
  

 

 

Tilburg University

Simulation-Optimization via Kriging and Bootstrapping

Kleijnen, Jack P.C.

Publication date:
2013

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kleijnen, J. P. C. (2013). Simulation-Optimization via Kriging and Bootstrapping: A Survey (Revision of CentER
DP 2011-064). (CentER Discussion Paper; Vol. 2013-064). Information Management.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420821119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/6ac4e049-ad86-447f-aeec-ad5d9ccc7248


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
No. 2013-064 

 
 

 
SIMULATION-OPTIMIZATION VIA KRIGING AND 

BOOTSTRAPPING: A SURVEY 
 
 
 

 By 
 

Jack P.C. Kleijnen 
 
 
 

1 November, 2013 
 
 
 
 

This is a revised version of CentER Discussion Paper  
 

No. 2011-064 
6 June, 2011 

 
 
 
 
 
 
 

ISSN 0924-7815 
ISSN 2213-9532 

 



Simulation-optimization via Kriging
and bootstrapping: a survey

Jack P.C. Kleijnen
Department of Information Management / CentER,
Tilburg University, Postbox 90153, 5000 LE Tilburg,
Netherlands, phone +31-13-466-2029; fax +31-13-466-3069;
kleijnen@tilburguniversity.edu

Abstract
This article surveys optimization of simulated systems. The

simulation may be either deterministic or random. The sur-
vey reflects the author’s extensive experience with simulation-
optimization through Kriging (or Gaussian process) metamodels.
The analysis of these metamodels may use parametric bootstrap-
ping for deterministic simulation or distribution-free bootstrap-
ping (or resampling) for random simulation. The survey covers:
(1) Simulation-optimization through "effi cient global optimiza-
tion" (EGO) using "expected improvement" (EI); this EI uses
the Kriging predictor variance, which can be estimated through
parametric bootstrapping accounting for estimation of the Krig-
ing parameters. (2) Optimization with constraints for multi-
ple random simulation outputs and deterministic inputs through
mathematical programming applied to Kriging metamodels vali-
dated through distribution-free bootstrapping. (3) Taguchian ro-
bust optimization for uncertain environments, using mathemati-
cal programming– applied to Kriging metamodels– and distribution-
free bootstrapping to estimate the variability of the Kriging meta-
models and the resulting robust solution. (4) Bootstrapping for
improving convexity or preserving monotonicity of the Kriging
metamodel.
Keywords: simulation; optimization; stochastic process; non-

linear programming; risk
JEL: C0, C1, C9

1 Introduction

In this survey we consider the problem of optimizing complex real-life
systems that are represented through simulation models. These simula-
tion models may be either deterministic or random. Deterministic mod-
els often represent real-life systems that are governed by laws of physics;
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examples are found in computer aided engineering; see [16] and the refer-
ences in [23, p. 3]. Random or stochastic simulation models– including
discrete-event simulation– often represent social systems in which hu-
mans create noise; examples are queueing systems in telecommunications
and logistics with random customer arrival and service times; see [32].
Finding the optimal input combinations for these simulation models may
use a large variety of methods; see [19] and [23]. Notice that “input com-
binations”of a simulation are also called “points”in the search space or
“scenarios”that users wish to explore.
We focus our survey on our own research– performed together with

various coauthors– on simulation-optimization through Kriging meta-
models. In the simulation literature, a metamodel is an explicit simpli-
fied model of an underlying complicated simulation model; metamodels
are also called approximations, response surfaces, surrogates, emulators,
etc. Though the most popular type of metamodel is either a first-order
polynomial or a second-order polynomial with the simulation inputs as
independent variables, we focus onKriging metamodels. The mathemat-
ical foundation of Kriging – originally proposed by the South African
mining engineer Krige– is due to the French mathematician Matheron,
who considered Kriging models as Gaussian process (GP) models; one
of his English publications is [39].
For the analysis of Kriging metamodels we use bootstrapping. In

general, bootstrapping is a versatile method for analyzing nonlinear sta-
tistics; an example of a nonlinear statistic is the ratio of two random
variables (say) x/y, for which it is well-known that E(x/y) 6= E(x)/E(y).
A more interesting example is the variance of the predictor given by a
Kriging metamodel with estimated parameters; see Section 4. We shall
discuss both parametric bootstrapping for deterministic simulation and
nonparametric or distribution-free bootstrapping for random simulation
with replications. The bootstrap method avoids complicated asymptotic
methods; i.e., bootstrapping is a practical small-sample method– and
small samples are common in so-called expensive simulation, which re-
quires much computer time.
We shall also mention software for simulation-optimization, Kriging,

and bootstrapping; obviously, such software stimulates the application
of methods in practice. We use only basic mathematics and statistics in
our survey of these various methods. Our 55 references enable readers
to study the technical details of these methods. We use a frequentist
approach, not a Bayesian approach; the latter is also popular in Kriging
and simulation-optimization, but we have no personal experience with
Bayesian methods.
To situate our own research within the general context of simulation-
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optimization, we give several references at the start of the various sec-
tions. Other references enable the readers to learn the details of our
own methods. Future research per topic is also mentioned in the various
sections.

