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CHAPTER 1

Introduction

Robust optimization (RO) is a young and active research field that has been mainly
developed in the course of last fifteen years. For a quick overview of the associated
literature, we refer to the survey papers by Ben-Tal and Nemirovski (2002); Bertsi-
mas et al. (2011); Beyer and Sendhoff (2007). Additional details on the history of
RO that is in line with the research of this thesis shall be discussed in later chapters.

RO is well-known because it yields computationally tractable methods for uncer-
tain optimization problems. Unlike its counterparts, i.e., dynamic and stochastic
programming, it does not suffer from the curse of dimensionality. However, despite
all its computational advantages, it is remarkable that practical use of RO in real-
life is still lagging behind. This is mainly because of some issues and shortcomings
that hinder successful applications of RO in real-life. In this thesis, our goal is to
overcome some of these shortcomings and to help practitioners for successfully ap-
plying RO in practice. In the next chapter, several practical topics are discussed in
separate sections. In addition, a practical guide, that shows a roadmap on how to
apply RO in practice, is given. In the remaining chapters of the thesis, we propose
and analyze tractable RO methodologies for several classes of optimization problems.

In this chapter, we give a brief introduction on optimization under uncertainty, as
well as the contributions of our research and the overview of the following chapters.
Section 1.1 describes the sources of uncertainties in mathematical optimization prob-
lems and the optimization techniques to deal with these uncertainties. Section 1.2
gives a brief introduction on RO. Section 1.3 describes the concept of adjustable RO.
Section 1.4 discusses the contribution of this thesis.
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1.1 Optimization Under Uncertainty
Mathematical optimization problems often have uncertainty in problem parameters
because of measurement/rounding, estimation/forecasting, or implementation errors.
We describe these errors in detail below.

Measurement/rounding errors are often caused when an actual measurement is
rounded to a nearest value according to a rule, e.g., the nearest tenth or hundredth,
or when the actual value of the parameter cannot be measured with a high precision
as it appears in reality. For example, if the reported parameter value is 9.5 according
to the nearest tenth, then the actual value can be anywhere between 9.45 and 9.55,
i.e., it is uncertain.

Estimation/forecasting errors come from the lack of true knowledge about the
problem parameter or the impossibility to estimate the true characteristics of the
actual data. For example, demand and cost parameters are often subject to such
estimation/forecasting errors.

Implementation errors are often caused by “ugly” reals that can be hardly imple-
mented with the same precision in reality. For example, suppose the optimal voltage
in a circuit, that is calculated by an optimization tool, is 2.782169. The decimal part
of this optimal solution can be hardly implemented in practice, since you cannot
provide the same precision.

Optimization based on nominal values often lead to “severe” infeasibilities. No-
tice that a small uncertainty in the problem data can make the nominal solution
completely useless. A case study in Ben-Tal and Nemirovski (2000) shows that per-
turbations as low as 0.01% in problem coefficients result constraint violations more
than 50% in 13 out of 90 NETLIB Linear Programming problems considered in the
study. In 6 of this 13 problems violations were over 100%, where 210,000% being
the highest (i.e., seven scale higher than the tested uncertainty). Therefore, a practi-
cal optimization methodology that proposes immunity against uncertainty is needed
when the uncertainty heavily affects the quality of the nominal solution.

Illustrative example on flaw of using nominal values. Consider an uncertain
linear optimization problem with a single constraint:

a>x ≤ b, (1.1)

where a = ā + ρζ is the vector of uncertain coefficients and ā being the nominal
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vector, ζ ∈ R2 is the uncertain parameter that is uniformly distributed in a unit box
||ζ||∞ ≤ 1, and ρ is a scalar shifting parameter. Now (say) we ignore the uncertainty
in the constraint coefficients and solve the associated problem according to the nom-
inal data, i.e., a = ā, and assume that the constraint is binding for the associated
nominal optimal solution x̄, i.e., āx̄ = b. Figure 1.1 shows the original constraint
[a>x ≤ b] in the uncertainty space when x is fixed to the nominal optimal solution
x̄.

Figure 1.1 – Feasible region of the uncertain constraint (ā+ρζ)>x̄ ≤ b in the
uncertainty space [−1, 1]2.

The solid line in Figure 1.1 represents ζ values where the uncertain constraint is
binding when x is fixed to the nominal solution x̄, and the dashed lines represent the
feasible uncertainty region for the same constraint. Therefore, the area that is deter-
mined by the intersection of the unit box with the dashed region gives the subset for
which the nominal x̄ is robust. From the figure we can conclude that the probability
of violating this constraint can be as high as 50%, since ζ follows a uniform distri-
bution. This shows that uncertainty may severely affect the quality of the nominal
solution, and there exists a crucial need for an optimization methodology that yields
solutions that are immunized against the uncertainty.

Now let us consider the following figure that presents another illustrative example.
In Figure 1.2, there are three constraints and their binding values are represented
by the solid lines. The constraint on the right-hand side is uncertain, and the other
two are certain. For the uncertain constraint, the solid line represents the binding
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Figure 1.2 – Effects of uncertainty on feasibility and optimality performance
of solutions (this figure is represented in the decision variable space).

value of the constraint for the nominal data and the dashed line represents the same
for a different realization of the uncertain data. Notice that, different than in Figure
1.1, in Figure 1.2 we are in the space of the decision variable x. We assume that
the problem at hand is an uncertain linear problem, therefore, the optimal solutions
are obtained at the extreme points of the feasible region where the constraints are
binding. Suppose x1 denotes the unique nominal optimal solution of the problem.
It is easy to see that x1 may be highly infeasible when the associated constraint is
uncertain. The new (robust) optimal solution may become x3. Now consider the case
where x1 and x2 are both optimal for the nominal data, i.e., the optimal facet is the
line segment that connects x1 and x2. In this case, the decision maker would always
prefer x2 over x1, since its feasibility performance is less affected by the uncertainty.
This shows that staying away from “risky” solutions that have uncertain binding
constraints may be beneficial.

There are two complementary approaches in optimization that deals with data un-
certainty, namely, RO and stochastic optimization (SO). Each method has its own
assumptions. To begin with, basic SO has the following assumptions (Ben-Tal et al.,
2009, p. xiii):

S.1. The underlying probability distribution or a restricted family of distributions
of the uncertain parameter must be known.

S.2. The associated family of distributions or the distribution should not change
over the considered time horizon that the decisions will be made.

S.3. The decision maker should be ready to accept probabilistic guarantees as the
performance measure against the uncertainty.

If these conditions are met and the deterministic counterpart of the stochastic prob-
lem is tractable, then SO is the right optimization methodology to solve the problem
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at hand. For additional details on SO we refer to Prékopa (1995); Birge and Lou-
veaux (2011); Shapiro and Ruszczyński (2003), and Charnes and Cooper (1959).

On the other hand, the “basic” RO approach has the following three implicit assump-
tions (Ben-Tal et al., 2009, p. xii):

R.1. All decision variables represent “here and now” decisions: they should get spe-
cific numerical values as a result of solving the problem before the actual data
“reveals itself”.

R.2. The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the prespecified uncer-
tainty set.

R.3. The constraints of the uncertain problem in question are “hard” – the deci-
sion maker cannot tolerate violations of constraints when the data is in the
prespecified uncertainty set.

It is important to point out that assumption [R.1] can be alleviated by adjustable
robust optimization (ARO); a brief introduction on ARO will also be given in Section
1.3, but details will follow in Chapters 4 & 5. In addition, assumption [R.3] can be
alleviated by globalized robust optimization (Ben-Tal et al., 2009, Ch. 3 & 11), as
well as by using safe approximations of chance constraints that shall be discussed in
Chapter 3.

If we compare the basic versions of RO and SO, the latter seems to be less conser-
vative than the former since it is not worst-case oriented. However, it is important
to point out that the SO approach is valid only when the probability distribution is
known. Notice that RO does not have such a restriction since it works with uncer-
tainty sets that can be derived by expert opinion or using historical data. Moreover,
the RO paradigm is computationally more tractable than the SO approach; for de-
tails on such examples we refer to Chapter 3, Ben-Tal et al. (2009, pp. xiii - xv), and
Chen et al. (2006). It is important to point out that, although this thesis is based on
RO, some chapters are closely related to SO, e.g., Chapter 3 deals with safe approx-
imations of ambiguous chance constraints, and such ambiguous chance constraints
can also be analyzed in the SO approach, and Chapter 5 proposes stochastic and
robust reformulations of a class of bilevel optimization problems. Chapter 3 shows
how SO and RO may substitute each other according to different sets of assumptions
on the uncertainty; and Chapter 5 shows how the two approaches may complement
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each other under mild assumptions on the uncertainty.

As mentioned before, this thesis is based on the RO paradigm and we devote a
separate section on RO below.

1.2 Robust Optimization

“A specific and relatively novel methodology for handling mathematical
optimization problems with uncertain data” Ben-Tal et al. (2009)

The objective of RO is to find solutions that are robust to the uncertainty of pa-
rameters in a mathematical optimization problem. It requires that the constraints
of a given problem should be satisfied for all realizations of the uncertain parameters
in a so-called uncertainty set. The robust version of a mathematical optimization
problem is generally referred to as the robust counterpart (RC) problem. Below we
present the RC of an uncertain linear optimization problem:

max
x
{c>x : Ax ≤ b ∀A ∈ U}, (1.2)

where x ∈ Rn are the decision variables, c ∈ Rn are the certain cost coefficients,
b ∈ Rn is the certain constraint right-hand side, A ∈ Rm×n denotes an uncertain
matrix that resides in a given uncertainty set U, and the constraints should be sat-
isfied for all the uncertainty in U. In RO we may assume without loss of generality
that: 1) the objective is certain; 2) the constraint right-hand side is certain; 3) U is
compact and convex; and 4) the uncertainty is constraint-wise.

Below, we explain the technical reasons of why the above stated four “basic” RO
assumptions are not restrictive.

E.1. Suppose the objective coefficients (c) of the optimization problem (1.2) are
uncertain and (say) these coefficients reside in the uncertainty set C:

max
x

min
c∈C
{c>x : Ax ≤ b ∀A ∈ U}.

Without loss of generality we may assume that the uncertain objective of the
optimization problem can be equivalently reformulated as certain:

max
x∈X ,t

{t : t− c>x ≤ 0 ∀c ∈ C, Ax ≤ b ∀A ∈ U},

using an epigraphic reformulation and the additional variable t ∈ R.
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E.2. The second assumption is trivial because the uncertain right-hand side of a
constraint can always be translated to the left-hand side by introducing an
extra variable xn+1 = 1.

E.3. The uncertainty set U can be replaced by its convex hull conv(U) in (1.2),
because testing the feasibility of a solution with respect to U is equivalent to
maximizing a linear constraint over U, and it yields the same optimal objective
value if the constraint is maximized over conv(U). For details of the formal
proof and the compactness assumption, see (Ben-Tal et al., 2009, pp. 12–13).

E.4. To illustrate that robustness with respect to U can be formulated constraint-
wise, consider a problem with two constraints and with uncertain right-hand
sides b1 and b2: x1 + b1 ≤ 0, x2 + b2 ≤ 0. Let U = {b ∈ R2|b1 ≥ 0, b2 ≥
0, b1 + b2 ≤ 1} be the uncertainty set, and U1 = {b1 ∈ R|0 ≤ b1 ≤ 1} and
U2 = {b2 ∈ R|0 ≤ b2 ≤ 1} are the projections of U on b1 and b2. It is easy
to see that robustness of the i-th constraint with respect to U is equivalent
to robustness with respect to Ui, i.e., the uncertainty in the problem data can
be modelled constraint-wise. For the general proof, see (Ben-Tal et al., 2009,
pp. 11–12).

For uncertain nonlinear optimization problems, excluding the third basic assump-
tion [E.3], the other three assumptions [E.1], [E.2], and [E.4] are also without loss of
generality.

Computational complexity. Notice that (1.2) has infinitely many constraints with
finite number of variables, i.e., it is a semi-infinite optimization problem. Therefore,
(1.2) is a computationally challenging problem to be solved in its current version.
RO is popular because it proposes computationally tractable reformulations of such
semi-infinite optimization problems for many classes of uncertainty sets and problem
types (including several classes of nonlinear optimization problems).

There are three important steps to derive the associated tractable RC. We shall ex-
plicitly go through these three steps below. For the sake of exposition we shall focus
on an uncertain linear optimization problem with a polyhedral uncertainty set, but
the associated procedure can be applied for other uncertainty sets and problem types
as well.

Three steps to derive tractable RC. As it is mentioned above, the uncertainty
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is constraint-wise in RO, and hence we may focus on a single constraint

(a+Bζ)>x ≤ β ∀ζ ∈ Z, (1.3)

where ζ ∈ Rk is the “primitive” uncertain parameter residing in the polyhedral un-
certainty set Z = {ζ : Dζ + d ≥ 0}. In the left-hand side of (1.3), we use a factor
model to formulate the general uncertain parameter aζ as an affine function a+ Bζ

of the primitive uncertainty ζ (i.e., aζ := a+Bζ). To point out, the dimension of the
general uncertain parameter aζ is often much higher than that of the primitive un-
certainty ζ. Notice that (1.3) is equivalent to the following worst-case reformulation:

Step 1 (Worst-case): a>x+ max
ζ: Dζ+d≥0

(B>x)>ζ ≤ β. (1.4)

Then we take the dual of the inner maximization problem in (1.4). Notice that by
strong duality the inner maximization problem and its dual yield the same optimal
objective value. Therefore, (1.4) is equivalent to

Step 2 (Duality): a>x+ min
y
{d>y : D>y = −B>x, y ≥ 0} ≤ β. (1.5)

It is important to point out that we can also omit the minimization term in (1.5),
since it yields an upper bound for the maximization problem in (1.4). Hence, the
final formulation of the RC becomes

Step 3 (RC): ∃ y : a>x+ d>y ≤ β, D>y = −B>x, y ≥ 0. (1.6)

Note that the constraints in (1.6) are linear in x and y. A similar procedure can also
be applied to derive the RCs for different classes of uncertainty sets and problem
types; for additional details on deriving the tractable RCs we refer to Ben-Tal et al.
(2009, 2014).

Table 1.1 taken from Ben-Tal et al. (2014) presents the tractable robust counterparts
of an uncertain linear optimization problem for different classes of uncertainty sets.
These robust counterparts are derived using the three step procedure that is described
above, however, we need conic duality instead of LP duality in Step 2 to derive the
tractable robust counterparts for the ellipsoidal and the conic uncertainty sets; see
the second and the fourth rows of Table 1.1. Similarly, to derive the tractable RC
in the fifth row of Table 1.1, we need Fenchel duality in Step 2; see Rockafellar
(1997) for details on Fenchel duality, and Ben-Tal et al. (2014) for the formal proof
of the associated RC reformulation. Notice that each RC constraint has a positive
safe guard in the constraint left-hand side, e.g., ρ‖B>x‖1, ρ‖B>x‖2, and d>y; see
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Table 1.1 – Tractable Robust Counterparts of [(a+Bζ)>x ≤ β ∀ζ ∈ Z]
for different choices of the uncertainty set Z

Uncertainty region Z Robust Counterpart Tractability

Box ‖ζ‖∞ ≤ ρ a>x+ ρ‖B>x‖1 ≤ β LP

Ball/ellipsoidal ‖ζ‖2 ≤ ρ a>x+ ρ‖B>x‖2 ≤ β CQP

Polyhedral Dζ + d ≥ 0


a>x+ d>y ≤ β

D>y = −B>x
y ≥ 0

LP

Cone (closed, convex, pointed) Dζ + d ∈ K


a>x+ d>y ≤ β

D>y = −B>x
y ∈ K∗

Conic Opt.

Convex functions

hk(ζ) ≤ 0
k = 1, . . . , k

(∗)


a>x+∑

k uk h
∗(wk

uk
),∑

k w
k = B>x,

u ≤ 0
Convex Opt.

(∗) h∗ denotes the convex conjugate function, i.e, h∗(x) = supy{x>y − h(y)}

the tractable RCs in the third column of Table 1.1. These safe guards represent the
level of robustness that we introduce to the constraints. We refer to Ben-Tal et al.
(2009, pp. 373–388) and Ben-Tal et al. (2014) for the tractable RCs reformulations
of several classes of uncertain nonlinear optimization problems. Also see, Gorissen
et al. (2014) who propose a method that is based on the optimistic dual reformulation
with respect to the full uncertain problem (1.2).

1.3 Adjustable Robust Optimization
As it is stated in Section 1.2, the basic assumption [R.1] (p. 116), can be alleviated
by adjustable robust optimization (ARO). Different than the “classic” RO that mod-
els decision variables as “here and now”, in ARO decision variables can also be “wait
and see” that depends on the data revealing itself before the decision is made. For
example, in a multistage uncertain optimization problem, a decision that is made at
period t may depend on the data that reveals itself before at time 1, . . . , t− 1. ARO
adopts decision rules to model the associated dependence between the data and the
decisions.
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Adjustable robust counterpart (ARC). Consider a general uncertain linear op-
timization problem

min
x,y
{c>ζ x+ d>y : Aζx+By ≤ β} : ζ ∈ Z, (1.7)

where x ∈ Rn and y ∈ Rl are the decision vectors; ζ ∈ Rk is the uncertain parameter,
cζ ∈ Rn and Aζ ∈ Rm×n are the uncertain coefficients that are affine in ζ; d ∈ Rl

and B ∈ Rm×l are the certain parameters. Notice that we have a fixed recourse
formulation in (1.7), i.e., B is a certain coefficient matrix. The RC of (1.7) is the
following semi-infinite optimization problem

min
x,y,t
{t : ∀ζ ∈ Z : c>ζ x+ d>y − t ≤ 0, Aζx+By ≤ β}, (1.8)

where t ∈ R represents the additional variable that comes from the epigraphic refor-
mulation of the uncertain objective.

As explained earlier, in multi-stage optimization some decision variables can be ad-
justed at a later moment in time when a portion of the uncertain data ζ reveals
itself. For example, in a multi-stage inventory system affected by uncertain demand,
the replenishment order of day t is made when we know the actual demands in the
preceding days; for practical examples see Ben-Tal et al. (2009, Ch. 14.2.1). Now
suppose y in (1.8) denotes such an adjustable variable, i.e., y is a function of ζ as
y(ζ). Therefore, the ARC reformulation is given as follows:

min
x,y,t
{t : ∀ζ ∈ Z : c>ζ x+ d>y(ζ)− t ≤ 0, Aζx+By(ζ) ≤ β}, (ARC)

where x is the first-stage decision that is made before ζ is realized, and y denotes the
second-stage decision that can be adjusted according to the actual data.

However, ARC is an NP-Hard problem unless we restrict the feasible function space
of y(ζ) to specific classes; see Ben-Tal et al. (2009, Ch. 14) for details. In practice,
y(ζ) is often approximated by affine decision rules:

y(ζ) := y0 +
k∑
j=1

yjζj, (1.9)

because they yield computationally tractable affinely ARC (AARC) reformulations
(see below), where y0 ∈ Rl denotes the intercept variable, and yj ∈ Rl are the vectors
of “information base” variables.
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If we suppose that the uncertain coefficient matrix Aζ is affine in ζ:

Aζ = A0 +
k∑
j=1

ζjA
j, (1.10)

then the constraints of the ARC that is adopting (4.31) and (1.10) can be reformu-
lated as

A0x+By0 +
k∑
j=1

(Ajx+Byj)ζj ≤ 0 ∀ζ ∈ Z. (AARC)

Therefore, the i-th constraint of the ARC is given as follows

A0
ix+Biy

0 + a>i ζ ≤ 0 ∀ζ ∈ Z, i ∈ {1, . . . ,m} (1.11)

where a>i = [A1
ix + Biy

1
i , A

2
ix + Biy

2
i , . . . , A

k
i x + Biy

k
i ]. Eventually, the tractable

reformulation of the ARC constraints can be derived as in Table 1.1, since the re-
sulting formulation (1.11) is affine in x, y, and ζ.

Notice that we adopt affine decision rules in the ARC, but it is important to point out
that tractable ARC reformulations for nonlinear decision rules also exist for specific
classes; we refer to Ben-Tal et al. (2009, Ch. 14.3) and Georghiou et al. (2010) for
such tractable ARC reformulations.

The advantages of ARO can be explained in threefold:

1) ARO is less conservative than the classic RO approach, since it yields more flexible
decisions that can be adjusted according to the realized portion of data at a given
stage. More precisely, ARO yields optimal objective values that are at least as good
as that of the standard RO approach.

2) Aside from introducing additional variables and constraints, affinely ARO (AARO)
does not introduce additional computational complexity to that of RO, and it can
be straightforwardly adopted to the classic RO framework, i.e., AARO is a tractable
approach.

3) It has applications in real-life, e.g., supply chain management (Ben-Tal et al.,
2005), project management (Ben-Tal et al., 2009, Ex. 14.2.1), and so on.

Adjustable reformulations of integer variables. The linear and nonlinear deci-
sion rules proposed by Ben-Tal et al. (2009, Ch. 14) cannot be applied for adjustable
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integer variables, since the associated decision rules cannot guarantee to result an
integer decision for any given ζ. To the best of our knowledge, there are three al-
ternative approaches to model such variables. Namely, Bertsimas and Caramanis
(2010) propose splitting the uncertainty set into subsets, where each subset has its
own binary decision; Bertsimas and Georghiou (2013) propose piecewise constant
functions to model integer variables; and Hanasusanto et al. (2014) propose approxi-
mating the associated mixed integer problems by their corresponding K-adaptability
problem in which the decision maker pre-commits to K second-stage policies here-
and-now and implements the best of these policies once the uncertain parameters
are observed. Similar to Bertsimas and Caramanis, in Chapter 2 we propose some
methods to model integer variables via so-called cell-based decision rules, and then in
Chapter 4 we present specific applications of the associated decision rules in a class
of simulation optimization problems.

1.4 Contribution and Overview
This thesis consists of four self-contained chapters on RO. In this section, we give
the contributions of each chapter.

The aim of Chapter 2 is to help practitioners to successfully apply RO in practice.
Many practical issues are treated, as: (i) how to choose the uncertainty set? (ii)
Should the decision rule be a function of the final or the primitive uncertain param-
eters? (iii) Should the objective also be optimized for the worst case? (iv) How to
deal with integer adjustable variables? (v) How to deal with equality constraints?
(vi) What is the right interpretation of “RO optimizes for the worst case”? (vii) How
to compare the robustness characteristics of two solutions?

Moreover, we pinpoint several important items that may be helpful for successfully
applying RO. Some items are: (i) the robust reformulations of two equivalent deter-
ministic optimization problems may not be equivalent. (ii) Comparing the robust
objective value of the robust solution with the nominal objective value of the nomi-
nal solution is incorrect when the objective is uncertain. (iii) For several multi-stage
problems the normal robust solution, or even the nominal solution, may outperform
the adjustable solution both in the worst case and in the average performance when
the solution is re-optimized in each stage. We use many small examples to demon-
strate the associated practical RO issues and items.

In Chapter 3, we propose a new way to construct uncertainty sets for RO. Our ap-
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proach uses the available historical data for the uncertain parameters and is based
on goodness-of-fit statistics. It guarantees that the probability that the uncertain
constraint holds is at least the prescribed value. Compared to existing safe approxi-
mation methods for chance constraints, our approach directly uses the historical data
information and leads to tighter uncertainty sets and therefore to better objective
values. This improvement is significant especially when the number of uncertain pa-
rameters is low. Other advantages of our approach are that it can easily handle joint
chance constraints, it can deal with uncertain parameters that are dependent, and
it can be extended to nonlinear inequalities. Several numerical examples illustrate
the validity of our approach. The limitation of the proposed methodology is that it
requires extensive data when the number of uncertain parameters is high.

In Chapter 4, we present a novel combination of RO developed in mathematical
programming, and robust parameter design developed in statistical quality control.
Robust parameter design uses metamodels estimated from experiments with both
controllable and environmental inputs. These experiments may be performed with
either real or simulated systems; we focus on simulation experiments. For the en-
vironmental inputs, classic robust parameter design assumes known means and co-
variances, and sometimes even a known distribution. We, however, develop a RO
approach that uses only experimental data, so it does not need these classic assump-
tions. Moreover, we develop ‘adjustable’ robust parameter design which adjusts the
values of some or all of the controllable factors after observing the values of some or
all of the environmental inputs. We also propose a decision rule that is suitable for
adjustable integer decision variables. We illustrate our novel method through several
numerical examples, which demonstrate its effectiveness.

In Chapter 5, we propose approximations of a specific class of robust and stochastic
bilevel optimization problems by using primal and dual linear decision rules. The
original formulations of these problems are “severely” intractable. The advantages of
our approximation method are: i) it is computationally tractable; ii) we do not need
to know the underlying probability distribution of uncertain problem parameters; iii)
we can estimate the optimality performance of our approximation.
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This thesis is based on the following four research papers:

Chapter 2 B. L. Gorissen, İ. Yanıkoğlu and D. den Hertog. Hints for practi-
cal robust optimization. CentER Discussion Paper No. 2013-065,
2013. (OMEGA, Revise and Resubmit)

Chapter 3 İ. Yanıkoğlu, D. den Hertog. Safe approximations of ambiguous
chance constraints using historical data. INFORMS Journal on
Computing, 25(4), 666–681, 2013.

Chapter 4 İ. Yanıkoğlu, D. den Hertog and J. P. C. Kleijnen. Adjustable
robust optimization using metamodels. CentER Discussion Paper
No. 2013-022, 2013. (Submitted)

Chapter 5 İ. Yanıkoğlu, D. Kuhn. Primal and dual linear decision rules for
bilevel optimization problems. Working Paper.

1.5 Disclosure
Each chapter contains ideas and contributions from all its respective authors. In
Chapter 2, Sections 2.1, 2.5 and 2.9 are written by me and computational experiments
in Section 2.5 are done by me, and the final version of the associated chapter is written
by me. In the remainder, except for Section 4.1, Chapters 3, 4, and 5 are all written
by me and all computational experiments are conducted by me.
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CHAPTER 2

Hints for Practical Robust Optimization

2.1 Introduction
Real-life optimization problems often contain uncertain data. The reasons for data
uncertainty could be measurement/estimation errors that come from the lack of
knowledge of the parameters of the mathematical model (e.g., the uncertain de-
mand in an inventory model) or could be implementation errors that come from the
physical impossibility to exactly implement a computed solution in a real-life setting.
There are two complementary approaches to deal with data uncertainty in optimiza-
tion, namely robust and stochastic optimization. Stochastic optimization (SO) has
an important assumption, i.e., the true probability distribution of uncertain data has
to be known or estimated. If this condition is met and the deterministic counterpart
of the uncertain optimization problem is computationally tractable, then SO is the
methodology to solve the uncertain optimization problem at hand. For details on
SO, we refer to Prekopa (1995); Birge and Louveaux (2011); Shapiro and Ruszczyński
(2003), but the list of references can be easily extended. Robust optimization (RO),
on the other hand, does not assume that probability distributions are known, but
instead it assumes that the uncertain data resides in a so-called uncertainty set. Ad-
ditionally, basic versions of RO assume “hard” constraints, i.e., constraint violation
cannot be allowed for any realization of the data in the uncertainty set. RO is popu-
lar because of its computational tractability for many classes of uncertainty sets and
problem types. For a detailed overview of the RO framework, we refer to Ben-Tal
et al. (2009); Ben-Tal and Nemirovski (2008), and Bertsimas et al. (2011).

RO is a relatively young and active research field, and has been mainly developed
in the last 15 years. Especially in the most recent 5 years there have been many
publications that show the value of RO in applications in many fields including fi-
nance (Lobo, 2000), management science (Ben-Tal and Nemirovski, 1998), supply
chain (Bertsimas and Thiele, 2004), healthcare (Fredriksson et al., 2011), engineer-
ing (Ben-Tal and Nemirovski, 2002), etc. Indeed, the RO concepts and techniques
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are very useful for practice and not difficult to understand for practitioners. It is
therefore remarkable that real-life applications are still lagging behind; there is much
more potential for real-life applications than has been exploited hitherto. In this
chapter we pinpoint several items that are important when applying RO and that
are often not well understood or incorrectly applied by practitioners.

The aim of this chapter is to help practitioners to successfully apply RO in practice.
Many practical issues are treated, as: (i) how to choose the uncertainty set? (ii)
Should the decision rule be a function of the final or the primitive uncertain param-
eters? (iii) Should the objective also be optimized for the worst case? (iv) How to
deal with integer adjustable variables? (v) How to deal with equality constraints?
(vi) What is the right interpretation of “RO optimizes for the worst case”? (vii) How
to compare the robustness characteristics of two solutions?

We also discuss several important insights and their consequences in applying RO.
Examples are: (i) sometimes an uncertainty set is constructed such that it contains
the true parameter with a prescribed probability. However, the actual constraint
satisfaction probability is generally much larger than the prescribed value, since the
constraint also holds for other uncertain parameters that are outside the uncertainty
set. (ii) The robust reformulations of two equivalent deterministic optimization prob-
lems may not be equivalent. (iii) Comparing the robust objective value of the robust
solution with the nominal objective value of the nominal solution is incorrect when
the objective is uncertain. (iv) For several multi-stage problems the normal robust
solution, or even the nominal solution, may outperform the adjustable solution both
in the worst case and in the average performance when the solution is re-optimized
in each stage.

The remainder of the chapter is organized as follows. Section 2.2 gives a recipe for
applying RO. This recipe contains the important items in this chapter. Section 2.3
presents alternative ways of constructing uncertainty sets. Section 2.4 discusses how
to model uncertainties in linear (or affine) decision rules. Section 2.5 proposes a
RO method to model adjustable integer variables. Section 2.6 shows that binary
variables in big-M type constraints are automatically adjustable. Section 2.7 shows
that robust counterparts of equivalent deterministic problems are not necessarily
equivalent. Section 2.8 presents some ways to deal with equality constraints. Section
2.9 gives insights about maximin and minimax formulations in RO. Section 2.10
shows two tests to quantify the quality of a robust solution. Section 2.11 shows that
static RO with folding horizon can take better decisions than linearly adjustable
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RO in multi-stage problems. Section 2.12 summarizes our conclusions, and indicates
future research topics.

2.2 Recipe for Robust Optimization in Practice
In this section we first give a brief introduction on RO, and then we give a recipe for
applying RO in practice. Important items at each step of the recipe and the scopes
of other sections that are related to these items are presented in this section.

For the sake of exposition, we use an uncertain linear optimization problem, but
we point out that most of our discussions in this chapter can be generalized for
other classes of uncertain optimization problems. The “general” formulation of the
uncertain linear optimization problem is as follows:

min
x
{c>x : Ax ≤ d}(c,A,d)∈U , (2.1)

where c, A and d denote the uncertain coefficients, and U denotes the user specified
uncertainty set. The “basic” RO paradigm is based on the following three assump-
tions (Ben-Tal et al., 2009, p. xii):

1. All decision variables x represent “here and now” decisions: they should get
specific numerical values as a result of solving the problem before the actual
data “reveals itself”.

2. The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the prespecified uncer-
tainty set U .

3. The constraints of the uncertain problem in question are “hard” - the deci-
sion maker cannot tolerate violations of constraints when the data is in the
prespecified uncertainty set U .

Without loss of generality, the objective coefficients (c) and the right-hand side values
(d) can be assumed certain, as in Chapter 1. Often there is a vector of primitive
uncertainties ζ ∈ Z such that the uncertain parameter A is a linear function of ζ:

A(ζ) = A0 +
L∑
`=1

ζ`A`,

where A0 is the nominal value matrix, A` are the shifting matrices, and Z is the
user specified primitive uncertainty set. The robust reformulation of (2.1) that is
generally referred to as the robust counterpart (RC) problem, is then as follows:

min
x
{c>x : A(ζ)x ≤ d ∀ζ ∈ Z

}
.
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A solution x is called robust feasible if it satisfies the uncertain constraints [A(ζ)x ≤
d] for all realizations of ζ in the uncertainty set Z.

In multistage optimization, the first assumption of the RO paradigm can be relaxed.
For example, the amount a factory will produce next month is not a “here and now”
decision, but a “wait and see” decision that will be taken based on the amount sold
in the current month. Some decision variables can therefore be adjusted at a later
moment in time according to a decision rule, which is a function of (some or all part
of) the uncertain data. The adjustable RC (ARC) is given as follows:

min
x
{c>x : A(ζ)x + By(ζ) ≤ d ∀ζ ∈ Z},

where B denotes a certain coefficient matrix (i.e., fixed recourse), x is a vector of
non-adjustable variables, and y(ζ) is a vector of adjustable variables. Linear decision
rules are commonly used in practice:

y(ζ) := y0 +
L∑
`=1

y`ζ`,

where y0 and y` are the coefficients in the decision rule, which are to be optimized.
Notice that we assume a fixed recourse situation for tractability. Another factor that
affects the computational tractability of ARC is the type of the decision rule, but
we shall focus on this issue later in Section 2.4. Now having introduced the general
notation in RO and adjustable RO (ARO), we can give a recipe for applying RO in
practice.
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Practical RO Recipe

Step 0: Solve the nominal problem.

Step 1: a) Determine the uncertain parameters.
b) Determine the uncertainty set.

Step 2: Check robustness of the nominal solution.
IF the nominal solution is robust “enough” THEN stop.

Step 3: a) Determine the adjustable variables.
b) Determine the type of decision rules for the adjustable variables.

Step 4: Formulate the robust counterpart.

Step 5: IF an exact or approximate tractable reformulation of the (adjustable)
robust counterpart can be derived THEN solve it.

ELSE use the adversarial approach.

Step 6: Check quality of the robust solution. IF the solution is too conservative
THEN go to Step 1b.

In the remainder of this section, we describe the most important items at each step
of this algorithm. Several items need a more detailed description, and this is done in
Sections 3–11.

Step 0 (Solve the nominal problem). First, we solve the problem with no uncertainty,
i.e., the nominal problem.

Step 1a (Determine uncertain parameters). As already described above, in many
cases the uncertain parameter is in fact a (linear) function of the primitive uncer-
tain parameter ζ. Note that even though there could be many uncertain parameters
in the problem at hand, the number of real or primitive sources of uncertainties is
“generally” limited. An important example are the so-called factor models in finance,
where the uncertain returns of different types of assets are linear functions of a limited
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number of economic factors. These economic factors are considered as the primitive
uncertain parameters. One of the most famous examples of that is the 3-factor model
of Fama and French (1993).

Step 1b (Determine uncertainty set). We refer to Section 2.3 for a treatment on
natural choices of uncertainty sets.

Step 2 (Check robustness of nominal solution). For several applications the nomi-
nal optimal solution may already be robust. However, in general using the nominal
optimal solution often leads to “severe” infeasibilities. In this step we advocate to
do a simulation study to analyze the quality of the nominal solution. If the nominal
solution is already robust “enough”, then there is of course no need to apply RO.
Section 2.10 extensively describes how to do that.

In some applications the constraints are not that strict, and one is more interested
in a good “average behavior”. Note however that the RO methodology is primarily
meant for protecting against the worst case scenario in an uncertainty set. However,
often, as a byproduct, the robust solution shows good average behavior, but that is
certainly not guaranteed.

If one is interested in a good average behavior, then one may try to use smaller
uncertainty sets or use globalized robust optimization (GRO); for details on GRO we
refer to Ben-Tal et al. (2009, Chapters 3&11).

Step 3a & 3b (Determine adjustable variables and decision rules). We discuss sev-
eral important issues with respect to Step 2, these are listed below.

Reducing extra number of variables. To obtain computationally tractable robust
counterpart problems, one often has to use linear decision rules. However, when the
number of uncertain parameters is high, the use of linear decision rules may lead to a
big increase of the number of variables. Note that these extra variables are added to
all constraints that contain adjustable variables. Moreover, when a constraint or the
objective in the original problem does not contain uncertain parameters, but does
contain adjustable variables, then after substituting the decision rule it will have un-
certain parameters, and this will also lead to extra variables in the robust counterpart.

Sometimes, one can choose between a decision rule that is linear in the primitive
uncertain parameter ζ ∈ Z or linear in the “general” uncertain parameter A ∈ U .
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Often the number of primitive uncertain parameters is much smaller, and using them
for the decision rule will lead to less variables. In Section 2.4 the advantages and
disadvantages of both choices are treated. In many cases we have to restrict the
linear decision rule to a subset of the uncertain vector ζ. This is especially the case
in multi-period situations. In a production-inventory situation, for example, a linear
decision rule in period t can only depend on the known demand of period 1 to t− 1,
since the demand in periods t, t + 1 and so on is not known yet. This also reduces
the number of extra variables.

To further avoid a big increase in the number of variables because of the linear de-
cision rule, one can try to use a subset of the uncertain vector ζ that is called the
“information base”. In a production-inventory situation, for example, we may choose
a linear decision rule in period t that depends on the known demand of, example
given, the last two periods t − 1 and t − 2. This reduces the number of variables a
lot, and numerical experiments have shown that often the resulting decision rule is
almost as good as the full linear one; e.g., see Ben-Tal et al. (2009). By comparing
different information bases one could calculate the value of information.

