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Chapter 1

Interactive operational decision
making

1.1 Interactive decision theory

Good decision making is a field of research explored from different scientific

perspectives, from mathematical programming to psychological aspects in

framing decisions. Many of the decision situations we face involve other,

possibly antagonistic, decision makers that affect our options and the conse-

quences of our decisions. And reversely, our decisions may affect the options

and consequences of decisions of the others. In this thesis we deal with de-

cision making in such an interactive setting. To analyze interactive decision

problems we use tools from interactive decision theory.

Interactive decision theory is a more descriptive name for game theory : the

study of mathematical models of conflict and cooperation between intelli-

gent rational decision-makers (Myerson (1981)). It is a research discipline

that considers the logical side of interactive decision making. Game theory

is usually divided into two branches. In competitive, non-cooperative game

theory players act individually and strategically against each other to mini-

mize their individual costs (or maximize individual profits). For an extended

introduction we refer to Fudenberg and Tirole (1991). Cooperative game

theory studies situations in which players cooperate in order to reduce joint

costs, and analyzes how one can fairly allocate the joint costs or the joint cost

1



2 Chapter 1. Interactive operational decision making

savings. A commonly used model in cooperative interactive decision theory

is a transferable utility game in which one assigns a value to each subcoali-

tion of decision makers. Allocation proposals are evaluated based on these

coalitional values. For an extended introduction we refer to Sudhölter and

Peleg (2007). In some cooperative situations, however, one cannot determine

the costs or cost savings of a subcoalition of decision makers, but the decision

makers still have to share their joint costs. In that case the model of cost

sharing (see e.g. Moulin (2002)) can be an appropriate tool to find adequate

allocations of the costs.

Applications of interactive decision theory can be found in, e.g., Biology

(Nowak and Sigmund (2004)), Philosophy (De Bruin (2005)), Political Sci-

ence (Myerson and Weber (1993)) and especially in Economics and Manage-

ment Science.

1.2 Operational decision making

In this thesis we analyze interactive decision making on an operational level

in an economic environment: the problems allow for a quantitative analytical

approach, where information is transparent and the interactive problem has

a managerial – as opposed to policy – nature. Using appropriate tools from

interactive decision theory we analyze how decision makers can decide on,

e.g., a good strategy to minimize individual costs or on how to fairly allocate

the (possible) benefits that follow from cooperative behavior.

Examples of such interactive decision problems on an operational level

are, in a cooperative setting, inventory games (Meca, Timmer, Garćıa Jurado,

and Borm (2004)) and in a non-cooperative setting, capacity allocation games

(Cachon and Lariviere (1999)).

As its subtitle indicates, this thesis covers interactive decision making in

the context of purchasing situations and in the context of mutual liability

problems.

Purchasing is the formal process of buying goods and services in order to

accomplish organizational goals. On an operational level, purchasing in-
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volves supplier selection and pricing agreements for frequently used tangible

goods, like scribbling-pads for a university, needles for a hospital or mops

for janitorial services. In interactive purchasing situations multiple buying

organizations interact with similar (or possibly the same) suppliers for the

procurement of the same commodity. Decisions to be made in interactive

purchasing concern if and how to cooperate with other buying organizations.

If so, one has to tackle the important question of how to allocate possible cost

savings. And if not, how to interact with the supplier(s) on an individual

strategic level, while taking into account the presence and behavior of the

other purchasers.

Mutual liability problems model the interrelationship between decision mak-

ers, based on financial obligations. We will investigate the scenario where a

group of agents is related by having mutual liabilities, but reaches the point

in time where the agents want to cash their claims. None of the agents worry

about the possible insufficient cash in the current assets, until individuals

start cashing their claims. This will lead to a cascading effect and thereby

will reveal the possibly insufficient cash level of agents and the agents typ-

ically might not obtain all of what they, however rightfully, claim. Here a

decision has to be made regarding how the total amount of available cash

can be fairly distributed among the agents.

In the next section we provide a compact overview of this thesis. An ex-

tensive introduction of each of the different topics we study can be found at

the beginning of each chapter.

1.3 Overview and results

One of the most basic and probably oldest allocation problems that can be

modeled in an interactive decision framework is a bankruptcy problem (cf.

O’Neill (1982)). In a bankruptcy problem a (possibly) insufficient mone-

tary amount has to be divided over a group of claimants. Aumann and

Maschler (1985) have characterized one of the most well-known bankruptcy

rules, the Aumann-Maschler rule, using the axiom of consistency. Chapter 2
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introduces mutual liability problems as a generalization of bankruptcy prob-

lems, where every agent not only owns a certain amount of cash money, but

has outstanding claims and debts towards the other agents as well. Assum-

ing that the agents want to cash their claims, we analyze mutual liability

rules which prescribe how the total available amount of cash can be allo-

cated among the agents. In particular we focus on bankruptcy rule based

bilateral transfer schemes. Existence of these schemes is established and it

is seen that within the class of hierarchical mutual liability problems, for

each bankruptcy rule such a transfer scheme is unique. Although in general

a bankruptcy rule based bilateral transfer scheme need not be unique, we

show that the resulting bankruptcy rule based transfer allocation is. This

leads to the definition of bankruptcy rule based mutual liability rules. For

hierarchical mutual liability problems an alternative characterization of such

mutual liability rules is provided. Moreover, we show that the axiomatic

characterization of the Aumann-Maschler bankruptcy rule on the basis of

consistency can be extended to the corresponding mutual liability rule. We

conclude with a discussion of alternative approaches to solve mutual liability

problems.

Chapter 3 introduces a new class of interactive cooperative purchasing situa-

tions. In a maximum cooperative purchasing (MCP) situation the unit price

of a commodity depends on the largest order quantity within a cooperating

group of players. Due to quantity discounts offered by the supplier, players

can obtain cost savings by purchasing cooperatively. However, to establish

fruitful cooperation a decision has to be made about an adequate allocation

of the corresponding cost savings. In analyzing MCP-situations from the

perspective of allocation by using the model of transferable utility games, we

define corresponding cooperative MCP-games. We show that if the supplier

offers quantity discounts, there exists a stable and efficient allocation of the

cost savings: the Direct Price solution. In the Direct Price solution each

player pays the unit price that follows from maximal cooperation among the

group of purchasers. However, in this allocation a player with the largest

order quantity, who is decisive for the lower unit price, receives no cost sav-

ings at all. For this reason we consider two well-known solution concepts
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from the theory of cooperative games: the nucleolus (Schmeidler (1969))

and the Shapley value (Shapley (1953)). We show that the nucleolus of an

MCP-game can be derived in polynomial time from the Direct Price solu-

tion, using a so-called nucleolus determinant. To show this result we provide

an explicit general alternative characterization of the nucleolus. Moreover,

using the special structure of MCP-games we find an explicit expression for

the Shapley value. Interestingly, the Shapley value can be interpreted as a

specific tax and subsidize system. For illustrative purposes the behavior of

the three solution concepts is compared numerically.

In Chapter 4 we study capacity restricted cooperative purchasing (CRCP)

situations from the perspective of cost sharing. A CRCP-situation is a pur-

chasing cooperative with individual order quantities with respect to a certain

commodity. Here, the sum of the order quantities determines the unit price.

Instead of facing one supplier with sufficient supplies, the group faces two

suppliers with (possibly) insufficient individual supplies. The combined ca-

pacity of the two suppliers, however, is sufficient. We show that to minimize

joint ordering costs, the cooperative should order as much as possible at one

of the two suppliers, and the remainder at the other one. To find suitable

cost allocations of the total purchasing costs we model the CRCP-situation

as a cost sharing problem and we find that the cost function of the corre-

sponding cost sharing problem is piecewise concave. The domain of the cost

function can be divided in separate intervals on which the function is concave;

the maximally concave intervals. We introduce tailor-made and context spe-

cific cost sharing rules for cost sharing problems with piecewise concave cost

functions, in which we first divide the vector of order quantities into sepa-

rate vectors for the different maximally concave intervals, using a bankruptcy

rule. Subsequently, for each maximally concave interval and corresponding

vector we use the well-known serial cost sharing rule (Moulin and Shenker

(1992)) to allocate the costs of that specific interval over the organizations.

Finally, by summing these allocated costs we obtain the allocation according

to the piecewise serial rule. Inspired by the context of CRCP-situations, we

provide a piecewise serial rule that, on the class of cost sharing problems

with piecewise concave cost functions, satisfies unit cost monotonicity, and a
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piecewise serial rule that satisfies monotonic vulnerability with respect to the

absence of the smallest player. Furthermore we provide a characterization of

the proportional piecewise serial rule. Numerical comparison with the serial

cost sharing rule further supports the claim that these two piecewise serial

cost sharing rules are suitable methods for allocating the purchasing costs of

a CRCP-situation.

Capacity restricted strategic purchasing (CRSP) situations are the non-coop-

rative siblings of CRCP-situations. Here each member of a group of pur-

chasers has an individual order quantity with respect to a commodity. The

group faces two suppliers with possible insufficient individual supplies. In-

stead of purchasing cooperatively the purchasers act individually. In a CRSP-

situation each purchaser strategically splits his order over the two suppliers

in order to obtain his desired order quantity for the lowest possible cost.

How an individual purchaser should place his order, depends, amongst oth-

ers, on fulfillment policies of the suppliers. Such a policy prespecifies how

the supplier allocates his capacity over the orders in case the total number

of units ordered exceeds the capacity limit of the supplier. In Chapter 5 we

study CRSP-situations by analyzing equilibrium behavior in non-cooperative

games corresponding to several scenarios with respect to the fulfillment poli-

cies of the suppliers. These games are called ordering games. In the first

scenario, fulfillment can be based on fixed preferences of the suppliers with

respect to the identity of the players. Second, fulfillment can also be based

on the order size of the purchasers, we differentiate among the policy small

before large (SBL) and large before small (LBS). Third and finally, suppli-

ers can fulfill orders proportionally. If suppliers preferences are fixed and

identical, the ordering game has an equilibrium. If the policy is based on

SBL, we show that there does not necessarily exists an equilibrium. On the

other hand, if fulfillment is based on LBS, there exists an equilibrium in the

ordering game. When orders are fulfilled proportionally, then if there exists

an equilibrium in the ordering game, we show that it can only be found at

the boundaries of the strategy space. Finally, we develop an approximation

of the ordering game by means of a so-called matrification of the strategy

space. Also here, we analyze equilibrium behavior in the different scenarios.
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1.4 Basic notation

The set of all nonnegative integers is denoted by N, the set of all real numbers

by R, the set of nonnegative reals by R+ and the set of positive reals by R++.

For a finite set N , the cardinality of N is denoted by |N |. The collection

of all subsets of N is denoted by 2N . RN denotes the set of real-valued

vectors with coordinates corresponding to N . An element of RN is denoted

by x = (xi)i∈N . For every S ∈ 2N\{∅}, the unit vector 1S ∈ RN is such that

1
S
i = 1 if i ∈ S and 1

S
i = 0 if i ∈ N\S. We denote (y)+ = max{y, 0} for all

y ∈ R.

By Π(N) we denote the collection of all permutations of N where σ ∈

Π(N) is a bijection from {1, . . . , |N |} to N . Next θ : RN → R|N | is such that

for x ∈ RN and i ∈ {1, . . . , |N |}, θi(x) = xσ(i), with xσ(1) ≥ xσ(2) ≥ . . . ≥

xσ(|N |).

For any two vectors x, y ∈ Rt we have that x is lexicographically smaller

than y if x = y or if there exists an s ∈ {1, . . . , t} such xk = yk for all

k ∈ {1, . . . , s − 1} and xs < ys. x ≤L y denotes that x is lexicographically

smaller than y.

Let A ⊂ RN be a finite collection of vectors. Then, span(A) denotes the

linear hull of A, i.e., all linear combinations of vectors from A, and conv{A}

denotes the convex hull of A, the set of all convex combinations of vectors

from A.

With A = (aij) ∈ RN×N , the diagonal of A, diag(A) ∈ RN is for all i ∈ N

defined by diagi(A) = aii.

Let X be a convex subset of RN . A function f : X → R is concave on X

if for any x1, x2 ∈ X and any λ ∈ [0, 1], f(λx1 + (1− λ)x2) ≥ λf(x1) + (1−

λ)f(x2). f is strictly concave if for any x1, x2 ∈ X with x1 6= x2 and any

λ ∈ (0, 1), f(λx1+(1−λ)x2) > λf(x1)+ (1−λ)f(x2). Moreover f : X → R

is convex if −f is concave.

Let g : R → R. If g is differentiable and concave, then any x ∈ R with

g′(x) = 0 will be a global maximum. If g is twice differentiable, then g is

concave if g′′(x) ≤ 0 for all x ∈ R, and g is strictly concave if if g′′(x) < 0

for all x ∈ R. If g is nondecreasing and concave, then for any x, y ∈ R with

0 < x ≤ y, it holds that g(x)
x

≥ g(y)
y

and g(x+ z)− g(x) ≥ g(y+ z)− g(y) for
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any z ∈ R+.



Chapter 2

On solving mutual liability
problems

2.1 Introduction

In this chapter, which is based on Groote Schaarsberg, Reijnierse, and Borm

(2013), we make a side-step from the operations management context to a

more financially oriented class of problems: we will consider so-called mutual

liability problems as a generalization of bankruptcy problems.

The classical bankruptcy problem, consisting of a single estate that is not

sufficient to fulfill the demands of multiple claimants, is formally introduced

by O’Neill (1982). However, the problem has been known since centuries:

the old Babylonian Talmud explains by means of numerical examples how

one should divide a deceased’s estate over his creditors. Also, in the first half

of the twentieth century Benson (1935) and Kocourek (1935) studied estate

division problems with multiple claimants from the perspective of law. In

their work, the claimants possibly have different and circular priorities. It

was Tyre (1980) that mentioned the missing link between mathematics and

legal thought in such problems with so-called circular priorities.

Shortly later O’Neill (1982) considers claims problems without circulari-

ties from a mathematical perspective. A bankruptcy rule prescribes, for each

bankruptcy problem, how to divide the estate over the claimants. In the

literature one can find a wide variety of bankruptcy rules, which arise from

9
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both an axiomatic as well as a game-theoretic analysis, see for an overview

Thomson (2003). One of the most renowned bankruptcy rules has been devel-

oped by Aumann and Maschler (1985). They have introduced a bankruptcy

rule that explains the examples in the Talmud. Moreover, it is shown that

the Aumann-Maschler (AM) rule is the unique rule satisfying two appealing

properties: consistency and the Concede & Divide-principle.

The classical bankruptcy problem has been extended in different ways, e.g. to

multi-issue allocation situations in which the estate has to be divided among

a group of agents with claims stemming from different issues, see Calleja,

Borm, and Hendrickx (2005), to stochastic bankruptcy games (Habis and

Herings (2013)) and to allocating the losses due to financial distress within

a business sector (Van Gulick (2010)). Lately, a main trending topic in this

context is multiple estates. In a recent work by Bjorndal and Jornsten (2009)

a bankruptcy problem with multiple banks (estates) is represented by a flow

model. The banks can have separate claims on each other and there is a set

of agents having separate claims on those banks. Palvolgyi, Peters, and Ver-

meulen (2010) consider the case of agents with non-homogeneous preferences

over multiple estates. Here the agents have a single claim, but the utility per

estate differs. The problem is analyzed from a non-cooperative perspective

and focusses on how the agents should divide their claims into subclaims over

the estates. Moulin and Sethuraman (2013) analyze bipartite rationing prob-

lems with multiple estates and agents with a single claim, but in which the

agents are not necessarily compatible with all estates. These compatibilities

are represented by a bipartite graph. By analyzing the flows in the graph

and using a consistency axiom, bankruptcy rules are extended to this setting.

In this chapter we introduce mutual liability problems with multiple estates

of a rather different nature. In financial accounting a liability is defined as

“an obligation of an entity arising from past transactions or events, the settle-

ment of which may result in the transfer or use of assets, provision of services

or other yielding of economic benefits in the future.”1 Usually a liability is

1Loosely quoted from the framework of the International Financial Reporting Standards
Foundation.
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associated with an uncertainty, but this need not be the case. The more

creditors an agent has, the higher the liabilities. We investigate the scenario

where a group of agents is related by having mutual liabilities, but reaches

the point in time where the agents want to cash their claims. None of the

agents worry about the possible insufficient cash in the current assets, until,

for some exogenous reason, individuals start cashing their claims. This will

lead to a cascading effect and will reveal the possibly insufficient cash level of

agents and therefore the agents typically might not obtain all of what they,

however rightfully, claim.

This approach can be seen as a deterministic model of the monetary

interrelationships between banks, governments and companies in case of a

financial crisis and threatening bankruptcy of banks. Moreover mutual lia-

bilities relate to the claims problems with circular priorities from e.g. Benson

(1935) and Tyre (1980).

A mutual liability problem can be represented by a matrix in which an entry

represents a claim from one agent on another agent. The diagonal entries

represents the players’ cash levels.

A special class of mutual liability problems is the class of hierarchical mu-

tual liability problems in which the claim matrix is triangular. This implies

that we can index the agents, such that every agent only claims from agents

with a lower index. In this sense there is a hierarchy among the agents. For

an example, think of the vertical relations in a supply-chain: insufficient cash

of a buyer may lead to insufficient cash of his supplier(s).

In this chapter we analyze mutual liability problems from an allocation per-

spective: if in a mutual liability problem the agents reach the stage that

they want to cash their claims and remove all current liabilities, how should

the total amount of available cash be fairly distributed among the agents?

In this setting, we implicitly assume that there is an independent author-

ity charged with the task of fairly solving the mutual liability problem. A

mutual liability rule prescribes for each mutual liability problem how to al-

locate the total cash among the agents. We assume each allocation to stem

from a so-called bilateral transfer scheme that satisfies some basic require-

ments. More specifically, we consider bankruptcy rule based transfer schemes
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in which the incoming cash plus available cash of every agent is allocated

among his claimants according to a specific bankruptcy rule. We show that

for every bankruptcy rule there always exists a bankruptcy rule based trans-

fer scheme, which is not necessarily unique. Interestingly, it is seen that each

bankruptcy rule based transfer scheme leads to the same bankruptcy rule

based transfer allocation, so allocation-wise a unique outcome is provided.

For the subclass of hierarchical mutual liability problems, it is shown that

there is also a unique bankruptcy rule based transfer scheme.

These results imply that each bankruptcy rule can be extended to a mu-

tual liability rule: a bankruptcy rule based mutual liability rule. We provide

an explicit characterization for the AM-based mutual liability rule, by ex-

tending the properties of consistency and the Concede & Divide-principle

from the bankruptcy setting to the context of mutual liability problems.

Profiting from the special structure of hierarchical mutual liability prob-

lems, one can extend bankruptcy rules in an alternative recursive way into

mutual liability rules. It is shown that for each bankruptcy rule the result-

ing allocation coincides with the allocation prescribed by the corresponding

bankruptcy based mutual liability rule, thus providing another characteriza-

tion of bankruptcy based mutual liability rules on the class of hierarchical

mutual liability problems.

We conclude the chapter with a sketch of two alternative approaches to

solve mutual liability problems. The first alternative involves reducing non-

hierarchical problems into more tractable hierarchical mutual liability prob-

lems by bilaterally and cyclically leveling the claims. We see, however, that

there is no straightforward procedure how to eliminate the cycles and that

different procedures may result in different reduced problems. The second

alternative is inspired by the hydraulic rationing methods for claims prob-

lems (Kaminski (2000)).

The structure of this chapter is as follows. In Section 2.2 we formally intro-

duce mutual liability problems. Then, in Section 2.3 we give a short intro-
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duction to bankruptcy rules, define bankruptcy rule based transfer schemes

and corresponding bankruptcy rule based transfer allocations. Section 2.4

studies mutual liability rules and in particular bankruptcy based mutual li-

ability rules in a hierarchical setting, while Section 2.5 analyzes bankruptcy

based mutual liability rules on the general class of mutual liability problems,

including the characterization of the AM-based mutual liability rule. Section

2.6 concludes with two alternative ways to solve mutual liability problems.

2.2 Mutual liability problems and mutual li-

ability rules

A classical bankruptcy problem involves an estate E that has to be divided

among a finite group of agents N , all having a nonnegative claim di, i ∈ N ,

on the estate. We summarize these claims into a vector d = (di)i∈N . The set

of all bankruptcy problems (E, d) on N is denoted by BN .

In a mutual liability problem, a finite group of economic agents, denoted

by N , have been interacting for a certain time period. Their past eco-

nomic transactions have resulted in a situation in which the agents have

claims on each other (think of debtors and creditors or accounts payable and

receivable). As in bankruptcy problems, we assume that these claims are

known, rightful and justifiable. Further, every agent has a certain nonnega-

tive cash level or cash reserve with which he can (partially) pay his possible

debtors. A mutual liability problem can be represented by a nonnegative

matrix C ∈ RN×N
+ . Here each cell cij ∈ C represents the claim of agent j on

agent i, i 6= j, and cii represents the cash level of agent i. If
∑

i∈N

cii <
∑

i,j∈N,i 6=j

cij,

there is not sufficient cash to fulfill all the claims. If for some agent i ∈ N ,
∑

j∈N

cji −
∑

j∈N\{i}

cij < 0,

agent i will never be able to satisfy all his claimants. We will, however, not

impose any restrictions except nonnegativity on the matrix C beforehand.
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The main question is how to divide
∑

i∈N cii over the agents in N .

We denote by LN the set of all mutual liability problems on N . A mutual

liability rule f : LN → RN is such that f(C) ≥ 0 and
∑

i∈N fi(C) =
∑

i∈N cii

for all C ∈ LN .

We will distinguish a class of mutual liability problems with a special trian-

gular structure. A mutual liability problem C ∈ LN is called a hierarchical

mutual liability problem if, by reordering the agents, C can be transformed

into an upper triangular matrix with zeros below the diagonal. The set LN,∆

contains all hierarchical mutual liability problems on N . A mutual liability

rule that is defined on the domain of hierarchical mutual liability problems

is called a hierarchical mutual liability rule.

Example 2.2.1 Let N = {1, 2, 3} and C ∈ LN be given by

C =







1 2 3

1 3 1 4

2 2 2 6

3 1 0 1






.

The matrix should be interpreted in the following way. Agent 1 has a cash

level of 3. He has a claim of 2 on agent 2 and a claim of 1 on agent 3, while

agent 2 and 3 have a claim of 1 and 4 on agent 1. Agent 2 has a cash level of

2. He has no further claims, than the 1 on agent 1 we already mentioned, but

agent 1 and 3 have a combined claim of 8 on him. This means in particular

that agent 2 will never be able to pay off his debts. Agent 3 has a cash level

of 1, agent 1 has a claim of 1 on his cash, while agent 3 has a claim of 4 on

agent 1 and a claim of 6 on agent 2. /

Example 2.2.2 Let N = {1, 2, 3, 4} and C ∈ LN be given by

C =









4 2 4 4
0 3 0 1
0 0 2 3
0 0 0 2









.
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The claim matrix is upper triangular, since agent 1 only faces claims and has

no claims on agents 2, 3 or 4. Furthermore, agent 2 has a claim on agent 1

but faces claims only from agents 3 and 4. Agent 3 has a claim on agent 1

and faces a claim of only agent 4, while agent 4 faces no claims at all, but

he has a claim on all other three agents. /

Mutual liability problems can be seen as a generalization of bankruptcy

problems. Each bankruptcy problem (E, d) ∈ BN with N = {1, 2, . . . , n}

corresponds to a hierarchical mutual liability problem C(E, d) ∈ LN̄ with

N̄ = N ∪ {0} given by

C(E, d) =











0 1 · · · n

0 E d1 · · · dn

1 0 0 · · · 0
...

...
...

. . .
...

n 0 0 · · · 0











.

2.3 Bankruptcy rule based transfer schemes

Before elaborating on bankruptcy rule based transfer schemes, we provide

some details on bankruptcy rules and the Aumann-Maschler rule in particu-

lar.

2.3.1 On the Aumann-Maschler rule

A bankruptcy rule ϕ : BN → RN assigns to every bankruptcy problem

(E, d) ∈ BN a vector ϕ(E, d) ∈ RN , such that

∑

i∈N

ϕi(E, d) = min{E,
∑

j∈N

dj}, (2.1)

0 ≤ ϕ(E, d) ≤ d and such that monotonicity is satisfied: for all (E, d) ∈ BN

and all (E ′, d) ∈ BN with E ′ ≥ E, we have ϕ(E, d) ≤ ϕ(E ′, d). Note that the

class BN also contains bankruptcy problems (E, d) in which E is sufficient to

fulfill the claims d and in that case ϕ(E, d) = d for any bankruptcy rule ϕ.

Note that any bankruptcy rule is continuous in the estate (cf. Yeh (2008)):
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for a sequence of nonnegative estates E1, E2, . . . that converges to E and for

any nonnegative claim vector d ∈ RN , the sequence ϕ(E1, d), ϕ(E2, d), . . .

converges to ϕ(E, d).

For a detailed overview on bankruptcy rules we refer to Thomson (2003). Our

focus will be mainly on the Aumann-Maschler rule (Aumann and Maschler

(1985)), which is based on the constrained equal awards-rule.

The constrained equal awards-rule CEA is, for all (E, d) ∈ BN and all i ∈ N ,

defined by

CEAi(E, d) = min{λ, di},

where λ ∈ R is such that
∑

i∈N min{λ, di} = min{E,
∑

j∈N dj}.

The Aumann-Maschler rule AM is, for all (E, d) ∈ BN , defined by

AM(E, d) =











d if
∑

j∈N dj ≤ E,

d− CEA(
∑

j∈N dj −E, 1
2
d) if E <

∑

j∈N dj < 2E,

CEA(E, 1
2
d) if

∑

j∈N dj ≥ 2E.

For bankruptcy problems involving two agents, AM satisfies the Concede &

Divide-principle C&D. This means that for (E, d) ∈ BN with N = {1, 2},

AM1(E, d) =

{

(E − d2)
+ + E−(E−d1)+−(E−d2)+

2
if d1 + d2 ≥ E,

d1 if d1 + d2 < E.

Here (E−d2)
+ represents the part of the estate conceded to agent 1 by agent

2, while E−(E−d1)+−(E−d2)+

2
indicates that the total amount of the estate that

is not conceded, is divided equally.

So far, bankruptcy rules are defined on a fixed but arbitrary finite agent

set N . Alternatively, bankruptcy rules can also be viewed as rules on the

class B of bankruptcy problems with arbitrary but finite N . On the class B,

AM can be characterized by means of the C&D-principle and the property

of consistency.

Here, a bankruptcy rule ϕ on B is called consistent if for each finite agent

set N , each (E, d) ∈ BN and all T ∈ 2N\{∅}, we have that
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ϕ(E, d)|T = ϕ(
∑

j∈T

ϕj(E, d), d|T ).

Note that (
∑

j∈T ϕj(E, d), d|T ) ∈ BT .

Consistency of a rule requires that a possible reallocation of the total

amount which has been allocated to a coalition T , on the basis of to the same

bankruptcy rule, does not change the initial individual allocations within this

coalition.

Example 2.3.1 Let N = {1, 2, 3} and let (E, d) ∈ BN be a bankruptcy

problem with E = 16 and d = (6, 8, 12).

We will allocate E according to the AM-rule. Since
∑

j∈N dj = 26 < 2E, we

have that

AM(E, d) = d−CEA(
∑

j∈N

dj −E,
1

2
d) = (6, 8, 12)−CEA(10, (3, 4, 6)).

Since CEA(10, (3, 4, 6)) = (3, 31
2
, 31

2
), we find that AM(E, d) = (6, 8, 12) −

(3, 31
2
, 31

2
) = (3, 41

2
, 81

2
).

To illustrate consistency: if we send agent 3 away with AM3(E, d) = 81
2

and let agents 1 and 2 reallocate the remaining amount 71
2
based on their

claims of 6 and 8, we see that

AM(AM1(E, d) + AM2(E, d), d|N\{3}) = AM(7
1

2
, (6, 8)) = (3, 4

1

2
)

= (AM1(E, d), AM2(E, d)). /

2.3.2 Towards transfer schemes

To devise mutual liability rules, we will explicitly consider bilateral monetary

transfer schemes on which the allocations prescribed by the rule are based.

Let C ∈ LN . Then, the matrix P = (pij) ∈ RN×N is a transfer scheme

for C, if

(i) for all i ∈ N , pii = cii,
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(ii) for all i, j ∈ N with i 6= j, 0 ≤ pij ≤ cij,

(iii) for all i ∈ N ,
∑

j∈N\{i} pij ≤ pii +
∑

j∈N\{i} pji.

The interpretation is the following: pij, i 6= j, corresponds to the monetary

transfer from agent i to j. For technical reasons and for computational

convenience we require (i). The second condition states that the payment

pij is nonnegative, but not higher than claim cij of agent j on i. The third

condition requires that the sum of outgoing payments of i does not exceed

his available cash plus incoming payments.

Let P(C) denote the set of all possible transfer schemes for the mutual

liability problem C ∈ LN .

A transfer scheme directly leads to an allocation of the available cash. Let

C ∈ LN and let P ∈ P(C). Then, we define αP ∈ RN as the P -based transfer

allocation, i.e., for all i ∈ N

αP
i = pii +

∑

j∈N\{i}

(pji − pij). (2.2)

Note that because of (iii), αP ≥ 0 and that
∑

i∈N

αP
i =

∑

i∈N

[

pii +
∑

j∈N\{i}

(pji − pij)
]

=
∑

i∈N

pii +
∑

i∈N

∑

j∈N\{i}

pji −
∑

i∈N

∑

j∈N\{i}

pij

=
∑

i∈N

pii =
∑

i∈N

cii.

Example 2.3.2 Reconsider the mutual liability problem C ∈ LN of Exam-

ple 2.2.1 with N = {1, 2, 3} and C given by

C =





3 1 4
2 2 6
1 0 1



 .

An example of a transfer scheme for C is

P =





3 1 4
1.5 2 1.5
1 0 1



 .
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The first two conditions (i) and (ii) can easily be checked. To verify condition

(iii), observe that

p12 + p13 = 5 ≤ p11 + p21 + p31 = 5.5

p21 + p23 = 3 ≤ p22 + p12 + p32 = 3

p31 + p32 = 1 ≤ p33 + p13 + p23 = 6.5.

Note that P leads to the P -based transfer allocation αP = (0.5, 0, 5.5). /

Next, we introduce a specific type of transfer schemes, called bankruptcy rule

based transfer schemes.

Let C ∈ LN and let ϕ be a bankruptcy rule. For all i ∈ N , define di(C) ∈ RN

by

dij(C) =

{

cij if j 6= i,

0 if j = i,
(2.3)

as the vector of claims on agent i. Then, P = (pij) ∈ RN×N is called a

ϕ-based transfer scheme for C if,

(i) for all i ∈ N , pii = cii,

(ii) for all i, j ∈ N with i 6= j,

pij = ϕj

(

pii +
∑

k∈N\{i}

pki, d
i(C)

)

.

We denote by Pϕ(C) the set of all ϕ-based transfer schemes.

Example 2.3.3 Let N = {1, 2, 3} and consider the mutual liability problem

C ∈ LN given by

C =





2 100 0
100 4 12
0 0 0



 .

An AM-based transfer scheme is given by

P =





2 8 0
6 4 6
0 0 0



 .
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For this, observe, e.g., that d2(C) = (100, 0, 12) and p23 = AM3(p22 +

p12, d
2(C)) = AM3(12, (100, 0, 12)) = 6. Furthermore αP = (0, 0, 6).

One can check that also the matrix P̃ given by

P̃ =





2 22 0
20 4 6
0 0 0





belongs to PAM(C). Note that αP̃ = αP . /

The next lemma shows that a ϕ-based transfer scheme is indeed a transfer

scheme.

Lemma 2.3.4 Let C ∈ LN and let ϕ be a bankruptcy rule. Then, Pϕ(C) ⊂

P(C).

Proof: Take P = (pij) ∈ Pϕ(C). It is sufficient to show that condition

(ii) of a ϕ-based transfer scheme implies conditions (ii) and (iii) of a transfer

scheme.

We start with showing (ii). Since ϕ is a bankruptcy rule, we have that for

all i, j ∈ N with i 6= j

0 ≤ ϕj

(

pii +
∑

k∈N\{i}

pki, d
i(C)

)

≤ dij(C) = cij ,

which implies that

0 ≤ pij ≤ cij .

Next we show condition (iii), using the basic properties of a bankruptcy rule.

For all i ∈ N ,

∑

j∈N\{i}

pij =
∑

j∈N\{i}

ϕj

(

pii +
∑

k∈N\{i}

pki, d
i(C)

)

=
∑

j∈N

ϕj

(

pii +
∑

k∈N\{i}

pki, d
i(C)

)

≤ pii +
∑

k∈N\{i}

pki. �
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A ϕ-based transfer scheme P satisfies an attractive property: in the corre-

sponding ϕ-based transfer allocation αP an agent can only receive a positive

amount if he paid off all his claimants.

Lemma 2.3.5 Let P ∈ Pϕ(C) for some C ∈ LN . Let i ∈ N . If αP
i > 0,

then

pij = cij for all j ∈ N\{i}.

Proof: Let αP
i > 0. Then by (2.2)

pii +
∑

j∈N\{i}

(pji − pij) > 0,

i.e.,

∑

j∈N\{i}

pij < pii +
∑

j∈N\{i}

pji. (2.4)

Moreover, since P is a ϕ-based transfer scheme, for all j ∈ N\{i}

pij = ϕj(pii +
∑

k∈N\{i}

pki, d
i(C))

and consequently

∑

j∈N\{i}

pij = min{pii +
∑

k∈N\{i}

pjk,
∑

j∈N\{i}

cij}. (2.5)

Using (2.4) it must be that

∑

j∈N\{i}

pij =
∑

j∈N\{i}

cij

and using (ii) of ϕ-based transfer schemes, it follows that pij = cij, for all

j ∈ N\{i}. �

The next theorem shows that one can always find at least one ϕ-based transfer

scheme.
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Theorem 2.3.6 Let C ∈ LN and let ϕ be a bankruptcy rule.

Then, Pϕ(C) 6= ∅.

Proof: Using the following iterative procedure we construct a ϕ-based

transfer scheme for C.

For all i ∈ N , set di = di(C) and set Ei(0) = cii.

Then, recursively define, for all i ∈ N and k = 1, 2, . . .,

Ei(k + 1) = cii +
∑

j∈N\{i}

ϕi(E
j(k), dj). (2.6)

Note that

Ei(1) = cii +
∑

j∈N\{i}

ϕi(cjj, d
j) ≥ cii = Ei(0).

Let k ≥ 1 and assume that Ei(k) ≥ Ei(k − 1). Then, by monotonicity of ϕ

we find that

Ei(k+1) = cii+
∑

j∈N\{i}

ϕi(E
i(k), dj) ≥ cii+

∑

j∈N\{i}

ϕi(E
i(k−1), dj) = Ei(k).