2 Kriging: basics

Originally, Kriging was developed by Daniel Krige for the interpolation
of geostatistical (spatial) sampling data; see [9]. Later on, Kriging was
applied to obtain a global (not local) metamodel for the input/output
(I/O) data of computer experiments with deterministic simulation mod-
els; see [48] and also [49]) and [16]. A recent survey of Kriging in
simulation-based metamodeling is [24]. The literature on Kriging is
vast and covers diverse disciplines, such as spatial statistics, machine
learning, mechanical engineering, and operations research. Besides the
Anglo-Saxon literature there is a vast French literature on Kriging; see
http://www.gdr-mascotnum.fr/documents.html.
The following website emphasizes machine learning: http://www.

gaussianprocess.org/. This site also gives alternative Kriging books
such as [45] and [51].
There is much software for Kriging; see the preceding textbooks and

websites. In all our own experiments, however, we have used DACE,
which is a free-of-charge Matlab-toolbox well documented in [35]. Al-
ternative free software is mentioned in [17] and [23, p. 146]; also see the
toolboxes called Surrogates and SUMO on http://sites.google.com/
site/felipeacviana/surrogatestoolbox and http://www.sumo.intec.
ugent.be/?q=sumo_toolbox.
The statistical R community has also developed much software; see,

e.g., [10]’s mlegp and [47]’s DiceKriging. Some publications focus on
problems caused by large I/O data sets (so the matrix inversions in
the equations 3 and 4 below become problematic); also see the topic
“approximations”on http://www.gaussianprocess.org/#approx.
Kriging may give a valid metamodel (i.e., an adequate explicit ap-

proximation) of the implicit I/O function implied by the underlying sim-
ulation model– even when the simulation experiment covers a “big”in-
put area so the simulation experiment is global (not local). For example,
Kriging can approximate the I/O function of a simulation model for a
traffi c rate ranging all the way between (say) 0.1 and 0.9.
Ordinary Kriging– simply called “Kriging”in the remainder of this

paper– assumes that the I/O function being approximated is a realiza-
tion of the GP

Y (x) = µ+ Z(x) (1)

where x is a point in a d-dimensional input space with d a given positive
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integer denoting the number of simulation input variables, µ is its con-
stant mean, and Z(x) is a stationary GP with mean zero, variance σ2,
and some correlation function. The most popular correlation function
in simulation is the product of the individual correlation functions; e.g.

corr[Y (xi),Y (xj)] =
∏d

k=1
exp(−θk |xik − xjk|pk) with θk > 0, pk. (2)

This function implies that the outputs Y (xi) and Y (xj) are more cor-
related as their input locations xi and xj are “closer”; i.e., they have
smaller Euclidean distance in the kth dimension of the input combina-
tions xi and xj. The correlation parameter θk denotes the importance of
input k; i.e., the higher θk is, the faster the correlation function decreases
with the distance in this dimension. The parameter pk determines the
smoothness of the correlation function; e.g., pk = 2 gives the so-called
Gaussian correlation function, which gives smooth, continuous functions
that are infinitely differentiable. Hence, (1) and (2) imply that the Krig-
ing (hyper)parameters are ψ′ = (µ, σ2, θ′) with θ′ = (θ1, . . . θd).
The Kriging predictor is selected such that it is the best linear un-

biased predictor (BLUP) where "best" means minimal "mean squared
error" (MSE) of the predictor. Given a set of n “old” observations
(or "training points" in the terminology of machine learning ) y =
(y1, . . . , yn)

′, it can be proven that this criterion gives the following lin-
ear predictor for a point xn+1 (sometimes denoted by x0), which may
be either a new or an old point:

ŷ(xn+1) = µ+ r′R−1(y − 1µ) (3)

where r = {corr[Y (xn+1), Y (x1)], . . . , corr[Y (xn+1), Y (xn)]}′ is the vec-
tor of correlations between the outputs at the point xn+1 and the n old
points xi, R is the n× n matrix with entry (i, j) given by (2), and 1 is
the n-dimensional vector with ones. This r and R may be replaced by
the corresponding covariance vector Σn+1 = σ2r and matrix Σ = σ2R,
because σ2 then cancels out in (3). If the new xn+1 coincides with an old
xi, then the predictor ŷ(xi) equals the observed value y(xi): exact inter-
polation. Kriging tends to give a bad predictor in case of extrapolation,
so we avoid extrapolation; see [2, p. 9].
A major problem is that the Kriging parameters ψ are unknown. To

estimate ψ, the standard literature and software use maximum likeli-
hood estimators (MLEs). The MLE of ψ is ψ̂ = (µ̂, σ̂2, θ̂′)′. Computing
ψ̂ involves constrained maximization, which is a hard problem because
matrix inversion is necessary, the likelihood function may have multiple
local maxima and a ridge, etc.; see [38]. It turns out that µ̂ is the gen-
eralized least squares (GLS) estimator µ̂ = (1T R̂−11)−11T R̂−1y where
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R̂ denotes the MLE of R (determined by θ). [16, p. 84] proves that the
MSE of the BLUP or the predictor variance is

σ2(x) = σ2(1− r′R−1r+
(1− 1′R−1r)2

1′R−11
) (4)

where σ2(x) is the variance of ŷ(x), defined in (3).
The classic Kriging literature, software, and practice simply replace

