

Tilburg University

Blueprint model and language for engineering cloud applications

Nguyen, D.K.

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Nguyen, D. K. (2013). Blueprint model and language for engineering cloud applications. CentER, Center for
Economic Research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/bafa96f7-885c-4580-8b71-7eb2a7aa6b38

DINH KHOA NGUYEN

Blueprint Model and Language for

Engineering Cloud Applications

Blueprint Model and Language for

Engineering Cloud Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan Tilburg University
op gezag van de rector magnificus, prof. dr. Ph. Eijlander, in
het openbaar te verdedigen ten overstaan van een door het col-
lege voor promoties aangewezen commissie in de aula van de
Universiteit op vrijdag 1 november 2013 om 10.15 uur door

DINH KHOA NGUYEN

geboren op 20 november 1983 te Ho-Chi-Minh-City (Saigon),
Vietnam.

PROMOTIECOMMISSIE:

PROMOTORES: prof. dr. Willem-Jan van den Heuvel
prof. dr. ir. Mike Papazoglou

OVERIGE LEDEN: dr. Patricia Lago
dr. Claus Pahl
dr. Xavier Franch

The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Graduate School for Information and Knowledge Systems (SIKS Disserta-
tion Series No. 2013-31), and CentER, the Graduate School of the Tilburg School of
Economics and Management (TiSEM), Tilburg University.

Copyright c© Dinh Khoa Nguyen, 2013
All rights reserved. No part of this publication may be reproduced, storied in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise without the prior written permission from the
publisher.

To Papa, Mama, and my own little family

CONTENTS

Contents i

List of Tables v

List of Figures vii

Preface xi

1 Introduction 1
1.1 Research Context . 1

1.1.1 Service-oriented Architecture (SOA) and Service-based Applica-
tions (SBA) . 2

1.1.2 Cloud Computing . 4
1.1.3 The Intersection of SOA and Cloud Computing 9

1.2 Motivation . 10
1.3 Problem Definition . 14
1.4 Research Goal and Questions . 15
1.5 Research Methodology . 16
1.6 Contributions . 18
1.7 Assumptions and Limitations . 20
1.8 Thesis Structure . 20

2 State-of-the-art Analysis 23
2.1 Cloud Service Specification Languages . 23

2.1.1 Evaluation Criteria . 24
2.1.2 IaaS Specification Languages . 26
2.1.3 PaaS Specification Languages . 29

i

2.1.4 SaaS Specification Languages . 32
2.1.5 Summary and Evaluation of Existing Cloud Service Specifica-

tion Languages . 39
2.2 Cloud Service Manipulation Techniques 40

3 The Blueprint Approach 43
3.1 Introduction . 44
3.2 Blueprint Structure Definition . 51

3.2.1 Blueprint Elements . 52
3.2.2 Blueprint Dependency Links . 56
3.2.3 Policy Profiles in a Blueprint . 59
3.2.4 Resource Profiles in a Blueprint . 61
3.2.5 Blueprint Classification . 63

3.3 Blueprint Specification Language (BSL) 64
3.4 Blueprint Manipulation Techniques (BMTs) 67
3.5 Blueprint Approach in Support of the CSBA Engineering Lifecycle . . . 69

4 Blueprint Specification Language 73
4.1 Introduction . 74
4.2 The BSL Abstract Syntax Model . 76

4.2.1 The BSL Core Module . 78
4.2.2 The BSL Policy Description Module 83
4.2.3 The BSL Resource Description Module 84
4.2.4 The BSL Interface Description Module 86
4.2.5 The BSL IaaS Module . 89
4.2.6 The BSL PaaS Module . 91
4.2.7 The BSL SaaS Module . 94

4.3 BSL Concrete Syntax in XML . 97
4.4 Formalizing the BSL Semantics . 100

4.4.1 The choice of Web Ontology Language (OWL) for formalizing
the BSL Semantics . 100

4.4.2 BSL-to-OWL Transformation . 101

5 Blueprint Manipulation Techniques 107
5.1 Introduction . 107
5.2 Blueprint Model as the BMT Operand . 111

5.2.1 A Tuple-based Representation of a Blueprint Model 112
5.2.2 Formalizing a Blueprint Model as a RDF Graph 115
5.2.3 Implementation . 117

5.3 BMT Operators . 118
5.4 The Insert Operator . 120

ii

5.4.1 Conceptual Definition . 120
5.4.2 Formalization . 120
5.4.3 Implementation . 121

5.5 The Delete operator . 121
5.5.1 Conceptual Definition . 121
5.5.2 Formalization . 122
5.5.3 Implementation . 123

5.6 The Query Operator . 123
5.6.1 Conceptual Definition . 123
5.6.2 Formalization . 125
5.6.3 Implementation . 126

5.7 The Match Operator . 128
5.7.1 Conceptual Definition . 128

5.7.1.1 Step 1: Attributes Matching 129
5.7.1.2 Restricting the Scope of Attributes Matching 133
5.7.1.3 Step 2: Requirement-Offering Matching 137

