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Abstract

We consider evaluation methods for payoffs with an inherent financial risk as encoun-
tered for instance for portfolios held by pension funds and insurance companies. Pricing
such payoffs in a way consistent to market prices typically involves combining actuarial tech-
niques with methods from mathematical finance. We propose to extend standard actuarial
principles by a new market-consistent evaluation procedure which we call ‘two step market
evaluation.’ This procedure preserves the structure of standard evaluation techniques and
has many other appealing properties. We give a complete axiomatic characterization for
two step market evaluations. We show further that in a dynamic setting with continu-
ous stock prices every evaluation which is time-consistent and market-consistent is a two
step market evaluation. We also give characterization results and examples in terms of
g-expectations in a Brownian-Poisson setting.

Keywords: Actuarial valuation principles, financial risk, market-consistency, time-consistency.
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1 Introduction

We investigate evaluation methods for payoffs with an inherent financial risk and propose a new
market-consistent procedure to evaluate these payoffs. Our procedure yields the extension of
many standard actuarial principles into both time-consistent and market-consistent directions.

Many insurance companies sell products which depend on financial as well as non-financial
risk. Typical examples are equity-linked insurance contracts or catastrophe insurance futures
and bonds. Pricing such payoffs in a way consistent to market prices usually involves combining
actuarial techniques with methods from mathematical finance. The minimal conditions which
any market-consistent evaluation should satisfy is that a purely financial replicable payoff
should be equal to the amount necessary to replicate it.

Standard actuarial premium principles are typically based on a pooling argument which
justifies applying the law of large numbers to price using the expectation with respect to the
physical measure and then to take an additional risk load. With these principles one usually
considers a static premium calculation problem: what is the price today of an insurance contract
with payoff at time T? See for example the textbooks by Bühlmann (1970), Gerber (1979), or
Kaas et al. (2008). Also, the concept of convex risk measures and the closely related one of
monetary utility functions have been studied in such a static setting. See for example Föllmer
and Schied (2002), Frittelli and Rosazza Gianin (2002), Jouini et al. (2008), and Filipovic and
Kupper (2008).

In financial pricing one usually considers a “dynamic” pricing problem: how does the price
evolve over time until the final payoff date T? This dynamic perspective is driven by the
focus on hedging and replication. This literature started with the seminal paper of Black and
Scholes (1973) and has been immensely generalized to broad classes of securities and stochastic
processes; see Delbaen and Schachermayer (1994).

In recent years, researchers have begun to investigate risk measures in a dynamic setting,
the central question being the construction of time-consistent (“dynamic”) risk measures. See
Riedel (2004), Roorda et al. (2005), Cheridito et al. (2006), Rosazza Gianin (2006), Artzner
et al. (2007). In a dynamical context time-consistency is a natural approach to glue together
static evaluations. It means that the same value is assigned to a financial position regardless of
whether it is calculated over two time periods at once or in two steps backwards in time. In a
recent paper Jobert and Rogers (2008) show how time-consistent valuations can be constructed
via backward induction of static one-period risk-measures (or “valuations”). See also Hardy
and Wirch (2005) for an example with the risk measure given by Average Value at Risk.

An important branch of literature considers risk measures/valuations in a so-called market-
consistent setting. This started with the pricing of contracts in an incomplete-market setting,
where one seeks to extend the arbitrage-free pricing operators (which are only defined in a
complete-market setting) to the larger space of (partially) unhedgeable contracts. One approach
to evaluate the payoff in this situation is by utility indifference pricing: the investor pays the
amount such that he is no worse off in expected utility terms than he would have been without
the claim. The paper by Hodges and Neuberger (1989) is often cited for the root-idea of
this stream of literature. For other contributions in this direction, see for instance Henderson
(2002), Young and Zariphopoulou (2002), Hobson (2004), Musiela and Zariphopoulou (2004a),
Monoyios (2006), and the recent book by Carmona (2009).

Several papers deal with the extension of the arbitrage-free pricing operators using (lo-
cal) risk-minimisation techniques and the related notion of minimal martingale measures; see
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Föllmer and Schweizer (1989), Schweizer (1995), Delbaen and Schachermayer (1996). A rich
duality theory has been developed that establishes deep connections between utility maximisa-
tion and minimisation over martingale measures; see Cvitanic and Karatzas (1992), Kramkov
and Schachermayer (1999). A very elegant summary is given by Rogers (2001). Another stream
of the literature, where the class of martingale measures considered is restricted, is given by the
works on good-deal bound pricing, see Cochrane and Saá-Requejo (2000), Černý and Hodges
(2002), and Björk and Slinko (2006).

Using utility-indifference (and duality) methods, the market-consistency of pricing oper-
ators is automatically induced. However, an explicit formal definition of market-consistent
pricing operators has only begun to emerge recently; see Kupper et al. (2008), Malamud et al.
(2008), Barrieu and El Karoui (2005, 2009), and Knispel et al. (2011).

In this paper we investigate well-known actuarial premium principles such as the vari-
ance principle and the standard-deviation principle, and study their extension into both time-
consistent and market-consistent directions. To do this, we introduce the concept of two step
market evaluations and study their properties. Two step market evaluations convert any eval-
uation principle into a market-consistent one by applying the actuarial principle to the residual
risk which remains after having conditioned on the future development of the stock price. This
operator splitting preserves the structure and the computationally tractability of the original
actuarial evaluation. Furthermore, we get some appealing properties like numeraire invariance.
We are able to give a complete axiomatic characterization for two step market evaluations and
show that these axioms are satisfied in a setting where the stock process is continuous and
the insurance process is revealed at fixed time instances (or more generally has predictable
jumps). This provides a strong argument for the use of two step market evaluations. We also
consider some time-consistent extensions of our market-consistent evaluations to continuous
time in a Brownian-Poisson setting. For this we need some results from the theory of backward
stochastic differential equations (BSDEs), also called g-expectations. For background material
on BSDEs we refer to El Karoui et al. (1997).

The paper is organized as follows. In Section 2 we define conditional evaluations, give some
background material, and recall some of the most standard actuarial principles. In Section 3
the notion of market-consistency is defined and two step market evaluations are introduced and
motivated. We give a complete axiomatic characterization for two step market evaluations. In
Section 4 it is shown that in a dynamic setting with continuous stock prices every evaluation
which is time-consistent and market-consistent can be viewed as a two step market evaluation.
In Section 5 we extend our evaluations to a continuous-time setup with processes with jumps.
Section 6 gives a summary and conclusions. Section 7 contains the proofs of our results.

2 Conditional Evaluations

Let (Ω,F ,P) be a probability space. Equalities and inequalities between random variables are
understood in the P-almost sure sense unless explicitly stated otherwise. The space of bounded
random variables will be denoted by L∞(Ω,F ,P) (L∞(F) for short). The space of bounded,
non-negative random variables will be denoted by L∞

+ (F). The space of random variables which
are integrable with respect to P will be denoted by L1(Ω,F ,P) (L1(F) for short). Financial
and insurance positions are represented by random variables H ∈ L∞(F) where H(ω) is the
discounted net loss of the position at maturity under the scenario ω. Now given a σ-algebra
G ⊂ F , with information available to the agent, we can define a conditional evaluation :
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Definition 2.1 A mapping ΠG : L∞(F) → L∞(G) is called a G-conditional evaluation if the
following axioms hold:

• Normalization: ΠG(0) = 0.

• G-Cash Invariance: ΠG(H + m) = ΠG(H) + m for H ∈ L∞(F) and m ∈ L∞(G).

• G-Convexity: For H1, H2 ∈ L∞(F) ΠG(λH1 + (1 − λ)H2) ≤ λΠG(H1) + (1 − λ)ΠG(H2)
for all λ ∈ L∞(G) with 0 ≤ λ ≤ 1.

• G-Local Property: ΠG(IAH1 + IAcH2) = IAΠG(H1) + IAcΠG(H2) for all H ∈ L∞(F) and
A ∈ G.

• Fatou property: For any bounded sequence (Hn) which converges a.s. to H

ΠG(H) ≤ lim inf
n

ΠG(Hn).

Normalization guarantees that the null position does not require any capital reserves. If Π
is not normal then the agent can consider the operator Π(H) − Π(0) without changing his
preferences. Convexity, which under cash invariance is equivalent to quasiconvexity, says that
diversification should not be penalized. Cash invariance gives the interpretation of Π(H) as a
capital reserve. The local property is motivated in the following way. Since the agent has the
information given by G he knows if the event A has happened or not and should adjust his
evaluation accordingly. If Π satisfies

• Monotonicity: For H1, H2 ∈ L∞(F) with H1 ≤ H2 ΠG(H1) ≤ ΠG(H2)

then we will call Π a monotone conditional evaluation. Monotonicity postulates that if in a.s.
any scenario H2 causes a greater higher loss than H1 then the premium charged for H2 (or
the capital reserve held) should be greater than for H1. Note that if ΠG is monotone then
ρG(H) := ΠG(−H) defines a conditional convex risk measure and UG(H) := −ρG(H) defines a
conditional monetary utility function. For the definition of a convex risk measure, see Föllmer
and Schied (2002), or Frittelli and Rosazza Gianin (2002). In particular, all results in this paper
also hold (with obvious change of signs) for conditional convex risk measures and conditional
monetary utility functions.

Remark 2.2 It has been shown in Cheridito et al. (2006) that the local property must be
satisfied if ΠG is monotone and cash invariant. Moreover, the local property is also implied by
convexity. Indeed, if ΠG is convex, then we have for A ∈ G that clearly ΠG(1AH1 + 1AcH2) ≤
1AΠG(H1)+1AcΠG(H2). In particular, 1AΠG(1AH1 +1AcH2) ≤ 1AΠG(H1). The other direction
follows by setting H̃ = 1AH1 + 1AcH2 then as before

1AΠG(H1) = 1AΠG(1AH̃ + 1AcH2) ≤ 1AΠG(H̃).

Switching the role of H1 and H2 yields then the desired conclusion.

Other possible axioms which we will consider in a dynamic setting are as follows:

• G-Positive Homogeneity: For H ∈ L∞(F) ΠG(λH) = λΠG(H) for all λ ∈ L∞
+ (G).
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• Continuity: For any bounded sequence (Hn) which converges a.s. to H

ΠG(H) = lim
n

ΠG(Hn).

• p-norm boundedness: There exists p ∈ (1,∞), λ ∈ L∞
+ (G), and a measure P̄ having the

same zero sets as P such that for H ∈ L∞(F)

ΠG(H) ≤ λ

∫
(|H| + |H|p)dP̄G .

We will also refer to the continuity axiom as ‘continuity with respect to a.s. bounded con-
vergence,’ if there is any ambiguity. If Π is a G-conditional evaluation which is additionally
assumed to be positively homogeneous then we call Π a G-conditional coherent evaluation. For
a further discussion of these axioms see also Artzner et al. (1999). Note that many similar
axioms for premium principles can be found in the literature, see for instance Deprez and
Gerber (1985) or Kaas et al. (2008). Conditional evaluations in a dynamic setting have been
considered for instance in Frittelli and Gianin (2004), Roorda et al. (2005), Ruszczynski and
Shapiro (2006), Delbaen (2006), Artzner et al. (2007), Klöppel and Schweizer (2007), Jobert
and Rogers (2008), Barrieu and El Karoui (2009), and Cheridito and Kupper (2011). Classical
examples of (conditional) evaluations are, see for instance Kaas et al. (2008):

Examples 2.3 • Conditional Mean-Variance principle:

Πv
G(H) = EG [H] +

1
2
αV arG [H], α ≥ 0.

• Conditional Standard-Deviation principle:

Πst
G (H) = EG [H] + β

√
V arG [H], β ≥ 0.

• Conditional Semi-Deviation principle:

Πs
G(X) = EG [H] + λ

∣
∣
∣
∣EG

[
(H − EG [H])q

+

]
∣
∣
∣
∣

1/q

, λ ≥ 0, q ∈ [1,∞),

where x+ is 0 if x < 0 and x else.

• Conditional Average Value at Risk principle:

ΠAV @R
G (H) = EG [H] + δAV @Rα

G(H − EG [H]), δ ≥ 0

where AV @Rα
G(H) =

1
α

∫ α
0 V @Rλ

G(H)dλ, α ∈ (0, 1] and V @Rλ
G(H) corresponds to com-

puting the Value at Risk of H at the confidence level λ with the available information
G.

• Conditional Exponential principle:

Πv
G(H) = γ log

(
EG [exp{H/γ}]

)
, γ > 0.
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Apart from the exponential principle the evaluations above are generally not monotone. How-
ever, they are continuous, G-convex, G-cash invariant and satisfy the local property. In partic-
ular, they are G-conditional evaluations. The Standard-Deviation principle, the Average Value
at Risk principle and the Semi-Deviation principle additionally satisfy G-positive homogeneity
while the Mean-Variance principle is p-norm bounded (with P̄ = P). The Average Value at
Risk principle and the Semi-Deviation principle are monotone if λ or δ are in [0, 1].

