. Her �ndings are, however, mixed.

Approximately one quarter of her results indicate the existence of cointegration

relationships, while the remaining results do not. As a complementary analysis,

we directly study the long run relationship between log central death rates and log

real GDP per capita at each age by the Engle-Granger procedure. Formally, we are

testing the stationarity of the estimated residuals, ε̂gt,x, from the regression6

ln(mx,t) = γ0,x + γ1,xgt + εgx,t (5.3.1)

for each age x, x = 0, 1, . . . , 99. As a comparison, we also study the long-run

implications between the log central death rates and the mortality index κt. More

speci�cally, we apply the Engle-Granger procedure to the model

ln(mx,t) = β0,x + β1,xκt + εκx,t (5.3.2)

for each age x, x = 0, 1, . . . , 99.

Detailed results are presented in the online appendix. In general, the Engle-

Granger test indicates mixed results. The mortality rates are found to be cointe-

grated with real GDP (gt) or the mortality index (κt) only at certain ages. Besides, in

terms of presenting cointegration relationships under the Engle-Granger procedure,

neither κt nor gt dominates the other.

It is often argued that in �nite samples the power of the cointegration analysis

is often too small to discover a potential cointegration relationship. Besides, the

Engle-Granger procedure requires the speci�cation of dependent and independent

variables in the test while a vector error correction model (VECM) does not have

this concern. As a complement, we build a VECM for the mortality index and the

6Based on results from the augmented Dickey-Fuller test, most of ln(mx,t) are I(1) processes.
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Table 5.3: Johansen cointegration test statistic

Females
United States Canada United Kingdom Netherlands Australia Japan

r ≤ 1 5.12 6.54 8.94 4.53 3.58 5.52
r=0 30.54 44.10 25.95 30.77 50.92 36.15

Males
United States Canada United Kingdom Netherlands Australia Japan

r ≤ 1 4.50 5.91 5.40 14.30 6.78 4.44
r=0 35.23 43.01 32.21 46.50 58.24 29.49

Note: Critical values for the null of r = 0 are: 13.73 for p < 0.10, 15.17 for p < 0.05, and 20.20 for
p < 0.01. Critical values for the null of r ≤ 1 are: 7.52 for p < 0.10, 9.24 for p < 0.05, and 12.97
for p < 0.01.

macroeconomic indicator and perform the Johansen (1988) cointegration tests. 7

The test results, shown in Table 5.3, support the existence of cointegration re-

lationships between the mortality index and the macroeconomic indicator much

stronger than the results in Hanewald (2011). The null of no cointegration (r = 0)

is rejected in all cases at a signi�cance level of 1%, while the null of one cointegration

vector (r = 1) cannot be rejected at a signi�cance level of 5% in all cases except

for Dutch males. Above all, the analysis in this section indicates possible long run

relationships between the macroeconomic indicator, real GDP per capita, and the

mortality rates, which motivates us to compare their trends in more details in the

following sections.

5.4 Trend comparison: Mortality and GDP

In this section, we begin with comparing the in-sample goodness-of-�t between the

Lee-Carter model and a model with GDP per capita as the regressor. Secondly, we

forecast mortality rates by extrapolating GDP per capita and compare the results

to the ones from the Lee-Carter model. By doing this, we can compare the trend in

mortality rates and the trend in economic growth from a new perspective.

7We multiplied the test statistics by a factor (T − pk)/T , where p denotes the number of lags
in the VAR model and k denotes the number of variable. This is to correct small sample bias, as
suggested in Ahn and Reinsel (1990).
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First, we compare their performance on �tting historical data. The goodness of

�t between the model based on the Lee-Carter mortality index and the model based

on the real GDP per capita series are very similar. The goodness of �t is measured

by the R2-s from model (5.3.1) and model (5.3.2) based on ordinary least squares.