5.7.2 Formalization . 139
5.7.3 Implementation . 140

5.8 The Link and Unlink Operators . 141
5.8.1 Conceptual Definition . 141
5.8.2 Formalization . 142
5.8.3 Implementation . 143

5.9 The Resolve Operator . 144
5.9.1 Conceptual Definition . 144
5.9.2 Formalization . 148
5.9.3 Implementation . 149

5.10 Discussion . 151

6 Validation 153
6.1 Technical Feasibility of the Blueprint Approach 154

6.1.1 Underlying Technologies and Tools 154
6.1.2 Architecture . 155
6.1.3 Functionality . 156
6.1.4 Validation Experiment . 157
6.1.5 Findings and Discussion . 157
6.1.6 Summary . 158

6.2 Practical Validity of the Blueprint Approach 159
6.2.1 4caaSt’s Taxi Application Scenario 159
6.2.2 Taxi Application Architecture . 160
6.2.3 Blueprint and Blueprint Resolution 161

iii

6.2.3.1 Blueprint Specification 162
6.2.3.2 Blueprint Resolution . 164

6.2.4 Blueprint Toolset Support . 166
6.2.5 Evaluating the Blueprint Approach within the 4CaaSt Community169
6.2.6 Evaluating the Blueprint Approach in a broader Scope 170

6.2.6.1 Part 1: Understanding the Participant’s Segmentation . 171
6.2.6.2 Part2: Evaluating the Blueprint Approach 173
6.2.6.3 Part 3: Improvement Suggestions 175

7 Conclusions and Future Issues 179
7.1 Research Questions and Answers . 180
7.2 Evaluation . 181
7.3 Future Issues . 184

Appendix A: Acronyms and Glossary 187

Appendix B: Result of the Questionnaire Evaluation 191

Bibliography 197

SIKS Dissertation Series 207

iv

LIST OF TABLES

2.1 Comparative Evaluation of IaaS Specification Languages 30
2.2 Comparison between PaaS Specification Languages 32
2.3 Comparative Evaluation of SaaS Specification Languages 38

3.1 QoS and Resource Specifications for Cloud Services in the Taxi Tilburg
Scenario. 50

5.1 BMT Operators supporting the BMT Techniques. 118
5.2 Attributes Matching between a Requirement e ∈ M and an Offering

e′ ∈ M′ . 130
5.3 Attributes Matching between a simplified requirement e ∈ M and a

simplified offering e′ ∈ M′ . 133

v

vi

LIST OF FIGURES

1.1 Service-based Application composing Software Services 3
1.2 Service Models and Deployment Models in Cloud Computing 6
1.3 SMB Cloud Adoption Study Dec 2010 -Global Report, Edge Strategies,

March 2011 . 7
1.4 Forecast: Global Cloud Public Market Size, 2011 to 2020 8
1.5 Breaking the monolithic SaaS solution stack 11
1.6 Engineering CSBAs using (a) monolithic cloud services vs. (b) Syndi-

cated Multi-channel Cloud Service Delivery Model 12
1.7 CSBA Engineering Lifecycle . 13

3.1 Blueprint Approach - Blueprint Specification Language 44
3.2 Blueprint Approach - Blueprint Manipulation Techniques 45
3.3 Actors and their Cloud Services in the Taxi Tilburg Scenario. 47
3.4 Examples of Blueprints and Blueprint Elements in the Taxi Tilburg Scenario 55
3.5 Examples of Vertical and Horizontal Links in the Taxi Tilburg Scenario . . 58
3.6 Example of Policy Profiles in the Taxi Tilburg Scenario 61
3.7 Examples of Resource Profiles in the Taxi Tilburg Scenario 63
3.8 Examples of Blueprints in the Taxi Tilburg Scenario specified by the BSL . 66
3.9 Examples of using the BMT in the Taxi Tilburg Scenario 68
3.10 Blueprint Language Support for CSBA Engineering Lifecycle 70
3.11 Specifying and Configuring the target blueprint

TaxiOrdering-CSBA-BP . 71

4.1 Overview of BSL components . 75
4.2 Positioning the BSL Model and the instantiated Blueprint Models

within the MOF’s meta-modelling architecture 76
4.3 Overview of the BSL Modules . 77

vii

4.4 The BSL Core Module in UML . 79
4.5 Extending the BSL with the external Metering Schema 81
4.6 Example of a Blueprint specified by the BSL Core Module 82
4.7 The BSL Policy Description Module in UML 83
4.8 Example of a Policy Profile specified by the BSL Policy Description

