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Abstract

All over the world intelligence services are collecting data concerning possible terrorist
threats. This information is usually transformed into network structures in which the nodes
represent the individuals in the data set and the links possible connections between these
individuals. Unfortunately, it is nearly impossible to keep track of all individuals in the re-
sulting complex network. Therefore, Lindelauf et al. (2013) introduced a methodology that
ranks terrorists in a network. The rankings that result from this methodology can be used
as a decision support system to efficiently allocate the scarce surveillance means of intelli-
gence agencies. Moreover, usage of these rankings can improve the quality of surveillance
which can in turn lead to prevention of attacks or destabilization of the networks under
surveillance.

The methodology introduced by Lindelauf et al. (2013) is based on a game theoretic
centrality measure, which is innovative in the sense that it takes into account not only the
structure of the network but also individual and coalitional characteristics of the members
of the network. In this paper we elaborate on this methodology by introducing a new
game theoretic centrality measure that better takes into account the operational strength
of connected subnetworks.

Moreover, we perform a sensitivity analysis on the rankings derived from this new cen-
trality measure for the case of Al Qaeda’s 9/11 attack. In this sensitivity analysis we consider
firstly the possible additional information available about members of the network, secondly,
variations in relational strength and, finally, the absence or presence of a small percentage
of links in the network. We also introduce a case specific method to compare the different
rankings that result from the sensitivity analysis and show that the new centrality measure
is robust to small changes in the data.
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1 Introduction

Several instances of (almost succesfull) terrorist attacks in the West have led to relaxations of
the restrictions on the retrieval, storage and search of databases that could indicate imminent
threats. For instance, think of Umar Farouk Abdulmutallab’s attempt at blowing up a Detroit
bound airliner (i.e., the ‘underwear-bomber’) or Quazi Mohammad Rezwanul Ahsan Nafis 2012
attempt at attacking the Federal Reserve Bank of New York. The amount of data that becomes
available for the analysis of terrorist related incidents increases. These data contain among oth-
ers information on both the characteristics of individuals as well as data on the communication
between these individuals (cf. Lindelauf et al. (2013)).

Traditionally such data are viewed and analyzed as network data, i.e., members of the
network correspond to nodes and their interaction is modeled via links in the network. Standard
centrality methods from the field of social network analysis, e.g., degree centrality (cf. Nieminen
(1964)), betweenness centrality (cf. Freeman (1977)) and closeness centrality (cf. Borgatti and
Everett (2006)), focus on finding key members taking only this network structure into account
(cf. Wasserman and Faust (1994)). Recently, Lindelauf et al. (2013) introduced a game
theoretic centrality measure that aids in the analysis of databases designed to detect terror
threats by taking interactional information into account both on an individual and a coalitional
level. This approach is in line with the game theoretic approach of measuring the quality of
covert networks in Lindelauf (2011) and Lindelauf et al. (2009). In particular, context specific
cooperative coalitional games are defined that reflect the situation at hand taking all available
information about the network structure and the individual members and their relations into
account. Next, the Shapley value (Shapley (1953)) is computed for the corresponding game to
measure the importance of members of the network in order to construct a ranking of these
members. A further advantage of using such a cooperative game theoretic centrality measure
is that it allows for more flexibility in the sense that for each threat context a specific suitable
game can be developed.

In this paper we further elaborate on the existing methodology introduced by Lindelauf
et al. (2013). First, to each network we associate a monotonic weighted connectivity game.
Here we relax the assumption of Lindelauf et al. (2013) that a coalition is only effective if all
members of this coalition are connected in the network. In monotonic weighted connectivity
games the effectiveness of a disconnected coalition is determined by the most effective connected
subcomponent. This approach resembles reality more closely since partially connected coalitions
may still pose a threat to the community. Subsequently, the Shapley value of the newly defined
game is used to determine the importance of all members of the network and to construct a
corresponding ranking.

Second, we revisit the case of Al Qaeda’s 9/11 attack. We define an appropriate monotonic
weighted connectivity game suitable to the network underlying the attack. This game incorpo-
rates information obtained from Krebs (2002) and Kean et al. (2002). Computing the Shapley
value for this game leads to a ranking of the terrorists. Next, a sensitivity analysis is run to
investigate the robustness of the ranking obtained. This is accomplished by slightly varying the
data available on the members and the structure of the network.