R and r in (3) and (4) by their estimators. Unfortunately, plugging-in
these estimators into (3) changes ŷ(x) into the nonlinear predictor (say)̂̂y(x) (double hats). The classic literature ignores this complication, and
simply plugs σ̂2, r̂, and R̂ into (4) to obtain (say) s2(x), the estimated
predictor variance of ̂̂y(x). There is abundant software for the compu-
tation of ̂̂y(x) and s2(x). Obviously, s2(x) = 0 at the n old points; s2(x)
tends to increase as the new xn+1 lies farther away from an old xi (also
see Sections 4 and 5).
Obviously, the interpolation property of Kriging is not desirable in

random simulation. Therefore the Kriging metamodel may be changed
such that it includes intrinsic noise; see (in historical order) [49, pp. 215-
249], [16, p. 143], [55], [1], and [6]. The resulting “stochastic Kriging”
does not interpolate the n outputs averaged over the (say) mi replica-
tions (i = 1, . . . , n). Moreover, [6] also accounts for common random
numbers (CRN), used to simulate outputs for different input combina-
tions (also see later sections). This stochastic Kriging may avoid over-
fitting; overfitting may result in a wiggling (erratic) Kriging metamodel
(also see Section 8). ([37] use an alternative approach with one Kriging
model for the mean and another Kriging model for the variance.) More
specifically, stochastic Kriging augments (1) with a white noise random
variable (say) e:

Y (x) = µ+ Z(x)+e (5)

where e is normally, independently, and identically distributed (NIID)
with zero mean and (constant) variance σ2e . This e is generalized in [1]
such that e has a variance that depends on xi: “variance heterogeneity”.
And [6] accounts for CRN so the covariance matrix of e (say) Σe no
longer equals σ2eI (white noise) but becomes a covariance matrix with
heterogeneous variances on the main diagonal (also see [55]) and positive
covariances off this diagonal. The Kriging predictor (3) then becomes

ŷ(xn+1) = µ+Σ′n+1(Σ+Σe)
−1(y−1µ) (6)

where Σe is the covariance matrix of e =
∑mi

j=1 ei;j/mi and y is the n-
dimensional vector with the output averages yi =

∑mi

j=1 yi;j/mi. Some
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authors solve numerical problems in the computation ofR−1 by assuming
Σe = cI with c being a very small number; see [36, p. 12].
As far as software for stochastic simulation with white noise is con-

cerned, [20] provides Matlab code and [49, pp. 215-249] provides C code.
Matlab code for CRN is provided on http://www.stochastickriging.
net/. R-code is provided by [47].

3 Bootstrapping: basics

In general, bootstrapping may quantify the behavior of nonlinear statis-
tics (such as ̂̂y(x)); see the classic textbook on bootstrapping [15]. Its
statistical properties such as asymptotic consistency are discussed in [7]
and in the many references given in [23]. The bootstrap is a data driven
method, so we suppose that a data set is given. For example, the data
are the IID yi (i = 1, . . . , n) (not necessarily NIID). We consider the
following simple example.
Suppose the yi are exponentially distributed with parameter λ: yi ∼

Exp(λ), and we are interested in the distribution of the sample average
y (a linear statistic). If yi ∼ NIID(µ, σ), then y ∼ N(µ, σ/

√
n). In our

example, however, yi ∼ Exp(λ). We may then use the estimatorλ̂ = 1/y.
Next we can sample n new observations (say) y∗i from Exp(λ̂): this is
called parametric bootstrapping, which is Monte Carlo sampling with the
parameter λ estimated from the data yi; the superscript ∗ is the usual
symbol denoting bootstrapped observations. From these bootstrapped
observations y∗i we compute the statistic of interest, y∗ =

∑n
i=1y

∗
i /n.

To estimate the empirical density function (EDF) of y∗, we repeat this
resampling (say) B times, where B is called the “bootstrap sample size”;
a typical value is B = 100. A (say) 90% confidence interval (CI) for
the population mean E(y) uses the (sorted from small to big) “order
statistics”y∗(b) with b = 1, ..., B; i.e., this CI is (y

∗
(b0.05Bc), y

∗
(d0.95Be));see

[15, pp. 170-174].
Now suppose that we do not know which type of distribution yi has.

Furthermore, n is too small for a reliable estimate of the distribution
type. We can then apply distribution-free or nonparametric bootstrap-
ping, as follows. We resample (using PRN) the n “original”observations
yi with replacement (also see Section 8). From these resampled y∗i we
compute the statistic of interest; e.g., y∗ =

∑n
i=1y

∗
i /n. Like in paramet-

ric bootstrapping, we can compute the EDF of y∗ through repeating this
resampling B times; this gives a CI.
Obviously, we can apply bootstrapping to estimate the EDF of more

complicated statistics than the average; namely, nonlinear statistics. An
example is the estimated skewness

∑n
i=1(yi−y)3/[(n−1)s3] with sample
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average y and sample standard deviation s. A more interesting example
is the Kriging predictor with estimated parameters; see the next section.
Bootstrapping has become popular since powerful and cheap comput-

ers have become widely available. Software for bootstrapping is available
in many statistical software packages, including the BOOTmacro in SAS
and the “bootstrap”command in S-Plus; see [42]. Bootstrapping is also
easily implemented in Matlab, as we do in all our applications.