Module . 84
4.9 The BSL Resource Description Module in UML 85
4.10 Example of a Resource Profile specified by the BSL Resource Descrip-

tion Module . 86
4.11 The BSL Interface Description Module . 88
4.12 The BSL IaaS Module in UML . 89
4.13 Example of an IaaS blueprint specified by the BSL IaaS Module 90
4.14 The BSL PaaS Module in UML . 92
4.15 Example of an PaaS blueprint specified by the BSL PaaS Module 93
4.16 The BSL SaaS Module in UML . 95
4.17 Example of a SaaS blueprint specified by the BSL SaaS Module 96
4.18 The Blueprint XSD Template . 98
4.19 Blueprint Core Ontology . 102
4.20 A Sample OWL Blueprint Model containing the VehicleMgt-BP

blueprint . 104

5.1 BMT Supports for the CSBA Engineering Lifecycle 108
5.2 The BMT Topics in relation with the BSL Topics 109
5.3 A sample Blueprint Model in UML . 111
5.4 Example of formalizing a Blueprint Model M as an RDF Graph G 116
5.5 The Insert Operator . 120
5.6 The Delete Operator . 122
5.7 The Query Operator and its Variants . 124
5.8 Example of using the Query Operator . 125
5.9 The Match operator between a Requirement and an Offering 129
5.10 Examples of Attributes Matching between a simplified Requirement

and a simplified Offering . 136
5.11 Mapping Identification between a Requirement and an Offering 138
5.12 Formalizing a Matching between a Requirement and an Offering as a

set of Graph Morphisms . 139
5.13 Examples of using the Link and Unlink Operators 142
5.14 Formalizing the Link and Unlink Operators 143
5.15 The Resolve Operator . 145
5.16 Example of applying the Resolve Operator 147
5.17 Formalizing the Resolve Operator . 148

viii

6.1 The proof-of-concept prototype for the Blueprint Approach 155
6.2 Architecture Overview of the Taxi Application Prototype 160
6.3 Components of the 4CaaSt Taxi Application Scenario that have been

modeled in the blueprints . 162
6.4 Blueprints of the 4Caast Taxi Application Scenario 163
6.5 Candidate Abstract Resolved Blueprint (ARB) 1 165
6.6 Candidate Abstract Resolved Blueprint (ARB) 2 165
6.7 Architecture of the 4caaSt Blueprint Toolset 166

7.1 Participant’s Information(Results of Question 1,2 and 3) 192
7.2 Evaluating the Blueprint Approach(Results of Question 4 and 5) 193
7.3 Evaluating the Blueprint Approach(Results of Question 6 and 7) 194
7.4 Improvement Suggestions(Results of Question 9 and 10) 195

ix

PREFACE

Writing this page seems harder than I thought because the last five years have been
such an eventful journey that cannot easily be recapped in just two pages. I came to
Tilburg almost five years ago carrying a biggest dream of my life to get a PhD and
now here I am, ready to turn it into reality. Looking back to the whole journey, this
work would not have been possible without the help, support, and encouragement of
a number of people. Below I would like to mention a few who have contributed in
many ways to my success. They truly deserve my sincerest thanks.

I would like to express my first and deepest gratitude to my supervisor and pro-
moter Prof. Willem-Jan van den Heuvel for giving me the chance to commence a PhD
and for supporting me with all his best efforts to finish it. Since the very first days, I
have always been impressed by his speedy working style and his ability to simplify
complex problems. Under his guidance, I have had many opportunities to expand my
knowledge and skills in various areas. I really appreciate that even at the last stage
of my PhD he still offered his overtime in the evening to review the thesis in order to
improve its quality. For all what he has done for me, I could really not imagine to have
a better PhD supervisor than him.

My debt of gratitude must also go to my co-supervisor and co-promoter Prof. Mike
Papazoglou for his patient and supportive guidance during the last five years. Before
coming to Tilburg for a PhD, he was already known to me by his scientific reputation
and that actually was the reason I decided to join this programme. I have to say it
was one of the wisest decisions I have ever made in my life. Working with him has
always been challenging due to his continuous demand of high-quality results. We
had some really tough times discussing the thesis progress - at some points I even lost
my confidence - but his steady encouragements always convinced me that it was all
for my own good.

My special thanks go to dr. Patricia Lago (Vrije Universiteit Amsterdam), dr. Claus
Pahl (Dublin City University), and dr. Xavier Franch (Universitat Politècnica de
Catalunya), for their willingness to serve as members of my PhD committee and for
their valuable feedbacks that have greatly improved my thesis.

xi

I feel indebted to dr. Francesco Lelli due to his enormous contribution to the work
presented in this thesis. Three years ago, we started working together on the very first
grounding of my thesis topic. Since then, Francesco has always been a helpful daily
supervisor who has guided me into the right direction. More than just a colleague, I
consider him now as a friend from whom I have learned a lot. My sincere acknowledg-
ment also goes to Alice Kloosterhuis and Mieke Smulders for their excellent support
during my time in the department. They have not only helped me in administration
issues but also provided valuable advices for my life in the Netherlands.

There have been many colleagues/friends in Tilburg to whom I still owe many
thanks for providing me a friendly environment during my PhD life. Allow me to
split the crew into two generations. Vasilios, Michael, Michele, Oktay, Willem, Cristina
(the pre-marriage group): thank you for all the good (and crazy) time in Tilburg. You
know what? Talking about you just reminds me of the night-outs in Kandindsky.
Francesco, Yehia, Rafique, Yan, Amal, Jeewanie, Maiara, Juan, Yunwei, Sara (the post-
marriage group): thank you for all the great time dining together in All-you-can-eat
Sushi restaurants. I am pretty sure that no matter how apart we’ll be in the future, one
day we’ll find ourselves together in a restaurant again.