The results are available in the online appendix. In general, the mortality index

and the macroeconomic indicator have comparable performance in �tting historical

mortality data. We further study their implications on the trend and variance of

future mortality rates. We �t historical mortality rates by the mortality index (κt)

or real GDP per capital in logarithm (gt), according to equation (5.3.1) and (5.3.2),

see the previous section. The prediction of future mortality rates is based on the

forecasts of κt or gt, where we rely on ARIMA models. In most cases, the series is

modeled most appropriately by a random walk with drift model. Following common

practice, to correct for a jump-o� bias in mortality �tting, we calculate the predicted

changes of future mortality rates and base our projections on the actual rates in the

�nal year of the estimated sample. This adjustment is performed for both the Lee-

Carter model and the model based on GDP.

Using historical data from 1950 to 2007, we forecast future mortality rates based

on the procedures mentioned above. As life expectancy is an often used summary

of mortality, we project period life expectancies at birth 30 years ahead. The use

of period life expectancies, instead of cohort life expectancies, is common in the

literature and in practice.8 To account for the forecast uncertainty, we calculated

95% con�dence bounds for the ARIMA models for κt and gt. To focus on the

comparison between κt and gt, uncertainties in other parts of the Lee-Carter model,

such as εx,t in equation (5.2.1), are not taken into account.

Figure 5.2 shows the results for females. Results for males are shown in the online

appendix. The forecasted mean values and con�dence intervals by the Lee-Carter

model and the model with GDP almost coincide in three countries (the United

8Furthermore, cohort life tables are based on the projections over very long time period. Thus,
the forecast of cohort life tables is more sensitive to the underlying model and estimation methods.
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Stated, Canada, and the Netherlands). For the other countries, apart from the fact

that the forecasts based on the Lee-Carter model have wider intervals, the mean

predictions are still similar.9 The life expectancy at age zero for females is expected

to increase to around 85 in most countries. The expected increase in life expectancy

in Japan is more dramatic, with a �gure about 5 years higher than the ones in other

counties. The result implies that if the target is forecasting long-term mortality, we

may replace the latent factor in the Lee-Carter model with an observable one, and

still achieve comparable results. Moreover, the forecast of GDP can be associated

with future economic scenarios. For instance, the upper bound of the forecasted

mortality rates in our model coincides with a lower economic growth prediction

while the lower bound is related to a higher economic growth prediction.

5.5 A Generalized Model

In this section we study a stochastic mortality model that includes both latent and

observable factors, where in our case GDP is the observable factor. This model can

be regarded as a generalized version of the original Lee-Carter method. We will

begin with the model setup and estimation methods, followed by the estimation

results, and then we study the implied mortality projections.

5.5.1 Model setup and estimation method

We postulate that the logarithm of the central mortality rate, ln(mx,t), has a linear

form

ln(mx,t) = αx + βxκt + γxgt + εx,t, (5.5.1)

with time-invariant parameters αx, βx, and γx, and a time varying latent variable

κt. εx,t is a error term that is uncorrelated with κt and gt. αx, βx and κt have similar

9In order to better �t the in-sample mortality rates at di�erent ages, the Lee-Carter κt is more
volatile than the GDP series, possibly yielding better out-of-sample point forecasts, but also at the
expense of a larger prediction interval.
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(a) United States (b) Canada

(c) United Kingdom (d) Netherlands

(e) Australia (f) Japan

Figure 5.2: Historical and forecasted life expectancy at birth (e0),with 95% intervals
included (Females). Solid lines represent the results from the Lee-Carter model
(5.2.1) and dashed lines from model (5.3.1)
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interpretations as in the original Lee-Carter model. The newly included parameter,

γx, measures the sensitivity of mortality rates at age x to the observable factor (real

GDP per capita in logarithm in this paper). For a better interpretation of αx, the

observable factor gt in the model is demeaned before estimation, implying that αx

will be the average log central death rate across time, just like in the original Lee-

Carter model. The model we propose includes as special cases two groups of models.