To model individual strength the data on individuals are expressed as weights on the mem-
bers of the network. In practice these weights are determined by an analyst that measures the
importance, skills, or (financial) means available to a terrorist. Obviously, the determination
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of such weights may differ from one analyst to another. Therefore, we want to see how robust
the derived ranking is with respect to small variations in the weights. Concerning the net-
work structure itself, obviously not all interactional data between members may be completely
known, i.e., some links may be missing or may be obsolete. Therefore we perform a second type
of sensitivity analysis to see how robust our ranking is with respect to the addition or deletion
of a small percentage of the links in the network. Finally, some of the interactions between
members may be considered more important than others, i.e., the relational strength may differ
for each interaction (e.g., email communication, exchanging explosive materials). Therefore we
also perform a third type of sensitivity analysis to see how robust our ranking is with respect
to changes in the weights assigned to interactions.

The sensitivity analysis compares the rankings obtained by slightly perturbing the data to
the ranking found for the unperturbed data using a tailor-made comparison method on rankings.
For an overview on general comparison methods on rankings we refer to Su and Dong (1998)
and Fagin et al. (2003). We find that the ranking based on the new game theoretic centrality
measure is robust to small changes in the data.

The structure of this paper is as follows. Section 2 formally associates a monotonic weighted
connectivity game to each network on the basis of data on characteristics of individuals and
interactions. Subsequently, using the Shapley value, a game theoretic centrality measure and a
corresponding ranking is defined. In Section 3 we perform a sensitivity analysis of this centrality
measure using data of Al Qaeda’s 9/11 attack. In Section 4 we summarize the main conclusions
of the sensitivity analysis.

2 A new game theoretic centrality measure

A network can mathematically be represented by a graph G = (N,E), where the node set N
represents the set of members of the network and the set of links E consists of all relationships
that exist between these members. The existence of a relationship between member i and j is
denoted by ij ∈ E. For a coalition S ⊆ N , the subnetwork GS consists of the members of S
and its links in E, i.e., GS = (S,ES) where ES = {ij ∈ E|i, j ∈ S}.

A cooperative game in coalitional form is a pair (N, v), where N denotes the finite set of
players and v is a function that assigns to each coalition S ⊆ N a value v(S), which can be
interpreted as the effectiveness of the coalition. By definition v(∅) = 0. The central issue is
how to adequately allocate v(N), the effectiveness of the grand coalition, over all players. Thus,
implicitly measuring to what extent each player is responsible for the total effectiveness of the
grand coalition. The Shapley value (Shapley (1953)) of a cooperative game (N, v) allocates
v(N) by averaging marginal contributions of a player to the different coalitions1.

Following Lindelauf et al. (2013) the idea is to create a game that takes into account the
structure of the network G = (N,E), individual strengths (e.g., special skills) of the members of
the network, summarized by I = {wi}i∈N with wi ≥ 0, as well as the relational strength (e.g.,
communication) between members of the network, summarized by R = {kij}ij∈E with kij ≥ 0.

1Let σ = σ1σ2 · · ·σN ∈ Π be an ordering of the players in the grand coalition N . If player i is at position k,
i.e., σk = i, then its marginal contribution mσ(i) is defined as mσ(i) = v({σ1, . . . , σk})− v({σ1, . . . , σk−1}), i.e.,
the extra value that player i contributes to the already established coalition {σ1, . . . , σk−1}. Since the marginal
contribution depends on the ordering σ, we average over the set of all possible orderings Π, resulting in the
Shapley value of player i: ϕi(v) =

1

n!

∑
σ∈Π

mσ(i).
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A coalition S ⊆ N is called a connected coalition if the network GS is connected, otherwise
S is called disconnected. We define a monotonic weighted connectivity game (N, vmwconn) with
respect to network G = (N,E) based on I andR in the following way. For a connected coalition
S we define

vmwconn(S) =

{

f(S,I,R) if |S| > 1
0 otherwise,

(1)

where f is a context specific and tailor-made non-negative function depending on S, I and R
which measures the effectiveness of coalitions in the network. It can be chosen to best reflect
the situation and information at hand. For a coalition S that is disconnected we define

vmwconn(S) = max
T⊂S, T connected

vmwconn(T ). (2)

Observe, that the value of each disconnected coalition is based on the most effective connected
component of this coalition. For the purpose of this paper we define f(S,I,R) by

f(S,I,R) =

(

∑

i∈S

wi

)

· max
ij∈ES

kij . (3)

This specific choice can be motivated for terrorist cells in which we need to focus on the total
operational strength of the cell as well as the most prominent line of communication between
members.