I really had a great time with the Vietnamese community in Tilburg. Although we
were just a small group, we really had some unforgettable memories (I guess the most
crazy moments were my 26th and 27th birthday parties). To name a few people: Binh,
Dung, Mai, anh Hai, Van, Thao, Thanh, My, Bibi, Ken, Xuan Chubby, Son, Phu, Ngoc,
Giang, chi Hang, Ngoc, Hai Anh, chi Hanh, chi Hanh (2), Tuan, Phuong, Trung, Tan,
Tu. Thank you all for sharing a great time with me in Tilburg.

My family has always played an important role during my PhD journey. Words
are not enough to express my thanks to them for loving me, having faith in me, and
standing by me throughout all the hardest times. Foremost, my beloved parents, Vu
and Lien, have always had a great impact on my career life. Seeing me become a Dr.
has always been their uttermost desire and I am so glad that I have finally fulfilled it.
My dear sister Lien Chi deserves also a special line here as I have always been grateful
to have such a wonderful sister.

Last but not least, there were two precious gifts that I have received during my PhD
journey. In early 2012, Khanh Chi decided to become an integral part of my life and
since then we have shared all the joyfulness and burdens. Without her sacrifice in
the last period, I would not have been able to write a single line for this thesis. Our
little princess, Khanh Thy, came into the world recently in June 2013. I believe that her
spiritual support was the key success factor in the last stage of my PhD. Hence, this
work is dedicated to her.

Dinh Khoa Nguyen
Tilburg, September 23th, 2013, 03:00 am.

xii

CHAPTER 1

INTRODUCTION

The research presented in this thesis is positioned within the domain of engineering
cloud applications. Its contribution is twofold: (1) a uniform specification language,
called the Blueprint Specification Language, for specifying cloud services across several
cloud vendors and (2) a set of associated techniques, called the Blueprint Manipulation
Techniques, for publishing, querying, and composing cloud service specifications with
aim to support the flexible design and configuration of a cloud application.

This chapter presents an overview of the thesis. Firstly, Section 1.1 introduces the
research context in which the thesis is positioned: the intersection of the two research
domains Service-oriented Architecture (SOA) and Cloud Computing. Within this con-
text, the motivation of our research is presented in Section 1.2. Then, we identify the
main problem definition in our motivation in Section 1.3. Section 1.4 addresses the prob-
lem definition with a concrete research goal, which is then decomposed into a number
of distinctive research questions. In the next Section 1.5, we explain the research method-
ology that has been adopted from existing literature in design science to conduct this
thesis in a systematic way. The contributions of the thesis are introduced in Section 1.6.
We will also explain how our contributions solve the research questions. Limitations
of our contributions are explained in Section 1.7. Finally the structure of the thesis is
introduced in Section 1.8 that aims to provide the readers a clear reading path.

1.1 Research Context

The context of this research is at the intersection of Service-oriented Architecture
(SOA) and Cloud Computing. In Section 1.1.1, we review the concept of a software
service, the principles of a SOA, and how software services can be composed to build

1

a Service-based Application (SBA) following the SOA principles. Then, Section 1.1.2
gives an overview of Cloud Computing. Finally, the intersection of SOA and Cloud
Computing is explained in Section 1.1.3, which introduces the context of this thesis.

1.1.1 Service-oriented Architecture (SOA) and Service-based Appli-
cations (SBA)

Many experts see the explosive growth in services as the next major revolution in
the world economy. 93% of the new jobs created in the U.S. between 1970 and 2000
were jobs in services [van den Heuvel, 2009]. Leading enterprises in the U.S. de-
rived more than 50% of their revenues from services [Allmendinger & Lombreglia,].
In Europe, according to a statistical analysis of international trade in ser-
vices [European Commision, 2009], the EU is the largest importer and exporter of ser-
vices, followed by the USA, Japan and China. The term services used here covers in-
terdisciplinary economic activities that create business value for an enterprise. There
exist many definitions of a service in the literature, e.g., a service is “a time-perishable,
intangible experience performed by a service provider for a customer acting in the role
of a co-producer” [Fitzsimmons & Fitzsimmons, 2004], or a service is “an application
of specialized competences (knowledge and skills) for the benefit of another entity,
rather than the production of units of output [Lusch et al., 2008]. Services, on the one
hand, can be understood from the business perspective as business services, which are
business-oriented building blocks of an enterprise that collectively constitute key end-
to-end business processes in a domain. On the other hand, services can be supported
or enabled by software services.