4 Bootstrapped variance of Kriging predictor

We expect the true predictor variance to be underestimated by s2(x),
defined in Section 2. Therefore [14] derives a bootstrapped estimator
(an alternative is the Bayesian approach in [55]). This estimator ap-
plies parametric bootstrapping, assuming (1). This bootstrapping first
computes (say) ψ̂′ = (µ̂, σ̂2, θ̂′), the MLEs computed from the “origi-
nal” old I/O data (X,y) where X is the n × d input matrix with x′i
= (xi1, ..., xid) and y = (y1, ..., yn)

′ is the corresponding output vector.
To compute these MLEs, [14] uses the DACE software. These MLEs
specify the distribution from which to sample bootstrapped observations.
To estimate the MSE of the Kriging predictor at the new xn+1, [14]

samples both the n bootstrap outputs y∗ = (y∗1, ..., y
∗
n)
′ at the old X

and y∗n+1 at the new xn+1. These n + 1 outputs– collected in y∗′n+1 =
(y∗′, y∗n+1)– are correlated:

y∗n+1 ∼ Nn+1(µ̂n+1, Σ̂(n+1)×(n+1)) (7)

where µ̂n+1 has all its (n + 1) elements equal to µ̂ and Σ̂(n+1)×(n+1) is
the (symmetric positive semi-definite, PSD) matrix[

Σ̂ Σ̂n+1

Σ̂n+1

′

σ̂2

]

with symbols defined below (3). The bootstrapped data (X,y∗) resulting
from (7) give the bootstrapped MLE ψ̂∗ = (µ̂∗, σ̂2

∗
, θ̂∗′)′; [14] starts the

search for this ψ̂∗ from ψ̂ (based on the original data (X,y)). This ψ̂∗

gives the bootstrapped Kriging predictor ̂̂y∗n+1.
The squared errors (SEs) at the old points are zero, because classic

Kriging is an exact interpolator; however, the squared error at the new
point is

SEn+1 = (̂̂y∗n+1 − y∗n+1)2 (8)

where y∗n+1 results from (7). To reduce sampling error, this bootstrap-

ping is repeated B times (i.e., B = 100), which gives ̂̂y∗n+1;b and y∗n+1;b
7



with b = 1, . . . , B. This gives the bootstrap estimator of the Kriging
predictor’s variance:

s2(̂̂y∗n+1) =
B∑
b=1

(̂̂y∗n+1;b − y∗n+1;b)2
B

. (9)

[14] gives several examples; viz., four mathematical functions in one
or two dimensions, and one circuit-simulator taken from [48] with n =
32 observations and d = 6 dimensions. These examples suggest that
(i) the true variance is indeed underestimated by the classic estimator,
and (ii) the classic and the bootstrapped estimates do not reach their
maximum at the same x ( i.e., the bias is not an additive or multiplicative
constant, but varies with x). This second characteristic may make the
bootstrapped variance estimator (9) useful in EGO.

5 EGO with bootstrapped variance

EGO is a well-known sequential method; i.e., it decides on its design
of experiments (DOE), as experimental I/O results become available.
EGO balances local and global search; i.e., it combines exploitation and
exploration. Its classic reference (including predecessors of EGO) is [21];
a recent and in-depth discussion of classic EGO is [16, pp. 90-101].
Whereas classic EGO assumes deterministic simulation aimed at find-

ing the unconstrained global minimum of the objective function, recent
publications extend EGO to random simulation and constrained opti-
mization; see [43] including [25] and also [16, pp. 125-131, 141-153],
[18], [44], and [53].
We limit our survey to classic EGO, which uses the Kriging predictor̂̂y and its classic estimated predictor variance s2(x) defined in Section 2.

This EGO uses the following steps: (i) Find among the n old simulation
outputs yi (i = 1, . . . , n) the minimum, mini yi. (ii) Estimate which x

maximizes ÊI(x), the estimated expected improvement (EI) compared
with mini yi found in Step (i):

max
x

ÊI(x) =
mini yi∫
−∞

[min
i
yi − y(x)]f [y(x)]dy(x) (10)

where f [y(x)] denotes the distribution of the Kriging predictor for x.
EGO assumes that this distribution is Gaussian with mean ̂̂y(x) and
variance s2(x). To find the maximizer of (10), EGO may use either
a space-filling design with candidate points or a global optimizer such
as the genetic algorithm (GA) in [16, p. 78] (a local optimizer is un-

desirable, because ÊI(x) has many local optima; obviously, if x = xi,
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then s2(x) = 0 so ÊI(x) = 0) (iii) Simulate the maximizing combina-
tion found in Step (ii), refit the Kriging model to the old and new I/O
data, and return to Step (i)– unless the stopping criterion is reached;

e.g. maxx ÊI(x) is “close”to zero.
Recently, [30] used the bootstrap estimator s2(̂̂y∗n+1) defined in (9)

to compute the EI in (10), replacing the general distribution f [̂̂y(x)] by
N [̂̂yn+1, s2(̂̂y∗n+1)]. The procedure uses candidate points, not a GA. For
all candidate points the bootstrapped predictions use the same boot-
strapped MLE ψ̂∗, computed from the I/O data (x,y∗).
Recently, [40] extended [30], considering– besides bootstrapped Kriging–

conditional simulation, which gives bootstrapped outputs at old points
that are exactly the same as the observed old outputs. Conditional sim-
ulation is detailed in [8, pp. 478-628]. The experimental results in [40]
compare EGO with classic Kriging, bootstrapped Kriging, or conditional
simulation. These results suggest that simulation analysts might wish to
stick to classic EGO if they accept some possible ineffi ciency and prefer
the simple analytical computations of classic EGO in (10)– compared
with the sampling required by bootstrapped Kriging in (9) or conditional
simulation.