We will need some duality results. For a σ-algebra G ⊂ F , denote QG = {ξ ∈ L1(F)|EG [ξ] =
1} and Q+

G := {ξ ∈ L1
+(F)|EG [ξ] = 1}. In other words, given the information G, QG is the set

of all signed measures and Q+
G is the set of all probability measures. Therefore, conditional on

our starting information G, we may identify every ξ ∈ QG with a signed measure, and every
ξ ∈ Q+

G with a probability measure. For instance, for ξ ∈ Q+
G we can define the corresponding

conditional probability measure Qξ
G(A) := EG [ξIA] , and its conditional density as

dQξ
G

dPG
:= ξ.

Recall that by standard duality results we have that ΠG is coherent if and only if

ΠG(H) = ess supξ∈M EG [ξH ] , (2.1)

for a unique closed, convex set M ⊂ QG . For the precise definition of the essential supremum,
see the Appendix. ξ is often interpreted as a weighting function for the different scenarios ω,
or as a test or stress measure. By taking the supremum, a worst-case approach is being taken.
For instance in the good-deal bound literature mentioned in the introduction the supremum
is taken over all pricing kernels with a density admitting a variance smaller than a certain
constant.

Generally it holds for all conditional evaluations that for Π∗
G defined by

Π∗
G(ξ) = ess supH∈L∞(F){EG [ξH ] − ΠG(H)}

we have that
ΠG(H) = ess supξ∈QG

{EG [ξH ] − Π∗
G(ξ)}, (2.2)

see for instance Delbaen (2006) or Cheridito and Kupper (2011). Π∗
G is also called the penalty

function corresponding to ΠG , and −Π∗
G(ξ) may be seen as the plausibility of the density ξ. The

dual representations (2.1) and (2.2) are often interpreted as robust expectations with respect
to different priors, see Hansen and Sargent (2001), or Hansen and Sargent (2007).

Of course our results also hold without conditioning on G. In this case G is chosen to be
the trivial σ-algebra. However, for our dynamic analysis in the later sections it will simplify
matters if we do our analysis conditional on some information available to the agent.

3 Market-Consistent Pricing

3.1 Market-consistency and two step market evaluations

Let (Ω,F ,P) be the underlying probability space. Let G ⊂ F be a σ-algebra whose information
is initially available to the agent. Let S = (S1, . . . , Sn) be the n-dimensional price process of
n traded stocks and denote by F̄S ⊂ F the σ-algebra generated by S. Furthermore, we
denote by FS the σ-algebra given by the stock process and our starting information G, i.e.,
FS := F̄S ∨ G := σ(F̄S ,G). The financial market given by the n-dimensional stock process S
should be arbitrage free and complete, i.e., all derivatives which conditional on G only depend
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on S are perfectly hedgeable and there exists a unique probability measure QG ∈ Q+
G such

that S is a martingale under QG (componentwise). Furthermore, QG is assumed to be a.s.
equivalent to PG , in the sense that its conditional density is positive.

Since FS is in general a strict subset of F , the market given by all F -measurable payoffs
is incomplete. For instance, we could have an untraded insurance process which is correlated
with the traded assets S but not perfectly replicable.

In the financial market the martingale measure QG defines the (linear) no-arbitrage pricing
operator Πf

G : L∞(FS) → L∞(G) given by

Πf
G(HS) := EQG

[
HS
]

:=
∫

Ω
HS(ω)QG(dω) = EG

[
ξQGH

]
,

where ξQG is the density in Q+
G with which QG may be identified. Note that only the martingale

measure on FS is unique while on the filtration F there can be infinitely many martingale
measures.

The next definition extends the notion of cash invariance to all assets traded in the financial
market. For identical or similar notions of market-consistency see also Cont (2006), Kupper
et al. (2008), Malamud et al. (2008), or Artzner and Eisele (2010).

Definition 3.1 An evaluation is called market-consistent if for any financial payoff HS ∈
L∞(FS) and H ∈ L∞(F)

ΠG(HS + H) = EQG
[
HS
]
+ ΠG(H).

Market-consistency postulates that liquidly traded assets and payoffs replicable by them should
not carry any risk as they can be converted to cash at any time. It follows immediately from
the definition that a market-consistent evaluation cannot be ‘improved’ by hedging.

Remark 3.2 Our definition of market-consistency requires that we have liquidly traded assets
constituting a complete financial market. If the financial market is not complete then there
are two possibilities which may still validate our approach:

(1.) One could use certain financial derivatives as additional hedging instruments to make the
financial market complete. For results in this direction, see Jacod and Protter (2010) and
the references therein. Note that in our setting S has to be finite-dimensional. Therefore,
only finitely many additional hedging instruments are allowed. However, many stochastic
volatility models like the Heston model can be completed in this way.

(2.) One could remove certain financial assets as possible hedging instruments. In some cases
the remaining assets might constitute a complete financial market.

The next proposition shows that market-consistency is already implied by the assumption
that purely hedgeable derivatives should be valued according to the amount of capital necessary
to replicate them. Furthermore, it shows that, in case that ΠG is monotone, market-consistency
is equivalent with the no-arbitrage principle in the entire market.

Proposition 3.3 For a conditional evaluation ΠG : L∞(F) → L∞(G) the following statements
are equivalent:

(i) ΠG(HS) = EQG
[
HS
]

for any financial payoff HS ∈ L∞(FS).
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(ii) There exists a penalty function∗ cG : QFS =
{
Z ∈ L1(F)|EFS [Z] = 1

}
→ R ∪ {∞} such

that we have for every H ∈ L∞(F)

ΠG(H) = ess supZ∈QFS
{EQG [ZH ] − cG(Z)}.

(iii) ΠG is market-consistent.

Furthermore, in the case that ΠG is additionally assumed to be monotone, market-consistency
is equivalent with any payoff being evaluated between its super- and sub-replication price.

In particular, in the case of monotonicity, we could have also defined market-consistency by
stating that the evaluation of every payoff should respect the no-arbitrage principle.

Examples of market-consistent evaluations arise if an agent starts with a (usually non
market-consistent) evaluation ΠG and then tries to reduce his risk by hedging. Specifically
denote by A all admissible hedging strategies π (defined in an appropriate way), by MG ⊂
Q+

G := QG ∩L1
+(F) the set of all local martingale measures, by S̃ the discounted stock process,

and by Π∗
G the penalty function corresponding to ΠG . It can be shown, see for instance Barrieu

and El Karoui (2009), or Toussaint and Sircar (2011), that under appropriate assumptions

Π̄G(H) := ess infπ∈A ΠG(H + (π ∙ S̃)T ) = ess supP̄G∈MG
{ĒG [H] − Π∗

G(
dP̄G
dPG

)}. (3.1)

Note that by definition Π̄G is market-consistent. Therefore, one way of obtaining market-
consistent evaluations is to intersect the test measures in the dual representations (2.1) and
(2.2) above with local martingale measures. This is a class of examples which arises naturally
when starting with an evaluation ΠG . However, the new evaluation Π̄G may be hard to compute,
and the structure and interpretation of the original evaluation ΠG is lost. For instance, if
payoffs are evaluated using the mean-variance principle then Π̄G(H) = ess supP̄G∈MG

{ĒG [H]−
1
2αCG(P̄G |PG)}, where CG is the relative Gini index defined by CG(P̄G |PG) = EG

[
(dP̄G

dPG
)2 − 1

]
.

For an overview about mean-variance hedging, see Schweizer (2010) and the reference therein.
Now note that two important reasons for the popularity of the Mean-variance principle are:
(a) it has a straight-forward interpretation; (b) it is easy to compute. However, while the new
evaluation, Π̄G(H) is market-consistent (since it uses risk adjusted probabilities), it is neither
easy to compute nor does it directly relate to the variance of the payoff H from which we
started.

Consequently, in this paper we propose a new class of market-consistent evaluations which
we will call two step market evaluations. Extending standard actuarial principles with two
step market evaluations will have the advantage that the extensions can be computed easily
and that the interpretation of our starting principles can be preserved. Furthermore, we will
show that two step market evaluations in general have many other appealing properties. A
strong argument for the use of two step market evaluations will be provided in the Chapter
4. There we show that any insurance company which wants to apply a market-consistent and
time-consistent evaluation, has to use a two step market evaluation, in a setting where the
stock process is continuous and the insurance process is only revealed at fixed time instances
(or more generally at predictable stopping times).

∗A function c is called a penalty function if it is convex, lower-semicontinuous and ess inf c = 0.
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We will start with evaluations like the one from our Examples 2.3. Then we will give the
corresponding market-consistent evaluations which do not arise from hedging but from operator
splitting. Namely, in a first step we compute the value of the position H by replacing the
measure P|G with the measure P|FS , i.e., we compute Mean-Variance principle, the Standard-
Deviation principle, etc., of H, conditional on G and the values of the stocks S. Then for
every different future value of the stock price we get a different evaluation. However, since
payoff depending only on the stock prices are perfectly hedgeable one could argue that these
remaining evaluations do not contain any risk. Therefore, the total value of the position H
should be equal to the initial capital needed to hedge the different evaluations, obtained in the
first step, which depend on S. This corresponds to taking in a second step the expectation with
respect to the risk adjusted probability measure QG coming from the financial market. This
procedure is computationally tractable and preserves the evaluation principles considered in
the beginning. These principles are applied to the risk which remains after having conditioned
on S. We then get the following market-consistent examples:

Examples 3.4 • Two step Mean-Variance principle:

Πv
G(H) = EQG

[

EFS [H] +
1
2
αV arFS [H]

]

, α ≥ 0.

• Two step Standard-Deviation principle:

Πs
G(H) = EQG

[
EFS [H] + β

√
V arFS [H]

]
, β ≥ 0.

• Two step Semi-Deviation principle:

Πs
G(X) = EQG

[

EFS [H] + λ

∣
∣
∣
∣EFS

[
(H − EFS [H])q

+

]
∣
∣
∣
∣

1/q
]

, λ ≥ 0, q ∈ [1,∞).

• Two step Average Value at Risk principle:

ΠAV @R
G (H) = EQG

[
EFS [H] + δAV @Rα

FS (H − EFS [H])
]
, δ ≥ 0.

• Two step Exponential principle:

ΠG(H) = EQG

[
γ log

(
EFS [exp{H/γ}]

)]
, γ > 0.

A standard deviation principle, which is different than the one above but is also obtained by
first conditioning on the future stock price, is considered in Møller (2002). The last example
is known in the literature as the indifference price of H under an exponential utility function.
It arises in an incomplete market when an agent maximizes his exponential utility through
dynamic trading, see for instance Musiela and Zariphopoulou (2004b). The indifference price
for a claim H is then defined as the amount of cash the agent is willing to pay for the right
to receive H such that he is no worse off in expected utility terms than he would have been
without the claim. For references on indifference pricing see the introduction. The examples
above motivate the following definition:
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Definition 3.5 We call a ΠG : L∞(F) → L∞(G) a two step market evaluation if there exists
an FS-conditional valuation ΠFS : L∞(F) → L∞(FS) such that

ΠG(H) = EQG [ΠFS (H)] . (3.2)

Note that in case that there is no financial market, i.e., S = 0, our two step evaluations reduce
to the standard actuarial principles. On the other hand if FS = F , i.e., if the financial market
gives the entire filtration, of course ΠG(H) = EQG [H] .

Example 3.6 Another example for a two step evaluation defined above arises when combining
hedging with an Average Value at Risk principle. Specifically set

ΠG(H) := ess infπ∈A ΠAV @R
G (H + (π ∙ S̃)T ).

Define

M :=

{

Q̄G ∈ MG

∣
∣
∣1 − δ ≤

dQ̄G

dPG
≤ 1 + δ

1 − α

α

}

,

where δ > 0 and the risk level α ∈ (0, 1] have been introduced in the Examples 2.3. (Note that
if δ = 0 then ΠAV @R

G (H) = EG [H] .)
From (3.1) and the dual representation of the Average-Value at Risk principle (see for

instance Föllmer and Schied (2004)) it follows that

ΠG(H) = ess supQ̄G∈M EQ̄G [H] .

Let

M ′ :=

{

Z ∈ Q+
FS

∣
∣
∣(1 − δ)

dPG
dQG

≤ Z ≤
dPG
dQG

(1 + δ
1 − α

α
)

}

.

Note that dQG
dPG

M ′ = M . Furthermore, M ′ satisfies the concatenation property on FS , also

called rectangular property or m-stability†. It may be seen that as a result

ΠFS (H) := ess supZ∈M ′ EFS [ZH ]

is an FS-conditional evaluation and it holds that

ΠG(H) = EQG [ΠFS (H)] ,

compare also with Theorem 3.10 below. In particular, combining hedging with the Average-
Value at Risk principle gives an example of the two step procedure we explained above.