If we let γx = 0, then we have the standard Lee-Carter model. If, otherwise, we

assume that βx = 0, we have model (5.3.1) in the previous section.

Let µx,t denote the systematic part of ln(mx,t) and suppose that a set of param-

eters

θ = (α1, . . . , αX , β1, . . . , βX , κ1, . . . , κT , γ1, . . . , γX) (5.5.2)

is given. The parameters are not identi�ed without additional constraints as for any

scalar c, any scalar e, and any scalar d 6= 0 it holds that

µx,t = αx + βxκt + γxgt

= αx + βx(κt − egt) + (γx + eβx)gt

= (αx − βxc) +
βx
d
{d(κt − egt + c)}+ (γx + eβx)gt

= α̃x + β̃xκ̃t + γ̃xgt (5.5.3)

where

α̃x = αx − βxc (5.5.4)

β̃x = βx/d (5.5.5)

κ̃t = d(κt − egt + c) (5.5.6)

γ̃x = γx + eβx (5.5.7)
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We propose the following four normalization constraints.

∑
t

κt = 0 (5.5.8)

∑
x

βx = 1 (5.5.9)

cov(κt, gt) = 0 (5.5.10)

κ = (κ1, . . . , κT ) 6= 0 (5.5.11)

where the covariance in (5.5.10) will be calculated in-sample.10 Following Nielsen

and Nielsen (2010), the next theorem shows that our constraints identify the pa-

rameters uniquely. The proof is given in the appendix.

Theorem 1. Let µ = (µx,t, x = 1, . . . , X, t = 1, . . . , T ), where µ = µ(θ) satis�es

µx,t = αx + βxκt + γxgt for some θ as given by (5.5.2) . Then the parametrization

θo where
∑X

x=1 β
o
x = 1,

∑T
t=1 κ

o
t = 0, cov(κot , gt) = 0 in sample, and κo 6= 0, satis�es

(i) θo is a function of θ.

(ii) µ is a function of θ through θo.

(iii) The parametrization of µ by θo is exactly identi�ed. That is, if θ1 6= θ2 are

two parameters satisfying the normalizing constraints, then µ(θ1) 6= µ(θ2).

Model (5.5.1) is �tted to age-speci�c observed central mortality rates and time

series of observable factors using the least squares approach. Speci�cally, the param-

eters are such that they minimize a quadratic loss function. A standard iteration

optimization method is used to solve for the parameters. See, for example, Wilmoth

(1993) for details.

10Compared to the Lee-Carter model, we add constraint (5.5.11), namely, κ = (κ1, . . . , κT ) 6= 0.
Constraint (5.5.11) is needed to identify βx. This constraint is also required in the Lee-Carter
model to identify βx. If (5.5.11) is not satis�ed, i.e. κ = 0, then our model reduces to model
(5.3.1).
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5.5.2 Estimation results

We use the same dataset of the six OECD countries as in the previous section. The

results for females are shown in Fig. 5.3. Results for males are presented in the online

appendix. The patterns of average mortality (over time) across ages, measured by

αx, are quite similar in our sample countries. The values of βx vary more between

countries. For females, the values of βx in the United Kingdom are relatively high

at younger ages and low at old ages, which is contrary to the pattern in Japan.

The parameters γx capture the sensitive of mortality rates towards real GDP at

di�erent ages, which are relatively similar across countries. Mortality rates at very

young ages are most closely related with economic growth. The γx-s are negative

in general, due to the decreasing trend in mortality rates and the increasing trend

in GDP. One striking di�erence between our method and the Lee-Carter model is

the role of the latent factor. There is no clear time trend in κt anymore as the time

trend is now mostly captured by gt. Besides, κt in our model, with average slope

as function of time being around −0.8, is much �atter than the corresponding κt in

the Lee-Carter model, whose slope is close to −4. Moreover, κt-s have large swings

in our sample period, indicating that there might be nonlinear time e�ects captured

by κt-s. In general, βx-s are similar across ages and countries, except for females in

UK.