6 Constrained optimization in random simulation

[29] derives a heuristic that is not guided by EGO, but is more related
to classic operations research. This is a heuristic for constrained opti-
mization in random simulation. The heuristic is applied to the academic
(s, S) inventory system in [3] and a more practical call-center simulation
in [22]. These two applications minimize one output (namely, costs),
while satisfying a constraint for another output (service percentage or
fill rate); moreover, the call-center simulation must satisfy a budget con-
straint for the deterministic inputs (namely, resources) which must be
non-negative integers.
These two applications are examples of the general problem in which

the output E(y0|x) is the objective to be minimized through the selec-
tion of x = (x1, ..., xd)

′, while the other (r − 1) outputs must satisfy
prespecified threshold values ch (h = 1, . . . , r−1), and the deterministic
inputs x must satisfy s constraints fg (e.g., budget constraints), and xj
must belong to the set of non-negative integers N:

MinxE(y0|x) (11)

E(yh|x) ≥ ch (h = 1, . . . , r − 1)
fg(x) ≥ cg (g = 1, . . . , s)

xj ∈ N (j = 1, . . . , d).
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To solve (11), [29] combine (i) sequentialized DOE to specify the
next simulation combination (EGO also uses such DOE); (ii) Kriging to
analyze the simulation I/O data (like EGO does); (iii) INLP to estimate
the optimal solution from the explicit Kriging metamodels for E(y0) and
E(yh).
The heuristic has modules that use free off-the-shelf software. These

modules may be replaced as the knowledge in DOE, Kriging, and INLP
evolves. Kriging may be replaced by other types of metamodels; e.g.,
radial basis functions as in [46]. Applications may have continuous in-
puts, so INLP may be replaced by a solver that uses the gradients, for
which Kriging gives estimates “for free”; see [35] and also Section 8. Fu-
ture research may adapt the heuristic for deterministic simulations with
constrained multiple outputs and inputs.
Finally, [29] compares the results of this heuristic with those of the

popular commercial heuristic OptQuest embedded in the Arena discrete-
event simulation software; see [22]. The new heuristic requires fewer
simulated input combinations and better estimated optima.
Here we discuss some salient characteristics of the heuristic. The

heuristic may add a point either to improve the metamodel or to find
the optimum– similar to “exploration”and “exploitation”in EGO and
in several other discrete-event simulation optimization heuristics sur-
veyed in [19]. The global Kriging metamodels should be accurate enough
to enable INLP to identify clearly infeasible points (violating the con-
straints on the random outputs yh) and suboptimal points (generating a
too high goal output y0). The heuristic may add points throughout the
entire input-feasible area: exploration. The global Kriging metamodel
for output h uses all observations for this output, obtained so far. To
guide the INLP search, the heuristic simulates each point with required
relative precision, to be reasonably certain of the objective values and
the possible violation of the constraints; i.e., the heuristic selects the
number of replications mi such that the halfwidth of the 90% CI for
the average simulation output is within 15% of the true mean for all r
outputs; also see [32, pp. 500-503]. The heuristic uses CRN to improve
the estimate of the optimum solution. The heuristic applies Kriging to
the average output per simulated input combination, and does so for
each of the r types of output. The heuristic also uses distribution-free
bootstrapping, combined with cross-validation. This bootstrapping es-
timates the predictor variance for output h at the deleted combination
xi, denoted by ̂var(y∗h(xi)). Actually, this bootstrapping accounts for
multivariate (r-variate) output; CRN (also see [26]), and non-constant
mi This bootstrap and cross-validation give the Studentized prediction
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errors for output h of deleted combination i:

th,imi−1 =
yh(xi)− yh(−xi)√
̂var(yh(xi)) + ̂var(y∗h(xi))

(h = 0, . . . , r − 1) (i = 1, . . . , ncv) (12)

where ̂var(yh(xi)) = ̂var(yh(xi))/mi with ̂var(yh(xi)) =
mi∑
r=1

[yi;h;r −

yh(xi)]
2/(mi − 1). The highest absolute value of the th,imi−1 in (12) over

all r outputs and all ncv cross-validated combinations gives max
∣∣∣th,imi−1

∣∣∣.
Using Bonferroni’s inequality implies that the traditional type-I error
rate α is divided by r × ncv. If max

∣∣∣th,imi−1

∣∣∣ is significant, then all r
Kriging models are rejected; else, the metamodels are used by INLP.

7 Taguchian robust optimization in simulation

In practice, at least some inputs of a given simulation model are un-
certain so it may be wrong to use the optimum solution that is derived
ignoring these uncertainties (as in the two preceding sections). Decision-
making in such an uncertain world may use Taguchi’s approach (see
[52]), originally developed to help Toyota design robust cars; i.e., cars
that perform reasonably well in many different circumstances in real life.
The Taguchian approach differs from robust optimization in mathemat-
ical programming, initiated by Ben-Tal (see [4]); the latter approach is
discussed in a simulation context by [54].
Taguchian robust simulation-optimization is studied in [13], replac-

ing Taguchi’s low-order polynomial metamodels by Kriging metamod-
els; moreover, bootstrapping is applied to quantify the variability in
the estimated Kriging metamodels. Instead of Taguchi’s signal/noise
criterion– the ratio of the mean and the variance of the output– [13]
combines Kriging with nonlinear programming (NLP) (also see Section
6). Changing the threshold values in the NLP model defined below in
(13), enables the estimation of the Pareto frontier. An illustration of the
resulting methodology is a deterministic economic order quantity (EOQ)
inventory simulation with an uncertain input; namely, an uncertain de-
mand rate. This example shows that robust optimization may require
an order quantity that differs from the classic EOQ.
More precisely, Taguchi distinguishes between two types of factors