Hence, by induction, for all i ∈ N

Ei(0) ≤ Ei(1) ≤ Ei(2) ≤ . . . (2.7)

Consider P = (pij) ∈ RN×N , given by

pij =

{

cii for all i, j ∈ N with i = j,

limk→∞ ϕj (E
i(k), di) for all i, j ∈ N with i 6= j.

(2.8)

Note that the limit in (2.8) exists, because {Ei(k)}∞k=0 is an increasing se-

quence, while ϕ is monotonic and bounded from above.

Moreover, condition (ii) of a ϕ-based transfer scheme is satisfied since for
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all i, j ∈ N with i 6= j, we have that

pij = lim
k→∞

ϕj

(

Ei(k), di
)

=ϕj

(

lim
k→∞

Ei(k), di
)

=ϕj



cii + lim
k→∞

∑

`∈N\{i}

ϕi(E
`(k), d`), di





=ϕj



cii +
∑

`∈N\{i}

p`i, d
i



 .

The second equality follows from continuity of ϕ, the third equality follows

from (2.6) and the last equality follows from (2.8). �

2.4 Hierarchical mutual liability problems

As Example 2.3.3 shows, a general ϕ-based transfer scheme need not to be

unique. For hierarchical mutual liability problems, however, there is a unique

ϕ-based transfer scheme.

Theorem 2.4.1 Let C ∈ LN,∆ and let ϕ be a bankruptcy rule. Then,

|Pϕ(C)| = 1.

Proof: Let N = {1, . . . , n}. By the upper triangularity of C, we can as-

sume, without loss of generality, that cij = 0 if i > j. Let P = (pij) and

P̃ = (p̃ij) both be ϕ-based transfer schemes for C.

Clearly, if i > j,

pij = p̃ij = 0. (2.9)

And since

c11 +
∑

j∈N\{1}

pj1 = c11 +
∑

j∈N\{1}

p̃j1 = c11,
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the fact that P and P̃ are ϕ-based transfer schemes implies for all j ∈ N\{1}

p1j = p̃1j = ϕj(c11, d
1(C)).

Now consider i ∈ N an assume that for all g ∈ {1, . . . , i − 1} and h ∈

{1, . . . , n},

pgh = p̃gh.

By equation (2.9),

cii +
∑

g∈N\{i}

pgi = cii +
∑

g<i

pgi

= cii +
∑

g<i

p̃gi

= cii +
∑

g∈N\{i}

p̃gi

and thus for all j ∈ N\{i}

pij = ϕj(cii +
∑

g∈N\{i}

pgi, d
i(C))

= ϕj(cii +
∑

g∈N\{i}

p̃gi, d
i(C)) = p̃ij . �

This theorem implies that on LN,∆ a ϕ-based transfer allocation is uniquely

defined for every bankruptcy rule ϕ. Hence, we can extend each bankruptcy

rule to a hierarchical mutual liability rule.

Let ϕ be a bankruptcy rule. The corresponding hierarchical ϕ-based mu-

tual liability rule ρϕ : LN,∆ → RN is for all C ∈ LN,∆ defined by

ρϕ(C) = αP ,

where P is the unique ϕ-based transfer scheme for C.

An alternative way of using a bankruptcy rule to solve hierarchical mutual

liability problems, is the following recursive procedure that we first illustrate

by means of an example.
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Example 2.4.2 Let N = {1, . . . , 4} and consider C ∈ LN,∆, given by

C =









4 2 4 4
0 3 0 1
0 0 2 3
0 0 0 2









.

In the recursive procedure we start with agent 1, who has no claims on the

other agents. His cash, c11 = 4, is divided on the basis of a bankruptcy prob-

lem with estate 4 and claims, 2, 4 and 4. Hence we treat this subproblem of

the mutual liability problem as a bankruptcy problem (4, (2, 4, 4)). Selecting

ϕ = AM as an appropriate bankruptcy rule, AM(4, (2, 4, 4)) = (1, 1.5, 1.5).

Thus agent 2 gets 1 from agent 1’s cash and agents 3 and 4 both receive 1.5.

Correspondingly we can update our (partly) solved mutual liability problem

into

C1 =









4− 1− 1.5− 1.5 0 0 0
0 3 + 1 0 1
0 0 2 + 1.5 3
0 0 0 2 + 1.5









=









0 0 0 0
0 4 0 1
0 0 3.5 3
0 0 0 3.5









.

In C1 agent 2 has no claim on agent 1 anymore and we allocate c122 = 4 on

the basis of the bankruptcy problem (4, (0, 1)). Since AM(4, (0, 1)) = (0, 1),

this means that 1 is transferred to agent 4 while agent 2 keeps an amount of

3. Updating leads to

C2 =









0 0 0 0
0 3 0 0
0 0 3.5 3
0 0 0 4.5









.

In the next step an amount of 3 is transferred from 3 to 4, and updating

gives

C3 =









0 0 0 0
0 3 0 0
0 0 0.5 0
0 0 0 7.5









.

The diagonal, i.e (0, 3, 0.5, 7.5), of this matrix can be viewed as an allocation

which solves this hierarchical mutual liability problem based on a recursive



26 Chapter 2. On solving mutual liability problems

application of the AM-rule.

Implicitly, we derived the following corresponding bilateral transfer scheme

for C

P =









4 1 1.5 1.5
0 3 0 1
0 0 2 3
0 0 0 2









.

Note that this is the AM-based transfer scheme with corresponding transfer

allocation αP = (0, 3, 0.5, 7.5). /

The formal definition of how to extend mutual liability rules in the recursive

way as described in the previous example is provided below.

Let C ∈ LN,∆ and let ϕ be a bankruptcy rule. Set N = {1, . . . , n} and

assume that cij = 0 for all i, j ∈ N with i > j. Set C0 = C. Recursively, for

j = 1, . . . , n− 1, define Cj ∈ LN,∆ by

cjii =

{

cj−1
ii if i < j

cj−1
ii + ϕi

(

cj−1
jj , (cjk)k∈{j+1,...,n}

)

if i > j

cjjj = cj−1
jj −

∑

k>j

ϕ
(

cj−1
jj , (cjk)k∈{j+1,...,n}

)

(2.10)

cjik =

{

0 if i = j and k 6= i

cj−1
ik if i 6= j and k 6= i.

Finally set

Crec = Cn−1.

Correspondingly, the hierarchical recursive ϕ-based mutual liability rule ξϕ :

LN,∆ → RN is defined by

ξϕ(C) = diag(Crec)

for each C ∈ LN,∆.



2.4. Hierarchical mutual liability problems 27

Interestingly, for every bankruptcy rule ϕ, the recursive ϕ-based mutual lia-

bility rule ξϕ and the hierarchical ϕ-based mutual liability rule ρϕ coincide.

Theorem 2.4.3 For all bankruptcy rules ϕ,

ρϕ = ξϕ.

Proof: Let C ∈ LN,∆ and let ϕ be a bankruptcy rule. Set N = {1, . . . , n}

and assume that cij = 0 for all i, j ∈ N with i > j. Let P = (pij) be the

unique ϕ-based transfer scheme for C. Then, we have that for all i ∈ N

ρϕi (C) = αP
i = cii +

∑

j∈N\{i}

pji −
∑

j∈N\{i}

pij

= cii +
i−1
∑

j=1

pji −
n

∑

j=i+1

pij .

Moreover, for all i ∈ N , ξϕi (C) = ciii, where c
i
ii is determined recursively using

(2.10). Thus it is sufficient to show that for all i ∈ N

ciii = cii +

i−1
∑

j=1

pji −
n

∑

j=i+1

pij. (2.11)

For i = 1, (2.11) is satisfied since

c111 = c11 −
n

∑

j=2

ϕj

(

c11, (c1k)k∈{2,...,n}
)

= c11 −
n

∑

j=2

ϕj

(

c11 +
∑

k∈N\{1}

pk1, d
1(C)

)

= c11 −
n

∑

j=2

p1j .

The first equality follows from (2.10), the second equality holds because

pk1 = 0 for all k ∈ N\{1} and the last equality follows from condition

(ii) of ϕ-based transfer schemes.
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Note that, for all j ∈ N\{1}

c1jj = cjj + ϕj

(

c11, (c1k)k∈{2,...,n}
)

= cjj + p1j.

The proof continues by means of induction. Let i ≤ n− 1 and assume that

ci−1
jj =

{

cjj +
∑i−1

k=1 pkj if j > i− 1

cjj +
∑j−1

k=1 pkj −
∑n

k=j+1 pjk if j ≤ i− 1.

We will prove that

cijj =

{

cjj +
∑i

k=1 pkj if j > i

cjj +
∑i−1

k=1 pkj −
∑n

k=j+1 pjk if j = i.

For j ∈ {i+ 1, . . . , n}, we have that

cijj = ci−1
jj + ϕj

(

ci−1
ii , (cik)k∈{i+1,...,n}

)

= cjj +
i−1
∑

k=1

pkj + ϕj

(

cii +
i−1
∑

k=1

pki, (cik)k∈{i+1,...,n}

)

= cjj +
i−1
∑

k=1

pkj + ϕj

(

cii +
i−1
∑

k=1

pki, d
i(C)

)

= cjj +

i−1
∑

k=1

pkj + pij

= cjj +

i
∑

k=1

pkj,

where the first equality follows from the definition of ξ and the second equality

is based on the induction assumption. Similarly one finds

ciii = ci−1
ii −

n
∑

k=i+1

ϕ
(

ci−1
ii , (cik)k∈{i+1,...,n}

)

= cii +
i−1
∑

k=1

pki −
n

∑

k=i+1

ϕ
(

cii +
i−1
∑

k=1

pki, d
i(C)

)

= cii +
i−1
∑

k=1

pki −
n

∑

k=i+1

pik.
�
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2.5 General mutual liability problems

As seen in Example 2.3.3, the AM bankruptcy rule allows for multiple AM-

based transfer schemes for a non-hierarchical mutual liability problem. For

an arbitrary bankruptcy rule, however, there is always a unique ϕ-based

transfer allocation.

Theorem 2.5.1 Let C ∈ LN , let ϕ be a bankruptcy rule and let P, P̃ ∈

Pϕ(C). Then,

αP = αP̃ .

Proof: On the contrary suppose that αP 6= αP̃ . For notational convenience,

set αP = α and αP̃ = α̃.

Let N = {1, . . . , n}. Without loss of generality we assume that, α1 < α̃1.

Since 0 ≤ α1 < α̃1, Lemma 2.3.5 implies that, for all j ∈ N\{1}

p̃1j = c1j . (2.12)

Since

α̃1 = p̃11 +
∑

j∈N\{1}

(p̃j1 − p̃1j)

= c11 +
∑

j∈N\{1}

(p̃j1 − p̃1j) > c11 +
∑

j∈N\{1}

(pj1 − p1j) = α1,

there must be an agent j ∈ N\{1} for which

p̃j1 − p̃1j > pj1 − p1j .

Therefore, by (2.12),

p̃j1 − p1j ≥ p̃j1 − c1j = p̃j1 − p̃1j > pj1 − p1j

and hence

p̃j1 > pj1.

Without loss of generality we assume that j = 2.
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Note that p21 < p̃21 ≤ c21. Thus, by Lemma 2.3.5, α2 = 0 and therefore

α1 + α2 < α̃1 + α̃2, i.e.,

c11 + c22 +
∑

j∈N\{1}

(pj1 − p1j) +
∑

j∈N\{2}

(pj2 − p2j)

<c11 + c22 +
∑

j∈N\{1}

(p̃j1 − p̃1j) +
∑

j∈N\{2}

(p̃j2 − p̃2j)

and consequently

∑

j∈N\{1,2}

(pj1 − p1j) +
∑

j∈N\{1,2}

(pj2 − p2j)

<
∑

j∈N\{1,2}

(p̃j1 − p̃1j) +
∑

j∈N\{1,2}

(p̃j2 − p̃2j).

Thus there must be an agent ` ∈ N\{1, 2} with

p̃`1 − p̃1` > p`1 − p1`

or

p̃`2 − p̃2` > p`2 − p2`.

Without loss of generality we assume that ` = 3 and that p̃31−p̃13 > p31−p13.

Then,

p̃31 − p13 ≥ p̃31 − c13 =p̃31 − p̃13 > p31 − p13.

Thus we conclude that p̃31 > p31 and, using Lemma 2.3.5, that α3 = 0 and

α1 + α2 + α3 < α̃1 + α̃2 + α̃3.

We can continue with this reasoning with respect to agent 4, 5, . . . , n. As

a result we will find that α1 + α2 + . . . + αn < α̃1 + α̃2 + . . . + α̃n, which is

not possible because of efficiency of a ϕ-based transfer allocation. �

Hence, we can introduce ϕ-based rules for general mutual liability problems.

Let ϕ be a bankruptcy rule. The corresponding ϕ-based mutual liability rule

ρϕ : LN → RN is for all C ∈ LN defined by

ρϕ(C) = αP ,
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where P is a ϕ-based transfer scheme for C.

The final part of this section will provide an axiomatic characterization of

ρAM as a ϕ-based mutual liability rule on the class L of all mutual liability

problems with an arbitrary but finite set of players by extending the C&D-

principle and the property consistency for bankruptcy rules to general mutual

liability rules.

In bankruptcy problems the principle of Concede & Divide is defined for

problems with two claimants. However, in a mutual liability problem with

two agents, every agent faces only one (possible) claimant. For such mutual

liability problems the allocation prescribed by any ϕ-based mutual liability

rule is unique. This is shown in the following lemma.

Lemma 2.5.2 Let C ∈ LN with N = {1, 2}. Let ϕI and ϕII be bankruptcy

rules. Then,

ρϕ
I

(C) = ρϕ
II

(C).

Proof: Note that for all i ∈ N , di(C) has at most one positive claim. Take

P = (pij) ∈ PϕI

(C). Then, with N = {i, j},

pij = ρϕ
I

j (pii + pji, d
i(C))

= ρϕ
II

j (pii + pji, d
i(C)).

Hence, P ∈ PϕII

(C) and thus ρϕ
I

(C) = ρϕ
II

(C). �

Instead, we will define a Concede & Divide principle for mutual liability prob-

lems with three agents, in which every agent has two (possible) claimants.

A mutual liability rule f satisfies the Concede & Divide-principle (C&D) if

for each N with |N | = 3 and for for each C ∈ LN , there exists an underlying

transfer scheme P ∈ P(C) such that f(C) = αP and for each player i ∈ N ,

his ‘estate’ ei = cii +
∑

` 6=i p`i is allocated among the remaining two players,

j, k, respecting the bankruptcy Concede & Divide-principle, i.e.,

pij =

{

cij if ei ≥ cij + cik,

(ei − cik)
+ +

ei−(ei−cik)
+−(ei−cij)+

2
otherwise.

(2.13)
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Example 2.5.3 Reconsider the mutual liability problem C ∈ LN of Exam-

ple 2.2.1 with N = {1, 2, 3} and C given by

C =





3 1 4
2 2 6
1 0 1



 .

Take P ∈ PAM(C) given by

P =





3 1 4
1 2 2
1 0 1





with ρAM(C) = αP = (0, 0, 6). We check that the entries in P satisfy (2.13).

Here, e1 = p11 + p21 + p31 = 5, e2 = 3 and e3 = 7. Both player 1’s and

player 3’s estate are sufficient to satisfy their claimants, hence p12 = c12 = 1,

p13 = 4 and p31 = 1. Player 2’s estate is not sufficient, therefore

p21 = (e2 − c23)
+ +

e2 − (e2 − c21)
+ − (e2 − c23)

+

2
= 0 +

3− 1− 0

2
= 1

and p23 = 2. /

Next, we define the property of consistency for a mutual liability rule. This

property is defined on the class L of mutual liability problems with arbitrary

but finite N . The consistency property requires that a reallocation of the

total amount which has been allocated to a coalition T , on the basis of that

rule and an underlying transfer scheme, does not change the initial individual

allocations within this coalition. A mutual liability rule f for L is called

consistent if for all N and for all C ∈ LN there exists a P ∈ P(C) such that

f(C) = αP and such that for all T ∈ 2N\{∅} with CT,P ∈ LT ,

f(CT,P ) = f(C)|T , (2.14)

where CT,P ∈ RT×T is defined, for all i, j ∈ T , by

cT,Pij =

{

cij if i 6= j,

cii +
∑

k∈N\T (pki − pik) if i = j.
(2.15)

Note that there is only a consistency requirement for T if CT,P ∈ LT . As is

seen in the following example, it can indeed happen that CT,P /∈ LT .
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Example 2.5.4 Let N = {1, 2, 3, 4}. Reconsider the hierarchical mutual

liability problem C ∈ LN of Example 2.2.2, given by

C =









4 2 4 4
0 3 0 1
0 0 2 3
0 0 0 2









.

The unique AM-based transfer scheme P for C is given by

P =









4 1 1.5 1.5
0 3 0 1
0 0 2 3
0 0 0 2









and ρAM = (0, 3, 0.5, 7.5).

With T = {1, 2, 4} we have

CT,P =





2.5 2 4
0 3 1
0 0 5



 ,

which is a mutual liability problem and the unique AM-based transfer scheme

P T for CT,P is given by

P T =





2.5 1 1.5
0 3 1
0 0 5



 ,

while ρAM (CT,P ) = (0, 3, 7.5). We see that the consistency requirement for

this T is satisfied. However, with T = {1, 2, 3}, we obtain

CT,P =





2.5 2 4
0 2 0
0 0 −1



 ,

which is not a mutual liability problem and therefore does not impose a

consistency requirement. /

The AM-based mutual liability rule satisfies consistency and C&D.

Theorem 2.5.5 ρAM is consistent and satisfies C&D.
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Proof: We start with proving C&D. Let C ∈ LN with |N | = 3. Let i ∈ N

and set N\{i} = {j, k}. Consider an arbitrary P ∈ PAM(C). Obviously

ρAM(C) = αP by Theorem 2.5.1. Moreover,

pij = AMj(pii + pji + pki, d
i(C))

= AMj(e
i, (cij, cik)).

Since the bankruptcy rule AM satisfies the C&D principle for bankruptcy

problems, we find that

pij =

{

cij if ei ≥ cij + cik,

(ei − cik)
+ +

ei−(ei−cik)
+−(ei−cij)+

2
otherwise.

Next, we show consistency. For this, let C ∈ LN , consider an arbitrary

P ∈ PAM (C) and let T ∈ 2N\{∅} be such that CT,P ∈ LT . It suffices to

show that ρAM(C)|T = ρAM (CT,P ).

Define P T = (pTij) ∈ RT×T by

pTij =

{

pij if i 6= j

pii +
∑

k∈N\T (pki − pik) if i = j.
(2.16)

We first show that P T ∈ PAM(CT,P ), which implies that αPT

= ρAM(CT,P ).

For this, note that cT,Pii = pTii for all i ∈ T . It remains to prove that for

all i ∈ T and j ∈ T\{i},

pTij = AMj



pTii +
∑

k∈T\{i}

pTki, d
i(CT,P )



 .

This is true because for each i ∈ T and j ∈ T\{i}

pTij = pij = AMj

(

pii +
∑

k∈N\{i} pki, d
i(C)

)

= AMj

(

pii +
∑

k∈N\{i} pki

−
∑

k∈N\T AMk

(

pii +
∑

k∈N\{i} pki, d
i(C)

)

, di(C)|T

)

= AMj

(

pii +
∑

k∈N\{i} pki −
∑

k∈N\T pik, d
i(C)|T

)

= AMj

(

pii +
∑

k∈N\T (pki − pik) +
∑

k∈T\{i} pki, d
i(C)|T

)

= AMj

(

pTii +
∑

k∈T\{i} p
T
ki, d

i(CT,P )
)

,
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where the third equality follows from consistency of AM , the fourth equality

follows from the fact that P ∈ PAM (C), while the last equality follows from

(2.16).

The proof is finished if we show that αPT

= ρAM(C)|T . For this, note that

with i ∈ T

αPT

i = pTii +
∑

j∈T\{i}

(pTji − pTij)

= pii +
∑

j∈N\T

(pji − pij) +
∑

j∈T\{i}

(pji − pij)

= pii +
∑

j∈N\{i}

(pji − pij)

= αP
i = ρAM

i (C).
�

We conclude this section with a characterization of the AM-based mutual

liability rule.

Theorem 2.5.6 Let ϕ be a bankruptcy rule. Then, ρϕ = ρAM if and only if

ρϕ satisfies consistency and C&D.

Proof: For the “only if”-part, we refer to Theorem 2.5.5. To prove the

“if”-part, let ϕ be a bankruptcy rule such that ρϕ satisfies consistency and

C&D. As we have seen before, the class B of bankruptcy problems is a

subclass of L by identifying each (E, d) ∈ BN with N = {1, . . . , n}, with

C(E, d) ∈ LN∪{0},∆ given by

C(E, d) =











0 1 · · · n

0 E d1 · · · dn

1 0 0 · · · 0
...

...
. . .

...

n 0 · · · 0











.
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Let P be the unique ϕ-based transfer scheme for C(E, d). Then,

P =











E p01 · · · p0n
0 0 · · · 0
...

. . .
...

0 · · · 0











,

with

αP
i =

{

p0i if i ∈ N,

E −
∑

j∈N p0j if i = 0.

Moreover, for all i ∈ N

ρϕi (C(E, d)) = αP
i = p0i = ϕ(c00, d

0(C)) = ϕi(E, d). (2.17)

Thus ϕ(E, d) = ρϕ(C(E, d))|N .

If we can show that

(i) C&D of ρϕ on L implies C&D of ϕ on B,

(ii) consistency of ρϕ on L implies consistency of ϕ on B,

then, ϕ = AM (cf. Aumann and Maschler (1985)) and consequently ρϕ =

ρAM .

For this, we first show that P is the unique transfer scheme for C(E, d)

that leads to the transfer allocation αP and for this reason C&D and consis-

tency of ρϕ can only have implications on P .

Let P̃ = (p̃ij) ∈ P(C(E, d)) be an arbitrary transfer scheme for C(E, d)

with P̃ 6= P . Then,

P̃ =











E p̃01 · · · p̃0n
0 0 · · · 0
...

. . .
...

0 · · · 0











and there must be a player i ∈ N with p̃0i 6= p0i. Hence, α
P̃ 6= αP .
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With respect to (i), let N = {1, 2} and (E, d) ∈ BN . Let i ∈ N and

{j} = N\{i}. We need to show that

ϕi(E, d) =

{

di if E ≥ d1 + d2,

(E − dj)
+ +

E−(E−di)+−(E−dj)+

2
otherwise.

C&D on L and (2.17) imply that ϕi(E, d) = ρϕi (C(E, d)) and, with c0i =

C0i(E, d) and c0j = C0j(E, d), that

ρϕi (C(E, d)) =

{

c0i if e0 ≥ c01 + c02,

(e0 − c0j)
+ +

e0−(e0−c0i)
+−(e0−c0j)

+

2
otherwise,

=

{

di if E ≥ d1 + d2,

(E − dj)
+ +

E−(E−di)
+−(E−dj)

+

2
otherwise.

With respect to (ii), let (E, d) ∈ BN and T ∈ 2N\{∅}. We have to prove that

ϕ(E, d)|T = ϕ(
∑

j∈T

ϕj(E, d), d|T ).

Let T = {k1, . . . , kt}. Then, using (2.15) and (2.17),

CT∪{0},P (E, d) =















0 k1 · · · kt

0 E −
∑

j∈N\T ϕj(E, d) dk1 · · · dkt

k1 0 0 · · · 0
...

...
. . .

...

kt 0 · · · 0















.

Clearly, CT∪{0},P (E, d) ∈ LT∪{0},∆ and

CT∪{0},P (E, d) = C(E −
∑

j∈N\T

ϕj(E, d), d|T ).

Using consistency, we find for all i ∈ T that

ρϕi (C(E, d))|T∪{0} = ρϕi (C(E −
∑

j∈N\T

ϕj(E, d), d|T )).
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By equation (2.17), for all i ∈ T

{

ρϕi (C(E, d)) = ϕi(E, d)

ρϕi (C(E −
∑

j∈N\T ϕj(E, d), d|T )) = ϕi(E −
∑

j∈N\T ϕj(E, d), d|T )

and therefore,

ϕ((E, d))|T = ϕ(E −
∑

j∈N\T

ϕj(E, d), d|T ) = ϕ(
∑

j∈T

ϕj(E, d), d|T ),

where the last equality follows from (2.1). �

2.6 Alternative approaches

In this section we discuss two alternative approaches to analyze mutual lia-

bility problems: a reduction approach and a hydraulic approach.

2.6.1 Reduction approach

In the reduction approach a general mutual liability problem is reduced to

a more tractable hierarchical mutual liability problem. The main difference

between hierarchical and non-hierarchical mutual liability problems is the

(non-)existence of cycles of claims.

In this section we show that, by eliminating these cycles, it is possible to

reduce a general mutual liability problem to a hierarchical mutual liability

problem, but that such a reduction is not possible without changing the na-

ture of the mutual liability problem. There are choices to be made. Different

reduction choices can result in different reduced hierarchical mutual liability

problems.

The possibilities regarding reduction steps and the subsequent effects will

be illustrated in the following example.
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Example 2.6.1 Let N = {1, 2, 3, 4} and let C ∈ LN be given by

C =









4 5 8 7
1 8 3 12
9 6 6 2
1 1 5 7









,

with ρAM (C) = (0, 21
3
, 31

3
, 191

3
).

A natural first step in reducing a general mutual liability problem is to as-

sume that on a bilateral level the claims are already settled. Thus for all

pairs i, j ∈ N with i 6= j, cijcji = 0. The bilaterally leveled claim matrix

C̄ = (c̄ij) ∈ LN is obtained from C in the following way

c̄ij =

{

[cij − cji]
+ if j 6= i

cii if j = i.

Thus, we eliminate cycles of length 2 and obtain

C̄ =









4 4 0 6
0 8 0 11
1 3 6 0
0 0 3 7









,

which is still a non-hierarchical mutual liability problem.

Not only can we level claims bilaterally, we can also do this for longer cycles.

In the matrix C̄ we can find multiple cycles of claims. The longest one, with

length 4, goes from player 1 to player 2, then from player 2 to player 4, from

player 4 to player 3 and from player 3 back to player 1, see the bold entries

in C̄ below:

C̄ =









4 4 0 6
0 8 0 11
1 3 6 0
0 0 3 7









.

Since the lowest claim in this cycle is 1 (c̄31 = 1), we can reduce the cycle

by 1, which results in the following non-hierarchical mutual liability problem
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C1:

C1 =









4 3 0 6
0 8 0 10
0 3 6 0
0 0 2 7









.

In C1 we detect another cycle: from 2 to 4, to 3 and back to 2. We can

reduce the claims by an amount of 2, with the hierarchical mutual liability

problem C1,∆ as a result. Here,

C1,∆ =









4 3 0 6
0 8 0 8
0 1 6 0
0 0 0 7









is a hierarchical mutual liability problem; if we rearrange the rows and

columns in the order (1, 3, 2, 4), the matrix is upper triangular. We have

that ρAM(C1,∆) = (0, 2.5, 5, 17.5) 6= ρAM(C).

In the mutual liability problem C̄, we can also start with the cycle: from

2 to 4, to 3 and back to 2 as shown by the bold entries in C̄ below:

C̄ =









4 4 0 6
0 8 0 11
1 3 6 0
0 0 3 7









.

In this case we can reduce all claims with an amount of 3 and we would

immediately end up with the hierarchical mutual liability problem C2,∆ given

by

C2,∆ =









4 4 0 6
0 8 0 8
1 0 6 0
0 0 0 7









.

If we rearrange the players in the order (3, 1, 2, 4), then the matrix is upper

triangular. Note that ρAM(C2,∆) = (0, 2, 5, 18) which is different from both

ρAM(C) and ρAM(C1,∆). /
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2.6.2 Hydraulic approach

Kaminski (2000) states that a bankruptcy rule is called hydraulic if it can

be represented as a system of connected vessels. The vessels represent the

claim of a player and the liquid is the estate available. Inspired by hydraulic

representation of bankruptcy rules, one could search for hydraulic solutions

for hierarchical mutual liability problems. We will, however, not introduce a

general hydraulic framework for liability problems. The aim of this subsection

is to give an idea of a possible alternative approach. First, we describe a

hydraulic method by means of an example.

Figure 2.6.1: A hydraulic solution for Example 2.6.2

Example 2.6.2 Let N = {1, 2, 3, 4}. Consider the mutual liability problem



42 Chapter 2. On solving mutual liability problems

C ∈ LN,∆, given by

C =









6 3 4 5
0 1 2 3
0 0 2 3
0 0 0 0









.

Every agent’s cash can be seen as a vessel of liquid that is connected to its

claimants by a system of equally wide tubes. The tube from 1 to 3 can

only transfer c13 = 4 units of liquid, after this amount the tube is closed or

disconnected. Hence c13 is the capacity of tube13. The same holds for all

other entries in C. This is represented in Figure 2.6.1, in the left system of

connected vessels. The digit in a shaded area indicates the content level of

the vessel and the digit in a rhombus represent the capacity of a tube. We

open all the vessels simultaneously and let the liquid flow, until no flow is

possible anymore.

In this way, for agent 1, through every outgoing tube, an amount of 2 will

be transferred to vessels 2, 3 and 4. The remaining capacity of the tubes are

2, 1 and 3, respectively.

The initial content of the second vessel, 1, is divided equally among 3

and 4, but at the same time an extra amount of 2 flows into his vessel via

tube12 and this amount is also divided among 3 and 4. In this way we can

continue with vessel 3 and 4. The final result is shown in Figure 2.6.1, in

the righthand side system of connected vessels. The final allocation equals

(0, 0, 2.5, 6.5).

This hydraulic scheme fits with the CEA idea and in fact it can be shown

that for this example ρCEA(C) = (0, 0, 2.5, 6.5). /

Example 2.6.2 shows that one can model a hierarchical mutual liability prob-

lem as a system of connected vessels. We choose for a rationing method that,

in this example, coincides with the CEA-based mutual liability rule. We pre-

sume, but did not prove, that this is the case in general. There are, however,

many other hydraulic paths to follow.



Chapter 3

Game theoretic analysis of
maximum cooperative
purchasing situations

3.1 Introduction

This chapter, which is based on Groote Schaarsberg, Borm, Hamers, and

Reijnierse (2013), introduces and analyzes a new class of interactive coop-

erative purchasing situations: maximum cooperative purchasing situations.

Before introducing this new class of problems, we first describe the rationale

behind interactive cooperative purchasing.

A purchasing cooperative consists of organizations that collaborate in their

purchasing process, e.g., in sharing information, bundling order quantities or

sharing transportation services, in order to obtain benefits. If we focus on

bundling order quantities, cooperative purchasing2 seems an easy and ratio-

nal solution for a group of purchasers facing quantity discounts. However, it

is not as simple as that. In this chapter we analyze interactive purchasing

situations where the unit price depends on the largest order quantity within a

group of players. According to Tella and Virolainen (2005) the main motives

of organizations to become member of a cooperative are to obtain information

and — in the long run — to obtain cost savings, due to increasing returns

2Cooperative purchasing is also referred to as group buying or group purchasing.

43
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to scale. Increasing returns to scale are analyzed in many micro-economic

situations, e.g., in the production industry (Hsu and Li (2009)) and health

care industry (Schneider, Miller, Ohsfeldt, Morrisey, Zelner, and Li (2008)).

In purchasing practise the increasing returns to scale of production often

translates in a quantity discount for the buyers or customers (cf. Monahan

(1984)). Naturally purchasers want to exploit these discounts, but they can-

not simply increase their order quantities. So organizations try to cooperate

in purchasing. But why do all hospitals in the US not unite themselves to

suppress pharmacists’ prices of medicines? How come all high-schools in the

Netherlands do not purchase computers cooperatively to obtain a substantial

price reduction?

The reasons are simple. Firstly, it is quite hard to manage and combine

the purchasing processes of a large group of organizations. But even if the

groups would be manageable, they would not easily form because of a second

reason: the group members should agree on how to divide the obtained cost

savings beforehand. Too simple cost savings allocation schemes may cause

some members of the cooperative to feel better off alone, to be better off in

sub-cooperatives or simply to think that the allocation method is not fair.

According to Schotanus (2007) the fair allocation of cost savings is one of the

main critical success factors for the stability of purchasing groups. Also in a

large-scale survey among logistic service providers in Flanders, it was found

by Cruijssen, Cools, and Dullaert (2007) that organizations believe in the

potential of horizontal cooperation, but consider the allocation of the actual

cost savings as one of the most important impediments of the cooperative.

A useful tool for finding fair allocations of cost savings that follow from

cooperative behavior is provided by cooperative game theory. The frequently

used model of transferable utility games fits the nature of cooperative pur-

chasing situations. In a transferable utility game (or TU-game) each coalition

of players is associated with a certain monetary value (transferable utility),

which corresponds to the benefits this coalition can obtain by optimal co-

operation amongst themselves, and without help from players outside the

coalition. These coalitional values can be used as a benchmark for dividing

the cost savings of the grand coalition (coalition of all players). Based on
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different ideas of fairness, multiple solution concepts for general cooperative

TU-games have been developed. A generally accepted concept of fairness is

the combination of efficiency and stability. Efficiency implies that we do not

allocate more than the value of the grand coalition, nor do we award a pos-

itive allocation to entities outside the players of the game. Stability means

that no coalition has an incentive to split off. The set of all efficient and sta-

ble allocations is called the core of a game. This set can, however, be empty.

While the core prescribes a set of possible allocations, one can also look for

single-valued solutions. Several single-valued or one-point solution concepts

for TU-games have been introduced in the literature. Due to their attractive

properties the Shapley value (Shapley (1953)) and the nucleolus (Schmeidler

(1969)) are the most commonly studied and applied solution concepts. In

this chapter we will show that these two solution concepts result in suitable

allocation methods for a specific class of interactive purchasing situations.

We are not the first to investigate cooperative purchasing (CP)-situations.

Anand and Aron (2003) are pioneers in studying cooperative purchasing us-

ing analytical models. Amongst others, they derive optimal pricing schedules

for the supplier facing purchasing cooperatives. Also, from the purchasers

perspective analytical models have been developed, e.g., on the develop-

ment of purchasing groups in the health care industry (Nollet and Beaulieu

(2003)) and the formation of coalitions by means of the internet (Granot

and Sošić (2005)). There have appeared qualitative considerations in the

literature linking game theory and cooperative purchasing, but more in an

explanatory sense than in analyzing its exact implications, e.g., Blomqvist,

Kylheiko, and Virolainen (2002) or Tella and Virolainen (2005). Only re-

cently, CP-situations have been formally modeled as a game. Keskinocak

and Savasaneril (2008) analyze the situation where purchasers are possible

competitors. In Heijboer (2003), Schotanus (2007) and Nagarajan, Sošić, and

Zhang (2010) a purchasing cooperative is modeled as a cooperative transfer-

able utility game. The unit price depends on the sum of the order quantities;

the higher the total order quantity, the lower the unit price.

In this chapter we analyze situations that are not covered by the cooperative
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models considered in the literature above. Consider the situation where a

general practitioner needs daily supplies like sterile needles, bandages, com-

presses and drugs. He can buy these supplies at a pharmaceutical company.