Stemming from the distributed enterprise computing, Service-Oriented Comput-
ing (SOC) [Papazoglou, 2003] has emerged as a computing paradigm that utilizes soft-
ware services as constructs to support the rapid, low-cost and easy composition of dis-
tributed applications. Building an IT system following the SOC paradigm results in a
Service-Oriented Architecture (SOA) system, which is a logical structure of loosely
coupled and interoperable software services that can be easily shared within and be-
tween enterprises, via published and discoverable interfaces [Papazoglou, 2007]. The
SOA is an architecture style has many advantages over the other styles in terms of
flexibility and interoperability. Software services in a SOA system are well-defined, self-
contained, and context-independent software modules that can be widely reused in
different contexts. The loosely coupled principle of the SOA style delivers the flexibil-
ity in building business applications, since these applications can be easily redesigned
and reengineered whenever new business demands arise by recomposing the under-
lying software services. Interoperability in SOA can be achieved by adopting common
standards for implementing SOA. The most typical way to develop a SOA system is
with web service technologies that are based on the WS-* stack of standards for de-

2

Figure 1.1: Service-based Application composing Software Services

Internal Software

Services

External Software Services

Si

S1 S2

S3

S4

S6

S5

Service-based

Application (SBA)

Sj

Sn

Su

Sp

Sm

Sv

St

So

Sk

Legend

Sk Software Service

S1 Logical Service

Software Service

Selection and Binding

Sp
Sp

scribing, publishing, composing, securing, invoking, transacting and managing soft-
ware services, e.g. with WSDL, SOAP, WS-BPEL, WS-Policy, etc.

Software services in a SOA system can be composed into a Service-based applica-
tion (SBA) as defined in Definition 1.1.

Definition 1.1 (Service-based Application (SBA)) [Andrikopoulos et al., 2008] A
Service-Based Application (SBA) is composed by a number of possibly independent
services, available in a network, which perform the desired functionalities of the ar-
chitecture. Such services could be provided by third parties, not necessarily by the
owner of the service-based application. Note that a service-based application shows a
profound difference with respect to a component-based application: while the owner of
the component-based application also owns and controls its components, the owner of a
service-based application does not own, in general, the component services, nor it can
control their execution.

Typically, an SBA is designed to support an end-to-end business process. Fig-
ure 1.1illustrates the idea of composing software services into a process-based SBA to
support (parts of) an end-to-end business process. Each step of the SBA is designed as
a Logical Service that captures the required functionality and non-functional properties
(such as QoS properties). A logical service can be realized by an internal or exter-
nal Software Service. Internal software services are typically implemented in-house,
hosted on-premise, and can be shared across different units. In contrast, the idea
of reusing external, third-party software services aims to incorporate a large variety
of non-competent functionalities in an SBA. The SOA principles promote the flexible

3

(re-)design of SBAs as it allows SBA engineers, depending on their current business
demands, to pick and choose appropriate software services to implement the logical
services. To be noticed, an SBA, as depicted in Figure 1.1, can be considered as a com-
posite software service that may be reused in another SBA composition. Hence, the
two terms “SBA” and “composite software service” are sometimes used interchange-
ably.

Despite all the advantages of building SBAs following the SOA principles, a serious
limitation is that SOA development does not make any assumptions regarding the
deployment and provisioning of the constituting software services of an SBA. An SBA
engineer typically leaves it up to the discretion of the developers (in case of an in-
house software service) and external providers (in case of reusing an external software
service) to choose the deployment environment. Hence, constituting software services
of an SBA are usually delivered as monolithic, “one-size-fits-all” blocks, since once the
software service is deployed, it is bound to a proprietary platform and infrastructure
and thus difficult to be customized and extended. Furthermore, SOA development
tends to follow a “big design upfront” philosophy where it is believed that all the
consumers’ requirements, e.g. regarding the performance and resource consumption,
have been gathered prior to implementing and deploying a software service. This
leads to the situation where resources for provisioning a software service are usually
consumed more than actually needed, yet the software services still cannot cope with
unexpected performance loads during peak periods, e.g. when an order processing
service is overloaded during busy shopping periods or when a telecom service has to
accommodate an extremely large amount of SMS communication at the new year’s
eve.

To address this serious shortcoming, enterprises are progressively adopting cloud
computing1, which aims to provide an economy of scale of a shared infrastructure
resource as well as a flexible pay-per-use service delivery and deployment models. In
the next Section 1.1.2 we will discuss the topic of cloud computing and the service
delivery models in the cloud.

1.1.2 Cloud Computing

Recently, the field of Cloud Computing, where computational, infrastructure and
data resources are available on-demand from a remote source, has become an emerg-
ing research topic in response to the shift from product-oriented economy to service-
oriented economy and the move from focusing on software/system development to
addressing business-IT alignment. One of the reasons for its popularity is because
cloud computing gives the option to outsource the operation and maintenance of IT

1Gartner Inc (http://www.gartner.com), a world’s leading IT research and advisory company,
has predicted that Cloud Computing will be an integral part of an IT system in 2013

4

http://www.gartner.com

tasks, allowing organizations and their employees to concentrate on their core com-
petencies. This, together with pay-as-you-go billing that reduces the need for capital
expenditure on equipment, means that with cloud computing, software services can
be easily designed and tailored to a variety of business’s individual requirements.