Example 3.7 Our last example is given by the super-replication price of a contingent claim.
The super-replication price is given by

ΠG(H) := ess supQ̄G∈MG
EQ̄G [H] ,

It is straight-forward to check that MG = dQG
dPG

Q+
FS . Clearly,

ΠFS (H) := ess supZ∈Q+

FS
EFS [ZH ]

†The rectangular property or m-stability on a σ-algebra Ḡ postulates that for every A ∈ FS and Z1, Z2 ∈ M ′

we have that IAZ1 + IAcZ2 ∈ M ′, see for instance Chen and Epstein (2002) or Delbaen (2006).
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is an FS-conditional evaluation. It computes the essential supremum conditional on FS . Since
Q+

FS is m-stable it can be seen that

ΠG(H) = EQG [ΠFS (H)] .

In particular, the super-replication price is a two step evaluation.

Remark 3.8 Note that equity linked insurance payoffs are typically of the form H = Y
(n)
T f(ST )

where f(ST ) is a financial derivative and Y
(n)
T are the number of policy holder who survived

up to time T (out of an initial cohort of n), see for instance Møller (2002). In the special case
that the financial and the mortality risk are independent a two step market evaluation would
yield

ΠG(H) = EQG

[
ΠFS (f(ST )Y (n)

T )
]

= EQG [f(ST )] ΠG(Y (n)
T ).

Note that the structure obtained in this special case is similar to the market-consistent valuation
method suggested in Chapter 2.6 in Wüthrich et al. (2008).

Two step market valuations provide a rich class of market-consistent evaluations with a clear
underlying intuition. They appear as indifference-price with an exponential utility, in hedging
with an Average Value at Risk principle, and in the super-replication price of an contingent
claim. Two step market valuations are also useful in optimization problems since the maximum
may be computed by a two step procedure using Bellman’s principle: first one can compute a
value function conditioned on the stock process, and then in a second step one can compute
the optimum by maximizing the value function obtained in Step 1 under the pricing measure.

Note that contrary to other evaluations two step market evaluations can be directly con-
verted into an equivalent evaluation which takes the stock process as the numeraire. That is,
assume payoffs H̃ are expressed in units of the i-th stock, Si for i ∈ {1, . . . , n}, i.e., H̃ = H/Si

T .
An agent who wants to use the evaluation ΠG but wants to express everything in units of Si

obviously should use the evaluation Π̃G which satisfies Si
0Π̃G(H̃) = ΠG(H). The evaluation Π̃G

often might not be easy to characterize directly, for instance with a dual representation and a
penalty function. However, a two step market evaluation remains a two step market evaluation
under the change of numeraire. Moreover, one can just define the new penalty function of Π̃FS

as the penalty function of ΠFS in units of Si
T . That is we set

Π̃∗
FS (ξ) :=

Π∗
FS (ξ)

Si
T

and Π̃FS (H̃) := ess supξ∈L1(F)

{
EFS

[
H̃
]
− Π̃∗

FS (ξ)
}

.

Denote by Q̃G the unique equivalent martingale measure on FS with numeraire Si that is

dQ̃G

dPG
:=

Si
T

Si
0

dQG

dPG
.

Then we obtain

Π̃G(H̃) =
ΠG(H)

Si
0

= EQG

[
Si

T

Si
0

ess supξ∈L1(F)

{
EFS

[
H̃
]
− Π̃∗

FS (ξ)
}]

= EQ̃G

[
Π̃FS (H̃)

]
.

We will summarize the last paragraph in the following proposition:
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Proposition 3.9 If ΠG is a two step market evaluation then Π̃G is a two step market evaluation
as well. Furthermore, the penalty function of Π̃FS is given by the penalty function of ΠFS

converted into units of stock i.

Note that for evaluations which are not two step an easy conversion of the penalty function as
given in the last proposition usually only works if the numeraire is deterministic.

It is not hard to see that a two step market valuation is always market-consistent, see the
theorems below. On the other hand our Example 3.12 below shows that a market-consistent
valuation is not necessarily a two step market valuation.

3.2 An axiomatic characterization of two step market evaluations

Notice that the Examples 3.4 all satisfy the market local property, i.e.:

• For every A ∈ FS and H ∈ L∞
+ (F)

ΠG(H) = ΠG(IAH) + ΠG(IAcH). (3.3)

The binary options IAH and IAcH can be seen as insurances against the events A or Ac

respectively. For example if A happens then the owner of the option IAH gets a non-negative
amount H which possibly depends on the insurance process. If the evaluation ΠG is assumed to
be sublinear, the value of the insurance contract IAH plus the value of the insurance contract
IAcH should be larger than the value of H = IAH + IAcH. The economic reason is that if the
valuation of H is decomposed into the sum of the evaluations of the binary insurance contracts
then the additional uncertainty given by the event A for each binary contract, should lead to
an increase of the total insurance premium. The local property however postulates that the
uncertainty added to the payoff H by an event from the financial market should not carry any
extra premium. We will see in Section 4 that, in a setting with a correlated stock and insurance
process, the local property is satisfied for a time-consistent and market-consistent evaluation if
the stock process in continuous and the value of the insurance process for is revealed at fixed
time instances (or more generally at predictable stopping times).

Now the question in which we are interested in the remainder of this chapter, is the follow-
ing: Given a conditional evaluation ΠG does then its market-consistency and the market local
property imply that every position H has to be priced with a two step market valuation? Our
results below will actually show that this statement holds.

The following theorem shows that market-consistency and the market local property in the
coherent case are equivalent to two step market evaluations. Furthermore, it gives an explicit
formula for ΠFS .

Theorem 3.10 The following statements are equivalent:

(i) ΠG is a coherent market-consistent G-conditional evaluation which satisfies the market
local property.

(ii) There exists an FS-conditional coherent evaluation ΠFS : L∞(F) → L∞(FS) such that
ΠG(H) = EQG [ΠFS (H)] . Furthermore, ΠFS (H) = ess supZ∈M ′ EFS [ZH ] , with

M ′ :=
(dQG

dPG

)−1
M ⊂ {Z ∈ L1(F)|EFS [Z] = 1} = QFS , (3.4)

12



and M given by (2.1).

The assumptions of the theorem are satisfied for all our examples above except for the Mean-
Variance and the Exponential market-consistent principles. The reason is that these do not
satisfy positive homogeneity. However, in the case that the filtration FS is generated by
countably many sets, and ΠG is continuous, and monotone or p-norm bounded, we can prove
that an evaluation has to be a two step market evaluation without the assumption of positive
homogeneity.

Theorem 3.11 Suppose that FS is generated by countably many sets. Then the following
statements are equivalent:

(i) ΠG is a monotone, continuous market-consistent G-conditional evaluation which satisfies
the market local property.

(ii) There exists a monotone, continuous FS-conditional evaluation ΠFS : L∞(F) → L∞(FS)
such that

ΠG(H) = EQG [ΠFS (H)] .

Furthermore, if ΠG is additionally assumed to be p-norm bounded then the statement also
holds without the monotonicity assumption in (i) and (ii).

The Mean-Variance principle is not monotone but it is p-norm bounded. In particular, The-
orems 3.10-3.11 include all our examples. Theorem 3.11 further applies to the Exponential
principle, and the Average Value at Risk and the Semi-Deviation principle if λ and δ only take
values between 0 and 1.

The proof of the last theorem heavily relies on the assumed continuity of our evaluations
which was not needed in Theorem 3.10. The evaluation ΠFS will be obtained only as an a.s.
limit using the martingale convergence theorem without an explicit formula.

Note that the market-consistency of an evaluation Π does not necessarily imply that we
get a representation as in Theorem 3.10 and Theorem 3.11, since there are market-consistent
evaluations not satisfying the market local property. This can be seen from the following
example:

Example 3.12 Assume that G is trivial and let Z1 and Z2 be densities independent of S with
Z1 6= Z2. Then Zi are also independent of dQ

dP . Now suppose that the agent is not sure if he
should trust the density dQ

dPZ1 or dQ
dPZ2. Therefore, he decides to take a worst-case approach

over all convex combinations of dQ
dPZ1 or dQ

dPZ2. That is

Π(H) := max
P̄∈M

Ē [H] = max
i=1,2

E

[
dQ
dP

ZiH

]

, (3.5)

with M = {λdQ
dPZ1 + (1− λ)dQ

dPZ2|λ ∈ [0, 1]}. It is straight-forward to check using the indepen-
dence of Zi and S that Π is a market-consistent, coherent evaluation. Let H ≥ 0 be F - but
not FS-measurable. Assume without loss of generality that the maximum in (3.5) is attained
in i = 1. Now choose a set A ∈ FS such that

E

[
dQ
dP

Z2IAH

]

> E

[
dQ
dP

Z1IAH

]

. (3.6)
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Since the maximum in (3.5) is attained in i = 1 we must have that

E

[
dQ
dP

Z2IAcH

]

< E

[
dQ
dP

Z1IAcH

]

.

But then we get

Π(HIA) + Π(HIAc) = E

[
dQ
dP

Z2IAH

]

+ E

[
dQ
dP

Z1IAcH

]

> E

[
dQ
dP

Z1IAH

]

+ E

[
dQ
dP

Z1IAcH

]

= Π(H). (3.7)

One possible choice for A and H would be to define H = IAI{Z2>Z1} + IAcI{Z1>Z2}. Then
(3.6) always holds if A is chosen to be a non-zero set with A ⊂ {Z2 > Z1}. Furthermore,
one can ensure that Π(H) = E [Z1H] by choosing A such that Q(Ac) is sufficiently close to
one. In particular, (3.7) holds and therefore Π defined in (3.5) does not satisfy the market
local property. By the direction (ii)⇒(i) of Theorem 3.10 this implies that Π is not a two step
market evaluation.

4 Dynamic Evaluations in continuous time: Time-consistency
and Market-consistency

In this section we will give sufficient conditions in which the market local property, holds in a
dynamic setting. Specifically we will obtain that in certain dynamic settings time-consistency
and market-consistency imply that all evaluations have to be two step market evaluations.
Time-consistency in a dynamic setting often has strong implications. For instance, for general
preferences the indifference price of an agent with time-consistent dynamic preferences are
recursive if and only if the preferences are cash-invariant, see Theorem 3.4, Cheridito and
Kupper (2009).

Subsequently, we fix a finite time horizon T > 0. Throughout the rest of the paper we
assume that additional to the stocks (St)0≤t≤T = ((S1

t , . . . , Sn
t ))0≤t≤T , we have an untraded

insurance process (Yt)0≤t≤T . For the sake of simplicity let us assume that the insurance process
is one-dimensional. (The generalization is straight-forward.) Let F̄S be filtration generated by
S, and let F̄Y be the filtration generated by Y . We again assume that the financial market is
complete while the entire market is incomplete. Denote by Q the unique martingale measure
on F̄S

T with density dQ
dP .

Define the total information which is available as F := F̄S ∨ F̄Y := σ(F̄S ∪ F̄Y ). Setting

Q(A) := E
[

dQ
dP IA

]
for A ∈ FT , we can extend Q canonically to the whole filtration. We call a

collection of mappings (Πσ)0≤σ≤T , a continuous-time dynamic evaluation if it has the following
properties:

• For all stopping times σ, Πσ is an Fσ-conditional evaluation.

• Time-Consistency: For every H ∈ L∞(FT ):

Πσ(H) = Πσ(Πτ (H)) for all stopping times σ ≤ τ.
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In a dynamical context time-consistency is a natural assumption to glue together static risk
measures. It means that the same risk is assigned to a financial position regardless of whether
it is calculated over two time periods at once or in two steps backwards in time. For a general
analysis of weaker notions of time-consistency see e.g. Roorda et al. (2005).

Remark 4.1 Alternative names for our definition of time-consistency would have been ‘re-
cursiveness’ or ‘tower property’. Note that in the literature often the following notion of
time-consistency is used: if an asset H1 is preferred to an asset H2 under all possible scenarios
at some time τ then H1 should also have been preferred at every time σ before τ. Let us call
the latter definition of time-consistency property (TC). Now if Π is monotone it is well known
that our notion of time-consistency is in fact equivalent to property (TC). Furthermore, since
(TC) implies the monotonicity of Π, our notion of time-consistency includes (TC) as a special
case, but it can also be applied to non-monotone evaluations.

Time-consistent evaluations have been discussed in continuous time by Peng (2004), Frittelli
and Gianin (2004), Rosazza Gianin (2006), Delbaen (2006), Klöppel and Schweizer (2007),
Bion-Nadal (2008), Bion-Nadal (2009), and Barrieu and El Karoui (2009). Duffie and Epstein
(1992), Chen and Epstein (2002), and Maccheroni et al. (2006) deal with dynamic preferences
using similar notions of time-consistency.