The pharmaceutical industry and its prices are not transparent, so one can

imagine that the general practitioner ends up with a high unit price. A large

hospital buys its supplies at the same pharmaceutical companies, but it has

greater knowledge of the market and a better bargaining position towards

its possible suppliers. As a result the hospital can negotiate for a lower unit

price. The general practitioner could try to set up some cooperative with the

hospital to decrease his own unit prices. Adding the two order quantities,

however, will not result in a lower unit price for both organizations. If the

single practitioner can use the terms and contract of the hospital, he would

be willing to pay a (small) fee to the hospital for this ‘riding along’. Both the

hospital and the general practitioner would then be better off in this small

cooperative.

This form of cooperative purchasing fits in a framework developed by

Schotanus (2007): a typology of organizational forms of cooperative purchas-

ing. One of these types involves piggy-backing groups, informal purchasing

cooperatives that wish to keep cooperation as simple as possible. Mostly it

enhances a relatively large organization that negotiates with the supplier on

its own and the resulting contract may be used by some smaller organiza-

tions. The example the author provides is a consortium of local governmental

institutions in the North of the Netherlands. These institutions have a piggy-

backing group that has existed for more than 20 years.

Now, let us describe this subclass of cooperative purchasing situations more

formally. In this chapter, we consider horizontal cooperation between two

or more organizations that find themselves at the same position in the sup-

ply chain. We consider a group of organizations all having individual order

quantities with respect to a certain commodity. The involved organizations

might be competitors in the end market but it is not likely that they will

influence the cooperation, since they are better off within a cooperative. The

Dutch Superunie is a good example. It is a purchasing cooperative consist-

ing of small competing supermarket chains, who must cooperate to remain
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competitive towards large organizations like Albert Heijn. For this reason we

assume that the fact that the organizations are possible competitors will not

influence the cooperation.

Like in previous work, we consider the bundling and sharing of purchasing

volumes and focus on the main motive on the long run: quantity discounts.

These discounts imply direct cost savings for the members of a coopera-

tive. Contrary to Schotanus (2007) and Nagarajan et al. (2010) we consider

purchasing situations where the unit price does not depend on the sum of

those order quantities, but on the maximum of the individual order quan-

tities. Each group of organizations can negotiate for their own terms and

unit prices separately. The outcome of each negotiation depends on the or-

ganization with largest order quantity and is independent of the size of order

quantities of other group members. The larger the largest order quantity,

the lower the unit price. Hence, by cooperating the organizations can obtain

a smaller unit price and obtain cost savings. Within a group of purchasing

organizations, the smaller organizations simply let the largest organization

add their order quantities to the total order. They use the terms and con-

tract of the larger organization and its individually negotiated unit price.

As explained by Schotanus (2007), the coordination costs for this form of

cooperative purchasing can be assumed to be relatively low.

We explicitly address the problem of finding suitable allocation methods

for the cost savings in this class of cooperative purchasing situations. To

this end we define a cooperative transferable utility game corresponding to a

maximum cooperative purchasing (MCP) situation, i.e., a CP-situation with

a max unit price function. In general, quantity discounts are a sufficient

condition for a nonempty core of an associated MCP-game as we can always

find a stable allocation of the cost savings. One of the core-elements is a

marginal vector of the MCP-game and can be obtained via the Direct Price

solution method in which every organization pays the price that follows from

the grand coalition. For the organization with largest order quantity this

implies that he receives no price reductions at all. This solution method is

such that the payoffs to organizations increase as the group size increases

(population monotonic). In terms of piggy-backing, however, this method
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leads to a cooperation fee equal to zero. Hence, the organization with largest

order quantity will not easily agree with the Direct Price solution as alloca-

tion method. Therefore we propose two alternative allocation methods: the

nucleolus (Schmeidler (1969)) and the Shapley value (Shapley (1953)) of the

MCP-game.

The nucleolus of a TU-game minimizes the maximal unhappiness over all

coalitions, where the unhappiness of a coalition with respect to an allocation

is measured by the excess; the difference between the worth of the coalition

and what they together obtain in the allocation. If the core of a TU-game is

nonempty, the nucleolus is an element of this set.

In general, finding the nucleolus of a cooperative game is a hard task.

Kohlberg (1971) developed a criterion to check whether an allocation equals

the nucleolus of that game. Based on this criterion, several algorithms have

been developed to compute the nucleolus, all not of polynomial time. For a

compact overview see Leng and Parlar (2010). Reijnierse and Potters (1998)

explain which collections of coalitions are essential to determine the nucleolus

and show that these collections may differ from the ones of Kohlberg. In-

spired by the results of Potters, Reijnierse, and Ansing (1996) and Reijnierse

and Potters (1998), this chapter provides an alternative and explicit charac-

terization of the nucleolus for general cooperative games with a nonempty

core. To its advantage this characterization is more constructive in nature

than the Kohlberg criterion.

Using this new criterion, the nucleolus of an MCP-game can be found via

a so-called nucleolus-determinant: a collection of disjoint coalitions and their

corresponding excesses. It is shown that these excesses can be interpreted as

the fee the organizations in the coalition have to pay. Moreover we show how

to find a nucleolus-determinant recursively with an algorithm of polynomial

time.

The second single-valued solution concept we consider is the Shapley value.

The Shapley value incorporates all possible marginal contributions from a

player to a coalition and averages them over all coalitions, with a correction

to the size of the coalitions. However, computing all marginal contributions
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is quite time consuming in general. An alternative way of finding the Shapley

value of a TU-game is by using the decomposition of the game into a linear

combination of unanimity games. Due to the specific structure of MCP-

games, the decomposition into a linear combination of unanimity games can

be easily determined. Using this decomposition we derive an explicit expres-

sion for the Shapley value, which can be nicely interpreted as stemming from

a tax and subsidize system in which an individual organization receives or

pays a certain percentage of the cost savings of all two-player coalitions.

Both the nucleolus and the Shapley value are attractive solution concepts

from a general game theoretic point of view. We conclude the chapter with

a numerical comparison between the behavior of the Shapley value and the

nucleolus in MCP-situations and for illustrative reasons we also compare the

two game theoretic solution concepts with the Direct Price solution. We

see that for MCP-situations, the Shapley value and the nucleolus prescribe

rather similar allocation proposals and that the differences between the pre-

scribed proposals are relatively small. Generally speaking, the difference is

that organizations with order quantities close to the order quantity of the

largest player are expected to be better off in the Shapley value, while play-

ers with smaller order quantities are expected to better off in the nucleolus.

The difference between the two game theoretic solutions on the one hand and

the Direct Price solution on the other hand is, however, relatively large.

The structure of this chapter is as follows. In Section 3.2 we formally in-

troduce MCP-situations, define corresponding MCP-games, discuss some ap-

pealing properties of these games and explain their specific structure. Then,

in Section 3.3 we analyze the Direct Price solution and its relation to the core

of an MCP-game. In Section 3.4 an explicit alternative characterization is

provided for the nucleolus of an arbitrary cooperative game with a nonempty

core, and in Section 3.5 we calculate the nucleolus of an MCP-game, based on

this alternative characterization. Section 3.6 focusses on the Shapley value

of an MCP-game and Section 3.7 provides a numerical comparison between

the various allocation proposals.
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3.2 MCP-situations and corresponding games

This section provides the formal description of maximum cooperative pur-

chasing (MCP)-situations and defines corresponding cooperative MCP-games.

Formally, we have a player set N = {1, . . . , n}, n ≥ 2, with a vector of

order quantities q ∈ RN
+ . There is a commonly known unit price function

p : [0,∞) → [0,∞) that maps an order quantity to some unit price. We

assume the unit price function to be weakly decreasing. For the remainder of

this chapter we assume, without loss of generality, that the order quantities

are arranged in nondecreasing order, i.e., 0 < q1 ≤ q2 ≤ . . . ≤ qn. The class

of all MCP-situations is denoted by M and a single MCP-situation is given

by the triple (N, q, p) ∈ M. Note that n, the number of players, is variable.

To analyze the allocation aspects of an MCP-situation we will construct

a corresponding cooperative TU-game. A cooperative game (N, v) is defined

by a finite set N of players and a function v on the set 2N of all subsets

(coalitions) of N . This function v is called the characteristic function and

assigns to each coalition S ∈ 2N a value v(S) ∈ R such that v(∅) = 0. The

value v(S) represents the joint monetary rewards a coalition S can accom-

plish or realize by optimal cooperation among themselves.

Consider a subgroup S ∈ 2N of purchasing organizations. The unit price

corresponding to that coalition of purchasers is determined by its member

with maximal order quantity. By assumption this is the player with highest

index. Hence S pays p(qs) per unit, with s = max{i : i ∈ S}. Without

cooperation a player i ∈ S would have paid p(qi) per unit. Looking at the

corresponding cost savings as monetary revenues, the characteristic function

of the cooperative MCP-game (N,w) corresponding to an MCP-situation

(N, q, p) ∈ M is defined for all S ∈ 2N by

w(S) =
∑

j∈S

[p(qi)qi]− p(qs)
∑

j∈S

qj (3.1)

and it reflects the maximum cost savings a coalition S can establish. For

ease of notation we set pi = p(qi) for all i ∈ N . Specifically, from (3.1) it
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readily follows that the value of an arbitrary two-player coalition with i < j

equals

w({i, j}) = (pi − pj)qi. (3.2)

Since we assume the unit price function to be weakly decreasing we find a

specific order in the two-player coalitions. If j < k then for all i < j it holds

that

w({i, j}) ≤ w({i, k}). (3.3)

By the nature of cost savings, each MCP-game is nonnegative with all single

player coalitions having value 0. The following example illustrates an MCP-

game.

Example 3.2.1 Consider an MCP-situation (N, q, p) ∈ M with N = {1, 2,

3, 4}, q = (2, 4, 8, 12) and unit price function p : [0,∞) → [0,∞) with p(t) =

10+ 12
t
. Hence the individual ordering costs of player 1 are p(2)·2 = 16·2 = 32.

For players 2, 3 and 4, the individual ordering costs are 52, 92 and 132, re-

spectively. The following table represents the corresponding MCP-game.

S {1} {2} {3} {4} {1,2}
w(S) 0 0 0 0 6
S {1,3} {1,4} {2,3} {2,4} {3,4}

w(S) 9 10 6 8 4
S {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

w(S) 15 18 14 12 22

Note that w({1, 4})+w({2, 4})+w({3, 4}) = w({1, 2, 3, 4}), while w({1, 3})+

w({2, 3}) = w({1, 2, 3}). /

The final observations we made in Example 3.2.1 are true in general. Since

the price depends on the maximum order quantity, the largest player s in a

coalition S solely determines the unit price. Every other player in coalition

S profits from the unit price decrease, independent of the order quantities of

the players in S\{s}. Thus the value of a coalition S consists of what every
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individual player in S can accomplish with the largest player in S. This leads

to the following theorem.

Theorem 3.2.2 Let (N,w) be the MCP-game corresponding to an MCP-

situation (N, q, p) ∈ M. Let S ⊂ N with |S| ≥ 2 and s ∈ S with s = max{i :

i ∈ S}. Then,

w(S) =
∑

j∈S

w({j, s}). (3.4)

Proof: By (3.1) and (3.2) we have

w(S) =
∑

j∈S

pjqj −
∑

j∈S

psqj =
∑

j∈S

(pj − ps)qj =
∑

j∈S

w({j, s}). �

The special structure of MCP-games fits in a framework of cost-coalitional

problems as provided by Meca and Sošić (2013). In such problems there is

a player or a group of players, called the benefactors, whose participation

in a cooperative always contributes to the savings of all members. In MCP-

situations the player or players with largest order quantity are the benefac-

tors. Furthermore, note that an MCP-game is not a k-game as described in

Van den Nouweland, Borm, Golstein Brouwers van, Groot Bruinderink, and

Tijs (1996)

A game (N, v) is monotonic if for all S, T ∈ 2N , with S ⊂ T , v(S) ≤ v(T ).

The game is superadditive if for all S, T ∈ 2N with S ∩T = ∅, v(S) + v(T ) ≤

v(S∪T ). These two properties imply that if a coalition adapts more players,

its value increases as well, and if a coalition breaks up in smaller coalitions

they cannot increase the cost savings. Hence, any player i ∈ N would like to

join the largest coalition possible, i.e., N\{i}.

Using Theorem 3.2.2, we can verify that each MCP-game is monotonic and

superadditive.

Corollary 3.2.3 Let (N, q, p) ∈ M and let (N,w) be the corresponding

MCP-game. Then, (N,w) is monotonic and superadditive.
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Proof: Since (N,w) is non-negative, it is sufficient to show that (N,w) is

superadditive. Take S, T ∈ 2N with s = max{i : i ∈ S} and t = max{t : t ∈

T}. Then, for all S, T ∈ 2N with S ∩ T = ∅ and without loss of generality

s < t,

w(S) + w(T ) =
∑

j∈S

w({j, s}) +
∑

j∈T

w({j, t})

≤
∑

j∈S∪T

w({j, t}) = w(S ∪ T ). �

3.3 The core and the Direct Price solution

As explained in the introduction of this chapter, within the game theoretic

literature one can find several ways or policies to allocate the value of the

grand coalition. The coalitional values v(S) in a game (N, v) form a natural

benchmark to evaluate an allocation method. We mentioned two basic eval-

uation properties, efficiency and stability. An allocation x ∈ RN is efficient if
∑

i∈N xi = v(N). An allocation x is stable if for all S ∈ 2N ,
∑

i∈S xi ≥ v(S).

The set of efficient and stable allocations is called the core of a TU-game,

which is denoted by C(v). In general, this set can be empty.

A frequently studied property for a game is convexity . Convexity requires

that for all j ∈ N and S, T ∈ 2N with S ⊂ T ⊂ N\{j}, v(S ∪ {j})− v(S) ≤

v(T ∪ {j}) − v(T ). Hence, joining a large coalition T will lead to a larger

marginal contribution than joining a subset of this group of players S ⊂ T . It

is shown by Shapley (1967) that if (N, v) is convex, then C(v) 6= ∅. However,

an MCP-game is not necessarily convex.

Example 3.3.1 Reconsider the game of Example 3.2.1. This game is not

convex. If player 3 joins player 1, the extra cost savings are w({1, 3}) −

w({1}) = 9. If, however, player 3 joins the larger coalition {1, 4}, the extra

cost savings are w({1, 3, 4})− w({1, 4}) = 4, which is lower than 9, contra-

dicting convexity.

The core of this game is nonempty and is given by

C(w) =conv{(10, 8, 4, 0), (10, 8, 0, 4), (10, 6, 0, 6), (10, 2, 4, 6),

(9, 8, 0, 5), (5, 8, 4, 5), (9, 2, 4, 7), (5, 6, 4, 7), (9, 6, 0, 7)}.
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A special core element is the allocation (10, 8, 4, 0). This allocation can be

seen as the result of applying a direct pricing principle: every player pays

the price that can be negotiated for the grand coalition. In this case that

price is 11. Thus player 1 obtains cost savings for his own order quantity

of q1(p1 − p4) = 2(16 − 11) = 10, player 2 of 4(13 − 11) = 8, player 3 of

8(11.5− 11) = 4, and player 4 of 0. /

The direct pricing principle illustrated in Example 2.3.1 can be formalized.

Definition The Direct Price solution DP onM is such that for all (N, q, p) ∈

M and for all i ∈ N ,

DPi(N, q, p) = (pi − pn)qi.

Note that according to (3.2), DPi(N, q, p) = w({i, n}) for all i ∈ N and all

(N, q, p) ∈ M, with (N,w) the corresponding MCP-game. For an arbitrary

MCP-situation, the allocation resulting from the Direct Price solution be-

longs to the core of the corresponding MCP-game. Hence, any MCP-game

has a nonempty core.

Theorem 3.3.2 Let (N,w) be the MCP-game corresponding to an MCP-

situation (N, q, p) ∈ M. Then,

DP (N, q, p) ∈ C(w).

Proof: Using Theorem 3.2.2,

∑

i∈N

DPi(N, q, p) =
∑

i∈N

w({i, n}) = w(N).

Let S ∈ 2N . Using (3.3) we find that

w(S) =
∑

i∈S

w({i, s}) ≤
∑

i∈S

w({i, n}) =
∑

i∈S

DPi(N, q, p),

where s = max{i : i ∈ S}. �
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Let (N, v) be a TU-game and let σ ∈ Π(N), where σ(k) is interpreted as

the player in position k. For σ ∈ Π(N), the marginal vector mσ(v) ∈ RN

corresponding to σ is defined by

mσ
σ(k)(v) = v({σ(1), . . . , σ(k)})− v({σ(1), . . . , σ(k − 1)}) (3.5)

for all k ∈ {1, . . . , |N |}. Note that for all σ ∈ Π(N), mσ
σ(1)(v) = v({σ(1)}). A

game (N, v) is convex if and only if all marginal vectors of that game belong

to the core. An MCP-game is in general not convex, but we will point out

several specific marginal vectors of an MCP-game (N,w) that are elements

of C(w).

Lemma 3.3.3 Let (N,w) be the MCP-game corresponding to an MCP-situ-

ation (N, q, p) ∈ M.

(i) The marginal vector corresponding to any σ1 ∈ Π(N) with σ1(1) = n,

is a core element.

(ii) The marginal vector corresponding to any σ2 ∈ Π(N) with σ2(1) = n−1

and σ2(2) = n, is a core element.

Proof: (i) Using (3.4) the marginal vector corresponding to σ1 is given by

mσ1

(w) = (w({1, n}), w({2, n}), . . . , w({n− 1, n}), 0) = DP (N, q, p).

(ii) Using (3.4) the marginal vector corresponding to σ2 is given by

mσ2

(w) = (w({1, n}), w({2, n}), . . . , w({n− 2, n}), 0, w({n− 1, n})).

Thus for all S ∈ 2N

∑

i∈S

mσ2

i (w) =

{

w({n− 1, n}) +
∑

i∈S\{n−1}w({i, n}) if n ∈ S,
∑

i∈S\{n−1} w({i, n}) otherwise.

If n ∈ S, then w({n − 1, n}) +
∑

i∈S\{n−1} w(i, n) ≥
∑

i∈S w(i, n) ≥ w(S).

If n /∈ S, then
∑

i∈S\{n−1}w({i, n}) ≥
∑

i∈S\{n−1}w({i, s}) = w(S), with

s = max{i : i ∈ S}. Hence, we have that
∑

i∈S m
σ2

i (w) ≥ w(S) for all

S ∈ 2N . �
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The next theorem shows that if there are two players with lowest unit price,

the core of the MCP-game consists of one single point, the allocation pre-

scribed by the Direct Price solution. Moreover this is the only class of MCP-

situations for which the core of the MCP-game consists of one point, this is

shown in the next theorem.

Theorem 3.3.4 Let (N, q, p) ∈ M and let (N,w) be the corresponding

MCP-game. Then

C(w) = {DP (N, q, p)} if and only if pn−1 = pn.

Proof: Let C(w) = {DP (N, q, p)}. Then, according to Lemma 3.3.3,mσ1(w) =

mσ2(w) with σ1 and σ2 as defined there. Hence 0 = w({n − 1, n}) =

(pn−1 − pn)qn−1 and thus pn−1 = pn.

Let pn−1 = pn. This implies that for all i ∈ {1, . . . , n − 2}, w({i, n − 1}) =

w({i, n}) and w({n − 1, n}) = 0. By Theorem 3.3.2 it is sufficient to show

that x ∈ C(w) implies that x = DP (N, q, p). Let x ∈ C(w). Then

0 = w({n}) ≤ xn ≤ w(N)− w(N\{n})

=

n−1
∑

j=1

w({j, n})−
n−2
∑

j=1

w({j, n− 1})

= w({n− 1, n})

= 0.

Hence, xn = 0 = DPn(N, q, p).

Similarly we have for all i ∈ N\{n},

xi ≤ w(N)− w(N\{i}) =
∑

j∈N

w({j, n})−
∑

j∈N\{i}

w({j, n})

= w({i, n})

and hence

w(N) =

n−1
∑

i=1

xi ≤
n−1
∑

i=1

w({i, n}) = w(N).
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Hence, for all i ∈ N\{n}, xi = w({i, n}) = DPi(N, q, p). �

The Direct Price solution coincides with the altruistic allocation of Meca and

Sošić (2013), where it is also used for describing the size of the core of the

game corresponding to cost-coalitional problems.

The Direct Price solution has the appealing property that the players in N

do not have a monetary incentive to reject a new agent j who wants to join

N .

Theorem 3.3.5 Let (N, q, p) ∈ M and consider a player j /∈ N with de-

mand qj. Then for all i ∈ N

DPi(N, q, p) ≤ DPi(N ∪ {j}, q̄, p),

where q̄ = (q`)`∈N∪{j}.

Proof: Let i ∈ N . There are two possibilities: either qj > qn or qj ≤ qn.

In the first case pj ≤ pn and DPi(N ∪ {j}, q̄, p) = (pi − pj)qi ≥ (pi − pn)qi =

DPi(N, q, p). In the second case, obviously DPi(N∪{j}, q̄, p) = DPi(N, q, p).

�

In fact, from Theorem 3.3.5 one readily derives that the Direct Price solu-

tion is population monotonic. Combining this with Theorem 3.3.4, we can

conclude that the Direct Price solution leads to a stable allocation scheme

in which each player’s payoff increases (non-decreases) as the grand coalition

of cooperative purchasers grows larger. This is also known as a population

monotonic allocation scheme (PMAS) as introduced by Sprumont (1990).

Example 3.3.6 Reconsider Example 3.2.1 with DP (N, q, p) = (10, 8, 4, 0).

This allocation is quite extreme as all bilateral profits go to the ‘smaller’

players. A less extreme allocation x would be to let the two players i and n

share the obtained cost savings equally, leading to

x =
(1

2
w({1, 4}),

1

2
w({2, 4}),

1

2
w({3, 4}),

1

2
w({1, 4}) +

1

2
w({2, 4}) +

1

2
w({3, 4})

)

=(5, 4, 2, 11).
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Figure 3.3.1: Core and Shared Set of Example 3.2.1

This allocation is not a core-element. It can be seen, however, that all

core-elements can be obtained if we allow differentiation with respect to

the sharing level among pairs of players. For example for the barycenter

y = (85
9
, 6, 22

9
, 52

9
) of the core, we have that

y =
(77

90
w({1, 4}),

3

4
w({2, 4}),

5

9
w({3, 4}),

13

90
w({1, 4}) +

1

4
w({2, 4}) +

4

9
w({3, 4})

)

.

In the tetrahedron of Figure 3.3.1, the dotted box represents all allocations

obtained via sharing methods. The polyhedron inside that box is the core of

the game. /

Based on the ideas of Example 3.3.6 we define a sharing rule δλ onM. Define

∆N as the set of all share vectors λ ∈ RN with for all i ∈ N , λi ∈ [0, 1]. Here

λi can be interpreted as the share player i obtains of his bilateral profits with

n.

Definition For all (N, q, p) ∈ M and all λ ∈ ∆N

δλi (N, q, p) =

{

λi(pi − pn)qi if i ∈ N\{n},
∑

j∈N(1− λj)(pj − pn)qj if i = n.
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Note that the choice of λn does not affect the allocation proposed by δλ. Also

note that δλ
∗
= DP , for λ∗ ∈ ∆N such that λ∗

i = 1 for all i ∈ N\{n}. Next,

consider the Shared Set , defined by

S(N, q, p) = {δλ(N, q, p)|λ ∈ ∆N},

as all possible allocations generated by a sharing rule. The next proposition

shows that all core elements can be generated via sharing rules.

Proposition 3.3.7 Let (N, q, p) ∈ M and let (N,w) be the corresponding

MCP-game. Then

C(w) ⊂ S(N, q, p).

Proof: Let x ∈ C(w). Define λ ∈ RN by λi =
xi

(pi−pn)qi
, i ∈ {1, . . . , n−1} and

λn = 1. Since, for all i ∈ N\{n}, 0 ≤ xi ≤ w(N) − w(N\{i}) ≤ w({i, n}),

we have λ ∈ ∆N . Obviously, δλi (N, q, p) = xi for all i ∈ N and hence

x ∈ S(N, q, p). �

3.4 The nucleolus of a game with a nonempty

core

In this section we derive an alternative characterization of the nucleolus of a

TU-game with nonempty core, which will be used in Section 3.5 to find the

nucleolus of an MCP-game.

Let (N, v) be a TU-game. We define CN = 2N\{∅, N} as the collection of

proper subsets of N . The imputation set is given by all individually rational

and efficient vectors, i.e.,

I(v) =

{

x ∈ RN
∣

∣

∣

∑

j∈N

xj = v(N), xi ≥ v({i}) for all i ∈ N

}

.

An element x ∈ I(v) is called an imputation. Let E(S, x) = v(S)−
∑

j∈S xj

be the excess of coalition S ∈ 2N with respect to an imputation x ∈ I(v).



60 Chapter 3. Game theoretic analysis of MCP-situations

Note that θ(x) ∈ R|2N | is the vector of excesses arranged in non-increasing

order. The nucleolus nuc(v) (Schmeidler (1969)) of a TU-game (N, v) with

I(v) 6= ∅, is the unique imputation which lexicographically minimizes θ. Thus

for all x ∈ I(v),

θ(nuc(v)) ≤L θ(x).

The nucleolus minimizes the maximum dissatisfaction level over all coalitions

and it is a stable solution concept, i.e., if C(v) 6= ∅, then nuc(v) ∈ C(v).

Finding the nucleolus of a TU-game is not easy, in general it takesO(|N |×

2|N |) steps3. To check whether a certain imputation x ∈ I(v) is the nucleolus

of the game, one can use the following criterion, due to Kohlberg (1971).

Let B1(x) = {T ∈ CN |E(T, x) ≥ E(S, x) for all S ∈ CN} be the collection

of coalitions with highest excess. Recursively define for r = 2, 3, . . .

Br(x) =

{

T ∈ CN
∣

∣

∣
T /∈

r−1
⋃

k=1

Bk(x),E(T, x) ≥ E(S, x)

for all S ∈ CN with S /∈
r−1
⋃

k=1

Bk(x)

}

.

Let t ∈ N be such that Bt(x) 6= ∅ and Bt+1(x) = ∅.

For r ∈ {1, . . . , t} define

Br(x) =
r
⋃

k=1

Bk(x).

Theorem 3.4.1 (Kohlberg (1971)) Let (N, v) be a TU-game with C(v) 6= ∅

and let x ∈ I(v). Then, x = nuc(v) if and only if Br(x) is balanced for all

r ∈ {1, . . . , t}.

Here a collection B ⊂ CN is balanced if there exists a vector λ ∈ RCN

satisfying λS > 0 for all S ∈ B and λS = 0 for all S /∈ B, such that
∑

S∈B λS1
S = 1

N .

3Let g : X → R. We say f(x) is of the order g(x), or O(g(x)), if there exists M ∈ R+

and xo ∈ R such that |f(x)| ≤ M |g(x)| for all x ∈ X with x > xo.
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From this theorem Kohlberg (1972) derived a procedure to calculate the

nucleolus of a cooperative game, by solving one large linear program. Due

to Potters et al. (1996) there is a faster method to determine the nucleolus.

The rough idea is based on efficiency of the nucleolus. If one has found two

disjoint coalitions S and T that belong to B1(nuc(v)) and one also knows

their corresponding excesses, then one also knows the excesses that belong

to N\S, N\T , S ∪ T and N\(S ∪ T ). As a follow up Reijnierse and Potters

(1998) provide a sufficient condition for a collection of coalitions to deter-

mine the nucleolus of a game. This condition can be used to formulate a new

alternative criterion to check whether a certain imputation is the nucleolus

of the game.

For a collection B ⊂ CN define

H(B) = {S ∈ 2N |1S ∈ span{1N , [1T ]T∈B}}.

An alternative way of finding H(B) is using H-closed sets. A collection of

coalitions W ⊂ 2N is H-closed, if

(i) N ∈ W

(ii) for all R ∈ W, N\R ∈ W

(iii) for all R,U ∈ W with R ∩ U = ∅, R ∪ U ∈ W.

Then, H(B) is the smallest H-closed set containing B.

The following theorem gives an explicit alternative characterization of the

nucleolus of a game with a nonempty core.

Theorem 3.4.2 Let (N, v) be a TU-game with C(v) 6= ∅. Let x ∈ I(v).

Then x = nuc(v) if and only if there exists a sequence D1,D2, . . . ,Dτ of

nonempty subcollections of CN with the following properties

(i) for al r ∈ {1, . . . , τ} the collection Dr =

r
⋃

k=1

Dk is balanced,
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(ii) there exists a sequence of real numbers γ1, γ2, . . . , γτ such that E(S, x) =

γr for every S ∈ Dr and γ1 ≥ γ2 ≥ . . . ≥ γτ .

(iii) for all S ∈ CN\Dτ we have S ∈ H({T ∈ Dτ : E(T, x) ≥ E(S, x)}).

Proof: “only if”-part: Let x = nuc(v) and t ∈ N is such that Bt(nuc(v)) 6= ∅

and Bt+1(nuc(v)) = ∅. Set τ = t and Dr = Br(nuc(v)) for all r ∈ {1, . . . , τ}.

Then, by Theorem 3.4.1 it is obvious that the sequence satisfies Properties

(i) and (ii) and since Dt = CN also Property (iii) is satisfied.

“if”-part: Let x ∈ I(v) and let t ∈ N be such that Bt(x) 6= ∅ and Bt+1(x) = ∅.

Let the collections D1, . . . ,Dτ and the numbers γ1, γ2, . . . , γτ be such that

Properties (i), (ii) and (iii) are satisfied. For all r ∈ {1, . . . , t}, define

κr = E(S, x) for S ∈ Br(x). Obviously κ1 > κ2 > . . . > κt. We will

show that x meets the Kohlberg criterion, proceeding by means of induction.

If κ1 = γτ , define ` = τ . Otherwise, γr = κ1 > γr+1 for some r ∈ {1, . . . , τ −
1}, define ` = r. Then, κ1 = γ1 = . . . = γ` and D` ⊂ B1(x). Hence

B1(x) = D` ∪ {S /∈ Dτ |E(S, x) = κ1}.

For any S ∈ B1(x) with S /∈ Dτ

{T ∈ Dτ : E(T, x) ≥ E(S, x)} = D`.

Hence, by Property (iii), S ∈ H(D`).

In order to prove that B1(x) is balanced, it is sufficient to show that for any

S ∈ B1(x) with S /∈ Dτ , D` ∪ {S} is balanced. Since S ∈ H(D`),

1
S = µN1

N +
∑

T∈D`

µT1
T for some µ ∈ R2N\{∅}.

Moreover, since D` is balanced there exists a vector λ ∈ RCN

with λT > 0

for all T ∈ D` such that

∑

T∈D`

λT1
T = 1

N .
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We have that

1
S =

∑

T∈D`

(µNλT + µT )1
T

and for any α ∈ R,

∑

T∈D`

λT1
T + α(1S −

∑

T∈D`

(µNλT + µT )1
T ) = 1

N ,

i.e.,

α1S +
∑

T∈D`

(λT − α[µNλT + µT ])1
T = 1

N .

Choosing α > 0 small enough, we derive that D` ∪ {S} is balanced.

Proceeding by induction we assume that Bk(x) is balanced for some k ∈
{2, . . . , τ − 1}. We will show that Bk+1(x) is balanced too. If κk+1 ≤ γτ ,

define ` = τ . Otherwise, γr ≥ κk+1 > γr+1 for some r ∈ {1, . . . , τ − 1}. In

this case, define ` = r. Then, D` ⊂ Bk+1(x). Hence,

Bk+1(x) = D` ∪ {S /∈ Dτ |E(S, x) = κk+1}.

It is sufficient to prove that for any S ∈ Bk+1(x) with S /∈ Dτ , D` ∪ {S}
is balanced. Since S ∈ H(D`) and D` is balanced, we can use the same

argument as for the induction base. There exists a vector µ ∈ R2N\{∅}, and

a vector λ ∈ RCN

with λT > 0 for all T ∈ D` such that for any α ∈ R

α1S +
∑

T∈D`

(λT − α[µNλT + µT ])1
T = 1

N .

Again, choosing α > 0 small enough, we derive that D`∪{S} is balanced. �

3.5 The nucleolus of MCP-games

This section explains how one can compute the nucleolus of an MCP-game.

We start with the following easy observation.
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Proposition 3.5.1 Let (N,w) be an MCP-game corresponding to MCP-

situation (N, q, p) ∈ M. Then,

nuc(w) = DP (N, q, p) if and only if pn−1 = pn.

Proof: If pn−1 = pn, then by Theorem 3.3.4, C(w) = {DP (N, q, p)} and

hence nuc(w) = DP (N, q, p).

Let nuc(w) = DP (N, q, p). Then, for all S ∈ CN such that n ∈ S,

E(S, nuc(w)) = w(S)−
∑

i∈S

DPi(N, q, p) =
∑

i∈S

qi(pi−pn)−
∑

i∈S

qi(pi−pn) = 0.

Since {S ∈ 2N\{N, ∅}|n ∈ S} is not balanced, the Kohlberg criterion (Theo-

rem 3.4.1) implies that there is a coalition S ⊂ N\{n} with the same excess

as a coalition containing n, i.e.

0 = E(S, nuc(w)) = w(S)−
∑

j∈S

w({j, n})

=
∑

j∈S

w({j, s})−
∑

j∈S

w({j, n})

=
∑

j∈S

qj(pj − ps)−
∑

j∈S

qj(pj − pn),

with s = max{i : i ∈ S}. Hence, ps = pn and consequently pn−1 = pn. �

Next we provide an explicit relation between the Direct Price solution of an

MCP-situation and the nucleolus of the corresponding MCP-game. For this

we use a so-called nucleolus-determinant . First, we simply state the recur-

sion to find such a nucleolus-determinant. This recursion is rather technical.

Then, an explicit expression for the nucleolus is provided. The interpreta-

tion of this nucleolus-determinant and the nucleolus itself are given after the

proof. Finally, by means of an example, we explain how one can use this

recursion. Furthermore we show that this recursion leads to an algorithm of

polynomial time to find the nucleolus of an MCP-game.

Denote pS = ps if s = max{i : i ∈ S}.
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Nucleolus-Determinant-recursion

Input : (N, q, p) ∈ M.

Initialization:

Set F1 = {S|S ⊂ N\{n}, S 6= ∅},
F̃1 =

{

T ∈ F1

∣

∣

∣

(pn−pT )
∑

j∈T qj

1+|T |
≥ (pn−pS)

∑
j∈S qj

1+|S|
for all S ∈ F1

}

,

choose T1 ∈ F̃1,

set e1 =
(pn−pT1)

∑
j∈T1

qj

1+|T1|
,

S1 = T1

and r = 2.

Recursion:

If

r−1
⋃

k=1

Sk 6= N\{n},

define fr : Fr → (−∞, 0]

by fr(S) =

(pn − pS)
∑

j∈S

qj −
r−1
∑

k=1

|S ∩ Sk|ek

1 +
∣

∣

∣
S\

r−1
⋃

k=1

Sk

∣

∣

∣

, S ∈ Fr.