Often an optimization problem contains analysis variables. As an example we give
the inventory at time t in a production-inventory problem. For such analysis vari-
ables we can use a decision rule that depends on all the uncertain parameters, since
we do not have to know the value of these analysis variables “here-and-now”. The
advantage of making analysis variables adjustable is that this may lead to better
objective values. The disadvantage of this, however, is the increase of the number of
extra variables.

Integer adjustable variables. A parametric decision rule, like the linear one, cannot be
used for integer adjustable variables, since we have then to enforce that the decision
rule is integer for all ζ ∈ Z. In Section 2.5 we propose a new general way for dealing
with adjustable integer variables. However, much more research is needed. In Sec-
tion 2.6 we show that in some cases the integer variables are automatically adjustable.

Quadratic uncertainty. Suppose that we use a quadratic decision rule instead of
a linear one. Then, the corresponding robust counterpart is still linear in all the
optimization variables, but quadratic in the uncertain parameters. Hence, if the
uncertainty set is ellipsoidal, we can use the results from Ben-Tal et al. (2009) to
obtain a tractable reformulation. In fact, the final constraint is then a semidefinite
programming (SDP) constraint.
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Suppose that the situation is not fixed recourse as assumed above, but that B is
also uncertain and linear in ζ. Then using a linear decision rule for y results into
quadratic uncertainties. Hence, if the uncertainty set is ellipsoidal, we can use the
results from Ben-Tal et al. (2009) to obtain a tractable reformulation. The resulting
constraint is again an SDP.

Constraint-wise uncertainty in ARO. We emphasize that if an adjustable variable is
used in multiple constraints, those constraints then contain the same set of uncer-
tain parameters, since the adjustable variable is usually a function of all uncertain
parameters; see Section 2.2. We have seen that, in RO, without loss of generality we
can reformulate the robust problem such that we have constraint-wise uncertainty.
However, in ARO, we should first substitute the decision rules for adjustable vari-
ables, and then make the uncertainty constraint-wise; but not the other way around,
since this may result in incorrect reformulations.

It can be shown that when the uncertainty in the original robust optimization prob-
lem is constraint-wise, then the objective values of ARC and RC are the same Ben-Tal
et al. (2009). Hence, in such cases using decision rules for adjustable variables does
not lead to better objective values. However, there may still be value in using ARC
since this may lead to (much) better average behavior; see the numerical example in
Section 2.5.

Folding horizon. If one is allowed to reoptimize after each stage in a multi-stage
problem, one can of course use adjustable robust optimization in each stage, using
that part of the uncertain data that has been revealed. This is called a folding hori-
zon (FH) strategy. To compare the ARC FH strategy with the nominal solution, one
should also apply a FH strategy to the nominal optimization problem. One could
also apply the RC approach in a FH. In many cases this is a good alternative for the
ARC approach, e.g., when the ARC approach leads to too large problems. Moreover,
RC FH may lead to better solutions than ARC FH; see Section 2.11.

Step 4 (Formulate robust counterpart). RO has also to do with modeling. The mod-
eling part is often overlooked in RO applications. An error often made in practice
is that the robustness is added to the model after reformulation of the deterministic
model. This often leads to solutions that are too conservative. Hence, an impor-
tant warning is that the robust versions of two equivalent deterministic optimization
problems may not be equivalent. We refer to Section 2.7 for a detailed treatment on
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these modeling issues.

We also observed that in several applications there are only one or a few uncertain
parameters in each constraint, but the uncertainty set is a “joint” region (e.g., ellip-
soidal region). Using the constraint-wise interpretation of the RO methodology may
be too conservative for such problems, especially in the case where the constraint are
not that strict.

It is very important to understand the basic RO concept. What does it mean that
RO protects against the worst case scenario? Section 2.9 explains this in more detail.

Step 5 (Solve RC via tractable reformulation). If the constraints are linear in the
uncertain parameters and in the optimization variables, then there are two ways to
derive a tractable reformulation. The first way is the constraint-wise approach by
Ben-Tal et al. (2012) that uses Fenchel duality; see Table 2.1 for a summary. The
second way is to solve the dual problem of the robust counterpart problem. This
approach can handle all compact and convex uncertainty sets; see Gorissen et al.
(2012). If the constraints are nonlinear in the uncertain parameter and/or the vari-
ables, we refer to Ben-Tal et al. (2012) for deriving tractable robust counterparts.
However, we emphasize that for many of such problems it might be not possible to
derive tractable robust counterparts.

In Iancu and Trichakis (2013) it is observed that (A)RCs may have multiple optimal
solutions. We advice to check whether this is the case, and to use a two-step pro-
cedure to find Pareto optimal solutions and to improve on the average behavior; for
details see Section 2.5, Iancu and Trichakis (2013), and de Ruiter (2013).

Step 6 (Solve RC via adversarial approach). If the robust counterpart cannot be
written as or approximated by a tractable reformulation, we advocate to perform
the so-called adversarial approach. The adversarial approach starts with a finite set
of scenarios Si ⊂ Zi for the uncertain parameter in constraint i. E.g., at the start,
Si only contains the nominal scenario. Then, the robust optimization problem, in
which Zi is replaced by Si is solved. If the resulting solution is robust feasible, we
have found the robust optimal solution. If that is not the case, we can find a scenario
for the uncertain parameter that makes the last found solution infeasible. E.g., we
can search for the scenario that maximizes the infeasibility. We add this scenario
to Si, and solve the resulting robust optimization problem, and so on. For a more
detailed description, we refer to Bienstock and Özbay (2008). It appeared that this
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Table 2.1 – Tractable reformulations for the uncertain constraint
[(a0 + Pζ)>x ≤ d ∀ζ ∈ Z], and h∗k is the convex conjugate of hk

Uncertainty Z Robust Counterpart Tractability

Box ‖ζ‖∞ ≤ ρ (a0)>x + ρ‖P>x‖1 ≤ d LP
Ellipsoidal ‖ζ‖2 ≤ ρ (a0)>x + ρ‖P>x‖2 ≤ d CQP

Polyhedral Dζ + d ≥ 0


(a0)>x + d>y ≤ d

D>y = −P>x
y ≥ 0

LP

Convex cons. hk(ζ) ≤ 0 ∀k


(a0)>x +∑

k ukh
∗
k

(
wk

uk

)
≤ d∑

k wk = P>x
u ≥ 0

Convex Opt.

simple approach often converges to optimality in a few number of iterations. The
advantage of this approach is that solving the robust optimization problem with Si
instead of Zi in each iteration, preserves the structure of the original optimization
problem. Only constraints of the same type are added, since constraint i should hold
for all scenarios in Si.

We also note that in some cases it may happen that although a tractable reformu-
lation of the robust counterpart can be derived, the size of the resulting problem
becomes too big. For such cases the adversarial approach can also be used.

Step 7 (Check quality of solution). Since a robustness analysis is extremely impor-
tant, and in practice one can easily draw wrong conclusions, we extensively describe
in Section 2.10 how to perform such an analysis. Frequently stated criticism on RO
is that it yields overly pessimistic solutions. Besides performing a wrong robustness
analysis, there are several other possible reasons for such criticism. The first is that
in the modeling phase one could easily introduce unnecessary pessimism when one
does not realize that the robust counterpart of equivalent deterministic problems are
not necessarily equivalent. For a detailed explanation on this issue, see Section 2.7.
A second reason may be that the constraints that contain uncertain parameters are
not that strict as e.g. safety restrictions for the design of a bridge or an airplane.
In such cases violating the constraint for some scenarios of the uncertain parameters
is not that serious. As it is explained in Step 1b, for those cases one could use the
GRO methodology or, alternatively, reduce the size of the uncertainty region. These
alternatives can also be used when one is more interested in the average than the
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worst case behavior. Finally, there are also cases where indeed the nominal solution
is already robust “enough”, and where RO does not yield better and more robust
solutions. We argue that in practice such a conclusion is already extremely valuable.

2.3 Choosing Uncertainty Set
In this section we describe different possible uncertainty sets and their advantages
and disadvantages. Often one wants to make a trade-off between “full” robustness
and the size of the uncertainty set: a box uncertainty set that contains the full range
of realizations for each component of ζ is the most robust choice and guarantees
that the constraint is never violated, but on the other hand there is only a small
chance that all uncertain parameters take their worst case values. This has led to
the development of smaller uncertainty sets that still guarantee that the constraint
is “almost never” violated. In this thesis, we propose data driven methods, in a
similar vein, constructing uncertainty sets using data and probability guarantees is
inspired by chance constraints, which are constraints that have to hold with at least
a certain probability. Often the underlying probability distribution is not known,
and one seeks a distributionally robust solution. One application of RO is to provide
a tractable safe approximation of the chance constraint in such cases, i.e. a tractable
formulation that guarantees that the chance constraint holds:

if x satisfies a(ζ)>x ≤ d ∀ζ ∈ Uε, then x also satisfies Pζ(a(ζ)>x ≤ d) ≥ 1− ε.

For ε = 0, a chance constraint is a traditional robust constraint. The challenge is to
determine the set Zε for other values of ε. We distinguish between uncertainty sets
for uncertain parameters and for uncertain probability vectors.

For uncertain parameters, many results are given in (Ben-Tal et al., 2009, Chapter
2). The simplest case is when the only knowledge about ζ is that ||ζ||∞ ≤ 1. For this
case, the box uncertainty set is the only set that can provide a probability guarantee
(of ε = 0). When more information becomes available, such as bounds on the mean
or variance, or knowledge that the probability distribution is symmetric or unimodal,
smaller uncertainty sets become available. Ben-Tal et al. (2009, Table 2.3) list seven
of these cases. Probability guarantees are only given when ||ζ||∞ ≤ 1, E(ζ) = 0
and the components of ζ are independent. We mention the uncertainty sets that are
used in practice when box uncertainty is found to be too pessimistic. The first is
an ellipsoid (Ben-Tal et al., 2009, Proposition 2.3.1), possibly intersected with a box
(Ben-Tal et al., 2009, Proposition 2.3.3):

Zε = {ζ : ||ζ||2 ≤ Ω ||ζ||∞ ≤ 1}, (2.2)
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where ε = exp(−Ω2/2). The second is a polyhedral set (Ben-Tal et al., 2009, Propo-
sition 2.3.4), called budgeted uncertainty set or the “Bertsimas and Sim” uncertainty
set (Bertsimas and Sim, 2004):

Zε = {ζ : ||ζ||1 ≤ Γ ||ζ||∞ ≤ 1}, (2.3)

where ε = exp(−Γ2/(2L)). The probability guarantee of the Bertismas and Sim
uncertainty set is only valid when the uncertain parameters are independent and
symmetrically distributed. A stronger bound is provided in (Bertsimas and Sim,
2004). This set has the interpretation that (integer) Γ controls the number of ele-
ments of ζ that may deviate from their nominal values. (2.2) leads to better objective
values for a fixed ε compared to (2.3), but gives rise to a CQP for an uncertain LP
while (2.3) results in an LP and is therefore from a computational point of view more
tractable.

Bandi and Bertsimas (2012) propose uncertainty sets based on the central limit
theorem. When the components of ζ are independent and identically distributed
with mean µ and variance σ2, the uncertainty set is given by:

Zε =
{
ζ : |

L∑
i=1

ζi − Lµ| ≤ ρ
√
nσ

}
,

where ρ controls the probability of constraint violation 1 − ε. Bandi and Bertsimas
also show variations on Zε that incorporate correlations, heavy tails, or other distri-
butional information. The advantage of this uncertainty set is its tractability, since
the robust counterpart of an LP with this uncertainty set is also LP. A disadvantage
of this uncertainty set is that it is unbounded for L > 1, since one component of
ζ can be increased to an arbitrarily large number (while simultaneously decreasing
a different component). This may lead to intractability of the robust counterpart
or to trivial solutions. In order to avoid infeasibility, it is necessary to define sep-
arate uncertainty sets for each constraint, where the summation runs only over the
elements of ζ that appear in that constraint. Alternatively, it may help to take the
intersection of Zε with a box.

We now focus on uncertain probability vectors. These appear e.g. in a constraint on a
risk measure expected value or variance. Ben-Tal et al. (2013) construct uncertainty
sets based on φ-divergence. The φ-divergence between the vectors p and q is:

Iφ(p,q) =
m∑
i=1

qiφ

(
pi
qi

)
,
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where φ is the (convex) φ-divergence function; for details on φ-divergence, we refer to
Pardo (2005). Let p denote a probability vector and let q be the vector with observed
frequencies when N items are sampled according to p. Under certain regularity
conditions,

2N
φ′′(1)Iφ(p,q) d→ χ2

m−1 as N →∞.

This motivates the use of the following uncertainty set:

Zε = {p : p ≥ 0, e>p = 1, 2N
φ′′(1)Iφ(p, p̂) ≤ χ2

m−1;1−ε},

where p̂ is an estimate of p based on N observations, and χ2
m−1;1−ε is the 1 − ε

percentile of the χ2 distribution with m− 1 degrees of freedom. The uncertainty set
contains the true p with (approximate) probability 1− ε. Ben-Tal et al. (2013) give
many examples of φ-divergence functions that lead to tractable robust counterparts.

An alternative to φ-divergence is using the Anderson-Darling test to construct the
uncertainty set (Ben-Tal et al., 2012, Ex. 15).

We conclude this section by pointing out a mistake that is sometimes made regarding
the probability of violation. Sometimes an uncertainty set is constructed such that
it contains the true parameter with high probability. Consequently, the constraint
holds with the same high probability. However, the probability of constraint satisfac-
tion is much larger than one expects, since the constraint also holds for the “good”
realizations of the uncertain parameter outside the uncertainty set. We demonstrate
this with a normally distributed ζ of dimension L = 10, where the components are
independent, and have mean 0 and variance 1. The singleton Zε = {0} already
guarantees that the uncertain constraint holds with probability 0.5. Let us now
construct a set Zε that contains ζ with probability 0.5. Since ζ>ζ ∼ χ2

L, the set
Zε = {ζ : ||ζ||2 ≤

√
χ2
L;1−ε} contains ζ with probability 1 − ε. For ε = 0.5, Zε is a

ball with radius 9.3 which is indeed much larger than the singleton. Consequently, it
provides a much stronger probability guarantee. In order to compute this probability,
we first write the explicit chance constraint. Since (a0 + Pζ)>x ≤ d is equivalent to
(a0)>x + (P>x)>ζ ≤ d, and since the term (P>x)>ζ follows a normal distribution
with mean 0 and standard deviation

∣∣∣∣∣∣P>x
∣∣∣∣∣∣

2
, the chance constraint can explicitly

be formulated as (a0)>x + z1−ε

∣∣∣∣∣∣P>x
∣∣∣∣∣∣

2
≤ d, where z1−ε is the 1− ε percentile of the

normal distribution. This is the robust counterpart of the original linear constraint
with ellipsoidal uncertainty and a radius of z1−ε. The value z1−ε = 9.3 coincides with
ε ≈ 7.0 · 10−21. So, while one thinks to construct a set that makes the constraint
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hold in 50% of the cases, the set actually makes the constraint hold in almost all
cases. To make the chance constraint hold with probability 1 − ε, the radius of the
ellipsoidal uncertainty set is z1−ε instead of

√
χ2
L;1−ε. These only coincide for L = 1.

2.4 Linearly Adjustable Robust Counterpart: Lin-
ear in What?

Tractable examples of decision rules used in ARO are linear (or affine) decision rules
(AARC) (Ben-Tal et al., 2009, Chapter 14) or piecewise linear decision rules (Chen
et al., 2008); see also Section 2.2. The AARC was introduced by Ben-Tal et al.
(2004) as a computationally tractable method to handle adjustable variables. In the
following constraint:

(a0 + Pζ)>x + b>y ≤ d ∀ζ ∈ Z,

y is an adjustable variable whose value may depend on the realization of the uncertain
ζ, while b does not depend on ζ (fixed recourse). There are two different AARCs for
this constraint:
AARC 1. y is linear in ζ (e.g. see Ben-Tal et al. (2004) and Ben-Tal et al. (2009,
Chapter 14)), or
AARC 2. y is linear in a0 + Pζ (e.g. see Roelofs and Bisschop (2012, Chapter
20.4)).
Note that AARC 2 is as least as conservative as AARC 1, since the linear transforma-
tion of ζ 7→ a0 + Pζ can only lead to loss of information, and that both methods are
equivalent if the linear transformation is injective on Z. The choice for a particular
method may be influenced by four factors: (i) the availability of information. An
actual decision cannot depend on ζ if ζ has not been observed. (ii) The number of
variables in the final problem. AARC 1 leads to |ζ| extra variables compared to the
RC, whereas AARC 2 leads to |a0| extra variables. (iii) Simplicity for the user. Often
the user observes model parameters instead of the primitive uncertainty vector. (iv)
For analysis variables one should always use the least conservative method.

The practical issue raised in the first factor (availability of information) has been
addressed with a information base matrix P. Instead of being linear in ζ, y can
be made linear in Pζ. We give one example where uncertain demand is observed.
Suppose there are two time periods and three possible scenarios for demand time
period one and two, namely (10, 10)> , (10, 11)> and (11, 11)> . So, the uncertainty
set of the demand vector is the convex hull of these scenarios: {Pζ : ζ ∈ Z} where
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P is the matrix with the scenarios as columns and Z = ∆2 = {ζ ∈ R3 : ∑3
`=1 ζ` =

1, ζ ≥ 0} is the standard simplex in R3. If the observed demand for time period one
is 10, it is not possible to distinguish between ζ = (1, 0, 0)> and ζ = (0, 1, 0)> . So,
a decision for time period two can be modeled either as AARC 1 with P = (1, 1, 0)
or as AARC 2. The latter leads to a decision rule that is easier to interpret, since it
directly relates to previously observed demand.

2.5 Adjustable Integer Variables
Ben-Tal et al. (2009, Chapter 14) use parametric decision rules for adjustable con-
tinuous variables. However, their novel techniques “generally” cannot be applied for
adjustable integer variables. In the literature two alternative approaches have been
proposed. Bertsimas and Georghiou (2013) introduced an iterative method to treat
adjustable binary variables as piecewise constant functions. The approach by Bertsi-
mas and Caramanis (2010) is different and is based on splitting the uncertainty region
into smaller subsets, where each subset has its own binary decision variable (see also
Vayanos et al. (2011)). In this section, we briefly show this last method to treat
adjustable integer variables, and show how the average behavior can be improved.
We use the following notation for the general RC problem:

(RC1) max
x,y,z

c(x,y, z)

s.t. A(ζ) x + B(ζ) y + C(ζ) z ≤ d, ∀ζ ∈ Z,

where x ∈ Rn1 and y ∈ Zn2 are “here and now” variables, i.e., decisions on them are
made before the uncertain parameter ζ, contained in the uncertainty set Z ⊆ RL ,
is revealed; z ∈ Zn3 is a “wait and see” variable, i.e., the decision on z is made
after observing (part of) the value of the uncertain parameter. A(ζ) ∈ Rm1×n1 and
B(ζ) ∈ Rm2×n2 are the uncertain coefficient matrices of the “here and now” variables.
Notice that the integer “wait and see” variable z has an uncertain coefficient matrix
C(ζ) ∈ Rm3×n3 . So, unlike the “classic” parametric method, this approach can han-
dle uncertainties in the coefficients of the integer “wait and see” variables. For the
sake of simplicity, we assume that the uncertain coefficient matrices to be linear in
ζ and, without loss of generality, c(x,y, z) is the certain linear objective function.

To model the adjustable RC (ARC) with integer variables, we first divide the given un-
certainty set Z into m disjoint, excluding the boundaries, subsets (Zi, i = 1, . . . ,m):

Z =
⋃

i∈{1,...,m}
Zi,
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and we introduce additional integer variables zi ∈ Zn3 (i = 1, . . . ,m) that model the
decision in Zi. Then, we replicate the uncertain constraint and the objective function
in (RC1) for each zi and the uncertainty set Zi as follows:

(ARC1) max
x,y,Z,t

t

s.t. c(x,y, zi) ≥ t ∀i ∈ {1, . . . ,m} (2.4)
A(ζ) x + B(ζ) y + C(ζ) zi ≤ d ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m}.

Note that (ARC1) is more flexible than the non-adjustable RC (RC1) in selecting
the values of integer variables, since it has a specific decision zi for each subset Zi.
Therefore, (ARC1) yields a robust optimal objective that is at least as good as (RC1).

Pareto efficiency. Iancu and Trichakis (2013) discovered that “the inherent fo-
cus of RO on optimizing performance only under worst case outcomes might leave
decisions un-optimized in case a non worst case scenario materialized”. Therefore,
the “classical” RO framework might lead to Pareto inefficiencies; i.e., an alternative
robust optimal solution may guarantee an improvement in the objective for (at least)
a scenario without deteriorating it in other scenarios.

Pareto efficiency is also an issue in (ARC1) that coincides with the worst case objec-
tive value among m objective functions associated with the subsets. Henceforth, we
must take into account the individual performance of the m subsets to have a better
understanding of the general performance of (ARC1). To find Pareto efficient robust
solutions, Iancu and Trichakis propose reoptimizing the slacks of “important” con-
straints, i.e., defined by a value vector, by fixing the robust optimal objective value of
the classical RO problem that is initially optimized; for details on pareto efficiency in
robust linear optimization we refer to Iancu and Trichakis (2013). Following a similar
approach, we apply a reoptimization procedure to improve the average performance
of (ARC1). More precisely, we first solve (ARC1) and find the optimal objective t∗.
Then, we solve the following problem:

(re-opt) max
x,y,Z,t

∑
i∈{1,...,m}

ti

s.t. ti ≥ t∗ ∀i ∈ {1, . . . ,m}
c(x,y, zi) ≥ ti ∀i ∈ {1, . . . ,m}
A(ζ) x + B(ζ) y + C(ζ) zi ≤ d ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m},

that optimizes (i.e., maximizing) the slacks in (2.4), while the worst case objective
value t∗ remains the same. Note that ti’s are the additional variables associated with
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the objectives values of the subsets; (re-opt) mimics a multi-objective optimization
problem that assigns equal weights to each objective, and finds Pareto efficient robust
solutions.

Example
Here we compare the optimal objective values of (RC1), (ARC1), and (ARC1) with
(re-opt) via a toy example. For the sake of exposition, we exclude continuous variables
in this example. The non-adjustable RC is given as follows:

max
(w,z)∈Z3

+

5w + 3z1 + 4z2

s.t. (1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)z1 + (2 + 2ζ1)z2 ≤ 18 ∀ζ ∈ Box
(ζ1 + ζ2)w + (1− 2ζ1)z1 + (1− 2ζ1 − ζ1)z2 ≤ 16 ∀ζ ∈ Box,

(2.5)

where Box = {ζ : −1 ≤ ζ1 ≤ 1,−1 ≤ ζ2 ≤ 1} is the given uncertainty set, and w,
z1, and z2 are nonnegative integer variables. In addition, we assume that z1 and z2

are adjustable on ζ1; i.e., the decision on these variables is made after ζ1 is being
observed. Next, we divide the uncertainty set into two subsets:

Z1 = {(ζ1, ζ2) : −1 ≤ ζ1 ≤ 0,−1 ≤ ζ2 ≤ 1}
Z2 = {(ζ1, ζ2) : 0 ≤ ζ1 ≤ 1,−1 ≤ ζ2 ≤ 1}.

Then ARC of (2.5) is:

(Ex:ARC) max
t,w,Z

t

s.t. 5w + 3zi1 + 4zi2 ≥ t ∀i
(1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)zi1 + (2 + 2ζ1)zi2 ≤ 18 ∀ζ ∈ Zi, ∀i
(ζ1 + ζ2)w + (1− 2ζ1)zi1 + (1− 2ζ1 − ζ1)zi2 ≤ 16 ∀ζ ∈ Zi, ∀i,

where t ∈ R, w ∈ Z+, Z ∈ Z2×m
+ , and m = 2 since we have two subsets. Table 2.2

presents the optimal solutions of RC and ARC problems.

Table 2.2 – RC vs ARC

Method Obj. w z

RC 29 1 (z1, z2) = (4, 3)
ARC 31 0 (z1

1 , z
1
2 , z

2
1 , z

2
2) = (0, 8, 5, 4)
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The numerical results show that using the adjustable reformulation we improve the
objective value of the non-adjustable problem by 7%. On the other hand, if we
assume that z1 and z2 are adjustable on ζ2 (but not on ζ1), and we modify the un-
certainty subsets Z1 and Z2 accordingly, then RC and ARC yield the same objective
29. This shows that the value of information of ζ1 is higher than that of ζ2.

Next we compare the average performance of ARC and the second stage optimization
problem (re-opt) that is given by:

max
t,w,Z

∑
i∈{1,...,m}

ti

s.t. 5w + 3zi1 + 4zi2 ≥ ti, ti ≥ t∗ ∀i
(1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)zi1 + (2 + 2ζ1)zi2 ≤ 18 ∀ζ ∈ Zi,∀i
(ζ1 + ζ2)w + (1− 2ζ1)zi1 + (1− 2ζ1 − ζ2)zi2 ≤ 16 ∀ζ ∈ Zi,∀i,

where t ∈ Rm . For changing the number of subsets, we again split the uncertainty
sets (Zi, i = 1, . . . ,m) on ζ1 but not on ζ2. The numerical results are presented in
Table 2.3.

Table 2.3 – ARC vs re-opt for varying number of subsets

Worst Case Obj. Values per Subset W.-C. Average

# Subsets ARC re-opt ARC re-opt

1 29 29 29 29.0
2 (32, 31*) (34, 31*) 31.5 32.5
3 (33, 30*, 32) (49, 30*, 35) 31.6 38.0
4 (33, 31*, 32, 32) (64, 34, 31*, 54) 32 45.7
5 (33, 30*, 30*, 32, 32) (80, 40, 30*, 33, 66) 31.4 49.8

8 (32, 32, 32, 34, 31*, (128, 64, 40, 34, 31* 32.5 61.833, 33, 33) 36, 54, 108)

10 (32, 32, 32, 32, 34, (160, 80, 52, 40, 34, 32.5 64.331*, 33, 33, 33, 33) 31*, 33, 45, 66, 135)
(∗) denotes the worst case (w.-c.) objective value over all subsets

The first column of the table presents the number of subsets used in ARC, and we
assume that the domain of ζ1 is divided into equally sized intervals (e.g., if the number
of subsets is three, then the intervals are −1 ≤ ζ1 ≤ −0.33,−0.33 ≤ ζ1 ≤ 0.33, and
0.33 ≤ ζ1 ≤ 1). The second column reports objective values of the subproblems
associated with the subsets in ARC. The third column presents the objective values
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of the subproblems when we apply (re-opt). The fourth and fifth columns show
the averages of the results in columns two and three. As anticipated, intra row
comparisons show that ARC and (re-opt) yield the same worst case performance for a
fixed number of subsets, and (re-opt) yields significantly better average performances
than ARC. Moreover, the average performance improves with the number of subsets.
Notice that the average performance of the RC solution is not reported in Table 2.3
because it has the same average performance, that is 29, for any given number of
subsets. Nevertheless, it is important to see the significant average objective value
improvement made by ARC with (re-opt) for the “fixed” performance of the RC. Last
but not least, the optimal objective value 31, which is obtained when the number of
subsets is two, four, eight and ten in Table 2.3, is the global optimal of the ARC; for
details on optimality see the following section where this example will be revisited.

Optimality
To quantify how far is the optimal objective value (t∗) of (ARC1) from that of the best
possible solution, we need to define an efficient lower bound (or an upper bound for
a maximization problem) for the best objective. One way of finding such a bound is
solving (ARC1) by defining an adjustable variable for each scenario, and scenarios are
associated with a finite subset (denoted by Ẑ) of the uncertainty set Z (Hadjiyiannis
et al., 2011; Bertsimas and Georghiou, 2013; Postek, 2013). The optimal objective
value of such a formulation is always a lower bound for the best possible objective
value, since we optimize adjustable variables for each unique scenario separately and
use a finite subset Ẑ that is less conservative (or performs the same in the worst
case) than the original uncertainty set Z. More precisely, the lower bound problem
is given as follows:

(BRC) min
x,y,z(ζ),tlb

tlb

s.t. c(x,y, z(ζ)) ≤ tlb ∀ζ ∈ Ẑ
A(ζ) x + B(ζ) y + C(ζ) z(ζ) ≤ d ∀ζ ∈ Ẑ

where Ẑ is a finite subset of Z, as explained above. Now the question that has to be
answered is: how to construct Ẑ efficiently? Postek (2013) proposes to first find the
optimal solution of (ARC1) for a given number of subsets, and then formulating the
set of worst case uncertain parameters for the left-hand sides in active constraints to
construct Ẑ. For additional details on improving the lower bound we refer to Postek
(2013, Chapter 4.2).
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Example (Ex:ARC) revisited. The solution of (Ex:ARC) for two subsets (i.e., m = 2)
is given in the second row of Table 2.2. The associated finite “worst case” subset for
this solution is Ẑ = {(0, 1), (0,−1)}, and the upper bound for the best possible worst
case objective is tub = 31 (this is obtained by solving the upper bound reformulation
of (BRC) for Ẑ). Therefore, the optimal objective value of (Ex:ARC) is bounded
above by 31 for any given number of subsets; but since we find the same objective
value for m = 2 we can conclude that 31 is the global optimal value.

Tractability
It is important to point out that our adjustable reformulation and the “non-adjustable”
RC have the same “general” mathematical complexity, but the adjustable reformu-
lation increases the number of variables and constraints by a factor m (the number
of subsets), so that if the number of integer variables is high (say a few hundreds)
then the resulting adjustable RC may be intractable. Dividing the main uncertainty
set Z into more subsets Zi may improve the objective value by giving more freedom
in making adjustable decisions, but the decision maker should make the tradeoff
between optimality and computational complexity.

2.6 Binary Variables in Big-M-Constraints are Au-
tomatically Adjustable

Often integer variables correspond to strategic here-and-now decisions, and then there
is no need to make them adjustable. In this section we show that for an important
class of 0, 1 variables that are wait-and-see there is also no need to make them ad-
justable.

Suppose y is a 0, 1 variable that is associated to a continuous variable x in such a
way that:

y =
{

1 if x > 0
0 if x = 0.

Such 0, 1 variables are often used, e.g., in supply chain models to model whether a
facility is opened or not. Now suppose that both y and the continuous variable x are
adjustable with respect to the uncertain parameter ζ. Let us use a linear decision
rule for x:

x = u+ v>ζ,
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where u ∈ R, and v ∈ RL are the coefficients of the linear decision rule, and we
do not use a linear decision rule for y, although y is adjustable. For the optimal
solution of the corresponding robust optimization problem, we either have (i) u = 0
and v = 0 (i.e. x = 0), or (ii) u 6= 0 or v 6= 0. In case (i) we get y = 0, and in
case (ii) we get y = 1. Hence, the only problematic situation is when u + v>ζ = 0
in case (ii), since then the optimal y should be 0 and not 1. Note however that the
probability that ζ ∈ U is such that u + v>ζ = 0 is zero, unless a follows a discrete
distribution or u∗ + (v∗)>ζ = 0, with u∗ and v∗ the optimal values for u and v,
is part of the description of Z. Also observe that when u = 0 and v = 0, we will
automatically get y = 0, since the constraint x ≤ My, with M a big number, is one
of the constraints of the original problem and the objective is to minimize costs. A
more efficient formulation would be:

u ≤My, u ≥ −My, v ≤My1, v ≥ −My1,

where 1 is the all one vector. We conclude that there is no need to make y adjustable,
i.e. the final optimal linear decision rule,

y =
{

1 if u+ v>ζ > 0
0 if u+ v>ζ = 0,

can be obtained by only using linear decision rules for x (and not for y). Note that
this conclusion depends on the chosen class of decision rules. Suppose that we would
have used piecewise linear decision rules, then we should also make y adjustable. One
way to do that is to define a different y value for each interval of the piecewise linear
decision rule.

Example. Let us consider the following problem. There are two possible production
centers and together they have to produce at least ζ. Production costs per unit are 1
and 3, respectively for production center 1 and 2. Fixed costs for opening the centers
are 40 and 10, respectively for center 1 and 2. The mathematical formulation is:

min
x,y

40y1 + 10y2 + x1 + 3x2

s.t. x1 + x2 ≥ ζ

x1 ≤My1

x2 ≤My2

x1, x2 ≥ 0
y1, y2 ∈ {0, 1},

in which M > 0 is a big number. Now suppose that ζ is uncertain, with uncertainty
interval [10, 30], and both x and y are wait-and-see variables. Although y is adjustable
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we only use linear decision rules for x, and solve the following adjustable robust
optimization problem:

min
x,y

max
ζ∈[10,30]

40y1 + 10y2 + u1 + v1ζ + 3(u2 + v2ζ)

s.t. u1 + v1ζ + u2 + v2ζ ≥ ζ ∀ζ ∈ [10, 30]
u1 + v1ζ ≤My1 ∀ζ ∈ [10, 30]
u2 + v2ζ ≤My2 ∀ζ ∈ [10, 30]
u1 + v1ζ ≥ 0 ∀ζ ∈ [10, 30]
u2 + v2ζ ≥ 0 ∀ζ ∈ [10, 30]
y1, y2 ∈ {0, 1}.

The optimal solution of this problem is:
x1 = ζ (u1 = 0, v1 = 1)
x2 = 0 (u2 = 0, v2 = 0)
y1 = 1
y2 = 0,

which indeed can not be improved by using decision rules for y. Hence, indeed there
is no need to make y adjustable. Now suppose the uncertainty interval is [0, 30], then
the optimal linear decision rule is as above. However, now it can happen that ζ = 0,
in which case y1 should be 0 instead of 1. Hence the final optimal decision rule is:

x1 = ζ

x2 = 0

y1 =
{

1 if ζ > 0
0 if ζ = 0

y2 = 0.

2.7 Robust Counterparts of Equivalent Determin-
istic Problems are not Necessarily Equivalent

In this section we show that the robust counterparts of equivalent deterministic prob-
lems are not always equivalent. The message in this section is thus that one has to
be careful with reformulating optimization problems, since the corresponding robust
counterparts may not be the same.

Let us start with a few simple examples. The first one is similar to the example in
Ben-Tal et al. (2009, p. 13). Consider the following constraint:

(2 + ζ)x1 ≤ 1,
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where ζ is an (uncertain) parameter. This constraint is equivalent to:(2 + ζ)x1 + s = 1
s ≥ 0.

However, the robust counterparts of these two constraint formulations, i.e.

(2 + ζ)x1 ≤ 1 ∀ζ : |ζ| ≤ 1, (2.8)

and (2 + ζ)x1 + s = 1 ∀ζ : |ζ| ≤ 1
s ≥ 0,

(2.9)

in which the uncertainty set for ζ is the set {ζ : |ζ| ≤ 1}, are not equivalent. It
can easily be verified that the feasible set for robust constraint (2.8) is: x1 ≤ 1/3,
while for the robust constraint (4.22) this is x1 = 0. The reason why (2.8) and (4.22)
are not equivalent is that by adding the slack variable, the inequality becomes an
equality that has to be satisfied for all values of the uncertain parameter, which is
very restrictive. The general message is therefore: do not introduce slack variables
in uncertain constraints, unless they are adjustable like in Kuhn et al. (2011), and
avoid uncertain equalities.

Another example is the following constraint:

|x1 − ζ|+ |x2 − ζ| ≤ 2,

which is equivalent to:

y1 + y2 ≤ 2
y1 ≥ x1 − ζ
y1 ≥ ζ − x1

y2 ≥ x2 − ζ
y2 ≥ ζ − x2.

However, the robust versions of these two formulations, namely:

|x1 − ζ|+ |x2 − ζ| ≤ 2 ∀ ζ : |ζ| ≤ 1, (2.10)

and: 

y1 + y2 ≤ 2
y1 ≥ x1 − ζ ∀ζ : |ζ| ≤ 1
y1 ≥ ζ − x1 ∀ζ : |ζ| ≤ 1
y2 ≥ x2 − ζ ∀ζ : |ζ| ≤ 1
y2 ≥ ζ − x2 ∀ζ : |ζ| ≤ 1,

(2.11)
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are not equivalent. Indeed, it can easily be checked that the set of feasible solutions
for (2.10) is (θ,−θ), −1 ≤ θ ≤ 1, but the only feasible solution for (2.11) is x = (0, 0).
The reason for this is that in (2.11) the uncertainty is split over several constraints,
and since the concept of RO is constraint-wise, this leads to different problems, and
thus different solutions. The following linear optimization reformulation, however, is
equivalent to (2.10):

x1 − ζ + x2 − ζ ≤ 2 ∀ ζ : |ζ| ≤ 1
x1 − ζ + ζ − x2 ≤ 2 ∀ ζ : |ζ| ≤ 1
ζ − x1 + x2 − ζ ≤ 2 ∀ ζ : |ζ| ≤ 1
ζ − x1 + ζ − x2 ≤ 2 ∀ ζ : |ζ| ≤ 1.