Given a dynamic evaluation (Πσ) we define Πσ,τ to be equal to Πσ restricted to L∞(Fτ ),
i.e., Πσ,τ = Πσ|L∞(Fτ ). Next we will assume that the insurance process Y a.s. jumps only
at finitely many predictable time instances, say 0 ≤ τ1 ≤ τ2 ≤ . . . and there is no additional
randomness added between the jumps, i.e., F̄Y

τi+1− = F̄Y
τi

for all i. Recall that a stopping time
τ is predictable if there exists a sequence of stopping times τn < τ such that τn ↑ τ. Hitting
times of continuous processes are predictable while jump times of Lévy processes (or more
general, strong Markov Feller processes) are not. On the set where Y does not jump at all
we set τ1 = T.‡ One example could be given by a setting in which the insurance process Y is
only updated at finitely many fixed time instances, t1 < . . . < tk. Another possibility could be
that damages occur at unpredictable stopping times τ̄i, but the amount of money the insurance
will have to pay is not clear right away. Instead the insurance needs some additional time, say
ε > 0, to agree to a certain amount and to pay it out at τ̄i + ε, respectively.

We will use the following definition in a dynamic setting.

Definition 4.2 We will say that a conditional continuous-time evaluation (Πσ)σ∈[0,T ] is market-
consistent if for every stopping time σ and every financial payoffs HS ∈ L∞(F̄S

T ∨ Fσ) and
H ∈ L∞(FT )

Πσ(HS + H) = EQFσ

[
HS
]
+ Πσ(H).

Note that this definition of market-consistency coincides with the definition in the static case
with G = Fσ and F̄S = F̄S

T .
Now for every stopping time σ we define τσ to be the time of the next jump after σ, i.e.,

τσ := inf{t > σ|ΔYt > 0} ∧ T. Denote FS
τσ

:= F̄S
τσ

∨ Fσ. That is FS
τσ

is the σ-algebra which
includes all the information (of both stock and insurance process) up to time σ and additionally
the information of the stock process up to the time of the next jump of Y .

Theorem 4.3 Suppose that S is continuous and the insurance process is as described above.
Let (Πσ)0≤σ≤T be a time-consistent and market-consistent evaluation such that for every σ,

‡Similarly we can set some τi(ω) equal to T if not all paths, (Yt(ω))t, have the same number of jumps.
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Πσ(∙) is continuous. Then for every stopping time σ, we have that Πσ,τσ satisfies the market-
local property. In particular, if (Πσ) is additionally assumed to be either monotone, p-norm
bounded, or positively homogeneous then for every stopping time σ there exists an FS

τσ
-conditional

evaluation ΠFS
τσ

: L∞(Fτσ) → L∞(FS
τσ

) such that

Πσ,τσ(H) = EQFσ

[
ΠFS

τσ
(H)

]
.

This theorem shows in particular that in a setting where the agent just observes the insurance
process at finitely many time instances, every market-consistent and time-consistent evaluation

has to admit a representation of the form EQFσ

[
ΠFS

τσ
(H)

]
at every stopping time σ. In other

words, an agent who wants to use a time-consistent and market-consistent evaluation has to
apply a two step market evaluation.

Theorem 4.3 also yields the following corollary:

Corollary 4.4 Suppose that S is continuous, and that the insurance process Y a.s. jumps
only at finitely many fixed time instances, say 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk, and F̄Y

ti+1− = F̄Y
ti . If

(Πσ)0≤σ≤T is a time-consistent and market-consistent evaluation which is either monotone, p-
norm bounded or positively homogeneous then for every s ∈ [0, T ] there exists an FS

ti -conditional
evaluation ΠFS

ti
: L∞(Fti) → L∞(FS

ti ) such that

Πs,ti(H) = EQFs

[
ΠFS

ti
(H)

]
,

where ti is the next time instance after s at which the insurance process jumps.

We have restricted our analysis to payoffs rather than payment streams. However, if H is a
discrete payment streams which pays cash amounts (Hη1 , . . . , Hηk

) at stopping times η1 < η2 <
. . . < ηk, we could consider evaluations Πσ mapping payment streams, starting paying amounts
from time σ on, to L∞(Fσ). In this case time-consistency could be defined as

Πσ(H) = Πσ(HI[0,τ) + Πτ (HI[τ,T ])) for all σ ≤ τ,

see also Cheridito et al. (2006), or Jobert and Rogers (2008). By a proof analogue to the one
for Theorem 4.3 one can then show that for an evaluation satisfying similar properties as above
time-consistency and market-consistency entail

Πσ,τσ(HI[σ,τσ ]) = EQFσ

[
ΠFS

τσ
(HI[σ,τσ ])

]
= EQFσ

[
ΠFS

τσ
(Hτσ)

]
+ EQFσ




∑

σ≤η<τσ

Hη



 .

5 Market-consistent evaluations in continuous time

5.1 Results on market-consistent BSDEs

In a continuous time Brownian-Poisson setting we can provide examples of time-consistent and
market-consistent evaluations by g-expectations. It is well known that g-expectations induce
time-consistent evaluations, see for instance Peng (2004), Frittelli and Gianin (2004), Rosazza
Gianin (2006), Bion-Nadal (2008), Barrieu and El Karoui (2009), or El Karoui and Ravanelli
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(2009). In this section we will give a complete characterization of g-expectations which are
market-consistent.

Suppose the filtration F is generated by the following independent processes: an n-dimensional
standard Brownian motion W f , a d-dimensional standard Brownian motion W , and a Poisson
random counting measure N(ds, dx) defined on [0, T ] × R \ {0}. We denote the corresponding
compensator by

N̂(ds, dx) = ν(dx)ds.

We assume that the measure ν(dx) is non-negative and satisfies
∫

R\{0}
(|x|2 ∧ 1)ν(dx) < ∞.

Denote Ñ(ds, dx) := N(ds, dx) − N̂(ds, dx).
Suppose that we have a bond B with B0 = 1 and dBt = rBtdt. We assume that the stock

process S = (S1, . . . , Sn) is given by

dSi
t = Si

t(μ
i(t, St)dt + σ̃i(t, St)dW f

t ), Si
0 = si

0,

with si
0 > 0 and μi : [0, T ] × Rn → R and σ̃i : [0, T ] × Rn → Rn for i = 1, . . . , n. Note that

we used vector notation for the stochastic integral. Define the vector μ = (μi)i=1,...,n taking
values in Rn. The rows of the matrix σ̃ : [0, T ] × Rn → Rn×n should be given by (σ̃i)i=1,...,n.
We assume that μ and σ̃ are uniformly bounded. Furthermore, σ̃ should be invertible, and
uniformly elliptic, i.e., there exists K1,K2 > 0 such that K1In � σ̃σ̃ᵀ � K2In. Furthermore,
we need standard measurability and Lipschitz continuity assumptions on μ and σ̃. Then it is
well known that a solution S for the SDE above exists and that the corresponding financial
market, consisting of (S,B), is complete. Generally payoffs can depend on (W f ,W, Ñ) and
may not be replicable.

Let F̄S be the filtration generated by S. Denote the negative market price of uncertainty
by θt = −σ̃−1(t, St)(μ(t, St)− re), where e is an n-dimensional vector consisting of ones. As in
the sections before we will denote by H hedgeable and unhedgeable discounted payoffs.

We will consider evaluations of H given by the solutions of backward stochastic differential
equations (BSDEs). Denote by P the predictable σ-algebra on the entire filtration. Let

H2
m :=

{
Z = (Z1, . . . , Zm) ∈ P

∣
∣
∣E

[∫ T

0
|Zs|

2ds

]

< ∞
}

,

where we denote by | ∙ | the Euclidean norm.
Let S2 be the space of all one-dimensional optional processes whose path-maximum is square

integrable with respect to P. Let L2(ν(dx)) be the space all B(R \ {0})-measurable functions
mapping from R\{0} to R, which are square integrable with respect to ν, where, as usual, two
functions are identified if they are equal ν a.s. Define L2(ν(dx)×dP×ds) as all P⊗B(R\{0})-
measurable functions which are square-integrable with respect to ν(dx)×dP×ds. Now suppose
that we have a suitably measurable function g : [0, T ] × Ω × R2 × L2(ν(dx)) → R.

A solution of the BSDE with driver g(t, ω, zf , z, z̃) and terminal condition H ∈ L∞(FT ) is
a quadruple of processes (Y (H), Zf , Z, Z̃) ∈ S2 ×H2

n ×H2
d × L2(ν(dx) × dP× ds) such that

dYt(H) = −g(t, Zf
t , Zt, Z̃t)dt + Zf

t dW f
t + ZtdWt +

∫

R\{0}
Z̃t(x)Ñ(dt, dx) and YT (H) = H.
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Often BSDEs are also written in the following equivalent form:

Yt(H) = H +
∫ T

t
g(s, Zf

s , Zs, Z̃s)ds −
∫ T

t
Zf

s dW f
s −

∫ T

t
ZsdWs −

∫ T

t

∫

R\{0}
Z̃s(x)Ñ(ds, dx).

Since the terminal condition is given at maturity time T , BSDEs have to be computed back-
wards in time. As in many applications a terminal reward is specified and solutions of BSDEs
satisfy a dynamic programming principle, BSDEs are often applied to solve problems in stochas-
tic optimal control and mathematical finance, see apart from the papers mentioned above for
instance El Karoui et al. (1997), Lazrak and Quenez (2003), Hamadène and Jeanblanc (2007),
and Porchet et al. (2009); or for the discrete time case Madan et al. (2010).

Subsequently, we will always assume that the BSDE which we consider has a unique solu-
tion. This is for instance the case if g(t, 0, 0, 0) is in L2(dP× dt), and g is uniformly Lipschitz
continuous; that is there exists K > 0 such that

|g(t, zf
1 , z1, z̃1) − g(t, zf

0 , z0, z̃0)| ≤ K

(

zf
1 − zf

0 | + |z1 − z0| +

√∫

R\{0}
|z̃1(x) − z̃0(x)|2ν(dx)

)

,

see for instance Royer (2006) and the reference therein.

Example 5.1 Let H be a bounded payoff and define Yt(H) = EFt [H] . Then by the martingale
representation theorem (see e.g. Jacod and Shiryaev (1987), Sec. 3, Theorem 4.34) there exist
predictable square-integrable processes Zf , Z and Z̃ such that Y satisfies

dYt(H) = Zf
t dW f

t + ZtdWt +
∫

R\{0}
Z̃t(x)Ñ(dt, dx) and YT (H) = H.

This is the simplest BSDE with g = 0.

Hence, a conditional expectation may be seen as a BSDE with g = 0. This is why BSDEs
are being referred to as g-expectations. The name should express that a BSDE may be viewed
as generalized (usually non-linear) conditional expectation with an additional drift.

Example 5.2 Let H be a bounded payoff and define Yt(H) = EQFt
[H] . Then by the martingale

representation theorem and by the Girsanov theorem Y (H) satisfies

dYt(H) = −θtZ
f
t dt + Zf

t dW f
t + ZtdWt +

∫

R\{0}
Z̃t(x)Ñ(dt, dx) and YT (H) = H.

This is a linear BSDE with g(t, zf , z, z̃) = θtz
f .

Subsequently, we will write
Eg

t (H) = Yt(H).

In a Markovian setting g-expectations correspond to semi-linear parabolic PDEs (or PIDEs in
the case of jumps), see for instance El Karoui et al. (1997) in a Brownian setting (see Barles
et al. (1997) in the case of jumps).

It may be seen that if g is convex and g(t, 0, 0, 0) = 0 then the evaluation defined by

Πσ(H) := Eg
σ(H),
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is normal, monotone, cash invariant, convex, time-consistent and satisfies the local property.
Hence, g-expectations give us an abundance of time-consistent, continuous-time evaluations.
There are also certain sufficient conditions under which, in a Brownian filtration, a time-
consistent evaluation is induced as the solution of a g-expectation, see Coquet et al. (2002).

The following theorem gives a complete characterization of market-consistent evaluations
given by g-expectations:

Theorem 5.3 A g-expectation is market-consistent if and only if g(t, zf , z, z̃) − θtz
f does not

depend on zf dP× dt a.s.

5.2 Examples of market-consistent BSDEs

To get an interpretation of g we will consider some examples. The next proposition gives
a dynamic market-consistent extension of the exponential principle. It follows directly from
Theorem 5.3 above and Theorem 2 in Morlais (2010). (Morlais (2010) also allows for a hedging
set C and an initial capital amount x. In our case this becomes C = {0} and x = 0.)

Proposition 5.4 Define the evaluation Π as the solution of the BSDE with driver function

g(t, zf , z, z̃) = θtz
f +

1
2γ

|z|2 + γ

∫

R\{0}
[exp{

z̃(x)
γ

} −
z̃(x)
γ

− 1]ν(dx).

Then (i) Π is market-consistent, and (ii) for pure insurance risk (i.e., terminal conditions
independent of S) Π corresponds to the exponential principle from Example 2.3.