Set Fr = {S|S ⊂ N\{n}, S\⋃r−1
k=1 Sk 6= ∅},

F̃r = {T ∈ Fr |fr(T ) ≥ fr(S) for all S ∈ Fr } .

Choose Tr ∈ F̃r,
set er = fr(Tr),

Sr = Tr\
r−1
⋃

k=1

Sk

and r = r + 1.
Otherwise: set τ = r − 1. STOP

Output : A nucleolus-determinant {(S1, e1), (S2, e2), . . . , (Sτ , eτ )}, with (S1,

. . . , Sτ ) a partition of N\{n}.

Theorem 3.5.2 Let (N, q, p) ∈ M and let (N,w) be the corresponding

MCP-game.

Let {(S1, e1), (S2, e2), . . . , (Sτ , eτ )} be a nucleolus-determinant. Then, for all
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r ∈ {1, . . . , τ} and all i ∈ Sr

nuci(w) = qi(pi − pn) + er,

nucn(w) =

τ
∑

k=1

(−|Sk|ek).

In the proof of Theorem 3.5.2 we use the following lemma.

Lemma 3.5.3 Let (N, q, p) ∈ M and let (N,w) be the corresponding MCP-

game. Let i ∈ N and S ∈ 2N be such that n ∈ S ⊂ N\{i} and let x ∈ I(w)

be such that xi ≤ w(N)− w(N\{i}). Then,

E(S ∪ {i}, x) ≥ E(S, x).

Proof: Since xi ≤ w(N)− w(N\{i}),

E(S ∪ {i}, x)− E(S, x) = w(S ∪ {i})− w(S)− xi

= qi(pi − pn)− xi

≥ qi(pi − pn)− w(N) + w(N\{i})
= 0.

�

Proof of Theorem 3.5.2: For all r = 1, . . . , τ , and for all i ∈ Sr we set

{

xi = qi(pi − pn) + er

xn =
∑τ

k=1(−|Sk|ek).

For all r ∈ {1, . . . , τ}, let Tr ∈ F̃r be the coalition the recursion chose. Define

for all r ∈ {1, . . . , τ}

Dr = Tr ∪ {N\{i}}i∈Sr .

We will show that the sequence D1, . . . ,Dτ satisfies the three properties of

Theorem 3.4.2.

Property (i)
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Clearly, we have that Dr is balanced for all r ∈ {1, . . . , τ}. Hence the se-

quence D1, . . . ,Dτ satisfies Property (i) of Theorem 3.4.2.

Property (ii)

Regarding Property (ii), we first prove that for all r ∈ {1, . . . , τ}, E(S, x) =

er for all S ∈ Dr.

Take r ∈ {1, . . . , τ}. Then for all i ∈ Sr

E(N\{i}, x) = w(N\{i})−
∑

j∈N\{i}

xj

=
∑

j∈N\{i}

qj(pj − pn)− (w(N)− xi)

=
∑

j∈N\{i}

qj(pj − pn)−
∑

j∈N

qi(pi − pn) + xi

= −qi(pi − pn) + qi(pi − pn) + er

= er.

For Tr itself it holds that

E(Tr, x) = w(Tr)−
∑

j∈Tr

xj

=
∑

j∈Tr

qj(pj − pTr)−
r

∑

k=1

∑

j∈Tr∩Sk

[qj(pj − pn) + ek]

=
∑

j∈Tr

qj(pn − pTr)−
r

∑

k=1

|Tr ∩ Sk|ek

= fr(Tr)(1 + |Tr ∩ Sr|)− |Tr ∩ Sr|er
= er(1 + |S ∩ Sr|)− |S ∩ Sr|er
= er.

To finish the proof of Property (ii) it remains to show that e1 ≥ e2 ≥ . . . ≥ eτ .

Note that Tr+1 ∈ Fr. Suppose that for some r ≤ τ − 1, er < er+1. Then by

definition of er,

fr+1(Tr+1) = er+1 > er ≥ fr(Tr+1).



68 Chapter 3. Game theoretic analysis of MCP-situations

Hence

(pn − pTr+1)
∑

j∈Tr+1

qj −
r

∑

k=1

|Tr+1 ∩ Sk|ek

1 +
∣

∣

∣
Tr+1\

r
⋃

k=1

Sk

∣

∣

∣

>

(pn − pTr+1)
∑

j∈Tr+1

qj −
r−1
∑

k=1

|Tr+1 ∩ Sk|ek

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

. (3.6)

For (3.6) to hold, we must have that Tr+1 ∩ Sr 6= ∅. Denote

α = (pn − pTr+1)
∑

j∈Tr+1

qj −
r−1
∑

k=1

|Tr+1 ∩ Sk|ek.

Then, however, Inequality (3.6) would imply that

α− |Tr+1 ∩ Sr|er

1 +
∣

∣

∣
Tr\

r
⋃

k=1

Sk

∣

∣

∣

− α

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

> 0,

and thus that

(

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

)(

α− |Tr+1 ∩ Sr|er
)

−
(

1 +
∣

∣

∣
Tr+1\

r
⋃

k=1

Sk

∣

∣

∣

)

α > 0,

resulting in

(

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

)

α−
(

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

)

|Tr+1 ∩ Sr|er >

(

1 +
∣

∣

∣
Tr+1\

r
⋃

k=1

Sk

∣

∣

∣

)

α,

and the following sequence of inequalities

|Tr+1 ∩ Sr|α−
(

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

)

|Tr+1 ∩ Sr|er > 0,
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α−
(

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

)

er > 0,

α

1 +
∣

∣

∣
Tr+1\

r−1
⋃

k=1

Sk

∣

∣

∣

> er,

fr(Tr+1) > er,

that establishes a contradiction.

Property (iii)

Regarding Property (iii). Let S ∈ CN\Dτ .

We will prove that S ∈ H({T ∈ Dτ |E(T, x) ≥ E(S, x)}).

Case 1 : n ∈ S

Let r ∈ {1, . . . , τ} be such that

{

N\{j} ∈ Dr for some j ∈ N\S,
N\{i} ∈ Ds with r ≥ s for all i ∈ N\S.

Then, N\{i} ∈ Dr for all i ∈ N\S and by Lemma 3.5.34, for all i ∈ N\S,
E(S, x) ≤ E(N\{j}, x) ≤ E(N\{i}, x).
Since 1S = (|S| − n+ 1)1N +

∑

i∈N\S 1
N\{i}, we have that S ∈ H({T ∈ Dτ :

E(T, x) ≥ E(S, x)}).

Case 2 : n /∈ S.

Let S ∈ Fτ . Since fτ (S) ≤ eτ , we have

E(S, x) =
∑

j∈S

qj(pn − pS)−
τ

∑

k=1

|S ∩ Sk|ek

= fτ (S)(1 + |S ∩ Sτ |)− |S ∩ Sτ |eτ
≤ eτ (1 + |S ∩ Sτ |)− |S ∩ Sτ |eτ
= eτ .

4Note that since e1 ≤ 0, Property (ii) implies that er ≤ 0 for all r ∈ {2, . . . , τ}. Hence,
xi ≤ DPi(N, q, p), and thus xi ≤ w(N) − w(N\{i}) for all i ∈ N\S. The condition in
Lemma 3.5.3 is satisfied.
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Let S /∈ Fτ and let r ∈ {1, . . . , τ − 1} be such that S ∈ Fr\Fr+1. Then

S ⊂
r
⋃

k=1

Sk and since fr(S) ≤ er we have

E(S, x) =
∑

j∈S

qj(pn − pS)−
r

∑

k=1

|S ∩ Sk|ek

= fr(S)(1 + |S ∩ Sr|)− |S ∩ Sr|er
≤ er(1 + |S ∩ Sr|)− |S ∩ Sr|er
= er.

Let i ∈ S. Since S ⊂
r
⋃

k=1

Sk, there is an Sk such that i ∈ Sk and hence

N\{i} ∈ Dk, with k ≤ r. Moreover 1S = |S|1N − ∑

i∈S 1
N\{i}. Hence

S ∈ H({T ∈ Dτ : E(T, x) ≥ E(S, x)}). �

In the proof of Theorem 3.5.2 we showed that er ≤ 0 for all r ∈ {1, . . . , τ}.
Here, er is the excess of coalition Tr. Thus the nucleolus of an MCP-game

modifies the Direct Price solution. It can be interpreted in the following way.

Every player in Sj should pay a fee −ej to player n for using his discounted

unit price. Thus a nucleolus-determinant puts every player in a certain fee-

class and determines the heights of those fees. From Proposition 3.5.1 it is

clear that if pn−1 = pn, the fee of all players equals zero.

Before showing that the nucleolus of an MCP-game can be found using an

algorithm with polynomial time-complexity, we want to make a short remark.

Remark

We sketch how a similar algorithm for determining the nucleolus of an MCP-

game can be derived from the results of Arin and Feltkamp (1997). That

paper introduces an algorithm for computing the nucleolus of a veto-rich

game: games in which for all coalitions one of the players is needed in order

to obtain a positive payoff. The algorithm they develop is exponential in the

number of players. Formally, we can transform an MCP-game (N,w) into a

veto-rich game (N, w̄) with veto-player n, by defining for all S ∈ 2N\{∅}

w̄(S) =
∑

j∈S

w({i, n})− (w(N)− w(N\S)).
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One can show that for every game with a nonempty core (N, v), nuc(N, v) =

−nuc(N,−v∗) where (N, v∗) represents the dual game of (N, v), i.e., for all

S ∈ 2N

v∗(S) = v(N)− v(N\S).

Also for any additive game a ∈ RN , nuc(va) = nuc(v) + a, where for all

S ∈ 2N

va(S) = v(S) +
∑

j∈S

aj .

Since (N, w̄) is an additive game minus the dual game of (N,w), the nucle-

olus of (N,w) can be directly obtained from the nucleolus of (N, w̄).

However, when applying the general algorithm of Arin and Feltkamp (1997),

one does not obtain a direct interpretation of the allocations proposed by

the nucleolus in terms of the parameters of the underlying MCP-situation.

Therefore, we have chosen to develop a situation-specific algorithm, that

explicitly depends on the prices p and the quantities q. Moreover, the al-

gorithm allows for a specific acceleration step to make it polynomial, as is

shown below.

Example 3.5.4 Consider the following MCP-situation (N, q, p), with N =

{1, 2, 3, 4}, q = (10, 45, 100, 250) and p = (10, 8, 7, 5). Let (N,w) be the

corresponding MCP-game. We are going to compute the nucleolus of the

corresponding MCP-game (N,w), using the nucleolus-determinant recursion.

We have F1 = {S|S ⊂ {1, 2, 3}} and the values for f1(S), S ∈ F1 are

Table 3.5.1: Values of fr(S)
S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

f1(S) −25 −67.5 −100 −55 −731
3

−962
3

−771
2

f2(S) −671

2
−100 −70 −971

2
−962

3
−95

f3(S) −100 −971

2
−1141

4
−1083

4

presented in Table 3.5.1, in the second row. From this table we can conclude
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that F̃1 = {1}, hence T1 = {1}, S1 = {1} and e1 = −25. From this step in

the recursion one can conclude that: nuc1(w) = 50− 25 = 25 and

{

E({1}, nuc(w)) = −25

E(N\{1}, nuc(w)) = −25.

The next step in the nucleolus-determinant recursion is to find T2 ∈ F̃2, where

F2 equals {{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The values for f2(S), S ∈
F2, are also given in Table 3.5.1, in the third row. Thus T2 = S2 = {2} with

e2 = −67.5. Hence nuc2(w) = 67.5 and

{

E({2}, nuc(w)) = −67.5

E(N\{2}, nuc(w)) = −67.5.

Since the nucleolus is efficient, we also know the excesses of {1, 2} and {3, 4},


















E({1, 2}, nuc(w)) = w({1, 2})− (nuc1(w) + nuc2(w)) = −72.5

E(N\{1, 2}, nuc(w)) = w({3, 4})− (nuc3(w) + nuc4(w))

= w({3, 4})− (w(N)− nuc1(w)− nuc2(w))

= −92.5

Hence, F3 = {{3}, {1, 3}, {2, 3}, {1, 2, 3}}, and f3(S), S ∈ F3, can be found

in the last row of Table 3.5.1. In this step we find that T3 = {1, 3} thus

S3 = {3} with e3 = −97.5. Thus for player 3, nuc3(w) = 102.5. Now

S1∪S2∪S3 = N\{4}, hence we can stop and determine nuc4(w) = −(−25−
67.5− 97.5) = 190.

This procedure is faster than the general way of computing the nucleolus,

but it is still exponential in the number of players. In the next paragraphs we

again calculate the nucleolus of this example, but use a polynomial method.

If we look closer at the function f1(S), we can find a coalition T1 belonging

to F̃1 more efficiently. To do so, we need to maximize
∑

j∈S qj(p4 − pS)

1 + |S| ,

over all coalitions in F1. Since p4 is always less than the unit prices of players

1, 2 or 3, the fraction is negative. Thus it is wise to have pS and |S| large,
but

∑

j∈S qj low. So we need to determine the price setter of S, and then



3.5. The nucleolus of MCP-games 73

add smaller players to increase |S| and keep
∑

j∈S qj small. If we have that

player 3 is the price setter and it is beneficial to add player 2, then adding

player 1 must also increase the fraction. Thus T1 has the following structure,

T1 = {1, . . . , m, z},

where z is the largest player in the coalition, the price setter, and we add

smaller players 1 up to m. If m = 0, then T1 = {z}. For this example we

can make the following combinations:
(m, z) (0, 1) (1, 2) (1, 3) (0, 2) (2, 3) (0, 3)
S {1} {1, 2} {1, 3} {2} {1, 2, 3} {3}

In Table 3.5.1 we can see that f1({1}) is maximal, thus z = 1.

Also we can speed up the search for a coalition T2 belonging to F̃2. We

need to maximize the following fraction

∑

j∈S qj(p4 − pS)− |S ∩ S1|e1
1 + |S\S1|

,

over all S ∈ F2. Either pS = p2 or pS = p3, since {1} /∈ F2. If adding player

k not yet in S1 increases the fraction, then also adding player j < k with

j /∈ S1 increases the fraction. We only add player 1 if q1(p4 − pz) < e1. Thus

T2 has the following structure

T2 =
(

{1, . . . , m, z} ∩N\S1

)

∪ {i ∈ {1} : qi(p4 − pz) > ei}.

Since q1(p4 − p3) = −20 > −25, it is always beneficial to add player 1 to a

coalition with player 3 being the price setter. Hence we start by comparing

the values of f2({1, 3}) and f2({1, 2, 3}) and find that f2({1, 2, 3}) is the

highest. Since q1(p4 − p2) = −30 < −25, we do not want to add player 1

to a coalition with player 2 being the price setter. Now we need to compare

f2({1, 2, 3}) with f2({2}) and we find that f2({2}) is the highest, hence T2 =

{2}.
Following the same reasoning as for step 2 in the recursion we know that

pS = p3 and T3 has the following structure

T3 = {3} ∪ {i ∈ {1, 2} : qi(p4 − p3) > ei}.
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We only add player 1 if q1(p4 − p3) > e1 and player 2 if q2(p4 − p3) > e2. In

the previous round we found that q1(p4 − p3) > e1, hence we add player 1 to

player 3 and since q2(p4 − p3) = −90 < −67.5 we do not add player 2. Thus

T3 = {1, 3}. /

Example 3.5.4 shows that one can speed up the Nucleolus-determinant re-

cursion at the point of determining a coalition Tr belonging to F̃r. T1 has

the structure {1, . . . , m, z} for some 0 ≤ m < z ≤ n − 1, thus
∑n−1

z=1 z =
1
2
(n−1)(n−2) numbers need to be compared to find T1. Furthermore Tr for

r ∈ {2, . . . , τ} has the structure

{z} ∪
(

{1, . . . , m} ∩
[

N\
(

r−1
⋃

k=1

Sk ∪ {n}
)

])

∪
{

j ∈ Sk : qj(pn − pz)− ek > 0, j < z

}r−1

k=1

.

Fix z and look which m maximizes

fr

(

{z} ∪
(

{1, . . . , m} ∩
[

N\
(

r−1
⋃

k=1

Sk ∪ {n}
)

]

))

.

Then, we add players from
⋃r−1

k=1 Sk if that further increases fr. Hence, by

comparing at most (n−1)2 numbers, we can find Tr ∈ F̃r for all r ∈ {2, . . . , τ}
with τ ≤ n − 1. From these observations we can readily derive that the

nucleolus of an MCP-game can be found in polynomial time.

Theorem 3.5.5 Let (N, q, p) ∈ M be an MCP-situation with (N,w) the

corresponding MCP-game. Then, nuc(w) can be determined in O(n3) time.

3.6 The Shapley value of MCP-games

In this section we analyze the Shapley value (Shapley (1953)) of an MCP-

game and show that it is a suitable allocation method for an MCP-situation.

An explicit context-specific expression for the Shapley value is provided.
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Originally the Shapley value is introduced as the average of all |N |! marginal

vectors of a TU-game. We introduced marginal vectors in Section 3.3 in

Equation (3.5). Let (N, v) be a TU-game. Then, the Shapley value φ(v) ∈
RN is given by

φ(v) =
∑

σ∈Π(N)

mσ(v)

|N |! .

There is another method for calculating the Shapley value of a TU-game,

which we will use in determining the Shapley value of an MCP-game. For

this we need the notion of unanimity games. For T ∈ 2N\{∅} the unanimity

game (N, uT ) is defined by

uT (S) =

{

1 if T ⊂ S,

0 otherwise,

for all S ∈ 2N . Thus the unanimity game (N, uT ) states that without all

players in T , a coalition S ∈ 2N has value zero.

Every TU-game (N, v) can be written in a unique way as a linear combi-

nation of unanimity games, i.e. there is a unique vector c ∈ R2N\{∅}
, such

that

v =
∑

T∈2N\{∅}

cTuT .

Example 3.6.1 We consider the MCP-situation of Example 3.2.1 without

player 4. Hence N = {1, 2, 3}, q = (2, 4, 8) and p(t) = 10 + 12
t
, for t ∈ R+.

We are going to decompose the corresponding MCP-game into a linear com-

bination of unanimity games. The following table represents the correspond-

ing MCP-game, and for illustrative purposes also the unanimity games u{1},

u{1,2} and uN .

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
w(S) 0 0 0 6 9 6 15
u{1}(S) 1 0 0 1 1 0 1
u{1,2}(S) 0 0 0 1 0 0 1
uN(S) 0 0 0 0 0 0 1
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To find a vector c ∈ R2N\{∅} such that w =
∑

T∈2N\{∅} cTuT , we start with

the singletons. We have that c{1}u{1} = w({1}), hence c{1} = 0. Simi-

larly c{2} = c{3} = 0. Secondly, c{1,2}u{1,2} + c{1}u{1} + c{2}u{2} = w({1, 2}).
Hence, c{1,2} = w({1, 2}) = 6 and similarly c{1,3} = w({1, 3}) = 9 and

c{2,3} = w({2, 3}) = 6. Finally, c{1,2,3} = w({1, 2, 3}) − ∑

T∈2N\N cT =

15− 6− 9− 6 = −6. /

In case of an MCP-game, the coefficients for a linear decomposition into

unanimity games, can be determined quite easily using Theorem 3.2.2. For all

T ∈ 2N with |T | ≥ 2 define aT , bT ∈ T such that T ∩ {1, . . . , bT} = {aT , bT },
i.e., player aT is the player within T with lowest index and player bT is the

player within T with second lowest index.

Theorem 3.6.2 Let (N,w) be an MCP-game corresponding to an MCP-

situation (N, q, p) ∈ M. Let c ∈ R2N\{∅} be such that

w =
∑

T∈2N\{∅}

cTuT .

Then, for |T | = 1, cT = 0 and for |T | ≥ 2, we have that

cT = (−1)|T |w({aT , bT }). (3.7)

In the proof of Theorem 3.6.2, we use the following lemma.

Lemma 3.6.3 Let a ∈ N, a ≥ 1. Then

(i)

a
∑

j=0

(

a

j

)

(−1)j = 0,

(ii)
a−1
∑

j=0

(

a

j

)

(−1)j =

{

−1 if a is even,

1 if a is odd.

Proof: (i) Clearly,

a
∑

j=0

(

a

j

)

(−1)j =
a

∑

j=0

(

a

j

)

(−1)j(1)a−j = (1− 1)a = 0,
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where the second equality follows from the binomium of Newton.

(ii) This follows immediately from (i). �

Proof of Theorem 3.6.2: First note that for all T ∈ 2N\{∅} the coefficients

in the decomposition of w can be determined recursively in the following way:

cT = w(T )−
∑

S∈2N\{∅},S(T

cT . (3.8)

Hence, for |T | = 1, cT = w({i}) = 0. Let |T | = 2. According to (3.8)

cT = w(T ) = (−1)|T |w(T ) = (−1)|T |w({aT , bT}).

Thus for |T | = 2, (3.7) is valid. To prove (3.7), we will use induction on the

number of players in T .

Assume that for all |T | ≤ k − 1

cT = (−1)|T |w({aT , bT}).

Let |T | = k and for ease of notation we set T = {t1, t2, . . . , tk} such that

qt1 ≤ qt2 ≤ . . . ≤ qtk . Clearly aT = t1 and bT = t2. Then, by (3.8) and by

Theorem 3.2.2, we have

cT =
k

∑

h=1

w({th, tk})−
∑

S∈2N\{∅},S(T

cS. (3.9)

The last sum in (3.9) can be rewritten by counting the number of proper

sub-coalitions S containing player th and ti with h < i such that S ∩
{1, 2, . . . , ti} = {th, ti}. For {th, ti} with i ≥ 3, this number is

∑k−i

j=0

(

k−i

j

)
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and for {t1, t2} this number is
∑k−3

j=0

(

k−2
j

)

. Hence

∑

S∈2N\{∅}
S(T

cS =

k
∑

i=3

i−1
∑

h=1

w({th, ti})
k−i
∑

j=0

(

k − i

j

)

(−1)j+2

+w({t1, t2})
k−3
∑

j=0

(

k − 2

j

)

(−1)j+2

=
k−1
∑

h=1

w({th, tk}) +
k−1
∑

i=3

i−1
∑

h=1

w({th, ti})
k−i
∑

j=0

(

k − i

j

)

(−1)j

+w({t1, t2})
k−3
∑

j=0

(

k − 2

j

)

(−1)j

=

k−1
∑

h=1

w({th, tk}) + w({t1, t2})(−1)k−1.

The third equality follows from Lemma 3.6.3(i) and 3.6.3(ii). Hence

cT =
k−1
∑

h=1

w({th, tk})−
k−1
∑

h=1

w({th, tk}) −w({t1, t2})(−1)k−1

= −w({t1, t2})(−1)k−1

= w({aT , bT})(−1)|T |.
�

For any TU-game (N, v) with v =
∑

T∈2N\{∅} cTuT , the unique decomposition

into unanimity games, the Shapley value is for all i ∈ N given by,

φi(v) =
∑

T∈2N\{∅},i∈T

cT
|T | . (3.10)

Hence, using the decomposition in Theorem 3.6.2, we can compute the Shap-

ley value of an MCP-game. For all i ∈ N , define PP (i) = {(k, `)|k < `, ` <

i, k ∈ N, ` ∈ N} as the collection of preceding pairs, pairs of players with

index smaller than i.

Theorem 3.6.4 Let (N,w) be an MCP-game corresponding to (N, q, p) ∈
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M. Then for all i ∈ N , the Shapley value is given by

φi(w) =

i−1
∑

k=1

1

(n− i+ 2)(n− i+ 1)
w({k, i})

+

n
∑

m=i+1

1

(n−m+ 2)(n−m+ 1)
w({i,m})

−
∑

(k,`)∈PP (i)

2

(n− ` + 2)(n− `+ 1)(n− `)
w({k, `}). (3.11)

In the proof of Theorem 3.6.4 we use the following lemma.

Lemma 3.6.5 (Poblete, Munro, and Papadakis (2006) , Table 1) For

t ∈ N let at =
1

x+ t
for some fixed x ∈ R+. Then, for all m ∈ N

m
∑

t=0

(

m

t

)

at(−1)t =
(x− 1)!m!

(x+m)!
.

Proof of Theorem 3.6.4: Let i ∈ N and let S be the collection of all

coalitions T containing i with |T | ≥ 2. By Theorem 3.6.2 and (3.10) we get

φi(w) =
∑

T∈S

1

|T |(−1)|T |w({aT , bT })

=
∑

T∈S1

(−1)|T |w({aT , bT})
|T | +

∑

T∈S2

(−1)|T |w({aT , bT})
|T |

+
∑

T∈S3

(−1)|T |w({aT , bT})
|T | , (3.12)

where

(i) S1 = {T ∈ S|i = bT },

(ii) S2 = {T ∈ S|i = aT },

(iii) S3 = {T ∈ S|i > bT }.
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For T ∈ S1, setting |T | = 2+ t with t ∈ {0, . . . , n− 2} and for one particular

k < i at place aT we have

∑

T∈S1:k=aT

cT
|T | =

n−i
∑

t=0

1

t+ 2

(

n− i

t

)

(−1)t+2w({k, i})

= w({k, i})
n−i
∑

t=0

(

n− i

t

)

(−1)t
1

t+ 2

= w({k, i})(2− 1)!(n− i)!

(n− i+ 2)!

= w({k, i}) 1

(n− i+ 2)(n− i+ 1)
,

where the third equality follows from Lemma 3.6.5. Hence

∑

T∈S1

cT
|T | =

i−1
∑

k=1

∑

T∈S1:k=aT

cT
|T | =

i−1
∑

k=1

1

(n− i+ 2)(n− i+ 1)
w({k, i}). (3.13)

For T ∈ S2, setting |T | = 2+ t with t ∈ {0, . . . , n− 2} and for one particular

m > i at place bT we have

∑

T∈S2:m=bT

cT
|T | =

n−m
∑

t=0

1

t+ 2

(

n−m

t

)

(−1)t+2w({i,m})

= w({i,m}) 1

(n−m+ 2)(n−m+ 1)
.

Hence

∑

T∈S2

cT
|T | =

n
∑

m=i+1

1

(n−m+ 2)(n−m+ 1)
w({i,m}). (3.14)

For T ∈ S3, setting |T | = 3+ t with t ∈ {0, . . . , n− 3} and for one particular

` < i and ` > k at place bT and k at place aT we have

∑

T∈S3:
aT=k,bT=`

cT
|T | =

n−`−1
∑

t=0

1

t + 3

(

n− `− 1

t

)

(−1)t+3w({k, `})

= (−1)w({k, `})(3− 1)!(n− `)!

(n− `+ 3)!

= w({k, `}) −2

(n− `+ 2)(n− ` + 1)(n− `)
.
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Hence

∑

T∈S3

cT
|T | =

∑

(k,`)∈PP (i)

−2

(n− `+ 2)(n− `+ 1)(n− `)
w({k, `}). (3.15)

Filling (3.13), (3.14) and (3.15) in (3.12) results in (3.11) for all i ∈ N . �

Hence, instead of computing all marginal vectors, one can determine the

Shapley value of an MCP-game in a single step. The following example

explains how the Shapley value of an MCP-game can be interpreted.

Example 3.6.6 Consider the following 5-player MCP-game corresponding

to a 5-player MCP-situation with q = (1, 2, 3, 4, 10) and p1 = 12, p2 = 11,

p3 = 9.5, p4 = 7.5 and p5 = 4. The table below provides the values of the

2-player coalitions only. The other coalitional values can be easily deter-

mined using Theorem 3.2.2, e.g. w(N) = w({1, 5})+w({2, 5})+w({3, 5})+
w({4, 5}) = 8 + 14 + 16.5 + 14 = 52.5.

S {1,2} {1,3} {1,4} {1,5} {2,3}
w(S) 1 2.5 4.5 8 3
S {2,4} {2,5} {3,4} {3,5} {4,5}
w(S) 7 14 6 16.5 14

Expression (3.11) can be split in three parts:

- a positive part due to cost savings with players with a lower index,

- a positive part due to cost savings with players with a larger index,

- a negative part, due to paybacks to pairs of players with a smaller index

(the preceding pairs).

For this example, the three parts are represented in the Tables 3.6.1, 3.6.2

and 3.6.3, respectively.

Table 3.6.1 indicates that player 3 gets 1
12

of the cost savings he can obtain

with player 1 and also 1
12

of the cost savings he can make with player 2,

while player 5 gets 1
2
of the cost savings he can make with any of the other

players. Note that all fractions are the same per row, i.e., per player under
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consideration.

Table 3.6.2 indicates that player 3 gets 1
6
of the cost savings he can make with

player 4 and 1
2
of the cost savings he can make with player 5. Note that in

Table 3.6.2 all fractions are the same per column, i.e., per player with larger

index. Moreover, the matrix in Table 3.6.2 is the transpose of the matrix in

Table 3.6.1. These two tables represent what the players receive, but in

Table 3.6.1: Cost savings with players with lower index
Smaller {1} {2} {3} {4} {5}
Player 1
Player 2 1

20
w({1, 2})

Player 3 1
12
w({1, 3}) 1

12
w({2, 3})

Player 4 1
6
w({1, 4}) 1

6
w({2, 4}) 1

6
w({3, 4})

Player 5 1
2
w({1, 5}) 1

2
w({2, 5}) 1

2
w({3, 5}) 1

2
w({4, 5})

Table 3.6.2: Cost savings with players with higher index
Larger {1} {2} {3} {4} {5}
Player 1 1

20
w({1, 2}) 1

12
w({1, 3}) 1

6
w({1, 4}) 1

2
w({1, 5})

Player 2 1
12
w({2, 3}) 1

6
w({2, 4}) 1

2
w({2, 5})

Player 3 1
6
w({3, 4}) 1

2
w({3, 5})

Player 4 1
2
w({4, 5})

Player 5

Table 3.6.3: Paybacks
Negative {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
Player 1

Player 2

Player 3 − 1

30
w({1, 2})

Player 4 − 1

30
w({1, 2}) − 1

12
w({1, 3}) − 1

12
w({2, 3})

Player 5 − 1

30
w({1, 2}) − 1

12
w({1, 3}) − 1

3
w({1, 4}) − 1

12
w({2, 3}) − 1

3
w({2, 4}) − 1

3
w({3, 4})

total we allocate too much this way. If we sum all entries in the last row in

Table 3.6.1 and the last column in Table 3.6.2, we already obtain w(N). So

we need to get back the sum of all remaining entries, given by

1

10
w({1, 2})+1

6
w({1, 3})+1

6
w({2, 3})+1

3
w({1, 4})+1

3
w({2, 4})+1

3
w({3, 4}).
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Figure 3.6.1: Composition of the Shapley value of Example 2.6.6

(3.16)

According to the remaining negative part of (3.11), each two-player compo-

nent of (3.16) is paid by all players with higher index than the player with

the highest index in the two-person coalition at hand. One can think of this

payback as a taxation on the basis of the relative size of the order quantity.

Table 3.6.3 indicates that 1
6
w({1, 3}) is paid back equally by players 4 and

5. Then, the Shapley value for player 3 equals

φ3(w) =

[

1

12
w({1, 3}) + 1

12
w({2, 3})

]

+

[

1

6
w({3, 4}) + 1

2
w({3, 5})

]

−
[

1

30
w({1, 2})

]

= 9
27

40
.

In fact

φ(w) =
(

5
1

120
, 8

7

15
, 9

27

40
, 9

17

40
, 19

37

40

)

.

In Figure 3.6.1 the three building blocks of the Shapley value of this example

are visualized. The white bars represent the cost savings with players with

lower index, the grey bars are the cost savings with players with higher index

and the black bars represent paybacks. /
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In fact, Theorem 3.6.2 and Theorem 3.6.4 can be generalized to all zero-

normalized and nonnegative TU-games with an ordering on the players such

that (3.3) and (3.4) are satisfied. A game, however, that satisfies (3.3) and

(3.4) does not need to be an MCP-game. This is illustrated in the following

example.

Example 3.6.7 Consider the 5-person TU-game (N, z) that satisfies (3.4)

and the values of all two-player coalitions given by the following table.
S {1,2} {1,3} {2,3} {1,4} {2,4}
z(S) 4 7 5 9 7
S {3,4} {1,5} {2,5} {3,5} {4,5}
z(S) 6 11 9 7 5

Clearly, (3.3) is satisfied. Suppose (N, z) is an MCP-game. Thus there are

vectors q and p such that (3.2) holds for all i, j ∈ N with i < j. In particular

we find that p2 = p1 − 4
q1
, p3 = p1 − 7

q1
and p4 = p1 − 9

q1
.

Then, however, z({2, 3}) = q2(p2 − p3) = 3q2
q1
, z({2, 4}) = 5q2

q1
and hence

z({2,4})
z({2,3})

= 5
3
, which contradicts the fact that z({2, 4}) = 7 and z({2, 3}) = 5.

/

3.7 Numerical examples

This section takes a numerical look at the Direct Price solution, the nucleolus

and the Shapley value as allocation rules for MCP-situations. In the previous

sections we have discussed the three solution concepts from an analytical

point of view. The Direct Price solution lets every player pay the lowest

available unit price, provided by the largest player. The nucleolus lets every

player pay a fee for using the low unit price of the largest player. These

fees correspond to the determining excesses of the nucleolus. Whereas the

nucleolus only looks at price reductions due to the presence of the largest

player, the Shapley value considers all pairwise cost savings of the players.

Depending on a player’s relative size, he can gain more cost savings with

another player. In order to prevent too skewed cost allocations, small players

are subsidized for the fact that they could obtain some cost savings without
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the presence of larger players. These subsidies are paid by taxing players

with higher cost savings.

In practice, organizations that join a purchasing cooperative might not know

the exact details of their fellow cooperation members, except the quantity

discount of the largest player. Naturally, they like to know what their share

in the total cost savings would be. Therefore we will simulate for several in-

stances the expected allocation of cost savings to an organization that joins

an MCP-situation, according to these three solution concepts.

As input for the simulation we take 5-player MCP-situations with integer-

valued order quantities and with fixed q1 and q5. The order quantities q2, q3

and q4 are unknown, but in between q1 and q5. We restrict to cases where

qn−1 < qn and we use the following unit price function:

p(t) = 10 +
12

tx
,

with t ∈ (0,∞) and x ∈ [0.25, 1.25]. This type of unit price functions ad-

equately represents most quantity discount schemes seen in practice, as ex-

plained by Schotanus (2007). We determine by simulation what a random

player with order quantity q1 ≤ t < q5 can expect as his share in the cost

savings — according to the Direct Price solution, the nucleolus or the Shap-

ley value — in such an MCP-situation. For MCP-situations with a larger

group of players, similar results can be obtained.