Subsequently, the game theoretic centrality measure Cm of member i in network G = (N,E)
based on I and R is defined by

Cm(i) = ϕi(v
mwconn),

where ϕi(v
mwconn) is the Shapley value of member i in the game vmwconn. The corresponding

ranking of all members of N will be denoted by Rm. The centrality measure Cm is illustrated
in the following example.

Example: the centrality measure Cm

Consider the network in Figure 1 in which the five members are denoted by the letters A
to E and the six links represent the relationships between these five members. This defines
G = (N,E).

Suppose that individual information is available only for member E. He was involved in a
previous attack and has financial means to support a potential new attack. Counterterrorism
analysts will take this observation into account when assigning weights to the members. Here
we assume that member E is assigned a weight of 4 and all other members are assigned a weight
of 1, see Figure 2. This defines I.

Additionally, suppose it is observed that member A and B communicate more frequently
than the other members of the network. Here we assume that link AB is assigned a weight of
3 and all other links are assigned a weight of 1, see Figure 2. This defines R.
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Figure 1: Example of a network.
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1

Figure 2: Example of a network with infor-
mation on individual and relational
strengths.

Using (3) the values vmwconn(S) as defined in (1) and (2) can be computed for each coalition
S. Table 1 provides these values1 for each of the 32 coalitions in N = {A,B,C,D,E}. The
resulting centrality measure Cm of each member is presented in Table 2. The corresponding
ranking Rm is given by (BADEC). As expected, the additional information used ensures that
member A and B attain a high ranking, identifying A as the key player in this network. Note
that the peripheral position of E in the network does decrease its importance, whereas the
weight of E does increase the importance of D since the latter establishes a connection between
member B and E.

Coalitions ∅ {C} {D} {E} {C,D} {C,E} {D,E} {C,D,E}

∅ 0 0 0 0 2 0 5 6
{A} 0 2 0 0 3 2 5 7
{B} 0 2 2 0 3 2 6 7

{A,B} 6 9 9 0 12 9 21 24

Table 1: The value vmwconn(S) for each coalition in the example in Figure 2.

Member Centrality measure Cm

A 6.1667
B 6.4167
C 1.7500
D 5.5833
E 4.0833

Table 2: The centrality measure Cm for the example in Figure 2.

�

1In this compact (but non-standard) notation, e.g., the cell corresponding to row {B} and column {D,E}
represents that vmwconn({B,D,E}) = 6.
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3 Sensitivity analysis of Al Qaeda’s 9/11 attack

On September 11th, 2001, four commercial airplanes were hijacked by members of Al Qaeda.
Two of these planes were directed to fly into the Twin Towers of the World Trade Center
in New York, a third plane flew into the Pentagon and a fourth plane crashed somewhere in
Pennsylvania. The network G = (N,E) of the 19 hijackers directly responsible for this attack is
depicted in Figure 3 (see Krebs (2002)). The colors in the network refer to the different flights
of American Airlines (AA) and United Airlines (UA); i.e., AA-77 (white), AA-11 (lightgray),
UA-93 (gray) and UA-175 (darkgray).

Ahmed Alghamdi

Hamza Alghamdi

Mohand Alshehri

Fayez Ahmed

Marwan Al-Shehhi

Ahmed Alnami

Saeed Alghamdi

Ahmed Al-Haznawi

Ziad Jarrah

Salem Alhazmi

Nawaf Alhazmi

Khalid Al-Mihdhar

Hani Hanjour

Majed Moqed

Mohamed Atta

Abdul Aziz Al-Omari

Waleed Alshehri

Satam Suqami

Wail Alshehri

Figure 3: Operational network of hijackers of
Al Qaeda’s 9/11 attack. AA-77
(white), AA-11 (lightgray), UA-93
(gray) and UA-175 (darkgray).

Ahmed Alghamdi
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Marwan Al-Shehhi
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Saeed Alghamdi
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Ziad Jarrah

Salem Alhazmi

Nawaf Alhazmi

Khalid Al-Mihdhar

Hani Hanjour

Majed Moqed

Mohamed Atta

Abdul Aziz Al-Omari

Waleed Alshehri

Satam Suqami

Wail Alshehri

Figure 4: Operational network of hijackers of
Al Qaeda’s 9/11 attack with four
(random) links removed. AA-77
(white), AA-11 (lightgray), UA-93
(gray) and UA-175 (darkgray).