We use the Bayesian information criterion (BIC) to compare the goodness-of-�t

between our model and the Lee-Carter model. The BIC is a popular criterion that

takes into account the balance between parsimony and goodness-of-�t of a model.

In our case, the BIC is de�ned as

BIC = N log(σ̂2
ε ) + ν logN, (5.5.12)

where σ̂2
ε is estimated variance of the error term, ν is the di�erence between the
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(a) αx (b) γx

(c) κt (d) βx

Figure 5.3: Parameters of model (5.5.1) (Females)
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Table 5.4: Fit of Model (5.5.1) and Lee-Carter model: Bayesian information criterion
(BIC)

Female Male

Model (5.5.1) Lee-Carter Model (5.5.1) Lee-Carter

United States -32056 -30526 -31555 -29597
Canada -25017 -24292 -26400 -24172

United Kingdom -26182 -25297 -28025 -25357
Netherlands -22211 -21816 -24355 -19068
Australia -22573 -22743 -23848 -22833
Japan -26051 -16931 -27033 -23553

number of parameters and the number of constraints,11 and N is the number of

observations. Under the assumption that the errors are independent and identi-

cally distributed according to a normal distribution, log(σ̂2
ε ) is proportional to the

maximum log likelihood.

Values of BIC are shown in Table 5.4. A smaller (more negative) value indicates

a better model �t. Our model outperforms the Lee-Carter model in every case of

country and gender combination, except for the Australian females. The improve-

ment of goodness-of-�t is mostly apparent in Japanese female data, as re�ected in

the large di�erence between the BIC values.

As mentioned before, the standard Lee-Carter model is a restricted version of

our generalized model, when γx = 0 for all x. To examine whether the estima-

tion based on our model provides more information than the standard Lee-Carter

model, we test the null hypothesis that γx = 0 for each x based on bootstrapping

the residuals of our model. To be speci�c, in each bootstrap simulation, we draw

randomly with replacement from the residuals in (5.5.1) to construct a new sample

and re-estimate the parameters. The results indicate that the estimated γx-s are

signi�cantly di�erent from zero at all conventional signi�cance levels.

11According to equations (5.5.8), (5.5.9), (5.5.10), and (5.5.11), we have four constraints. How-
ever, constraint (5.5.11) is only examined ex post and is not included in the estimation, similar to
the Lee-Carter model, so the e�ective number of constraints is three.
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Table 5.5: Proportion of variance explained by Model (5.5.1)

Female Male

κt gt Total κt gt Total

United States 0.0383 0.9244 0.9627 0.0797 0.8775 0.9572
Canada 0.0527 0.8816 0.9343 0.1161 0.8291 0.9452

United Kingdom 0.0314 0.8969 0.9283 0.0622 0.8810 0.9431
Netherlands 0.0557 0.8119 0.8676 0.1580 0.7415 0.8996
Australia 0.0441 0.8689 0.9131 0.0920 0.8317 0.9237
Japan 0.0415 0.9410 0.9825 0.0475 0.9292 0.9767

To examine the relative contribution of di�erent factors to the model �t, we

present in Table 5.5 the proportion of the variance explained by the latent variable

(κt) and GDP (gt), respectively, together with the total fraction of variance captured

by model (5.5.1). In all cases, GDP accounts for the major variance explained by

model (5.5.1), while κt only explains a marginal amount of the variance, less than

10%, except for males in Canada and Japan. Besides, as a whole, the model we

propose can explain a large amount of the variance in the data.

5.5.3 Out-of-Sample test

In this section we compare the out-of-sample forecast accuracy between the Lee-

Carter model and (5.5.1). We use 50 years data on death rates (from 1950 to 1999)

to �t the two models, and then forecast death rates from 2000 to 2007 accordingly.