One step of the simulation is executed as follows. For fixed q1, q5 and x, the

order quantities q2, q3 and q4 are randomly and simultaneously drawn from a

discrete uniform distribution. Then, the Direct Price solution, the nucleolus

and the Shapley value of the corresponding MCP-game are calculated. We

are interested in the share in cost savings for a player with order quantity

t ∈ {q1, q1 + 1, q1 + 2, . . . , q5 − 1}, regardless of the fact that he is player

2, 3 or 4. Hence, we store these allocations per different value of qi, inde-

pendent of the index i. This run is repeated successively. Then, for every

t ∈ {q1, q1 + 1, . . . , q5 − 1} we average the stored Direct Price solutions, nu-

cleoli and Shapley values over the number of times they have appeared. This

simulation is executed for twelve different instances. First, for q1 = 1 and

q5 = 20 and for each of the discount parameters x = 0.3, x = 0.5, x = 0.8 and
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x = 1.1 we derived approximately 1500 MCP-situations. Second, for q1 = 1,

q5 = 40 and for each of the discount parameters x = 0.3, x = 0.5, x = 0.8

and x = 1.1 we derived approximately 11000 MCP-situations. And third,

for q1 = 10 and q5 = 50 we derived approximately 11000 MCP-situations,

for x = 0.3, x = 0.5, x = 0.8 and x = 1.1. For larger values of q1 and q5 the

attainable quantity discounts for the several players become very small.

In Figure 3.7.1 one can find the results of the simulations with respect to

the MCP-situations with q1 = 1, q5 = 20 and the four different discount

parameters x. For fixed x, we have 19 different values of t, 1, 2, . . . , 19, each

having an expected share in cost savings according to the Direct Price solu-

tion, the nucleolus and the Shapley value. The 19 points belonging to the

Figure 3.7.1: Expected payoffs in a 5-player MCP-game with q1 = 1 and
q5 = 20

nucleolus and the 19 points belonging to the Shapley value are connected by

the light grey line and dotted grey line, respectively. The black line connects

the 19 points belonging to the Direct Price solution. E.g. a point on the

light grey line represents the expected share of cost savings for a player with

order quantity t in such an MCP-situation according to the nucleolus.

In Figure 3.7.2 one can find the results of the same situation, only in this

case q5 = 40 and in Figure 3.7.3 one can find the results of a situation with

q1 = 10 and q5 = 50.
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Figure 3.7.2: Expected payoffs in a random 5-player MCP-game with q1 = 1
and q5 = 40

Figure 3.7.3: Expected payoffs in a 5-player MCP-game with q1 = 10 and
q5 = 50

For the situation with q1 = 1 and q5 = 40 we also compared the expected

shares in cost savings to players 1 and 5 for 9 different values of x, they can

be found in Table 3.7.1.

We can make the following observations. The curve of the nucleolus always

lies below the curve of the Direct Price. This is a confirmation of the results

from Section 3.5. The Direct Price solution gives all bilateral profits to
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Table 3.7.1: Expected payoffs to player 1 and 5 for q1 = 1 and q5 = 40
x φ̄1 ¯nuc1 D̄P 1 φ̄5 ¯nuc5 D̄P 5

0.3 6.1073 5.3565 8.0321 13.9026 14.1642 0
0.4 7.0825 6.5056 9.2562 13.3979 13.3889 0
0.5 7.7681 7.5305 10.1026 12.1327 11.7777 0
0.6 8.2865 8.3917 10.6879 10.6323 10.2442 0
0.7 8.6152 9.1919 11.0927 9.0905 8.4306 0
0.8 8.8631 9.8080 11.3726 7.7002 6.9363 0
0.9 9.0455 10.3163 11.5662 6.4195 5.5601 0
1.0 9.1663 10.7434 11.7000 5.2371 4.2668 0
1.1 9.2664 11.0067 11.7925 4.4524 3.5057 0

players 1, 2, 3 and 4, while within the nucleolus players 1 up to 4 have to pay

player 5 for joining the purchasing cooperative. The curve of the Shapley

value does not always lie below the curve of the Direct price. This is due to

the fact that the Shapley value need not lie in the core of the game. In all

situations the behavior of the Shapley value is less volatile as the nucleolus

and the nucleolus is less volatile as the direct price solution. We can see this

from the figures by looking at the range of the curves. The Shapley value

curve has the smallest range while the Direct Price solution has the largest.

We continue by comparing the nucleolus with the Shapley value. In all three

situations, the players with order quantities close to q5 are better off with

the Shapley value and the players with somewhat smaller order quantities

are better off with the nucleolus. In general we can also conclude that,

although the nucleolus and the Shapley value are different game theoretic

solution concepts, for MCP-situations their behavior with respect to the

input parameters of the model, is quite similar and the expected differences

for a player are small.

If we compare Figure 3.7.1 with Figure 3.7.2 we can see that the size of player

5 does not have much effect on the differences between the allocations of the

nucleolus and the Shapley value.

In all three figures we can see that increasing the discount parameter x,

makes the three solution concepts come closer to each other. This is partly

due to the fact that the total savings obtained decreases as x increases. Also,

for larger x, the threshold for players to prefer the Shapley value over the



3.7. Numerical examples 89

nucleolus tends to decrease. For players with order quantities close to q1 the

nucleolus becomes more attractive as x increases.

From Table 3.7.1 we can draw a similar conclusion as above. For larger x, the

smallest player has a better position than player 5. In case of x = 1.1 (q1 = 1

and q5 = 40), the expected share in total cost savings of player 1 equals 36

and 43 percent for the Shapley value and nucleolus, respectively. For player 5,

these expected shares equal 16 percent (Shapley) and 12 percent (nucleolus).

While for the instance with x = 0.3, player 1’s expected shares are 12 percent

(Shapley) and 11 percent (nucleolus), and for player 5 the expected shares

for both the Shapley value and the nucleolus equal 26 percent.





Chapter 4

Cost sharing methods for
capacity restricted cooperative

purchasing situations

4.1 Introduction

In the previous chapter we dealt with a special class of interactive purchas-

ing situations. One of the main underlying assumptions in Chapter 3 and

in cooperative purchasing in general is that the capacity of the supplier is

sufficient to fulfill the total order of the group of purchasers. Although com-

monly assumed, one should realize that in practice the capacity of a supplier

is limited. In particular, while a purchasing cooperative gets larger, the sup-

plier’s capacity might be exceeded and the cooperative has to use a second

supplier. Capacity restrictions in cooperative purchasing situations will be

the main topic of this chapter.

Not much literature can be found on capacity restrictions within coopera-

tive purchasing. Supplier selection and order quantity allocation for a single

purchaser has been studied from different perspectives. Berger, Gerstenfeld,

and Zeng (2004) argue that maintaining a relationship with multiple suppli-

ers can be a good strategy to decrease supply chain risks. Jayaraman and

Srivastava (1999) developed a mixed integer programming model for selecting

suppliers and for allocating the total order quantity among the selected sup-

91
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pliers. Ghodsypour and O’Brien (1998) incorporated an analytical hierarchy

process for allocating orders among suppliers based on both quantitative and

qualitative criteria. Ghodsypour and O’Brien (2001) provide an algorithm

for quantity allocation where the possible suppliers have limited capacities.

Suppliers’ optimal pricing strategies in a multiple supplier environment have

been discussed in, e.g., Marvel and Yang (2008) and Hsieh and Kuo (2011).

More precisely, Marvel and Yang (2008) discuss pricing strategies when two

suppliers face a purchasing cooperative. From a purchasers’ perspective,

however, a purchasing cooperative with capacity restricted suppliers has not

yet been studied.

In this chapter we consider a purchasing cooperative with individual order

quantities with respect to a certain commodity. Here, the sum of the order

quantities determines the unit price. Instead of facing one supplier with suffi-

cient supplies, as in the classical CP-situations described by Schotanus (2007)

and Nagarajan et al. (2010), the group faces two suppliers with (possibly)

insufficient individual supplies. The combined capacity of the two suppliers

is however sufficient. Like in regular cooperative purchasing situations, the

unit price of a supplier weakly decreases with the size of the total order, that

is, however, up to his capacity bound. These unit prices or quantity discount

schemes are not necessarily the same for both suppliers. We show that in

these capacity restricted cooperative purchasing (CRCP) situations individ-

ual cost savings are not guaranteed. Nevertheless, the group of purchasers is

assumed to cooperate. Think of a group of departments, a group of ministries

or a group of municipalities with a joined purchasing programme.

We are interested in finding the answers to two questions. Firstly, how to split

the total order over the two suppliers such that the total purchasing costs are

minimized? Secondly, how to adequately divide the total purchasing costs

over the group of purchasers?

For the first question, we show that there is a straightforward solution by

solving a minimization problem. We will show that it is optimal to order as

much as possible at one supplier and the possible remainder at the other.

The second problem is more involved. To find suitable cost allocations we

model the CRCP-situation as a cost sharing problem.
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Generally, a cost sharing problem involves a set of users of a certain ‘tech-

nology’ and each of the users has an individual level of demanded output.

To produce the total demanded output a certain level of input or costs is

needed. The relationship between input and output, is represented by a cost

function, where the function describes for each level of output the needed in-

put (costs). How to fairly distribute the needed input, based on the desired

output and the cost function is the central theme in cost sharing literature.

In Moulin (2002) one can find an overview of different types of cost sharing

problems and multiple cost allocation mechanisms.

In our setting the input needed can be represented by a monetary value:

purchasing costs. The output is the sum of the individual order quantities.

The cost function of the cost sharing problem corresponding to a CRCP-

situation provides for each level of order quantities, the minimal purchasing

costs. These minimal purchasing costs follow from dividing the order quan-

tities optimally over the two suppliers. The resulting cost sharing problem

corresponding to a capacity restricted cooperative purchasing situation then

falls within the class of so-called one-input-one-output-technologies, such as

airport problems (cf. Littlechild and Thomson (1977)) or single-product in-

ventory problems. In this class the output is a single homogeneous divisible

good.

We show that the cost function of a cost sharing problem corresponding

to a CRCP-situation is piecewise concave and that the concave intervals are

determined by so-called involuntary switches from one supplier to the other

supplier. The switches are called involuntary because the restricted capacity

of one supplier forces the purchasing group to also place an order at the sec-

ond supplier. A concave cost function implies unlimited increasing returns to

scale, whereas the piecewise concave cost function implies limited increasing

returns to scale: after a certain output level, new investments are needed.

According to Swoveland (1975) piecewise concave cost functions are a realis-

tic representation of returns to scale in a production environment. For this

reason, we broaden our view to general piecewise concave cost functions in
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the search for allocation methods for CRCP-situations.

In Chapter 3 we argued that finding a fair cost allocation method is one

of the critical success factors for cooperative purchasing. Especially in the

presence of differences in order quantity size, organizations with a large order

quantity could get the feeling that organizations with a small order quantity

profit from their size, without making any further contributions.

As Moulin (2002) points out, when there are no quantity discounts, the fair

distribution of purchasing costs should simply follow Aristotle’s proportion-

ality: Equals should be treated equally, and unequals, unequally in proportion

to relevant similarities and differences. However, since both suppliers have

a decreasing unit price function, quantity discounts will be present and we

need to look for a more sophisticated allocation method.

For cost allocation methods of the purchasing costs in a CRCP-situation,

there are two desirable properties. Firstly, the quantity discounts should be

incorporated in the cost allocation, i.e, organizations with large order quan-

tities do not pay a higher unit price than organizations with smaller order

quantities. A second desirable effect of an allocation method is that orga-

nizations with large order quantities do profit, in terms of cost allocations,

from the presence of players with smaller order quantities. Loosely formu-

lated: the smaller players are not considered as profiteers.

In the process of finding a suitable cost allocation method for CRCP-situations

we start by considering the three main cost sharing rules: the Shapley-Shubik

formula (Shubik (1962)), Aumann-Shapley pricing (Aumann and Shapley

(1974)) and the serial cost sharing rule (Moulin and Shenker (1992)). There

are two main arguments for Friedman and Moulin (1999) to conclude that

from the three main cost sharing methods, the serial cost sharing rule is most

appropriate for one-input-one-output-technologies such as the cost sharing

problems we consider. First, since the cost sharing problem corresponding

to a CRCP-situation concerns only homogeneous inputs and outputs, the

Aumann-Shapley pricing boils down to average cost pricing, i.e. dividing

the total purchasing costs proportionally (based on order quantities) over

the purchasers. As argued before, this method neglects the quantity dis-
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counts that are present in cooperative purchasing. Second, one of the main

properties of the Shapley-Shubik formula is, that it is invariant to the scale

in which the output is measured, which is not of any relevance in a situation

in which order quantities are for a single good.

Furthermore, there are arguments in favor of the serial cost sharing rule.

For concave cost functions, the serial cost sharing rule satisfies properties

that are attractive from the perspective of CRCP-situations. Firstly, the

serial rule satisfies unit cost monotonicity : when organization 2 has a higher

demanded output than organization 1, organization 2 does not pay a higher

cost per unit than organization 1. Secondly, the serial rule satisfies monotonic

weakness for the absence of the smallest player (MOWASP). This property

implies that when the player with smallest order quantity is absent, every

remaining player’s cost allocation increases. More precisely, this increase in

cost allocation (weakness) is monotonic in the size of the order quantity.

However, these rather compelling properties are lost when we add ‘piecewise’

to the cost function’s recipe. We explicitly show that for cost sharing prob-

lems with piecewise concave cost functions, the serial rule in general does not

satisfy unit cost monotonicity or MOWASP.

Therefore, we introduce a new context specific class of cost sharing rules

for cost sharing problems with piecewise concave cost functions, in which we

first divide the vector of order quantities into separate vectors for the different

concave intervals, using a bankruptcy rule. Subsequently, for each concave

interval and corresponding vector we use the serial rule to allocate the costs

of that specific interval over the organizations. Finally, by summing these

allocated costs we obtain the allocation according to the piecewise serial rule.

In particular, we consider the piecewise serial rule where we divide the vector

of order quantities into separate vectors, using the proportional rule and the

constrained equal losses-rule. It will be shown that the proportional rule is

the only bankruptcy rule for which the piecewise serial rule satisfies unit cost

monotonicity. For the constrained equal losses piecewise serial rule we will

show that when the organization with smallest order quantity is not present

in the cooperation, the group of remaining organizations can be split in a

group of smaller organizations for which the allocated costs decrease and a
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group of larger organizations for which the allocated costs increase. Also,

here there is a monotonic relation: the larger the order quantity, the higher

the increase (or the smaller the decrease) in cost allocation. This property is

a weaker variant of MOWASP and is called monotonic vulnerability for the

absence of the smallest player (MOVASP).

Both the properties unit cost monotonicity and MOVASP are inspired by the

CRCP context. Unit cost monotonicity implies that in the cost allocation

a purchaser with a higher order quantity obtains a lower unit price, i.e., a

higher quantity discount. MOVASP implies that the organization with the

largest order quantity has either the least decrease or the highest increase in

cost allocation when the smallest player is absent. Hence, it creates a group

cohesiveness in which the organization with smallest order quantity can con-

tribute to lower cost allocations of organizations with larger order quantities.

For illustrative purposes we conclude the chapter with a numerical compari-

son of the cost allocations of CRCP-situations according to the two piecewise

serial rules and the serial cost sharing rule. These examples further support

the claim that the two piecewise serial rules are appropriate allocation meth-

ods for CRCP-situations.

The structure of the chapter is as follows. Section 4.2 formally describes

a capacity restricted cooperative purchasing situation. In Section 4.3 we

model a CRCP-situation as a cost sharing problem and show that the cost

function is piecewise concave. As an alternative to the serial cost sharing

rule, we introduce the piecewise serial rules in Section 4.4 and we derive

characterizing properties of the proportional and constrained equal losses-

variants. Section 4.5 briefly discusses the differences in cost allocations of

CRCP-situations according to the two piecewise serial rules and the serial

cost sharing rule, on the basis of a numerical analysis.
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4.2 Capacity restrictions in cooperative pur-

chasing

After a brief description of regular cooperative purchasing situations, this

section will provide the formal description of capacity restricted cooperative

purchasing situations.

A cooperative purchasing situation (cf. Schotanus (2007)) is given by a finite

set of players N , with a vector of individual order quantities q ∈ RN
+ . There

is a commonly known unit price function p : R+ → R+ that maps an order

quantity to some unit price. In a cooperative purchasing situation, the sum

of the individual order quantities determines the unit price. It is assumed

that p is non-increasing and that the turnover function p(t)t is increasing

and concave on [0,
∑

j∈N qj]. This latter assumption results in the corre-

sponding cooperative purchasing TU-game (N, z), for all S ∈ 2N defined by

z(S) =
∑

j∈S p(qj)qj − p(
∑

j∈S qj)(
∑

j∈S qj), to be convex. Hence, in a coop-

erative purchasing situation there exist stable and efficient allocations of the

cost savings gained by purchasing cooperatively.

In a capacity restricted cooperative purchasing (CRCP) situation, there is a

finite player set N = {1, . . . , n}, with n ≥ 2 and again a vector of individual

order quantities q ∈ RN
+ . There are two suppliers providing this commodity:

A and B. Both suppliers have a limited capacity QA, QB ∈ R++. The com-

bined capacity is, however, sufficient,
∑

j∈N qj ≤ QA + QB. Both suppliers

have a linearly decreasing unit price function. For A, pA : [0, QA] → R+ and

for B, pB : [0, QB] → R+, are given by

pA(t) = α1 − α2t, t ∈ [0, QA] (4.1)

and

pB(t) = β1 − β2t t ∈ [0, QB], (4.2)

respectively, where t denotes the order size and α1, α2, β1, β2 ∈ R+.

Note that for all t ∈ [0, QA], p
′
A(t) ≤ 0 and that p′′A(t) = 0.
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It is a natural assumption that the revenue of a supplier does not decrease if

t increases. For supplier A this is the case if α1 and α2 are such that for all

t ∈ [0, QA], the revenue of A, cA(t) = pA(t)t, is nondecreasing. Hence for all

t ≤ QA, we assume

c′A(t) = α1 − 2α2t ≥ 0.

i.e.,

α1

2α2
≥ QA.

Similarly for supplier B we assume

β1

2β2

≥ QB.

Note that both cA and cB are differentiable and concave on [0, QA] and [0, QB]

respectively.

For the remainder of this chapter, we assume, without loss of generality

that

QA ≤ QB

and that the order quantities are arranged in nondecreasing order, i.e.,

0 < q1 ≤ q2 ≤ . . . ≤ qn.

When we refer to a smaller player, we refer to a player with smaller order

quantity and thus smaller index. When we refer to a larger or bigger player,

we refer to a player with a larger order quantity or larger index.

A CRCP-situation on player setN , is given by Z = (q, [α1, α2, QA], [β1, β2, QB]).

We denote the set of all CRCP-situations on N by ZN .

The main assumption of this chapter is that the players are purchasing co-

operatively. The next example shows that, contrary to regular cooperative

purchasing situations and maximum cooperative purchasing situations, in

CRCP-situations we cannot easily determine whether cooperation leads to

cost savings.
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Example 4.2.1 LetN = {1, 2, 3} and let Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈
ZN be given by q = (8, 9, 15) and

{

pA(t) = 18− 1
3
t, t ∈ [0, 16]

pB(t) = 25− 1
2
t, t ∈ [0, 20].

If player 1 would be on his own, he would like to order 8 at A with purchas-

ing costs cA(8) = pA(8)8 = 1222
3
. Similarly player 2 would like to order 9

at A with purchasing costs cA(9) = 135. Also, player 3 prefers ordering 15

at supplier A with purchasing costs cA(15) = 195. This is not a feasible set

of individual orders, since 8 + 9 + 15 > 16 = QA. Also, if the three players

purchase cooperatively they cannot simply sum their individual ‘desired’ or-

ders at the two suppliers. In this example the lowest ordering costs for order

quantity 8 + 9+ 15 = 32 can be obtained by ordering 20 at B and 12 at A./

If the suppliers’ capacities would have been unlimited or both QA ≥ ∑

i∈N qi

and QB ≥ ∑

i∈N qi, then the problem boils down to a regular cooperative

purchasing situation, simply by taking the minimum of the two functions as

unit price function p.

4.3 Cost sharing problems corresponding to

CRCP-situations

CRCP-situations can be modeled and analyzed by using the concept of cost

sharing.

4.3.1 One-input-one-output cost sharing problems

The nature of our CRCP-situation matches a special class of cost sharing

problems: one-input-one-output-technologies . In this class, the order quanti-

ties are scalars and enter additively in the continuous cost function. Such a

cost sharing problem on N = {1, . . . , n} is represented by a pair (C, q), with

q ∈ RN
+ such that q1 ≤ . . . ≤ qn, and C : [0, Q] → R+ with Q ≥ ∑

i∈N qi

is such that C is continuous and nondecreasing, and with C(0) = 0. Here

the argument t in C(t) represents the total demanded output. We denote by
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CSN the set of all such cost sharing problems on N .

A cost sharing rule f is a mapping f : CSN → RN , such that
∑

i∈N fi(C, q) =

C(
∑

i∈N qi) and f(C, q) ≥ 0.

4.3.2 Optimal ordering policy

Let Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN . In the corresponding cost shar-

ing problem (CZ , q), CZ(t) gives for each t ∈ [0, QA+QB] the corresponding

ordering costs. These ordering costs follow from an optimal splitting of t

over the suppliers A and B. An ordering policy for t is a pair (tA, tB) such

that 0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB and tA + tB = t. Here, tA represents the

total order at supplier A and tB the total order at supplier B. For ordering

policy (tA, tB) the ordering costs are

cA(tA) + cB(tB) = pA(tA)tA + pB(tB)tB.

An ordering policy is optimal if the associated ordering costs are minimal.

Thus the minimal ordering costs CZ(t) for t are determined by

CZ(t) = min{cA(tA) + cB(tB)|tA + tB = t, 0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB}.

Theorem 4.3.1 Let Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN and let (CZ , q) ∈
CSN be the corresponding cost sharing problem. Then,

CZ(t) =



















min{cB(t), cA(t)} t ∈ [0, QA]

min{cB(t), cA(QA) + cB(t−QA)} t ∈ (QA, QB]

min{cA(t−QB) + cB(QB),

cA(QA) + cB(t−QA)} t ∈ (QB, QA +QB].

(4.3)

Proof: Take t ∈ [0, QA +QB]. Then,

CZ(t) = min{cA(tA) + cB(tB)|tA + tB = t, 0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB}
= min{cA(tA) + cB(t− tA)|tA ∈ [(t−QB)

+,min{QA, t}]}.

Let g : [(t−QB)
+,min{QA, t}] → R+ be defined in the following way,

g(tA) = cA(tA) + cB(t− tA).
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The interval [(t−QB)
+,min{QA, t}] is nonempty since QA > 0 and QB > 0.

Note that

g′(tA) = c′A(tA) + c′B(t− tA)

= p′A(tA)t+ pA(tA)− p′B(t− tA)(t− tA)− pB(t− tA)

and that

g′′(tA) = p′′A(tA)tA + 2p′A(tA) + p′′B(t− tA)(t− tA) + 2p′B(t− tA)

= 0 + 2p′A(tA) + 0 + 2p′B(t− tA)

≤ 0.

Hence g is concave and thus the minimum of g can be found at the boundaries

of the domain of g: either tA = (t−QB)
+ or tA = min{QA, t}.

The proof is complete if we can show that we can separate the cases as in

(4.3).

If t ≤ QA, then tA = 0 or tA = t and consequently tB = t or tB = 0. Thus

CZ(t) = min{cB(t), cA(t)}.

If QA < t ≤ QB, then tA = 0 or tA = QA and consequently tB = t or

tB = t−QA. Thus

CZ(t) = min{cB(t), cA(QA) + cB(t−QA)}.

If t > QB, then tA = t − QB or tA = QA and consequently tB = QB or

tB = t−QA. Thus

CZ(t) = min{cA(t−QB) + cB(QB), cA(QA) + cB(t−QA)}. �

This theorem implies that the cost function of the cost sharing problem

corresponding to a CRCP-situation follows from the minimum of two policies.

Corollary 4.3.2 Let Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN and let (CZ , q) ∈
CSN be the corresponding cost sharing problem. Let t ∈ [0, QA +QB]. Then,

CZ(t) = min{cA(min{QA, t}) + cB((t−QA)
+),

cA((t−QB)
+) + cB(min{QB, t})}. (4.4)
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To minimize ordering costs, one has to compare two extreme policies: order

as much as possible at one of the two suppliers and the remaining part at

the other one. Depending on the unit price functions and the total order

quantity t one might prefer A over B or B over A.

The following two examples show how one can use Theorem 4.3.1 and Corol-

lary 4.3.2 in finding the cost function of the cost sharing problem correspond-

ing to a CRCP-situation.
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Figure 4.3.1: Cost function of Example 4.3.3

Example 4.3.3 Let Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN be such that

{

pA(t) = 18− 1
3
t, t ∈ [0, 16]

pB(t) = 20− 1
2
t, t ∈ [0, 20]

and let (CZ , q) ∈ CSN be the corresponding cost sharing problem.

Using Theorem 4.3.1 we can find the exact expression for CZ : cA and cB

intersect at t = 12, cA(QA) + cB(t − QA) ≥ cB(t) on [16, 20] and on [20, 36]

cA(QA) + cB(t − QA) ≥ cA(t − QB) + cB(QB). Thus we find the following
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Figure 4.3.2: Ordering costs for the two extreme policies of Example 4.3.3

cost function,

CZ(t) =



















min{cA(t), cB(t)} if t ∈ [0, 16],

min{cA(QA) + cB(t−QA), cB(t)} if t ∈ [16, 20],

min{cA(QA) + cB(t−QA),

cA(t−QB) + cB(QB)} if t ∈ [20, 36],

=



















18t− 1
3
t2 if t ∈ [0, 12],

20t− 1
2
t2 if t ∈ [12, 16],

20t− 1
2
t2 if t ∈ [16, 20],

20 · 10 + 18(t− 20)− 1
3
(t− 20)2 if t ∈ [20, 36],

=











18t− 1
3
t2 if t ∈ [0, 12],

20t− 1
2
t2 if t ∈ [12, 20],

200 + 18(t− 20)− 1
3
(t− 20)2 if t ∈ [20, 36].

As mentioned in Corollary 4.3.2, the cost function C is the minimum of the

following two policies: order as much as possible at A and then go to B (1)

or order as much as possible at B and then go to A (2), the cost functions
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of these two policies are shown in Figure 4.3.2.

The minimum of these two cost functions coincides with the cost function

of Figure 4.3.1. Note that the cost function is piecewise concave with two

maximally concave intervals [0, 20] and [20, 36]. /

Example 4.3.4 Let Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN be such that

{

pA(t) = 20− 1
2
t, t ∈ [0, 16],

pB(t) = 18− 1
3
t, t ∈ [0, 20].

Let (CZ , q) ∈ CSN be the corresponding cost sharing problem. Then, in

Figure 4.3.3 one can find the cost functions corresponding to the two extreme

policies (A or B). In this situation we see more switches between policy A or

B than in Example 4.3.3. This can also be seen from the explicit expression

of CZ , i.e.,

CZ(t) =



















































cB(t) if t ∈ [0, 12],

cA(t) if t ∈ (12, 16],

cA(16) + cB(t− 16) if t ∈ (16, 17],

cB(t) if t ∈ (17, 20],

cB(20) + cA(t− 20) if t ∈ (20, 34−
√
2],

cA(16) + cB(t− 16) if t ∈ (34−
√
2, 34 +

√
2],

cB(20) + cA(t− 20) if t ∈ (34 +
√
2, 36].

Note that also this cost function is piecewise concave. It has, however, 3

maximally concave intervals: [0, 16] [16, 20] and [20, 36]. /

We can generalize the observations we made in Example 4.3.3 and 4.3.4. In

Theorem 4.3.1 we have shown that the cost function is piecewise defined on

three separate intervals5. On each of the three intervals, [0, QA], [QA, QB],

[QB, QA +QB], C
Z takes the minimum of two continuous concave functions.

Thus the cost function CZ of the cost sharing problem corresponding to

CRCP-situation Z ∈ ZN is continuous piecewise concave. In most cases CZ

5With slight abuse of notation we use the notion of maximally concave intervals.
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Figure 4.3.3: Two extreme policies of Example 4.3.4

will have two or three maximally concave intervals. Only if α1 = β1 and

α2 = β2 = 0, CZ will be concave on [0, QA +QB].

For all CRCP-situations Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN with α2 =

β2 = 0, the corresponding cost sharing problem (Cz, q) ∈ CSN has a convex

piecewise linear cost function. E.g., if α1 ≤ β1, then

CZ(t) =

{

α1t if t ∈ [0, QA],

α1QA + β1(t−QA) if t ∈ (QA, QA +QB].

The piecewise concavity of CZ is directly caused by the limitations of the

suppliers. Due to the capacity restrictions, at some point, the purchasers are

forced to start buying at the other supplier. These points are called invol-

untary switches . So the number of involuntary switches is either 0, 1 or 2.

In Example 4.3.3 there is one involuntary switch at the point t = QB and in

Example 4.3.4 there are two involuntary switches, at t = QA and at t = QB.

In the latter example, the cost function also switches between preferred sup-

plier, without violating concavity, on 4 different points. These switches are

called voluntary switches and they are caused by the minimization of the two
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ordering policies. Hence, they can occur on the entire domain of CZ .

Next, we investigate where these voluntary switches might take place. Let

Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN and let (CZ , q) be the corresponding

cost sharing problem.

Consider the interval [0, QA]. Note that cA(0) = cB(0) = 0. A voluntary

switch occurs if there exists a t ∈ (0, QA] with cA(t) = cB(t), i.e., with

t =
β1 − α1

β2 − α2
. (4.5)

Consider the interval (QA, QB]. Then, a voluntary switch occurs if there

exists a t ∈ (QA, QB] with cA(QA) + cB(t−QA) = cB(t), i.e., with

α1QA − α2Q
2
A − β1QA − β2Q

2
A + 2β2tQA + β1t− β2t

2 = β1t− β2t
2,

by rewriting we obtain

2β2t = α2QA + β1 − α1 + β2QA,

thus if

t =
β1 − α1 + (β2 + α2)QA

2β2
. (4.6)

Consider the interval (QB, QA +QB]. Note that if t = QA +QB, then

cA(t−QB) + cB(QB) = cA(QA) + cB(t−QA) = cA(QA) + cB(QB).

A voluntary switch occurs if there exists a t ∈ (QB, QA + QB) with

cA(t−QB) + cB(QB) = cA(QA) + cB(t−QA), i.e., with

α1QA − α2Q
2
A − β1QA − β2Q

2
A + 2β2tQA + β1t− β2t

2

=β1QB − β2Q
2
B − α1QB − α2Q

2
B + 2α2tQB + α1t− α2t

2,

or equivalently with

− (α2 + β2)t
2 + (β1 − α1 + 2(β2QA − α2QB))t

+ (α1 − β1)(QA −QB)− (α2 + β2)(Q
2
A +Q2

B) = 0 (4.7)
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Since (4.7) is a quadratic equation, there can be at most two voluntary

switches on (QB, QA +QB).

In total there can be maximally four voluntary switches. As we have seen

in Example 4.3.4 the cost function corresponding to a CRCP-situation can

make 2 involuntary switches as well as 4 voluntary switches.

4.4 Cost sharing rules for piecewise concave

cost functions

In this section we device a new class of cost sharing rules that are suitable

for cost sharing problems with piecewise concave cost functions. We focus

on this class of cost sharing problems since we are looking for allocation

methods for CRCP-situations and also since piecewise concave cost functions

are an accurate representation of limited economies of scale in production

environments. The examples and motivation for the rules will come from the

application of allocating costs in CRCP-situations. The new class of rules is

based on the serial cost sharing rule.

4.4.1 The serial cost sharing rule

In the introduction we argued that, of the traditional cost sharing rules, the

serial cost sharing rule is the most suitable rule for the class of cost sharing

problems under consideration, i.e., one-input-one-output-technologies.

The serial cost sharing rule is based on the requirement that a player’s costs

should not depend on the size of the order quantity of larger players. For

a concave cost function, this requirement implies that smaller players profit

less from the economies of scale than the larger players. If we think of

CRCP-situations in which large players generally account for more quantity

discounts, this seems a suitable solution method for dividing costs that fol-

low from purchasing cooperatively. The serial cost sharing rule (Moulin and

Shenker (1992)) , Ser, allocates the costs in the following way.
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Definition: The serial cost sharing rule, Ser, on CSN is such that for

all (C, q) ∈ CSN and for all i ∈ N ,

Seri(C, q) =
i

∑

j=1

C(sj)− C(sj−1)

n− j + 1
, (4.8)

with s0 = 0 and for all i ∈ N ,

si =

i−1
∑

j=1

qj + (n− i+ 1)qi.

Furthermore, for each i ∈ N , Seri(C, q) rewrites to the expression below,

which we will apply several times.

Lemma 4.4.1 Let (C, q) ∈ CSN . Then, for all i ∈ N ,

Seri(C, q) =
C(si)

n− i+ 1
−

i−1
∑

j=1

C(sj)

(n− j + 1)(n− j)
.

Proof: Take i ∈ N , we have that,

Seri(C, q) =

i
∑

j=1

C(sj)− C(sj−1)

n− j + 1

=
C(si)

n− i+ 1
+

i−1
∑

j=1

C(sj)

n− j + 1
−

i−1
∑

j=1

C(sj)

n− j

=
C(si)

n− i+ 1
+

i−1
∑

j=1

(n− j)C(sj)− (n− j + 1)C(sj)

(n− j + 1)(n− j)

=
C(si)

n− i+ 1
−

i−1
∑

j=1

C(sj)

(n− j + 1)(n− j)
.

Here, the second equality follows from the fact that C(s0) = C(0) = 0. �

The property that characterizes the serial rule (Moulin and Shenker (1992))

is independence of the size of larger demands (ISLAD). Take (C, q) ∈ CSN .
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ISLAD implies that for all i, j ∈ N with qi ≤ qj , and for all (C, q̄) ∈ CSN

with q̄ = ((qk)k∈N\{j}, r), with r ≥ qj ,

Seri(C, q) = Seri(C, q̄).

The serial cost sharing rule also satisfies basic properties as demand mono-

tonicity , i.e., for all (C, q) ∈ CSN and all i ∈ N\{n}, si ≤ si+1 and thus

Seri(C, q) ≤ Seri+1(C, q),

and symmetry , i.e. for all (C, q) ∈ CSN and all i, j ∈ N with qi = qj , si = sj

and thus

Seri(C, q) = Serj(C, q).

For concave C the serial cost sharing rule obeys two favorable properties.

First, a player with a higher demand obtains a weakly lower cost per unit

than a player with a smaller demand.

Definition: A cost sharing rule f satisfies unit cost monotonicity if for

all (C, q) ∈ CSN and for all i ∈ N\{n}

fi(C, q)

qi
≥ fi+1(C, q)

qi+1

.

Proposition 4.4.2 Ser satisfies unit cost monotonicity on the class of cost

sharing problems with continuous, nondecreasing and concave cost functions.

Proof: Let (C, q) ∈ CSN with C concave on [0,
∑

j∈N qj]. Take i ∈ N\{n}.
We have that

Seri(C, q)

qi
− Seri+1(C, q)

qi+1
=

Seri(C, q)

qi
− Seri(C, q)

qi+1
− C(si+1)− C(si)

(n− i)qi+1

=
(qi+1 − qi)Seri(C, q)

qiqi+1
− C(si+1)− C(si)

(n− i)qi+1
.