Table 3 presents the weight assigned to each hijacker based on additional data, like affiliation
and attending terrorist training camps, extracted from the 9/11 commission report (Kean et al.
(2002)). This table provides I = {wi}i∈N . No additional information on relational strength is
given, so for R = {kij}ij∈E we propose kij = 1 for all ij ∈ E.
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Hijacker Weight Hijacker Weight

Ahmed Alghamdi 1 Nawaf Alhazmi 2
Hamza Alghamdi 1 Khalid Al-Mihdhar 3
Mohand Alshehri 1 Hani Hanjour 1
Fayez Ahmed 1 Majed Moqed 1
Marwan Al-Shehhi 3 Mohamed Atta 4
Ahmed Alnami 1 Abdul Aziz Al-Omari 1
Saeed Alghamdi 1 Waleed Alshehri 1
Ahmed Al-Haznawi 1 Satam Suqami 1
Ziad Jarrah 4 Wail Alshehri 1
Salem Alhazmi 1

Table 3: Weight assigned to each hijacker of Al Qaeda’s 9/11 attack.

We use the function f(S,I,R) of (3) to determine the game vmwconn, the centrality measure
Cm and the corresponding ranking Rm. The resulting ranking Rm is provided in Table 4. Since
surveillance and observation capacity is almost always a limiting factor, it is valuable to identify
the key players in the network to optimally allocate these scarce resources. We therefore focus
on the top-5 of the ranking.

To perform a sensitivity analysis on the ranking Rm for this operational network we need
to be able to compare different rankings with one another. For example, consider the situation
where not all lines of communication in the operational network have been discovered, resulting
in the network in Figure 4 in which 4 (random) links have been removed. Note that the net-
work in Figure 4 is disconnected. Ranking R1 in Table 5 presents the ranking of the hijackers
corresponding to the network in Figure 4. The difference between the rankings Rm and R1 is
represented by the number ρ(Rm, R1) ≥ 0, which is computed as follows. First, each hijacker
in the original ranking Rm is assigned a value based on its position in the ranking, see Table 6.
Then the sum of the values of all hijackers that leave the top-5 in Rm and enter the top-5 in R1 is
taken. The values assigned to the positions are chosen in such a way that highly ranked hijack-
ers that leave the top-5 in Rm and lowly ranked hijackers that enter the top-5 in R1 result in a
large value of ρ. This value of ρ will be relatively low when two rankings do not differ too much.
Note that ρ(Rm, R1) =

1

5
+ 1

14
= 19

70
≈ 0.2714 in our example since Hani Hanjour, with a value

of 1

5
, leaves the top-5 in Rm and Khalid Al-Midhar, with a value of 1

14
, enters the top-5 in R1.

In our sensitivity analysis we will first focus on network structure and vary the number of
links present in the network. We will not only investigate scenarios in which a percentage of
the links is removed from the network, but also scenarios in which a percentage of the links
is added to the network. Hence, we consider the situation when an intelligence agency has
gathered information about the structure of some network but does not know for sure whether
all lines of communication are discovered or play a role in the network. Second, we will focus
on individual and relational strength and investigate scenarios in which different weights on
individuals and links are used. In practice field experts have to decide on the exact heights
of the weights assigned to individuals and links. The magnitude of such weights should reflect
individual characteristics (e.g., financial means, skills to create an explosive) or the importance
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Ranking Rm

Mohamed Atta
Ziad Jarrah

Marwan Al-Shehhi
Nawaf Alhazmi
Hani Hanjour

Khalid Al-Midhar
Abdul Aziz Al-Omari
Hamza Alghamdi
Waleed Alshehri

Ahmed Al-Haznawi
Salem Alhazmi
Fayez Ahmed

Saeed Alghamdi
Mohand Alshehri
Ahmed Alnami
Majed Moqed

Ahmed Alghamdi
Satam Suqami
Wail Alshehri

Table 4: Ranking for the network in Figure 3
based on Cm.

Ranking R1

Ziad Jarrah
Mohamed Atta

Marwan Al-Shehhi
Nawaf Alhazmi

Khalid Al-Midhar

Hani Hanjour
Hamza Alghamdi
Ahmed Al-Haznawi

Salem Alhazmi
Fayez Ahmed

Saeed Alghamdi
Mohand Alshehri
Ahmed Alnami
Majed Moqed

Ahmed Alghamdi
Waleed Alshehri
Satam Suqami
Wail Alshehri

Abdul Aziz Al-Omari

Table 5: Ranking for the network in Figure 4
based on Cm.