Other examples of the driver function g can be obtained by looking at one-period evaluations
in discrete time defined recursively. Namely, suppose that we have an equi-spaced time grid
I = {0, h, 2h, . . . , T } where we assumed without loss of generality that T is a multiple of h. The
filtration (Fih)i=0,1,...,T/h is generated by (W f

ih,Wih, Ñ((0, ih], dx))i=1,...,T/h. Define Sh,j
0 = sj

0,

Sh,j
(i+1)h = Sh,j

ih (1 + μj(ih, Sh
ih)h + σ̃j(ih, Sh

ih)ΔW f
(i+1)h) for i = 1, . . . , T/h and j = 1, . . . , n,

and Sh = (Sh,1, . . . , Sh,n). Denote further FSh

(i+1)h = F̄Sh

(i+1)h ∨ Fih, where F̄Sh
is the filtration

generated by Sh. In other words FSh
is the information of the (discrete-time) stock process

together with the previous values of the insurance process. Let Qh be the measure (with
F̄Sh

-measurable density) such that ΔW f,∗
(i+1)h := ΔW f

(i+1)h − θihh is a martingale.
Now we can use evaluations from our Examples 3.4 over one period and glue them together

recursively. Using our two step procedures for the one-periodic evaluations could be natural,
in particular, if the stock process can be observed before the insurance process. Suppose for
instance for a moment that we are at time ih and the stock process, Sh, can be observed at
time (i+ 1

2)h, whereas the insurance process is revealed after the stock process at time (i+1)h.
Since data from the financial market can be observed almost continuously, while data from
insurance companies are typically observed less frequently, this may not be an unreasonable
assumption, see also Section 4. Of course our insurance process will possibly be effected by the
financial market through its correlation to W f . However, it will not be completely predictable
due to its dependance on the jumps and W . In this situation if an evaluation (Πσ)σ∈[0,T ]

is time-consistent, then market-consistency would imply that for the aggregated evaluation
(Πih)i=0,1,...,T/h we have

Πih(H(i+1)h) = Πih(Π(i+ 1
2
)h(H(i+1)h)) = EQ

h

Fih

[
Π(i+ 1

2
)h(H(i+1)h)

]
.
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The last equation holds by market-consistency since Π(i+ 1
2
)h(H(i+1)h), is FSh

(i+ 1
2
)h

= F̄Sh

(i+ 1
2
)h

∨

Fih-measurable. Therefore, the setting outlined above would indeed give rise to applying a
two step market evaluation at time-instances ih, to evaluate payoffs up to time (i + 1)h. We
will calculate one example explicitly by considering at time instances ih the mean-variance two
step market evaluation

Πv
ih,(i+1)h(H(i+1)h) = EQ

h

Fih

[

E
FSh

(i+1)h

[
H(i+1)h

]
+

1
2
αV ar

FSh

(i+1)h

[H(i+1)h]

]

, α ≥ 0.

To obtain a multi-period evaluation (Πh
ih)i=0,1,...,T/h on the whole filtration with Πh

ih :
L∞(FT ) → L∞(Fih) we will define Πh recursively by setting

Πh
T (H) = H and Πh

ih(C) = Πv
Fih

(Πh
(i+1)h(H)) for i = 0, 1, . . . , T/h − 1. (5.1)

The following proposition is proved in the appendix:

Proposition 5.5 Suppose that the evaluation Πh is constructed by (5.1), i.e., using locally the
Mean-Variance two step market evaluation. Then for every terminal payoff H ∈ L∞(FT ) there
exists predictable (Zh,f , Zh, Z̃h) and a martingale (Lh

ih)i orthogonal (under Qh) to
(W f

ih,Wih, Ñ((0, ih], dx))i such that for all i we have

Πh
ih(H) = H +

T/h−1∑

j=i

([
θjhZh,f

jh +
α

2

(
|Zh

jh|
2 +

∫

R\{0}
|Z̃h

jh(x)|2ν(dx)
)]

h

+
α

2
EQ

h

Fjh

[(
ΔLh

(j+1)h − E
FSh

(j+1)h

[
ΔLh

(j+1)h

])2
])

−
T/h−1∑

j=i

Zh,f
jh ΔW f

(j+1)h

−
T/h−1∑

j=i

Zh
jhΔW(j+1)h −

T/h−1∑

j=i

∫

R\{0}
Z̃h

jh(x)Ñ((jh, (j + 1)h], dx) − (Lh
T − Lh

ih). (5.2)

In particular, Πh satisfies a discrete-time BSDE.

From Proposition 5.5 we may infer that

EFjh

[
ΔΠh

(j+1)h(H)
]

= −
[
θjhZh,f

jh +
α

2

(
|Zh

jh|
2 +

∫

R\{0}
|Z̃h

jh(x)|2ν(dx)
)]

h

−
α

2
EQ

h

Fjh

[(
ΔLh

(j+1)h − E
FSh

(j+1)h

[
ΔLh

(j+1)h

])2
]

.

Note that the orthogonal martingale terms ΔLh
(j+1)h arise because the discretized Brownian

Motions do not have the representation property. However, the continuous time Brownian
motions and the Poisson random measure do have the representation property. Therefore, if
we ignore the Lh then an analogous infinitesimal way of charging the risk in continuous time
would be an evaluation which satisfies

EFt [dΠt(H)] = −
[
θtZ

f
t +

α

2

(
|Zt|

2 +
∫

R\{0}
|Z̃t(x)|2ν(dx)

)]
dt.

This corresponds to an evaluation given by the solution of a BSDE with driver function

g(t, z, z̃) = θtz
f +

α

2

(
|z|2 +

∫

R\{0}
|z̃(x)|2ν(dx)

)
.
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Remark 5.6 The analogy stated above only corresponds to the local way of charging risk. A
global correspondence of charging risk would involve proving a convergence result for the whole
path. In the case that the driver function is Lipschitz continuous it can actually be shown in a
purely Brownian setting that after an appropriate scaling the whole path of the discrete time
evaluations converges to the corresponding solution of the BSDE; see Stadje (2010). However,
in Proposition 5.5. the driver function is quadratic in z. In this case already in the purely
Brownian setting an extension by convergence may not always be possible. Cheridito and
Stadje (2010) give an example which shows that in a setting where the discrete time filtration
is generated by a Bernoulli random walk it may happen that the discrete time Hn are uniformly
bounded and converge to H ∈ L∞(F) but the discrete time evaluations explode.

6 Summary & Conclusions

In this paper we have studied the extension of standard actuarial principles in time-consistent
and market-consistent directions by introducing a new market-consistent evaluation procedure
which we call ‘two step market evaluation.’ On the one hand, two step market evaluations
sometimes arise when an agent starts with an evaluation that is not market-consistent, such as
the Average Value at Risk or the Exponential Premium principle, and then engages in hedging.
On the other hand, market-consistent evaluations can also be defined directly by applying a
standard evaluation technique, conditional on the stock process. In this case the structure of
many standard evaluation techniques can be preserved.

We have shown that two step market evaluations are invariant if the stock is taken as a
numeraire. In Theorem 3.8 and Theorem 3.9 a complete axiomatic characterization for two
step market evaluations is provided. Moreover, we have proved that in a dynamic setting with
a continuous stock prices process and an insurance process being revealed at predictable times
every evaluation which is time-consistent and market-consistent is a two step market evaluation
up to the next predictable time, which gives a strong argument for their use. We have also
characterized market-consistency in terms of g-expectations and studied the extension of the
mean-variance and the exponential principle to continuous time, in a setting with jumps. Our
analysis shows that two step evaluations can provide a useful, computationally tractable tool
for market-consistent valuations.

A Appendix: Technical Material & Proofs

A.1 Background to the Essential Supremum

The first part of the appendix is basically a summary of the definitions and results given in A.5
Föllmer and Schied (2004). Consider a family of random variables M on a given probability
space (Ω, F̄ ,P). Now if M is countable then Z∗(ω) = supZ∈M Z(ω) is also measurable. However,
measurability is not guaranteed if M is uncountable. Even if the pointwise supremum is
measurable it might not be the right concept when we focus on a.s. properties. For instance if
P is the Lesbegue measure on Ω = [0, 1] and M = {I{x}|0 ≤ x ≤ 1} then supZ∈M Z = 1 while
Z = 0 a.s. for all Z ∈ M. This suggest the following notion of an essential supremum defined
in terms of almost sure inequalities. This result can be found as Theorem A.32 in Föllmer and
Schied (2004).
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Theorem A.1 Let M be any set of random variables on (Ω, F̄ ,P).

(a) There exists a random variable Z∗ such that

Z∗ ≥ Z P-a.s. for all Z ∈ M. (A)

Moreover, Z∗ is a.s. unique in the following sense: Any other random variable Ẑ with
property (A) satisfies Ẑ ≥ Z∗ P-a.s.

(b) Suppose that M is directed upwards, i.e., for Z1, Z2 ∈ M there exists Z3 ∈ M with
Z3 ≥ max(Z1, Z2). Then there exists an increasing sequence Z1 ≤ Z2 ≤ . . . in M such
that Z∗ = limn Zn P-a.s.

Definition A.2 The random variable Z∗ in the the theorem above is called the essential supre-
mum of M and we write:

Z∗ = ess supZ∈M Z.

We define the essential infimum similarly.

If the probability space is finite the essential supremum corresponds to the pointwise supremum
taken over all atoms.

Lemma A.3 If M satisfies the concatenation property, i.e., for every A ∈ F̄ and Z1, Z2 ∈ M
we have that Z1IA + Z2IAc ∈ M, then M is directed upwards.

Proof. Define
Z∗ = Z1I{Z1≥Z2} + Z2I{Z1<Z2}.

By the concatenation property Z∗ ∈ M, and by definition Z∗ ≥ max(Z1, Z2). 2

A.2 Proofs of the results in Section 3.1

Proof of Proposition 3.3. (i)⇒(ii) By (2.2) we have that

ΠG(H) = ess supξ∈L1(F){EG [ξH ] − Π∗
G(ξ)}.

Furthermore,

Π∗
G(ξ) = ess supH∈L∞(F){EG [ξH ] − ΠG(H)}

≥ ess supH∈L∞(FS){EG [ξH ] − ΠG(H)}

= ess supH∈L∞(FS){EG [EFS [ξ] H] − ΠG(H)}. (A.3)

The last term in (A.3) is the dual of ΠG restricted to FS evaluated at EFS [ξ]. Now by assump-
tion ΠG(HS) = EQG

[
HS
]

is linear. Thus, its dual penalty function, (ΠG |FS)∗ : L1(FS) →

R ∪ {∞}, must be equal to the indicator function which is zero if the input argument is dQG
dPG

,

and infinity else. But then, by the inequality above, Π∗
G(ξ) must be equal to infinity as well if

EFS [ξ] 6= dQG
dPG

. Thus, it is sufficient to consider ξ of the form ξ = dQG
dPG

Z for a Z := dQG
dPG

∈ QFS .

Defining for Z ∈ QFS , cG(Z) = Π∗
G(dQG

dPG
Z), we have indeed that

ΠG(H) = ess supξ∈L1(F){EG [ξH ] − Π∗
G(ξ)}

= ess supZ∈QFS
{EG

[
dQG

dPG
ZH

]

− Π∗
G(

dQG

dPG
Z)} = ess supZ∈QFS

{EQG [ZH ] − cG(Z)}.
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(ii)⇒(iii): It is by (ii)

ΠG(HS + H) = ess supZ∈QFS

{
EG

[
dQG

dPG
Z(HS + H)

]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[
dQG

dPG
ZHS

]

+ EG

[
dQG

dPG
ZH

]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[

EFS

[
dQG

dPG
ZHS

]]

+ EG

[
dQG

dPG
ZH

]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[
dQG

dPG
HSEFS [Z]

]

+ EG

[
dQG

dPG
ZH

]

− cG(Z)
}

= ess supZ∈QFS

{
EG

[
dQG

dPG
HS

]

+ EG

[
dQG

dPG
ZH

]

− cG(Z)
}

= EG

[
dQG

dPG
HS

]

+ ess supZ∈QFS

{
EG

[
dQG

dPG
ZH

]

− cG(Z)
}

= EQG
[
HS
]
+ ΠG(H),

where we have used in the fourth equation that dQG/dPG and HS , by assumption, are FS-
measurable. In the fifth equation we have used that EFS [Z] = 1. This proves (ii)⇒(iii). The
direction (iii)⇒(i) is clear using that by normalization ΠG(0) = 0.

Finally let us show that if ΠG is additionally assumed to be monotone, then market-
consistency is equivalent to any payoff being evaluated between its super- and sub-replication
price. Clearly, if any payoff is evaluated between its super- and sub-replication price then for
any HS ∈ L∞(FS) we must have that ΠG(HS) = EQG

[
HS
]
, as the financial market is assumed

to be complete. Hence, by the direction (i)⇒(iii) shown above, indeed ΠG is market-consistent.
On the other hand if ΠG is market-consistent and monotone then by standard duality results
the penalty function in (ii) must have a domain in Q+

FS . Also note that the set defined by

M :=
dQG

dPG
Q+

FS = {
dQG

dPG
Z|Z ∈ Q+

FS} is equal to the set of all local martingale measures MG .

(Actually for our proof we only need that M ⊂ MG .) This yields that

ΠG(H) = ess supZ∈Q+

FS
{EQG [ZH ] − cG(Z)} ≤ ess supZ∈Q+

FS
EQG [ZH ] = ess supP̄G∈MG

ĒG [H] ,

where we have used in the first equality that (ii) holds as ΠG is market-consistent. In the
inequality we applied that cG ≥ 0. In the last equality we used that M = MG . Hence, indeed
ΠG(H) is smaller than the super-replication price of H. To show that ΠG(H) is greater than the
sub-replication price, note that as c is a penalty function we must have ess infZ∈Q+

FS
cG(Z) = 0.