Hence it is sufficient to show that

C(si+1)− C(si)

(n− i)
≤ (qi+1 − qi)Seri(C, q)

qi
.
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First note that, since C is concave and

Seri(C, q) =
i

∑

j=1

C(sj)− C(sj−1)

n− j + 1
,

with sj ≤ si for all j ∈ {1, . . . , i}, we have that

Seri(C, q)

qi
≥ C(si)

si
.

Furthermore, by concavity of C,

C(si+1)− C(si)

(n− i)
=

C(si + (n− i)(qi+1 − qi))− C(si)

(n− i)

≤ C(si + (qi+1 − qi))− C(si)

≤ (qi+1 − qi)
C(si)

si

≤ (qi+1 − qi)
Seri(C, q)

qi
. �

Second, if the smallest player would not have been present in the cooperation,

the costs for every remaining player increase. More precisely, the increase in

ordering costs is larger for a player with a higher demand. So, although a

small player’s costs are independent of the size of larger demands, the larger

players do profit from cooperating with smaller players. In absolute terms,

the largest player profits the most.

A cost sharing rule satisfies monotonic weakness for the absence of the small-

est player (MOWASP) if for all (C, q) ∈ CSN with |N | ≥ 2,

0 ≥ f2(C, q)− f2(C, q|N\{1}) ≥ . . . ≥ fn(C, q)− fn(C, q|N\{1}). (4.9)

Proposition 4.4.3 Ser satisfies MOWASP on the class of cost sharing prob-

lems with continuous, nondecreasing and concave cost functions.

Proof: Let (C, q) ∈ CSN be a cost sharing problem, with C concave on

[0,
∑

j∈N qj]. Let ∆Serj = Serj(C, q)− Serj(C, q|N\{1}) for all j ∈ N\{1}.
We have

Ser2(C, q) =
C(s2)

n− 1
− C(s1)

n(n− 1)
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and

Ser2(C, q|N\{1}) =
C(s2 − q1)

n− 1
.

Hence

∆Ser2 =
C(s2)− C(s2 − q1)

n− 1
− C(s1)

n(n− 1)
.

By concavity of C

C(s2)− C(s2 − q1)

n− 1
≤ C(q1)

n− 1
≤ C(nq1)

n(n− 1)
=

C(s1)

n(n− 1)
,

thus ∆Ser2 ≤ 0.

Let i ∈ {3, . . . , n}. According to Lemma 4.4.1 we have

Seri(C, q) =
C(si)

n− i+ 1
−

i−1
∑

j=1

C(sj)

(n− j + 1)(n− j)

and

Seri(C, q|N\{1}) =
C(si − q1)

n− i+ 1
−

i−1
∑

j=2

C(sj − q1)

(n− j + 1)(n− j)
.

Hence,

∆Seri =
C(si)− C(si − q1)

n− i+ 1
−

i−1
∑

j=2

C(sj)− C(sj − q1)

(n− j)(n− j + 1)
− C(s1)

n(n− 1)
.
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We conclude the proof by showing that ∆Seri −∆Seri−1 ≤ 0. We have

∆Seri −∆Seri−1 =
C(si)− C(si − q1)

n− i+ 1
−

i−1
∑

j=2

C(sj)− C(sj − q1)

(n− j)(n− j + 1)

− C(s1)

n(n− 1)
− C(si−1)− C(si−1 − q1)

n− i+ 2

+

i−2
∑

j=2

C(sj)− C(sj − q1)

(n− j)(n− j + 1)
+

C(s1)

n(n− 1)

=
C(si)− C(si − q1)

n− i+ 1
− C(si−1)− C(si−1 − q1)

(n− i+ 2)(n− i+ 1)

− C(si−1)− C(si−1 − q1)

n− i+ 2

=
C(si)− C(si − q1)

n− i+ 1

− (n− i+ 1 + 1)
(

C(si−1)− C(si−1 − q1)
)

(n− i+ 2)(n− i+ 1)

=
C(si)− C(si − q1)

n− i+ 1
− C(si−1)− C(si−1 − q1)

n− i+ 1

≤ 0,

where the last inequality follows from the concavity of C and the fact that

si ≥ si−1. �

For piecewise concave functions, however, these two properties are lost.

Example 4.4.4 Let N = {1, 2, 3} and let (C, q) ∈ CSN be a cost sharing

problem with q = (8, 9, 15) and with cost function

C(t) =











18t− 1
3
t2 if t ∈ [0, 12],

20t− 1
2
t2 if t ∈ (12, 20],

200 + 18(t− 20)− 1
3
(t− 20)2 if t ∈ (20, 36].

Note that this cost sharing problem corresponds to the CRCP-situation from

Example 4.3.3.

C is piecewise concave with two maximal concave intervals [0, 20] and [20, 36].
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The serial cost sharing rule prescribes the following allocation of the total

ordering costs C(32) = 368:

Ser1(C, q) =
C(3 · 8)

3
= 88

8

9
,

Ser2(C, q) =
C(3 · 8)

3
+

C(2 · 9 + 8)− C(3 · 8)
2

= 103
5

9
,

Ser3(C, q) =
C(3 · 8)

3
+

C(2 · 9 + 8)− C(3 · 8)
2

+ C(32)− C(2 · 9 + 8) = 175
5

9
.

In this allocation player 1 pays
88 8

9

8
≈ 11.11 per unit, while player 2 pays

11.51 per unit and player 3 pays 11.70 per unit. Hence, in this example the

cost per unit are increasing rather than decreasing. /

Example 4.4.5 Let N = {1, 2, 3, 4} and consider cost sharing problem

(C, q) ∈ CSN with q = (2, 4, 9, 15) and with cost function

C(t) =



















































18t− 1
3
t2 if t ∈ [0, 12],

20t− 1
2
t2 if t ∈ (12, 16],

192 + 18(t− 16)− 1
3
(t− 16)2 if t ∈ (16, 17],

20t− 1
2
t2 if t ∈ (17, 20],

2262
3
+ 20(t− 20)− 1

2
(t− 20)2 if t ∈ (20, 34−

√
2],

192 + 18(t− 16)− 1
3
(t− 16)2 if t ∈ (34−

√
2, 34 +

√
2],

2262
3
++20(t− 20)− 1

2
(t− 20)2 if t ∈ (34 +

√
2, 36].

Note that this cost sharing problem corresponds to the CRCP-situation from

Example 4.3.4. Here C has three maximally concave intervals [0, 16], [16, 20]

and [20, 36]. We have,

Ser(C, q) =
(

30
2

3
, 50

4

9
, 108

7

9
, 186

7

9

)

.

If player 1 would not have been present, however,

Ser(C, q|N\{1}) = (56, 104
1

3
, 194

1

3
).

Thus cost allocations of player 2 and player 4 increase, while player 3’s cost

allocation decreases. /
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4.4.2 Piecewise serial rules

In this subsection we modify the serial cost sharing rule into piecewise serial

rules that are suitable for cost sharing problems with piecewise concave cost

functions.

We will pinpoint a specific rule that satisfies unit cost monotonicity and a spe-

cific rule that satisfies a weaker variant of MOWASP: monotonic vulnerability

for the absence of the smallest player. These two properties have nice inter-

pretations for the application we have in mind.Furthermore we characterize

one of the two cost sharing rules using the property of unit cost monotonicity.

Let CSN,m ⊂ CSN with m ∈ N+ denote the set of cost sharing problems

where the cost function is piecewise concave with m maximally concave in-

tervals. The j-th concave interval is denoted by [tj−1, tj ], j ∈ {1, . . . , m}.
Using this notation, the results of the previous paragraph, Proposition 4.4.2

and Proposition 4.4.3, can be read as results on the class CSN,1.

Next, we explain the idea for the piecewise serial rule by means of an ex-

ample.

Example 4.4.6 Let N = {1, 2, 3} and let (C, q) ∈ CSN,2 be a cost sharing

problem with q = (8, 9, 15) and in which the cost function C is given by

C(t) =











18t− 1
3
t2 if t ∈ [0, 12],

20t− 1
2
t2 if t ∈ (12, 20],

200 + 18(t− 20)− 1
3
(t− 20)2 if t ∈ (20, 36].

This is the cost sharing problem corresponding to the CRCP-situation of

Example 4.3.3.

C has two maximally concave intervals: [0, 20] and [20, 36]. If we can di-

vide the vector q over these two intervals, i.e., find a suitable vector x1 ∈ RN

with
∑

j∈N x1
j = 20 for the first interval and a suitable vector x2 = q − x1

for the second interval, we can apply the serial cost sharing rule on each of

these two cost sharing problems.

The first interval has length 20 and in this interval the returns to scale are
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larger than in the second interval, see Figure 4.3.3. Hence, the players prefer

the first interval. The demands q can be considered as claims on the interval

[0, 20]. Thus to find a suitable vector x1 we can use a bankruptcy rule ϕ, for

bankruptcy problem (20, q) ∈ BN .

Arguing that large players should obtain a lower cost per unit than small

players, we can opt for a bankruptcy rule that allocates relatively more to

large claims than to smaller claims. The constrained equal losses-rule is such

a bankruptcy rule. In this case it gives x1 = (8, 9, 15)−(12
3
, 12

3
, 12

3
) = (4, 5, 11).

Hence for the second interval we have x2 = q − x1 = (4, 4, 4), i.e., we use

only the first twelve units of the second interval.

On interval [0, 20] we have cost sharing problem (C1, x1) with C1(t) = C(t)

for t ∈ [0, 20] and on the second interval we have cost sharing problem (C2, x2)

where C2(t) = C(t)−C(20) = C(t)− 200 for all t ∈ [20− 20, 36− 20]. Both

C1 and C2 are nondecreasing and concave. We have

Ser1(C
1, x1) =

C1(12)

3
= 56,

Ser2(C
1, x1) =

C1(12)

3
+

C1(14)− C1(12)

2
= 63,

Ser3(C
1, x1) =

C1(12)

3
+

C1(14)− C(12)

2
+

C1(20)− C1(14)

1
= 81

and by symmetry of Ser

Ser1(C
2, x2) = Ser2(C

2, x2) = Ser3(C
2, x2) =

C2(12)

3
=

C(32)− C(20)

3
= 56.

Thus the cost allocation according to the combination of constrained equal

loss and the serial rule is (56, 63, 81) + (56, 56, 56) = (112, 119, 137).

However, we could also argue that the players should have relatively equal

rights to all of the intervals, which can be realized by dividing q proportion-

ally over the intervals.

Then, x1 = 20
32
(8, 9, 15) = (5, 55

8
, 93

8
) and thus x2 = (3, 33

8
, 55

8
). And the
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allocation is based on

Ser1(C
1, x1) =

C1(15)

3
= 62.5,

Ser2(C
1, x1) =

C1(15)

3
+

C1(161
4
)− C1(15)

2
≈ 65.23,

Ser3(C
1, x1) =

C1(15)

3
+

C1(161
4
)− C1(15)

2
+

C1(20)− C1(161
4
)

1
≈ 72.27

and

Ser1(C
2, x2) =

C2(9)

3
= 45,

Ser2(C
2, x2) =

C2(9)

3
+

C2(93
4
)− C2(9)

2
≈ 49.41,

Ser3(C
2, x2) =

C2(9)

3
+

C2(91
4
)− C2(9)

2
+

C2(12)− C2(93
4
)

1
≈ 73.59.

So, when dividing q proportionally over the two intervals, we obtain a differ-

ent allocation of the costs, (107.5, 114.64, 145.86). /

In Example 4.4.6 we used two symmetric and continuous bankruptcy rules

that are suitable for allocating q over the maximally concave intervals of C:

the proportional rule and the constrained equal losses-rule. The proportional

rule, PROP , divides the estate proportionally over the claimants, i.e., for

(E, d) ∈ BN and i ∈ N ,

PROPi(E, d) = min

{

di
E

∑

j∈N dj
, di

}

.

The constrained equal losses-rule, CEL, is based on the opposite principle of

CEA, i.e., for (E, d) ∈ BN and i ∈ N ,

CELi(E, d) = (di − λ)+,

where λ ∈ R+ is such that
∑

j∈N(dj − λ)+ = E.

The idea we presented in the Example 4.4.6, can be formalized for any bank-

ruptcy rule ϕ.
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Definition: The ϕ-piecewise serial rule Ψϕ : CSN,m → RN is determined

in the following way.

Let (C, q) ∈ CSN,m be a cost sharing problem, where [tj−1, tj ] describes the

j-th maximally concave interval of C, j ∈ {1, . . . , m}.

Let qj ∈ RN
+ denote the vector of remaining order quantities for interval

j and let xj ∈ RN
+ denote the vector of allocated order quantities to interval

j.

With q1 = q, recursively compute the vectors qj and xj for j = 1, . . . , m

{

xj = ϕ(tj − tj−1, q
j),

qj+1 = qj − xj .
(4.10)

Cj : [0, tj − tj−1] → R+ denotes the translated cost function for interval

j ∈ {1, . . . , m}, i.e.,

Cj(t) = C(t+ tj−1)− C(tj−1). (4.11)

Then,

Ψϕ(C, q) =

m
∑

j=1

Ser(Cj, xj). (4.12)

Note that for all j ∈ {1, . . . , m}, (Cj , xj) ∈ CSN,1. For arbitrary ϕ, the piece-

wise serial rule is efficient and satisfies demand monotonicity. For symmetric

bankruptcy rules, the piecewise serial rule is symmetric as well.

We will focus on ΨPROP and on ΨCEL as allocation methods for cost sharing

problems with piecewise concave cost functions.

With respect to the proportional rule, let (E, d) ∈ BN be a bankruptcy

problem. One can easily observe that for all i, k ∈ N ,

PROPi(E, d)

di
=

PROPk(E, d)

dk
.
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Furthermore, PROP obeys the property of order preservation: for (E, d) ∈
BN with for some pair i, j ∈ N , di ≤ dj, the following two inequalities hold

{

PROPi(E, d) ≤ PROPj(E, d)

di − PROPi(E, d) ≤ dj − PROPj(E, d).
(4.13)

These properties of PROP result in the fact that ΨPROP satisfies unit cost

monotonicity on CSN,m.

In the context of CRCP-situations, unit cost monotonicity implies discount

monotonicity: quantity discounts are translated in a monotonic way to the

players. Players with larger order quantities obtain a higher quantity dis-

count than players with a smaller order quantity.

Theorem 4.4.7 ΨPROP satisfies unit cost monotonicity on CSN,m.

Proof: For m = 1, by Proposition 4.4.2, unit cost monotonicity is satisfied.

Let m ≥ 2 and let (C, q) ∈ CSN,m be a cost sharing problem. Take j ∈
{1, . . . , m}. Because PROP obeys order preservation, we have

{

xj
1 ≤ xj

2 ≤ . . . ≤ xj
n,

qj1 ≤ qj2 ≤ . . . ≤ qjn.

We have that (Cj , xj) ∈ CSN,1. Thus by Proposition 4.4.2 for all i ∈ N\{n},

Seri(C
j, xj)

xj
i

≥ Seri+1(C
j, xj)

xj
i+1

. (4.14)

We continue the proof, using induction on the concave intervals. Take i ∈
N\{n}. Then,

PROPi(t1, q)

qi
=

PROPi+1(t1, q)

qi+1

and thus,

x1
i

qi
=

x1
i+1

qi+1
.
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Take j ∈ {2, . . . , m− 1} and assume that for all k ∈ {1, . . . , j − 1}

xk
i

qi
=

xk
i+1

qi+1
.

Then,

qji
qi

=

(

qi −
∑j−1

k=1 x
k
i

qi

)

= 1−
j−1
∑

k=1

xk
i

qi
= 1−

j−1
∑

k=1

xk
i+1

qi+1

=
qji+1

qi+1

and hence

xj
i

qi
=

xj
i

qji

qji
qi

=
xj
i+1

qji+1

qji+1

qi+1
=

xj
i+1

qi+1
. (4.15)

Thus, combining (4.14) and (4.15), we find that

ΨPROP
i (C, q)

qi
=

m
∑

j=1

Seri(C
j, qj)

xj
i

xj
i

qi
=

m
∑

j=1

Seri(C
j, qj)

xj
i

xj
i+1

qi+1

≥
m
∑

j=1

Seri+1(C
j, qj)

xj
i+1

xj
i+1

qi+1
=

ΨPROP
i+1 (C, q)

qi+1
. �

Next, we show that PROP is the unique bankruptcy rule for which the

piecewise serial rule satisfies unit cost monotonicity.

Theorem 4.4.8 Let ϕ be a bankruptcy rule. Then, Ψϕ = ΨPROP if and only

if Ψϕ satisfies unit cost monotonicity on CSN,m.

Proof: For the “only if”-part we refer to Theorem 4.4.7. To prove the “if”-

part, let ϕ be a bankruptcy rule such that Ψϕ satisfies unit cost monotonicity.

To show Ψϕ = ΨPROP we show that ϕ = PROP . Let us assume that

ϕ 6= PROP . Then, there exists (E, d) ∈ BN such that for some pair i, j ∈ N

with di < dj either

(i)
ϕi(E, d)

di
>

ϕj(E, d)

dj

or

(ii)
ϕi(E, d)

di
<

ϕj(E, d)

dj
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For both cases we show that there is at least one cost sharing problem

(C, d) ∈ CSN,m for which
Ψϕ

i (C,d)

di
<

Ψϕ
j (C,d)

dj
, establishing a contradiction.

Case (i)

Take (C, d) ∈ CSN,m with m ≥ 2 such that t1 = E and t2 ≤ ∑

j∈N dj.

Furthermore for t ∈ [0, t2], let C be given by

C(t) =

{

a1t if t ∈ [0, t1]

a2t if t ∈ (t1, t2],

where 0 < a1 < a2.

Then,

Ψϕ
i (C, d) = a1ϕi(E, d) + a2(di − ϕi(E, d))

Ψϕ
j (C, d) = a1ϕj(E, d) + a2(dj − ϕj(E, d))

and since both a1 < a2 and ϕi(E,d)
di

>
ϕj(E,d)

dj
we find that

Ψϕ
i (C, d)

di
= a1

ϕi(E, d)

di
+ a2(1−

ϕi(E, d)

di
)

< a1
ϕj(E, d)

dj
+ a2(1−

ϕj(E, d)

dj
) =

Ψϕ
j (C, d)

dj
.

Case (ii)

Take (Cε, d) ∈ CSN,m with m ≥ 2 such that t1 = E and t2 ≤ ∑

j∈N dj.

Furthermore for t ∈ [0, t2], let C
ε be given by

Cε(t) =











a2t if t ∈ [0, t1]

a3t if t ∈ (t1, t1 + ε]

a1t if t ∈ (t1 + ε, t2],

where 0 < a1 < a2 < a3 and ε > 0 such that

ε <
(a2 − a1)

(a3 − a1)

(Ψϕ
j (C, d)

dj
− Ψϕ

i (C, d)

di

)

. (4.16)

Note that since we are in case (ii), the righthand side of the above equation

is positive.
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Then,

Ψϕ
i (C

ε, d)

di
≤ a2

ϕi(E, d)

di
+ a3ε+ a1(1−

ϕi(E, d)

di
− ε)

Ψϕ
j (C

ε, d)

dj
≥ a2

ϕj(E, d)

dj
+ 0 + a1(1−

ϕj(E, d)

dj
− 0).

Subtracting these two inequalities leads to

Ψϕ
i (C

ε, d)

di
−

Ψϕ
j (C

ε, d)

dj
≤ (a2 − a1)(

ϕi(E, d)

di
− ϕj(E, d)

dj
) + ε(a3 − a1)

< 0,

where the last inequality follows from (4.16). �

Although ΨCEL does not satisfy unit cost monotonicity, we can show that if

the smallest player is absent, there is a monotonic relation in the effect on

the cost allocations of the remaining players. Here, the largest player is most

vulnerable for the absence of the smallest player.

Definition: A cost sharing rule f satisfies monotonic vulnerability for the

absence of the smallest player (MOVASP) if for all (C, q) ∈ CSN and all

i ∈ N\{1, n}

fi(C, q)− fi(C, q|N\{1}) ≥ fi+1(C, q)− fi+1(C, q|N\{1}). (4.17)

The property MOVASP is a weaker variant of MOWASP. In the latter case,

cost allocations increase if the smallest player is absent and the larger the

order quantity, the higher the cost increase, i.e., the weaker the player is for

the absence of the smallest player. MOVASP, on the other hand, implies that

increased cost allocations are more likely for larger players, i.e., the larger

the order quantity, the more vulnerable a player is for the absence of the

smallest player.

If we think of applications in CRCP-situations, an allocation method that

satisfies MOVASP can create group cohesiveness in the sense that the small-

est player can contribute to smaller cost allocations of the largest player. Note

that if Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN and (CZ , q) ∈ CSN,m is the
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corresponding cost sharing problem, then (CZ , q|N\{1}) ∈ CSN\{1},m is the

cost sharing problem corresponding to (q|N\{1}, [α1, α2, QA], [β1, β2, QB]) ∈
ZN\{1}.

Theorem 4.4.9 ΨCEL satisfies MOVASP on CSN,m.

To prove this theorem we first show a property of CEL as a bankruptcy rule

in the context of bankruptcy problems.

Proposition 4.4.10 Let (E, d) ∈ BN with N = {1, 2, . . . , n} such that

d1 ≤ d2 ≤ . . . ≤ dn and such that
∑

j∈N\{1} dj ≥ E. Then, for all j ∈ N\{1}

CELj(E, d|N\{1}) = CELj(E, d) +
CEL1(E, d)

n− 1
.

Proof: Let λ ∈ R+ be such that

∑

i∈N

max{0, di − λ} = E.

Thus for all j ∈ N

CELj(E, d) = max{0, dj − λ}.

If CEL1(E, d) = 0, then by efficiency of CEL

∑

i∈N

max{0, di − λ} =
∑

i∈N\{1}

max{0, di − λ} = E.

Thus for all j ∈ N\{1}

CELj(E, d|N\{1}) = CELj(E, d) + 0

= CELj(E, d) +
CEL1(E, d)

n− 1
.

If CEL1(E, d) > 0, then also CELj(E, d) > 0 for any j ∈ N . Thus

∑

i∈N

max{0, di − λ} =
∑

i∈N

(di − λ) = E.
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Take

µ = λ− d1 − λ

n− 1
.

Then, for all j ∈ N\{1},

max{0, dj − µ} = dj − µ

and thus

∑

i∈N\{1}

di − µ =
∑

i∈N\{1}

di − (n− 1)

(

λ− d1 − λ

n− 1

)

=
∑

i∈N\{1}

di − nλ+ d1 =
∑

i∈N

(di − λ) = E.

Thus µ is such that

∑

i∈N\{1}

max{0, di − µ} = E.

Hence, for all j ∈ N\{1}

CELj(E, d|N\{1}) = max{0, dj − µ} = dj − µ

= dj − λ +
d1 − λ

n− 1

= CELj(E, d) +
CEL1(E, d)

n− 1
. �

Using this result we can show MOVASP for ΨCEL.

Proof of Theorem 4.4.9: Let (C, q) ∈ CSN,m be a cost sharing problem.

For all j ∈ {1, . . . , m}, let qj ∈ RN be the remaining vectors of order quanti-

ties and let xj ∈ RN be the allocated vectors of order quantities for interval

[tj−1, tj ] according to (4.10).

Let (C, q|N\{1}) ∈ CSN,m and set q̄ = q|N\{1}. With q̄1 = q̄, for all j ∈
{1, . . . , m}, let q̄j ∈ RN\{1} be the remaining vectors of order quantities,

and let x̄j ∈ RN\{1} be the allocated vectors of order quantities for interval

[tj−1, tj ] according to (4.10).

Let Cj be the cost function for interval j ∈ {1, . . . , m}, as in (4.11).
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Equation (4.12) tells that Ψ(C, q) =
∑m

j=1 Ser(C
j, xj), so it is sufficient to

show that for each i ∈ {3, . . . , n} and each j ∈ {1, . . . , m}

Seri(C
j, xj)− Seri(C

j , x̄j) ≤ Seri−1(C
j, xj)− Seri−1(C

j, x̄j). (4.18)

Let i ∈ {3, . . . , n} and j ∈ {1, . . . , m}. We distinguish between four cases:

(I) qj
N\{1} = q̄j and

∑

k∈N

qjk ≤ tj − tj−1,

(II) qj
N\{1} = q̄j and

∑

k∈N

qjk > tj − tj−1 ≥
∑

k∈N\{1}

q̄jk,

(III) qj
N\{1} = q̄j and

∑

k∈N\{1}

q̄jk > tj − tj−1,

(IV) qj
N\{1} 6= q̄j.

Let (Cj, xj) and (Cj, x̄j) be the two cost sharing problems for interval j.

Then, for all ` ∈ N we set

s` =

`−1
∑

j=1

xj + (n− `+ 1)x`

and for all ` ∈ N\{1} we set

s̄` =

`−1
∑

j=2

x̄j + (n− `+ 1)x̄`.

Case I

In this case (Cj, xj) is a cost sharing problem with a concave increasing cost

function. Since tj − tj−1 is sufficient to fulfill all orders, we have that xj = qj

and x̄j = q̄j = qj|N\{1}. Hence, by Proposition 4.4.3, inequality (4.18) holds.

Case II

If
∑

k∈N qjk > tj − tj−1 ≥
∑

k∈N\{1} q̄
j
k. Then, for all ` ∈ {2, . . . , n},

x̄j
` = CEL(tj − tj−1, q̄) = q̄j` . (4.19)

Moreover,

ε = qj1 − (
∑

k∈N

qjk − (tj − tj−1)) > 0
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and

xj
1 = CEL1(tj − tj−1, q

j) > 0.

Hence, for all ` ∈ {2, . . . , n} we have that

xj
` = CEL`(tj − tj−1, q

j) = qj` −
∑

h∈N qjh − (tj − tj−1)

n
.

Thus

s` =(n− `+ 1)xj
` +

`−1
∑

k=1

xj
k

=(n− `+ 1)

(

qj` −
∑

h∈N qjh − (tj − tj−1)

n

)

+

`−1
∑

k=1

(

qjk −
∑

h∈N qjh − (tj − tj−1)

n

)

=(n− `+ 1)qj` +
`−1
∑

k=1

qjk

−[(n− `+ 1) + (`− 1)]

(

∑

h∈N qjh − (tj − tj−1)

n

)

=(n− `+ 1)qj` +

`−1
∑

k=1

qjk −
(

∑

h∈N

qjh − (tj − tj−1)

)

=(n− `+ 1)qj` +
`−1
∑

k=2

qjk + qj1 −
(

∑

h∈N

qjh − (tj − tj−1)

)

=(n− `+ 1)x̄j
` +

`−1
∑

k=2

x̄j
k + ε

=s̄` + ε.

Here, the last equality follows from (4.19).

Using (4.8),

Seri(C
j , xj)− Seri−1(C

j , xj) =
C
(

si
)

− C
(

si−1

)

n− i+ 1

=
C
(

s̄i + ε
)

− C
(

s̄i−1 + ε
)

n− i+ 1
,
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while

Seri(C
j, x̄j)− Seri−1(C

j, x̄j) =
C
(

s̄i
)

− C
(

s̄i−1

)

n− i+ 1
.

Hence,

(

Seri(C
j , xj)− Seri(C

j , x̄j)

)

−
(

Seri−1(C
j, xj)− Seri−1(C

j , x̄j)

)

=

(

Seri(C
j , xj)− Seri−1(C

j , xj)

)

−
(

Seri(C
j, x̄j)− Seri−1(C

j , x̄j)

)

=
C
(

s̄i + ε
)

− C
(

s̄i−1 + ε
)

n− i+ 1
− C

(

s̄i
)

− C
(

s̄i−1

)

n− i+ 1

≤0,

where the last equality follows from the fact that ε > 0 and that Cj is concave

on [0, tj − tj−1]. Thus

Seri(C
j, xj)− Seri(C

j , x̄j) ≤ Seri−1(C
j, xj)− Seri−1(C

j, x̄j).

Case III

In this case we can show that

Seri(C
j, xj)− Seri(C

j , x̄j) = Seri−1(C
j, xj)− Seri−1(C

j, x̄j).

Since
∑

k∈N\{1} q̄
j
k > tj − tj−1, we have that for ` ∈ {2, . . . , n}

x̄j
` = CEL`(tj − tj−1, q

j

|N\{1})

= CEL`(tj − tj−1, q
j) +

CEL1(tj − tj−1, q
j)

n− 1

= xj
` +

xj
1

n− 1
,

where the second equality follows from Proposition 4.4.10. Next, note that

s̄2 = (n− 1)x̄j
2 = (n− 1)

(

xj
2 +

xj
1

n− 1

)

= (n− 1)xj
2 + xj

1

= s2 (4.20)
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and that for ` ∈ {3, . . . , n}

s̄` =(n− `+ 1)x̄j
` +

`−1
∑

k=2

x̄j
k

=(n− `+ 1)

(

xj
` +

xj
1

n− 1

)

+

`−1
∑

k=2

(

xj
k +

xj
1

n− 1

)

=(n− `+ 1)xj
` +

`−1
∑

k=2

xj
k + [(n− `+ 1) + (`− 2)]

(

xj
1

n− 1

)

=(n− `+ 1)xj
` +

`−1
∑

k=1

xj
k

=s`. (4.21)

Combining (4.20) and (4.21), we have that for all ` ∈ {2, . . . , n}

s̄` = (n− `+ 1)x̄j
` +

`−1
∑

k=2

x̄j
k = (n− `+ 1)xj

` +

`−1
∑

k=1

xj
k = s`.

Thus for all ` ∈ {2, . . . , n},

Ser`(C
j, x̄j) =

C((n− 1)x̄j
2)

n− 1
+
∑̀

k=3

C(s̄k)− C(s̄k−1)

n− `+ 1

=
C((n− 1)x̄j

2)

n− 1
+
∑̀

k=3

C(sk)− C(sk−1)

n− `+ 1

and hence

Ser`(C
j, xj)− Ser`(C

j, x̄j) =
C(nxj

1)

n
+
∑̀

k=3

C(sk)− C(sk−1)

n− `+ 1

− C((n− 1)x̄j
2)

n− 1
−
∑̀

k=3

C(sk)− C(sk−1)

n− `+ 1

=
C(nxj

1)

n
− C(nxj

1)

n− 1
.

Thus,

Seri(C
j , xj)− Seri(C

j , x̄j) = Seri−1(C
j, xj)− Seri−1(C

j, x̄j)

=
C(nxj

1)

n
− C(nxj

1)

n− 1
.
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Case IV

Also, for this final case we show that

Seri(C
j, xj)− Seri(C

j , x̄j) = Seri−1(C
j, xj)− Seri−1(C

j, x̄j).

If qj` 6= q̄j` for some ` ∈ {2, . . . , n}, then j > 1 and for some h ∈ {1, . . . , j−1},

xh
1 > 0.

Hence, for all ` ∈ {h+ 1, . . . , m}
{

q`i = q`i−1

q̄`i = q̄`i−1.

By symmetry of CEL also xj
i = xj

i−1 and x̄j
i = x̄j

i−1. Hence,

Seri(C
j, xj)− Seri(C

j , x̄j) = Seri−1(C
j, xj)− Seri−1(C

j, x̄j). �

The next example shows that ΨPROP does not satisfy MOVASP.

Example 4.4.11 Let N = {1, 2, 3, 4} and let (C, q) ∈ CSN,3 be a cost shar-

ing problem given by q = (2, 5, 6, 9) and

C(t) =







































18t− 1
3
t2 if t ∈ [0, 12],

20t− 1
2
t2 if t ∈ (12, 16],

192 + 18(t− 16)− 1
3
(t− 16)2 if t ∈ (16, 17],

18t− 1
3
t2 if t ∈ (17, 18],

216 + 20(t− 18)− 1
2
(t− 18)2 if t ∈ (18, 22],

192 + 18(t− 16)− 1
3
(t− 16)2 if t ∈ (22, 34].

Note that this cost sharing problem corresponds to CRCP-situation

Z = (q, [α1, α2, QA], [β1, β2, QB]) ∈ ZN with unit price functions

{

pA(t) = 20− 1
2
t for t ∈ [0, 16],

pB(t) = 18− 1
3
t for t ∈ [0, 18].
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The maximal concave intervals of C are [0, 16], [16, 18] and [18, 34]. Hence,

ΨPROP (C, q) = Ser(C1, (
16

11
,
40

11
,
48

11
,
72

11
)) + Ser(C2, (

2

11
,
5

11
,
6

11
,
9

11
))

+ Ser(C3, (
4

11
,
10

11
,
12

11
,
18

11
))

≈ (33.59, 71.83, 80.46, 102.10),

while

ΨPROP (C, q|N\{1}) ≈ (72.59, 80.82, 100.57).

Thus, without player 1, player 2’s costs increase with 0.76, player 3’s costs

increase with 0.36 and player 4’s costs decrease with 1.53. In this example

player 4 benefits the most from the absence of player 1. /

On the other hand, it need not be the case that if, due to the absence of the

smallest player, the cost allocation to player 2 decreases, all other players’

cost allocations decrease as well.

Example 4.4.12 Let N = {1, 2, 3, 4} and let (C, q) ∈ CSN,2 be a cost shar-

ing problem with q = (0.5, 0.8, 1.5, 2.4) and with

C(t) =

{

20t− 2t2 if t ∈ [0, 5],

50 + 36(t− 5)− 3(t− 5)2 if t ∈ (5, 10.5].

The maximal concave intervals of C are [0, 5] and [5, 10.5]. Note that this cost

sharing problem corresponds to CRCP-situation (q, [α1, α2, QA], [β1, β2, QB]) ∈
ZN with

{

pA(t) = 20− 2t for t ∈ [0, 5],

pB(t) = 36− 3t for t ∈ [0, 5.5].

We have that,

ΨCEL
2 (C, q) ≈ 10.68 + 1.77 = 12.45,

ΨCEL
3 (C, q) ≈ 10.68 + 4.48 + 1.77 = 16.93,

ΨCEL
4 (C, q) ≈ 10.68 + 4.48 + 1.62 + 1.77 = 18.55,
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and

ΨCEL
2 (C, q|N\{1}) ≈ 12.16,

ΨCEL
3 (C, q|N\{1}) ≈ 12.16 + 5.32 = 17.48,

ΨCEL
4 (C, q|N\{1}) ≈ 12.16 + 5.32 + 2.7 = 20.18.

Hence ΨCEL
2 (C, q)−ΨCEL

2 (C, q|N\{1}) ≈ 0.29 is positive, while ΨCEL
3 (C, q)−

ΨCEL
3 (C, q|N\{1}) ≈ −0.55 and ΨCEL

4 (C, q) − ΨCEL
4 (C, q|N\{1}) ≈ −1.63 are

negative. /

4.5 CRCP-situations: comparing cost shar-

ing rules

In the previous section we developed a class of cost sharing rules for cost shar-

ing problems with a piecewise concave cost function. The CEL-piecewise

serial rule and PROP -piecewise serial rule seem particularly appropriate

for allocating the cooperative purchasing costs of a CRCP-situation. The

PROP -piecewise serial rule is appropriate since it satisfies unit cost mono-

tonicity, implying that in the purchasing cooperative larger players obtain a

larger quantity discount. The CEL-piecewise serial rule satisfies MOWASP,

which can create a group cohesiveness in the purchasing cooperative, since

in the allocation the smallest player can directly contribute to cost savings of

larger players. In this section we illustrate numerical differences and similar-

ities between the two piecewise serial rules and the classic serial cost sharing

rule applied to cost sharing problems arising from CRCP-situations.