The US National Institute of Standards and Technology (NIST) defines cloud com-
puting as “a consumption and on-demand delivery computing paradigm that enables
convenient network access to a shared pool of configurable and often virtualized com-
puting resources (e.g., networks, servers, storage, middleware and applications as ser-
vices) that can be rapidly provisioned and released with minimal management effort
or service provider interaction” [Mell & Grance, 2009] . From this definition, they also
explain the five key characteristics of cloud computing:

1. On-demand self-service: virtualized cloud computing resources are delivered as
on-demand services and users can access and manage the resources themselves.

2. Ubiquitous Network Access: Cloud computing resources should be accessible
from various locations.

3. Location-independent Resource Pooling: Resources in cloud computing, pro-
vided by various vendors, should be gathered into a shared, virtualized pool.
Users from any location should be able to access these resources.

4. Rapid Elasticity and Provisioning: Cloud Computing resources are elastic and
thus can be rapidly provisioned to the users according to their demands.

5. Pay-per-used measured services: Cloud Computing resources are provided as
services to the users and the users only have to pay for what they have used.

Figure 1.2 presents the four deployment models and three service models in cloud
computing defined by NIST [Mell & Grance, 2009]. The following four deployment
models reflect the four different scenarios of how the cloud is deployed, used and
managed [Mell & Grance, 2009] [Armbrust et al., 2009] [Papazoglou, 2012]:

• Private cloud: The cloud solutions are developed and provisioned “on-premise”
for exclusive use by a single organization.

• Community cloud. The cloud solutions are developed and provisioned for ex-
clusive use by a specific community of organizations that have shared concerns
(e.g., mission, security requirements, policy, and compliance considerations).

• Public cloud. The cloud solutions are developed and provisioned for open use
by the general public.

• Hybrid cloud. The cloud solutions are integrated and federated solutions across
both public and private clouds.

5

Figure 1.2: Service Models and Deployment Models in Cloud Com-
puting

Cloud
Service

Models
(Provided by

Cloud

Providers)

Cloud Deployment Models

Infrastructure as a Service (IaaS)
• Virtualized servers,

• Storage,

• Networking

Platform as a Service (PaaS)
• Middleware – application servers,

• Process automation middleware,

• Database servers,

• Enterprise portal servers, etc.

Software as a Service (SaaS)
• Applications (ERP, SCM, CRM)

• Processes

• Information

Public Private Hybrid

Cloud
Applications

(Built by
customer)

Community

Furthermore, cloud computing is typically divided into three models of delivering
services: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastruc-
ture as a Service (IaaS), as shown in Figure 1.2. These three models are usually
referred to as the three cloud service layers of the cloud computing stack. Cloud
services on each layer not only encapsulate the virtualisation, management, and
provisioning of resources on that layer, but also define the development models
for building cloud applications. In the following, each cloud service layer is ex-
plained [Taher et al., 2011][Mell & Grance, 2009] [Armbrust et al., 2009] [Papazoglou, 2012]:

• Infrastructure as a Service (IaaS): is the delivery of hardware (server, storage and
network), and associated software (operating systems virtualisation technology,
file system), as a service. It is an evolution of traditional hosting that does not
require any long-term commitment and allows users to consume resources on-
demand. IaaS incorporates the capability to abstract resources as well as deliver
physical and logical connectivity to those resources and provides a set of APIs,
which allow interaction with the infrastructure by consumers. Amazon Web
Services Elastic Compute Cloud (EC2) and Secure Storage Service (S3) are ex-
amples of IaaS offerings. Rackspace’s Mosso, GoGrid’s ServePath, and flexiscale
are other sample IaaS offerings

6

Figure 1.3: SMB Cloud Adoption Study Dec 2010 -Global Report,
Edge Strategies, March 2011

Source: SMB Cloud Adoption Study Dec 2010 -Global Report, Edge Strategies, March 2011

• Platform as a Service (PaaS): is an application development and deployment
platform delivered as a service to developers over the Web. PaaS facilitates de-
velopment and deployment of applications for the application developers. A
PaaS offer comprises infrastructure software, and typically includes a database,
middleware and development tools for delivering Web applications and services
through the Internet. Consumers can create applications by, for instance, making
use of commercial PaaS solutions such as the Salesforce’s Force.com, Google’s
App Engine, or Microsoft’s Azure. The consumer’s application, however, usu-
ally cannot access the infrastructure enabling the PaaS.

• Software-as-a-Service (SaaS): is an “on-demand” application delivery model
over the Internet built upon the PaaS and IaaS stacks. Upon user request, a
SaaS provides the entire software application including its content, presentation,
application logic, and management capabilities. The SaaS consumers can only
access the exposed functions of the application. A typical example is SalesForce
that offers CRM applications accessible by subscription over the Web. How-
ever, contemporary SaaS solutions provide only integrated functionalities built
directly into the offering with no option for consumers to extend or modify them.