Now clearly, Q+
FS satisfies the concatenation property from Lemma A.3. Thus, there exists a

sequence Zn ∈ Q+
FS such that a.s. limn cG(Zn) = 0. This entails that

ΠG(H) = ess supZ∈Q+

FS
{EQG [ZH ] − cG(Z)}

≥ lim
n
{EQG [ZnH] − cG(Zn)}

≥ lim inf
n

EQG [ZnH] + lim inf
n

−cG(Zn) = lim inf
n

EQG [ZnH] ≥ ess inf P̄G∈MG
ĒG [H] .

Hence, ΠG(H) is greater than the sub-replication price. The proposition is proved. 2

Theorems 3.10 and 3.11 may be seen as versions of the Radon-Nikodyn theorem with a
non-linear part ΠFS and without assumptions like monotonicity or continuity. We will need
the following Lemma. Its proof is straight-forward doing an induction over r.
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Lemma A.4 Suppose that ΠG satisfies market-consistency and the local property. Then for
disjoint sets C1, . . . , Cr ∈ FS and payoffs H1, . . . , Hr ∈ L∞(F), we have

ΠG(H1IC1 + . . . + HrICr) = ΠG(H1IC1) + . . . + ΠG(HrICr).

The next lemma will also be useful.

Lemma A.5 A Ḡ-conditional evaluation satisfies ΠḠ(IAH) = IAΠḠ(H) for every A ∈ Ḡ.

Proof. It is

ΠḠ(IAH) = ΠḠ(IAH + IAc0) = IAΠḠ(H) + IAcΠḠ(0) = IAΠḠ(H),

by normalization and the local property of ΠḠ . 2

For the proof of Theorem 3.10 we will also need the following lemma:

Lemma A.6 In the setting of Theorem 3.10, the set M ′ defined by (3.4) has the concatenation
property in the sense that Z1, Z2 ∈ M ′ implies that for any A ∈ FS we have that Z1IA+Z2IAc ∈
M ′. In particular, IAM ′ + IAcM ′ := {Z1IA + Z2IAc |Z1 ∈ M ′, Z2 ∈ M ′} = M ′.

Proof. For Z1, Z2 ∈ M ′ we have

Π∗
G

(dQG

dPG

(
Z1IA + Z2IAc

))

= ess supH∈L∞(F)

{
EG

[
dQG

dPG
(Z1IA + Z2IAc)H

]

− ΠG(H)
}

= ess supH∈L∞(F)

{
EG

[
dQG

dPG
Z1(IAH)

]

+ EG

[
dQG

dPG
Z2(IAcH)

]

− ΠG(HIA + HIAc)
}

= ess supHIA,HIAc∈L∞(F)

{
EG

[
dQG

dPG
Z1(IAH)

]

− ΠG(HIA)

+ EG

[
dQG

dPG
Z2(IAcH)

]

− ΠG(HIAc)
}

= ess supHIA∈L∞(F)

{
EG

[
dQG

dPG
Z1(HIA)

]

− ΠG(HIA)
}

+ ess supHIAc∈L∞(F)

{
EG

[
dQG

dPG
Z2(HIAc)

]

− ΠG(HIAc)
}

, (A.4)

where the first equation holds by the definition of Π∗. The third equation holds because of
Lemma A.4 for r = 2. (A.4) yields that

Π∗
G

(dQG

dPG

(
Z1IA + Z2IAc

))
≤ ess supH∈L∞(F)

{
EG

[
dQG

dPG
Z1H

]

− ΠG(H)
}

+ ess supH∈L∞(F)

{
EG

[
dQG

dPG
Z2H

]

− ΠG(H)
}

= Π∗
G(

dQG

dPG
Z1) + Π∗

G(
dQG

dPG
Z2) = 0 + 0 = 0,
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where in the last line we have used that Π∗
G(dQG

dPG
Zi) = 0. The reason for this is that Π∗ is zero on

M and infinity else. Therefore, the fact that Zi ∈ M ′ implies by (3.4) that dQG
dPG

Zi ∈
dQG
dPG

M ′ = M
for i = 1, 2.

Since Π∗
G is only takes the values zero and infinity we must have that Π∗

G(dQG
dPG

(Z1IA +

Z2IAc)) = 0. Thus, we can conclude that indeed dQG
dPG

(
Z1IA + Z2IAc

)
∈ M. Therefore,

Z1IA + Z2IAc ∈
(dQG

dPG

)−1
M = M ′.

2

Proof of Theorem 3.10. (ii)⇒(i): It is

ΠG(HS + H) = EQG
[
ΠFS (HS + H)

]
= EQG

[
HS
]
+ EQG [ΠFS (H)] = EQG

[
HS
]
+ ΠG(H),

where we have used FS-conditional cash invariance in the second equation. This shows market-
consistency. Moreover,

ΠG(IAH1 + IAcH2) = EQG [ΠFS (IAH1 + IAcH2)]

= EQG [IAΠFS (H1) + IAcΠFS (H2)]

= EQG [ΠFS (IAH1) + ΠFS (IAcH2)] = ΠG(IAH1) + ΠG(IAcH2),

where we used the FS-local property in the second and Lemma A.5 in the third equation.
(i)⇒(ii): By Proposition 3.3 (iii)⇒(ii) and positive homogeneity market-consistency imply

that

ΠG(H) = ess supZ∈M ′ EG

[
dQG

dPG
ZH

]

= ess supZ∈M ′ EG

[

EFS

[
dQG

dPG
ZH

]]

= ess supZ∈M ′ EG

[
dQG

dPG
EFS [ZH ]

]

, (A.5)

where we used in the third equation that dQG
dPG

is FS-measurable. Define

ΠFS (H) := ess supZ∈M ′ EFS [ZH ] .

Clearly, ΠFS is normal, FS-convex, FS-cash invariant and FS-positively homogeneous. The
FS-local property is satisfied because for A ∈ FS we have

ΠFS (IAH1 + IAcH2) = ess supZ∈M ′ EFS [ZIAH1 + ZIAcH2]

= ess supZ∈M ′ EFS [ZIAH1] + EFS [ZIAcH2]

= ess supZ1∈M ′,Z2∈M ′ EFS [Z1IAH1] + EFS [Z2IAcH2]

= ess supZ1∈M ′ EFS [Z1IAH1] + ess supZ2∈M ′ EFS [Z2IAcH2]

= IA ess supZ1∈M ′ EFS [Z1H1] + IAc ess supZ2∈M ′ EFS [Z2H2]

= IAΠFS (H1) + IAcΠFS (H2),

where we used in the third equation that Lemma A.6 implies that M ′ = {Z1IA + Z2IAc |Z1 ∈
M ′, Z2 ∈ M ′}. Hence, indeed ΠFS is an FS-conditional evaluation. Finally, let us prove that

ΠG(H) = EQG [ΠFS (H)] .
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Notice that if we could show that

ess supZ∈M ′ EG

[
dQG

dPG
EFS [ZH ]

]

= EG

[
dQG

dPG
ess supZ∈M ′ EFS [ZH ]

]

(A.6)

then we are done, since the left-hand side of (A.6) is equal to ΠG(H) by (A.5), while the
righthand-side is equal to EQG [ΠFS (H)] by the definition of ΠFS . So let us show (A.6). Clearly,

ess supZ∈M ′ EG

[
dQG

dPG
EFS [ZH ]

]

≤ EG

[
dQG

dPG
ess supZ∈M ′ EFS [ZH ]

]

.

Let us prove ‘≥’. It is well known, see also Theorem A.1 and Lemma A.3, that the concatenation
property implies that there exists a sequence Zn ∈ M ′ with EFS [Z1H] ≤ EFS [Z2H] ≤ . . .
such that limn EFS [ZnH] = ess supZ∈M ′ EFS [ZH ] . Therefore, by the monotone convergence
theorem

EG

[
dQG

dPG
ess supZ∈M ′ EFS [ZH ]

]

= lim
n
EG

[
dQG

dPG
EFS [ZnH]

]

≤ ess supZ∈M ′ EG

[
dQG

dPG
EFS [ZH ]

]

.

This shows (A.6). This proves Theorem 3.10. 2

For the proof of Theorem 3.11 we will need the following Corollary of Lemma A.4:

Corollary A.7 Suppose that ΠG is continuous, market-consistent and satisfies the local prop-
erty. Then for disjoint sets C1, C2, . . . ∈ FS and a payoff H ∈ L∞(F) we have

ΠG(H
∞∑

i=1

ICi) =
∞∑

i=1

ΠG(HICi).

In particular, if ΠG is additionally assumed to be monotone (or p-norm bounded) then for every
H ∈ L∞(F) the mapping C → ΠG(HIC) is a real-valued, (signed) measure on FS.

Proof of Theorem 3.11. (ii)⇒(i): Continuity, convexity, and monotonicity in the case that ΠFS

is monotone, are straight-forward. The other properties are seen analogously as in the proof
of Theorem 3.10.

(i)⇒(ii): By assumption FS = σ(A1, A2, . . .) and we will assume without loss of generality
that Ai 6= Aj if i 6= j. For n ∈ N we define the finite filtration Fn as the smallest σ-algebra
containing the the events A1, . . . , An. Now let us define the partitions corresponding to Fn

recursively in a standard way. For n = 1, F1 is generated by the partition given by B1
1 := A1,

B1
2 := Ac

1. Moreover, Fn+1 is generated by the partition

Bn+1
i := Bn

i ∩ An+1 and Bn+1
2n+i := Bn

i ∩ Ac
n+1 i = 1, . . . , 2n.

Of course, F1 ⊂ F2 ⊂ . . . ⊂ FS .
Set qn

k = QG(Bn
k ). Note that qn

k are G-measurable random variables summing up to one for
a.s. all fixed ω. Define

ΠFn(H) :=
2n∑

k=1

IBn
k

qn
k

ΠG(HIBn
k
), (A.7)
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where we we set 0/0 = 0. Note that if qn
k = QG [Bn

k ] = 0 on a non-zero set C ∈ G, then
PG [Bn

k ] = 0 on C as well (as QG is equivalent to PG) and therefore, ΠG(HIBn
k
) = 0 on C, too.

In particular, ΠFn is well defined.
Next, every set A ∈ Fn can be written as A = Bn

k1
∪ . . . ∪ Bn

kr
, for a r ∈ {1, . . . , 2n} and

1 ≤ k1 < k2 < . . . < kr ≤ 2n. As ΠG(0) = 0, it is straight-forward to check using Definition
(A.7) that

ΠFn(IAH) = IAΠFn(H). (A.8)

Furthermore, by Lemma A.4 for every H ∈ L∞(F)

EQG [ΠFn(H)] =
2n∑

k=1

EQG
[
IBn

k

]

qn
k

ΠG(HIBn
k
) = ΠG(H).

We will need the following lemma which is a version of Proposition A.12 in Föllmer and Schied
(2004).

Lemma A.8 Suppose that P̂ and P̄ share the same zero sets, and that F0 ⊂ F . Then for any
bounded F-measurable H

ÊF0 [H] =
1

ĒF0

[
dP̂/dP̄

] ĒF0

[
dP̂
dP̄

H

]

P̄ and P̂ a.s.

Next we will show the following Lemma:

Lemma A.9 Under our assumptions, for every H ∈ L∞(F) the process Mn = EQG [ΠFn(H)]
is a uniformly integrable martingale.

Proof. It may be seen from standard arguments that Mn = ΠFn(H) is a martingale. Let us
see that Mn is uniformly integrable under the measure QG . First of all note that in the case
that ΠG is monotone we have that

ΠFn(H) ≤
2n∑

k=1

IBn
k

qn
k

ΠG(||H||∞IBn
k
) =

2n∑

k=1

IBn
k

qn
k

||H||∞qn
k = ||H||∞,

where we used market-consistency in the first equation. Similarly, it is seen that ΠFn(H) ≥
−||H||∞. Hence, if ΠFn is monotone then for fixed H, ΠFn(H) is bounded uniformly. In
particular, Mn is uniformly integrable.

In the case that ΠG is p-norm bounded notice that,

∣
∣ΠFn(H)

∣
∣ ≤ λ

∣
∣
∣

2n∑

k=1

IBn
k

qn
k

∫
(|H| + |H|p)IBn

k
dP̄G

∣
∣
∣

≤ λ(||H||∞ + ||H||p∞)
∣
∣
∣

2n∑

k=1

IBn
k

P̄G(Bn
k )

QG(Bn
k )

∣
∣
∣ = λ(||H||∞ + ||H||p∞)EQG

[
dP̄G
dQG

|Fn

]

.