Position 1 2 3 4 5 6 7 8 9 10
Value 1 4/5 3/5 2/5 1/5 1/14 2/14 3/14 4/14 5/14

Position 11 12 13 14 15 16 17 18 19
Value 6/14 7/14 8/14 9/14 10/14 11/14 12/14 13/14 1

Table 6: Value assigned to each position in ranking Rm.

of a specific type of communication (e.g., email communication, exchanging explosive materials).
Obviously, it is difficult to quantify these numbers accurately. Therefore, we also want to check
what impact minor changes in the assigned weights have on the ranking of the hijackers.

With respect to network structure, we have run 1000 simulations in which we randomly
added or deleted up to 4 links and computed the resulting values of ρ. With respect to individual
strength, we have run 1000 simulations in which we set the weight for each of 4 randomly selected
individuals randomly equal to 1, 2, 3 or 4. To investigate the effect of relational strength, we
have increased the weight of a single link to 4, with the rest of the weights kept to 1. Since the
network contains only 33 links, we computed the value of ρ for each scenario, i.e., for this part no
simulations were needed. The results of this sensitivity analysis are depicted in Figure 5. Note
that (another) simulation shows that the expected value of ρ is approximately 4.18 when R1

would be a random ranking of the 19 members which does not use network structure, individual
strength and relational strength.

From Figure 5 it follows that the ranking resulting from the monotonic weighted connectivity
game is robust to small changes in the network structure and the weighing of links and members.
In all but one case, the value of ρ is significantly less than the value ρ = 4.18 obtained by a
random ranking. Note that ρ ≥ 1

5
+ 1

14
≈ 0.27 in case one hijacker is replaced in the original
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Figure 5: Boxplots of ρ-values for the sensitivity analysis of Al Qaeda’s 9/11 network on network
structure, individual strength and relational strength.

top-5 by a hijacker not yet present in the top-5. Two hijackers leaving the original top-5 will
yield a value of ρ of at least 1

5
+ 2

5
+ 1

14
+ 2

14
≈ 0.81. For three hijackers this value is at least

1.63.
When varying the number of links present in the network the top-5 of the original ranking is

seen to remain virtually unchanged. In 50% of the cases the ranking remains unchanged and in
another 25% of the cases only one hijacker leaves the top-5. When varying the weights assigned
to individuals in the network the top-5 differs slightly from the original ranking. In almost 75%
of the cases only one hijacker in the top-5 is replaced. In most other cases at most two hijackers
are replaced. Even the (relatively few) outliers are seen to differ significantly from the value of
ρ when using a random ranking. The original ranking is seen to be more sensitive to varying
the weight of a single link. Although at most one hijacker in the top-5 is replaced in 50% of the
cases, the remaining cases show more variability in the value of ρ. In one case the value of ρ
is even larger than the value of a random ranking. In this particular case the link between the
lowest ranked hijackers Satam Suqami and Wail Alshehri is assigned a weight of 4, catapulting
them into the top-5 and resulting in an extremely large value of ρ. The remaining rankings,
however, all still outperform a random ranking.

We can conclude that Rm provides a ranking for the 9/11 network that is globally robust
against link-changes as well as weight-changes. It will be clear that the methodology behind
Rm can be applied to other data sets as well. These data sets need not be restricted to terrorist
networks but could also apply to e.g. criminal networks. Moreover, variations in our choice of
f(S,I,R) in (3) should be studied to better fit specific settings.
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4 Conclusions

In this paper we propose a new type of ranking of terrorists in order to identify key players in
terrorist networks. In particular, we use game theoretic centrality measures to construct such a
ranking. These centrality measures do not only take the network structure into account, i.e., who
communicates with whom, but also incorporate individual and coalitional characteristics, such
as special skills, and relational characteristics, like frequency of communication. In particular,
our new game theoretical centrality measure is based on monotonic weighted connectivity games
that take into account the strength of connected subnetworks of terrorists, thus providing a more
suitable model of real-life networks.

We tested the robustness of the rankings obtained using our new centrality measure by
performing a sensitivity analysis on the ranking of the terrorists in Al Qaeda’s 9/11 attack. In
this analysis we run several types of simulations in which we either vary the network structure,
i.e., the links present, or vary individual strength or relational strength. In each simulation a new
ranking is constructed and this ranking is compared to the original ranking of the terrorists. To
facilitate the comparison of rankings we use a tailor-made comparison method. It follows that
the new game theoretic centrality measure is robust to small changes in the network structure,
as well as to small perturbations in individual and relational strength.

Hence, the new game theoretic centrality measure takes all available information about the
members of the network and their relations into account, incorporates the strength of connected
subnetworks, and is robust to small changes in the available data, which makes it a promising
measure to construct rankings of terrorists in real-life networks.
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