Cloud computing is transforming the way applications are built and provisioned to

7

Figure 1.4: Forecast: Global Cloud Public Market Size, 2011 to 2020 -
Source: [Forrester Research Inc, 2011]

the end-users. Nowadays, a number of cloud services provided in the market has in-
troduced new possibilities for outsourcing the development, hosting and maintenance
of applications. For instance, apart from the option of being developed and hosted on-
premise, a Customer Relationship Management (CRM) application can reuse some
CRM functionalities provided as SaaSs by SalesForce, or it can be developed and de-
ployed on pre-configured PaaS solutions such as Google App Engine or Microsoft
Azures. In a study of cloud service adoption in 2010 [Kazarian & Hanlon, 2010], 74%
of the Small-and-Medium Businesses (SMBs) were planning to use at least an external
cloud service within the next three years, i.e. until 2013, and 39% are willing to pay for
cloud services. Figure 1.3 presents the result of this study by Edge Strategies. Another
interesting issue in this study is that for both unpaid and commercial cloud services,
the number of SMBs that are willing to adopt cloud services will increase a lot in 2013.

Another interesting market research for cloud service adoption has been conducted
by Forrester Research in [Forrester Research Inc, 2011]. Figure 1.4 presents the out-
come of this research that indicates the global public market size of each type of cloud

8

services. Looking at the result, we see that from the years 2012-2013 onwards, the
market size of PaaS and IaaS solutions will remain stable, whilst the market size of
SaaS solutions will increase dramatically. The stability of PaaS/IaaS market can be ex-
plained by the dominant role of big players like Amazon, Google, VMWare, GoGrid,
etc. Nowadays, PaaS/IaaS consumers always think of these vendors when they need
PaaS/IaaS solutions for deploying and provisioning their applications.

Given the stability of the PaaS/IaaS market size in the next 5 to 7 years, SaaS
providers do not have to worry about the hosting and maintenance of their SaaS appli-
cations, and thus can concentrate on their core competence of developing good SaaS
functionalities. By taking into account the SOA principles of reusing and composing
SaaSs, existing SaaS providers will continuously expand their solution space whilst
newcomers will always discover good opportunities in the SaaS business. Hence, it is
understandable that the SaaS market size is predicted to expand dramatically.

It is interesting to see the appearance of a new concept “Business Process as a service
(BPaaS)” as another cloud service delivery model available on the cloud market from
2014. The term BPaaS is used for a cloud ecosystem putting focus on its enterprise-
specific services. A BPaaS offers a unique end-to-end business process that is usually
syndicated with other external services (possibly provided by diverse SaaS providers
in the cloud) [Papazoglou & van den Heuvel, 2011].

1.1.3 The Intersection of SOA and Cloud Computing

Whilst SOA is an architectural style for building SBAs based on the reuse and com-
position of loosely coupled software services [Papazoglou, 2007], “the cloud serves
as a good way to deploy services in an SOA environment” [Krill, 2009]. It has been
agreed among several practitioners that although SOA and Cloud are highly comple-
mentary, there is one fundamental difference in their definitions: ”Cloud computing
is a deployment architecture, not an architectural approach for how [to] architect your
enterprise IT [as SOA is]” [Krill, 2009].

Cloud services are the logical extension of software services in a SOA system in
that they do not only cater for selectively composing SBAs using discrete SaaSs, but
also enable the SBA engineer to find appropriate underlying PaaSs and/or IaaSs as
the deployment environments for the SaaSs. In the era of SOA without the cloud,
the reuse and composition of software services for a SOA system typically remained
within an organization’s boundary, and the software services were typically deployed
and managed on an in-house proprietary platform and infrastructure.

With the stability of the PaaS/IaaS market and the dramatic expansion of the SaaS
market, Figure 1.4 shows that in the near future an SBA engineer will be able to lever-
age the growth of the cloud service market in general and the SaaS market in particular
to build a tailored SBA solution. The intersection of SOA (as an IT architecture style)

9

and Cloud Computing (as a deployment architecture) signifies a novel approach for
engineering SBAs that supports the reuse and composition of heterogeneous cloud
services offered by various cloud vendors. Following this approach, an SBA engineer
is able to pick and choose freely among a pool of cloud services, irrespective of their
delivery models. For instance, an SBA engineer may want to integrate a new SaaS
into his SBA or to find an appropriate PaaS/IaaS to deploy a SaaS. He will be able
to take advantage of the different functionalities and non-functional properties (e.g.
performance, reliability and cost) of alternative cloud services to build a tailored SBA
solution that meets his specific business requirements.

SBAs that are developed by reusing and composing cloud services across all three
layers of the cloud stack are called Cloud Service-based Applications. Definition 1.2
gives the formal definition of an CSBA. The research in this thesis is positioned in the
domain of engineering CSBAs.

Definition 1.2 (Cloud Service-based Application (CSBA)) A Cloud Service-based
Application is a type of SBA (see Definition 1.1) that is developed by reusing and compos-
ing cloud services across all three layers of the cloud stack, i.e. SaaS, PaaS, and IaaS.