Since the last term is uniformly integrable, ΠFn(H) is uniformly integrable as well. 2
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Hence, if ΠG is monotone or p-norm bounded we may conclude by the martingale convergence
theorem that Mn = ΠFn(H) converges a.s. and in L1(QG) to a random variable M∞. Set

ΠFS (H) := M∞ = lim
n

ΠFn(H).

Now ΠG(H) = EQG [ΠFS (H)] will follow from the following lemma:

Lemma A.10 For all A ∈ FS and H ∈ L∞(F), ΠFS (H) satisfies the characteristic equation:

ΠG(IAH) = EQG [IAΠFS (H)] . (A.9)

In particular, ΠG(H) = EQG [ΠFS (H)] . Furthermore, for every H ∈ L∞(FS), ΠFS (H) is the
unique a.s. QG-integrable random variable satisfying (A.9).

Proof. Notice that for every A ∈ Fn0 ⊂ Fn0+1 ⊂ . . . by (A.8)

ΠG(IAH) = lim
n
EQG [ΠFn(IAH)] = lim

n
EQG [IAΠFn(H)] = EQG [IAΠFS (H)] , (A.10)

where we have used in the third equality that ΠFn(H) converges to ΠFS (H) in L1(QG). Now
by Corollary A.7 the left hand-side and the right hand-side are signed measures (measuring
sets A ∈ FS). As by (A.10) they both agree on

⋃
n F

n, which is closed under intersection and
generates FS , they must agree on the entire filtration FS . Uniqueness follows from equation
(A.9) using standard arguments. 2

Now all what is left to prove is the following lemma:

Lemma A.11 ΠFS is a continuous, FS-conditional evaluation which is monotone if ΠG is
monotone.

Proof. Clearly for every n ΠFn is Fn- and hence also FS-measurable. This entails that its
limit, ΠFS , is FS-measurable. Furthermore, by construction, ΠFS is normalized as ΠFn are.
If ΠG is monotone then the ΠFn are monotone as well which implies that ΠFS is monotone.

Next, let us check that ΠFS satisfies the FS-local property. It is necessary and sufficient
that for every A ∈ FS and H ∈ L∞(F)

ΠFS (HIA) = IAΠFS (H).

We will prove the equality by showing that the right-hand side satisfies, the characteristic
equation (A.9) for the left hand-side. So let A′ ∈ FS . It is

ΠG(IA′(IAH)) = ΠG(IA′∩AH) = EQG [IA′∩AΠFS (H)] = EQG

[
IA′

(
IAΠFS (H)

)]
,

where we have used (A.9) in the second equation. This shows that IAΠFS (H) satisfies the
characteristic equation of IAH and hence by the uniqueness stated in Lemma A.10 indeed
ΠFS (HIA) = IAΠFS (H).

To see FS-cash invariance of ΠFS assume that for a m ∈ L∞(FS) and H ∈ L∞(F) we have

that the set A = {ΠFS (H + m)
(<)
> ΠFS (H) + m} has positive measure under PG . Then A has

also positive measure under QG and

ΠG(HIA + mIA) = EQG [ΠFS ((H + m)IA)] = EQG [ΠFS (H + m)IA]
(<)
> EQG [(ΠFS (H) + m)IA]

= EQG [ΠFS (HIA)] + EQG [mIA] = ΠG(HIA) + EQG [mIA] ,
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where we have used in the second equation the FS-local property of ΠFS , which we have proved
above. This is a contradiction to the market-consistency of ΠG . Thus, indeed ΠFS is FS-cash
invariant.

Next, for H ∈ L∞(F), and λ ∈ R with 0 ≤ λ ≤ 1

ΠFn(λH1 + (1 − λ)H2) =
2n∑

k=1

IBn
k

qn
k

ΠG(λIBn
k
H1 + (1 − λ)IBn

k
H2)

≤
2n∑

k=1

IBn
k

qn
k

(
λΠG(IBn

k
H1) + (1 − λ)ΠG(IBn

k
H2)

)

= λΠFn(H1) + (1 − λ)ΠFnH2), (A.11)

where we have used the convexity of ΠG in the inequality. In particular, ΠFS is convex as limit
of convex functionals. (Note that ‘convexity’ is weaker than ‘FS-convexity’ since for ‘convexity’
λ ∈ [0, 1] is assumed to be deterministic.) Before we move on to show the FS-convexity of ΠFS

let us prove continuity.
In the case that ΠG is monotone, ΠFS is monotone as well and the continuity of ΠFS follows

from the characteristic equation using standard arguments.
On the other hand if ΠG is p-norm bounded we get for H ∈ L∞(F)

∣
∣ΠFn(H)

∣
∣ ≤ λ

∣
∣
∣

2n∑

k=1

IBn
k

qn
k

∫
(|H| + |H|p)IBn

k
dP̄G

∣
∣
∣

= λ
∣
∣
∣

2n∑

k=1

IBn
k

qn
k

∫
(|H| + |H|p)IBn

k

dP̄G
dQG

dQG

∣
∣
∣ = λEQG

[

(|H| + |H|p)
dP̄G
dQG

∣
∣
∣Fn

]

.

Therefore,
∣
∣ΠFS (H)| = lim

n

∣
∣ΠFn(H)

∣
∣

≤ λEQG

[

(|H| + |H|p)
dP̄G
dQG

∣
∣
∣FS

]

= λEQG

[
dP̄G
dQG

|FS

] EQG

[
(|H| + |H|p) dP̄G

dQG

∣
∣
∣FS

]

EQG

[
dP̄G
dQG

|FS
]

= λEQG

[
dP̄G
dQG

|FS

] ∫
(|H| + |H|p)dP̄FS . (A.12)

The third equation holds by Lemma A.8. Now by (A.12) we can extend ΠFS to Lp(Ω,F , P̄)
by setting

Π̃FS (H) = lim sup
N→∞

lim sup
m→∞

ΠFS (−m ∨ H ∧ N).

Note that we have that Π̃FS is convex (as the lim sup of convex functionals), and agrees with

ΠFS on L∞(F). Define Lp(Ω,F , P̄FS ) as all random variables H such that
( ∫

|H(ω′)|p(ω′)P̄FS )(dω′)
)1/p

:=
(
EFS

[
|H|pξ̄

] )1/p
< ∞, where ξ̄ is the conditional density corresponding to P̄FS . By (A.12), for
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every H we have that Π̃FS (H) is real-valued and uniformly and bounded in any Lp(Ω,F , P̄FS )
environment around H. It follows then from standard arguments for convex functionals, see
for instance Theorem 2.2.9 in Zălinescu (2002), that convergence of Hn to H in Lp(Ω,F , P̄FS )
implies that Π̃FS (Hn) converges to Π̃FS (H). Since Π̃FS and ΠFS agree on L∞(F) we may
concluded that indeed ΠFS is continuous with respect to bounded a.s. convergence.

Finally let us show that ΠFS is FS-convex. First of all, let λFn
∈ L∞(Fn) with 0 ≤

λFn
≤ 1. Then there exists disjoint sets An

1 , . . . , An
r ∈ Fn and constants λn

1 , . . . , λn
r ∈ [0, 1] with

λFn
=
∑r

j=1 λn
i IAn

i
. By adding an additional set with an additional constant equal to zero if

necessary, we may assume without loss of generality that Ω =
⋃r

i=1 An
i . By Lemma A.4 for sets

C1, . . . , Cr ∈ FS

ΠFn(
r∑

i=1

ICiHi) =
2n∑

k=1

IBn
k

qn
k

(
ΠG(

r∑

i=1

IBn
k
ICiHi)

)

=
r∑

i=1

2n∑

k=1

IBn
k

qn
k

(
ΠG(IBn

k
ICiHi)

)
=

r∑

i=1

ΠFn(ICiHi). (A.13)

Therefore,

ΠFn(λFn
H1 + (1 − λFn

)H2) = ΠFn

( r∑

i=1

IAn
i
(λn

i H1 + (1 − λn
i )H2)

)

=
r∑

i=1

ΠFn(λn
i IAn

i
H1 + (1 − λn

i )IAn
i
H2)

≤
r∑

i=1

λn
i ΠFn(IAn

i
H1) + (1 − λn

i )ΠFn(IAn
i
H2)

=
r∑

i=1

λn
i IAn

i
ΠFn(H1) +

r∑

i=1

(1 − λn
i )IAn

i
ΠFn(H2)

= λFn
ΠFn(H1) + (1 − λFn

)ΠFn(H2),

where we have used (A.13) in the second equation, (A.11) in the inequality, and the Fn-local
property for ΠFn , proved in (A.8), in the third equation. Hence, indeed ΠFn is Fn-convex.

Next, if λFm
∈ L∞(Fm) with 0 ≤ λFm

≤ 1, and m ∈ N then clearly λFm
∈ Fn for every

n ≥ m. This entails

ΠFS (λFm
H1 + (1 − λFm

)H2) = lim
n

ΠFn(λFm
(H1 + (1 − λFm

)H2)

≤ lim
n

λFm
ΠFn(H1) + (1 − λFm

)ΠFm(H2)

= λFm
ΠFS (H1) + (1 − λFm

)ΠFm(H2). (A.14)

Finally, to see that ΠFS is FS-convex let λFS
∈ L∞(FS) with 0 ≤ λFS

≤ 1. Then also

0 ≤ EFn

[
λFS

]
≤ 1. Furthermore, by the martingale convergence theorem EFn

[
λS
]

converges
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to EFS

[
λS
]

= λS a.s. Hence, by the continuity of ΠFS we obtain that

ΠFS (λFS
H1 + (1 − λFS

)H2) = lim
n

ΠFS

(
EFn

[
λFS

]
H1 +

(
1 − EFn

[
λFS

] )
H2

)

≤ lim
n
EFn

[
λFS

]
ΠFS (H1) +

(
1 − EFn

[
λFS

] )
ΠFS (H2)

= λFS
ΠFS (H1) + (1 − λFS

)ΠFS (H2),

where we have used (A.14) in the inequality. The lemma is proved. 2

Lemma A.10 and Lemma A.11 imply the theorem. 2

A.3 Proofs of the results in Section 4

For the proof of Theorem 4.3 we will need the following Lemma:

Lemma A.12 In the setting of Theorem 4.3, let τ be a stopping time such that σ ≤ τ < τσ.
Let H be a bounded, Fτ -measurable payoff. Then Πσ(H) = EQFσ

[H] .

Proof. As F̄Y
τi+1− = F̄Y

τi
for all i, H is F̄S

τ ∨ Fσ-measurable. Consequently, the lemma follows
directly from the definition of market-consistency. 2

Proof of Theorem 4.3. As the jump times of Y for the i-th jump, (τi), are predictable
respectively, τσ has to be predictable as well. This is seen as follows: First of all note that by
the predictability of τi there exists sequences of stopping times (τn

i ) with τn
i < τi and τn

i ↑ τi

as n → ∞. Define σn :=
∑∞

i=1 I{τi=τσ}(τ
n
i ∨ σ). Let τ0 := 0. Then {τi = τσ} = {τi−1 ≤ σ <

τi} ∈ Fσ for i = 1, 2, . . . (Since τσ is the first jump after time σ, we know at time σ, if we have
observed i − 1 jumps so far, so that the next jump will be the i-th one.) Therefore,

{σn ≤ t} =
∞⋃

i=1

(
{τn

i ≤ t} ∩ {σ ≤ t} ∩ {τi = τσ}
)
∈ Ft.

Thus, σn is indeed a stopping time. Furthermore, clearly σn < τσ and

σn ↑
∞∑

i=1

I{τi=τσ}(τi ∨ σ) =
∞∑

i=1

I{τi=τσ}(τσ ∨ σ) =
∞∑

i=1

I{τi=τσ}τσ = τσ,

where we have used that σ < τσ. Hence, τσ is indeed predictable.
Next, let H ∈ L∞(Fτσ) and A ∈ Fσm for an m ∈ N. By time-consistency and the local

property of (Πσ) we get for all n ≥ m

Πσ(H) = Πσ(Πσn(HIA + HIAc)) = Πσ(IAΠσn(H) + IAcΠσn(H)).