(2.12)

The general rule therefore is: do not split the uncertainty in one constraint over more
constraints, unless the uncertainty is disjoint. In particular do not use “definition
variables” if this leads to such a splitting of the uncertainty.

In the remainder we give a general treatment of some often used reformulation tricks
to reformulate nonlinear problems into linear ones, and discuss whether the robust
counterparts are equivalent or not.

• Maximum function. Consider the following constraint:

a(ζ)>x + max
k

bk(ζ)>x ≤ d(ζ) ∀ζ ∈ Z,

where ζ ∈ Z is the uncertain parameter, and a(ζ), bk(ζ), and d(ζ) are param-
eters that depend linearly on ζ. The incorrect reformulation for this constraint
is: {

a(ζ)>x + z ≤ d(ζ) ∀ζ ∈ Z
z ≥ bk(ζ)>x ∀k, ∀ζ ∈ Z,

since the uncertainty is split over more constraints. The correct reformulation
is:

a(ζ)>x + bk(ζ)>x ≤ d(ζ) ∀k,∀ζ ∈ Z.

Note that in many cases we have “a sum of max”:

a(ζ)>x +
∑
i

max
k

bik(ζ)>x ≤ d(ζ) ∀ζ ∈ Z.
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Important examples that contain such constraints are production-inventory
problems. We refer to Gorissen and den Hertog (2012) for an elaborate treat-
ment on exact and approximate reformulations of such constraints.

• Absolute value function. Note that |x| = max{x,−x}, and hence this is a
special case of the max function, treated above.

• Linear fractional program. Consider the following robust linear fractional
problem:

min
x

maxζ∈Z
α(ζ)+c(ζ)>x
β(ζ)+d(ζ)>x

s.t.
∑
j

aijxj ≥ bi ∀i

x ≥ 0,

(2.13)

where α(ζ), c(ζ), β(ζ), and d(ζ) are parameters that depend linearly on ζ.
Moreover, we assume that β(ζ)+d(ζ)>x > 0, for all feasible x and for all ζ ∈ Z.
For the non-robust version one can use the Charnes-Cooper transformation
that is proposed by Charnes and Cooper (1962) to obtain an equivalent linear
optimization problem. However, if we apply this transformation to the robust
version, we obtain:

min
y,t

max
ζ∈Z

α(ζ)t+ c(ζ)>y

s.t. β(ζ)t+ d(ζ)>y = 1 ∀ζ ∈ Z∑
j

aijyj ≥ bit ∀i

y ≥ 0, t ≥ 0,

which is not equivalent to (2.13) since the uncertainty in the original objective
is now split over the objective and a constraint. A better way to deal with such
problems is to solve the robust linear problem

min
x

max
ζ∈Z

[
α(ζ) + c(ζ)>x− λ

(
β(ζ) + d(ζ)>x

)]
s.t.

∑
j

aijxj ≥ bi

x ≥ 0,

for a fixed value of λ, and then find the minimal value of λ for which this
optimization problem still has a non positive optimal value. One can use for
example binary search on λ to do this. For a more detailed treatment of robust
fractional problems we refer to Gorissen (2013).
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• Product of binary variables. Suppose that a robust constraint contains a
product of binary variables, say xy, with x, y ∈ {0, 1}. Then one can use the
standard way to linearize this:

z ≤ x

z ≤ y

z ≥ x+ y − 1
z ≥ 0,

and replace xy with z. One can use this reformulation since the added con-
straints do not contain uncertain parameters.

• Product of binary and continuous variable. A product of a binary and a
continuous variable that occurs in a robust constraint can also be reformulated
in linear constraints, in a similar way as above. However, note that in the
following robust constraint:

a(ζ)>x + zb(ζ)>x ≤ d(ζ) ∀ζ ∈ Z,

where z ∈ {0, 1}, one cannot use the standard trick:{
a(ζ)>x + zy ≤ d(ζ) ∀ζ ∈ Z
y ≥ b(ζ)>x ∀ζ ∈ Z,

(2.14)

and then linearize zy. This is not possible since in (2.14) the uncertainty is
split over different constraints. A correct reformulation is:{

a(ζ)>x + b(ζ)>x ≤ d(ζ) +M(1− z) ζ ∈ Z
a(ζ)>x ≤ d(ζ) +Mz ζ ∈ Z.

(2.15)

• K out of N constraints should be satisfied. Suppose the restriction is
that at least K out of the N robust constraints

ai(ζ)>x ≤ di(ζ) ∀ζ ∈ Z (2.16)

should be satisfied, where i ∈ {1, . . . , N}. Then one can use the standard way
ai(ζ)>x ≤ di(ζ) +M(1− zi) ∀ζ ∈ Z,∀i∑
i

zi ≥ K

zi ∈ {0, 1} ∀i,
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where M is a sufficiently big number. However, if the restriction is that ∀ζ ∈ Z
at least K out of the N constraints should be satisfied (notice the difference
with (2.16)), then the above constraint-wise formulation is not equivalent and
is overly conservative. We do not see how to model such a constraint correctly.
Maybe an adversarial approach could be used for such constraints.

• If-then constraint. Since an “if-then constraint” can be modeled as an at
least 1 out of 2 constraints, the above remarks hold.

Up to now we only described linear optimization examples. Similar examples can
be given for conic and nonlinear optimization. In Lobo et al. (1998) for example,
many optimization problems are given that can be modeled as conic quadratic pro-
gramming problems. However, for many of them it holds that the corresponding
robust counterparts are not the same. This means that if an optimization problem
is conic quadratic representable, then the robust counterparts are not automatically
the same, and hence in such cases the robust optimization techniques for CQP cannot
be used.

2.8 How to Deal with Equality Constraints?
Equality constraints containing uncertain parameters should be avoided as much
as possible, since often such constraints restrict the feasibility region drastically or
even lead to infeasibility. Therefore, the advice is: do not use slack variables unless
they are adjustable, since using slack variables leads to equality constraints; see Ben-
Tal et al. (2009, Chapter 2). However, equality constraints containing uncertain
parameters cannot always be avoided. There are several ways to deal with such
uncertain equality constraints:

• In some cases it might be possible to convert the equality constraints into
inequality constraints. An illustrating example is the transportation problem:
the demand constraints can either be formulated as equality constraints or as
inequality constraints. The structure of the problem is such that at optimality
these inequalities are tight.

• The equality constraints can be used to eliminate variables. This idea is men-
tioned in Ben-Tal et al. (2009). However, several questions arise. First of all,
after elimination of variables and after the resulting problem has been solved,
it is unclear which values to take for the eliminated variables, since they also
depend on the uncertain parameters. This is no problem if the eliminated
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variables are adjustable variables or analysis variables, since there is no need
to know their optimal values. A good example is the production-inventory
problem for which one can easily eliminate the analysis variables indicating the
inventory in different time periods. See e.g. Ben-Tal et al. (2009). Secondly,
suppose the coefficients with respect to the variables that will be eliminated
contain uncertain parameters. Eliminating such variables leads to problems
that contain non-linear uncertainty, which are much more difficult to solve. To
illustrate this, let us consider the following two constraints of an optimization
problem:

ζ1x1 + x2 + x3 = 1, x1 + x2 + ζ2x3 ≤ 5,

in which ζ1 and ζ2 are uncertain parameters. Suppose that x1, x2 and x3 are
all adjustable in ζ1. Then there are three options for elimination:

1. Elimination of x1. Let us assume that ζ1 = 0 is not in the uncertainty
set. By substituting x1 = (1− x2 − x3)/ζ1 the inequality becomes:(

1− 1
ζ1

)
x2 +

(
ζ2 −

1
ζ1

)
x3 ≤ 5− 1

ζ1
.

The disadvantage of eliminating x1 is thus that the uncertainty in the
inequality becomes nonlinear.

2. Elimination of x2. By substituting x2 = 1 − ζ1x1 − x3 the inequality
becomes:

(1− ζ1)x1 + (ζ2 − 1)x3 ≤ 4,

which is linear in the uncertain parameters.
3. Elimination of x3. By substituting x3 = 1 − ζ1x1 − x2 the inequality

becomes:

(1− ζ1ζ2)x1 + (1− ζ2)x2 ≤ 5− ζ2,

which is nonlinear in the uncertain parameters. We conclude that from a
computational point of view it is more attractive to eliminate x2.

It is important to note that different choices of variables to eliminate may lead
to different optimization problems.

• If the constraint contains analysis variables one could make these variables ad-
justable and use decision rules, thereby introducing much more flexibility. One
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can easily prove that when the coefficients for such variables in the equality
constraint do not contain uncertain parameters and the equality constraint is
linear in the uncertain parameters, then using linear decision rules for such vari-
ables is equivalent to eliminating these variables. To be more precise: suppose
the linear equality constraint is

q(ζ)>x + y = r,

where q(ζ) is linear in ζ, and y is an analysis variable (without loss of gener-
ality we assume the coefficient for y is 1). Then it can easily be proven that
substituting y = r − q(ζ)>x everywhere in the problem is equivalent to us-
ing a linear decision rule for y. To reduce the number of extra variables, it is
therefore better to eliminate such variables.

• Consider the following robust constraint:

(a + Pζ)>x = d ∀ζ ∈ Z. (2.17)

The equality constraint is satisfied for all ζ in Z if P>x = 0. Hence, we could
replace (2.17) by the stricter set of equations

a>x = d, P>x = 0.

However, especially when L is large, this is much too restrictive.

• One could also drop the requirement that the constraints are hard, and make
such constraints “soft”, by adding, e.g., a quadratic penalty for the violations
to the objective.

2.9 On Maximin and Minimax Formulations of
RC

In this section, we consider an uncertain LP of the following general form:

max
x≥0
{c>x : Ax ≤ d},

where without loss of generality A is the uncertain coefficient matrix that resides in
the uncertainty set U . So the general RC is given by

(R-LP) max
x≥0
{c>x : Ax ≤ d ∀A ∈ U}.
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Here we show that (R-LP) can be reformulated as:

(RF) min
A∈U

max
x≥0
{c>x : Ax ≤ d},

if the uncertainty is constraint-wise; however if this condition is not met, then (RF)
may not be equivalent to (R-LP).

Remark 1 This shows that the statement “RO optimizes for the worst case A” is
too vague. Also the maximin reformulation:

max
x≥0

min
A∈U
{c>x : Ax ≤ d},

is usually not equivalent to (R-LP). This is because we can almost always find an
x ≥ 0 such that no A ∈ U exists for which Ax ≤ d; therefore, we minimize over
an empty set, and have +∞ for the maximin objective. Also when x is selected such
that at least one feasible A exists (e.g., see Falk (1973)), it is easy to find examples
where both formulations are not equivalent.

To show (R-LP)=(RF) when the uncertainty is constraint-wise, we first take the
dual of the (inside) maximization problem of (RF) [maxx≥0 c>x : Ax ≤ d]. Then,
substituting the dual with the primal (maximization) problem in (RF) gives:

(OC-LP) min
A∈U ,y≥0

{d>y : ATy ≥ c},

where val(RF)=val(OC-LP) at optimality. Note that the constraints of (RF) can
be formulated as [aT

i x ≤ di,∀ai ∈ Ui, i = 1, . . . ,m], if the uncertainty is constraint-
wise. Beck and Ben-Tal (2009) show that (OC-LP)—which is the optimistic counter-
part of the dual problem—is equivalent to the general robust counterpart (R-LP) for
constraint-wise uncertainty and disjoint Ui’s. However, if (some of) the constraints
are dependent in (R-LP), then we may not sustain the associated equivalence. The
following example shows such a situation.

Example
Consider the following toy RC example in which the uncertainty is not constraint-
wise:

(RC-Toy) max
y

y1 + y2

s.t. a1y1 ≤ 1, a2y2 ≤ 1 ∀a ∈ R2 : ||a||2 ≤ 1,
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where two constraints of the problem are dependent on each other via the ellipsoidal
uncertainty set [a ∈ R2 : ||a||2 ≤ 1]. The robust reformulation of the (RC-Toy) is as
follows:

(RF-Toy) min
a:||a||2≤1

max
y

y1 + y2

s.t. a1y1 ≤ 1, a2y2 ≤ 1,

and the optimistic counterpart (OC) of the problem is

(OC-Toy) min
x≥0, a:||a||2≤1

x1 + x2

s.t. a1x1 = 1, a2x2 = 1.

(RC-Toy) attains an optimal objective value of 2, whereas the (RF-Toy)’s opti-
mal objective value is 2

√
2. Therefore, the robust reformulation (RF-Toy) is not

equivalent to the general RC problem (RC-Toy) in this situation. However, val(RF-
Toy)=val(OC-Toy) from duality.

2.10 Quality of Robust Solution
In this section we describe how to assess the quality with respect to robustness of a
solution based on a simulation study. We first identify four focus points for perform-
ing a Monte Carlo experiment, and conclude with two statistical tests that can be
used to compare two solutions.

Choice of the uncertainty set. For a comparison between different solutions,
it is necessary to define an uncertainty set U that is used for evaluation. This set
should reflect the real-life situation. The uncertainty set that is used for optimization
may be different than the set for evaluation. For example, an ellipsoidal set may be
used to reduce the conservatism when the real-life uncertainty is a box, while still
maintaining a large probability of constraint satisfaction (Ben-Tal et al., 2009, p. 34).

Choice of the probability distribution. A simulation requires knowledge of
the probability distribution on the uncertainty set. If this knowledge is ambiguous,
it may be necessary to verify whether the simulation results are sensitive with respect
to changes in this distribution. For example, Rozenblit (2010) performs different sim-
ulations, each based on a probability distribution with a different skewness level.

Choice of the sampling method. For univariate random variables it is computa-
tionally easy to draw a random sample from any given distribution. For multivariate
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random variables rejection sampling can be used, but it may be inefficient depending
on the shape of the uncertainty set, e.g. for an uncertainty set with no volume. A
more efficient method for sampling from an arbitrary continuous probability distri-
bution is “hit and run” sampling (Bélisle et al., 1993). An R package for uniform hit
and run sampling from a convex body is also available.

Choice of the performance characteristics. From a mathematical point of
view there is no difference between uncertainty in the objective and uncertainty in
the constraints since an uncertain objective can always be reformulated as a certain
objective and an uncertain constraint. However, the distinction between an uncer-
tain objective and an uncertain constraint is important for the interpretation of a
solution. First, we look at the effects of adjustable RO and reformulations, then we
present the performance characteristics.

Effect of adjustable RO. When one or more “wait and see” variables are modeled
as adjustable variables, uncertain parameters may enter the objective function. In
that case the performance characteristics for uncertainty in the objective become
applicable.

Effect of reformulations. Reformulations are sometimes necessary to end up with
a tractable model. The evaluation should be based on the original model, since
reformulations introduce additional constraints whose violation is not necessarily a
problem. Take for example an inventory model that has constraints on variables that
indicate the cost at a certain time period (e.g. constraints (2.18) and (2.19)). These
constraints have been introduced to model the costs in the objective function. A
violation of these constraints does not render the solution infeasible but does affect
the objective value (i.e. the costs of carrying out the solution).

Performance characteristics for uncertainty in the constraints. For an uncertain
constraint f(a, ζ) ≤ 0 for all ζ in Z, the violation is max{0, f(a, ζ)}. Meaningful
statistics are the probability on positive violation and the distribution of the violation
(average, worst case, standard deviation) under the condition that the violation is
positive. When multiple constraints are uncertain, these statistics can be computed
per constraint. Additionally, the average number of violated constraints can be re-
ported.

There is a clear trade-off between the objective value and constraint violations. The
difference between the worst case objective value of the robust solution and the nom-

http://cran.r-project.org/web/packages/hitandrun/
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inal objective value of the nominal solution is called the price of robustness (PoR)
(Bertsimas and Sim, 2004). It is useful if the objective is certain, since in that case
PoR is the amount that has to be paid for being robust against constraint violations.
We observe that PoR is also used when the objective is uncertain. We discourage
this, since it compares the nominal solution in case there is no uncertainty with the
robust solution where the worst case occurs, so it compares two different scenarios.

Performance characteristics for uncertainty in the objective. Uncertainty in the ob-
jective affects the performance of a solution. For every simulated uncertainty vector,
the actual objective value can be computed. One may be interested in the worst
case, but also in the average value or the standard deviation. For a solution that
is carried out many times, reporting the average performance is justified by the law
of large numbers. The worst case may be more relevant when a solution is carried
out only once or a few times, e.g. when optimizing a medical treatment plan for
a single patient. These numbers show what objective value to expect, but they do
not provide enough information about the quality of a solution since a high standard
deviation is not necessarily undesirable. A robust solution is good when it is close to
the perfect hindsight (PH) solution. The PH solution is the solution that is obtained
by optimizing the decision variables for a specific uncertainty vector as if it is fully
known beforehand. This has to be done for every simulated uncertainty vector, and
yields an utopia solution. The PH solution may have a large variation, causing a
high variation of good solutions as well.

Performance characteristics for any problem. Regardless of whether the uncertainty
is in the objective or in the constraints, the mean and associated standard deviation
of the difference between the actual performance of a solution and the PH solution
are useful for quantifying the quality of a solution. The mean difference between the
PH solution and a fully robust solution is defined as the price of uncertainty (PoU)
by Ben-Tal et al. (2005). It is the maximum amount that a company should invest for
reducing the level of uncertainty, e.g. by using more accurate forecasting techniques.
It can also be interpreted as the regret of choosing a certain solution rather than the
PH solution. Alternative names for PoU are “cost of robustness” (Gregory et al.,
2011) or “price of robustness” (Ben-Tal et al., 2004), which are less descriptive than
“price of uncertainty” and may cause confusion with price of robustness from (Bert-
simas and Sim, 2004). A low mean PoU and a low standard deviation characterize a
good solution.

Subtracting the mean objective value of the nominal solution from the mean value
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of a robust solution yields the actual price of robustness (APoR) (Rozenblit, 2010).
APoR can be interpreted as the expected price that has to be paid for using the
robust solution rather than the nominal solution, which is negative if RO offers a
solution that is better on average. PoR equals APoR when uncertainty only occurs
in the constraints.

For multistage problems one may also follow a folding horizon (FH) approach. With
FH in each stage where a part of the uncertain parameter is observed, that infor-
mation is used to optimize for the remaining time periods. This is done by taking
the original optimization problem, fixing the decision variables for previous stages,
and fixing the elements of the uncertain parameter that have been observed. This
allows a fair comparison between a dynamic solution (e.g. created by the AARC)
and a static solution (e.g. the nominal solution) when in real-life the static solution
is reoptimized in every stage.

Comparing two solutions. We provide several comparison criteria and provide
the corresponding statistical test to verify whether one solution is better than an-
other solution. The tests will be demonstrated in Section 2.11. We will assume that
the data for the statistics test is available as n pairs (Xi, Yi) (i = 1, 2, . . . , n), where
Xi and Yi are performance characteristics in the i’th simulation. For uncertainty in
the objective, they can be objective values whereas for uncertainty in the constraints
they can be the numbers of constraint violations or the sizes of the constraint vi-
olations. We assume that (Xi, Yi) and (Xj, Yj) are independent if i 6= j, and that
smaller values are better. When a conjecture for a test is based on the outcome of a
simulation study, the statistical test must be performed with newly generated data
to avoid statistical bias. While for the statistical tests it is not necessary that Xi

and Yi are based on the same simulated uncertainty vector ζ, it increases the power
of the test since Xi and Yi will be positively correlated. This reduces the variance
of the difference: Var(Xi− Yi) = Var(Xi) + Var(Yi)− 2 Cov(Xi, Yi), which is used in
the following tests:

• The sign test for the median validates H0: mx = my against H1: mx < my

with confidence level α, where mx and my are the medians of the distributions
of Xi and Yi, respectively. This tests the conjecture that the probability that
solution X outperforms solution Y is larger than 0.5. Let n= be the number
of observations for which Xi = Yi and let Z be the number of negative signs
of Xi − Yi. Under the null hypothesis, Z follows a binomial distribution with
parameters n− n= and 0.5. That means that the null hypothesis gets rejected
if Z is larger than the (1− α) percentile of the binomial distribution.
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• The t-test for the mean validates H0: µx = µy against H1: µx < µy with
confidence level α, where µx and µy are the means of the distributions of Xi and
Yi, respectively. This tests the conjecture that solution X outperforms solution
Y in long run average behavior. This test assumes that Xi−Yi follows a normal
distribution. Let Zi = Xi−Yi, Z̄ = ∑n

i=1 Zi/n and s2 = ∑n
i=1(Zi− Z̄)2/(n−1),

then T =
√
n
∑n
i=1(Zi − Z̄)/s follows a t-distribution with n − 1 degrees of

freedom under the null hypothesis. This means that H0 gets rejected if T is
smaller than the α percentile of the t-distribution with n−1 degrees of freedom.

2.11 RC May Take Better “Here and Now” Deci-
sions than AARC

A linear decision rule is a linear approximation of a more complicated decision rule.
It dictates what to do at each stage as a linear function of observed uncertain pa-
rameters, but it is not guaranteed to be the optimal strategy. Every time a decision
has to be made it is possible to either follow the linear decision rule, or to reoptimize
the AARC for the remaining time periods based on everything that is observed up
till then. We will refer to the latter as the AARC-FH, where FH stands for folding
horizon. Ben-Tal et al. (2005) compare the AARC with the AARC-FH, and show
that the latter produces better solutions on average. A comparison that involves
AARC-FH assumes that there is time to reoptimize. It is therefore natural to also
make a comparison with the RC-FH, where the RC is solved for the full time horizon
and re-optimized for the remaining time period every time a part of the uncertain
parameters is unveiled. On average, the RC-FH may outperform the AARC (Cohen
et al., 2007; Rozenblit, 2010).

In the remainder of this section we will evaluate both the average and the worst case
performance of the nominal solution with FH, the RC-FH and the AARC-FH. A
comparison between RC-FH and AARC-FH is new, and shows which model takes
the best “here and now” decisions.

We first give an example for the worst case performance. Consider a warehouse that
transfers one good. The current inventory is x0 = 5, the holding costs per time
period are h = 1, the backlogging costs per time period are b = 2. In the first period,
any nonnegative (not necessarily integer) amount can be ordered while in the second
period the maximum order quantity is qmax2 = 3. Let T = {1, 2}, let qt be the order
quantity in time period t, and let ct denote the costs associated with time period t.
The ending inventory can be returned to the supplier without penalty fee at time
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period three. The optimization problem can be formulated as:

min
∑
t∈T

ct

s.t. ct ≥ (x0 +
T∑
i=1

qi − di)h ∀t ∈ T (2.18)

ct ≥ −(x0 +
T∑
i=1

qi − di)b ∀t ∈ T (2.19)

q2 ≤ qmax2

qt ∈ R+ ∀t ∈ T.

Suppose the demand vector d is uncertain but is known to reside in a ball around 5
with radius 5. We will use this uncertainty set both for optimization and for evalua-
tion.

For this small example, it is possible to approximate the worst case costs for a FH
approach as a function of the “here and now” decision q1 as follows. For each q1

in a range of values, we have randomly drawn 100 uncertain demand vectors from
the boundary of the uncertainty set. For each demand vector we have computed the
inventory level at the beginning of the second time period (= x0 + q1−d1). Based on
this inventory level, we reoptimized the order quantity for the second time period,
where d2 was assumed to reside in the interval [5− r, 5 + r] with r =

√
25− (d1 − 5)2

(so that the full d vector is in a ball around 5 with radius 5). Then we computed the
total costs over both time periods. The maximum total costs over all 100 demand
vectors approximates the worst case costs with the FH approach, and is depicted in
Figure 2.1. From this picture it becomes clear that the optimal order quantity for
the first time period is approximately 2.3, which has a worst case performance of 10.8.

We have solved the model for the full time horizon with the RC, with the AARC
(where c1 and c2 are adjustable on the full d, and q2 is adjustable on d1), and as
a certain problem with d = 5. The nominal solution gives q1 = 0, the RC gives
q1 ≈ 4.4, while the AARC yields q1 ≈ 5.3, leading to worst case costs of the FH
approach of 17.8, 14.9 and 16.8, respectively. So, the RC takes the best “here and
now” decision with respect to the worst case performance. It may be paradoxical
that the AARC yields a worse solution than the RC, since the feasible region of the
AARC includes the RC solution. However, neither of the two optimize the right
objective function. Both approximate the objective value using (static or adjustable)
auxiliary variables ct. Wihle AARC indeed has a better objective value than RC, the
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solution is not better for the original objective function.

Figure 2.1 – Approximation of the total worst case costs for a FH strategy
as a function of the initial order quantity q1.
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We also perform a comparison on a more realistic problem, which is the retailer-
supplier flexible commitment problem by Ben-Tal et al. (2005). At the starting time,
the retailer commits himself to ordering certain quantities in later months. These
commitments are flexible, i.e. deviations are allowed at a penalty cost. The objec-
tive is to minimize the total costs for the retailer, consisting of ordering costs (minus
the salvage value), holding costs, backlogging costs, penalty costs associated with
deviating from the commitments, and costs for variability in the commitments. The
article provides two data sets for twelve time periods, A12 and D12, which we also
use in our optimization and comparison.

In this problem the retailer faces an uncertain demand. Following Ben-Tal et al.
(2005) we consider box uncertainty where the demand may deviate up to ρ% around
the nominal value. For the simulation we draw demand vectors uniformly from this
box region. For these demand vectors the nominal solution, RC and AARC are
carried out completely. For the FH approach, the reoptimization is performed after
each time period based on previously observed demand. 500 demand vectors were
generated for each data set and each uncertainty level ρ, and the same demand vec-
tors were used for all models. In addition, the PH solution was computed for each of
these demand vectors.

The simulation results are listed in Tables 2.4 and 2.5. For data set A12, the nominal
solution with FH results in the lowest average costs. This means that the nominal
solution takes better “here and now” decisions than RC and AARC. Moreover, the
RC-FH has lower average costs than the AARC-FH, so also the RC takes better
“here and now” decisions than AARC. The advantage of the nominal FH solution
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compared to RC-FH and AARC-FH increases when the uncertainty set becomes
larger. For data set W12 the nominal solution is the best solution and FH leads
to higher mean costs. For this data set, AARC takes significantly better “here and
now” decisions than RC. When comparing Nominal-FH with AARC-FH in Table 2.4
it is not immediately clear which solution is better, since the lower mean value of
Nominal-FH comes with a larger standard deviation. The Nominal-FH in Table 2.4
is an example of the statement in Section 2.10 that a high standard deviation is not
necessarily bad. Its standard deviation is higher than that of AARC-FH but this is
due to the high standard deviation of PH, as can be seen from Table 2.5. From this
last table, it can be seen that Nominal-FH is strictly better than AARC-FH. For
data set A12 and ρ = 10%, it is not clear whether RC-FH outperforms AARC-FH.
We now demonstrate the two statistical tests from Section 2.10 on this data set,
each based on 100 newly generated uncertainty vectors, to test whether the RC-FH
outperforms the AARC-FH. The null hypothesis that both solutions perform equal
on average is rejected (p = 6.1 · 10−6), and also the null hypothesis that the medians
of RC-FH and AARC-FH are equal is rejected (p = 1.4 · 10−10). These results show
that the AARC is not necessarily better than the RC and support the statement in
Section 2.10 that a simulation is required for comparing solutions. As mentioned in
Section 2.5, RO may provide solutions that are not Pareto efficient when multiple
optimal solutions exist. A different optimal solution to the RC or AARC may yield
completely different simulation results, rendering our conclusions useless. This is not
the case. We have verified this by solving the problem in two stages. In the first
stage we solve the robust counterpart (RC or AARC). For the second stage we take
the same problem as in the first stage, but we add the constraint that the robust
objective value is not worse than the optimal value from the first stage, and we change
the objective in minimizing the costs for the nominal demand trajectory. Thus, we
find a solution that is robust optimal and that cannot be improved with respect to
the nominal demand trajectory. Moreover, the resulting solution is Pareto optimal;
see Iancu and Trichakis (2013). The second stage problem returns the same solution
as the first stage problem, so our conclusions are unaffected.
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Table 2.4 – Simulated mean (std) costs for the retailer-supplier flexible com-
mitment problem.

A12 W12

ρ = 10% ρ = 50% ρ = 10% ρ = 50%

Nominal 688 (35) 848 (211) 12775 (708) 16163 (3899)
RC 731 (14) 1140 (70) 13656 (169) 20046 (1251)
AARC 702 (5) 1071 (53) 13314 (35) 18575 (192)

Nominal-FH 674 (14) 774 (87) 12869 (296) 16280 (1251)
RC-FH 699 (5) 979 (19) 13615 (125) 19260 (585)
AARC-FH 700 (5) 1027 (21) 13314 (35) 18572 (192)

PH 658 (11) 699 (50) 12194 (204) 12911 (1144)

Table 2.5 – Simulated mean (std) PoU for the retailer-supplier flexible com-
mitment problem.

A12 W12

ρ = 10% ρ = 50% ρ = 10% ρ = 50%

Nominal 30 (29) 149 (178) 581 (575) 3252 (3186)
RC 73 (19) 441 (89) 1463 (308) 7135 (2266)
AARC 44 (9) 372 (74) 1120 (230) 5664 (1298)

Nominal-FH 16 (6) 75 (44) 675 (144) 3369 (717)
RC-FH 41 (9) 280 (49) 1421 (253) 6349 (1550)
AARC-FH 42 (9) 328 (51) 1120 (230) 5661 (1301)
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2.12 Conclusion
In this chapter, we have presented a general recipe that shall be helpful for using RO
in practice. Additionally, we give several practical insights and hints in applying RO.
Examples of such practical insights are: the robust reformulations of equivalent de-
terministic optimization problems may not be equivalent; in multi-stage optimization
problems, re-optimizing the given problem at each stage using static RO or nominal
data may outperform solutions provided by ARO; and the actual probability guar-
antee of an uncertainty set is often higher than the probabilistic guarantee that is
approximated by using a safe approximation technique. We also discuss many prac-
tical issues to apply RO in a successful and convincing way. Examples are: how to
choose the uncertainty set; what is the right interpretation of “RO optimizes for the
worst case”; and should the decision rule used in ARO be a function of the final or
the primitive uncertainty? Moreover, we propose ideas on how to deal with equality
constraints and integer adjustable variables, and on how to compare the robustness
characteristics of two solutions. We have provided many numerical examples to il-
lustrate our insights and discussions, and to demonstrate the effectiveness of the
usefulness of our hints.
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Shapiro, A. and Ruszczyński, A. P. (2003). Stochastic Programming. Elsevier.
Vayanos, P., Kuhn, D., and Rustem, B. (2011). Decision rules for information dis-

covery in multi-stage stochastic programming. In Decision and Control and Eu-
ropean Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages
7368–7373. IEEE.



CHAPTER 3

Safe Approximations of Ambiguous Chance
Constraints Using Historical Data

3.1 Introduction
The objective of robust optimization (RO) is to find solutions that are immune to the
uncertainty of the parameters in a mathematical optimization problem. It requires
that the constraints of a given problem should be satisfied for all realizations of the
uncertain parameters in a so-called uncertainty set. The robust version of a mathe-
matical optimization problem is generally referred to as the robust counterpart (RC)
problem. RO is popular because of the tractability of the RC for many classes of
uncertainty sets. For example, the RC of an uncertain linear optimization problem
with data varying in a polyhedral uncertainty set can be reformulated as a linear
optimization (LO) problem (Ben-Tal et al. 2009, Ben-Tal and Nemirovski 2002).
Additionally, the RC of an uncertain LO problem with an ellipsoidal uncertainty
set can be reformulated as a second-order cone problem (SOCP) that can be solved
efficiently by existing solvers. The choice of the uncertainty set is important for two
reasons. First, it plays a critical role in the tractability of the RC problem. Second,
it should represent the actual uncertainty in a meaningful way.

The main criticism for RO is that it finds a feasible solution for all the uncertainty—
supported in the so-called uncertainty set—regardless of the occurrence probabilities
of the uncertainties, and the price of robustness can be paid as an overconservative
solution. A remedy for this criticism resides in defining the uncertainty set using a
safe approximation of the chance constraint. Later in this section we dwell into the
details of the safe approximation methods, but before that we briefly discuss chance
constrained optimization that is introduced by Charnes et al. (1958), Charnes and
Cooper (1959), Miller and Wagner (1965) and Prékopa (1970). A chance constraint
is given by

Prζ∼P {ζ : f(x, ζ) ≤ 0} ≥ β, (3.1)
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where f(x, ζ) denotes a function of a decision vector x ∈ Rn and a random pertur-
bation vector ζ ∈ R` , β ∈ [0, 1] is the prescribed probability bound and P is the
known probability distribution of ζ. Different than RO, in chance constrained op-
timization it is assumed that the uncertain parameters are distributed according to
a known distribution. It can be shown that the feasible set of (3.1) is convex when
f(x, ζ) = g(x) − ζ and ζ follows a log-concave distribution (Prékopa 1973, Prékopa
1995). Additional convexity results for (3.1) can be shown when ζ follows a Gaus-
sian distribution; see van de Panne and Popp (1963), Prékopa (1974), Burkauskas
(1986) and Henrion and Strugarek (2008). It should be stressed that even though
chance constraints are tractable for the cases that are mentioned above, in general
they are computationally intractable. The reason is twofold. First, the feasible set
of the chance constraint is usually non-convex. Second, even if the feasible set is
convex, it can be intractable to compute the left-hand side of the constraint (e.g.,
typical way of checking feasibility is via Monte Carlo simulation which is very costly
for high accuracies). Moreover, the probability distribution P that has to be known
to compute (3.1), is often not (exactly) known in practice.

Computationally tractable safe approximations of the chance constraint have recently
been proposed to overcome the difficulties that are mentioned above. A set of con-
straints is called a safe approximation of the chance constraint if the feasible set of
the safe approximation is a subset of the feasible set of the chance constraint. The
seminal work of Nemirovski and Shapiro (2006) is based on building a computation-
ally tractable approximation of a chance constrained problem. The authors assume
that the constraints are affine and entries of the perturbation vector, so-called un-
certain parameters, are independent with known support. Ben-Tal and Nemirovski
(2000) propose safe convex approximations of scalar chance constraints. The au-
thors translate the existing stochastic uncertainties to “uncertain-but-bounded” sets
assuming that the uncertain parameters are mutually independent with zero mean.
The obtained approximations in Nemirovski and Shapiro (2006) and Ben-Tal and
Nemirovski (2000) are computationally tractable and perform good when the num-
ber of uncertain parameters is relatively high. In addition, Ben-Tal and Nemirovski
(2009) elaborate a safe tractable approximation of the chance constrained version of
an affinely perturbed linear matrix inequality (LMI) constraint, assuming that the
primitive uncertain parameters are independent with light-tail distributions (e.g.,
bounded or Gaussian). Chen et al. (2010) propose an alternative conservative ap-
proximation of a joint chance constraint in terms of a worst-case conditional value-
at-risk (CVaR) constraint. The resulting approximation outperforms the Bonferroni
approximation. Zymler et al. (2011) develop new tools and models for approxi-
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mating joint chance constraints under the assumption that first- and second-order
moments together with the support of the perturbation vector are known. The au-
thors propose an efficient sequential semidefinite programming (SDP) algorithm to
solve distributionally robust chance constraint program. As an alternative to the safe
approximation techniques that are mentioned above, Calafiore and Campi (2005) and
Campi and Garatti (2008) propose a ‘randomized’ approach. The randomized ap-
proach substitutes the original semi-infinite uncertain constraint with a finite set of
constraints which are randomly sampled from the original constraint according to the
known distribution of the uncertain parameter. The authors show that the resulting
randomized solution fails to satisfy only a small proportion of the original constraints
provided that a sufficient number of samples is drawn.

It is important to point out that in practice we usually have partial or no information
on the probability distribution P, since it needs to be estimated from historical data.
This is why it makes sense to pass to ambiguous chance constraint. The term “am-
biguous” stands for the uncertainty in the probability distribution. In other words,
the distribution of the uncertain parameters is itself uncertain. Different than the
classical chance constraint, in the ambiguous case P belongs to a family of distribu-
tions P and the chance constraint is satisfied for all probability distributions in P ,
i.e.,

Prζ∼P {ζ : f(x, ζ) ≤ 0} ≥ β, ∀P ∈ P . (3.2)

This introduces an additional complexity in solving the problem aside from the exist-
ing difficulties that are mentioned above. Formulating ambiguity in the probability
distribution has taken attention of scholars from different fields. A wide variety
optimization problems under uncertainty involves an expectation function such as
[minx∈X EP[f(x, ζ)]], where X ⊆ Rn is the set of feasible decisions and P is the
known probability distribution of ζ. In the absence of full information on the prob-
ability distribution or in other words when only a set of possible distributions P is
known, it is natural to optimize the expectation function corresponding to the worst-
case probability distribution in P . This lead to the following minimax formulation:
[minx∈X {supP∈P EP[f(x, ζ)]}]. For more details of such formulations, we refer to
Žáčková (1966), Birge and Wets (1986), Dupačová (1987), Dupačová (2001), Shapiro
and Kleywegt (2002) and Shapiro and Ahmed (2004). Moreover, in economics, am-
biguity in the probability distribution is addressed by Gilboa and Schmeidler (1989),
Hansen and Sargent (2001) and Epstein and Schneider (2003, 2007).