The forecast of model (5.5.1) is based on the projections of estimated gt and the

latent factors, while the forecast of the Lee-Carter model is based solely on the

estimated latent factors. For latent factors in both models, we forecast them by

standard AR models, with lags selected based on BIC. For the log real GDP per

capita series, we use the random walk with drift model to forecast future values. We

do not use vector autoregressive models, because in our model the latent factor is

orthogonal to the GDP series by construction.
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Table 5.6: Out-of-sample test results: RMSFE for females

Country USA CAN UK NLD AUS JPN
LC 0.0070 0.0066 0.0045 0.0084* 0.0043* 0.0227
LC-GDP 0.0069* 0.0055* 0.0043* 0.0088 0.0044 0.0081*

The forecast results are compared using the Root Mean Square Forecast Error

(RMSFE). Specially, denote yit the true death rate at age i and year t, and ŷit the

corresponding forecasted death rates. The RMSFE is calculated according to the

formula:

RMSFE =
∑
t

∑
i

(yit − ŷit)2 (5.5.13)

Table 5.6 shows the out-of-sample test results for females. LC refers to the Lee-

Carter model, and LC-GDP refers to the model based on GDP. For each country the

speci�cation with smaller RMSFE is marked with an asterisk. The model with GDP

is better in four out of the six cases. In particular, compared the Lee-Carter model,

our model reduces the forecasting errors by 17% in Canada and by 64% in Japan.

Although the Lee-Carter model is better for the Netherlands and Australia, the two

countries also have the smallest population size. Thus, for the two countries, there

might be over�tting in our model, due to the presence of additional κt, to random

�uctuations in the data.

5.5.4 Forecasting using the proposed model

Forecasting future mortalities is a natural application of our model. In this section

we brie�y illustrate the implications of this model forecast by both genders in each

country.

Using historical data from 1950 to 2007, we forecast future mortality rates based

on the time series models of gt and κt and estimated parameters for model (5.5.1),

then project period life expectancies at birth 30 years ahead. We focus on two

sources of uncertainty in forecasted mortality rates, which are the uncertainty in

forecasted GDP and in forecasted κt. We construct the forecast intervals (2.5% and
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Figure 5.4: Historical and forecasted life expectancy at birth (e0),with 95% intervals
included (Females). Solid lines represent the historical data, dashed lines the fore-
casted mean values from model (5.5.1), dash-dotted lines the 95% bounds including
only the variations in gt, and dotted lines the 95% bounds including the variations
in both gt and κt.
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97.5% quantiles) by 1000 simulations. To compare the uncertainty from di�erent

sources, we construct two types of intervals. The �rst intervals are based on the

simulation of future gt only, with the mean values of κt being projected. The second

interval is based on the simulations of both gt and κt. The results for females are

shown in Fig. 5.4 and results for males are presented in the online appendix.

The life expectancies at birth for females are predicted to increase to around

85 in 30 years in �ve countries except Japan, where the �gure is as high as 90.

The dash-dotted lines are the intervals based on the uncertainty in future GDP,

which can be interpreted as di�erent economic scenarios. The di�erences between

life expectancies of lower and upper con�dence intervals are within �ve years.

The uncertainty brought in by κt depends on its volatility. As can be seen in

Fig. 5.3 (c), the estimated female κt is least volatile in UK, corresponding to the

narrowest intervals in our forecasts, represented by dotted lines in Fig. 5.4, while the

estimated female κt is most volatile in Japan, corresponding to the widest intervals.

5.6 Conclusion

Based on data from 1950 to 2007 of six OECD countries, namely the United States,

Canada, the United Kingdom, the Netherlands, Australia, and Japan, this paper

performs a comprehensive investigation of the relationship between the trends in

mortality dynamics and economic growth. The former trend is represented by the

latent mortality index κt in the Lee-Carter model while the latter is represented by

the real GDP per capita series gt. We also present an extension of the Lee-Carter

model that includes both latent and observable factors.