In the Figures 4.5.2 and 4.5.3 the results of some simulations can be found.

The same type of set-up as in Section 3.7 has been used. As input we take

CRCP-situations where
∑

i∈N qi = 52 and with unit price functions
{

pA(t) = 60− 1
2
t, witht ∈ [0, 29],

pB(t) = 140− 2t, with t ∈ [0, 35].

The cost function C of the corresponding cost sharing problem can be found

in Figure 4.5.1. It can be seen that C has 2 maximally concave intervals.



4.5. CRCP-situations: comparing cost sharing rules 131

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

Order quantity t

O
rd

e
ri

n
g
 c

o
st

s 
C

(t
)

Figure 4.5.1: Cost function for comparing allocation methods

To create a CRCP-situation we randomly generate a vector of discrete order

quantities such that the sum of the order quantities equals 52. Then, the cost

allocations of C(52) according to Ser, ΨCEL and ΨPROP are calculated. As

in Section 3.7, we store the allocations per different value of qi independent

of the index i and we repeat this step successively. For every possible value

of the order quantity, we average the stored cost allocations over the number

of times they have appeared. We compare two instances: |N | = 5 with

Figure 4.5.2: Cost allocations and costs per unit for ‘small’ differences
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Figure 4.5.3: Cost allocations and costs per unit for ‘big’ differences

for all i ∈ N , qi ∈ {7, 8, 9, 10, 11, 12, 13} and |N | = 4 with for all i ∈ N ,

qi ∈ {1, 5, 9, 13, 17, 21, 25}, i.e., instances with ‘small’ and ‘big’ differences,

respectively, between the possible order quantities.

In Figure 4.5.2 we plotted the average cost allocations according to the three

different solution concepts and we plotted the average costs per unit, i.e., the

cost allocation divided by order quantity, for a player with order quantity

qi ∈ {7, 8, 9, 10, 11, 12, 13}, according to the three different cost allocation

methods. The cost allocations and costs per unit according to Ser are con-

nected by the dark grey line, ΨCEL by the black line and ΨPROP by the light

grey line. Figure 4.5.3 shows the average cost allocations and costs per unit

for a player with qi ∈ {1, 5, 9, 13, 17, 21, 25}.

We can make the following observations. On average, the serial cost sharing

rule allocates more costs to the largest player than the two piecewise serial

rules. For middle players the cost allocations are almost the same, while for

smaller players the serial cost sharing rule allocates the least costs to smaller

players. The differences between ΨPROP and ΨCEL are smaller. In Figure

4.5.1 we can see that the first concave interval of the cost function gives

higher quantity discounts than the second concave interval (up to t = 52).

As a result, large players prefer ΨCEL over ΨPROP .

Generally, in the first (two) interval(s) of a cost function of a cost shar-
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ing problem corresponding to a CRCP-situation, the quantity discounts will

be larger than in the last interval. This occurs because when having a smaller

order quantity, one is more likely to buy at a single supplier. Using CEL as

a mechanism for allocating q over the intervals will result in larger players

having relatively bigger shares in the first interval than in later ones. This

does not necessarily imply unit cost monotonicity, but in many cases it will.

As we can see in the righthand sided figures, the costs per unit belonging to

ΨPROP and also ΨCEL are decreasing, whereas for Ser this is not the case.

For ΨPROP the decrease in costs per unit seems to follow a more constant

pattern than the decrease in costs per unit for ΨCEL.





Chapter 5

Ordering strategies for capacity
restricted strategic purchasing

situations

5.1 Introduction

In this chapter we continue the analysis of capacity restrictions in interactive

purchasing situations from Chapter 4, but we take a different perspective.

Instead of a capacity restricted cooperative purchasing situation, we consider

a capacity restricted strategic purchasing (CRSP) situation. In a CRSP-

situation each purchaser strategically splits his order over the suppliers in

order to obtain his desired order quantity for the lowest possible cost. How

an individual purchaser should place his order depends, amongst others, on

fulfillment policies of the suppliers, i.e., how a supplier allocates his restricted

capacity over a set of orders.

The literature on the allocation of scarce capacity from a strategic perspective

is richer than the literature on cooperative purchasing with limited supplies.

Capacity allocation has been considered in various contexts, e.g., in allocat-

ing MRI scanner time in a hospital (Zonderland and Timmer (2012)) or the

allocation of capacity in semiconductor manufacturing (Mallika and Harker

(2004)). Cachon and Lariviere (1998) analyze capacity allocation games

in which a single supplier allocates a scarce commodity among two retail-

135



136 Chapter 5. Ordering strategies for CRSP-situations

ers. They compare the effect of different allocation policies of the supplier.

It is explained that the possible order inflation by the retailers is a major

drawback of a proportional fulfillment policy. Since capacity is scarce, retail-

ers will ask for more than they need, which might result in an allocation of

the scarce commodity in which some retailers obtain more than they need.

Cachon and Lariviere (1999) analyze capacity fulfillment policies for a sin-

gle capacity restricted supplier. It is also considered how the supplier could

determine an optimal capacity level.

A common aspect of the literature on capacity allocation is the fact that

there is a single supplier and a group of retailers with private information:

the retailers only know their own individual demand. The main topics of

analysis are: whether the fulfillment policy of the scarce commodity induces

truth telling of the retailers, whether in the final allocation of the scarce

commodity no retailer obtains more than he needs and whether the fulfill-

ment policy of the supplier supports maximizing the supplier’s profit or the

combined utility of the supplier and the retailers.

The current setup of CRSP-situations is different. The starting point is the

same: a group of purchasers with individual order quantities with respect to

one commodity. The group faces two suppliers with (possibly) insufficient

individual supplies. The combined capacity of the two suppliers is assumed

to be sufficient and both suppliers offer quantity discounts. The more a

purchaser obtains from one specific supplier, the lower the unit price. In a

CRSP-situation, however, every purchaser strategically places an order at

both or at one of the suppliers in order to obtain his order quantity. Each

supplier has a fulfillment policy: in case the total ordered units exceed the

capacity of the supplier it is prespecified how the supplier allocates his ca-

pacity over the orders. The suppliers are not considered to be interactive

decision makers: their pricing, quantity discounts and fulfillment policies are

fixed before the purchasers make any decisions with respect to their orders.

Furthermore, there is no private information, all suppliers’ and purchasers’

characteristics are publicly known by all purchasers. The reason to choose for

public information is twofold. First, CRSP-situations are the non-cooperative

siblings of CRPC-situations, in which all information is public. Second, pri-
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vate information can make the purchasing situation intractable. Moreover,

tractable results with the assumption of public information can be useful in

future research for understanding CRSP-situations with private information.

The most important difference between our and previous capacity allocation

models, is that in our model purchasers are assumed to obtain at least their

order quantity, because the total available global capacity is sufficient. If

the orders are such that there is local scarcity at one of the two suppliers,

purchasers are forced to reorder at the other supplier. Although seemingly

so, this model and its approach are not the same as non-cooperative es-

tate division problems from Atlamaz, Berden, Peters, and Vermeulen (2011),

where the estate is seen as an interval and where players have to specify

exactly which part of the ‘estate-interval’ they would like to receive. In

CRSP-situations, organizations only need to split their order over the two

suppliers. Our main question is: what is the effect of suppliers’ fulfillment

policies on the ordering strategies of the purchasers? We are not looking for

a ‘best’ fulfillment policy, we want to describe possible equilibrium behavior

of individualistic purchasers in different scenarios.

For the analysis of CRSP-situations we use non-cooperative game theory.

In a non-cooperative game, players are considered to be individual cost min-

imizers. Every player’s costs may depend not only on his own strategy but

also on the strategies of the other players. A central notion in the literature

on non-cooperative games is formulated by Nash (1951): in a Nash equi-

librium every player minimizes his costs given the equilibrium strategies of

the other players. In a non-cooperative game where players have an infinite

number of strategies available, the existence of a Nash equilibrium is not

guaranteed. In a game in which each player has a finite set of actions and in

which one allows for mixed strategies, there exists at least one Nash equilib-

rium in mixed strategies.

In modeling CRSP-situations one can make multiple reasonable assumptions

with respect to the behavior of and limitations set by the suppliers. Since all

information — including the prespecified fulfillment policies of the suppliers

— is publicly available, it seems reasonable to assume that each purchaser
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can only order such that his combined order at the two suppliers equals his

individual order quantity. Moreover, an order cannot exceed the capacity

restrictions of the suppliers. In other words: the purchasers’ orders are re-

stricted by feasibility. Nevertheless, the feasibility restrictions still give each

purchaser an infinite number of possibilities to split his order quantities over

the two suppliers.

For analyzing specific CRSP-situations, in this chapter, we differentiate among

two dimensions: (1) the available ordering options for the purchasers and (2)

the fulfillment policies of the suppliers. Specific choices with respect to these

dimensions lead to scenarios.

With respect to the first dimension, we separate two cases. First we study

infinite ordering games, in which purchasers can place any feasible order.

Second, in order to decrease the number of options for the purchasers we will

also consider ordering games in which the purchasers are allowed to choose

from only a finite but representative set of ordering possibilities, but in which

we allow for mixed strategies.

These two cases along the first dimension result in two different sets of pos-

sible strategies for the purchasers. Hence, we develop two different ordering

games corresponding to a CRSP-situation: an infinite ordering game and a

so-called matrified ordering game. The matrified ordering game can also be

seen as an approximation of the infinite ordering game. The feasibility restric-

tion on the orders ensures that purchasers are not able to inflate their orders

in order to obtain a higher fulfillment level. On the other hand, depending

on the fulfillment policy, purchasers might not obtain enough. Therefore

we allow purchasers to reorder after announcement of the fulfillment levels.

This specific timing of the ordering game is incorporated in the general cost

function of both ordering games. In both ordering games the specific cost

function further depends on the fulfillment policies of the suppliers.

With respect to the second dimension, we consider four different types of

fulfillment policies. Each of these fulfillment policies changes the cost func-

tion of both the infinite as well as the matrified ordering game.
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On the one hand, we consider three different types of fulfillment policies that

are based on a certain preference order over the purchasers. On the other

hand we consider suppliers that allocate their capacity proportionally over

the orders (PROP). Proportional fulfillment is, according to Cachon and

Lariviere (1998), the most intuitive fulfillment policy, although it usually

does not induce truth-telling by the purchasers.

For the fulfillment policies that are based on preference orders, first, we ana-

lyze situations in which suppliers’ fulfillment is based on preferences that are

fixed and identical (FID), i.e., the preference order does not depend on the

orders of the purchasers, but solely on the identity of the purchasers. Second,

one could argue that, in order to maximize profit, suppliers might prefer to

fulfill small orders before large orders (SBL). A third reasonable fulfillment

policy is based on the idea that suppliers might value the purchaser-supplier

relationship with purchasers with large order quantities over the relationship

with smaller purchasers, hence suppliers prefer fulfilling large orders before

smaller orders (LBS).

Next, we summarize the results on infinite ordering games. For an infinite

ordering game we show that if both suppliers’ fulfillment policies are based

on FID, there exists a profile of orders that corresponds to a Nash equilib-

rium in which there is no need to correct orders after announcement of the

fulfillment level by the suppliers. On the other hand, if the fixed preferences

are not identical, it remains an open problem whether the infinite ordering

game has an equilibrium.

If both suppliers’ fulfillment policies are based on LBS, the infinite ordering

game has a Nash equilibrium which can be found at the boundaries of the

strategy space. On the other hand, if the fulfillment policy of both suppliers

is based on (SBL), the infinite ordering game does not need to have a Nash

equilibrium.

In an infinite ordering game in which suppliers use a proportional fulfillment

policy, we show that if there is an equilibrium, the equilibria of the game

can be found at the boundaries of the strategy space. General existence of

equilibria in this scenario, however, is an open problem.
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As explained, in the matrified ordering game purchasers are only allowed

to choose from a limited number of actions. In order to decrease the number

of ordering possibilities we use the knowledge that in an infinite ordering

game, equilibria can often be found at the boundaries of purchasers’ strategy

spaces. Purchasers have two extreme options: order as much as possible at

supplier A or order as much as possible at supplier B. Here, we allow for

mixed strategies.

Also in the matrified ordering game we differentiate with respect to the fulfill-

ment policies of the suppliers. We show that, if suppliers’ fulfillment is based

on LBS, the matrified ordering game has a pure Nash equilibrium. This

equilibrium corresponds to a Nash equilibrium in the infinite ordering game.

Not every equilibrium of the infinite ordering game corresponds, however, to

a pure equilibrium in the matrified ordering game.

On the other hand, if both suppliers’ fulfillment policies are based on SBL,

the matrified ordering game also has a pure Nash equilibrium, whereas the

infinite ordering game does not necessarily have an equilibrium.

And, in case suppliers fulfill orders proportionally, the existence of a pure

equilibrium in the matrified game corresponds to the existence of an equilib-

rium in the original infinite ordering game.

We conclude the chapter by a few remarks on some of the assumptions we

have made. Furthermore we summarize the remaining open problems.

The organization of this chapter is as follows. In Section 5.2 we formally

introduce capacity restricted strategic purchasing situations and in Section

5.3 we explain some important notions on non-cooperative cost games. Sec-

tion 5.4 analyzes infinite ordering games, while Section 5.5 analyzes matrified

ordering games. In Section 5.6 we state some concluding remarks.

5.2 Capacity restricted strategic purchasing

situations

A capacity restricted strategic purchasing (CRSP) situation can be described

by similar parameters as its cooperative counterpart from Chapter 4. There
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is a set of players N = {1, . . . , n} with order quantities q ∈ RN
++. There are

two suppliers, A and B, with respective supply capacities QA, QB ∈ R++

such that QA + QB ≥ ∑

j∈N qj . Supplier A has unit price function pA :

[0, QA] → R+ and B has unit price function pB : [0, QB] → R+.

Without loss of generality we assume that the order quantities are arranged

in nondecreasing order, i.e., q1 ≤ q2 ≤ . . . ≤ qn, and that QA ≤ QB.

Furthermore, we assume that the unit price functions of the suppliers are de-

creasing and twice differentiable. The unit price function of supplier A is such

that the turnover function of A, for all t ∈ [0, QA] defined by cA(t) = pA(t)t,

is increasing and strictly concave on [0, QA]. Similarly, we assume that the

unit price function of B is such that the turnover function, cB, is increasing

and strictly concave on [0, QB].

Instead of purchasing cooperatively, the players in N act strategically. Each

player i ∈ N places an order 0 ≤ xA
i ≤ QA at A and an order 0 ≤ xB

i ≤ QB

at B in order to obtain his order quantity qi with the restriction that

xA
i + xB

i = qi.

Both suppliers have a certain order fulfillment policy . Let xA ∈ RN
+ be

the vector of orders of the players in N at supplier A. Then A uses policy

πA : RN
+ → RN

+ to allocate QA over the orders at A. Similarly πB : RN
+ → RN

+

gives for each set of orders xB ∈ RN
+ , an allocation of QB.

We assume that the fulfillment policies of the suppliers are such that for A,

∑

j∈N

πA
j (x

A) = min{QA,
∑

j∈N

xA
j }

and πA(xA) ≤ xA, i.e., fulfillment is efficient and bounded by the orders.

Similarly, for B

∑

j∈N

πB
j (x

B) = min{QB,
∑

j∈N

xB
j }

and πB(xB) ≤ xB.

We have that cA is increasing if for all t ∈ [0, QA], c
′

A(t) = p
′

A(t)t+pA(t) > 0,
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thus if

p
′

A(t) > −pA(t)

t
. (5.1)

Furthermore, cA is strictly concave on [0, QA] if for all t ∈ [0, QA], c
′′

A(t) =

p
′′

A(t)t+ 2p
′

A(t) < 0, thus if

p
′′

A(t) < −2p
′

A(t)

t
. (5.2)

Similarly cB is increasing if for all t ∈ [0, QB]

p
′

B(t) > −pB(t)

t
(5.3)

and cB is strictly concave on [0, QB] if for all t ∈ [0, QB]

p
′′

B(t) < −2p
′

B(t)

t
. (5.4)

Let W be the CRSP-situation given by q, supplier A’s characteristics, pA,

QA, and πA, and supplier B’s characteristics, pB, QB, and πB. The set WN

contains all CRSP-situations on N .

Due to the assumptions we make with respect to the unit price functions

of A and B, we can generalize the results of Theorem 4.3.1; it is optimal to

either order as much as possible at A or as much as possible at B.

Proposition 5.2.1 Let W = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈ WN be a CRSP-

situation. Then, for all t ∈ [0, QA +QB]

min
{

cA(tA) + cB(t− tA)|0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB

}

=min
{

cA (min{QA, t}) + cB((t−QA)
+) ,

cB(min{QB, t}) + cA((t−QB)
+)
}

. (5.5)

Proof: Let t ∈ [0, QA +QB]. First, we observe that

min
{

cA(tA) + cB(t− tA)|0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB

}

=min
{

cA(tA) + cB(t− tA)|tA ∈ [(t−QB)
+,min{QA, t}]

}

.
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The interval [(t−QB)
+,min{QA, t}] is nonempty since QA > 0 and QB > 0

and t ≤ QA +QB.

Let h : [(t−QB)
+,min{QA, t}] → R+ be defined in the following way,

h(tA) = cA(tA) + cB(t− tA).

Then, for tA ∈ [(t−QB)
+,min{QA, t}]

h
′

(tA) =c
′

A(tA)− c
′

B(t− tA)

=p
′

A(tA)tA + pA(tA)− p
′

B(t− tA)(t− tA)− pB(t− tA)

and

h
′′

(tA) =c
′′

A(tA) + c
′′

B(t− tA)

=p
′′

A(tA)tA + 2p′A(tA) + p
′′

B(t− tA)(t− tA) + 2p
′

B(t− tA) < 0,

where the inequality follows from the assumptions we made on the unit price

functions of A and B.

The objective function h(tA) is strictly concave. Hence the ordering costs

are minimized by choosing tA at one of the boundaries of the domain, i.e.,

tA = (t − QB)
+ or tA = min{QA, t} . Consequently t − tA = min{QB, t} or

t− tA = (t−QA)
+. Hence,

min{cA(tA) + cB(t− tA)|0 ≤ tA ≤ QA, t− tA ≤ QB}
=min

{

cA (min{QA, t}) + cB((t−QA)
+) ,

cB(min{QB, t}) + cA((t−QB)
+)
}

. �

In the next example we show the various assumptions we can make with

respect to the possible order fulfillment policies of the suppliers and the

consequences on reordering possibilities, as they will be formally defined and

analyzed in the upcoming sections.

Example 5.2.2 LetN = {1, 2, 3}. LetW = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈
WN be a CRSP-situation given by q = (8, 9, 15), QA = 16, QB = 20, and

unit price functions
{

pA(t) = 181
4
− 1

3
t,

pB(t) = 201
4
− 1

2
t.
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First, we verify that both cA and cB are increasing and strictly concave.

Note that for all t ∈ [0, 16],

p
′

A(t) = −1

3
> −181

4

t
− 1

3

and that

p
′′

A(t) = 0 <
2

3t
.

Hence, the conditions in (5.1) and (5.2) are satisfied. Similarly, we find that

for B the conditions (5.3) and (5.4) are satisfied as well. For all t ∈ [0, 20],

we have that

p
′

B(t) = −1

2
> −201

4

t
− 1

2

and that

p
′′

B(t) = 0 <
1

t
.

Based on Proposition 5.2.1, since cA(8) = 1242
3

< 130 = cB(8), player

1 would like to obtain all 8 units from supplier A. For player 2, since

cA(9) = 1371
4
< 1413

4
= cB(9), it would be best to obtain all 9 units from

supplier A, and for player 3, since cA(15) = 1983
4
> 1911

4
= cB(15), it would

be best to obtain all 15 units from supplier B.

Let us assume that xA
1 = 8 and xB

1 = 0, that xA
2 = 9 and xB

2 = 0 and that

xA
3 = 0 and xB

3 = 15. We can immediately see that
∑

j∈N xA
j = 17 > 16 =

QA.

Next, we make various assumptions on how supplier A and B react upon

the orders xA and xB .

Let us assume that πA and πB are such that large orders are fulfilled before

the smaller orders (LBS). Then, πA(xA) = (7, 9, 0) and πB(xB) = (0, 0, 15).

For player 1, however, πA
1 (x

A) + πB
1 (x

B) = 7, while q1 = 8. Since player 1

can only place orders such that xA
1 + xB

1 = 8, we allow him to change his

order at B.



5.3. Non-cooperative cost games 145

For these fulfillment policies and under the assumption of order adjustment,

the ordering costs for player 1 are cA(7) + cB(1) = 1311
6
, while the ordering

costs for player 2 are cA(9) = 1371
4
and those for player 3 are cB(15) = 1911

4
.

On the other hand, one can also assume that πA and πB are such that

both suppliers first fulfill small orders before fulfilling large orders (SBL).

Hence, πA(xA) = ((8, 8, 0)) and πB(xB) = (0, 0, 15). Here, player 2 needs

to reorder an extra unit at supplier B. For these fulfillment policies, the

ordering costs for player 1 are cA(8) = 1242
3
, the ordering costs for player

2 are cA(8) + cB(1) = 144 5
12
, and the ordering costs for player 3 remain

cB(15) = 1911
4
.

Note that for the fulfillment policy based on SBL, the turnover of sup-

plier A is larger than in the case of a fulfillment policy based on LBS,

cA(8) + cA(8) = 2491
3
> 2482

3
= cA(7) + cA(9).

Another reasonable assumption is that supplier A is indifferent with respect

to the identity of the players, and distributes QA proportionally over the

orders, i.e., πA(xA) = 16
17
(8, 9, 0). Here, both player 1 and player 2 need to

reorder atB. The ordering costs for player 3 remain the same, cB(15) = 1911
4
.

Player 1’s ordering costs are cA(
128
17
)+cB(

8
17
) ≈ 127.93 and player 2’s ordering

costs are cA(
144
17
) + cB(

9
17
) ≈ 141.25. /

To analyze the effect of fulfillment policies on purchaser’s behavior in CRSP-

situations we will model these situations as non-cooperative cost games.

5.3 Non-cooperative cost games

A non-cooperative cost game G in strategic form with players N = {1, . . . , n}
is given by

G = ((Xj)j∈N , (fj)j∈N),

where Xi denotes the strategy space and fi : Πj∈NXj → R the cost function

of player i ∈ N . It is assumed that all information is publicly available and



146 Chapter 5. Ordering strategies for CRSP-situations

that players choose their strategies simultaneously and independently. Let

G = ((Xj)j∈N , (fj)j∈N) be a non-cooperative cost game. A strategy profile

x̂ = (x̂1, . . . , x̂n) ∈ Πj∈NXj is called a Nash equilibrium (Nash (1951)) of G

if for all xi ∈ Xi and all i ∈ N ,

fi(x̂) ≤ fi(xi, x̂−i),

where x−i is a shorthand notation for (x1, . . . , xi−1, xi+1, . . . , xn). A game

can have no, one or multiple Nash equilibria and the set of Nash equilibria

of G is denoted by E(G).

An alternative characterization of a Nash equilibrium can be provided by

using best reply correspondences. Let G = ((Xj)j∈N , (fj)j∈N) be a non-

cooperative cost game. For i ∈ N , the best reply correspondence bi(x−i) ex-

plains how player i could optimally react to strategy profile x−i ∈ Πj∈N\{i}Xj,

i.e.,

bi(x−i) = argmin{fi(xi, x−i)|xi ∈ Xi}.

Note that there can be no, one or multiple best replies. If, for a strategy

profile x̂ ∈ Πj∈NXj, for all i ∈ N , x̂i ∈ bi(x̂−i) then x̂ ∈ E(G), and conversely.

A strategy x∗
i ∈ Xi is called a dominant strategy for player i if for all xi ∈ Xi

and all strategy profiles x−i ∈ Πj∈N\{i}Xj ,

fi(x
∗
i , x−i) ≤ fi(xi, x−i)

or alternatively, if for all x−i ∈ Πj∈N\{i}Xj, x
∗
i ∈ bi(x−i).

If player i ∈ N has dominant strategy x∗
i , in finding a Nash equilibrium of

G we can limit ourselves to the reduced strategy space {x∗
i } × Πj∈N\{i}Xj.

If there exists a sequence of players, such that in every reduced strategy

space, there exists a player with a dominant strategy, we have constructed a

recursive dominant Nash equilibrium.

If the strategy spaces of all players are finite, i.e., if for all i ∈ N , Xi =

{x1
i , . . . , x

mi

i } with mi ∈ N+, the game is called finite and one can allow for

mixed strategies. For a finite game G = ((Xj)j∈N , (fj)j∈N) the corresponding

mixed extension ∆(G) = (∆(Xj)j∈N , (f̄j)j∈N) is defined in the following way.

In a mixed strategy, a player i ∈ N can play each of his actions xi ∈ Xi
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with a probability δi(xi) ≥ 0 such that
∑

xi∈Xi
δi(xi) = 1. The set of mixed

strategies of player i ∈ N is given by

∆(Xi) =

{

δi : Xi → [0, 1]|
mi
∑

j=1

δi(xj
i ) = 1

}

.

The costs, f̄i(δ) for i ∈ N , corresponding to a profile of mixed strategies

(δ1, . . . , δn) are in fact expected costs and can be computed using the Von

Neumann Morgenstern expected cost (payoff) function (Von Neumann and

Morgenstern (1944)). The mixed extension of a finite game always has at

least one Nash equilibrium (Nash (1951)).

On the other hand, the existence of Nash equilibria for arbitrary games is

not guaranteed. Sufficient conditions have been developed by, e.g., Rosen

(1965). Especially if the cost functions of the players are not continuous, the

existence of Nash equilibria is hard to verify.

5.4 Infinite ordering games

To define an ordering game corresponding to a CRSP-situation we need to

define the strategy space of the purchasers, which depends on possible limits

on their order sizes, and we need to define the cost function for a profile of

strategies, which depends on the fulfillment policies of the suppliers. In this

section we will define an infinite ordering game corresponding to a CRSP-

situation. First, we will illustrate the underlying idea behind the strategy

space by means of an example.

Example 5.4.1 Let N = {1, 2, 3} and consider the CRSP-situation of Ex-

ample 5.2.2 with W = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈ WN given by q =

(8, 9, 15), QA = 16, QB = 20 and unit price functions
{

pA(t) = 181
4
− 1

3
t,

pB(t) = 201
4
− 1

2
t.

Assuming that for each player i ∈ N , an order has to sum up to qi and

does not exceed the capacity restrictions of A and B, the possible ordering

strategies of player 1 are given by

X1 =
{

(xA
1 , x

B
1 )|xA

1 + xB
1 = 8, xA

1 ∈ [0, 16], xB
1 ∈ [0, 20]

}

.



148 Chapter 5. Ordering strategies for CRSP-situations

Note that, due to the feasibility restrictions on the orders, a strategy (xA
1 , x

B
1 )

of player 1 can be represented by a scalar: y1 ∈ [0, 8] corresponds to the order

xA
1 at A and xB

1 = 8−y1 at B. We set Y1 = [0, 8]. Similarly we set Y2 = [0, 9]

and Y3 = [0, 15]. /

As illustrated in Example 5.4.1, assuming that each player i in total orders

qi, a strategy yi ∈ Yi of player i ∈ N can be represented by a scalar. Here, yi

denotes the amount player i ∈ N would like to purchase at A. Automatically

he would like to purchase the complementary amount qi−yi at firm B. Since,

0 ≤ yi ≤ QA and at the same time 0 ≤ qi − yi ≤ QB, we formally define the

strategy space of player i ∈ N , with y
i
= (qi −QB)

+ and yi = min{qi, QA},
by

Yi = [y
i
, yi].

Next, we define the cost functions {gi}i∈N . Given a profile of orders y ∈
Πj∈NYj, the suppliers announce the levels of fulfillment, i.e., πA(y) and

πB(q − y). In case for some player i ∈ N , πA
i (y) + πB

i (q − y) < qi he is

allowed to increase his order at the supplier that has enough supply capac-

ity left, such that he will obtain exactly qi. The reason to allow for order

adjustment is that, although player i might know that he will only obtain

πA
i (y) < yi from A, initially he is not allowed to order qi − πA

i (y) at B.

Thus given y ∈ Πj∈NYj and i ∈ N , if
∑

j∈N yj > QA, the ordering costs for

player i equal

cA(π
A
i (y)) + cB(qi − πA

i (y)).

If
∑

j∈N(qj − yj) > QB, the ordering costs equal

cA(qi − πB
i (q − y)) + cB(π

B
i (q − y))

and if both
∑

j∈N yj ≤ QA and
∑

j∈N(qj − yj) ≤ QB the ordering costs equal

cA(yi) + cB(qi − yi).

The cost function gi : Πj∈NYj → R+ for player i ∈ N is given by

gi(y) =

{

cA(π
A
i (y)) + cB(qi − πA

i (y)) if
∑

j∈N yj ≥ QA,

cA(qi − πB
i (q − y)) + cB(π

B
i (q − y)) otherwise.

(5.6)
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In the next subsections we vary the fulfillment policies πA and πB of the

suppliers, based on the ideas we formulated in Example 5.2.2.

5.4.1 Order fulfillment based on fixed and identical
preferences

In this section we analyze infinite ordering games that correspond to CRSP-

situations in which suppliers’ fulfillment policies πA and πB are based on

specific preset preferences of the suppliers with respect to the players in N .

Let W ∈ WN . Supplier A has a fixed and strict preference order σA ∈ Π(N)

on the players in N , and σB ∈ Π(N) represents the fixed and strict pref-

erences of supplier B. These preferences imply that, independent of the

ordering strategies, supplier A fulfills the order of player σA(i) before he ful-

fills the order of player σA(i+1). Fixed preference orders are called identical

if σA = σB.

Given y ∈ Πj∈NYj, supplier A’s and supplier B’s order fulfillments πA and

πB are obtained as follows for i ∈ {1, . . . , n}:

πA
σA(i)(y) = min

{

yσA(i),

(

QA −
i−1
∑

j=1

yσA(j)

)+
}

and

πB
σB(i)(q − y) = min

{

qσB(i) − yσB(i),

(

QB −
i−1
∑

j=1

(qσB(j) − yσB(j))

)+
}

.

By WN,FID we denote the set of CRSP-situations in which πA and πB are

based on fixed and identical preferences (FID).

Example 5.4.2 LetN = {1, 2, 3}. LetW = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈
WN,FID be the CRSP-situation from Example 5.2.2 given by q = (8, 9, 15),

QA = 16, QB = 20 and unit price functions
{

pA(t) = 181
4
− 1

3
t,

pB(t) = 201
4
− 1

2
t.

Here, the fulfillment policies πA and πB are based on the fixed and identical

preferences of A and B given by σA = (2, 1, 3) = σB. Let GW = ((Yj)j∈N ,
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(gj)j∈N) be the corresponding infinite ordering game.

As we have seen before, Y1 = [0, 8], Y2 = [0, 9] and Y3 = [0, 15] are the

strategy spaces of the players. For the strategy profile of Example 5.2.2,

y = (8, 9, 0), we find that πA(y) = (7, 9, 0) and πB(q− y) = (0, 0, 15). Hence,

g1(y) = cA(7) + cB(1) = 131
1

6
,

g2(y) = cA(9) = 137
1

4
,

g3(y) = cB(15) = 191
1

4
.

This profile of strategies is not a Nash equilibrium of GW . Player 1 can obtain

lower ordering costs by changing his ordering strategy to ỹ1 = 0. Then, with

ỹ = (0, 9, 0), fulfillments πA(ỹ) = (0, 9, 0), and πB(q − ỹ) = (8, 0, 12), the

ordering costs of player 1 decrease to

g1(ỹ) = cB(8) = 130
1

6
< 131

1

6
.

Next, we will argue that y∗ = (0, 9, 3) is a Nash equilibrium of GW . Since

player 2 is strictly preferred over the other players by both suppliers, he can

simply solve the minimization problem

min{cA(y2) + cB(9− y2)|y2 ∈ [0, QA], (9− y2) ∈ [0, QB]},

which is equivalent with

min{cA(y2) + cB(9− y2)|y2 ∈ [0, 9]}.

Using Proposition 5.2.1, we find that y∗2 = 9 is a dominant strategy for player

2. In the reduced strategy space Y1 × {y∗2} × Y3, players 1 and 3 can limit

themselves to ordering in between 0 and 7 at A. Since player 1 is strictly

preferred over player 3 by both suppliers, he can find his optimal strategy by

solving

min{cA(y1) + cB(8− y1)|y1 ∈ [0, QA − 9], (8− y1) ∈ [0, QB]},

which is equivalent with

min{cA(y1) + cB(8− y1)|y1 ∈ [0, 7]}.
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Using Proposition 5.2.1, we find that y∗1 = 0 is a dominant strategy for player

1 in the reduced strategy space. For player 3, in the reduced strategy space

{y∗1} × {y∗2} × Y3, he can limit himself to ordering up between 3 and 7 at A

(there is 12 left at B). Solving

min{cA(y3) + cB(15− y3)|y3 ∈ [0, 7], (15− y3) ∈ [0, 12]}

we find that in this reduced strategy space y∗3 = 3 is a dominant strategy for

player 3.

Clearly, no player can reduce his ordering costs, thus y∗ ∈ E(GW ). Further-

more, looking at the procedure we used in establishing y∗ we can conclude

that it is a recursive dominant equilibrium. /

If both suppliers fulfill orders based on fixed and identical preferences the

infinite ordering game has a Nash equilibrium.

Theorem 5.4.3 Let W ∈ WN,FID and let GW = ((Yj)j∈N , (gj)j∈N) be the

corresponding infinite ordering game. Then, there exists a Nash equilibrium

y∗ ∈ E(GW ).

Proof: Let W = (q, [pA, QA, π
A], [pB, Q

B, πB]) and let σ ∈ Π(N) be the

fixed and identical preferences of the suppliers.

Define y∗ by letting the players choose their optimal strategies as if they

may decide according to order σ.

Thus, choose

y∗σ(1) ∈ argmin{gσ(1)(y)|yσ(1) ∈ Yσ(1)}. (5.7)

Recursively, for i = 2, . . . , n, with yr
σ(i)

= qσ(i)−min{qσ(i), (QB−
∑

k<i(qσ(k)−
y∗σ(k)))

+} = (qσ(i)−(QB−∑k<i(qσ(k)−y∗σ(k)))
+)+ and yrσ(i) = min{qσ(i), (QA−

∑

k<i y
∗
σ(k))

+}, set

Y r
σ(i) = [yr

σ(i)
, yrσ(i)]
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as the remaining feasible orders for player σ(i).