Related to this chapter, ambiguity in the context of the chance constrained optimiza-
tion has recently been studied by Erdoğan and Iyengar (2006) and Nemirovski and
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Shapiro (2007). In the seminal work of Erdoğan and Iyengar (2006), the distribution
family P in (3.2) is defined using the Prohorov metric. The authors propose a robust
sampled problem that is a good approximation for the associated ambiguous chance
constrained problem with high probability. Nemirovski and Shapiro (2007) show that
the convex approximation of the regular chance constraint that is proposed in the
paper straightforwardly extends to the ambiguous case when P is known to belong to
a given convex compact set. As it is stated by Ben-Tal et al. (2009, p. 30), the def-
inition of a safe tractable approximation of the chance constraint straightforwardly
extends to the ambiguous chance constraint and for this reason the adjective “am-
biguous” is generally skipped. Similarly, for the ease of exposition in the sequel, we
usually skip the adjective “ambiguous” and the general representation in (3.2). How-
ever, it is important to point out that the ambiguous chance constraint is “severely”
intractable compared to the regular chance constraint, even though its extension for
the safe approximations is straightforward and tractable.

In this chapter, we propose a safe approximation of ambiguous joint chance con-
straints where the family of distributions P in (3.2) is given by a confidence set that
is based on the historical data information and goodness-of-fit statistics known in the
statistics literature as φ-divergence. Numerical results show that it leads to tighter
uncertainty sets compared to the existing safe approximation methods, and therefore
yields better objective values for the uncertain problem under consideration. The
new approach is suitable for dependent and independent uncertain parameters, and
can be extended to nonlinear inequalities. Most importantly, the proposed method-
ology does not require the assumption that the probability distribution or the certain
moments of the uncertain parameters are known. The disadvantage of our approach
is that it requires extensive data when the number of uncertain parameters is high.

Research that is related to φ-divergence includes the following. Klabjan et al. (2007)
and Calafiore (2007) use two special cases of φ-divergence to construct uncertainty
regions from historical data. The former derives the robust stochastic lot-sizing prob-
lem and uses χ2-statistics; the latter formulates the robust portfolio selection problem
and considers Kullback-Leibler divergence. In both papers, the uncertain parameters
are probability vectors, and the goal is to find robust solutions that are feasible for all
allowable distributions of the uncertain parameters with bounded support. Ben-Tal
et al. (2012) take up the topic under the more general title of φ-divergence and focus
on robust optimization problems with uncertainty regions defined by φ-divergence
distance measures. They provide tractable formulations of robust optimization prob-
lems for φ-divergence-based uncertainty regions. Their results show that uncertainty



Introduction to φ-Divergence and Confidence Sets 64

sets based on φ-divergence are good alternatives for the uncertainty sets such as el-
lipsoidal, box, and their variations that are well studied in the literature. In this
chapter, we go one step further and use φ-divergence-based uncertainty sets not only
for uncertain probability vectors but also for general uncertain parameters.

The remainder of the chapter is organized as follows. In §3.2, we give an introduction
to φ-divergence and confidence sets. In §3.3, we discuss the new safe approximation
method. Then, in §3.4, we present the results of several numerical experiments.
Finally, we provide concluding remarks in §3.5.

3.2 Introduction to φ-Divergence and Confidence
Sets for Probability Vectors

In this section we define φ-divergence and some of the properties taken from Ben-Tal
et al. (2012), Pardo (2006) and Jager and Weller (2007) that are used in later sections.

3.2.1 Confidence Sets Based on φ-Divergence
Given N historical observations on an uncertain parameter ζ ∈ R` , the support of ζ
is divided into m cells such that the number of observations oi in cell i ∈ {1, . . . ,m}
is at least five:

m∑
i=1

oi = N such that oi ≥ 5 ∀i ∈ {1, . . . ,m}.

Then, the historical data on ζ are translated into frequencies q = (q1, ..., qm) such
that eT q = 1, where e is the all-one vector and qi is the observed frequency of cell
i ∈ {1, . . . ,m} given by

qi = oi
N
.

We consider pi to be the unknown true probability vector for cell i, i.e., pi = Pr(ζ ∈
cell i), and we construct a confidence set for p using the empirical estimate q and
goodness-of-fit statistics, more precisely φ-divergence. The φ-divergence (“distance”)
between two vectors p = (p1, ..., pm) ≥ 0 and q = (q1, ..., qm) ≥ 0 in Rm is defined by

Iφ (p, q) :=
m∑
i=1

qiφ

(
pi
qi

)
, (3.3)
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where φ (t) is convex for t ≥ 0, φ (1) = 0, φ (a/0) := a lim
t→∞

φ(t)/t for a > 0, and
φ (0/0) = 0. If we assume that φ is twice continuously differentiable in the neighbor-
hood of 1 and φ

′′(1) > 0, then the test statistic

2N
φ′′(1)Iφ (p, q)

asymptotically follows a χ2
m−1-distribution with (m − 1) degrees of freedom. Using

this test statistic, an approximate (1 − α)-confidence set for p defines the family of
distributions P in (3.2):

P :=
{
p ∈ Rm : p ≥ 0, pT e = 1, Iφ (p, q) ≤ ρ

}
, (3.4)

where

ρ := φ
′′(1)
2N χ2

m−1,1−α. (3.5)

Different choices of φ(.) have been studied in the literature. See Pardo (2006), Jager
and Weller (2007), Ben-Tal et al. (2012) and Gushchin (2008) for an overview; Table
4.1 taken from Ben-Tal et al. (2012) presents the most common choices of φ(.)
together with the conjugate function that is defined as follows:

φ∗ (s) := sup
t≥0
{st− φ (t)} .

In this chapter, we work with φ-divergence distances for which the closed-form con-
jugates are available; see Table 4.1.

Table 3.1 – φ-Divergence Examples

Divergence φ(t), t > 0 Iφ(p, q) φ∗(s)

Kullback-Leibler t log t
∑
i

pi log
(
pi
qi

)
es−1

Burg entropy − log t
∑
i

qi log
(
pi
qi

)
−1− log(−s), s ≤ 0

χ2-distance 1
t
(t− 1)2

∑
i

(pi − qi)2

pi
2− 2

√
1− s, s ≤ 1

Pearson χ2-distance (t− 1)2
∑
i

(pi − qi)2

qi

s+ s2/4, s ≥ −2
−1, s < −2

Hellinger distance (1−
√
t)2

∑
i

(√pi −
√
qi)2 s

1−s , s ≤ 1
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3.2.2 Probability Bound for Subset of Cells
Let V = {1, . . . ,m} be the set of cell’s indices. The uncertainty region that is formed
by the union of cells in S ⊆ V is given by

C(S) =
⋃
i∈S

(cell i). (3.6)

In our approach, we choose S such that Prζ(ζ ∈ C(S)) ≥ β, where ζ is the primitive
uncertain parameter and β is the prescribed probability bound in the chance con-
straint (3.2). The structure of the cells and how to find S will be clarified in §3.3.1
and §3.3.2, respectively. In this subsection, we determine a probability guarantee for
a given S. To do this we calculate the minimal value of ∑i∈S pi such that p is in the
(1− α)-confidence set (3.4):

(P) γ(S, α) = min
∑
i∈S

pi (3.7)

s.t. Iφ(p, q) ≤ φ
′′(1)
2N χ2

m−1,1−α(= ρ) (3.8)∑
i∈V

pi = 1 (3.9)

p ≥ 0. (3.10)

Note that (P) is a convex optimization problem in p ∈ R|V | since φ-divergence func-
tions are convex. Constraints (3.8) to (3.10) define a (1− α)-confidence set, and the
probability that the uncertain parameter is in the region defined by S, is at least
γ(S, α) with a (1− α) confidence level.

The following theorem shows an alternative way of calculating γ(S, α) by using the
dual problem of (P).

Theorem 1 Suppose φ(.) is convex and α < 1, then the optimal objective value of
problem (P) is equal to the optimal objective value of the following lagrangian dual
(LD) problem:

(LD) max
η≥0, λ

−ηρ− λ− η
φ∗ (−λ+ 1

η

)∑
i∈S

qi + φ∗
(
−λ
η

) ∑
i∈V \S

qi


in which φ∗(s) = supt≥0 {st− φ(t)}.

Proof. The objective function of (P) can be rewritten as
∑
i∈V

aipi, where

ai =
{

1, i ∈ S
0, otherwise.
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Then we can derive the Lagrangian function as follows:

L(p, η, λ) =
∑
i∈V

aipi + λ

(∑
i∈V

pi − 1
)

+ η (Iφ(p, q)− ρ)

= −ηρ− λ+
∑
i∈V

[(λ+ ai)pi] + ηIφ(p, q).

The corresponding Lagrangian objective function is as follows:

g(λ, η) = min
p≥0

L(p, η, λ)

= −ηρ− λ+ min
p≥0

{∑
i∈V

[
(λ+ ai)pi + ηqiφ

(
pi
qi

)]}

= −ηρ− λ+ min
p≥0

{∑
i∈V
−ηqi

[
−(λ+ ai)

η

pi
qi
− φ

(
pi
qi

)]}
.

In the last term of the above formulation we have used (3.3). Then the Lagrangian
objective is equivalent to the following:

g(λ, η) = −ηρ− λ−max
p≥0

{∑
i∈V

ηqi

[(
−λ− ai

η

)
pi
qi
− φ

(
pi
qi

)]}

= −ηρ− λ−
∑
i∈V

ηqi max
p≥0

{[(
−λ− ai

η

)
pi
qi
− φ

(
pi
qi

)]}

= −ηρ− λ− η
∑
i∈V

[
qiφ
∗
(
−λ+ ai

η

)]

= −ηρ− λ− η
∑
i∈S

qiφ
∗
(
−λ+ 1

η

)
+

∑
i∈V \S

qiφ
∗
(
−λ
η

) ,
where

φ∗ (s) := sup
t≥0
{st− φ (t)} .

Finally, the Lagrangian Dual Problem is the maximization problem presented below:

(LD) max
η≥0, λ

{g(λ, η)}

= max
η≥0, λ

−ηρ− λ− η
∑
i∈S

qiφ
∗
(
−λ+ 1

η

)
+

∑
i∈V \S

qiφ
∗
(
−λ
η

) .
�
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The dual problem is an optimization problem with two variables (η, λ) and a simple
constraint η ≥ 0. Furthermore, the convexity of φ∗(λ) implies that ηφ∗

(
λ
η

)
is jointly

convex in λ and η. Hence, (LD) is a convex optimization problem with only two
variables and it can be solved efficiently.

Independent uncertain parameters. In some cases it may be known that the
uncertain parameters ζj are independent for j ∈ {1, . . . , `}. Let Vj denote the set of
cells for the jth uncertain parameter and mj = |Vj|. Since the uncertain parameters
are independent, we may have historical data for each uncertain parameter separately,
and Nj denotes the sample size of the data for the jth parameter. In addition, the
probability that the jth uncertain parameter is in cell i ∈ Vj is denoted by p

(j)
i .

Similarly, q(j)
i denotes the frequency of cell i ∈ Vj for the jth uncertain parameter.

An aggregate cell is indexed by (i1, i2 . . . , i`), where ij ∈ Vj for all j ∈ {1, . . . , `}.
Because of the independence, the probability that the uncertain parameters are in
cell (i1, i2 . . . , i`) is equivalent to

pi1,i2...,i` =
∏̀
j=1

p
(j)
ij ,

and the frequency of cell (i1, i2 . . . , i`) is given by

qi1,i2...,i` =
∏̀
j=1

q
(j)
ij .

All elements pi1,i2...,i` are collected in vector p ∈ Rm1m2...m` , according to the order
of the indices. Similarly, qi1,i2...,i` are collected in vector q ∈ Rm1m2...m` . Then, the
following mathematical optimization problem is a special case of (P), in the case of
` independent parameters:

(IP) min
∑

(i1,i2,...,i`)∈S
pi1,i2...,i`

s.t. Iφ(p, q) ≤ φ
′′(1)

2N1N2 . . . N`

χ2
(m1−1)(m2−1)...(m`−1),1−α (3.11)∑

i∈Vj
p

(j)
i = 1 ∀j ∈ {1, . . . , `} (3.12)

pi1,i2...,i` =
∏̀
j=1

p
(j)
ij ∀ij ∈ Vj,∀j ∈ {1, . . . , `} (3.13)

p
(j)
i ≥ 0 ∀i ∈ Vj, ∀j ∈ {1, . . . , `}, (3.14)

where (m1 − 1)(m2 − 1) . . . (m` − 1) denotes the degrees of freedom when we have
` independent parameters. It is easy to see that (IP) has highly nonlinear terms in



Safe Approximation Method 69

constraint (3.13) and is nonconvex. Fortunately, the following theorem relaxes the
nonlinear structure of (IP) and provides a lower bound for the objective function.

Theorem 2 Let V = V1 × V2... × V`, m − 1 = (m1 − 1)(m2 − 1) . . . (m` − 1),
N = N1N2 . . . N`, and S ⊆ V , then (P) is a relaxation of (IP).

Proof. Let (p̂, p̂(1), . . . , p̂(`)) be a feasible solution of (IP). If we prove that p̂ ∈
Rm1m2···m` of (p̂, p̂(1), . . . , p̂(`)) are feasible for (P), then we can conclude that (P) is a
reduced relaxation of (IP).
To begin with, let V = V1 × V2... × V`, m − 1 = (m1 − 1)(m2 − 1) . . . (m` − 1) and
N = N1N2 . . . N`. Then, constraint (3.11) in (IP) coincides with constraint (3.8)
in (P). In addition, constraints (3.12) and (3.13) imply that the p̂ values sum up
to 1. Moreover, from constraints (3.13) and (3.14) in (IP), it is easy to verify that
p̂i1,i2,...,i` ≥ 0 for all i = (i1, . . . , i`) ∈ V . As a result, p̂ satisfy all the constraints in
(P). �

Note that the optimal solution p̂ of (P) does not necessarily satisfy (3.13) for the
individual probabilities p̂(j)

ij given by [p̂(j)
ij = ∑`

k 6=j
∑
ik∈Vk p̂i1,.,ij ,.,i` ], and hence the

elements of p̂ may not be independent. However, we are looking for a good lower-
bound probability for S that can be computed efficiently. This is why we use (P),
or equivalently (LD) in Theorem 1, that yields a tight probability bound γ(S, α) for
any given parameter structure that can be dependent or independent. Nevertheless,
working with independent uncertain parameters has some advantages compared to
the dependent case. First, we obtain tighter (1 − α)-confidence sets for p. This is
because we have fewer degrees of freedom for the same number of cells, so the ρ value
gets smaller in (3.8). Second, the sample size becomes the product of the individual
sample sizes; see Theorem 2, and we require fewer data.

3.3 Safe Approximation Method
In this section, we provide our method to derive safe approximations for chance con-
strained problems. We first describe the general setup of our approach and then
explain the details of each step in our algorithm. Finally, we mention possible exten-
sions of the algorithm to joint chance constraints and nonlinear inequalities.

3.3.1 General Setup
For the sake of simplicity, we explain our safe approximation method for linear op-
timization. Later in §3.3.3.2, it is shown how the method is extended to nonlinear
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inequalities.
We consider the following chance constrained linear optimization problem:

(ULO) max
x∈X

cTx

s.t. Prζ{ζ ∈ [−1, 1]` : ak(ζ)Tx ≤ bk,∀k ∈ {1, ..., K}} ≥ β, (3.15)

where x ∈ Rn is a vector of decision variables, X is the feasible set given by deter-
ministic constraints, c ∈ Rn is a vector of objective coefficients, b ∈ RK is a vector of
right-hand side values, β is the given probability bound and ak(ζ) ∈ Rn is linear in
the primitive uncertain parameter ζ ∈ [−1, 1]` , i.e.,

ak (ζ) = a0
k +

∑̀
j=1

ζja
j
k ∀k ∈ {1, ..., K} , (3.16)

where ajk ∈ Rn , j ∈ {0, . . . , `}. We may assume w.l.o.g. that ζ ∈ [−1, 1]`, since scal-
ing for different intervals can be done by adjusting all the ajk. We may also assume
w.lo.g that the right-hand side vector b is certain, since the uncertain right-hand side
can easily be reformulated in RO. Moreover, we assume that the number of uncertain
parameters, `, is much smaller than n. This is motivated by the fact that in many
cases a few primitive sources of uncertainty affect many other parameters of a given
system. For example, engineering design problems (Wiebenga et al. 2011), portfolio
optimizations problems (Bemis et al. 2009, Fama and French 1993), etc., often have
only a few primitive uncertain parameters and regression or factor models are used
to obtain (3.16). For the sake of simplicity, we focus below on an individual chance
constraint, so subindex k is omitted, but in §3.3.3.1 we show how the method is
extended to joint chance constraints.

Eventually, our objective is to find the tightest uncertainty set Z such that for any
feasible solution x ∈ Rn of

a(ζ)Tx ≤ b ∀ζ ∈ Z (3.17)

the chance constraint

Prζ{ζ : a (ζ)T x ≤ b} ≥ β (3.18)

is satisfied. Constraint (3.17) is called a safe approximation of chance constraint
(3.18). Furthermore, (3.17) is also the RC of the uncertain constraint with the un-
certainty set Z.

To determine Z and the corresponding probability bound, we first divide the domain
of ζ into cells such that in each cell there are sufficient historical data. Then, using
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these data, we calculate the frequency qi of each cell i ∈ V . The true probability of a
cell is denoted by pi, and the true probability vector p is in the (1−α)-confidence set
(3.4). Let Z be the uncertainty set C(S) given by (3.6) and x ∈ Rn be any feasible
solution for the safe approximation (3.17). Then from §3.2.2 we have

Prζ{ζ : a (ζ)T x ≤ b} ≥ γ(S, α) (3.19)

with confidence level (1 − α), where γ(S, α) is given by (3.7). The aim is to find a
tight S that approximates the uncertainty region by C(S) such that γ(S, α) ≥ β,
and hence (3.18) holds with a (1− α) confidence level.

In the following section, we present an algorithm that finds such a tight uncertainty
set for a given probability bound β.

3.3.2 Algorithm
In this section, we present an algorithm that iteratively constructs an uncertainty set
Z that satisfies the probability bound β given in (3.18). We illustrate our approach
using the following toy problem:

max
x≥0

{
x1 + x2 : Prζ

{
ζ ∈ [−1, 1]2 : ζ1x1 + ζ2x2 ≤ 1

}
≥ β

}
, (3.20)

where β is the prescribed probability, and ζ1 ∈ [−1, 1] and ζ2 ∈ [−1, 1] are the prim-
itive uncertain parameters that we have historical data on. Later in this section, we
adopt the general notation in §3.3.1, i.e., also for the toy problem, and the steps of
the algorithm are explained in detail below.

Step 0. We scale ζ to [−1, 1]`, where the uncertain parameter is equivalent to the
following vector:

a(ζ) = a0 +
∑̀
j=1

ζja
j. (3.21)

For the toy problem, ` is equivalent to 2, a0 = 0, and aj ∈ R2 equals the unit vector
ej; hence, a(ζ) = ζ.

Then, we calculate the frequency qi of each cell i ∈ V as described in §4.11. Figure
4.1 shows the historical data on ζ for the toy problem, as well as the cells that include
the data. The size of the cells is such that each cell includes “enough” data, i.e., at
least five observations according to a rule of thumb.
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Figure 3.1 – Historical Data for ζ1 and ζ2

Remark 2 Cells with low frequencies can be combined to get “enough” data. Figure
4.1 presents the standard situation where all cells have the same geometry.

Step 1. The robust counterpart problem given by

max
x∈X

cTx

s.t. a(ζ)Tx ≤ b ∀ζ ∈ Z (3.22)

is solved, where Z equals the ball-box uncertainty set:

BBΩ :=
{
ζ ∈ R` : ||ζ||2 ≤ Ω, ||ζ||∞ ≤ 1

}
. (3.23)

The exact formulation of constraint (3.22) for Z = BBΩ, is equivalent to:

zj + wj = −[aj]Tx, ∀j ∈ {1, ..., `}

∑̀
j=1
|zj|+ Ω

√√√√√∑̀
j=1

w2
j ≤ b− [a0]Tx,

(3.24)

where z and w are additional dual variables; for the detailed derivation of the RC
see Appendix 3.6. Note that the above formulation can easily be reformulated as an
SOCP. In Figure 3.2, we illustrate the uncertain constraint in the toy problem, when
x is fixed to the robust optimal solution x∗ and BB0.5 is the uncertainty set used in
the robust counterpart.

Remark 3 Instead of an ellipsoidal uncertainty set, we can also use other uncer-
tainty sets such as the box. In §3.3.3.3, we discuss that in detail.
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Figure 3.2 – Uncertain Constraint and Ball-Box Uncertainty Set

Step 2. We calculate the set of cells

S =
{
i ∈ V : a(ci)Tx∗ ≤ b

}
, (3.25)

where ci = (ci1, ci2 . . . , ci`) is the center point of cell i ∈ V . If the center point of
a cell satisfies the constraint in (3.25) for a given x∗, then we assume that all the
realizations in the associated cell are feasible for the uncertain constraint. Conversely,
if the center point of a cell does not satisfy (3.25) for a given x∗, then we assume
that all the realizations in this cell are infeasible for the uncertain constraint. This
assumption is referred as the center point assumption in later sections. For the toy
problem, the region determined by S is presented in Figure 3.3.
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Figure 3.3 – Uncertainty Region C(S)

Let I be the intersection of the support, i.e., the box [−1, 1]` , and the region de-
termined by the constraint [a(ζ)Tx∗ ≤ b]. Then, an important observation is that
solution x∗ is also robust to the uncertainty set I. In addition, the probability that
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ζ is an element of I is at least the probability that ζ is an element of BBΩ or
equivalently

Prζ{ζ ∈ I} ≥ Prζ{ζ ∈ BBΩ},

since BBΩ is a subset of I. Hence, using I instead of BBΩ provides a better prob-
ability bound for the optimal solution x∗. To calculate the probability bound, I is
approximated by C(S).

Step 3. We calculate γ(S, α) as in (3.7). If γ(S, α) ≥ β then the region determined
by I is selected as the uncertainty set and the algorithm is terminated. Otherwise,
we go to Step 4.

Step 4. We increase Ω by the step size ω and go to Step 1.

Algorithm 1 (Constraint-wise algorithm)
Inputs: LO problem, set of cells V , frequency vector q, step size ω, confidence

level (1− α), probability bound β, and Ω = 0.
Outputs: Uncertainty set Z, robust optimal solution x∗, and radius Ω.
Step 0: Scale ζ to [−1, 1]` where the uncertain parameter is a(ζ) = a0 +∑`

j=1 ζja
j.

Step 1: Solve the robust counterpart of the given problem according to the uncer-
tainty set BBΩ and find the optimal solution x∗.

Step 2: Calculate S = {i ∈ V : a(ci)Tx∗ ≤ b}.
Step 3: Calculate γ(S, α)

if γ(S, α) ≥ β then Z = {ζ ∈ [−1, 1]` : a(ζ)Tx∗ ≤ b}
and terminate the algorithm
else go to Step 4.

Step 4: Set Ω = Ω + ω and go to Step 1.

Remark 4 Notice that γ(S, α) is not necessarily increasing in Ω.

We now discuss the complexity and the optimality of Algorithm 1.

Complexity. In an `-dimensional uncertainty space, Ω can be at most
√
` since BBΩ

is equivalent to the support, [−1, 1]`, when Ω is at least
√
`. Hence, Ω is changed in

at most O(ω−1
√
`) iterations of the algorithm.
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Optimality. 1) With probability α, the feasible set and consequently the optimal
solution of the algorithm may not be contained in the feasible set of the chance
constraint. The α value is selected as 0.001 in the numerical experiments. 2) It is
important to point out that, for the given inputs, another uncertainty set that is
still satisfying the chance constraint may yield a better objective value for the safe
approximation than that of the algorithm. One approach to find the optimal objective
value for the given inputs is to start from the full space of uncertainty and to remove
cells one-by-one. This means we remove the cell that yields the highest objective
improvement at each iteration of the algorithm. Such a “one-by-one” removal process
significantly increases the number of iterations. The numerical results in Appendix
3.8.2 show that our algorithm and the one-by-one approach yield “almost” the same
objective values. 3) In some instances, the feasible set of the safe approximation
method can be empty, which means that the RC problem (3.24) is infeasible for the
ball-box uncertainty set (3.23). The theory still holds since the empty set is included
in the feasible set of the chance constraint but the safe approximation has no practical
meaning. Note that the well-known safe approximation of Ben-Tal and Nemirovski
(2000) suffers from the same phenomenon. One example for such a situation is:
[ζTx ≤ b ∀ζ ∈ BBΩ], where b < 0. To the best of our knowledge, for the given
instance there is no way to fix the infeasibility of the safe approximation method that
is proposed by Ben-Tal and Nemirovski; since ζ = 0 is infeasible for the uncertain
constraint and the ball-box uncertainty set has to be centered at 0. We propose
two variants of our safe approximation method to fix the associated problem (i.e.,
the infeasibility of RC for BBΩ). In the first variant, the new ball-box uncertainty
is defined as [BBΩ(c̄) := {ζ ∈ R` : ||ζ − c̄||2 ≤ Ω, ||ζ||∞ ≤ 1}], where c̄ denotes a
feasible center of the ball. We derive the RC problem according to BBΩ(c̄) and apply
the algorithm; for the detailed derivation of the RC see Appendix 3.6. In the second
variant, we apply our algorithm for each cell separately and, in the end, we select the
one that yields the uncertainty set satisfying the given probability bound β with the
best objective value. The first variant requires less iteration compared to the second
one but the solution is dependent on the selection of the center c̄. On the other
hand, the second variant guarantees the uncertainty set yielding the best objective
value. Finally, we would like to point out that due to scaling—given by (3.16)—of
the uncertain parameter, most of the time in practice we do not face the infeasibility
issue that is addressed in this section. Similarly, in the practical examples at §3.4
we do not observe infeasibility of RCs thus the two variants are not required and
Algorithm 1 works well.
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3.3.3 Extensions
3.3.3.1 Safe Approximation of Joint Chance Constraint

Our approach can also be used to approximate a joint chance constraint:

Prζ
{
ζ : ak (ζ)

T

x ≤ bk ∀k ∈ {1, . . . , K}
}
≥ β, (3.26)

where x ∈ Rn and k denotes the constraint index. The only difference is that we work
with multiple constraints rather than a single one. We can use the same algorithm
for the joint version by applying the following slight change in Step 2 of Algorithm
1:

Step 2′ : Calculate S := {i ∈ V : ak(ci)
T
x∗ ≤ bk ∀k ∈ {1, ..., K}} .

(3.27)

Note that C(S) now coincides with the region determined by allK constraints and the
probability γ(S, α) calculated by the algorithm is a joint probability bound satisfied
by the approximation of the given joint chance constraint. In Figure 3.4, we illustrate
a C(S) that is determined by multiple constraints including nonlinear ones.

Remark 5 If we have separate chance constraints rather than a joint one, then
in this case the uncertainty set of each constraint must be considered separately.
Our approach can also be adapted to this case, however we do not consider that in
the context of this chapter. We see the joint chance constraint as a practically and
theoretically more interesting topic to look at.

Remark 6 Applying the Bonferroni approach to a joint chance constraint, is known
to be too pessimistic (Chen et al. 2010, Chen et al. 2007, Nemirovski and Shapiro
2006).

3.3.3.2 Extension to Nonlinear Inequalities

Our approach can be extended to nonlinear inequalities. We can focus w.l.o.g. on
a single nonlinear constraint, and the robust counterpart of the uncertain constraint
with the uncertainty set Z is given by

f(a(ζ), x) ≤ b ∀ζ ∈ Z, (3.28)

where function f(a(ζ), x) denotes the uncertain nonlinear left-hand side of the con-
straint. Nonlinearity may be in terms of the decision variables x ∈ Rn and/or the
uncertain parameters ζ ∈ R` . We have no assumption on the decision variables x as
long as (3.28) is tractable; the tractable formulations of such problems are studied
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in Ben-Tal et al. (2011), but we assume f is convex in the uncertain parameters ζ
for any x. If this assumption holds, then only Step 2 of Algorithm 1 changes slightly
as follows:

Step 2′′ : Calculate S := {i ∈ V : f(a(ci), x∗) ≤ b}, (3.29)

where x∗ is the optimal solution of the robust counterpart problem with constraint
(3.28). Note that the algorithm can be extended to joint nonlinear constraints with
the following change:

Step 2′′′ : Calculate S := {i ∈ V : fk(ak(ci), x∗) ≤ bk ∀k ∈ {1, ..., K}},

where k denotes the constraint index. In Figure 3.4, we illustrate an iteration of
the algorithm for a problem that has one linear and two nonlinear constraints in a
two-dimensional uncertainty space. Note that the dark region denotes C(S) and the
linear constraint is presented by the dashed line.
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Figure 3.4 – Iteration with Nonlinear Constraints

Remark 7 In Figure 3.4, the linear uncertain constraint is not tangent to the el-
lipsoidal uncertainty set BB0.5 for the robust optimal solution. This is because the
associated constraint in the RC is not binding at optimality.

3.3.3.3 Extension to Box Uncertainty Set

So far, we have constructed a tight uncertainty set for a given uncertain optimization
problem by using ellipsoids. In this subsection, we discuss how we can apply the same
method starting from an uncertainty set different than the ellipsoid.
To begin with, we want the tractability of the RC to be as good as that with the
ellipsoid. This is why we consider the box uncertainty set as a good choice, and in
the sequel of this section we consider

BoxΩ :=
{
ζ ∈ R` : ||ζ||∞ ≤ Ω

}
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as the starting uncertainty set at each iteration of our approach. The RC is no longer
an SOCP given by constraints (3.24) in Algorithm 1, but it is equivalent to

(a0)Tx+ Ω
∑̀
j=1

∣∣∣(aj)Tx∣∣∣ ≤ b, (3.30)

that can easily be reformulated as a LO problem. Hence Step 1 of Algorithm 1
changes slightly as follows:

Step 1′ : Solve the RC with constraint (3.30) for given Ω and find the
optimal x∗.

The numerical results in Appendix 3.8.3 show that using the box or the ellipsoid yields
similar results in the safe approximation method. However, we have the impression
that, especially for joint constraints, the ellipsoidal uncertainty set has more flexibility
than the box in finding the final tight uncertainty set. This is because of the special
geometry of the ellipsoid that avoids that the worst-case realizations of the uncertain
parameters are in the corners of the box.

3.4 Experimental Results
In this section, we provide the results of the experiments we have conducted for the
algorithm presented in §3.3.2 and its extension in §3.3.3. All computations are done
on a 32-bit Windows machine equipped with a 2.66 GHz Intel Core 2 Quad processor
with 3.2 GB of RAM. To solve the mathematical programs, we have used KNITRO
7.0 embedded in MATLAB 2011b. In the first experiment, we solve a simple uncer-
tain linear optimization problem with a single constraint. The performance of our
algorithm is compared with the approximation of the chance constraint presented in
Ben-Tal et al. (2009). The optimal objective value is considered as the main per-
formance measure in this experiment. Similar to the first experiment, in Appendix
3.8.1 we compare our algorithm with the randomized approach that is proposed by
Calafiore and Campi (2005). In the second experiment, we focus on a robust response
model of a cross-docking distribution center in China. The related robust counterpart
is a nonlinear optimization problem (NLP). Furthermore, we have also used depen-
dent data in this experiment. Finally, in the last experiment, we apply our approach
to another real-life problem originated by the need of a Dutch based electronics com-
pany. The related problem, TV tube problem, has six uncertain parameters and many
uncertain constraints. Numerical results show that our approach provides significant
improvements to the nominal case of the associated problem. Last but not least,
in Appendix 3.8.3 we provide an additional experiment on a variant multi-period of
work scheduling problem. In this experiment we consider the extension in §3.3.3.3.
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3.4.1 Illustrative Example
Similar to the example in §3.3.2, we focus on a simple linear uncertain optimization
problem with an individual chance constraint. The problem is as follows:

(M) max x1 + x2

s.t. Prζ{ζ ∈ [−1, 1]2 : (1 + ζ1)x1 + (1 + ζ2)x2 ≤ 10} ≥ β (3.31)
x1, x2 ≥ 0,

where ζ1 ∈ [−1, 1] and ζ2 ∈ [−1, 1] are the independent uncertain parameters, and
β is the prescribed probability bound. In addition, we have historical data for both
of the uncertain parameters separately, and each data set has a sample size of 100.
To obtain the frequencies, we divide the domain of each parameter into ten equal
intervals of size 0.2 such that we have enough data points in each interval. The
frequencies of the parameters according to the given data are presented in Table 3.2.

Table 3.2 – Frequencies of ζ1 and ζ2

ζ1, ζ2 [-1 -0.8] [-0.8 -0.6] [-0.6 -0.4] [-0.4 -0.2] [-0.2 0] [0 0.2] [0.2 0.4] [0.4 0.6] [0.6 0.8] [0.8 1]
freq.(ζ1) 0.05 0.05 0.1 0.1 0.15 0.15 0.15 0.15 0.05 0.05
freq.(ζ2) 0.025 0.075 0.2 0.15 0.05 0.125 0.175 0.1 0.075 0.025

The joint uncertainty set of ζ1 and ζ2 has 100 (10× 10) cells and the frequency of a
cell is found by multiplying the frequencies of the associated intervals for ζ1 and ζ2.
Note that this may be done since ζ1 and ζ2 are independent.

The aim of the experiment is to compare the optimal objective values of our safe
approximation method to those provided by the safe approximation of the chance
constraint (ACC) presented in §2 of Ben-Tal et al. (2009). The individual chance
constraint (3.31) is approximated by both approaches for different values of the prob-
ability bound β and numerical results are listed in Table 3.3.

In this experiment, we have used Algorithm 1 for the case of independent uncertain
parameters. We use χ2-distance as the φ-divergence function when α = 0.001; see
subproblem (P) in §3.2.2. The first column in Table 3.3 presents the probability
bounds β and the second column gives the bound satisfied by the algorithm, where
γ(S, α) represents the optimal objective value of subproblem (P), or equivalently
(LD). The third column presents the radius of the minimal ball in the tight uncer-
tainty region calculated by the algorithm. The fourth column gives the probability
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Table 3.3 – Results for Example 4.1

β γ(S, α∗) Ω BBΩ |V | − |S| Obj. Ωacc Objacc. %Improv.
Nom. 0.5 0 0 45 10 - - -
0.6 0.6 0.15 0.03 36 9.04 1.35 5.11 80.8
0.7 0.7 0.29 0.15 28 8.29 >1.41 5 65.9
0.8 0.87 0.57 0.35 15 7.12 >1.41 5 42.5
0.9 0.92 0.71 0.64 10 6.65 >1.41 5 33.1
0.91 0.92 0.71 0.64 10 6.65 >1.41 5 33.1
0.92 0.92 0.71 0.64 10 6.65 >1.41 5 33.1
0.93 0.96 0.85 0.72 6 6.24 >1.41 5 24.9
0.94 0.96 0.85 0.72 6 6.24 >1.41 5 24.9
0.95 0.96 0.85 0.72 6 6.24 >1.41 5 24.9
0.96 0.976 0.99 0.89 3 5.88 >1.41 5 17.6
0.97 0.976 0.99 0.89 3 5.88 >1.41 5 17.6
0.98 0.984 1.14 0.95 1 5.53 >1.41 5 10.7
0.99 1 1.28 1 0 5 >1.41 5 0
FRC 1 >1.41∗∗ 1 0 5 - - -
∗ α = 0.001, ∗∗

√
2 ≈ 1.41

bound provided by the algorithm, if we would have used the ball-box as the final
uncertainty set. The fifth column gives the number of cells removed from the uncer-
tainty space to obtain S, and the sixth column presents the optimal objective value
provided by our algorithm. The seventh column corresponds to the radius of the
ball, which is equivalent to

√
2| ln(1− β)| by ACC Ben Tal et al. (2009), and the

eighth column lists the associated optimal objective value. Finally, the ninth column
gives the percentage of improvement in the optimal objective value of ACC when
our algorithm is used, or equivalently ((Obj−Objacc)/Objacc)× 100. ACC yields the
same optimal solution when Ω is higher than

√
2 since the ball becomes larger than

the box uncertainty set in the two-dimensional space. Hence, the uncertainty set
BBΩ in (3.23) coincides with [−1, 1]2 that results in the worst-case objective value
of 5 for (M).