We have compared the Lee-Carter model with a mortality model based solely

on real GDP per capita in terms of both in-sample �tness and future projections.

The results are quite similar in both aspects, indicating the similarity between the

two trends of interest. Thus, the trend in economic growth might be an observable
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substitute to the latent variable. Nonetheless, this latent variable still explains a

certain level of non-random variations in mortality rates, suggesting that economic

growth might not be the only factor that is related to longevity. Based on the long-

run relationship between economic growth and mortality decline, we augment the

Lee-Carter model with an economic growth indicator and apply the model to mor-

tality rates of six countries. Mortality forecasts in our model are based on projecting

both the latent factor and the real GDP series. In this sense, our model integrates

two major mortality forecast methods in the literature, namely the extrapolation

method and the explanation method. When both the economic growth indicator

and the latent variable are included in our generalized mortality model, we have a

better goodness-of-�t and the role of latent factor is marginal, implying that the

major trend in mortality rates is captured by real GDP data. Our model also can

generate more interpretable scenarios about future longevity based on the forecast

of future economic growth.

The role of economic growth on mortality dynamics deserves further investiga-

tion. Currently, a clear explanation for mortality decline is still lacking. However,

the similarity between trends in mortality reduction factors and economic growth

might shed light on possible directions towards explaining the trend. Besides, the

method in our paper can be extended to include other related factors, both latent

variables and observable variables.
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Appendix

5.7 Proof of Theorem 1

Proof. (i) For any θ we can construct θo by using (8) and letting d =
∑X

x=1 βx,

c = −
∑T
t=1 κt
T

, and e = cov(κt,gt)
var(gt)

.

(ii) One can transform θo into the original θ by do = 1
d
, co = −cd and e0 = −ed.

The parametrization (8) is invariant to c, d, e.

(iii) Consider θ1 6= θ2.

Step 1 If α1
x 6= α2

x for some x then 1
T

∑T
t=1 µ

1
x,t = α1

x 6= α2
x = 1

T

∑T
t=1 µ

2
x,t.

Step 2 If γ1x 6= γ2x for some x, then, since cov(κt, gt) = 0, it holds cov(gt, µ
1
x,t) =

γ1xvar(gt) 6= γ2xvar(gt) = cov(gt, µ
2
x,t).

Step 3 If α1
x = α2

x and γ
1
x = γ2x for all x, but κ1t 6= κ2t for some t, then, since∑X

x=1 βx = 1, it holds

X∑
x=1

µ1
x,t = κ1t −

X∑
x=1

α1
x −

X∑
x=1

γ1xgt

6= κ2t −
X∑
x=1

α2
x −

X∑
x=1

γ2xgt =
X∑
x=1

µ2
x,t.

Step 4 If α1
x = α2

x and γ1x = γ2x for all x, κ1t = κ2t for all t, and κ 6= 0, but

β1
x 6= β2

x form some x, then we can �nd κ2t1 = κ1t1 6= κ1t2 = κ2t2 , such that

µ1
x,t2
− µ1

x,t1
= β1

x(κ
1
t2
− κ1t1) 6= β2

x(κ
2
t2
− κ2t1) = µ2

x,t2
− µ2

x,t1
.
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5.8 Additional results on the similarity between κt

and gt

This section provides detailed results with regard to the Engle-Granger cointegration

analysis in section 3 and the comparison of goodness of �t in section 4.

In the Engle-Granger cointegration analysis, we test the stationarity of the es-

timated residuals from equation (4) and equation (5) at each age for females and

males separately. To test the stationarity of the residuals, the standard critical

values for unit root tests are not appropriate, as the regression will make the resid-

uals as stationary as possible. We use the more negative critical values provided

by MacKinnon (1996). The optimal lag length for the ADF test of the residuals

is determined based on the Bayesian (Schwarz) information criterion (BIC) with a

maximum length of 10. As a comparison, we also study the long-run implications

between the log central death rates and the mortality index κt.