With

y−σ(i) ∈
{

(y∗σ(1), . . . , y
∗
σ(i−1), yσ(i+1), . . . , yσ(n))|yσ(k) ∈ Yσ(k) for k = i+1, . . . , n

}

,

recursively choose

y∗σ(i) ∈ argmin{gσ(i)(yσ(i), y−σ(i))|yσ(i) ∈ Y r
σ(i)}. (5.8)

If we can show that the minima of (5.7) and (5.8) exist, then we have shown

that

(i) y∗σ(1) is a dominant strategy for σ(1), and that

(ii) y∗σ(i), i ∈ {2, . . . , n}, is a dominant strategy for σ(i) within the reduced

strategy space

{

(y∗σ(1), . . . , y
∗
σ(i−1), yσ(i), . . . , yσ(n))|yσ(k) ∈ Yσ(k) for k = i, . . . , n

}

,

which shows that y∗ is a Nash equilibrium of GW .

With respect to (5.7). For all y ∈ Πj∈NYj,

{

πA
σ(1)(y) = yσ(1)

πB
σ(1)(q − y) = qσ(1) − yσ(1).

Hence,

gσ(1)(yσ(1), y−σ(1)) = cA(yσ(1)) + cB(qσ(1) − yσ(1)).

and thus

min{gσ(1)(y)|yσ(1) ∈ Yσ(1)} = min{cA(yσ(1))+cB(qσ(1)−yσ(1))|yσ(1) ∈ Yσ(1)},

and by Proposition 5.2.1, the minimum exists.

With respect to (5.8), take i ∈ {2, . . . , n} and assume that for all ` ∈
{1, . . . , i− 1}, y∗σ(`) is a dominant strategy in the reduced strategy space

{

(y∗σ(1), . . . , y
∗
σ(`−1), yσ(`), . . . , yσ(n))|yσ(k) ∈ Yσ(k) for k = `, . . . , n

}

,
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We have that σ(i) is, after σ(1) up to σ(i − 1), first in line with respect to

order fulfillment. Thus for all y ∈
{

(y∗σ(1), . . . , y
∗
σ(i−1), yσ(i), . . . , yσ(n))|yσ(k) ∈

Yσ(k) for k = i, . . . , n
}

, satisfying yσ(i) ∈ Y r
σ(i),

{

πA
σ(i)(y) = yσ(i)

πB
σ(i)(q − y) = qσ(i) − yσ(i).

Hence, for all yσ(i) ∈ Y r
σ(i),

gσ(i)(yσ(i), y−σ(i)) = cA(yσ(i)) + cB(qσ(i) − yσ(i)).

Again, by Proposition 5.2.1 there exists a minimum in (5.8). �

Note that the Nash equilibrium we constructed in the proof of Theorem 5.4.3

is a dominant recursive equilibrium. Moreover, in the equilibrium we con-

structed, there is no need for the players to adjust their orders at one of the

suppliers after announcement of the order fulfillment levels.

If suppliers’ preferences are fixed but not identical, it is not clear whether

there exists an equilibrium in the infinite ordering game. This remains an

open problem.

5.4.2 Order fulfillment based on order size

Suppliers’ preferences can also be based on the orders that are placed. If sup-

plier A faces a set of orders y that cannot be fulfilled by QA, he can maximize

his turnover by splitting QA over as much orders as possible. The smaller the

order quantity, the higher the unit price. This preference order myopically

maximizes the turnover of A. It is myopic in the sense that suppliers do not

take into account possible reactions of the purchasers towards the fulfillment

policy.

More formally, the set WN,SBL describes the set of CRSP-problems where

suppliers’ fulfillment policies are based on small before large preferences (SBL).

Let W = (q, [pA, QA, π
A], [pB, Q−B, πB]) ∈ WN,SBL and let GW = ((Yj)j∈N ,

(gj)j∈N) be the corresponding infinite ordering game. Let y ∈ Πj∈NYj and
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take i ∈ N . Then, SA
i (y) denotes the amount of smaller orders that are ful-

filled by A before player i’s order is fulfilled. Hence, with T1 = {j ∈ N |yj <
yi} and with T2 = {j ∈ N |yj = yi and j < i},

SA
i (y) =

∑

j∈T1∪T2

yj.

Thus small orders are fulfilled before larger orders, and in case of a tie the

supplier prefers the player with smallest index.

Due to this tie breaking rule, for each profile of strategies y ∈ Πj∈NYj it is

determined which orders are (partially) fulfilled at A.

Similar for supplier B, SB
i (q−y) denotes the amount of smaller orders that are

fulfilled by B before player i’s order is fulfilled. With T1 = {j ∈ N |qj − yj <

qi − yi} and with T2 = {j ∈ N |qj − yj = qi − yi and j < i},

SB
i (q − y) =

∑

j∈T1∪T2

(qj − yj).

Thus for each i ∈ N , the SBL-fulfillment policies of A and B are given by

πA
i (y) = min

{

yi,

(

QA − SA
i (y)

)+
}

and

πB
i (q − y) = min

{

qi − yi,

(

QB − SB
i (q − y)

)+
}

.

The next example shows that when both suppliers fulfill orders based on

small before large (SBL), there need not be a Nash equilibrium in the infinite

ordering game.

Example 5.4.4 LetN = {1, 2} and letW = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈
WN,SBL be a CRSP-situation given by q = (18, 19), QA = 20, QB = 25 and

unit price functions
{

pA(t) = 201
4
− 1

2
t,

pB(t) = 181
4
− 1

3
t.

The fulfillment policies πA and πB are based on SBL.
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Figure 5.4.1: Best reply correspondences in the infinite ordering game of
Example 5.4.4

Let GW = ((Yj)j∈N , (gj)j∈N) be the corresponding infinite ordering game.

To show that GW does not have a Nash equilibrium, we will construct the

best reply correspondences for both players.

The stand alone strategies for both players are to order at A, since pA(18) <

pB(18) and pA(19) < pB(19).

Let us look at the best replies of player 2. Recall that it is always opti-

mal to buy as much as possible at one of the suppliers. If y1 is sufficiently

small, player 2 can best respond by buying as much as possible at A. The first

turnover point is y1 = 7.2, since cA(20−7.2)+cB(19−(20−7.2)) = 277.62 =

cB(25− (18− 7.2)) + cA(19− (25− (18− 7.2))). The second turnover point

is y1 = 17.6. If y1 lies in between 7.2 and 17.6, player 2 better purchases

as much as possible at supplier B. If y1 > 17.6, then since the suppliers

treat smaller orders first, player 2 should order slightly less than y1, hence
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for y1 > 17.6 there is no best reply. Thus,

b2(y1) =







































19 if y1 ∈ [0, 1],

[20− y1, 19] if y1 ∈ (1, 7.2),

[0, 4.8] ∪ [12.8, 19] if y1 = 7.2,

[0, 12− y1] if y1 ∈ (7.2, 12),

0 if y1 ∈ [12, 17.6],

∅ if y1 ∈ (17.6, 18].

Similarly, we can find the best reply correspondence for player 1,

b1(y2) =



























































18 if y2 ∈ [0, 1],

[20− y2, 18] if y2 ∈ (1, 7.6),

[0, 4.4] ∪ [12.4, 18] if y2 = 7.6,

[0, 12− y2] if y2 ∈ (7.6, 12),

0 if y2 ∈ [12, 16.8),

{0, 16.8} if y2 = 16.8,

y2 if y2 ∈ (16.8, 18),

18 if y2 ∈ [18, 19].

In Figure 5.4.1 one can find a sketch of the best reply correspondences of the

players. We can see that they do not intersect, so this ordering game does

not have a Nash equilibrium. /

The opposite of SBL constitutes another fulfillment policy for A and B. In

this case a supplier invests in a relation with a large purchaser by preferring

him over a smaller purchaser. The possible fixed ordering costs are not neces-

sarily an argument for a supplier to choose a large before small fulfillment, as

opposed to the myopic SBL. These economies of scale are already translated

in the decreasing unit price functions of the suppliers.

The set WN,LBS contains all CRSP-situations where the fulfillment poli-

cies are based on large before small. Take W ∈ WN,LBS and let GW =

((Yj)j∈N , (gj)j∈N) be the corresponding infinite ordering game. Then the

fulfillment policies of A and B are based on large before small preferences

(LBS) if orders are fulfilled in the following way. Let y ∈ Πj∈NYj and take

i ∈ N . Then LA
i (y) denotes the amount of larger orders that are fulfilled by
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A before player i’s order is fulfilled. Hence, with T1 = {j ∈ N |yj > yi} and

with T2 = {j ∈ N |yj = yi and j > i},

LA
i (y) =

∑

j∈T1∪T2

yj.

Similarly for supplier B, LB
i (q − y) denotes the amount of larger orders

that are fulfilled by B before player i’s order is fulfilled. With T1 = {j ∈
N |qj − yj > qi − yi} and with T2 = {j ∈ N |qj − yj = qi − yi and j > i},

LB
i (q − y) =

∑

j∈T1∪T2

(qj − yj).

Thus for each i ∈ N , the fulfillment policies of A and B, based on LBS, are

given by

πA
i (y) = min

{

yi,

(

QA − LA
i (y)

)+
}

and

πB
i (q − y) = min

{

qi − yi,

(

QB − LB
i (q − y)

)+
}

.

Thus a supplier fulfills a large order before a smaller order, and in case of a

tie the order of the player with largest index goes first.

Due to this tie breaking rule for each profile of strategies y ∈ Πj∈NYj it is

determined which orders are (partially) fulfilled.6

Whereas for SBL fulfillment policies, the ordering game does not necessarily

have an equilibrium, for CRSP-situations with LBS fulfillment policies, there

exists a Nash equilibrium in the corresponding infinite ordering game.

Theorem 5.4.5 Let W ∈ WN,LBS and let GW = ((Yj)j∈N , (gj)j∈N) be the

corresponding infinite ordering game. Then, there exists a Nash equilibrium

of GW .

Proof: Let W = (q, [pA, QA, π
A], [pB, QB, π

B]). Define y∗ in the following

backward recursive way.

6If we replace this tie breaking rule with another one, Theorem 5.4.5 remains valid.
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Set

y∗n =

{

yn if cA(yn) + cB(qn − yn) ≤ cB(qn − y
n
) + cA(yn),

y
n

otherwise,
(5.9)

and set tn = y∗n.

For i ∈ {n − 1, . . . , 1}, with yr
i
= (qi − (QB −∑j>i(qj − tj)))

+ and yri =

min{qi, QA −∑j>i tj}, recursively set

y∗i =

{

yi if cA(y
r
i ) + cB(qi − yri ) ≤ cB(qi − yr

i
) + cA(y

r

i
),

y
i

otherwise,
(5.10)

and set

ti =

{

yri if y∗i = yi,

yr
i

if y∗i = y
i
.

We will show that

(i) y∗n is a dominant strategy for n,

(ii) y∗i is a dominant strategy for i ∈ {n − 1, . . . , 1} within the reduced

strategy space

{

(y1, . . . , yi, y
∗
i+1, . . . , y

∗
n)|yk ∈ Yk for k = 1, . . . , i

}

,

which shows that y∗ is a Nash equilibrium of GW .

With respect to (i), note that for all y = (yn, y−n) ∈ Πj∈NYj, L
A
n (y) = 0.

Similarly, for all y = (y
n
, y−n) ∈ Πj∈NYj, L

B
n (q − y) = 0. Hence, for all

y−n ∈ Πj∈N\{n}Yj,
{

πA
n (yn, y−n) = yn,

πB
n (qn − y

n
, q−n − y−n) = qn − y

n
.

Thus for all y−n ∈ Πj∈N\{n}Yj,
{

gn(yn, y−n) = cA(yn) + cB(qn − yn),

gn(yn, y−n) = cB(qn − y
n
) + cA(yn).
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By Proposition 5.2.1, at least one of the following two inequalities is true,

for all yn ∈ Yn:

cA(yn) + cB(qn − yn) ≤ cA(yn) + cB(qn − yn),

cA(yn) + cB(qn − y
n
) ≤ cA(yn) + cB(qn − yn).

Hence, by (5.9), y∗n is a dominant strategy for player n.

Note that for all y−n ∈ Πj∈N\{n}Yj ,

{

πA
n (y

∗
n, y−n) = tn,

πB
n (qn − y∗n, q−n − y−n) = qn − tn.

With respect to (ii) take i ∈ {1, . . . , n − 1} and assume that for all ` ∈
{i+ 1, . . . , n}, y∗` is a dominant strategy in the reduced strategy space

{

(y1, . . . , y`, y
∗
`+1, . . . , y

∗
n)|yk ∈ Yk for k = 1, . . . , `

}

,

and that for all y ∈
{

(y1, . . . , y`, y
∗
`+1, . . . , y

∗
n)|yk ∈ Yk for k = 1, . . . , `

}

,

{

πA
` (y) = t` if y∗` = y`,

πB
` (q − y) = q` − t` if y∗` = y

`
.

Take y = (yi, y−i) ∈
{

(y1, . . . , yi, y
∗
i+1, . . . , y

∗
n)|yk ∈ Yk for k = 1, . . . , i

}

.

Then, for all k < i, yi ≥ yk, thus

LA
i (y) ≤

∑

j>i

tj .

Furthermore, if LA
i (y) <

∑

j>i tj , then there is a player k > i with y∗k = y
k

and with qk > QB − (
∑

j>k qj − tj). By the global sufficient capacity of A

and B, qi ≤ QA −∑j>i tj . Thus

πA
i (yi, y−i) = min{qi, QA −

∑

j>i

tj} = yri .

Therefore,

gi(yi, y−i) = cA(y
r
i ) + cB(qi − yri ).
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Let y = (y
i
, y−i) ∈

{

(y1, . . . , yi, y
∗
i+1, . . . , y

∗
n)|yk ∈ Yk for k = 1, . . . , i

}

. Using

the same reasoning as above we find that

πB
i (qi − y

i
, q−i − y−i) = qi − yr

i

and thus that

gi(yi, y−i) = cA(y
r

i
) + cB(qi − yr

i
).

For any y ∈
{

(y1, . . . , yi, y
∗
i+1, . . . , y

∗
n)|yk ∈ Yk for k = 1, . . . , i

}

, we have that

πA
i (y) ≤ yri and πB

i (q− y) ≤ qi − yr
i
. By Proposition 5.2.1 at least one of the

following two inequalities is true, for all yi ∈ [yr
i
, yri ]:

cA(y
r
i ) + cB(qi − yri ) ≤ cA(yi) + cB(qi − yi)

cA(y
r

i
) + cB(qi − yr

i
) ≤ cA(yi) + cB(qi − yi).

Hence, by (5.10), y∗i is a dominant strategy for player i in the reduced strategy

space. Furthermore, for all y ∈
{

(y1, . . . , yi, y
∗
i+1, . . . , y

∗
n)|yk ∈ Yk for k =

1, . . . , i
}

,
{

πA
i (y) = ti if y∗i = yi,

πB
i (q − y) = qi − ti if y∗i = y

i
. �

In the Nash equilibrium we constructed in the proof above, players choose

a (dominant) strategy that is either y
i
or yi, just to be next in line when it

comes to order fulfillment. Hence, there are equilibria in an infinite ordering

game corresponding to a CRSP-situation with LBS fulfillment, that can be

found at the boundaries of the combined strategy space. Also here, the equi-

librium we constructed in the proof is a recursive dominant equilibrium.

Hence, we can conclude that a myopic fulfillment policy does not result in

a Nash equilibrium, whereas a more farsighted fulfillment policy does. A

possible explanation for this phenomenon is that LBS combined with the

feasibility restrictions induces some sort of truth telling by the purchasers.

In the equilibrium constructed in the proof of Theorem 5.4.5 each purchaser

truthfully reveals the maximum amount he would like to receive from his

preferred supplier, whereas in Example 5.4.4 with SBL fulfillment the pur-

chasers undermine each other’s ordering strategies by ordering slightly less

than they actually would like to receive.
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5.4.3 Proportional order fulfillment

The last fulfillment policy we study, in this section, is proportional order

fulfillment. A reason for suppliers to fulfill orders proportionally is that they

are indifferent with respect to the identity of the players or do not want to

discriminate for another reason.

We denote by WN,PROP the set of CRSP-situations in which both suppli-

ers fulfill orders proportionally. Let W = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈
WN,PROP be a CRSP-situation and let GW = ((Yj)j∈N , (gj)j∈N) be the cor-

responding infinite ordering game. Given y ∈ Πj∈NYj, the proportional order

fulfillment is given by

πA(y) = y
QA

max{∑j∈N yj, QA}
and

πB(q − y) = (q − y)
QB

max{∑j∈N(qj − yj), QB}
.

Note that for i ∈ N , πA
i and πB

i are strictly monotonic in yi. Let y ∈ Πj∈NYj,

take i ∈ N and ỹi > yi. Then,

πA
i (y) < πA

i (ỹi, y−i)

and

πB
i (q − y) > πB

i (qi − ỹi, q−i − y−i).

In Proposition 5.2.1 we have shown that for increasing and strictly concave cA

and cB, it is optimal to order as much as possible at one of the two suppliers.

If we combine this fact with the the strict monotonicity of πA and πB, we can

show that against a strategy profile y−i, the set of best replies consists of one

or both of the two extreme strategies y
i
= (qi −QB)

+ and yi = min{qi, QA}.

Proposition 5.4.6 Let W ∈ WN,PROP be a CRSP-situation. Let GW =

((Yj)j∈N , (gj)j∈N) be the corresponding infinite ordering game. Let y ∈ Πj∈NYj
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be such that for i ∈ N , yi ∈ (y
i
, yi). Then, at least one of the following two

inequalities is true,

(i) gi(yi, y−i) < gi(y), (5.11)

(ii) gi(yi, y−i) < gi(y). (5.12)

Proof: Let W = (q, [pA, QA, π
A], [pB, QB, π

B]). We first show that y
i
or yi

is a best reply for player i against y−i.

With yi ∈ (y
i
, yi), we have that

πA
i (yi, y−i) < πA

i (y) < πA
i (yi, y−i),

πB
i (qi − yi, q−i − y−i) < πB

i (q − y) < πB
i (qi − y

i
, q−i − y−i).

Thus, given y−i, player i can maximally realize πA
i (yi, y−i) at supplier A.

Similarly at B, the maximal order fulfillment equals πB
i (qi − y

i
, q−i − y−i).

Since in the end, player i will obtain qi, player i will obtain at least qi −
πB
i (qi − y

i
, q−i − y−i) from A and at least qi − πA

i (yi, y−i) from B.

Hence the possible obtained orders at A can be represented by the inter-

val [t, t], define by

[t, t] = [qi − πB
i (qi − y

i
, q−i − y−i), π

A
i (yi, y−i)].

Note that for any t ∈ [t, t], qi − t ∈ [qi − πA
i (yi, y−i), π

B
i (qi − y

i
, q−i − y−i)],

i.e., the possible obtained orders at B. For determining a best reply against

y−i, player i has to decide how much is optimal to be obtained from supplier

A (and the remainder from B) and choose yi accordingly.

We need to solve the following minimization problem

min
{

cA(t) + cB(qi − t)|t ∈ [t, t]
}

. (5.13)

Define h : [t, t] → R+ in the following way,

h(t) = cA(t) + cB(qi − t).

Note that h is strictly concave on [t, t]. Thus, t = qi − πB
i (qi − y

i
, q−i − y−i)

or t = πA
i (yi, y−i) minimizes (5.13).
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We finish the proof by stating that gi(yi, y−i) = h(t), that gi(yi, y−i) = h(t)

and that gi(y) = h(t) for some t ∈ (t, t). �

Using Proposition 5.4.6 we know where to look for equilibria. A possible

best reply for player i against strategy y−i is either y
i
= (qi − QB)

+ or

yi = min{QA, qi}. Hence, a possible Nash equilibrium can be found in one

of the extreme points of Πj∈NYj.

Example 5.4.7 We consider the CRSP-situation from Example 5.4.4, but

now the suppliers fulfill orders proportionally. Let N = {1, 2} and let W =

(q, [pA, QA, π
A], [pB, QB, π

B]) ∈ WN,PROP be given by q = (18, 19), QA = 20,

QB = 25 and

pA(t) = 20
1

4
− 1

2
t if t ∈ [0, QA],

pB(t) = 18
1

4
− 1

3
t if t ∈ [0, QB].

Let GW = ((Yj)j∈N , (gj)j∈N) be the corresponding infinite ordering game.

We have Y1 = [0, 18] and Y2 = [0, 19].

Using Proposition 5.4.6 we know that if GW has a Nash equilibrium, it can

only be at the boundaries of the strategy space. Hence, the candidates are

y1 = (0, 0), y2 = (18, 0), y3 = (18, 19) and y4 = (0, 19). We can eliminate

y1, since g1(y
1) ≈ 273.83 > g1(y

2) = 202.5. And since g1(y
2) < g1(y

3),

g2(y
2) < g2(y

3) and also g2(y
2) < g1(y

1), y2 is an equilibrium of GW . Be-

cause g2(y
2) < g2(y

3), y3 is not an equilibrium. Similarly one can check that

for y4 there are no unilateral deviations that decrease the purchasing costs

of the deviating player. Hence E(GW ) = {(18, 0), (0, 19)}. /

The observations of Example 5.4.7 can be generalized. One only needs to

compare the extreme points of the combined strategy space to verify whether

the infinite ordering game has a Nash equilibrium.
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Theorem 5.4.8 Let GW = ((Yj)j∈N , (gj)j∈N) be the infinite ordering game

corresponding to CRSP-situation W ∈ WN,PROP . If ŷ ∈ E(GW ), then ŷ ∈
Πj∈N{yj , y

j}.

It is an open problem whether in an infinite ordering game corresponding to

a CRSP-situation in which both suppliers fulfill orders proportionally, there

exists an equilibrium.

5.5 Matrified ordering games

In this section we use a different approach for analyzing equilibrium behavior

in CRSP-situations. Instead of infinitely many options, the purchasers can

only choose from a limited but representative set of ordering options. We

matrify the infinite ordering game to a finite game.

Proposition 5.2.1 and the result of the previous section can be used as an

argument to limit the ordering possibilities of the purchasers to two extreme

actions: either order as much as possible at A or as much as possible at B.

Let W ∈ WN be a CRSP-situation and let GW = ((Yj)j∈N , (gj)j∈N) be the

corresponding infinite ordering game. In this section we define a matrified

ordering game

GW
m =

(

(∆(Ȳj))j∈N , (ḡj)j∈N

)

corresponding to W ∈ WN .

For each player i ∈ N the limited set of actions is given by

Ȳi = {y
i
, yi}.

The mixed strategy space of player i ∈ N is given by

∆(Ȳi) = {δi : Ȳi → [0, 1]|δi(y
i
) + δi(yi) = 1}.

The interpretation of δi ∈ ∆(Ȳi) is that player i chooses strategy y
i
with

probability δi(y
i
) and yi with probability δi(yi). The extreme points of ∆(Ȳi)
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are identified with y
i
and yi and are called the pure strategies of player i.

Every mixed strategy δi ∈ ∆(Ȳi) corresponds to an ordering strategy yi ∈ Yi,

with yi = δi(y
i
)y

i
+ δi(yi)yi. A mixed strategy is a linear combination of y

i

and yi. Since Yi = [y
i
, yi], every linear combination of y

i
and yi falls within

this set.

The cost function for a profile of mixed strategies is based on the cost function

of the infinite ordering game. The costs are an approximation of the actual

ordering costs for a mixed strategy. Let δ ∈ Πj∈N∆(Ȳj), for each i ∈ N , the

ordering costs are given by

ḡi(δ) =
∑

ȳ∈Πk∈N Ȳk

Πj∈Nδ
j(ȳj)gi(ȳ).

If the mixed extension of a finite game G has an equilibrium in which each

player plays a pure strategy, this is called a pure Nash equilibrium.

In the next subsections we show that for some of the possible order ful-

fillment policies we discussed in Section 5.4, there exist pure equilibria in the

matrified ordering game. Moreover, we explain the relation between equi-

libria in the infinite ordering game and (pure) equilibria in the matrified

ordering game.

5.5.1 Order fulfillment based on small before large

In this section we analyze matrified ordering games corresponding to CRSP-

situations with SBL-fulfillment policies. We start by providing an example

of a matrified ordering game.

Example 5.5.1 We consider the CRSP-situation from Example 5.2.2, but

we assume that suppliers’ fulfilment policies are based on SBL. Let N =

{1, 2, 3} and let W = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈ WN,SBL be given by

q = (8, 9, 15), QA = 16, QB = 20 and unit price functions

{

pA(t) = 181
4
− 1

3
t

pB(t) = 201
4
− 1

2
t.
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Let GW
m =

(

(∆(Ȳj))j∈N , (ḡj)j∈N

)

be the corresponding matrified ordering

game. Then, Ȳ1 = {0, 8}, Ȳ2 = {0, 9} and Ȳ3 = {0, 15}.

In Table 5.5.1, we present the costs for the pure strategies. The vectors

in the cells represent the ordering costs of the three players, given the com-

binations of pure strategies.

Table 5.5.1: Matrified ordering game of Example 5.5.1
Player 1 y1

Player 3 y3 Player 3 y
3

Player 2 y2 (1242
3
, 144 5

12
, 1911

4
) (1242

3
, 144 5

12
, 1911

4
)

Player 2 y
2

(1242
3
, 1413

4
, 24111

12
) (1242

3
,1413

4
,22911

12
)

Player 1 y
1

Player 3 y3 Player 3 y
3

Player 2 y2 (132, 1371
4
, 241 5

12
) (132, 1371

4
, 2223

4
)

Player 2 y
2

(132, 1413
4
, 1983

4
) (132, 1413

4
, 2271

4
)

For example, the profile of pure strategies y = (y1, y2, y3) has corresponding

fulfillments πA(y) = (8, 8, 0) and πB(q − y) = (0, 0, 15). The correspond-

ing ordering costs for player 1 are given by g1(y) = cA(8) = 1242
3
, for

player 2 are given by g2(y) = cA(8) + cB(1) = 144 5
12

and for player 3 by

g3(y) = cB(15) = 1911
4
.

If all players play both of their pure strategies with probability 1
2
, i.e., for all

i ∈ N and all yi ∈ Ȳi, δ
i(yi) =

1
2
, then the corresponding costs in the matri-

fied ordering game can be computed using the payoffs for the pure strategies,

e.g., for player 1,

ḡ1(δ) =
∑

ỹ∈Πj∈N Ȳj

(

1

2

)3

g1(ỹ) = 128
1

3
.

This mixed strategy δ corresponds to player 1 ordering 1
2
y
1
+ 1

2
y1 = 4 at A

and thus 4 at B, player 2 ordering 4.5 at A, and player 3 ordering 7.5 at A.

Thus δ corresponds with the strategy profile y = (4, 4.5, 7.5) of the infinite

ordering game. In fact, ḡ1(δ) can be seen as an approximation of g1(y).
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The combination of pure strategies ŷ = (y1, y2, y3) ∈ Πj∈N Ȳj results in a

Nash equilibrium. This is a pure Nash equilibrium of the matrified ordering

game. /

In the previous section, Example 5.4.4 showed that in the infinite ordering

game corresponding to a CRSP-situation with fulfillments based on SBL

there need not be a Nash equilibrium. In the matrified game corresponding to

such CRSP-situations, however, we can always find a pure Nash equilibrium.

Theorem 5.5.2 Let W ∈ WN,SBL be a CRSP-situation. Let GW
m =

(∆(Ȳj)j∈N , (ḡj)j∈N) be the corresponding matrified ordering game. Then,

there exists a pure Nash equilibrium of GW
m .

Proof: Let W = (q, [pA, QA, π
A], [pB, QB, π

B]). The proof follows the same

recursive structure as the proof of Theorem 5.4.5. Define y∗ in the following

way. Set

y∗1 =

{

y1 if cA(y1) + cB(q1 − y1) ≤ cB(y1) + cA(y1)

y
1

otherwise
(5.14)

and set t1 = y∗1.

For i ∈ {2, . . . , n}, recursively set

y∗i =

{

yi if cA(y
r
i ) + cB(qi − yri ) ≤ cB(qi − yr

i
) + cA(y

r

i
),

y
i

otherwise,
(5.15)

where yr
i
= (qi − (QB −∑j<i(qj − tj)))

+ and yri = min{(qi, QA −∑j<i tj)},
and with

ti =

{

yri if y∗i = yi,

yr
i

if y∗i = y
i
.

Using the same reasoning as in the proof of Theorem 5.4.5, one can show

that
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(i) the pure strategy y∗1 is a dominant strategy for player 1, i.e., for all

y ∈ Πj∈N Ȳj,

g1(y
∗
1, y−1) ≤ g1(y),

(ii) the pure strategy y∗i is a dominant strategy for player i ∈ {2, . . . , n}
within the reduced strategy space, i.e., for all y ∈

{

(y∗1, . . . , y
∗
i−1, yi, . . . , yn)|

yk ∈ Ȳk for k = i, . . . , n
}

gi(y
∗
i , y−i) ≤ gi(y),

which shows that y∗ is a pure Nash equilibrium of GW
m . �

5.5.2 Order fulfillment based on large before small

In Theorem 5.4.5 we have shown that an infinite ordering game corresponding

to a CRSP-situation with LBS-fulfillment has a Nash equilibrium. In this

section we analyze the correspondence between a Nash equilibrium in the

infinite ordering game and a pure Nash equilibrium in the matrified game.

Example 5.5.3 We consider the CRSP-situation from Example 5.2.2, but

we assume that suppliers’ fulfilment policies are based on LBS. Let N =

{1, 2, 3} and let W = (q, [pA, QA, π
A], [pB, QB, π

B]) ∈ WN,LBS be given by

q = (8, 9, 15), QA = 16, QB = 20 and unit price functions

{

pA(t) = 181
4
− 1

3
t

pB(t) = 201
4
− 1

2
t.

Let GW = ((Yj)j∈N , (gj)j∈N) be the corresponding infinite ordering game

and let GW
m =

(

(∆(Ȳj))j∈N , (ḡj)j∈N

)

be the corresponding matrified order-

ing game.

Then, for the infinite ordering game, following the proof of Theorem 5.4.5, we

find that y∗ = (8, 9, 0) is an equilibrium of GW , with g1(y
∗) = cA(7) + cB(1),

g2(y
∗) = cA(9) and g3(y

∗) = cB(15). Note that y∗ ∈ Πj∈N Ȳj and thus that
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y∗ is a pure equilibrium of GW
m with exactly the same ordering costs.

The strategy profile ỹ = (7, 9, 0), however, has exactly the same ordering

costs as y∗. Hence, ỹ is also an equilibrium of GW . But the strategy profile

ỹ does not correspond to a pure strategy in the matrified ordering game,

because it corresponds to δ̃1(y1) = 7
8
, δ̃2(y2) = 1 and δ̃3(y

3
) = 1. Here,

ḡ1(δ̃) =
7
8
g1(y

∗) + 1
8
(cA(3) + cB(5) < g1(y

∗). Thus δ̃ is not an equilibrium of

GW
m . /

In the Nash equilibrium we have constructed in the proof of Theorem 5.4.5,

each player chooses one of the two extreme strategies. This Nash equilibrium

corresponds to a pure equilibrium in the matrified ordering game. Hence,

for a CRSP-situation in which both suppliers have relationship maximizing

preferences, the matrified ordering game has a pure equilibrium. Without

proof, we can state the following.

Theorem 5.5.4 Let W ∈ WN,LBS be a CRSP-situation. Let GW = ((Yj)j∈N ,

(gj)j∈N) be the corresponding infinite ordering game and let GW
m = (∆(Ȳj)j∈N ,

(gj)j∈N) be the corresponding matrified ordering game. Then, there exists a

pure equilibrium y∗ ∈ E(GW
m ) such that y∗ ∈ E(GW ).

5.5.3 Proportional order fulfillment

In the previous subsections we showed that for SBL and LBS fulfillment

policies, there is not a one-to-one correspondence between equilibria of the

infinite ordering game and pure equilibria of the matrified ordering game.

For proportional order fulfillment, however, one can easily verify that the

existence of a pure equilibrium of the matrified ordering game corresponds

to the existence of a Nash equilibrium of the infinite ordering game and vice

versa.

Theorem 5.5.5 Let W ∈ WN,PROP be a CRSP-situation. Let GW =

((Yj)j∈N , (gj)j∈N) be the corresponding infinite ordering game and let GW
m =
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(∆(Ȳj)j∈N , (gj)j∈N) be the corresponding matrified ordering game. Then, GW
m

has a pure equilibrium ŷ if and only if ŷ ∈ E(GW ).

Proof: For the “only if”-part. Let W ∈ WN,PROP be such that the corre-

sponding matrified ordering game has a pure equilibrium ŷ ∈ E(GW
m ). Take

i ∈ N . Then, for all yi ∈ {y
i
, yi}

gi(ŷ) ≤ gi(yi, ŷ−i). (5.16)

By Proposition 5.4.6 and by (5.16), for all yi ∈ (y
i
, yi),

gi(ŷ) ≤ gi(yi, ŷ−i).

Hence, for all yi ∈ Yi = [y
i
, yi],

gi(ŷ) ≤ gi(yi, ŷ−i).

Thus, ŷ ∈ E(GW ).

For the “if”-part. Let W ∈ WN,PROP be such that the corresponding in-

finite ordering game has an equilibrium ŷ ∈ E(GW ). By Proposition 5.4.8

ŷ ∈ Πj∈N{yj , yj} and thus

ŷ ∈ Πj∈N Ȳj.

Since ŷ ∈ E(GW ), for all yi ∈ {y
i
, yi} = Ȳj ,

gi(ŷ) ≤ gi(yi, ŷ−i).

Thus ŷ ∈ E(GW
m ). �

5.6 Concluding remarks

This section briefly discusses the effects of the order adjustment assumption

we made in this chapter. Furthermore, we summarize the remaining open

questions.
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We assumed that, since purchasers’ orders are restricted by feasibility, these

purchasers are allowed to adjust their orders after announcement of the ful-

fillment levels. One could argue that purchasers, that have obtained insuf-

ficient supplies, have to place an extra separate order at the supplier with

remaining capacity, or even worse, have to place a rush order for which they

do not receive quantity discounts. These alterations change the cost func-

tion of the ordering game and this can affect some of the obtained results,

e.g., Proposition 5.4.6. However, if purchasers are responsible for obtaining

enough supplies, they can also demand that they are given the opportunity to

obtain enough, which would imply dropping the feasibility restriction on the

ordering strategies. This gives rise to a completely different class of CRSP-

situations.

For the SBL and LBS fulfillment policies we have introduced a tie breaking

rule that depends on the identity of the players. In our setting the tie break-

ing rule is identical for both suppliers. If the tie breaking rule is different

per supplier, the results of Theorem 5.4.5, Theorem 5.5.2 and Theorem 5.5.4

still hold.

Which brings us to one of the open problems. If suppliers fulfillment policies

are based on fixed but non-identical preferences, does there exist an equilib-

rium in the infinite ordering game (Section 5.4.1)? The last open problem

is whether in an infinite ordering game where suppliers fulfill orders propor-

tionally there is an equilibrium (Section 5.4.3). Using Theorem 5.5.5, the

answer to this question also verifies whether the matrified game has a pure

equilibrium (Section 5.5.3).
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