The first row in Table 3.3 is the nominal problem. We provide the tightest uncer-
tainty set and the probability bound satisfied by the nominal solution. The last
row corresponds to the worst-case solution with respect to the full space of uncer-
tainty (FRC). The results in Table 3.3 reveal that our approach outperforms ACC
with respect to the optimal objective value for the given probability bounds; also
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Figure 3.5 – The diamond points in the graph represent the objective values
of the new approach at the associated β values (given in the horizontal axis),
and the square points represent those for the classical approach. Notice that
the higher the objective value is the better, since it is a maximization problem.

see Figure 3.5. For instance, when the probability bound is 0.8, the improvement
in the objective value is 42.5%. Even for high probability bounds such as 0.97 our
algorithm yields a 17.6% improvement in the objective. It is clear that both the
improvement in the objective value and the number of cells removed from the initial
uncertainty set increase as the probability bound β decreases. Furthermore, if we
compare the values in the second and the fourth columns, it is easy to see that the
final uncertainty set Z yields significantly better probability bounds then the starting
ball-box uncertainty set, BBΩ, especially when Ω is low. As a concluding remark,
we have also conducted the same experiment when different φ-divergence functions
such as Hellinger and Kullback-Leibler distances are used in subproblem (P); see the
numerical results in Appendix 3.7.1.

3.4.2 Optimization of Cross-Docking Distribution Center
Our method can also be applied to the area of robust optimization via (computer)
experiments. For a detailed treatment, see Myers and Montgomery (1995). The
problem is to find settings for a number of design variables (x ∈ Rn) such that a given
objective is optimized and the performance constraints are met with a prescribed
probability. One has to work with probabilities since uncontrollable noise factors
(ζ ∈ Rm) influence the performance. Using (computer) experiments in which both the
design variables and the noise factors are varied, response functions (or metamodels),
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ŷi(x, ζ), can be developed. The constraint now becomes

Prζ{ζ ∈ [−1, 1]2 : ŷi(x, ζ) ≤ θi, ∀i} ≥ β.

One commonly followed approach is to replace each constraint by

Eζ [ŷi(x, ζ)] + κ
√
Vζ [ŷi(x, ζ)] ≤ θi,

where κ is such that Pr(X ≤ κ) ≥ β, where X is a standard normally distributed
variable. For a recent real-life application see Wiebenga et al. (2011). A disadvan-
tage of this approach is that one has to assume that ζ is normally distributed with
a known mean and variance. Second, one has to assume that ŷi(x, ζ) is normally
distributed, which is probably not the case when ŷi(x, ζ) is nonlinear in ζ.

In this example we focus on the robust response model of a cross-docking distribu-
tion center (CDDC); see Shi (2011). The associated research is motivated by the
desire of a third-party logistics company to improve its supply chain management.
As background information, the company distributes units from part suppliers to an
assembly plant that manufactures automobiles. There are five decision factors and
two environmental factors affecting the system. The environmental factors are prim-
itive sources of the uncertainty; they are the quantity variability and the suppliers’
production interruption probability. The decision factors are the number of receiv-
ing doors, shipping doors, forklifts, conveyors, and threshold parts; these factors are
under the control of the users. Note that the decision factors are denoted by the
coded variables xi ∈ [−1, 1], i ∈ {1, . . . , 5}; the environmental factors are denoted by
ζj ∈ [−1, 1] where j ∈ {1, 2}.

Because of an estimated demand growth rate of 10% to 15%, a new assembly plant
will be established. When the two assembly plants operate simultaneously, the CDDC
will not be able to maintain a steady distribution to the assembly plants. Therefore,
the CDDC’s internal operations must be optimized to satisfy the assembly plants’
demand under supply uncertainty. Based on simulation results, Shi (2011) derives
response functions of the performance measures to be used in the mathematical
optimization problem. These measures are the dwelling time in the temporary storage
area, the total throughput of the CDDC, and quantities that exceed the threshold
time in the temporary storage area. We focus on the following chance constrained
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problem:

(TPL) max Eζ [TT (x, ζ)]
s.t. Prζ{ζ ∈ [−1, 1]2 : ŷDT (x, ζ) ≤ 20, ŷET (x, ζ) ≤ 40000} ≥ β

(3.32)
− 1 ≤ xi ≤ 1 ∀i ∈ {1, . . . , 5}, (3.33)

where ŷDT and ŷET are the response functions of dwelling time and quantities ex-
ceeding the threshold time, respectively, and Z is the uncertainty set. The response
functions are polynomials in xi but linear in terms of the uncertain parameters ζi.
For complete formulas of the response functions see Appendix 3.7.2.1. The objective
of (TPL) is to minimize the expected total throughput denoted by Eζ [TT (x, ζ)], and
(TPL) is a nonlinear problem since the response functions are nonlinear in x. We
apply our safe approximation method to find an uncertainty set Z such that for any
feasible solution x ∈ R5 of the RC:

ŷDT (x, ζ) ≤ 20, ∀ζ ∈ Z (3.34)
ŷET (x, ζ) ≤ 40000, ∀ζ ∈ Z, (3.35)

the joint chance constraint (3.32) is satisfied for the given probability bound β.

Similarly to the earlier experiments, the uncertainty space is divided into 100 (10×10)
cells. Furthermore, the uncertain parameters ζ1 and ζ2 are assumed to be indepen-
dent and normally distributed in Shi (2011). These assumptions are not essential
for our approach, but we have used them for the sake of comparison. Thus, random
data for ζ1 and ζ2 are obtained from N(20, 5) and N(0.02, 0.01) with a sample size
of 1000, respectively, and scaled to the interval [−1, 1]. Table 3.4 presents the results
of the experiment.

The optimal objective value of the nominal problem is 496597. Moreover, the prob-
ability bound satisfied by this solution is 0.49. In other words, the joint uncertain
constraint will not be satisfied with 51% probability, when x is fixed to the nominal
solution in (3.32).

The target expected total throughput of the company is 480000 (Shi 2011). Our
results in Table 3.4 show that this target can be satisfied for a probability bound as
high as 0.81. In addition, the immunity to 81% of the uncertainty is significantly
better than that provided by the nominal solution. Between the nominal solution and
the solution satisfying a bound of 0.8, the optimal objective value decreases by 3%,
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Table 3.4 – Results for CDDC Example

β γ(S, α∗) Ω BBΩ |V | − |S| Obj.
Nom. 0.49 0 0 50 496597
0.6 0.62 0.1 0∗∗ 44 491096
0.7 0.72 0.18 0.21 40 486534
0.8 0.81 0.27 0.21 36 481507
0.9 0.9 0.44 0.61 31 472870
0.91 0.92 0.46 0.61 29 471925
0.92 0.92 0.46 0.61 29 471925
0.93 0.94 0.51 0.74 23 469386
0.94 0.94 0.51 0.74 23 469386
0.95 0.95 0.56 0.74 20 467129
0.96 0.96 0.62 0.83 18 464540
0.97 0.97 0.66 0.83 15 462884
0.975 0.98 0.71 0.9 12 460890
0.98 0.98 0.76 0.91 10 458977
0.99 0.99 0.86 0.94 6 455381
FRC 1 >1.41∗∗∗ 1 0 445172
∗ α = 0.001, ∗∗ 2× 10−8 ≈ 0, ∗∗∗

√
2 ≈ 1.41

while there is a 32% increase in the immunity to uncertainty. On the other hand, for
probability bounds above 0.9, we can no longer satisfy the target. For instance, our
optimal solution can not satisfy 5% of 480000, when the prescribed probability is 0.99.

The trade-off between the probability guarantee and the optimal objective value is
clear in the reported results. Using the solutions in Table 3.4, the decision maker can
select the best strategy for the new distribution system. This could involve accept-
ing a small reduction from the expected target for the sake of a higher probability
guarantee, or satisfying the target with a lower guarantee.

Dependent Data. Later in this example, we use the dependent data that is pre-
sented in Table 3.15; see Appendix 3.8.4. The data is obtained using a bivariate
normal distribution by post-processing the “tail” cells that have less observations.
The values in Table 3.15 correspond to the number of observations in the associated
cells and the sample size is 3033, hence the frequency of a cell can be calculated by
dividing the number of observations in the associated cell to the sample size. The
total number of cells is again 100.
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Table 3.5 – Results for Dependent Data

β γ(S, α∗) Ω BBΩ |V | − |S| Obj.
Nom. 0.36 0 0 50 496597
0.6 0.62 0.24 0.06 37 483161
0.7 0.71 0.45 0.26 30 472397
0.8 0.81 0.51 0.36 23 469387
0.9 0.90 0.71 0.52 12 460890
0.91 0.91 0.75 0.53 11 459354
0.92 0.93 0.81 0.57 8 457143
0.93 0.94 0.86 0.57 6 455382
0.94 0.95 0.99 0.74 3 451126
0.95 0.95 1.04 0.8 1 449603
0.96 1 1.09 0.81 0 448139
0.97 1 1.09 0.81 0 448139
0.98 1 1.09 0.81 0 448139
0.99 1 1.09 0.81 0 448139
FRC 1 >1.41∗∗ 1 0 445172
∗ α = 0.001, ∗∗

√
2 ≈ 1.41

According to the given data, we apply our safe approximation method to the CDDC
problem and the numerical results are reported in Table 3.5. The uncertainty sets
that are reported in Table 3.5 are larger than the ones provided in Table 3.4. This is
because of three reasons: First is the data structure, e.g., extensive data locate on the
corners of the uncertainty region, namely, the top-left and the bottom-right corners
in Table 3.15. Second, the ρ value in constraint (3.8) increases, since the degrees of
freedom increases. Note that the degrees of freedom is 99 for the dependent case;
whereas it is 81 for the independent case. Third, the sample size of the dependent
data is smaller than that of the independent data. As a result, to satisfy the same
probability guarantees we require larger uncertainty sets. Note that a larger uncer-
tainty sets implies a conservative RC and this is why the optimal objective values in
Table 3.5 are lower than the ones in Table 3.4. Nevertheless, we still have significant
improvements to the nominal solution. For instance, the solution satisfying a bound
of 0.6 has 26% higher immunity to uncertainty than that of the nominal solution
and it is a considerable improvement for a 2.7% loss in the optimal objective value.
For probability bounds that are higher than 0.95, the safe approximation method
finds the same tight uncertainty set yielding the probability bound of one (using the
discretization and the center point assumption of the safe approximation method).
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Furthermore, the optimal objective value of the RC with BB1.09 is 0.6% higher than
the worst-case optimal 445172 (FRC).

To conclude, it is clear that using the safe approximation method yields significant
improvements to the immunity to uncertainty, provided by the nominal solution, for
relatively small losses in terms of the optimal objective value.

3.4.3 Optimizing Color Picture Tube
In the manufacturing process of a standard television, the color picture tube is assem-
bled to the other components using a manufacturing oven. The oven temperature
causes thermal stresses on different points of the tube and if the temperature is too
high, it will scrap the tube due to implosions. Figure 3.6 taken from Hertog and
Stehouwer (2002) gives an example of a temperature profile on a tube.

Figure 3.6 – Temperature Profile

To minimize the cost and hence the number of scraps, the manufacturer would like to
make an optimal temperature profile such that the temperatures are in the specified
range, the temperature differences between near locations are not too high and the
maximal stress for the TV tube is minimal. Den Hertog and Stehouwer (2002)
formulated the associated problem as follows:

min smax

s.t. ak + bTk x− smax ≤ 0 ∀k ∈ {1, . . . , K} (3.36)
−4Tmax ≤ Ax ≤ 4Tmax (3.37)
l ≤ x ≤ u, (3.38)

where smax ∈ R is the maximal stress, ak + bTk x ∈ R is the stress at location k, i.e.,
linear in x, and x ∈ Rn represents the vector of temperatures. The vectors l ∈ Rn
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and u ∈ Rn are the lower and upper bounds of the decision variables, respectively.
The parameter 4Tmax ∈ Rd represents the maximal allowed temperature on d loca-
tion combinations. A ∈ Rd×n coincides with the coefficients in the linear constraints
that enforce the specified temperatures do not differ more than 4Tmax. There are 20
temperature points on the TV tube and hence n = 20; see Figure 3.6. Furthermore,
these temperatures result in 216 thermal stresses on different parts of the tube so
K = 216. The response functions of the thermal stresses, ak + bTk x, are derived by
using FEM simulator and regression in Den Hertog and Stehouwer (2002). In this
example, we use the same response functions, but the decision variable xi is replaced
by xi(1 + ζj), where ζj is the multiplicative uncertain parameter, i.e., commonly re-
ferred as the implementation error (e.g., ζj = 0.2 means 20% implementation error
in xi).

According to the proximity of the temperature points, we form the following six
subgroups:

j 1 2 3 4 5 6
T (j) {1} {2,5,10} {3,6,7,8} {4,9,14} {11,12,13} {15,16,17,18,19,20}

T (j) denotes the set of indices of the decision variable(s) that are assumed to be
affected by the same uncertain parameter ζj. This is a valid assumption since closer
points in the TV tube have similar temperatures in practice. Eventually, using the
safe approximation method, our objective is to find the tightest uncertainty set Z
for the RC:

min smax

s.t. ak +
6∑
j=1

∑
i∈T (j)

bikxi(1 + ζj)− smax ≤ 0 ∀k ∈ {1, . . . , K},∀ζ ∈ Z (3.39)

(3.37), (3.38),

such that the joint chance constraint:

Prζ
{
ζ ∈ [−1, 1]6 : ak +

6∑
j=1

∑
i∈T (j)

bikxi(1 + ζj) ≤ smax, ∀k ∈ {1, . . . , K}
}
≥ β

(3.40)

is satisfied for any feasible RC solution (x, smax), where β is the given probability
bound. The RC problem has 21 decision variables including smax, six primitive un-
certain parameters, 216 linear uncertain constraints (i.e., given by constraint (3.39))
and 56 linear constraints (i.e., given by constraints (3.37) and (3.38)).
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Data. The data for implementation errors are invented by us and the data range is
divided to five equal intervals. The frequencies of the associated intervals are shown
in Table 3.16 and 3.17; see Appendix 3.8.4, we have the same frequencies in two
different data ranges that are: [-.1, .1] and [-.2, .2]. These ranges correspond to 10%
and 20% implementation errors, respectively. In addition, we assume the uncertain
parameters are independent and hence the frequency of a cell may be found by mul-
tiplying the frequencies of the associated intervals for (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6). The total
number of cells in the joint uncertainty space is 15625 (56).

The numerical results are shown in Table 3.6 and Table 3.7. In both tables, it is easy

Table 3.6 – TV Tube Example (10% Imp. Err.)

β γ(S, α∗) Ω |V | − |S| Obj.
Nom 0∗∗ 0 15625 14.14
0.3 0.3 0.56 12642 14.4
0.35 0.35 0.6 11967 14.42
0.4 0.41 0.64 11245 14.44
0.45 0.46 0.68 10447 14.45
0.5 0.53 0.72 9547 14.47
0.6 0.63 0.78 8031 14.5
0.7 0.71 0.84 6753 14.52
0.75 0.76 0.88 5938 14.54
0.8 0.82 0.94 4772 14.56
0.85 0.85 0.98 4046 14.58
0.9 0.91 1.06 2833 14.61
0.92 0.93 1.1 2321 14.63
0.95 0.95 1.16 1648 14.65
0.96 0.97 1.2 1300 14.67
0.97 0.97 1.22 1140 14.68
0.98 0.98 1.28 736 14.7
0.99 0.99 1.34 455 14.73
FRC 1 >2.45∗∗∗ 0 14.91
∗ α = 0.001, ∗∗ 2×10−8 ≈ 0, ∗∗∗

√
6 ≈ 2.45

to see that the nominal solution is not immune to the implementation errors. To
be more precise, if the decision variables (x, smax) are fixed to the nominal solution
in the joint chance constraint (3.40), then the left-hand side probability is almost
zero (i.e., 2 × 10−8). This means that the ζ values that are feasible for the joint
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constraint, are realized with almost zero probability. This is why implementing the
nominal solution can be a risky decision in practice, but using the safe approximation
method we can find significantly better solutions.

The numerical results in Table 3.6 show: Between the nominal solution and the
solution satisfying a bound of 0.3, the optimal objective value increases by 1.8%,
while there is a 30% increase in the immunity to uncertainty. In addition, the solution
satisfying a bound of 0.85 has an optimal objective value that is 3% higher than that
of the nominal solution. These are significant improvements in the immunity to
uncertainty for the losses in the optimal objective value.

Table 3.7 – TV Tube Example (20% Imp. Err.)

β γ(S, α∗) Ω |V | − |S| Obj.
Nom. 0∗∗ 0 15625 14.14
0.3 0.31 0.56 12626 14.64
0.35 0.37 0.6 11857 14.67
0.4 0.43 0.64 11015 14.7
0.45 0.46 0.66 10593 14.72
0.5 0.53 0.7 9680 14.75
0.6 0.63 0.76 8078 14.8
0.7 0.71 0.82 6640 14.85
0.75 0.75 0.86 5906 14.87
0.8 0.82 0.92 4594 14.92
0.85 0.86 0.96 3776 14.95
0.9 0.9 1.02 2827 14.99
0.92 0.92 1.06 2286 15.02
0.95 0.95 1.14 1463 15.07
0.96 0.97 1.18 1114 15.1
0.97 0.97 1.2 950 15.11
0.98 0.98 1.24 676 15.13
0.99 0.99 1.3 372 15.17
FRC 1 > 2.45∗∗∗ 0 15.44
∗ α = 0.001, ∗∗ 2×10−8 ≈ 0, ∗∗∗

√
6 ≈ 2.45

Note that when we increase the implementation errors from %10 to %20, then the
variance from the nominal case increases and we require larger tight uncertainty sets
to satisfy the same probability bounds. This is why the number of cells removed from
the full space of uncertainty is fewer when the implementation errors are higher; see
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the fourth columns of Table 3.6 and 3.7. A larger tight uncertainty set implies a
more restrictive RC and hence the optimal objective values shown in Table 3.7 are
on average 2.2% higher than those provided in Table 3.6. The lowest difference be-
tween two optimal objectives, i.e., 1.7%, is obtained at 0.3 probability bound, and
the highest, i.e., 2.9%, is obtained at 0.99, and there is a gradual increase in between.

3.5 Conclusions
In this chapter, we have proposed new safe approximations for joint chance con-
straints. Using historical data and goodness-of-fit statistics based on φ-divergence,
we constructed the uncertainty sets that are used in safe approximations. The nu-
merical results show that our approach yields tighter uncertainty sets, and therefore
better objective values than the existing method, for the same probability guaran-
tees, especially when the number of uncertain parameters is low. In addition, we
do not impose the assumptions that the uncertain parameters are independent or
certain moments are known. Last but not least, the new approach can also handle
nonlinear inequalities.

It is important to observe that the computational performance of our approach is
highly dependent on the number of uncertain parameters. Furthermore, we may
require many data points, especially when the uncertain parameters are dependent
and the number of uncertain parameters is high, and this data requirement may be
hard to manage in practice. In future research, we will investigate the improvement
of our approach in such situations. The extension of our approach to simulation
based optimization and nonlinear problems will also be further analyzed in future
research.
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APPENDICES

3.6 Derivation of Robust Counterpart
Let Z = {ζ : Psζ + ps ∈ Ks, s = (1, . . . , S)} where Ks denotes a closed convex
pointed cone with a non-empty interior. The semi-infinite representation:

(a0 +
∑̀
i=1

ζia
i)Tx ≤ b, ∀ζ ∈ Z

is equivalent to the following RC:

max
ζ∈Z

{
(a0 +

∑̀
i=1

ζia
i)Tx

}
≤ b. (3.41)

Using the Conic Duality theorem, (3.41) is equivalent to

min
ys∈Ks

∗ :s∈{1,...,S}

{ S∑
s=1

pTs y
s + (a0)Tx

}
≤ b

S∑
s=1

(P T
s y

s)j = −(a`)Tx ∀j ∈ {1, . . . , `},
(3.42)

where Ks
∗ denotes the dual cone of Ks. For the detailed derivation of (3.42), see

Theorem 1.3.4 and Corollary 1.3.6 of Ben-Tal et al. (2009). Then the minimization
in (3.42) is removed—as it is often done in RO—and we have the following equivalent
system of conic inequalities:

S∑
s=1

pTs y
s + (a0)Tx ≤ b

S∑
s=1

(P T
s y

s)j = −(a`)Tx ∀j ∈ {1, . . . , `}

ys ∈ Ks

∗ ∀s ∈ {1, . . . , S}.

(3.43)

The conic representation of the uncertainty set BBΩ(c̄) is equivalent to

Z = {ζ : P1ζ + p1 ∈ K1, P2ζ + p2 ∈ K2}

where

• P1ζ ≡ [ζ; 0], p1 ≡ [01×`; 1] and K1 := {(e, t) ∈ R` ]× R : ||e||∞ ≤ t}

• P2ζ ≡ [ζ; 0], p2 ≡ [−c̄; Ω] and K2 := {(e, t) ∈ R` × R : ||e||2 ≤ t}.
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Then using (3.43), the RC for BBΩ(c̄) is equivalent to

τ1 − wT c̄+ Ωτ2 + (a0)Tx ≤ b

(z + w)` = −(aj)Tx, j = (1, . . . , `)
||z||1 ≤ τ1 (K1

∗ := {(z, τ1) ∈ R` × R : ||z||1 ≤ τ1})
||w||2 ≤ τ2 (K2

∗ := {(w, τ2) ∈ R` × R : ||w||2 ≤ τ2}),

(3.44)

where y1 = [z; τ1] ∈ K1
∗ and y2 = [w; τ2] ∈ K2

∗ . Consequently, (3.44) is equivalent to

∑̀
j=1
|zj|+ Ω

√√√√√∑̀
j=1

w2
j − wT c̄ ≤ b− [a0]Tx,

zj + wj = −(aj)Tx, ∀j ∈ {1, ..., `} .

(3.45)

�

3.7 Data and Additional Results
3.7.1 Extra Results for Example 4.1

Table 3.8 – Kullback-Leibler Distance

β γ(S, α∗) Ω BBΩ |V | − |S| Obj. Ωacc Objacc. %Improv.
Nom. 0.5 0 0 45 10 - - -
0.60 0.69 0.29 0.03 28 8.30 1.35 5.11 62
0.70 0.78 0.43 0.22 21 7.67 >1.41 5 53.4
0.80 0.86 0.57 0.35 15 7.13 >1.41 5 42.5
0.90 0.92 0.71 0.64 10 6.66 >1.41 5 33.2
0.91 0.92 0.71 0.64 10 6.66 >1.41 5 33.2
0.92 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.93 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.94 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.95 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.96 0.98 0.99 0.89 3 5.88 >1.41 5 17.6
0.97 0.98 0.99 0.89 3 5.88 >1.41 5 17.6
0.98 0.98 0.99 0.89 3 5.88 >1.41 5 17.6
0.98 0.99 1.14 0.95 1 5.54 >1.41 5 10.7
0.99 1 1.28 0.98 0 5 >1.41 5 0

1 - - - 5 - - -
∗ α=0.001
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Table 3.9 – Hellinger Distance

β γ(S, α∗) Ω BBΩ |V | − |S| Obj. Ωacc Objacc. %Improv.
Nom. 0.5 0 0 45 10 - - -
0.60 0.66 0.29 0.03 28 8.30 1.35 5.11 62
0.70 0.75 0.43 0.22 21 7.67 >1.41 5 53.4
0.80 0.83 0.57 0.35 15 7.13 >1.41 5 42.5
0.90 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.91 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.92 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.93 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.94 0.96 0.99 0.89 3 5.88 >1.41 5 17.6
0.95 0.96 0.99 0.89 3 5.88 >1.41 5 17.6
0.96 0.96 0.99 0.89 3 5.88 >1.41 5 17.6
0.97 0.98 1.14 0.95 1 5.54 >1.41 5 10.7
0.98 0.98 1.14 0.95 1 5.54 >1.41 5 10.7
0.99 1 1.27 0.98 0 5 >1.41 5 0

1 - - - - 5 - - -
∗ α=0.001

3.7.2 Example 4.3
3.7.2.1 Response Functions

Eζ [TT (x, ζ)] =− 479700− 39819.17 ∗ x(1)− 20253.25 ∗ x(2) + 312.12 ∗ x(3)− 7339.86 ∗ x(4)− 339.78 ∗ x(5)−
7895.49 ∗ x(1) ∗ x(2)− 121.06 ∗ x(1) ∗ x(3)− 33.75 ∗ x(1) ∗ x(4) + 21.24 ∗ x(1) ∗ x(5)−
7.36 ∗ x(2) ∗ x(3) + 649.55 ∗ x(2) ∗ x(4) + 1136.31 ∗ x(2) ∗ x(5) + 788.4 ∗ x(3) ∗ x(4)+
407.64 ∗ x(3) ∗ x(5)− 1101.55 ∗ x(4) ∗ x(5) + 34063.49 ∗ x(1)2 + 17810.89 ∗ x(2)2+
108.13 ∗ x(3)2 + 10333.23 ∗ x(4)2 − 1107.72 ∗ x(5)2.

ŷDT (x, ζ) =− 8.57 + 1.2 ∗ x(1) + 2.04 ∗ x(2)− 0.17 ∗ x(3) + 0.78 ∗ x(4) + 3.30 ∗ x(5)− 0.44 ∗ x(1) ∗ x(2)+
0.29 ∗ x(1) ∗ x(3)− 0.26 ∗ x(1) ∗ x(4) + 0.33 ∗ x(1) ∗ x(5) + 0.21 ∗ x(2) ∗ x(3)− 0.45 ∗ x(2) ∗ x(4)+
0.55 ∗ x(2) ∗ x(5)− 0.061 ∗ x(3) ∗ x(4) + 0.062 ∗ x(3) ∗ x(5) + 0.35 ∗ x(4) ∗ x(5)− 0.63 ∗ x(1)2−
1.27 ∗ x(2)2 + 0.19 ∗ x(3)2 − 0.25 ∗ x(4)2 − 0.11 ∗ x(5)2+
{7.11 + 0.78 ∗ x(1) + 1.63 ∗ x(2)− 0.081 ∗ x(3) + 0.57 ∗ x(4) + 2.72 ∗ x(5)} ∗ ζ1+
{3.21 + 0.46 ∗ x(1) + 0.49 ∗ x(2)− 0.073 ∗ x(3) + 0.16 ∗ x(4) + 1.17 ∗ x(5)} ∗ ζ2 ≤ 0.

ŷET (x, ζ) =− 7517.8 + 10256.36 ∗ x(1) + 13753.61 ∗ x(2)− 300.42 ∗ x(3) + 4379.24 ∗ x(4) + 52.43 ∗ x(5)+
5415.96 ∗ x(1) ∗ x(2) + 437.38 ∗ x(1) ∗ x(3) + 214.75 ∗ x(1) ∗ x(4) + 597.11 ∗ x(1) ∗ x(5)−
97.79 ∗ x(2) ∗ x(3)− 1618.36 ∗ x(2) ∗ x(4)− 724.67 ∗ x(2) ∗ x(5)− 1639.28 ∗ x(3) ∗ x(4)−
1243.25 ∗ x(3) ∗ x(5) + 1728.59 ∗ x(4) ∗ x(5)−
1118.43 ∗ x(1)2 − 1072.35 ∗ x(2)2 + 226.71 ∗ x(3)2 − 372.2 ∗ x(4)2 + 148.92 ∗ x(5)2+
{36087.44 + 13066.74 ∗ x(1) + 17605.17 ∗ x(2)− 739.11 ∗ x(3) + 5944.33 ∗ x(4) + 446.33 ∗ x(5)} ∗ ζ1+
{−10868− 3824.22 ∗ x(1)− 5975.83 ∗ x(2) + 209.48 ∗ x(3)− 2506.4 ∗ x(4)− 579.61 ∗ x(5)} ∗ ζ2 ≤ 0.
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3.8 Additional Experiments
3.8.1 Comparison with Randomized Approach
In this experiment, we apply the randomized approach that is proposed by Calafiore
and Campi (2005) to the illustrative experiment shown in §3.4.1. The objective is to
compare these results to that of the safe approximation method reported in Table 3.3.

Calafiore and Campi (2005) propose a randomized algorithm for uncertain convex
optimization problems. The algorithm is as follows: For an uncertain constraint
[f(x, ζ) ≤ 0] at hand, they randomly extract N realizations of the uncertain param-
eter (ζ) in an independent fashion using the known probability distribution (P) of ζ.
Note that each extraction (ζ̂) coincides with a discrete constraint [f(x, ζ̂) ≤ 0]. Then,
instead of the exact uncertain problem, they solve the one with randomly extracted
N constraints. Eventually, the optimal solution of the randomized approach satisfies
the following probability bound that is proved by Campi and Garatti (2008):

Pr{V (x∗N ) > ε} ≤
d−1∑
i=0

(
N
i

)
εi(1− ε)N−i︸ ︷︷ ︸

B
ε
Nd

, (3.46)

where Bε

Nd corresponds to the associated probability bound, V (x) denotes the vio-
lation probability for a given solution x ∈ Rn , ε is the given violation probability
bound that is “generally” close to zero and x∗N ∈ Rn coincides with the optimal
solution of the convex optimization problem with randomly selected N constraints.
For a detailed overview of the randomized approach, we refer to Calafiore and Campi
(2005), Calafiore (2006) and Campi and Garatti (2008). If we relate (3.46) to our
notation:

[
Pr
{

Prζ∼P{ζ : f(x, ζ) ≤ 0} ≥ β
}
≥ 1− α

]
, then the probability bound β

of the chance constraint coincides with 1 − ε and the confidence level 1 − α corre-
sponds to 1 − Bε

Nd (i.e., Bε

Nd = α). This means we should find the closest N value
that satisfies Bε

Nd
∼= α (see Table 3.10 for the values of N when d = 2).

Notice that the probability distribution P is unknown in the safe approximation
method proposed in this chapter. However, the disadvantage of the randomized ap-
proach is that P has to be known since constraints are extracted according to a known
P. Therefore, we assume that the empirical estimates, i.e., q in our notation, denote
the required probability distribution P for the randomized approach. As a remark
we have 100 cells in the uncertainty space so that each independent draw is done
from 100 constraints. Notice that N can be larger than 100 for given β and α, and
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Table 3.10 – Randomized versus Safe Approximation

(α = 0.001) Obj. Val.
β N ∗ RA∗∗ SA

0.6 19 6.15 9.04
0.7 27 6.12 8.29
0.8 42 5.8 7.12
0.9 88 5.56 6.65
0.91 98 5.47 6.65
0.92 111 5.45 6.65
0.93 127 5.48 6.24
0.94 149 5.42 6.24
0.95 180 5.34 6.24
0.96 226 5.32 5.88
0.97 303 5.21 5.88
0.98 457 5.16 5.53
0.99 919 5 5
∗ d = 2, ∗∗ Avg. of 20 rep.

due to randomization a constraint can be selected more than one time. Finally, for
different probability bounds we compare the optimal objective value of the random-
ized approach to that of the safe approximation method proposed in this chapter.
The numerical results are shown in Table 3.10, where the last column (SA), taken
from the results of Experiment 3.4.1, is the optimal objective value of the safe ap-
proximation method. Note that for the randomized approach we report the average
objective value of 20 replications in the third column of Table 3.10, i.e., denoted by
RA. This is done to have a fair comparison between the two approaches.

The numerical results in Table 3.10 show that the safe approximation method per-
forms better than the randomized approach. This is a logical outcome, since the safe
approximation method is more objective oriented and takes into account the optimal
solution, to construct the uncertainty set, at each iteration of the algorithm. On the
other hand, the randomized approach does not consider the objective value while
extracting constraints. Secondly, the numerical results also show that the difference
between the two approaches decreases as the probability bound β increases. This is
another expected result, since for probability bounds close to 1 the uncertainty set
has to be close to the full space of the uncertainty, which means that there is no
difference between the two approaches in this case.
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3.8.2 Comparison with One-by-One Approach
The objective of this section is to compare the optimal objective values of the one-by-
one approach (that is addressed in §3.3.2) to that of the safe approximation method
proposed in the chapter. The numerical example is selected as the illustrative ex-
periment in §3.4.1 (i.e., the results of the safe approximation method for the given
probability bounds are taken from Table 3.3). The numerical results are presented
in the following table.

Table 3.11 – One-by-One versus Safe Approximation

β
Obj. Val.

1-by-1 SA
0.92 6.65 6.65
0.93 6.25 6.24
0.94 6.25 6.24
0.95 6.25 6.24
0.96 5.88 5.88
0.97 5.88 5.88
0.98 5.55 5.53
0.99 5 5
α = 0.001

Note that the one-by-one approach provides the “exact” optimal solution for a given
probability bound with a confidence level of 1−α, but it requires many more iterations
compared to our method as the probability bound gets lower. The numerical results
reveal that the safe approximation method yields objective values that are very close
(or the same) to the one-by-one approach.

3.8.3 Multi-Period Work Scheduling Problem
In this experiment, we solve a modified version of multi-period work scheduling
(MWS) problem. MWS is a linear optimization problem used to schedule employees
for a multi-period time horizon where the demand changes over time.

Computer Service Store. CLS is a computer service store that requires the fol-
lowing skilled-repair times in the next five months: 3000, 3500, 4000, 4500, and 5500.
The repair work is done by skilled technicians and these technicians can each work
up to 160 hours per month. Furthermore, the technicians may train apprentices to
meet future demand. It takes an average of 50 hours to train an apprentice, and
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new technicians start serving CLS in the month following their training session. In
addition, the training sessions have 100% efficiency, so an apprentice always becomes
a technician at the end of the training period. The hiring of technicians is done only
in the first period and the start-up cost of hiring a technician is $8000. In addition,
each technician is paid $2000 and each apprentice costs $1000 per month. On the
other hand, 5% of the technicians quit at the end of each month. Finally, the objec-
tive of CLS is to minimize the total labor cost incurred to meet the demand in the
next five months. The mathematical model of this problem is presented below:

(NMWS) min
5∑
i=1

1000xi +
5∑
i=1

2000yi + 8000y1

s.t. 160yi − 50xi ≥ di i ∈ {1, . . . , 5} (3.47)
0.95yi + xi = yi+1 i ∈ {1, . . . , 4} (3.48)
xi, yi ≥ 0 i ∈ {1, . . . , 5} , (3.49)

where yi represents the number of technicians, xi corresponds to the number of ap-
prentices in training, and di is the repair time demanded in period i ∈ {1, . . . , 5}. In
practice, the average working and training hours usually deviate from the estimated
values because of overtime, illness, vacations, and other factors. We have historical
data for 120 months giving the average working and training hours spent per techni-
cian each month. These data are used in Table 3.12 to derive the frequencies. Note

Table 3.12 – Frequencies for Working (W.H.) and Training (T.H.) Hours

ζ1, ζ2 [-1 -0.8] [-0.8 -0.6] [-0.6 -0.4] [-0.4 -0.2] [-0.2 0] [0 0.2] [0.2 0.4] [0.4 0.6] [0.6 0.8] [0.8 1]
W.H. [120 128] [128 136] [136 144] [144 152] [152 160] [160 168] [168 176] [176 184] [184 192] [192 200]

freq.(ζ1) 0.02 0.04 0.1 0.1 0.2 0.3 0.1 0.1 0.02 0.02
T.H. [30 34] [34 38] [38 42] [42 46] [46 50] [50 54] [54 58] [58 62] [62 66] [66 70]

freq.(ζ2) 0.015 0.07 0.1 0.15 0.15 0.17 0.15 0.11 0.07 0.015

that the working hours range from 120 to 200, so the mean is 160 and the half-length
of the data range is 40. Similarly, for the training hours the mean is 50 and the
half-length of the data range is 20. Using this information from the historical data,
we introduce uncertainty to constraint (3.47) as follows:

min
5∑
i=1

1000xi +
5∑
i=1

2000yi + 8000y1

s.t. Prζ{ζ ∈ [−1, 1]2 : (160 + 40ζ1) yi − (50 + 20ζ2)xi ≥ di, ∀i ∈ {1, . . . , 5}} ≥ β

(3.50)
(3.48), (3.49),

where ζ1 ∈ [−1, 1] and ζ2 ∈ [−1, 1] are the uncertain parameters, and β is the
prescribed probability bound. The frequencies of the working and training hours are
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scaled into the frequencies of ζ1 and ζ2 in Table 3.12. Furthermore, the uncertain
parameters are independent; therefore, the joint frequencies can be derived similarly
to the first experiment. The joint uncertainty region is again divided into 100 (10×
10) cells. Eventually, using our safe approximation method, we find the tightest
uncertainty set Z such that for any feasible solution (x, y) of the RC:

(160 + 40ζ1) yi − (50 + 20ζ2)xi ≥ di,∀i ∈ {1, . . . , 5} , ∀ζ ∈ Z, (3.51)

the joint chance constraint (3.50) is satisfied for the given probability bound β. In
this experiment we use the extension in §3.3.3.1, i.e., the safe approximation of the
joint chance constraint. The results are reported in Table 3.13.