To facilitate the reading of the results, the p-value of the cointegration tests at

each age are plotted in Fig. 5.5 for females and 5.6 for males. There are several

implications in the graphs that are worth noticing. First, in terms of presenting

cointegration relationships under the Engle-Granger procedure, neither κt nor gt

dominates the other. Second, the results vary across countries and ages for both κt

and gt. Particularly, the mortality rates at middle ages are not cointegrated with

real GDP in most cases. Third, there are a certain amount of cases indicating that

the real GDP per capita series and mortality rates are cointegrated, especially for

females in Canada.

Next, we compare the goodness of �t between the model based on the Lee-

Carter mortality index and the model based on the real GDP per capita series. The

goodness of �t is measured by the R2-s from the regression (4) and (5) based on

ordinary least squares. The results are plotted in Fig. 5.7 and Fig. 5.8 for each

age. The two series seem to be closest for the groups of Canada females, US males,
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(a) United States (b) Canada

(c) United Kingdom (d) Netherlands

(e) Australia (f) Japan

Figure 5.5: p-values of cointegration tests between ln(mx,t) and gt (solid line), and
between ln(mx,t) and κt (dashed line) at each age (Females, 1950�2007)
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(a) United States (b) Canada

(c) United Kingdom (d) Netherlands

(e) Australia (f) Japan

Figure 5.6: p-values of cointegration tests between ln(mx,t) and κt (solid line), and
between ln(mx,t) and gt (dashed line) at each age(Males, 1950�2007)
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and United Kingdom males. Roughly speaking, the κt-s have sightly higher R2-s

compared to real GDP per capita. However, as κt is a latent factor and is estimated,

the Lee-Carter model has a much higher degree of freedom, which contributes to

its slightly better �t. Moreover, the age-country patterns of R2-s from κt and gt

are quite similar. One exception might be the case for males in the Netherlands,

where κt has better goodness-of-�t at old ages and gt is better at very young ages.

In general, real GDP per capita can also explain quite a large part of the variations

in the mortality rates.

5.9 Additional results for males

As we focus on females in the main text, this section discusses some similar results

for males. The patterns of parameters of model (6) for males, shown in Fig. 5.10, are

comparable to the patterns for females. Real GDP captures the main time e�ects.

Finally, Fig. 5.11 compares the forecast results from our model and the results from

the Lee-Carter model. Compared to the results for females, the forecasted average

life-expectancy for males is approximately �ve years less.
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(a) United States (b) Canada

(c) United Kingdom (d) Netherlands

(e) Australia (f) Japan

Figure 5.7: R2 of regressing ln(mx,t) on gt (solid line) and ln(mx,t) on κ̂t (dashed
line) (Females, 1950�2007)
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(a) United States (b) Canada

(c) United Kingdom (d) Netherlands

(e) Australia (f) Japan

Figure 5.8: R2 of regressing ln(mx,t) on gt (solid line) and ln(mx,t) on κ̂t (dashed
line) (Males, 1950�2007)
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(a) United States (b) Canada

(c) United Kingdom (d) Netherlands

(e) Australia (f) Japan

Figure 5.9: Historical and forecasted life expectancy at birth (e0),with 95% intervals
included (Males). Solid lines represent the results from the Lee-Carter model (1)
and dashed lines from model (4)
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(a) αx (b) γx

(c) κt (d) βx

Figure 5.10: Parameters of model (6) (Males)
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Figure 5.11: Historical and forecasted life expectancy at birth (e0),with 95% intervals
included (Males). Solid lines represent the historical data, dashed lines the forecasted
mean values from model (6), dash-dotted lines the 95% bounds including only the
variations in gt, and dotted lines the 95% bounds including the variations in both
gt and κt.
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