Next observe that for n ≥ m, IAΠσn(H) + IAcΠσn(H) is Fσn-measurable. By Lemma A.12
this implies that

Πσ(IAΠσn(H) + IAcΠσn(H)) = EQFσ
[IAΠσn(H) + IAcΠσn(H)]

= EQFσ
[IAΠσn(H)] + EQFσ

[IAcΠσn(H)]

= EQFσ
[Πσn(IAH)] + EQFσ

[Πσn(IAcH)]

= Πσ(Πσn(IAH)) + Πσ(Πσn(IAcH)) = Πσ(IAH) + Πσ(IAcH),
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where we used Lemma A.5 in the third and time-consistency in the last equation. Hence, for
every A ∈ Fσm we have that

Πσ(H) = Πσ(IAH) + Πσ(IAcH). (A.15)

Since by assumption S is continuous and F̄Y
τi+1− = F̄Y

τi
for all i,

⋃
m Fσm is a generating system

for FS
τσ

. By the continuity of Πσ this entails that (A.15) holds for all A ∈ FS
τσ

. Thus, indeed Πσ

restricted to Fτσ satisfies the market-local property. This proves the first part of the theorem.
The second part follows from Theorem 3.10 and Theorem 3.11. 2

A.4 Proofs of the results in Section 5.1

Proof of Theorem 5.3. First assume that g(t, zf , z, z̃)−θtz
f does not depend on zf . We will prove

that for every τ , Eg
τ is market-consistent, by using Proposition 3.3 (i)⇒ (iii). Without loss of

generality assume that τ = 0. Let HS ∈ L∞(F̄S
T ). Denote by W ∗,f the Brownian motion under

Q, i.e., W ∗,f
s = W f

s −
∫ s
0 θudu, where the integral is defined componentwise. Since the financial

market is complete there exists a predictable n-dimensional process Zf ∈ L2(F̄S , dQ×du) such
that HS =

∫ T
0 Zf

s dW ∗,f
s . Define Ys = EQ

F̄S
s

[
HS
]

=
∫ s
0 Zf

udW ∗,f
u . Clearly, for every stopping time

σ we have that

EF̄S
τ

[∫ T

σ
|Zf

u |
2dW ∗,f

u

]

≤ 2||Y ||2S∞ ≤ 2||H||2∞.

Predictable processes satisfying such a boundedness property are also called BMOs, see Kaza-
maki (1994). As θ is bounded it follows from Theorem 3.24 in Barrieu and El Karoui (2009)
that Zf is a BMO under P. In particular, Zf ∈ L2(F̄S , dP× du). Now we get

dYs = −g(s, 0, 0, 0)ds + Zf
s dW ∗,f

s

= −(g(s, Zf
s , 0, 0) − θsZ

f
s )ds + Zf

s dW ∗,f
s = −g(s, Zf

s , 0, 0)ds + Zf
s dW f

s ,

where we used that g(s, 0, 0, 0) = 0 in the first equation. In the second equation we applied
that g(s, 0, 0, 0) = g(s, zf , 0, 0)−θsz

f , as by assumption g(s, zf , 0, 0)−θsz
f does not depend on

zf . In the last equation we used the definition of W ∗,f . This entails that Ys = EQ
F̄S

s
[H] solves

the BSDE with terminal condition H and driver g. Therefore, indeed for every HS we have
that EQ

[
HS
]

= Eg
0 (HS), and it follows from Proposition 3.3 (i)⇒(iii) (with G = {Ω, ∅}) that

Eg
0 is market-consistent. For general τ the argument is similar.

Now let us prove the other direction. For arbitrary z̄f ∈ Rn define

ḡ(t, zf , z, z̃) := g(t, zf + z̄f , z, z̃) − θtz̄
f .

We need to show that ḡ = g. Let (Eg
t (H + z̄fW ∗,f

T ), Zf , Z, Z̃) be the solution of the BSDE
with terminal condition H + z̄fW ∗,f

T and driver function g. Note that the process Y ∗
t :=

Eg
t (H + z̄fW ∗,f

T ) − z̄fW ∗,f
t is equal to H at time T. On the other hand we have

dY ∗
t = −(g(t, Zf

t , Zt, Z̃t) − θtz̄
f )dt + (Zf

t − z̄f )dW f
t + ZtdWt +

∫

R\{0}
Z̃t(x)Ñ(dt, dx)

= −ḡ(t, Zf
new,t, Zt, Z̃t)dt + Zf

new,tdW f
t + ZtdWt +

∫

R\{0}
Z̃t(x)Ñ(dt, dx),
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where Zf
new := Zf − z̄f . Therefore, Y ∗ solves the BSDE with terminal condition H and driver

ḡ. Hence, for every t we have Eg
t (H + z̄fW ∗,f

T ) − z̄fW ∗,f
t = Y ∗

t = E ḡ
t (H). Denote by S̃ the

vector of the discounted stock prices. By market-consistency we can conclude that for every
H ∈ L∞(FT )

Eg
t (H) = Eg

t

(
H +

∫ T

0
z̄f σ̃−1(t, ertS̃t)dS̃t

)
−
∫ t

0
z̄f σ̃−1(t, ertS̃t)dS̃t

= Eg
t (H + z̄fW ∗,f

T ) − z̄fW ∗,f
t = E ḡ

t (H), (A.16)

for all t. Next choose zf ∈ Rn, z ∈ Rd and z̃ ∈ L2(ν(dx)). Set

H := −
∫ T

0
g(s, zf , z, z̃)ds + zfW f

T + zWT +
∫ T

0

∫

R\{0}
z̃(x)Ñ(ds, dx).

Notice that −
∫ t
0 g(s, zf , z, z̃)ds +

∫ t
0 zfdW f

s +
∫ t
0 zdWs +

∫ t
0

∫
R\{0} z̃(x)Ñ(ds, dx) by definition

is the solution of the BSDE with terminal condition H and driver g. In particular, Eg
0 (H) = 0.

By (A.16) this yields E ḡ
0 (H) = Eg

0 (H) = 0 and

−
∫ t

0
g(s, zf , z, z̃)ds +

∫ t

0
zfdW f

s +
∫ t

0
zdWs +

∫ t

0

∫

R\{0}
z̃(x)Ñ(ds, dx)

= Eg
t (H) = E ḡ

t (H)

= E ḡ
0 (H) −

∫ t

0
ḡ(s, Zf

s , Zs, Z̃s)ds +
∫ t

0
Zf

s dW f
s +

∫ t

0
ZsdWs +

∫ t

0

∫

R\{0}
Z̃s(x)Ñ(ds, dx)

= −
∫ t

0
ḡ(s, Zf

s , Zs, Z̃s)ds +
∫ t

0
Zf

s dW f
s +

∫ t

0
ZsdWs +

∫ t

0

∫

R\{0}
Z̃s(x)Ñ(ds, dx),

where (Zf , Z, Z̃) belong to the solution of the ḡ-expectation with terminal condition H. By the
uniqueness of the decomposition of semi-martingales this entails that

∫ t

0
zfdW f

s +
∫ t

0
zdWs +

∫ t

0

∫

R\{0}
z̃(x)Ñ(ds, dx)

=
∫ t

0
Zf

s dW f
s +

∫ t

0
ZsdWs +

∫ t

0

∫

R\{0}
Z̃s(x)Ñ(ds, dx), (A.17)

and ∫ t

0
g(s, zf , z, z̃)ds =

∫ t

0
ḡ(s, Zf

s , Zs, Z̃s)ds. (A.18)

Taking for instance the quadratic covariation with respect to the components of W f , W , and
with respect to Ñ in (A.17) respectively, we may conclude that Zf

t = zf , Zt = z, dP× dt a.s.,
and Z̃t = z̃, ν(dx) × dP× dt. But then (A.18) yields that for a.s. all ω

∫ t

0
g(s, zf , z, z̃)ds =

∫ t

0
ḡ(s, zf , z, z̃)ds, for all t ∈ [0, T ]

and therefore g(t, zf , z, z̃) = ḡ(t, zf , z, z̃) for a.s. all ω for Lesbegue a.s. all t. 2
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A.5 Proofs of the results in Section 5.2

Proof of Proposition 5.5. First of all note that since dQh

dP is σ(W f,∗
t |0 ≤ t ≤ T )-measurable,

we have that W and Ñ have the same joint distribution under Qh as under P (since they are
independent of W f,∗).

By well known projection results, there exists adapted Zh,f
ih : Ω → Rn, Zh

ih : Ω → Rd,

measurable with respect to Fih, Z̃h
ih : Ω×R \ {0} → R, measurable with respect to Fih ⊗B(R \

{0}), and a real-valued Qh-martingale (Lh
ih)i which is orthogonal (under Qh) to W f,∗

ih , Wih, and
Ñ((0, ih], dx), such that

Π(i+1)h(H) = EQ
h

Fih

[
Π(i+1)h(H)

]
+ Zh,f

ih ΔW f,∗
(i+1)h + Zh

ihΔW(i+1)h

+
∫

R\{0}
Z̃h

ih(x)Ñ((ih, (i + 1)h], dx) + ΔLh
(i+1)h.

For the sake of simplicity we will omit the superscript h for the Zh,f , Zh, and Z̃h in the sequel.
It follows that

ΔΠ(i+1)h(H)

= Π(i+1)h(H) − Πih(H)

= Π(i+1)h(H) − Πv
ih,(i+1)h(Π(i+1)h(H))

= Zf
ihΔW f,∗

(i+1)h + ZihΔW(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + ΔL(i+1)h

− Πv
ih

(

Zf
jhΔW f,∗

(i+1)h + ZihΔW(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + ΔL(i+1)h

)

= Zf
jhΔW f,∗

(i+1)h + ZihΔW(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + ΔL(i+1)h

− Πv
ih,(i+1)h

(

ZihΔW(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + ΔL(i+1)h

)

!
= Zf

jhΔW f
(i+1)h + ZihΔW(i+1)h +

∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + ΔL(i+1)h

−
[
θihZf

ih +
α

2
|Zih|

2 +
α

2

∫

R\{0}
|Z̃ih(x)|2ν(dx)

]
h

−
α

2
EQ

h

Fih

[

(ΔL(i+1)h − E
FSh

(i+1)h

[
ΔL(i+1)h

]
)2
]

, (A.19)

where we have used (5.1) in the third equation. Furthermore, we applied cash invariance in
the third and market-consistency in the fourth equation. To see that the last equation holds
denote by CovP

FSh
(i+1)h

(X1, X2) the covariance of X1 and X2 with respect to P
FSh

(i+1)h

. Since all

random variables are F(i+1)h-measurable we may assume that dQh

dP is FSh

(i+1)h-measurable.
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It is

Πv
ih,(i+1)h

(

ZihΔW(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + ΔL(i+1)h

)

=
α

2
EQ

h

Fih

[

V ar
FSh

(i+1)h

(

ZihΔW(i+1)h +
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx) + ΔL(i+1)h

)]

=
α

2

(

h|Zih|
2 + h

∫

R\{0}
|Z̃ih(x)|2ν(dx) + EQ

h

Fih

[
(
ΔL(i+1)h − E

FSh

(i+1)h

[
ΔL(i+1)h

] )2
]

+ 2
d∑

j=1

Zj
ihE

Qh

Fih

[

CovP
FSh

(i+1)h

(ΔW j
(i+1)h, ΔL(i+1)h)

]

+ 2EQ
h

Fih

[

CovP
FSh

(i+1)h

(
∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx), ΔL(i+1)h)

]

+ 2
d∑

j=1

Zj
ihE

Qh

Fih

[

CovP
FSh

(i+1)h

(ΔW j
(i+1)h,

∫

R\{0}
Z̃ih(x)Ñ((ih, (i + 1)h], dx))

])

,

(A.20)

where we have used that W and Ñ are independent of Sh and that dQh

dP is FSh

(i+1)h-measurable.
Hence, to prove (A.19) the only thing what remains left is to show that the the covariance

terms in (A.20) are zero. By Lemma A.8 (with P̂ = Qh and P̄ = P) we get for j = 1, . . . , d

EQ
h

FSh

(i+1)h

[
ΔW j

(i+1)h

]
= E

FSh

(i+1)h

[
ΔW j

(i+1)h

]
= EFih

[
ΔW j

(i+1)h

]
= 0,

where we used the independence of Sh and W in the second equation. Hence, since L(i+1)h

and ΔW(i+1)h are orthogonal under Qh
Fih

, we may conclude that

EQ
h

Fih

[

CovP
FSh

(i+1)h

(
ΔW j

(i+1)h, ΔL(i+1)h

)
]

= EQ
h

Fih

[
ΔW j

(i+1)hΔL(i+1)h

]

= CovQh
Fih

(ΔW j
(i+1)h, ΔL(i+1)h) = 0.

Similarly, it may be seen that the second and third covariance terms in (A.19) are zero. Thus,
(A.19) is proved. From (A.19) we may finally conclude

ΠT (H) − Πih(H)

=
T/h−1∑

j=i

ΔΠ(j+1)h(H)

=
T/h−1∑

j=i

(

Zf
jhΔW f

(j+1)h + ZjhΔW(j+1)h +
∫

R\{0}
Z̃jh(x)Ñ((jh, (j + 1)h], dx) + ΔL(j+1)h

)

−
T/h−1∑

j=i

[
θjhZf

jh +
α

2
|Zjh|

2 +
α

2

∫

R\{0}
|Z̃jh(x)|2ν(dx)

]
h

+
α

2
EQ

h

Fjh

[
(
ΔL(j+1)h − E

FSh

(j+1)h

[
ΔL(j+1)h

] )2
]

.
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Since by construction ΠT (H) = H the proposition is proved. 2
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Wüthrich, M., Bühlmann, H., and Furrer, H. (2008). Market-Consistent Actuarial Valuation.
European Actuarial Academy, (EAA), Series, Springer, Heidelberg.

Young, V. R. and Zariphopoulou, T. (2002). Pricing dynamic insurance risks using the principle
of equivalent utility. Scandinavian Actuarial Journal, 2002(4):246–279.
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