Table 3.13 – Results for CLS Example

β γ(S, α∗) Ω BBΩ |V | − |S| Obj.
Nom. 0.49 0 0 50 448105
0.6 0.63 0.12 0∗∗ 44 462691
0.65 0.66 0.14 0∗∗ 43 465214
0.7 0.75 0.3 0.12 35 486434
0.75 0.77 0.32 0.12 34 489222
0.8 0.8 0.38 0.33 31 497782
0.85 0.86 0.5 0.38 25 515830
0.9 0.9 0.56 0.55 22 525351
0.91 0.91 0.58 0.55 21 528603
0.92 0.94 0.7 0.66 15 548988
0.93 0.94 0.7 0.66 15 548987
0.94 0.94 0.72 0.8 14 552538
0.95 0.95 0.74 0.8 13 556134
0.96 0.96 0.78 0.85 11 563468
0.97 0.98 0.9 0.9 5 586672
0.98 0.98 0.94 0.93 3 594834
0.99 0.99 0.98 0.95 1 603225
FRC 1 >1.41∗∗∗ 1 0 621356
∗ α = 0.001, ∗∗ 1.9×10−8 ≈ 0, ∗∗∗

√
2 ≈ 1.41

The meanings of the columns in Table 3.13 are the same as for the first experiment.
Note that the optimal objective values for the nominal problem (NMWS) and the
robust counterpart for the full space of uncertainty (FRC) are 448105 and 621356,
respectively (see the first and last row of Table 3.13). The results show that when
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the probability bound is as low as 0.6, the optimal objective value calculated by the
algorithm is 3% higher than that of the nominal solution. Moreover, with respect to
the nominal solution, we see a 14% increase in the immunity to uncertainty in con-
straint (3.50), which is a considerable improvement for a 3% sacrifice in terms of the
objective value. For the higher probability bounds of 0.92 and 0.94, the improvement
in the optimal objective value of FRC is 12% and 11%, respectively. Furthermore,
for the probability bound of 0.98, the algorithm improves the objective value of FRC
by 4% and the solution is robust to at least 98.3% of the uncertainty. It is clear
that when the probability bound β increases, we remove fewer cells from the initial
uncertainty region and the radius Ω of BBΩ gets larger. Ultimately, the decision
maker must make the decision by looking at the results in Table 3.13 and choosing
the best option for CLS.

Later in this example, we consider the extension in §3.3.3.3, i.e., using the box instead
of the ellipsoid as the starting uncertainty set of our algorithm. Note that we apply
this extension to the same problem. In addition, we test the new approach for the
same data set and when the inputs of the algorithm such as the number of cells and
step size ω are held constant. The numerical results are presented in Table 3.14. The
symbol (∗) denotes an instance where using the box yields a better optimal objective
value than using the ellipsoid for a given probability bound β.
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Table 3.14 – Results for CLS Example (Box)

β γ(S, α∗) Ω |V | − |S| Obj.
Nom. 0.49 0 50 448105
0.6 0.63 0.1 44 461039(∗)
0.65 0.66 0.12 43 463715(∗)
0.7 0.78 0.3 33 489236
0.75 0.78 0.3 33 489236
0.8 0.80 0.34 31 495286(∗)
0.85 0.90 0.5 22 521022
0.9 0.90 0.5 22 521022
0.91 0.91 0.52 21 524423(∗)
0.92 0.96 0.7 11 557107
0.93 0.96 0.7 11 557107
0.94 0.96 0.7 11 557107
0.95 0.96 0.7 11 557107
0.96 0.96 0.7 11 557107(∗)
0.97 1 0.9 0 598402
0.98 1 0.9 0 598402
0.99 1 0.9 0 598402(∗)
FRC 1 >1.41∗∗ 0 621356
∗ α = 0.001, ∗∗

√
2 ≈ 1.41

The numerical results reveal that using the box or the ellipsoid as the starting uncer-
tainty set yields similar optimal objective values, e.g, the highest difference between
optimal objective values of two approaches is around 1%. Nevertheless, using the
ellipsoid is more flexible in finding the final tight uncertainty sets for the CLS prob-
lem. For instance, if the probability bound is in between 0.92 and 0.96 or higher than
0.96, then the safe approximation method using the box finds only one uncertainty
set for each of the cases; whereas, the results in Table 3.13 show that the safe ap-
proximation method using the ellipsoid finds a unique tight uncertainty set for each
of the probability bounds (except 0.92 and 0.93).

3.8.4 Dependent Data Set and Data Set of Example 4.4
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Table 3.15 – Dependent Data used in Example 4.3

ζ2

Cells 1 2 3 4 5 6 7 8 9 10

ζ1

1 66 30 27 23 9 5 5 5 5 5
2 53 35 38 23 8 13 5 5 5 5
3 42 28 53 35 44 28 17 6 5 5
4 32 35 44 79 81 49 26 28 9 5
5 28 23 53 85 86 70 69 31 14 13
6 15 15 41 46 83 102 83 67 23 20
7 5 6 12 36 46 75 73 51 38 30
8 5 8 5 14 30 49 65 43 38 42
9 5 5 5 7 15 20 25 34 28 56
10 5 5 5 5 5 12 15 28 15 79

(∗) N = 3033

Table 3.16 – Data Set 1 (10% Imp. Err.)

[-.1 -.06] [-.06 -.02] [-.02 .02] [.02 .06] [.06 .1]
ζ1 0.1 0.21 0.29 0.22 0.18
ζ2 0.09 0.18 0.38 0.23 0.12
ζ3 0.13 0.23 0.3 0.17 0.17
ζ4 0.11 0.22 0.31 0.24 0.12
ζ5 0.09 0.2 0.28 0.23 0.2
ζ6 0.17 0.22 0.23 0.2 0.18
(∗) Nj = 100 ∀j ∈ {1, . . . , 6}

Table 3.17 – Data Set 2 (20% Imp. Err.)

[-.2 -.12] [-.12 -.04] [-.04 .04] [.04 .12] [.12 .2]
ζ1 0.1 0.21 0.29 0.22 0.18
ζ2 0.09 0.18 0.38 0.23 0.12
ζ3 0.13 0.23 0.3 0.17 0.17
ζ4 0.11 0.22 0.31 0.24 0.12
ζ5 0.09 0.2 0.28 0.23 0.2
ζ6 0.17 0.22 0.23 0.2 0.18
(∗) Nj = 100 ∀j ∈ {1, . . . , 6}
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CHAPTER 4

Adjustable Robust Optimization Using
Metamodels

4.1 Introduction
In this chapter, we present a methodology that is a novel combination of robust op-
timization (RO) and simulation-based robust parameter design (RPD). We mention
the major contributions of our research at the end of this section, but before that we
extensively describe the fields of RO and simulation-based RPD.

To begin with, the goal of many experiments is to estimate the best solution for a
given practical problem. Such experiments may be conducted with a physical system
(e.g., an airplane model in a wind tunnel) or a mathematical model of a physical
system (e.g., a computerized simulation model of an airplane or an inventory man-
agement system). These experiments produce data on the outputs or responses for
the given inputs or factors. Output may be univariate (a single or scalar response) or
multivariate (multiple responses or a vector with responses). The number of inputs
may range from a single input to ‘many’ inputs (e.g., thousands of inputs), but we
focus on practical problems with no more than (say) twenty inputs.

Taguchi (1987)—for an update see Myers et al. (2009, pp. 483–485)—distinguishes
between the following two types of inputs: (i) Controllable or decision factors (say)
dj (j = 1, . . . , k), collected in the k-dimensional vector d = (d1, . . . , dk)

T . (ii) En-
vironmental or noise factors (say) eg (g = 1, . . . , c), collected in the c-dimensional
vector e = (e1, . . . , ec)

T . By definition, the first type of inputs is under the control of
the users; e.g., in an inventory system, management controls the order quantity. The
second type of inputs is not controlled by the users; e.g., demand in an inventory
system. Taguchi emphasizes that the noise factors create variability in the outputs.
Consequently, the combination of decision factors that (say) maximizes the expected
univariate output may cause the variance of that output to be much larger than a
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combination that ‘nearly’ maximizes the mean output; i.e., a little sacrifice in ex-
pected output may save a lot of problems caused by the variability in the output (or
as the French proverb states: “the best is the enemy of the good”).

Taguchian RPD has been criticized by statisticians; see the panel discussion reported
in Nair et al. (1992). Their main critique concerns the statistical design and analysis
in the Taguchian approach; for details we refer to Taguchi (1987) and Myers et al.
(2009, pp. 483–495). An alternative RPD approach is given by Myers et al. (2009,
pp. 502–506). Like Myers et al. do, we expose our methodology using the following
‘incomplete’ second-order polynomial regression metamodel:

y(e,d) = β0 + βTd + dTBd + γT e + dT∆e + ε (4.1)

that approximates the unknown input/output (I/O) function (say) w = g(e,d) for
a single output w of the system, where y denotes the output of the regression meta-
model of the simulation model with output w; β0 the intercept; β = (β1, . . . , βk)

T the
first-order effects of the decision variables d; B the k×k symmetric matrix of second-
order effects of d with on the main diagonal the ‘purely quadratic’ effects βj;j and off
this diagonal half the interactions between pairs of decision factors βj;j′/2 (j 6= j′);
γ = (γ1, . . . , γc)

T the first-order effects of the environmental factors e; ∆ = (δj;g) the
k×c pairwise (two-factor) interactions between d and e; ε the residual with E(ε) = 0
if this model has no ‘lack of fit’ (so it is a valid or adequate approximation of g(e,d))
and with constant variance σ2

ε .

Myers et al. (2009) assume experiments with real systems; whereas we assume ex-
periments with simulation models of real systems. These simulation models may be
either deterministic (especially in engineering) or random (stochastic, possibly with
discrete events). Deterministic simulation models have noise if a parameter or input
variable has a fixed but unknown value; this is called subjective or epistemic uncer-
tainty; see Iman and Helton (2006). Random simulation models also have objective,
aleatory or inherent uncertainty; again see Iman and Helton. We focus on random
simulation, but shall also discuss deterministic simulation. Simulation analysts use
different names for metamodels, such as response surfaces, surrogates, and emula-
tors; see the many references in Kleijnen (2008, p. 8). There are different types of
metamodels, but the most popular types are low-order polynomials such as (4.1) and
Kriging (Gaussian process) models. These polynomials are nonlinear in the inputs
(e,d) but linear in the regression parameters (β0, . . . , δk;c) so the analysis may use
classic linear regression models estimated using the least squares (LS) criterion; see
Kleijnen (2008, pp. 15–72) and Myers et al. (2009, pp. 13–71). Kriging models are
more flexible so they can accurately approximate the true I/O function over bigger
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experimental areas; see Kleijnen (2008, pp. 139–156). It is important to point out
that methods that shall be proposed in this chapter are not bound by low-order poly-
nomials. Therefore, our methodology is also suitable for Kriging or other classes of
metamodels, and these extensions will be mentioned in a later section. Nevertheless,
for the sake of exposition, we shall adapt the low-order polynomial notation (4.1) in
the remainder of the chapter.

Optimization of systems being simulated—called simulation optimization (SO)—is a
popular research topic in discrete-event simulation; see Fu (2007), and Fu and Nel-
son (2003). ‘Robust’ SO approaches are also discussed in that literature. Examples
are Angün (2011) combines Taguchi’s worldview with response surface methodology
(RSM). This RSM is a stepwise optimization heuristic that in the various steps uses
local first-order polynomial metamodels and in the final step uses a local second-order
polynomial metamodel (obviously, these polynomials are linear regression models).
Instead of Taguchi’s various criteria, Angün (2011) uses the average value-at-risk (also
known as conditional value-at-risk). Miranda and Del Castillo (2011) perform RPD
optimization through a well-known SO method; namely, simultaneous perturbation
stochastic approximation, which is detailed in Spall (2003). Wiedemann (2010, p.
31) applies Taguchian RPD to an agent-based simulation, ensuring that the mean
response meets the target value and the variability around that level is sufficiently
small. Some years ago, Al-Aomar (2006) used Taguchi’s signal-to-noise ratio and a
quality loss function, together with a genetic algorithm with a scalar fitness measure
that is a combination of the estimated mean and variance. An older paper is Sanchez
(2000), who used Taguchi’s worldview with a loss function that incorporates both
system’s mean and variability, and RSM; the author gave many more references. Ro-
bust approaches are discussed—albeit briefly—not only in discrete-event simulation
but also in deterministic simulation if that simulation has uncertain environmental
variables, which (by definition) are beyond management’s control. A recent example
is Hu et al. (2012), who propose a robust climate simulation model (called ‘DICE’)
with input parameters that have a multivariate Gaussian distribution with uncer-
tain or ‘ambiguous’ mean vector and covariance matrix. Another recent example is
Dellino et al. (2012), who investigate the well-known economic order quantity model
with an uncertain demand rate. Dellino et al. use Taguchi’s worldview, but replace
his experimental designs (namely, orthogonal arrays) and metamodels (namely, low-
order polynomials) by Latin hypercube sampling and Kriging metamodels. Many
more applications can be found in engineering. For example, Chan and Ewins (2010)
use Taguchi’s RPD to manage the vibrations in bladed discs. Urval et al. (2010) use
Taguchi’s RPD in powder injection moulding of microsystems’ components. Delpi-
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ano and Sepulveda (2006) also study RPD in engineering. Vanlı and Del Castillo
(2009) study on-line RPD (ORPD) to account for control variables that are adjusted
over time according to the on-line observations of environmental factors. They as-
sume the posterior predictive densities of responses and environmental factors are
known; moreover, they assume that the uncertain parameters follow a specific time
series model. They propose two Bayesian approaches for ORPD. In both approaches,
controllable factors can be adjusted on-line using an expected loss function and the
on-line observations. Joseph (2003) proposes RPD with feed-forward control for
measurement systems where true values of the responses cannot be observed but
estimated. Using the on-line observable environmental factors, the author proposes
a control law that periodically updates the online measurement of the system. Das-
gupta and Wu (2006) propose an on-line feedback control mechanism that adjusts
the observed output error using a controllable factor—called adjustment factor—that
is set on-line during production.

Classic RPD assumes that the mean and variance—and sometimes even the prob-
ability distribution—of e are known. The final parameter design may be sensitive
to these assumptions. We therefore propose a RO approach that takes the distri-
bution ambiguity into account, and that uses historical data on the environmental
inputs. The developments in RO started with Ben-Tal and Nemirovski (1998, 1999)
and El-Ghaoui and Lebret (1997). Optimization problems usually have uncertain
coefficients in the objective function and the constraints, so the “nominal” optimal
solution—i.e., the optimal solution if there would be no uncertainties—may easily
violate the constraints for some realizations of the uncertain coefficients. Therefore,
it is better to find a “robust” solution, which is immune to the uncertainty in a so-
called uncertainty set. The robust reformulation of a given uncertain mathematical
optimization problem is called the robust counterpart (RC) problem. The mathe-
matical challenge in RO is to find computationally tractable RCs; see Ben-Tal et al.
(2009).

As already said in this chapter, we present a methodology that is a combination
of RO and simulation-based RPD. Based on Ben-Tal et al. (2013) and Yanıkoğlu
and den Hertog (2013), we use experimental data on the simulated system to de-
rive uncertainty sets—to be used in RO—for the unknown probability distribution
of the environmental factors. Furthermore, we also use Ben-Tal, den Hertog, and
Vial (2014) to convert associated RCs into explicit and computationally tractable
optimization problems. Bingham and Nair (2012) point out that “the noise distri-
butions are rarely known, and the choices are often based on convenience”. The
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advantage of our approach is that it uses the distribution-free structure of RO; i.e.,
unlike standard approaches we do not make any assumptions about the distribution
of the environmental factors such as a Gaussian (or Normal) distribution. More-
over, we develop adjustable RPD for those situations in which some or all of the
controllable inputs have a ‘wait and see’ character; i.e., their values can be adjusted
after observing the values of some or all of the environmental inputs. Examples are
the adjustment of several controllable chemical process parameters after observing
environmental inputs such as temperature and humidity, or the adjustment of the
replenishment order at time t according to the realized demands in the preceding
t − 1 periods in a multistage inventory system. We develop adjustable RO for such
situations, and show that the corresponding robust counterpart problems can again
be reformulated as tractable optimization problems.

The major contributions of our research can be summarized as follows: (i) We propose
a RO methodology for a class of RPD problems where the distributional parameters
are unknown but historical data on the uncertain parameters are available. (ii) Our
method is suitable for different classes of metamodels, e.g., higher-order polynomi-
als, Kriging, and radial basis functions. (iii) We propose adjustable robust approach
for RPD. Unlike classic adjustable RO techniques, our adjustable robust reformu-
lations are tractable (i.e., when the number of uncertain parameters is fixed) even
for nonlinear decision rules. (iv) We propose tractable RC formulations of uncertain
optimization problems that have quadratic terms in the uncertain parameters. Com-
pared with other studies in the literature, our formulations can handle more general
classes of uncertainty sets, and lead to easier tractable formulations. (v) Last but
not least, we introduce adjustable integer decision variables in the context of RO,
and propose a specific decision rule for such variables. Finally, the limitation our
method is that it is suitable for low dimensional uncertainties.

Related to our research, Stinstra and den Hertog (2008) and Bertsimas et al. (2010)
also propose RO methods for different classes of SO problems. More precisely, Stin-
stra and den Hertog (2008) propose RO methods for three types of errors, namely,
simulation-model, metamodel, and implementation errors, that may arise at differ-
ent stages of a simulation-based optimization approach. The authors consider box
and ellipsoidal uncertainties for the associated errors. Bertsimas et al. (2010) on the
other hand propose a RO method for unconstrained simulation-based problems with
non-convex cost functions. This method is suitable for metamodels that are often
used in practice such as Kriging, and it can be generalized to both implementation
errors and parameter uncertainties.
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The remainder of the chapter is organized as follows. §4.2 summarizes Taguchi’s
world view, and alternative RPD approaches in SO. §4.3 proposes our RO approach
accounting for distribution ambiguity. §4.4 develops adjustable RO approaches. §4.5
presents numerical examples. §4.6 summarizes our conclusions, and indicates a future
research topic.

4.2 Robust Parameter Design
In this section, we first present the Taguchian RPD approach, and then other pop-
ular RPD approaches. To estimate the regression parameters in (4.1) we need an
experiment with the underlying system: Design of experiments (DoE) uses coded—
also called standardized or scaled—values (say) xj for the factors. So the experiment
consists of (say) n combinations of the coded factors x, which correspond with d and
e in (4.1). Coding is further discussed in Kleijnen (2008, p. 29) and Myers et al.
(2009, p. 78).

We reformulate the Taguchian model (4.1) as the following linear regression model:

y = ζ
Tx + ε (4.2)

with the `-dimensional vector of regression parameters or coefficients ζ = (β0, . . . , δk;c)
T

and the corresponding vector of regression explanatory variables x defined in the ob-
vious way; e.g., the explanatory variable corresponding with the interaction effect
β1;2 is d1d2. Then (4.2) leads to the LS estimator:

ζ̂ = (XTX)−1XTy (4.3)

where X is the n × ` matrix of explanatory variables with n denoting the number
of scenarios (combinations of control and environmental factors) determined by the
DoE that are actually observed (in a real or simulated system); y is the vector with
the n observed outputs. The covariance matrix of the estimator (4.3) is

Cov(ζ̂) = σ2
ε (X

TX)−1 (4.4)

where σ2
ε was defined in (4.1). Hence, the variance σ2

ε may be estimated by the mean
squared residuals:

σ̂2
ε = (ŷ− y)T (ŷ− y)

n− `
(4.5)



Robust Parameter Design 111

where ŷ = Xζ̂; see (4.2) and (4.3).

We denote the expected values of the environmental factors through E(e) = µe.
We allow dependence between the environmental factors so the covariance matrix is
Cov(e) = Ωe. Analogous to Myers et al. (2009, pp. 504–506), we derive that the
metamodel (4.1) implies that the regression predictor for the mean E(y) is

Ee[y(e,d)] = β0 + βTd + dTBd + γTµe + dT∆µe (4.6)

and the regression predictor for the variance Var(y) is

Vare[y(e,d)] = (γT + d∆)Ωe(γ + ∆Td) + σ2
ε (4.7)

where (γ + ∆Td) = (∂y/∂e1, . . . , ∂y/∂ec)
T is the gradient with respect to the envi-

ronmental factors. Obviously, the larger the gradient’s elements are, the larger the
variance of the predicted output is. Furthermore, if ∆ = 0 (no control-by-noise in-
teractions), then Var(y) cannot be controlled through the decision variables d. Note
the difference between the predicted variance, Var(y), and the variance of the pre-
dictor, Var(ŷ) with ŷ = xT

ζ̂. Obviously, the mean vector and the covariance matrix
completely define a multi-variate Gaussian distribution.

Taguchi focuses his analysis on the signal-to-noise ratios (SNRs), which depend on
E(y)/

√
Var(y) (the standard deviation

√
Var(y) has the same scale as the mean E(y));

see Myers et al. (2009, pp. 486–488). The precise definitions of these SNRs vary with
the following goals of RPD: (i) ‘The smaller, the better’: minimize the response. (ii)
‘The larger, the better’: maximize the response. (iii) ‘The target is best’: realize a
target value (say) T for the response.

We do not further dwell on Taguchi’s SNRs, because we think there are better formu-
lations of the various goals of RPD; Myers et al. (2009, pp. 488–495) also question
the utility of SNRs. We use the following optimization problem formulation, also
formulated by Myers et al. (2009, p. 506):

min
d

Vare[y(e,d)] s.t. Ee[y(e,d)] ≤ T. (4.8)

We may also consider the optimization problem given by Dellino et al. (2012); namely,

min
d

Ee[y(e,d)] s.t. Vare[y(e,d)] ≤ T, (4.9)

or the following variant:

min
d

Ee[(y(e,d)− T )2]. (4.10)
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Remark 8 The optimal ‘coded’ controllable factors d∗—that minimize the process
mean or variance in (4.8), (4.9) or (4.10)—must lie in −1 ≤ d ≤ 1, where 1 denotes
the all ones vector. Otherwise, the simulation or physical experiment must be rerun
with a larger experimental region for the original (non-coded) input factors to obtain
a new response model y(e,d) satisfying the associated requirement for the given RPD
problem.

In the rest of this chapter we focus on (4.9), since (4.8), (4.10) or other variants can
be treated analogously.

4.3 Robust Optimization with Unknown Distribu-
tions

In this section, we derive the robust reformulations of the class of optimization prob-
lems presented in §4.2. We assume that data on the environmental factors e is
available or can be obtained via simulation.

4.3.1 Uncertainty Sets
Instead of relying on the normal distribution, RO derives an uncertainty set for the
unknown density function of the noise factors. There are several RO approaches, but
we follow Ben-Tal et al. (2013) and Yanıkoğlu and den Hertog (2013), who develop
RO accounting for historical data on the noise factors. They do not use a specific dis-
tribution to this data; instead, they use the more general concept of φ-divergence—as
follows.

Given N historical observations on the noise factors e, we construct m cells such that
the number of observations oi in cell i (i = 1, . . . ,m) is at least five:∑m

i=1oi = N such that ∀i : oi ≥ 5.

The historical data on e give the frequencies q = [q1, . . . , qm]T , where qi is the ob-
served frequency in cell i so

qi = oi
N
.

We consider p = [p1, . . . , pm]T as the unknown true probability vector of e when
its support is discretized into m cells; hence q is an approximation of p. The φ-
divergence measure is

Iφ(p,q) =
m∑
i=1
qiφ

(
pi
qi

)
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where φ(.) satisfy certain mathematical requirements such as φ (1) = 0, φ (a/0) :=
a lim
t→∞

φ(t)/t for a > 0, and φ (0/0) = 0; for details on φ-divergence we refer to Pardo
(2006). It can be proven that the test statistic

2N
φ′′(1)Iφ(p,q)

is asymptotically distributed as a chi-squared random variable with (m− 1) degrees
of freedom. So an asymptotic (1− α)-confidence set for p is

Iφ(p,q) ≤ ρ with ρ = ρ(N,m, α) = φ′′(1)
2N χ2

m−1;1−α. (4.11)

Using (4.11), Ben-Tal et al. (2013) derive the following uncertainty set U for the
unknown probability vector p:

U = {p ∈ Rm|p ≥ 0,
m∑
i=1

pi = 1, Iφ(p,q) ≤ ρ}. (4.12)

Table 4.1 – φ-Divergence Examples

Divergence φ(t), t > 0 Iφ(p,q) φ∗(s)

Kullback-Leibler t log t
∑
i

pi log
(
pi

qi

)
es−1

Burg entropy − log t
∑
i

qi log
(
pi

qi

)
−1− log(−s), s ≤ 0

χ2-distance 1
t
(t− 1)2

∑
i

(pi − qi)2

pi
2− 2

√
1− s, s ≤ 1

Pearson χ2-distance (t− 1)2
∑
i

(pi − qi)2

qi

s+ s2/4, s ≥ −2
−1, s < −2

Hellinger distance (1−
√
t)2

∑
i

(√pi −
√
qi)2 s

1−s , s ≤ 1

Table 4.1 taken from Ben-Tal et al. (2013) presents common choices of the φ-divergence
function; φ∗ (s) := supt≥0 {st− φ (t)} denotes the conjugate of a φ-divergence dis-
tance that will be used for the derivations of RCs in the next section. In various
examples, we shall use the χ2-distance in this chapter.

4.3.2 Robust Counterparts of Mean and Variance
In this section we derive the robust reformulation of the optimization problem (4.9),
given in §4.2. To point out, the RCs of other classes of problems based on mean
and/or variance, e.g., (4.8) and (4.10), may be derived by slightly modifying the
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derivations in this section.

We represent each cell i by its center point ei; e.g., eig is the gth (g = 1, . . . , c)
coordinate of cell i’s center point. To apply the φ-divergence in (4.12), we discretize
y(e,d) by replacing e by ei. This substitution gives

yi(d) = y(ei,d) = β0 + βTd + dTBd + (γT + dT∆)ei. (4.13)

Consequently, the mean of y(e,d) becomes approximated by

Ee[y(e,d)] =
∑
i∈V

yi(d)pi =
∑
i∈V

[β0 + βTd + dTBd + (γT + dT∆)ei]pi (4.14)

where pi denotes the probability of e falling into cell i. Note that p is in the uncer-
tainty set U given by (4.12) and the empirical estimate q of p is obtained using the
data on e. The limitation of the approach is that it requires excessive data points in
high dimensional uncertainties.

Next we define

ψi(d) := (γT + dT∆)ei, (4.15)

and the variance of y(e,d) becomes approximated by

Vare[y(e,d)] =
∑
i∈V

ψi(d)2pi −
[∑
i∈V

ψi(d)pi
]2

. (4.16)

Eventually, the approximate robust reformulation of (4.9) is the following semi-
infinite optimization problem:

(SI1) min
d

max
p∈U

∑
i∈V

[β0 + βTd + dTBd + (γT + dT∆)ei]pi

s.t.
∑
i∈V

ψi(d)2pi −
[∑
i∈V

ψi(d)pi
]2

≤ T ∀p ∈ U, (4.17)

where U = {p ∈ Rm|p ≥ 0,∑m
i=1 pi = 1, Iφ(p,q) ≤ ρ}. (SI1) is a difficult opti-

mization problem that has infinitely many constraints (see ∀p ∈ U), and includes
quadratic terms in p. Ben-Tal et al. (2009, p. 382) propose a tractable RC of a lin-
ear optimization problem with uncertain parameters that appear quadratically, and
an ellipsoidal uncertainty. The resulting formulation is a semidefinite programming
(SDP) problem; see also Remark 9 below. The following theorem provides tractable
RC reformulations of (SI1) for more general ‘φ-divergence’ uncertainty sets.
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Theorem 3 The vector d solves (SI1) if and only if d,λ,η, and z solve the following
RC problem:

(RC1) min
d,λ,η,z

β0 + βTd + dTBd + λ1 + ρη1 + η1
∑
i∈V

qiφ
∗
(
ψi(d)− λ1

η1

)

s.t. λ2 + ρη2 + η2
∑
i∈V

qiφ
∗
(

(ψi(d) + z)2 − λ2

η2

)
≤ T (4.18)

η1, η2 ≥ 0

where ρ is given by (4.11), φ∗ (s) := supt≥0 {st− φ (t)} denotes the conjugate of
φ(.), V = {1, ...,m} is the set of cell indices in the uncertainty set U , qi is the data
frequency in cell i ∈ V using the historical data on e, and λ, η, and z are additional
variables.

Proof. Using Yanıkoğlu and den Hertog (2013, Theorem 1), we can easily derive
the explicit RC of the objective function of (SI1) that is linear in p ∈ U . Next we
consider the ‘more difficult’ variance constraint (4.17), which is quadratic in p. In the
following parts of the proof we use Ben-Tal, den Hertog, and Vial (2014) to account
for the nonlinear uncertainty in the constraint. Using a linear transformation, we
reformulate (4.17) as

max
a∈Û

g(a) ≤ T, (4.19)

where Û := {a : a = Ap,p ∈ U}, AT = [ψ2(d), ψ(d)] and g(a) = a1 − a2
2. Using the

indicator function

δ(a|Û) :=
{

0, a ∈ Û
+∞, elsewhere,

we reformulate (4.19) as

max
a∈R2
{g(a)− δ(a|Û)} ≤ T. (4.20)

The Fenchel dual of (4.20)—for details see Rockafellar (1970, pp. 327–341)— is
equivalent to

min
v∈R2
{δ∗(v|Û)− g∗(v)} ≤ T (4.21)

where v denotes the dual variable, and δ∗(v|Û) := supp∈U{aTv|a = Ap} and
g∗(v) := infa∈R2{aTv − g(a)} denote the convex and concave conjugates of the
functions δ and g, respectively. Going from (4.20) to (4.21) is justified since the
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intersection of the relative interiors of the domains of g(.) and δ(.|Û) is non-empty,
since a = Aq is always in the relative interiors of both domains. Moreover it is easy to
show that δ∗(v|Û) = δ∗(ATv|U). Then we delete the minimization in (4.21) because
the constraint has the ≤ operator, and the RC reformulation of (4.17) becomes

δ∗(ATv|U)− g∗(v) ≤ T.

Now we derive the complete formulas of the conjugate functions δ∗ and g∗. If vT =
[w, z], then the concave conjugate of g is equivalent to

g∗(v) = inf
a∈R2
{a1w + a2z − g(a)} =

{
−z2/4, w = 1
−∞, elsewhere.

Using Theorem 1 in Yanıkoğlu and den Hertog (2013) once more, the convex conju-
gate of δ is equivalent to

δ∗(ATv|U) = inf
λ,η2≥0

{
ρη2 + λ+ η2

∑
i∈V

qiφ
∗
(
ψ2
i (d) + ψi(d)z − λ

η2

)}
.

Thus the RC reformulation of (4.17) becomes

λ+ ρη2 + η2
∑
i∈V

qiφ
∗
(
ψ2
i (d) + ψi(d)z − λ

η2

)
+ z2

4 ≤ T, η2 ≥ 0. (4.22)

Substituting λ2 = λ+ z2/4 into (4.22) gives the final RC reformulation (RC1) �

Remark 9 An ellipsoidal uncertainty set is a special case of the φ-divergence uncer-
tainty set (4.12) when the Pearson chi-squared distance is used as the φ-divergence.
Moreover, we can reformulate (RC1) as a second order cone problem (SOCP) for
the associated distance measure. Notice that SOCP is an ‘easier’ formulation of the
problem compared with the SDP by Ben-Tal et al. (2009).

Remark 10 Ben-Tal et al. (2014) also propose an RC for the variance uncertainty,
however the associated RC introduces additional non-convexity. We overcome this
difficulty by using the substitution λ2 = λ+ z2/4 in the proof of Theorem 1.

We now discuss the ‘general’ computational tractability of (RC1). First, φ∗(h(d, λ2, z))
is convex, since the convex conjugate φ∗ (s) := supt≥0 {st− φ (t)} is non-decreasing
in s, and h(d, λ2, z) = (ψi(d) + z)2 − λ2 is convex in d, z, and λ2. It is easy to show
that η2φ

∗(·/η2) is convex, since the perspective of a convex function is always convex.
Eventually, the convexity of the perspective implies that (4.18) is convex. On the
other hand, the objective function of (RC1) is not necessarily convex, since y is non-
convex in d unless B is a positive semidefinite (PSD) matrix. Nevertheless, (RC1)
does not introduce additional non-convexity into the general optimization problem
(4.9).
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4.3.3 Alternative Metamodels and Risk Measures
In this subsection, we focus on extensions of our method. §4.3.3.1 presents a gener-
alization of our method for other metamodels besides (4.2), and §4.3.3.2 presents an
extension of our method to SNRs. Finally, §4.3.3.3 shows how to apply our method
to tail-risk measures.
4.3.3.1 Alternative Metamodels

In this chapter we focus on the low-order polynomial (4.1), since most of the literature
and real-life applications use low-order polynomials to approximate the I/O function
of the underlying simulation or physical experiment. However, our methodology can
also be used to other metamodel types such as higher-order polynomials, Kriging,
and radial basis functions. More precisely, consider

y(d, e) = f(d) + ψ(d, e)

where f(d) is the part that affects only the mean of the response (e.g., it is f(d) =
β0 +β

Td + dTBd in (4.1)), and ψ(d, e) is the part that affects the response variance
(e.g., it is ψ(d, e) = γ

T e + dT∆e in (4.1)). We then reformulate the RC in Theorem
1 as

min
d,λ,η,z

f(d) + λ1 + ρη1 + η1
∑
i∈V

qiφ
∗
(
ψi(d)− λ1

η1

)

s.t. λ2 + ρη2 + η2
∑
i∈V

qiφ
∗
(

(ψi(d) + z)2 − λ2

η2

)
≤ T

η1, η2 ≥ 0.

The complexity of f(d) and ψi(d) (= ψ(d, ei)) determines the complexity of the RC;
the problem can be non-convex depending on f(d) and ψi(d). Again our robust
reformulation does introduces additional variables, but does not introduce additional
non-convexity.
4.3.3.2 Signal-to-Noise Ratios

SNRs are performance criteria used in many areas including engineering, chemistry,
and physics. As we have mentioned earlier in §4.2, Taguchi (1987) focuses on three
performance measures in his SNRs. Our method can be applied for any given func-
tion, including the first two measures; namely, (y(e,d)−0)2 and (1/y(e,d))

2
. There-

fore, the robust reformulations of the given problems are special cases of Theorem 1,
when we have no constraint on the variance. The third measure involves a true SNR
that is in line with the following expression:

max
d

Ee[y(e,d)]√
Vare[y(e,d)]

, (4.23)



Robust Optimization with Unknown Distributions 118

which we reformulate as

max
d,w

w s.t. − Ee[y(e,d)] + w
√

Vare[y(e,d)] ≤ 0. (4.24)

by using an epigraphic reformulation and the additional variable w ∈ R. Like in
§4.3.3.1, we define the response model through y(e,d) = f(d) + ψ(e,d). Using the
associated notation, the general RC of (4.24) after discretization is given by

(SI2) max
d,λ,η,w,v

w

s.t. − f(d)−
∑
i∈V

ψ(d)pi + w

√√√√∑
i∈V

ψi(d)2pi −
[∑
i∈V

ψi(d)pi
]2

≤ 0 ∀p ∈ U.

The left-hand side of the inequality in (SI2) is concave in p when w ≥ 0. The next
theorem provides the tractable RC of (SI2).

Theorem 4 The vector d and w solve (SI2) if and only if d, λ, η, w, and v = [v1, v2]
solve the following RC constraints:

(RC2) max
d,λ,η,w,v

w

s.t. − f(d) + λ+ ρη + w2

4v1
...

+ η
∑
i∈V

qiφ
∗
(
η
−1 [(ψi(d)√v1 + v2)2 − ψi(d)− λ1

])
≤ 0,

η ≥ 0, w ≥ 0.

Proof. We reformulate the semi-infinite problem (SI2) as

max
p∈U

−f(d)−
∑
i∈V

ψ(d)pi + w

√√√√∑
i∈V

ψ
2
i (d)pi −

[∑
i∈V

ψi(d)pi
]2
 ≤ T. (4.25)

Analogous to the proof of Theorem 1, we reformulate (4.25) as

−f(d) + max
a∈Û

g(a) ≤ T, (4.26)

where Û := {a : a = Ap,p ∈ U}, AT = [ψ2(d), ψ(d)] and g(a) = −a2 + w
√
a1 − a2

2.
Using the indicator function

δ(a|Û) :=
{

0, a ∈ Û
+∞, elsewhere,
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we reformulate (4.26) as

−f(d) + max
a∈R2
{g(a)− δ(a|Û)} ≤ T.