(inputs, parameters, variables) x: (i) decision (or control) factors d
= (d1, . . . , dk), which managers can control; e.g., in inventory man-
agement, the order quantity is controllable; and (ii) environmental (or
noise) factors e = (e1, . . . , ec), which are beyond management’s control;
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an example is the demand rate in inventory management. (we now use
[13]’s symbols, which are not exactly the same as the symbols in the
preceding sections).
Taguchi’s statistical methods are criticized by many statisticians; see

the panel discussion in [41]. Therefore [13] uses Kriging including LHS.
Kriging is better in computer simulation experiments because the exper-
imental area may be much larger than in Taguchi’s real-life experiments,
so in simulation a low-order polynomial may be a non-valid metamodel.
LHS gives space-filling designs; references and websites for various space-
filling designs are given in [23, pp. 127-130].
Whereas Taguchi focuses on the signal/noise ratio, [13] uses the fol-

lowing NLP model:

MindE(w|d) such that s(w|d) ≤ T (13)

where E(w|d) is the mean of the simulation output w defined by the
distribution function of the environmental variables e; this mean is con-
trolled through the decision factors d; s(w|d)– or briefly sw– is the stan-
dard deviation of the goal output w and should not exceed a given con-
straint value T . Unlike the variance, the standard deviation has the same
scale as the mean. Next, E(w|d) and sw are replaced by their Kriging
approximations. Obviously, the constrained minimization problem (13)
is nonlinear in the decision variables d. Decreasing T in (13) increases
E(w|d) if the constraint with the old T was binding. So, changing T
gives an estimate of the Pareto-optimal effi ciency frontier; i.e., E(w|d)
and sw are criteria requiring a trade-off.
In general, simulation analysts often use LHS to obtain the I/O sim-

ulation data to which Kriging models are fitted. Such LHS is also used
in [13] as part of the following two approaches, especially developed for
robust optimization: (i) Similar to [12], fit two Kriging metamodels;
namely, one model for the mean and one for the standard deviation–
both estimated from the simulation I/O data. (ii) Similar to [33], fit a
single Kriging metamodel to a relatively small number (say) n of com-
binations of d and e; next use this metamodel to compute the Kriging
predictions for the simulation output w for N >> n combinations of d
and e accounting for the distribution of e.
Sub (i): Start with selecting the input combinations for the simula-

tion model through a crossed (combined) design for d and e– as is also
traditional in Taguchian design; i.e., combine the (say) nd combinations
of d with the ne combinations of e (an alternative would be the split-
plot design in [11]). These nd combinations are space-filling. The ne
combinations are sampled from the distribution of e, using LHS for this
(stratified) sampling. The resulting I/O data form an nd × ne matrix,
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enabling estimators of the nd conditional means and variances:

wi =

∑ne
j=1wij

ne
and s2i (w) =

∑ne
j=1(wij − wi)2

ne − 1
(i = 1, . . . , nd). (14)

These two estimators are unbiased, because they do not use any meta-
models.
Sub (ii): Start with selecting a relatively small n (number of input

combinations) using a space-filling design for the k + c factors d and e;
i.e., e is not yet sampled from its distribution. Next, use these n× (k+
c) simulation input data and their corresponding n outputs w to fit a
Kriging metamodel for the output w. Finally, for a much larger design
with N combinations, use a space-filling design for d but use LHS for
e accounting for the distribution of e. Compute the Kriging predictors
ŷ (or ̂̂y in the symbols of Section 2) for the N outputs. Then derive
the conditional means and standard deviations using (14) replacing ne
and nd by Ne and Nd and replacing the simulation output w by the
Kriging predictor ŷ. Use these predictions to fit two Kriging metamodels;
namely, one Kriging model for the mean output and one for the standard
deviation of the output.
Sub (i) and (ii): Combining the two Kriging metamodels (for the

mean and standard deviation of the simulation output) with the NLP
model (13) and varying the threshold T gives the estimated Pareto fron-
tier; this is the “original” frontier, to be distinguished from the boot-
strapped frontier discussed below. The original frontier is built on esti-
mates of the mean and standard deviation of the simulation output. To
quantify the variability in the estimated mean and standard deviation,
apply distribution-free bootstrapping. Moreover, bootstrapping assumes
that the original observations are IID; however, the crossed design for
d and e implies that the nd observations on the output for a given
combination of the c environmental factors e are not independent (this
dependence may be compared with the dependence created by CRN).
Therefore, the nd-dimensional vectors wj (j = 1, . . . , ne) are resampled
ne times with replacement. This resampling gives the ne bootstrapped
observations w∗j . This gives the bootstrapped conditional means wi

∗ and
standard deviations s∗i . To these wi

∗ and s∗i Kriging is applied. These
two Kriging metamodels together with the NLP model (13) give the pre-
dicted optimal bootstrapped mean and standard deviation. Repeating
this bootstrap sampling B times gives CIs. More research is necessary
to discover how exactly to use these CIs to account for management’s
risk attitude.
Future research may address the following issues. Instead of mini-

mizing the mean under a standard-deviation constraint as in (13), we
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may minimize a specific quantile of the simulation output distribution or
minimize the “conditional value at risk” (CVaR). Other risk measures
are the “expected shortfall”, which is popular in the actuarial litera-
ture; see [31]. Furthermore, Kriging may be replaced by “generalized
linear models”(GLM) and NLP by evolutionary algorithms (EAs). The
methodology may also accommodate random simulation models.