Deleting the minimization in the Fenchel dual of max
a∈R2
{g(a)− δ(a|Û)} as in Theorem

1, the RC is equivalent to

−f(d) + δ∗(v|Û)− g∗(v) ≤ T (4.27)

where the concave conjugate is

g∗(v) = inf
a∈R2
{a1v1 + a2v

′
2 − g(a)} =

{
−[w2 + (1 + v′2)2]/4v1, v1 > 0

−∞, elsewhere,

and v = [v1; v′2] denotes the additional dual variables. The convex conjugate of δ is
equivalent to

δ∗(ATv|U) = inf
λ′,η≥0

{
ρη + λ′ + η

∑
i∈V

qiφ
∗
(
ψ2
i (d)v1 + ψi(d)v′2 − λ′

η

)}

where η and λ′ are the additional Lagrangian dual variables. Thus (4.27) becomes

− f(d) + ρη + λ′ + η
∑
i∈V

qiφ
∗
(
ψ2
i (d)v1 + ψi(d)v′2 − λ′

η

)
+ w2 + (1 + v′2)2

4v1
≤ T

η ≥ 0, w ≥ 0.

Using the substitutions λ = λ′ + (1 + v2)2
/4v1 and v2 = v′2 + 1/2√v1, the final RC

becomes RC2 �

Notice that when v1 is fixed, RC2 does not introduce extra non-convexity. We can
find the optimal v1 by solving the problem for various values of v1.

4.3.3.3 Using Standard Deviation as Risk Measure

Standard deviation risk measures are used in finance and engineering to quantify
the worst-case risk. In this subsection, we examine the robust reformulation of such
constraint given as

Ee[y(e,d)] + k
√

Vare[y(e,d)] ≤ T

where k ≥ 0. Analogous to the previous subsection, the general RC is given by

(SI3) f(d) +
∑
i∈V

ψ(d)pi + k

√√√√∑
i∈V

ψi(d)2pi −
[∑
i∈V

ψi(d)pi
]2

≤ T ∀p ∈ U.
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Corollary 1 The vector d solves constraint (SI3) if and only if d, λ, η, and v =
[v1, v2] solve the following RC constraints:

f(d)+λ+ ρη + k2

4v1
+ η

∑
i∈V

qiφ
∗
(
(ψi(d)√v1 + v2)2 + ψi(d)− λ1

)
≤ T,

η ≥ 0.

Proof. The proof follows from Theorem 2, when g(a) = a2 + k
√
a1 − a2

2 �

4.4 Adjustable Robust Optimization
In the preceding sections the controllable factors d are ‘here and now’ decisions; i.e.,
decisions on d must be made before e are realized, and hence d do not depend on
the actual values of e. In practice, a part of the controllable factors can often be ad-
justed after observing the actual values of e. For example, in a multi-stage inventory
system with uncertain demand, the decisions on the replenishment orders are made
one-at-a-time, and the replenishment order t is placed when the actual demands in
periods 1 through t − 1 are known. Hence it is realistic to allow the replenishment
order for period t to be adjusted according to the demands in the preceding periods,
even though the upcoming demands remain uncertain. The adjustable factors are
called ‘wait and see’ decisions. Often here-and-now and wait-and-see decisions ap-
pear together in the same problem setting.

To model this situation, Ben-Tal et al. (2009, Chapter 14) reformulate adjustable
factors as functions of the uncertain parameters as follows:

dj = Dj(xj,Pje) j ∈ {1, . . . , n}, (4.28)

where Dj(.) are the so-called decision rules that define the class of functions (e.g.,
affine functions), xj is the vector of coefficient variables to be optimized for the as-
sociated function class, and Pj is the information-base matrix; e.g., if Pj is a zero
matrix, then d and e become functionally independent and we are back to here-and-
now decisions; if Pj is a unit matrix, then we allow dj to depend on all components
of e. In addition, dj can depend on a portion of the observed data on e; e.g., in the
multi-stage inventory example, Pj has the value 1 in the first j−1 diagonal elements
and zero elsewhere.

To obtain the adjustable robust counterpart (ARC) of the mean-variance problem
(SI1), we replace d by D(X,Pe)=[D1(x1,P1e), . . . , Dn(xn,Pne)]T in the general
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RC:

min
X

max
p∈U

∑
i∈V

[β0 + βTD(X,Pei) + X,Pei)
T

B D(X,Pei) + (γT + D(X,Pei)
T

∆)ei]pi

s.t.
∑
i∈V

yi
(
D(X,Pei)

)2
pi −

[∑
i∈V

yi
(
D(X,Pei)

)
pi

]2

≤ T ∀p ∈ U.

The tractable ARC of the above problem results from Theorem 1 in §4.3.2. The ad-
justable reformulation has the following advantages as we shall detail below. First,
the optimal solution of ARC is less conservative than that of the non-adjustable RC,
since it is flexible in adjusting the robust optimal decisions according to revealed
data. Second, our approach is tractable even for nonlinear decision rules because we
translate the uncertainty from e to p. To point out, in classic adjustable robust opti-
mization (ARO) tractability is generally scarce for non-linear decision rules; Ben-Tal
et al. (2009, pp. 382-387) show that the explicit ARC for a quadratic decision rule
is derivable only for an ellipsoidal uncertainty set, and the resulting ARC is an SDP
problem. Third, similar to Bertsimas and Caramanis (2010) and Hadjiyiannis et al.
(2011), we propose a decision rule that enables modeling integer adjustable decision
variables in multistage optimization problems.

To present the associated decision rules we use the following illustrative example:

min
d

Ee
[
(1 + 5d1 + 5d2 + e1 − e2)2 + (1 + 5d1 + 10d2 + e1 + e2)2

]
(4.29)

where all factors are coded. We divide the support of e—namely, the unit box in two
dimension [−1, 1]2—into four cells of equal size. Hence the center points of the cells
are {e1, e2, e3, e4} ={(-0.5, -0.5), (-0.5, 0.5), (0.5, -0.5), (0.5, 0.5)}). So the nominal
problem after discretization is

min
d

4∑
i=1

[(
1 + 5d1 + 5d2 + ei1 − ei2

)2
+
(
1 + 5d1 + 10d2 + ei1 + ei2

)2
]
qi. (4.30)

Suppose the observed data are q = [0.4, 0.3, 0.2, 0.1]T . It is easy to derive the optimal
solution of this nominal problem: (d1, d2) =(-0.08, -0.08). The uncertainty set for
the RC is given by

P :=
{
p = (p1, p2, p3, p4) ∈ R4

∣∣∣∣p1 + p2 + p3 + p4 = 1,
4∑
i=1

(pi − qi)
2

pi
≤ 0.5,p ≥ 0

}
.

Using this uncertainty set, we derive that the worst-case objective value for the
nominal solution is 1.2; moreover, the non-adjustable robust counterpart of (4.29) is

min
d

max
p∈P

4∑
i=1

[(
1 + 5d1 + 5d2 + ei1 − ei2

)2
+
(
1 + 5d1 + 10d2 + ei1 + ei2

)2
]
pi,
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and its robust optimal solution is (-0.2, 0) with objective value 1.0. Next we shall
examine three adjustable formulations; namely, linear, nonlinear, and cell-based de-
cision rules.

Linear Decision Rule

Now we assume that the functions of the adjustable controllable factors d are linear
in the observed values of the environmental factors e. The fully adjustable linear
decision rule is

dj = Dj(xj, I2e) := xj0 + xj1e1 + xj2e2 ∀j ∈ {1, 2} (4.31)

where I2 = [1, 0; 0, 1]. When both controllable factors are fully adjustable, all de-
cisions are made only after the uncertainty is revealed. Consequently, the ARC of
(4.29) with linear decision rule is

min
X

max
p∈P

4∑
i=1

 (1 + 5D1(x1, ei) + 5D2(x2, ei) + ei1 − ei2
)2

+

(
1 + 5D1(x1, ei) + 10D2(x2, ei) + ei1 + ei2

)2
pi.

The optimal solution is x1
∗=(−0.2,−0.2, 0.6)T and x2

∗=(0, 0,−0.4)T ; i.e., the linear
decision rules are D1(x1, e)=−(1 + e1 − 3e2)/5 and D2(x2, e)=−2e2/5, so we have

5d1 + 5d2 = 5D1(x1, e) + 5D2(x2, e) = −1− e1 + e2

5d1 + 10d2 = 5D1(x1, e) + 10D2(x2, e) = −1− e1 − e2.

Therefore, the ARC yields the lowest possible optimal objective value; namely, zero
for the problem, whereas the non-adjustable RC yields one.

More interesting cases have wait-and-see and here-and-now decisions together or at
least one of the controllable factors is not fully adjustable. Table 4.2 presents the
numerical results for all possible combinations of linear decision rules. The first
column gives the possible linear decision rules for the two adjustable factors d1 and
d2, where ‘na’ denotes non-adjustable, ‘e1’ denotes a factor that is adjustable on
e1; similarly, ‘e2’ denotes adjustability on e2, and ‘e[1,2]’ denotes a fully adjustable
factor. The second and third columns are the optimal coefficients (variables) x1 and
x2 of the decision rules D1(.) and D2(.), where (−) denotes a variable that vanishes
in the associated decision rule. The final column (Obj.) presents the robust optimal
objective value for the associated decision rule. Altogether, the numerical results
show that when one of the factors is non-adjustable and the other is adjustable on
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Table 4.2 – Linear Decision Rules (LDR) and Objective Values

LDR D1(.) D2(.) Obj.
d1 d2 (x10, x11, x12) (x20, x21, x22)

na na (-0.2,−,−) (0,−,−) 1.00
na e1 (-0.189,−,−) (-0.009,-0.103,−) 0.66
na e2 (-0.2,−,−) (0,−,0) 1.00
e1 na (-0.2,-0.2,−) (0,−,−) 0.50
e2 na (-0.2,−,0) (0,−,−) 1.00
na e[1,2] (-0.186,−,−) (-0.008,-0.12,-0.04) 0.62

e[1,2] na (-0.2,-0.2,0) (0,−,−) 0.50
e1 e1 (-0.2,-0.2,−) (0,−,−) 0.50
e1 e2 (-0.2,-0.2,0) (0,−,-0.04) 0.45
e2 e1 (-0.21,−,0.04) (-0.001,-0.09,−) 0.68
e2 e2 (-0.2,−,0.6) (0,−,-0.4) 0.50

e[1,2] e1 (-0.2,-0.2,0) (0,−,−) 0.50
e[1,2] e2 (-0.2,-0,2,0.6) (−,−,0.4) 0.00
e1, e[1,2] (-0.2,-0.2,−) (0,0,-0.04) 0.45
e2, e[1,2] (-0.2,−,0.6) (0,-0.12,-0.4) 0.05

e[1,2] e[1,2] (-0.2,-0.2,0.6) (0,0,-0.4) 0.00

e2—see row (na, e2) or (e2, na) in Table 4.2—the optimal objective value of the
ARC is the same as that of the non-adjustable RC. In all other cases the optimal
objective value of the non-adjustable RC improves with at least 32% (see row (e2,
e1)) for the ARC, and the highest improvement (100%) is attained when the first
factor is fully adjustable and the second one is non-adjustable; see row (e[1,2], e2).
Another interesting outcome is that introducing an adjustable factor into the problem
may change the optimal decision for the non-adjustable factor; i.e., an optimal here-
and-now factor can have different values in the ARC and RC. For example, if d1 is
adjustable on e1 and d2 is non-adjustable, then the optimal d2 is -0.189 in the ARC,
but it is -0.2 in the RC; see (na, na) and (na, e1).

Nonlinear Decision Rule

Table 4.3 shows the following nonlinear (quadratic) decision rule:

Dj(xj, I2e) := xj0 + xj1e1 + xj2e2 + x
(j)

11 e
2
1 + x

(j)

22 e
2
2 + x

(j)

12 e1e2 (4.32)
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where xj = [xj0, xj1, xj2, x
(j)
11 , x

(j)
12 , x

(j)
22 ]. For example, if the controllable factors are

only adjustable in e1, then the decision rule is

Dj(xj, Pje) := xj0 + xj1e1 + x
(j)

11 e
2
1

where Pj = [1, 0; 0, 0]. Obviously, the nonlinear decision rule is more general than
the linear rule, so it is at least as good as the linear decision rule used in Table 4.2.

Table 4.3 – Nonlinear Decision Rules (NDR) and Objective Values

NDR D1(.) D2(.) Obj.
d1 d2 (x10, x11, x12, x

(1)
11 , x

(1)
22 , x

(1)
12 ) (x20, x21, x22, x

(2)
11 , x

(2)
22 , x

(2)
12 )

na na (-0.2,-,-,-,-,-) (0,-,-,-,-,-) 1.00
na e1 (-0.196,-,-,-,-,-) (0.014,0.093,-,-0.079,-,-) 0.65∗
na e2 (-0.2,-,-,-,-,-) (-0.33,-,0,-,1.33,-) 1.00
e1 na (-0.195,-0.2,-,-0.02,-,-) (0,-,-,-,-,-) 0.50
e2 na (-0.192,-,0,-,-,-) (-,-0.03,-,-,-,-) 1.00
na e[1,2] (-0.188,-,-,-,-,-) (0.062,-0.106,-0.053,-0.244,0.015,0.05) 0.58∗

e[1,2] na (-0.178,-0.2,0,-0.044,-0.044,0) (0,-,-,-,-,-) 0.50
e1 e1 (-0.213,-0.2,-,0.05,-,-) (-0.002,0,-,0.008,-,-) 0.50
e1 e2 (-0.533,-0.2,-,1.33,-,-) (-0.005,-,-0.04,-,0.02,-) 0.45
e2 e1 (-0.19,-,0.044,-,-0.047,-) (-0.045,-0.063,-,0.197,-,-) 0.65∗
e2 e2 (-0.223,-,0.6,-,0.094,-) (-0.002,-,-0.4,-0.008,-) 0.50

e[1,2] e1 (-0.186,-0.2,0,-0.028,0.028,0) (-0.006,-,-,0.023,-,-) 0.50
e[1,2] e2 (-0.253,-0.2,0.6,0.107,0.107,0) (-0.002,-,-0.4,-,0.008,-) 0.00

e1 e[1,2] (-0.146,-0.199,-,-0.214,-,-) (-0.052,-0.003,-0.047,0.148,0.057,-0.001) 0.44∗
e2 e[1,2] (-0.233,0,0.6,-,0.133,0) (-0.151,-0.12,-0.4,0.105,0.5,-) 0.05

e[1,2] e[1,2] (-0.214,-0.2,0.6,0.028,0.028,0) (0.013,0,-0.4,-0.066,0.014,0) 0.00
(∗) denotes an improved optimal objective value compared with that in Table 4.2

We denote the cases where the nonlinear decision rule performs better than the linear
by (*) in the last column of Table 4.3. The highest improvement compared with Table
4.2 is obtained when the first factor is non-adjustable and the second factor is fully
adjustable; compare (na, e[1,2]) in Table 4.3, where the optimal objective value is
0.584, with the objective 0.621 for the same situation in Table 4.2. Quantifying the
value of information is an important topic in both adjustable robust decision making
and in general decision making; Table 4.3 shows that having extra information on e2

but not on e1 for one of the controllable factors has no added value in the adjustable
decision making; i.e., the non-adjustable and the adjustable RCs have the same
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optimal objective at (na, e2) and (e2, na). On the other hand, having information on
e1 for one of the controllable factors yields improvement in the objective; see (na, e1)
and (e1, na) in Table 4.3. Moreover, if d1 responds to both environmental factors, and
d2 uses information on e2 only, then we obtain the lowest possible optimal objective
value (namely, zero); see (e[1,2], e2) in Table 4.3.

Cell-Based Decision Rule

Now we propose a new type of decision rule that we call the cell-based decision rule:

Dj(xj, e) := xji if e ∈ cell(i), i ∈ Vj, (4.33)

where xj is the decision vector for the jth adjustable variable (xji being the decision
for the ith cell), cell(i) is the region determined by the ith cell, and Vj is the set of
cell indices for the associated information-base.

Remark 11 Cells used in the decision rule are non-intersecting squares in two di-
mensions, cubes in three dimensions, and hypercubes in higher dimensional uncer-
tainty spaces. For the sake of simplicity, we assume that all cells have the same
volume (unless some cells are not merged to include enough data points).

If in the illustrative example (4.29), d1 is fully adjustable and the uncertainty set is
divided into four cells, then the decision rule is

D1(x1, e) :=


x11, e ∈ cell(1)
x12, e ∈ cell(2)
x13, e ∈ cell(3)
x14, e ∈ cell(4)

(4.34)

where cell(i) := {(e1, e2) ∈ R2 : `1i ≤ e1 ≤ u1i, `2i ≤ e2 ≤ u2i} (i ∈ {1, 2, 3, 4}),
`1 = [0,−1,−1, 0], u1 = [1, 0, 0, 1], `2 = [0, 0,−1,−1], u2 = [1, 1, 0, 0], and V1 =
{1, 2, 3, 4}; cells are represented by their center points in (4.30). To show the differ-
ence between full and partial information, we assume that d1 is adjustable on e1 but
not on e2. The associated decision then becomes

D1(x1, e1) :=
{
x11, e1 ∈ cell(1)
x12, e1 ∈ cell(2) (4.35)

where cell(1) := {e1 ∈ R : 0 ≤ e1 ≤ 1} and cell(2) := {e1 ∈ R : −1 ≤ e1 ≤ 0}, and
V1 = {1, 2}). It is easy to see that (4.35) implies that when e2 is extracted from the
information-base, the new cells are projections from the cells in the two-dimensional
space in (4.34) onto the one-dimensional space on e1 in (4.35). The disadvantage of
the cell-based decision rule is that this rule often has more variables compared with
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the linear and nonlinear decision rules, especially when the number of cells is high.
Nevertheless the numerical results for the example show that the new decision rule
is better than the linear, and is ‘almost’ as good as the nonlinear decision rule—even
when the total number of cells is only four; see Table 4.4.

Table 4.4 – Cell-Based Decision Rules (CDR) and Objective Values

CDR D1(.) D2(.) Obj.
d1 d2 (x11, x12, x13, x14) (x21, x22, x23, x24)

na na (-0.2,−,−,−) (0,−,−,−) 1.00
na e1 (-0.19,−,−,−) (-0.06,0.04,−,−) 0.66
na e2 (-0.2,−,−,−) (0,0,−,−) 1.00
e1 na (-0.3,-0.1,−,−) (0,−,−,−) 0.50
e2 na (-0.2,-0.2,−,−) (0,−,−,−) 1.00
na e[1,2] (-0.19,−,−,−) (-0.09,0.03,0.07,-0.05) 0.62

e[1,2] na (-0.3,-0.1,-0.1,-0.3) (0,−,−,−) 0.50
e1 e1 (-0.3,-0.1,−,−) (0,0,−,−) 0.50
e1 e2 (-0.3,-0.1,−,−) (-0.02,0.02,−,−) 0.45
e2 e1 (-0.18,-0.2,−,−) (-0.06,0.04,−,−) 0.65
e2 e2 (0.1,-0.5,−,−) (-0.2,0.2,−,−) 0.50

e[1,2] e1 (-0.3,-0.1,-0.1,-0.3) (0,0,−,−) 0.50
e[1,2] e2 (0,0.2,-0.4,-0.6) (-0.2,0.2,−,−) 0.00

e1 e[1,2] (-0.3,-0.1,−,−) (-0.02,-0.02,0.02,0.02) 0.45
e2 e[1,2] (0.1,-0.5,−,−) (-0.26,-0.14,0.26,0.14) 0.05

e[1,2] e[1,2] (0,0.2,-0.4,-0.6) (-0.2,-0.2,0.2,0.2) 0.00

To the best of our knowledge, parametric decision rules in the RO literature cannot
handle adjustable integer variables, since the adjustable decision is a function of the
uncertain parameter e, and the function does not necessarily take integer values for
all e; see (4.31) and (4.32). However, the cell-based decision rule can handle such
variables. As we can see from (4.33), the adjustable decision xji can take integer
values since the cell-based decision rule relates e and xij through an ‘if’ statement.
Therefore, if we make xij an integer variable, then the cell-based decision rule gives
integer decisions. Note that similar decision rules have also been proposed by Bert-
simas and Caramanis (2010); Hadjiyiannis et al. (2011); Vayanos et al. (2011).

Now using the illustrative example, we show the validity of our approach for ad-
justable integer variables. We modify the old example in the following way: we



Realistic Examples 127

assume d1 and d2 are adjustable, and they take values that are multiples of 1/4.

Table 4.5 – Integer Cell-Based Decision Rules and Objective Values

CDR D1(.) D2(.) Obj.
d1 d2 (x11, x12, x13, x14) (x21, x22, x23, x24)

na na (-0.25,−,−,−) (0,−,−,−) 1.41
na e1 (-0.25,−,−,−) (0,0,−,−) 1.41
na e2 (-0.25,−,−,−) (0,0,−,−) 1.41
e1 na (-0.25,0,−,−) (0,−,−,−) 0.92
e2 na (-0.25,-0.25,−,−) (0,−,−,−) 1.41
na e[1,2] (-0.25,−,−,−) (0,0,0,0) 1.41

e[1,2] na (-0.25,0,0,-0.25) (0,−,−,−) 0.92
e1 e1 (-0.25,0,−,−) (0,0,−,−) 0.92
e1 e2 (-0.25,0,−,−) (0,0,−,−) 0.92
e2 e1 (-0.25,-0.25,−,−) (0,0,−,−) 1.41
e2 e2 (0.25,-0.5,−,−) (-0.25,0.25,−,−) 1.29

e[1,2] e1 (-0.25,0,0,-0.25) (0,0,−,−) 0.92
e[1,2] e2 (0,0.25,-0.50,-0.75) (-0.25,0.25,−,−) 0.26

e1 e[1,2] (-0.25,0,−,−) (0,0,0,0) 0.92
e2 e[1,2] (0,-0.50,−,−) (-0.25,0,0.25,0.25) 0.99

e[1,2] e[1,2] (0,0.25,-0.50,-0.75) (-0.25,-0.25,0.25,0.25) 0.26

Table 4.4 presents optimal decision rules and resulting objective values for all possible
combinations of adjustability. These numerical results show that we obtain important
improvements for the non-adjustable (na, na) optimal objective value by using the
cell-based decision rule. As may be anticipated, the integer formulation yields higher
(worse) optimal objective values. For example, we can no longer get a zero objective
in Table 4.5. Moreover, in contrast to the continuous case, we can no longer improve
the optimal objective of the non-adjustable RC at decision rule combinations: (na,
e1), (na, e[1,2]), and (e2, e1); see the corresponding rows of Tables 4.4 and 4.5.

4.5 Realistic Examples
In this section, we present realistic examples to demonstrate the effectiveness of our
methods. We use a 64-bit Windows PC with a 2.2 GHz Intel Core i7 processor, and
8 GB of RAM. To solve the mathematical optimization problems, we use KNITRO
8.0 embedded in MATLAB (2012a) and AIMMS 3.12.
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4.5.1 Television Images
In color televisions the quality of signals is determined by the power signal-to-noise-
ratios in the image transmitted. We take the response function y(d, e) from Myers et
al. (2009, p. 512), where the response y measures the quality of transmitted signals
in decibels. The controllable factors are the number of tabs in a filter d1, and the
sampling frequency d2; the environmental factors are the number of bits in an image
e1, and the voltage applied e2. The least-square estimate of the metamodel is

ŷ(d, e) = 33.389− 4.175d1 + 3.748d2 + 3.348d1d2 − 2.328d2
1 − 1.867d2

2

− 4.076e1 + 2.985e2 − 2.324d1e1 + 1.932d1e2 + 3.268d2e1 − 2.073d2e2

where all factors are coded; for details on the DoE we refer to Myers et al. (2009, pp.
511–515).
We find the optimal design settings of d1 and d2 using the optimization problem
(4.9):

max
d

Ee[ŷ(d, e)]

s.t. Vare[ŷ(d, e)] ≤ T.
(4.36)

The robust counterpart of (4.36) is given by Theorem 1 in §4.3.2. To estimate q, we
use the historical data in Figure 1. Since we have no real data, we have randomly cre-
ated these data. The sample size is N = 350, and the support of e is divided into 25
cells of the same volume so V = {1, . . . , 25}, q = [q1, . . . , q25]T and ρ = χ2

0.999,24/350;
see (4.11). We shall use the same data in our two realistic examples so the data do
not favor our method.

The goal of these examples is to compare the optimal solutions of the nominal and
robust counterpart problems. In §4.5.1.1 we shall compare the worst-case and average
performances of these two solutions via the objective value and the constraint viola-
tion. In §4.5.1.2 we shall compare the confidence levels probabilities of the nominal
and robust optimal solutions.

4.5.1.1 Robust versus Nominal Solutions

We vary the right-hand side value T of the variance constraint from 0.1 to 0.8; see
column one in Table 4.6. We solve the nominal and the RC problems for these T
values, and compare the worst-case performances of the nominal and robust optimal
solutions.
Columns two and three are the robust optimal solution (d∗1, d

∗
2) and its objective

value (y∗). Column four (Var.) is the robust variance of the response. Column five
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Figure 4.1 – Historical Data on e

Table 4.6 – Worst-Case Analysis for TV Image Example

T
Robust Nominal

(d∗1, d
∗
2) y∗ Var.(%) (d∗1, d

∗
2) W-C(E) W-C(Var)(%)

0.1 (-0.43,0.83) 35.27 0.10(0%) (-0.4472,0.7755) 35.27 0.19(88%)
0.2 (-0.44,0.79) 35.28 0.15(-25%) (-0.4625,0.6853) 35.26 0.37(87%)
0.3 (-0.44,0.79) 35.28 0.15(-50%) (-0.4763,0.6152) 35.23 0.56(86%)
0.4 (-0.44,0.79) 35.28 0.15(-62%) (-0.4867,0.5648) 35.20 0.71(79%)
0.5 (-0.44,0.79) 35.28 0.15(-70%) (-0.4867,0.5648) 35.20 0.71(43%)
0.6 (-0.44,0.79) 35.28 0.15(-75%) (-0.4867,0.5648) 35.20 0.71(19%)
0.7 (-0.44,0.79) 35.28 0.15(-78%) (-0.4867,0.5648) 35.20 0.71( 2%)
0.8 (-0.44,0.79) 35.28 0.15(-81%) (-0.4867,0.5648) 35.20 0.71(-11%)

is the nominal optimum solution. Column six presents the mean (Ee[y(e,d)]) when
the decision factors are fixed to the nominal optimum solution d∗ and the worst-case
probability vector p∗ that minimizes the expectation is realized. Column seven (W.-
C.(Var)) gives the worst-case value of the variance for the nominal solution; now we
consider the probability vector p∗ that maximizes the variance, as the worst-case.
Notice that we also report the percentages of the worst-case constraint violations for
the nominal and robust optimal solutions; these values are shown within brackets
(%) in the columns four and seven. We use the formula [(W.-C.(Var)-T ) × 100/T ]
to calculate the constraint violation percentage of the nominal solution when the
worst-case uncertain parameters are realized. If the violation percentage is negative,
then the constraint is satisfied; 0% means the constraint is binding (see column four,
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row T=0.1); a positive percentage means constraint violation at column seven.

Table 4.6 reveals that the robust reformulation of the variance constraint becomes
redundant when T ≥ 0.2; e.g., the left-hand side value of the constraint for the ro-
bust optimal solution (-0.4439,0.7988) when T = 0.2 is 0.149. Therefore we have
the same robust optimal solution for T ≥ 0.2. The nominal variance constraint (not
the worst-case) also becomes redundant when T ≥ 0.389, and therefore we have the
same nominal optimum solution when T ≥ 0.4. Notice that the robust optimal ob-
jective values and the worst-case objective values of the nominal optimum solutions
are within 1% of each other. However, the constraint violation percentages favor our
robust approach; e.g., the percentages in column seven show that when T ≤ 0.4, the
nominal optimal solution violates the constraint on average 85% in the worst-case.
When T ≥ 0.715 the nominal optimum solution no longer violates the constraint in
the worst-case, but it is closer to be binding than the robust solution. All together,
using our robust optimization method for this example, we gain immunity to the
worst-case uncertainty without being penalized by the objective.

Now we analyze the average mean and variance of the response for the nominal and
robust optimal solutions, by randomly sampling 1,000 probability vectors p from
the uncertainty set that is used in the RC; see (4.12). We sample as follows: First
we uniformly sample 25 individual probabilities (p̂i). Then to guarantee that the
probabilities sum up to one, we use the adjustment: pi = p̂i/

∑25
j=1 p̂j. Finally, if the

probability vector p is within the uncertainty set, we keep p in the sample; else we
discard p and sample again. We repeat this procedure until we have 1,000 accepted
vectors that are within the set. The confidence level of the uncertainty set (4.12) is
99.9%. From the p in the sample we estimate the mean in (4.14) and the variance
in (4.16) for a given solution, and then take the averages; see Table 4.7.

Table 4.7 – Average (Avg) Mean (E) and Variance (Var)

T
Robust Nominal

Avg(E) Avg(Var) Avg(E) Avg(Var)

0.1 35.37 0.064 35.41 0.12
0.2 35.40 0.095 35.45 0.24
0.3 35.40 0.095 35.46 0.35
0.4 35.40 0.095 35.47 0.46

Table 4.7 shows that the average expected response for the nominal solutions are
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less than 1% better than that of the robust solutions (we maximize E(y); see (4.29)).
Nevertheless, the average response variances of the robust optimal solutions are more
than 100% better (smaller) than that of the nominal solutions when T ≤ 0.2, and
the improvement becomes more than 350% when T ≥ 0.3. Moreover, we found that
on average the nominal solutions violate 5% of the variance constraint, whereas the
robust solutions are not at all binding. The effectiveness of our approach is further
analyzed in the following subsection.

4.5.1.2 Confidence Level

The uncertainty set (4.12) coincides with the (1−α)-confidence set for the unknown
probability vector p centered at the empirical estimate q. In the numerical examples
we use α = 0.001, which means that the robust optimal solution is immune to
uncertainty with at least 99.9% probability. These uncertainties are ignored in the
nominal problem; nevertheless, the nominal solution may be robust for some part of
the uncertainty set. To find the confidence level of a nominal solution, we calculate
the tightest uncertainty set for which the nominal solution at hand is robust; i.e., we
adjust the ρ value in (4.12); see Table 4.8.

Table 4.8 – Confidence Levels (1-α) of Nominal Solutions

T ≤ 0.4 0.5 0.6 0.7 ≥ 0.8

(1− α) 0% 2% 70% 98% 99.9%

Table 4.8 shows that when T ≤ 0.4 the nominal solutions have no immunity to un-
certainty at all; i.e., a ‘small’ change in the given empirical estimate q results in
infeasibility in the nominal variance constraint. We may anticipate this result, since
the nominal solutions are binding for the associated cases. On the other hand, for
T = 0.5 to T = 0.7 we see important improvement in the immunity to uncertainty for
the nominal solution. In addition, when T ≥ 0.8, the immunity of the nominal opti-
mum solution is as good as the robust optimum solution—even though the nominal
optimum solution is closer to be binding in the constraint than the robust solution.
Concerning the objective, we have already shown in the last row of Table 4.6 that
the robust and the ‘worst-case’ nominal optimum objective values are almost the
same; i.e., the robust solutions are less than 1% better than the nominal solutions.
In conclusion, the robust reformulation improves the immunity to uncertainty when
T ≤ 0.8 and the improvement is even better when T ≤ 0.4. Additionally, we prefer
the robust solution when T ≥ 0.8, since it performs better in the worst-case.
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4.5.2 Distribution Center
In this example we focus on the simulation of a cross-docking distribution center
(CDDC) developed by Shi (2011). The CDDC is used by a Chinese automobile man-
ufacturer that needs to improve the physical flow in its supply chain. The objective
of the company is steady production. The challenge in such production is the supply
uncertainty due to environmental factors, mentioned below. To model the associated
supply chain system, Shi proposes a hybrid approach that combines discrete-event
simulation, RSM, and Taguchi’s world view. We focus on Shi’s linear regression
metamodel for the total throughput with five controllable factors; namely, the num-
ber of receiving doors d1, the number of shipping doors d2, the number of forklifts
d3, the number of conveyors d4, and the supply chain threshold in storage d5. The
model has two environmental factors; namely, the variability in less-than-truckload
supply shipments e1, and the production interruption or delay probabilities of the
suppliers e2. Using the simulation’s I/O data, Shi approximates the unknown I/O
function of the total throughput by the following least-squares estimate ŷ:

ŷTT(e,d) =104 ×
[
47.97 + 3.982d1 + 2.025d2 − 0.031d3 + 0.734d4 + 0.034d5

+ 0.789d1d2 + 0.012d1d3 + 0.003d1d4 − 0.002d1d5 + 0.0007d2d3

− 0.065d2d4 − 0.1131d2d5 − 0.078d3d4 − 0.041d3d5 + 0.11d4d5

− 3.406d2

1 − 1.781d2

2 + 0.011d2

3 − 1.033d2

4 + 0.111d2

5

+ (16.66 + 1.511d1 + 2.374d2 − 0.059d3 + 0.824d4 − 0.093d5)e1

− (0.005 + 0.27d1 + 0.661d2 − 0.086d3 + 0.335d4 − 0.005d5)e2

]
,

where all factors are coded such that −1 ≤ d ≤ 1, and −1 ≤ e ≤ 1. More precisely,
the coded controllable factors are between -1 and 1 because of the physical restric-
tions of the production facility. Shi’s ANOVA shows that the metamodel ŷTT have
non-significant lack-of-fit; and for the estimated parameters the level-of-significance
is 0.05. Using Shi’s response model, we focus on the robust reformulation of the
following optimization problem:

min
1≤d≤1

Vare[ŷ(d, e)]

s.t. Ee[ŷ[d, e)] ≥ T.
(4.37)

To estimate the frequencies q used by the nominal and RC problems, we use the
same historical data as in Figure 4.1.

Table 4.9 compares the worst-case performances of the nominal and robust optimal
solutions. Besides the worst-case mean and standard deviation, we construct the
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Table 4.9 – Worst-Case Comparison for CDDC Example

T
Robust Nominal (Worst-Case)

σe(ŷ) Ee[ŷ] Ee[ŷ]± 3σ̂e σe(ŷ) Ee[ŷ] Ee[ŷ]± 3σ̂e

≤339 67 339 (136, 541) 67 339 (136, 541)
340 67 340 (137, 542) 67 339 (136, 541)
370 70 370 (158, 581) 68 348 (143, 552)
400 74 400 (176, 623) 71 377 (163, 590)
420 79 420 (182, 657) 73 396 (174, 617)
430 81 430 (184, 675) 75 405 (178, 632)
440 85 440 (184, 695) 77 414 (181, 648)
450 88 450 (183, 716) 80 424 (183, 664)
∗ ∗ ∗ all entries should be multiplied by 1,000

worst-case confidence interval for ŷ; namely, Ee[ŷ] ± 3σ̂e. Because the probability
distribution of the environmental factors is unknown, we cannot say much about the
confidence level of this interval. The numerical results show that in the worst-case
the nominal solutions are on average 6% lower than the target T for the expected
total throughput; i.e., the average violation of the constraint is 6%. The worst-case
standard deviations of the total throughput for the nominal solutions are on average
8% lower than that of the robust ones. Nevertheless the confidence intervals for the
robust optimal solutions are always shifted to the right compared with the nominal
solutions, which is in favor of the robust approach since a higher total throughput is
better. Altogether the numerical results favor the robust approach when T >339000;
when T ≤ 339000 both methods yield the same outcome.

In Table 4.10 we compare the average performance of robust and nominal solutions
via Monte Carlo simulation. First, using the given historical data in Figure 4.1 as
the nominal value (q) of the uncertainty set, we generate 1,000 probability vectors,
like we did for the TV images example. Then we calculate the expected response
and variance for the nominal and robust solutions at each probability vector, and
take the averages. Table 4.10 shows higher means and lower variances than Table
4.9 in the worst-case. Table 4.9 is based on the worst-case scenario; i.e., we maxi-
mize the variance and minimize the expectation; Table 4.10 is based on the average
performance. Table 4.10 shows that the confidence intervals for the robust solutions
are always shifted to the right compared with the nominal solutions, so we prefer the
robust approach, however, the robust solutions have slightly higher variations (from
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Table 4.10 – Average Comparison for CDDC Example (Simulation Results)

T
Robust Nominal

σ̄e(ŷ) Ēe[ŷ] Ēe[ŷ]± 3σ̄e σ̄e(ŷ) Ēe[ŷ] Ēe[ŷ]± 3σ̄e

≤339 58 361 (186, 536) 58 360 (185, 535)
340 58 361 (186, 536) 58 360 (185, 535)
370 61 392 (209, 575) 59 369 (192, 547)
400 64 423 (229, 618) 61 399 (214, 585)
420 68 445 (238, 652) 64 419 (227, 612)
430 71 456 (241, 670) 65 429 (232, 627)
440 74 467 (244, 690) 67 439 (236, 643)
450 77 478 (245, 711) 69 449 (239, 659)
∗ ∗ ∗ all entries should be multiplied by 1,000

0% to 10%) than the nominal solutions.