8 Convex and monotonic bootstrapped Kriging

The preceding sections showed that simulation-optimization may con-
cern either a single or multiple outputs. In case of a single output, the
analysts often assume a convex I/O function; see [5]. An example is the
newsvendor problem in [50]. In case of multiple outputs, the analysts
may minimize one output while satisfying constraints on the other out-
puts. An example is the call center in Section 6, in which the costs are to
be minimized while the service percentage should be at least 90%. It is
realistic to assume that the mean service percentage is a monotonically
increasing function of the (costly) resources.
A major problem is that simulation models do not have explicit I/O

functions, so all the analysts can do is run the simulation model for
various input combinations and observe the resulting outputs. Next
they may fit a Kriging metamodel to these observed I/O combinations.
This metamodel provides an explicit approximation of the simulation
model’s I/O function
In this section we present both monotonicity-preserving bootstrapped

Kriging metamodels and convexity-improving bootstrapped Kriging meta-
models. Actually, [28] applies monotonicity-preserving bootstrapped
metamodels to single-server simulation models, to improve sensitivity
analysis rather than optimization. And [27] applies convexity-improving
bootstrapped Kriging to various inventory simulation models to find op-
timal solutions. In practice, simulation analysts may indeed know that
the I/O function is monotonic; e.g., as the traffi c rate increases, so does
the mean waiting time; as the order quantity increases, so does the mean
service percentage. We assume random simulation with replications, so
distribution-free bootstrapping can be applied (in deterministic simula-
tion we could apply parametric bootstrapping.
Monotonicity-preserving bootstrapped Kriging
To obtain a monotonic Kriging metamodel, [28] assumes no CRN,

and resamples– with replacement– the mi replicated outputs wi;r (r =
1, ..., mi) for factor combination i (i = 1, ..., n), and fits a Kriging meta-
model to the resulting n bootstrapped averages w∗i (this metamodel uses
θ̂∗). Obviously, this procedure allows variance heterogeneity of the sim-
ulation outputs so mi is not necessarily constant. The fitted Kriging

14



metamodel is accepted only if it is monotonically increasing for all n old
combinations and for a set of (say) nc candidate combinations; the latter
are selected through LHS. Monotonicity implies that the gradients at all
these combinations are positive: ∇y∗i > 0 (i = 1, . . . , n + nc); we use
[28]’s symbol y rather than our symbol ̂̂y defined in Section 2. DACE
provides estimates of all these gradients. This bootstrapped Kriging
metamodel does not interpolate the original average output wi (it does
interpolate w∗i ). This bootstrapping is repeated B times, but the pro-
cedure keeps only the (say) A ≤ B Kriging predictors with ∇y∗i;a > 0
(a = 1, ..., A). For the new input combination xn+1, this gives the
A predictions y∗n+1;a.These y

∗
n+1;a give as the point estimate the sample

median y∗n+1;(d0.50Ae). To obtain a (say) 90% CI, the A accepted pre-
dictions y∗n+1;a are sorted, which gives the order statistics y

∗
(n+1;a); these

order statistics give the lower and upper CI bounds y∗n+1;(b0.05Ac) and
y∗n+1;(d0.95Ae) If this CI turns out to be too wide, then A is increased by
increasing the bootstrap sample size B. CIs in the classic Kriging lit-
erature assume normality of the simulation output and use the variance
estimator for the Kriging predictor that ignores the random character
of the Kriging parameters; see Section 4. An additional advantage of
this bootstrap Kriging is that its CI obviously excludes negative values
if negative values are not observed when running the simulation model.
To illustrate and evaluate this method, [28] uses the popular M/M/1

simulation model. The output is either the mean or the 90% quantile of
the waiting time distribution. [28] assumes that if the analysts require
monotonicity for the simulation model’s I/O function, then they should
obtain so many replications that the n average simulation outputs wi
also show this property: wi > wi−1. For the mean and the 90% quantile
and n = 10 simulated traffi c rates, the CI coverages turn out to be close
to the nominal 90% for monotonic Kriging, whereas classic Kriging gives
coverages far below the desired nominal value; for n = 5 the coverages
of bootstrapped Kriging are still better than classic Kriging, but lower
than the required 90%.
In practice, monotonicity-preserving Kriging implies sensitivity analy-

sis that is better understood and accepted by the clients of the simula-
tion analysts so the decision-makers trust the simulation as a decision
support tool. Furthermore, estimated gradients with correct signs may
improve simulation optimization, but this issue is not explored in [28].
Convexity-improving bootstrapped Kriging
[27].derives a procedure to improve the convexity of Kriging meta-

models. This procedure follows the preceding monotonicity-preserving
procedure. A convex function has a positive semi-definite (PSD) Hessian
(square matrix of second-order partial derivatives). To estimate the
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Hessian, [27] augments the DACE software with some extra program-
ming; an example of the formulas for a Hessian is equation (6) in [27] for
an (s, S) inventory simulation. To illustrate and evaluate this procedure,
[27] use five examples, but here we discuss only the two newsvendor ex-
amples. A newsvendor must decide on the order quantity x to satisfy
random demand D, for which [50] proves convexity. One example as-
sumes that D has a uniform distribution ; the other example assumes a
Gaussian distribution for D. These two examples are not discrete-event
simulations, but they are random simulations. These examples do not
give truly convex classic or bootstrapped Kriging metamodels. There-
fore [27] accepts only those bootstrapped Kriging metamodels that have
at least as many PSD estimated Hessians at the old plus new points,
as the classic Kriging metamodel has. This convexity-improving boot-
strap Kriging gives a CI for both the optimal input combination and the
corresponding output.
For the input x, [27] selects n = 10 values because of the rule-of-

thumb in [34]. To select the specific n values, LHS is used. The number
of replications mi is selected such that with 90% certainty the average
simulation output per input value is within 10% of the true output; this
gives 10 ≤ mi ≤ 110. Because these two examples have a single input,
it is not necessary to estimate the Hessians but it suffi ces to check that
the first-order derivatives increase– from a negative value to a positive
value. The derivatives are checked at 10 old points and at 100 equally
spaced points. This check shows lack of convexity in roughly half of the
old and new points! (A visual check suggests that the averages do not
show convexity; these averages are random.)
We expect that the accepted Kriging metamodels improve simulation-

optimization. There are many simulation—optimization methods, but
[27] applies a simple grid search; i.e., in the area of interest the Krig-
ing predictor is computed at a grid and the combination that gives the
minimum predicted output is selected. So, the A accepted Kriging meta-
models give the estimated optimum outputs (say) y∗a;opt with a = 1, ..., A.
The resulting order statistics y∗(a);opt give both a CI and the median point
estimate. The same grid search can also be applied to the classic Krig-
ing metamodel. Bootstrapped Kriging with its A accepted metamodels
also gives the estimated optimum input combinations. Sorting these es-
timates for the optimal input gives a CI and a median. Furthermore,
there is an estimated optimal input for the classic Kriging metamodel.
[27] conclude that bootstrapping helps find better solutions than classic
Kriging suggests; the CIs for the optimal inputs help select an experi-
mental area for the simulation experiments in the next stage. We point
out that classic Kriging does not provide a CI for the estimated optimal
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input combination; it does provide a CI for the estimated output that
corresponds with this input combination.

9 Conclusions

We surveyed simulation-optimization via Kriging metamodels of either
deterministic or random simulation models. These metamodels may
be analyzed through bootstrapping. The various sections demonstrated
that the bootstrap is a versatile method, but it must be tailored to the
specific problem being analyzed. Distribution-free bootstrapping applies
to random simulation models, which are run several times for the same
scenario. Deterministic simulation models, however, are run only once
for the same scenario, so parametric bootstrapping applies assuming a
Gaussian process (multivariate Gaussian distribution) with parameters
estimated from the simulation I/O data.
More specifically, we focussed on the following topics. (i) EGO in de-

terministic simulation, using Kriging: Either parametric bootstrapping
or conditional simulation gives better estimators of the Kriging predic-
tor’s variance accounting for the randomness resulting from estimating
the Kriging parameters. (ii) Constrained optimization in random simula-
tion: Distribution-free bootstrapping can help validate the Kriging meta-
models, which that are combined with mathematical programming. (iii)
Robust optimization accounting for an uncertain environment: Combin-
ing Kriging metamodels and mathematical programming may result in
a robust solution; the effects of the randomness in the Kriging meta-
models can be analyzed through distribution-free bootstrapping. (iv)
Bootstrapped Kriging either preserving the monotonicity or improving
the convexity of the Kriging metamodel when the simulation model is
assumed to have either a monotonic or a convex I/O function.
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[54] Yanıkoğlu, İ., D. den Hertog, and J.P.C. Kleijnen (2013), Ad-
justable robust parameter design with unknown distributions. Cen-
tER Discussion Paper, 2013-022 (http://arno.uvt.nl/show.cgi?
fid=129316)

[55] Yin, J., S.H. Ng, and K.M. Ng (2009), A study on the effects of pa-
rameter estimation on Kriging model’s prediction error in stochastic
simulations. Proceedings of the 2009 Winter Simulation Conference,
edited by M.D. Rossini, R.R. Hill, B. Johansson, A. Dunkin, and
R.G. Ingalls, pp. 674-685

21

http://www.jstatsoft.org/v51/i01/
http://www.jstatsoft.org/v51/i01/
http://stoprog.org/index.html?SPTutorial/SPTutorial.html
http://stoprog.org/index.html?SPTutorial/SPTutorial.html
http://arno.uvt.nl/show.cgi?fid=129316
http://arno.uvt.nl/show.cgi?fid=129316

	Introduction
	Kriging: basics
	Bootstrapping: basics
	Bootstrapped variance of Kriging predictor
	EGO with bootstrapped variance
	Constrained optimization in random simulation
	Taguchian robust optimization in simulation
	Convex and monotonic bootstrapped Kriging
	Conclusions
	vrknt 2013-064.pdf
	No. 2013-064