Adjustable Robust Optimization

One of the most important decision factors in the CDDC is the number of shipping
doors d2. A moderate number of shipping doors may increase the inventory in the
temporary storage area, whereas an excessive number causes a low utilization of
doors. We now assume that d2 is adjustable according to the uncertain parameter
e1—namely, the variability in less-than-truckload supply shipments. More precisely,
we assume that the number of shipping doors can be adjusted after the variability in
supply shipments has been observed. We use the cell-based decision rule introduced
in §4.4; the data and the 25 cells are presented in Figure 4.1. Notice that the domain
of e1 is divided into five equal intervals; for each interval we have a different decision.
In Table 4.11, columns two through four present the actual ‘worst-case’ performance
of the ARC, and columns five through eight present the average performance of ad-
justable robust solutions via Monte Carlo simulation as in Table 4.10. We use the
same probability vector sample as in the television images example. These numerical
results show that the worst-case confidence intervals of the ARC are tighter than
those of the general RC in Table 4.9. This is because of the improved response
variances of the adjustable robust solutions, the improvement percentages (%) are
reported in column two within brackets; e.g., it is as high as 10% when T =450000.
As we anticipated, the simulation results show that the average performance of the
adjustable robust solutions is better than the worst-case; i.e., the average of the re-
sponse mean Ēe[ŷ] is higher than the worst-case mean Ee[ŷ], and the average variance
σ̄e(ŷ)2 is lower than the worst-case variance σe(ŷ)2. Comparing the average perfor-
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Table 4.11 – ARO Results for CDDC Example

Worst-Case Average

T σe(ŷ) Ee[ŷ] Ee[ŷ]± 3σe σ̄e(ŷ) Ēe[ŷ] Ēe[ŷ]± 3σ̄e

≤339 67 (0%) 339 (136, 541) 58 367 (192, 541)
340 67 (0%) 340 (137, 542) 58 367 (193, 542)
370 68 (2%) 370 (167, 572) 59 389 (194, 543)
400 71 (3%) 400 (188, 611) 61 418 (212, 566)
420 73 (6%) 420 (201, 639) 63 425 (235, 615)
430 74 (7%) 430 (209, 650) 64 448 (246, 630)
440 75 (10%) 440 (215, 665) 65 449 (254, 644)
450 78 (10%) 450 (216, 684) 69 456 (249, 661)
∗ ∗ ∗ all entries should be multiplied by 1,000

mances of the non-adjustable and adjustable robust solutions in Tables 4.10 and 4.11
shows that the ARC yields tighter confidence intervals that are subintervals of the
confidence intervals in the general RC. Therefore, the ARC reduces the response un-
certainty compared with the general RC. Finally, additional experimentation showed
that making ‘only’ d3, d4 or d5 adjustable on e1 has an improvement less than 1%
in the objective; i.e., in those cases the non-adjustable solutions are as good as the
adjustable solutions. This shows that the quantitative value of information may
significantly change for different parameters in ARO.

4.6 Conclusions and Future Research
In this chapter, we proposed a RO methodology for RPD, this methodology uses an
uncertainty set based on historical data on the environmental variables; data may be
collected from either real or simulated systems. Adding RO to RPD has the following
advantages: (i) Unlike the classical RPD, we do not make any distributional assump-
tions on the uncertain parameters. (ii) We do account for the ambiguity caused by the
lack of knowledge about distributions by using the so-called φ-divergence uncertainty
sets based on historical data. (iii) Both RO and ARO methods are computationally
tractable; ARO is tractable even for nonlinear decision rules. (iv) Our ARO approach
can be used for modeling adjustable integer decision variables. In future research, we
shall apply the cell-based decision rules to general classes of optimization problems
with moderate numbers of ‘integer’ variables.
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CHAPTER 5

Robust Pessimistic Bilevel Optimization

5.1 Introduction

“Good optimization gives you the best choice based on the data. Great
optimization is robust and resilient in the face of change and data errors.”
Sashihara (2011)

Optimization problems often contain uncertain parameters because of measurement,
estimation, and implementation errors. There are two novel optimization approaches
for handling such errors, namely, robust and stochastic optimization. To model un-
certain parameters, robust optimization (RO) uses uncertainty sets; and stochastic
optimization (SO) uses probability distributions. Due to this basic difference, the
two methods may significantly differentiate from each other. In this chapter we work
on a class of uncertain optimization problems, where SO and RO coincide with each
other, i.e., the associated modelling issue is not important when certain assumptions
on uncertainty hold. However, in the sequel of the chapter, we generally adopt the
RO terminology, and we shall use some of the techniques that are mainly invented
in the realm of RO, and later extended to SO.

RO is a relatively young and active research field that is mainly developed in the
course of the last 15 years. As it is explained above, the goal of RO is to find so-
lutions that are robust with respect to the uncertainty of the problem parameters
in a given mathematical optimization problem. It requires that the constraints of a
given problem should be satisfied for all realizations of the uncertain parameters in a
so-called uncertainty set. The robust version of a mathematical optimization prob-
lem is generally referred to as the robust counterpart (RC) problem. RO is popular
because of the tractability of the RC for many classes of uncertainty sets, and its
applicability in real life.
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Adjustable robust optimization (ARO) distinguishes between two types of decision
variables, namely, “wait and see” or “here and now”. More precisely, decisions on
“here and now” variables must be made before the uncertain parameters are realized
like in classical RO; whereas decisions on “wait and see” variables are made after
some or all of the uncertain parameters reveal themselves. ARO relates “wait and
see” variables to uncertain parameters using decision rule functions; for additional
details, we refer to (Ben-Tal et al., 2009, Chapter 14). In this chapter, we propose
an ARO approach for a class of bilevel optimization problems. We assume that the
first stage decisions are “here and now”, and the later stage decisions are “wait and
see”, i.e., they are adjustable according to a realized portion of the uncertain data.
It is important to point out that bilevel optimization problems that we shall consider
in this chapter are in general computationally intractable, but by using modern RO
techniques we provide practable approximations of the associated problems.

Bilevel optimization (BO) problems involve two nested traditional optimization prob-
lems with conflicting objectives. These two optimization problems are often referred
to as the upper-level and the lower-level problems. The standard formulation is as
follows

min
x∈X , y∈Y (x)

f(x, y) where Y (x) = argminz∈Z(x) h(x, z), (5.1)

where x ∈ X ⊆ Rn is the upper-level decision, y ∈ Y (x) ⊆ Z(x) ⊆ Rm is the lower-
level decision, X is the set of feasible solutions of the upper-level problem, Z(x) is
the set of feasible solutions of the lower-level problem that are dependent on the
upper-level decision x, and f, h : X×Y → R. Using the optimal value reformulation
Dempe and Zemkoho (2013); Mitsos et al. (2008), (5.1) can be reformulated as the
following single-level problem:

min
x∈X , y∈Z(x)

f(x, y) s.t. h(x, y) ≤ h∗(x), (5.2)

where h∗(x) = min {h(x, y) : y ∈ Z(x)}. If the lower-level optimization problem is
convex, then the most common approach is to replace this problem with the associ-
ated Karush-Kuhn-Tucker (KKT) conditions in order to obtain the explicit single-
level reformulation. Nevertheless, the associated reformulation is often non-convex
even for the linear case of the bilevel problem. Therefore, to solve these complex
problems, global optimization algorithms are needed; for details of such algorithms,
we refer to Fáısca et al. (2007); Mitsos et al. (2008); Tsoukalas et al. (2009), and Tuy
et al. (2007).
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Even though bilevel optimization problems are computationally complex, they have
many applications in real life. History of bilevel problems dates back to the 1930s,
the seminal work of von Stackelberg proposes a bilevel problem to find the mar-
ket equilibria in an economic model; see in Tirole and Fudenberg (1991). Forty
years later, Bracken and McGill (1973) formalize bilevel problems as optimization
problems. In the recent twenty years, such optimization problems have been ap-
plied to various fields, e.g., revenue management (Côté et al., 2003), supply chain
management (Ryu et al., 2004), production planning (Iyer and Grossmann, 1998),
transportation (Migdalas, 1995), security (Scaparra and Church, 2008), power mar-
kets (Zhang et al., 2011); and this list can be easily extended.

The pessimistic bilevel optimization problem that slightly deviates from the standard
formulation (5.1) is defined as

min
x∈X

max
y∈Y (x)

f(x, y) where Y (x) = argminz∈Z(x) h(x, z), (5.3)

where the problem is called independent when Y (x) = Y (x′) for all x, x′ ∈ X ; and
dependent when Y (x) 6= Y (x′) for some x, x′ ∈ X .

Note that the pessimistic problem (5.3) can be reformulated as

min
x∈X ,τ

τ

s.t. τ ≥ f(x, y) ∀y ∈ Y (x) = argminz∈Z(x) h(x, z)
(5.4)

using an epigraphic reformulation and “∀” that replaces the inner maximization.
Wiesemann et al. (2013) propose convergent approximation techniques to solve in-
dependent pessimistic optimization problems using semi-infinite programming under
mild regularity assumptions.

It is important to point out that the pessimistic bilevel problem (5.3) is computation-
ally more complex than the classical problem (5.1), and this is why most theoretical
contributions to bilevel optimization are for the classical (optimistic) formulation
that replaces “∀” with “∃” in (5.4). Both pessimistic and optimistic formulations
have natural interpretations as non-cooperative games that are commonly referred
to as the Stackelberg games between two players; for details again see Tirole and
Fudenberg (1991). A Stackelberg game is a sequential game, where the first player
(the leader) chooses his decision x, and then the second player (the follower) observes
x and reacts with a decision y. In the pessimistic formulation, the leader has limited
information about the optimal decision of the follower, and hence he wants to stay
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feasible for any rational decision of the follower. On the other hand, in the optimistic
formulation, the leader may bias the decisions of the follower to some extent and the
follower altruistically favors the leader’s objective with her decisions. The optimal
solutions of the two formulations may significantly differ from each other.

In this chapter, we propose solution methods for a general pessimistic bilevel op-
timization problem with uncertainty. This problem is computationally intractable
because the follower problem may be nonconvex, and the problem contains uncer-
tain parameters as well as dependent second stage decisions. To solve the associated
problem, we propose conservative approximation methods that are based on primal
and dual linear decision rules and some other RO techniques that shall be discussed in
later sections. The proposed technique simplifies the complex structure of the prob-
lem and provides a more tractable reformulation that gives a conservative solution.
To quantify the optimality performance of this solution, we also give an optimistic
reformulation that yields an efficient lower bound for the original problem. As well
as being computationally less challenging, the associated reformulation method also
has natural practical interpretations: first, the leader may have incomplete informa-
tion about the follower decisions and this is why he may want to include some safety
margin with a conservative formulation. Second, the follower may be constrained by
bounded rationality, i.e., she may not solve the lower-level problem to optimality. In
both cases the leader may want to hedge against the worst-case decisions the follower
can make by solving a conservative reformulation, and our solution method also fits
into this practical perspective.

The remainder of the chapter is organized as follows. §2 presents single-level re-
formulation methods for pessimistic bilevel optimization problems. §3 summarizes
primal and dual linear decision rules used in RO. §4 proposes an RO methodology
for a class of pessimistic bilevel optimization problems. §5 presents a numerical
experiment. Finally, §6 summarizes our conclusions.

5.2 Single-Level Reformulation
In this section, we give a brief introduction on the reformulation techniques of pes-
simistic bilevel optimization problems with certain data. For the sake of exposition,
we adopt an implicit notation in this section. Later in §§3 and 4, we shall explicitly
dwell in details of these reformulation techniques.

To begin with, using the optimal value reformulation, the pessimistic formulation
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(5.3) can be reformulated as

min
x∈X

max
y∈Y (x)

f(x, y)

s.t. h(x, y) ≤ h∗(x),
(5.5)

where h∗(x) = min {h(x, y) : y ∈ Z(x)} as in (5.2). Next, if the dual problem of the
inner maximization problem in (5.5) satisfies the regularity conditions (in particular,
it is a convex optimization problem), then it can be reformulated as

max
y∈Y (x)

f(x, y) s.t. h(x, y) ≤ h∗(x) = min
λ

g(x, λ) s.t. λ ∈ Λ(x), (5.6)

where g(x, λ) denotes the dual objective value function, λ ∈ Λ(x) denotes the dual
variables, and Λ(x) is the set of dual feasible solutions for a given x ∈ X . Eventually,
the pessimistic bilevel problem (5.3) can be reformulated as the single-level problem:

min
λ, x∈X

g(x, λ) s.t. λ ∈ Λ(x). (5.7)

To point out, going from (5.3) to (5.5) is justified because the regularity condition is
assumed to be satisfied for the lower-level problem, i.e., we can use the dual problem
to explicitly formulate h∗(x). If the regularity condition is not met, then the lower-
level problem can be replaced with KKT conditions but this yields a nonconvex
and conservative reformulation of (5.3); see Mirrlees (1999). Similarly, going from
(5.5) to (5.7) is justified only when the inner maximization problem (5.6) satisfies
the constraint qualification, and it has a concave objective in y for any x ∈ X
(e.g., when f(x, y) is additively separable in x and y). Eventually, we obtain the
single level reformulation in (5.7), but it is important to point out that the resulting
reformulation is often a nonconvex optimization problem unless there exists a special
convexification technique like in §4.

5.3 Primal and Dual Linear Decision Rules
In this section, we give a brief overview of the primal and dual linear decision rule
methods used in stochastic and robust optimization. This chapter focuses on a
specific class of the uncertain optimization problems where a decision maker first
observes a portion of the uncertain parameter ξ and then selects a decision y(ξ) ∈ Rn

that is subject to constraints Ay(ξ) ≤ b(ξ) with a cost c(ξ)>y(ξ). In SO, the goal
is to find the optimal y(ξ) ∈ L2

k,n that minimizes the expected cost, where L2
k,n is

the space of all Borel measurable, square-integrable functions from Rk to Rn. Such
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a decision y(ξ) is often referred to as “wait and see”; and the decision problem that
is mentioned above can be formulated as the following linear one-stage problem:

min
y

Eξ[c(ξ)>y(ξ)]

s.t. Ay(ξ) ≤ b(ξ) Pξ-a.s.,
(SP)

where the coefficients matrix A ∈ Rm×n is independent of ξ, i.e., the fixed recourse,
and the constraints are satisfied almost surely with respect to Pξ, i.e., the underlying
probability distribution of ξ. We assume that the objective function coefficients and
the right-hand side are linear in ξ, more precisely, c(ξ) = Cξ for some C ∈ Rn×k and
b(ξ) = Bξ for some B ∈ Rm×k. In addition, we also assume that the support of the
probability distribution Pξ resides in a non-empty compact polyhedron:

Ξ =
{
ξ ∈ Rk : Wξ ≥ h

}
(5.8)

for some matrix W ∈ Rl×k and a vector h ∈ Rl. Without loss of generality, we
assume that ξ1 = 1 (∀ξ ∈ Ξ), i.e.,

W = (e1,−e1, Ŵ
>)> and h = (1,−1, 0, . . . , 0)>,

where e1 denotes a basis vector in Rk. We use ξ1 = 1 to model the constant terms
at affine functions.

It is known that optimizing SP is an NP-hard problem even when Pξ is a uniform
distribution on a unit cube; for details see Dyer and Stougie (2006, Theorem 3.2).
Therefore, there is no polynomial time algorithm that solves this problem unless P
= NP. Nevertheless Ben-Tal et al. (2004) propose a tractable approximation of SP
by restricting the functional space of y(ξ) to linear decision rules. It is important to
point out that this complexity reduction method has been first proposed by Ben-Tal
et al. in the realm of RO. Later Chen et al. (2008) and Shapiro and Nemirovski
(2005) extended the ideas of Ben-Tal et al. to SO.

5.3.1 Primal Approximation
As it is mentioned above, a tractable approximation of SP is obtained by adopting
linear decision rules, i.e., y(ξ) = Y ξ. The resulting problem contains a finite number
of decision variables and infinitely many constraints. Therefore, it is a semi-infinite
optimization problem given as follows

min
Y ∈Rn×k

Tr(MC>Y )

s.t. AY ξ ≤ Bξ Pξ-a.s.,
(5.9)
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where M := E[ξξ>] is the second-order moment matrix. Notice that (5.9) is an upper
bound for SP since it restricts the feasible functional space of the decision rules.

Tractable reformulation of (5.9). If we assume that the support of the probability
distribution Pξ resides in the compact polyhedron Ξ given in (5.8), then (5.9) can be
equivalently reformulated as

min
Y ∈Rn×k

Tr(MC>Y )

s.t. AY ξ ≤ Bξ ∀ξ ∈ Ξ
(5.10)

Notice that (5.10) is also a semi-infinite optimization problem that seems to be
intractable in its current form. However, it can be reformulated with a finite number
of constraints by using the RO paradigm; for details on deriving a tractable robust
reformulation, i.e., the robust counterpart (RC) problem, we refer to Ben-Tal and
Nemirovski (1998), and Ben-Tal et al. (2009). Eventually (5.9) simplifies to the
following linear optimization problem (LP):

min Tr(MC>X)
s.t. Y ∈ Rn×k,Λ ∈ Rm×l,Λ ≥ 0

AY + ΛW = B

Λh ≥ 0

(SPu)

where Λ is a matrix of auxiliary dual variables.

All in all, by adopting linear decision rules and using the RO paradigm, we obtain a
tractable reformulation SPu that constitutes an upper bound for SP .

5.3.2 Dual Approximation
The dual problem of SP , provided in Wright (1994), is given as follows

inf
y,s≥0

sup
λ

Eξ
[
c(ξ)>y(ξ) + λ(ξ)>[Ay(ξ) + s(ξ)− b(ξ)]

]
(SPd)

where s(ξ) denotes the decision rules for the slack variables, infy,s≥0 denote the in-
fimum over all y ∈ L2

k,n and over all s ∈ L2
k,m that are almost surely nonnegative.

Similarly, supλ stands for the supremum over all y ∈ L2
k,m. Notice that the feasible

functional spaces are kept general in SPd.

Similar to the complexity reduction techniques applied for the primal problem, Kuhn
et al. (2011) propose adopting linear decision rules for the dual variables in SPd, more
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precisely, λ(ξ) = Λξ, that is given as follows

inf
y,s≥0

sup
Λ

Eξ
[
c(ξ)>y(ξ) + ξ>Λ>[Ay(ξ) + s(ξ)− b(ξ)]

]
= inf

y,s≥0
sup

Λ
Eξ
[
c(ξ)>y(ξ)

]
+ Tr

(
Λ>E

(
[Ay(ξ) + s(ξ)− b(ξ)]ξ>

))
.

(5.11)

To point out, (5.11) constitutes a lower bound on the optimal objective value of SP
since it restricts the feasible functional space of the dual variables to a linear decision
rule in the dual problem. More precisely, the inner problem, i.e., the supremum,
yields a lower optimal objective value (for a given y and s) compared to that in
SPd since the dual decision rules are restricted to linear ones. Notice that, in order
(5.11) to be well defined, E

(
[Ay(ξ) + s(ξ)− b(ξ)]ξ>

)
= 0 must be satisfied, otherwise

we can select Λ in such a way that the supremum goes to infinity and the problem
becomes infeasible. Therefore, we can reformulate (5.11) as the following semi-infinite
problem:

min
y,s

Eξ
[
c(ξ)>y(ξ)

]
s.t.

Eξ
[
[Ay(ξ) + s(ξ)− b(ξ)]ξ>

]
= 0

s(ξ) ≥ 0

 Pξ-a.s. (or ∀ξ ∈ Ξ).
(5.12)

Tractable reformulation of (5.12). Similar to the primal approximation, using
RO, Kuhn et al. (2011) propose an equivalent tractable reformulation of (5.12), when
the support of Pξ is in a compact polyhedron (5.8). The tractable RC reformulation
is given as follows

min Tr(MC>Y )
s.t. Y ∈ Rn×k, S ∈ Rm×k

AY + S = B

(W − he>1 )MS> ≥ 0,

(SP l)

where M is the second-order moment matrix; for details on deriving SP l we refer to
Kuhn et al. (2011, §2.4).

Remark 12 Notice that we can quantify the loss of optimality incurred by using
linear decision rules in SP by adopting linear decision rules to the dual problem. In
other words, SP l constitutes a lower bound on SPu, and the gap between val(SPu)
and val(SP l) estimates the approximation error of adopting linear decision rules.
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5.4 Robust Bilevel Optimization
In this section, we adopt primal and dual linear decision rules to approximate a class
of bilevel optimization problems. The associated problem is a multi-stage uncertain
optimization problem with two decision makers, namely, the leader and the follower.
The decision making process is sequential, in the first stage, the leader makes binary
(0− 1) decisions x ∈ X ⊆ {0, 1}g with a cost q>x before the uncertain data ξ ∈ Rk

reveals itself; at later stages, the follower observes an element ξ of the uncertain
data and makes a decision y′(ξ) ∈ L2

k,n with a cost c(ξ)>y′(ξ) and subject to the
constraints Ay′(ξ) ≤ b(x, ξ) that are dependent on the first stage decision x made by
the leader. The leader knows the possible decisions y(ξ) that the follower can select,
and takes into account the worst-case cost v(ξ)>y(ξ) that may be imposed on him
by the follower. The associated decision problem can be formulated as the following
bilevel optimization problem:

min
x∈X

q>x+ max
y(.)

Exi[v(ξ)>y(ξ)]

s.t. y(·) ∈ argminy′(.)
{
Eξ[c(ξ)>y′(ξ)] : Ay′(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ

}
,

(BP)

where Ξ denotes the non-empty compact polyhedron (5.8) that contains the support
of the probability distribution Pξ of ξ.

Remark 13 If y(·) is a continuous function and the support of Pξ is contained in
the compact set Ξ, then [Ay(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ ≡ Ay(ξ) ≤ b(x, ξ) Pξ-a.s.] is
satisfied.

Some important properties of BP are: 1) the inner maximization problem of the
upper-level optimization problem denotes the worst-case expected cost that shall be
imposed on the leader by the follower’s future decisions, i.e., we see an optimistic
follower but a pessimistic leader due to different levels of information. 2) The leader
and the follower have different cost functions, i.e., v(ξ) 6= c(ξ); the special case
v(ξ) = c(ξ) will be treated later in Theorem 6. 3) The constraints in the lower-level
optimization problem ensures that the follower’s decisions y′(ξ) are robust against all
possible realizations of the uncertain problem data, more precisely, Ay′(ξ) ≤ b(x, ξ)
for all ξ ∈ Ξ. 4) The leader decides on x before the uncertainty is realized, i.e., x is
“here and now”; the follower decides on y(ξ) after the uncertain data ξ reveals itself,
i.e., y(ξ) is “wait and see”. 5) We assume c(ξ) and v(ξ) are linear in ξ, i.e., c(ξ) = Cξ

for some C ∈ Rn×k and v(ξ) = V ξ for some V ∈ Rn×k; and b(x, ξ) is linear in x and
ξ independently (so interactions are allowed), i.e., b(x, ξ) = Bxξ where Bx ∈ Rm×k

denotes the variable matrix such that each component Bij(x) is a linear function of
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x, which is a vector of 0− 1 variables.

Note that BP is a complex semi-infinite optimization problem that is intractable,
nevertheless, using RO techniques and primal and dual linear decision rules we can
derive a practable approximation of BP . Theorem 6 proposes such an approximation
of BP .

Theorem 5 The following formulation gives a conservative approximation of BP by
adopting primal and dual linear decision rules.

min
x∈X ,Λ1,...,4, λ

q>x+ Tr
(
Λ1Bx − Λ3MC>

)
s.t. −MV > + λMC> + Λ1A = 0

−λBx − AΛ3 + Λ4W = 0
Λ>1 + Λ2(he> −W )M = 0
Λ4h,Λ2,Λ4, λ ≥ 0

, (BPu)

where x ∈ X ⊆ {0, 1}g ; Λ1 ∈ Rk×k,Λ2 ∈ Rk×l,Λ3 ∈ Rn×k,Λ4 ∈ Rm×l, and λ ∈ R are
the auxiliary dual variables.

Proof. In the remainder, we focus on the three steps to derive the associated con-
servative RC approximation BPu.

Step 1 (Adopting primal linear decision rules). The bilevel problem BP can be
transformed into an equivalent single-level problem as follows

min
x∈X

q>x+ max
y(·)

Eξ[v(ξ)>y(ξ)]

s.t. Eξ[c(ξ)>y(ξ)] ≤ z∗(x)
Ay(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ,

(5.13)

where z∗(x) denotes the optimal objective value of the lower-level (or the follower)
problem for a given x:

z∗(x) = min
y(·)

Eξ[c(ξ)>y(ξ)]

s.t. Ay(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ.
(5.14)

As we have explained earlier in §5.3, problem (5.14) is intractable, however, we can
derive a more tractable approximation (SPu) by adopting linear decision rules to
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y(ξ). Notice that the optimal objective value of SPu yields an upper bound to that
of (5.14), and so does the optimal objective value of the dual problem of SPu:

min
Γ,θ≥0

Tr(ΓBx) (dSPu)

s.t. MC> − ΓA = 0 (5.15)
WΓ + hθ> ≥ 0, (5.16)

where Γ ∈ Rl×m and θ ∈ Rl denote the auxiliary dual variables, and Bx ∈ Rm×k

comes from b(x, ξ) = Bxξ.

To point out, there is no optimality gap between val(SPu) and its dual val(dSPu)
since SPu is an LP when x is fixed, i.e., val(SPu)=val(dSPu) at optimality. There-
fore, we can replace z∗(x) in (5.13) with the objective value of dSPu, moreover, we
can delete the minimization term in the dual objective as its often done in RO, since
the dual problem yields an upper bound for the original problem. Then, the problem
becomes

(≤) min
x∈X

q>x+ max
y(·),Γ,θ≥0

Eξ[v(ξ)>y(ξ)] (5.17)

s.t. Eξ[c(ξ)>y(ξ)] ≤ Tr(ΓBx) (5.18)
Ay(ξ)− b(x, ξ) ≤ 0 ∀ξ ∈ Ξ (5.19)
MC> − ΓA = 0 (5.20)
WΓ + hθ> ≥ 0, (5.21)

where (5.20) and (5.21) represent the additional constraints that come from the dual
problem dSPu. To sum up, we use the primal approximation of (5.14) to relax the
right-hand side of the first constraint in (5.13), i.e., Eξ[c(ξ)>y(ξ)] ≤ z∗(x). The op-
timal objective value of the new reformulation yields an upper bound for BP , and
the associated relation is presented by “(≤)” before the formulation in (5.17). Notice
that we do not impose any restrictive assumption on the feasible functional space of
y(ξ) in (5.17)−(5.19).

Step 2 (Adopting dual linear decision rules). Now using the dual approximation tech-
nique that is described in §5.3.2, we will relax the intractable left-hand side of (5.19).
First, we relax the semi-infinite constraint (5.19) as Eξ

[
[Ay(ξ) + s(ξ)− b(ξ)]ξ>

]
= 0;
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see (5.12) in §5.3.2, and the new formulation becomes

(≤≤) min
x∈X

q>x+ max
y(·),Γ,θ≥0

Eξ[ξ>V >y(ξ)]

s.t. Eξ[ξ>C>y(ξ)] ≤ Tr(ΓBx)
Eξ
[
[Ay(ξ) + s(ξ)−Bxξ]ξ>

]
= 0

s(ξ) ≥ 0 ∀ξ ∈ Ξ
MC> − ΓA = 0
WΓ + hθ> ≥ 0.

(5.22)

It can be shown that the original decisions y(ξ) ∈ L2
k,n and s(ξ) ∈ L2

k,m can be
determined as YM = Eξ[y(ξ)ξ>] and SM = Eξ[s(ξ)ξ>], s(ξ) ≥ 0 ∀ξ ∈ Ξ, where
Y ∈ Rn×k, S ∈ Rm×k, and M = Eξ[ξξ>]; we refer to Kuhn et al. (2011, Proposition
2) for the formal proof of [SM = Eξ[s(ξ)ξ>]]. Then, we derive the RC of the second
and the third constraints in (5.22) as in §5.3.2. Consequently, the approximation
reduces to

(≤≤) min
x∈X

q>x+ max
Y,S,Γ,θ≥0

Tr(V >YM)

s.t. Tr(C>YM)− Tr(ΓBx) ≤ 0
AYM + SM = BxM

(W − he>1 )MS> ≥ 0
MC> − ΓA = 0
WΓ + hθ> ≥ 0,

(5.23)

where θ ∈ Rl, and Γ ∈ Rm×k.

As it is explained above, we relax the semi-infinite constraints in (5.19) by adopting
the dual approximation techniques, therefore, the optimal objective value of (5.23)
yields an upper bound for (5.17). We present the associated relation by “(≤≤)”.

Remark 14 Notice that M is an invertible matrix. Therefore, we can take the
product of both sides of the equality constraint [AYM + SM = BxM ] in (5.23)
by M−1, and it reduces to AY + S = Bx.

Step 3 (Duality). To simplify the minimax formulation, we take the dual of the
inner maximization problem in (5.23). Eventually, it gives the “final” approximation
BPu. To point out, BPu contains bilinear terms in the objective function and in
the second constraint (i.e., Λ1Bx and λBxM); however, such expressions can be
linearized, and the exact linear reformulations of such bilinear expressions are treated
below in Proposition 1 and 2. �
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Linearization. Notice that the components of the matrix Bx ∈ Rm×k are linear
functions of binary variables x ∈ X ⊆ {0, 1}g , therefore, the bilinear expressions in
BPu contain first order interactions between the binary variable x and the continuous
variables λ, and Λ1. For the sake of exposition, we focus on (say) a binary (0 − 1)
variable x and a continuous variable λ, and (say) the bilinear term is αλx where α
denotes a constant. If we define a new continuous variable w such that w := αλx, then
we can linearize the bilinear expression by using a group of additional constraints and
the variable w, and the associated reformulations are exact. Proposition 1 presents a
method to linearize such bilinear terms in the constraints; and Proposition 2 shows
the same for the objective function.

Proposition 1 A bilinear expression αλx of variables λ ∈ R+ and x ∈ {0, 1} (with
a constant α ∈ R) can be linearly expressed by the following group of constraints:

w ≤ αλ, w ≤ αλux, w ≥ α(λ− λu(1− x)),

where w = αλx, and λu denotes an upper bound for λ (i.e., 0 ≤ λ ≤ λu).

Remark 15 Notice that the continuous variable λ in BPu is unrestricted. However,
we can find an efficient upper bound λu by setting an initial upper bound, and then
iteratively re-optimizing the problem at hand for increasing value of λu as long as the
optimal solution does not change.

Proposition 2 A bilinear expression in an objective function such as

min
x∈{0,1}; γ∈R

αγx

can be linearized as

min
x∈{0,1}; w,γ∈R

w s.t. αγ ≤ w +Q(1− x), 0 ≤ w +Qx

where w = αλx, and Q denotes a large constant.

Therefore, we can conclude that using Proposition 1 and 2, BPu can be reformulated
as a mixed integer LP (MILP).

Theorem 6 If c(ξ) = v(ξ), then the bilevel optimization problem BP yields the same
optimal objective value as the following single-level problem

min
x∈X ,y

q>x+ Eξ[c(ξ)>y(ξ)]

s.t. Ay(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ.
(1P)
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Proof. Let Y (x) denote the optimal functional space of the lower-level (follower)
problem in BP for a given first stage decision x ∈ X , and suppose c(ξ) = v(ξ), i.e,

BP := min
x∈X

q>x+ max
y(·)∈Y (x)

Eξ[c(ξ)>y(ξ)],

where Y (x) = argminy′(.)
{
Eξ[c(ξ)

T
y′(ξ)] : Ay′(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ

}
. Now, we shall

consider the two possible cases of Y (x), more precisely, when it has a unique solution,
and when it has alternative optimal solutions.
• If Y (x) is unique for any given x ∈ X , then we can replace the inner maximization
problem in BP with the minimization problem, more precisely,

max
y∈Y (x)

Eξ[c(ξ)>y(ξ)] ≡ min
y(·)

Eξ[c(ξ)>y(ξ)] s.t. Ay(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ.

(5.24)

Therefore, BP becomes

min
x∈X ,y(·)

q>x+ Eξ[c(ξ)>y(ξ)] s.t. Ay(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ (≡ 1P).

• If Y (x) is not unique for some x ∈ X , then (5.24) still holds since the alternative
optimal solutions in Y (x) yield the same objective value by definition. �

Corollary 2 The conservative approximation of 1P:

min
x∈X ,y(·)

q>x+ Tr(C>YM) s.t. AY ξ ≤ Bxξ ∀ξ ∈ Ξ, (1Pu)

i.e., obtained by adopting linear decision rules to y(ξ) in 1P, yields the same optimal
objective value with the conservative approximation BPu when c(ξ) = v(ξ).

Proof. The inner maximization problem [maxy(·) Eξ[v(ξ)>y(ξ)]] in BP is bounded
above by the dual objective value in the original approximation when c(ξ) = v(ξ);
see (5.18). This dual objective value constitutes a lower bound for the follower
problem, i.e., [miny(·) Eξ[c(ξ)>y(ξ)] : Ay(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ]). Consequently,
val(BPu) = val(1Pu). �

Estimating the optimality performance of BPu. So far we have shown the
derivation of the conservative approximation of BP by adopting primal and linear
decision rules. Now we shall propose a progressive approximation of an optimistic
reformulation problem. Consequently, this progressive approximation may be used
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to quantify the optimality performance of the conservative approximation. The op-
timistic reformulation of the bilevel optimization problem is given as follows

min
x∈X

q>x+ min
y(·)

Eξ[v(ξ)>y(ξ)]

s.t. y(·) ∈ argminy′(.)
{
Eξ[c(ξ)

T

y′(ξ)] : Ay′(ξ) ≤ b(x, ξ) ∀ξ ∈ Ξ
}
.

(BPo)

Different than BP , BPo models an optimistic leader objective, more precisely, the
leader optimizes with respect to the best follower decision y(ξ) that minimize his cost
function Eξ[v(ξ)>y(ξ)].

Even though BPo is computationally less challenging than the original problem BP ,
it is still an NP-Hard problem. This is why in Corollary 3, we provide a progressive
approximation of this problem using primal and dual decision rules.

Corollary 3 The following formulation gives a progressive approximation of the op-
timistic reformulation BPo by adopting primal and dual linear decision rules.

min
x∈X ,Y,S,Γ,θ≥0

q>x+ Tr(V >YM)

s.t. Tr(C>YM)− Tr(B>x Γ) ≤ 0
AY + S = Bx

(W − he>1 )MS> ≥ 0
MC> − ΓA = 0
WΓ + hθ> ≥ 0,

(BP lo)

where x ∈ X ⊆ [0, 1]g, Y ∈ Rn×k, S ∈ Rm×k, θ ∈ Rl, and Γ ∈ Rm×k.

Proof. Follows similar to Step 1 & 2 of the proof of Theorem 5. �

Different than Theorem 5, in Corollary 3 we found a progressive bound, i.e., a lower
bound, for the leader’s objective at BPo. This is because we relax the problem two
times by adopting primal and dual linear decision rules at Step 1 and Step 2; respec-
tively, and the leader’s objective is a minimization. Notice that the optimal objective
value of the leader in the optimistic reformulation BPo yields a lower bound for that
in the conservative formulation BP . Therefore, the optimal objective value of the pro-
gressive approximation BP lo also yields a lower bound for that in BP , i.e., val(BP lo)
≤ val(BP) ≤ val(BPu). Eventually, we may use the progressive approximation BP lo
to “safely” estimate the optimality performance of the conservative approximation
BPu.
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5.5 Conclusion
In this chapter, we have proposed conservative and progressive approximation meth-
ods for a class of pessimistic bilevel optimization problems with uncertain data. We
develop an RO approach using primal and dual decision rule reformulations. Even
though our method uses linear decision rules to reduce the complexity of the original
formulation, it does not restict the feasible function space of the adjustable decision
variables. Moreover, we can estimate the approximation error of the proposed refor-
mulation. To the best of our knowledge, this is the first publication that offers robust
reformulations of pessimistic bilevel optimization problems. It is important to point
out that using our RO method, the original formulation that is strictly NP-hard is
reduced into a substantially easier MILP class. The associated approximation can
be solved for moderate sized instances using commercial solvers, nevertheless, its
performance is still highly dependent on the number of binary variables in the origi-
nal problem. In future research, we shall investigate managerial implications of our
method in real life problems.
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