1.2 Motivation

Engineering an CSBA comprises of the tasks of selecting and composing discrete
SaaSs as well as choosing appropriate PaaSs/IaaSs for their deployment environ-
ments. However, one of the limitations of the contemporary SaaS solutions in the
market is that they are usually delivered as monolithic, one-size-fits-all solution stacks
that are predominantly tethered to the proprietary platforms and infrastructure of a
cloud vendor. The customers of a monolithic SaaS usually cannot access its enabling
platform/infrastructure to make some changes in its deployment environment. As a
result, monolithic SaaS offerings are more likely to show failure in meeting the require-
ments of different consumers and usually lead to a vendor lock-in situation. The ven-
dor lock-in situation is understood as the tremendous efforts required to customize,
extend and integrate the SaaSs across different providers. For instance, existing SaaSs
from providers like SalesForce2, Google3 or SaaSDirectory4 are virtually not customiz-
able, extendable or interoperable. There have been some initiatives in bringing SaaS
offerings from different providers into a joint solution, e.g., the Appirio CloudFactor5

combines the SalesForce’s CRM SaaS offerings with the Google Apps’ SaaS offerings.

2SalesForce CRM: http://www.salesforce.com
3Google App for Business: http://www.google.com/apps/intl/en/business/index.html
4HRM SaaS Applications: http://www.saasdir.com/category/humanResources.aspx
5Appirio CloudFactor: http://www.cloudfactorapp.com/

10

Figure 1.5: Breaking the monolithic SaaS solution stack

However, we observe the lack of a generic vendor-indepenedent approach for inte-
grating SaaS offerings across multiple providers.

Breaking down the monolithic SaaS offerings

Engineering CSBAs using only monolithic SaaSs has the limitation that the CSBA
engineers are locked into a predefined set of SaaS functionalities with little or no room
for customization and extension. We see a need to break down the monolithic SaaS of-
ferings into cloud services across three layers of the cloud stack to enable the platform-
and infrastructure-agnostic engineering of CSBAs. This approach will allow CSBA en-
gineers to freely use a variety of cloud services on all three layers, i.e. SaaS, PaaS, and
IaaS, to build a tailored CSBA solution.

The idea of breaking down the monolithic SaaS offerings is illustrated in Figure 1.5.
It aims to provide a more flexible method for CSBA engineers to select, customize and
integrate cloud services. This approach allows for the tailoring of CSBAs to specific
business needs using a mixture of alternative SaaS, PaaSs and IaaSs. On the one hand,
CSBA engineers can easily couple their CBSAs in whole or part with external SaaSs.
On the other hand, they also have the flexible choice of platform and infrastructure
options to deploy the SaaSs.

Figure 1.6(b) introduces an approach proposed
in [Papazoglou & van den Heuvel, 2011] that leverages the idea of breaking down
the monolithic SaaS stacks and subsequently proposes a “syndicated multi-channel
cloud service delivery model” for engineering CSBAs. This approach is compared
with the current cloud application engineering approaches using the monolithic
cloud services in Figure 1.6(a). It is shown that current monolithic cloud services
permeate the cloud today by enforcing one-way vertical deployment “channels” for
engineering cloud applications. This is in contrast with the “syndicated multi-channel
cloud service delivery model” approach in Figure 1.6(b) that allows an CSBA to be
constructed through several alternative “channels” of vertical and horizontal cloud
service compositions.

11

Figure 1.6: Engineering CSBAs using (a) monolithic cloud services
vs. (b) Syndicated Multi-channel Cloud Service Delivery
Model

Cloud Service-

based Application

(CSBA)

Cloud Service-based

Application (CSBA)

S1 S2

S3

S4

S6

S5

Cloud Service-based

Application (CSBA)

Software as a Service (SaaS)

· Applications (ERP, SCM, CRM)

· Processes

· Information

Platform as a Service (PaaS)

· Middleware and Application Server

· Process Automation Middleware

· Database Server

· Enterprise Service Bus

Infrastructure as a Service (IaaS)

· Virtualized Servers

· Storage

· Virtual Network

Cloud Applications (built by Clients)

SaaS-1

PaaS-1

IaaS-1

SaaS-2 SaaS-3 SaaS-n

PaaS-2 PaaS-3 PaaS-n

IaaS-2 IaaS-3 IaaS-n

…..

…..

…..

Horizontal

cross-SaaS

composition

Horizontal

cross-PaaS

composition

Horizontal

cross-IaaS

composition

Vertical

SaaS-PaaS

composition

Vertical

PaaS-IaaS

composition

(a) Monolithic Cloud Service Delivery Model (b) Syndicated Multi-channel Cloud Service Delivery Model

The syndicated multi-channel cloud service delivery model supports the engineer-
ing of an CSBA using different alternative SaaSs. At the same time, it allows multiple
(and possibly composed) PaaS/IaaS deployment options for a given SaaS. Traceability
is also well-supported between CBSA-layer design decisions and the configuration of
the underpinning SaaSs, PaaSs, and IaaSs.

An CSBA Engineering Lifecycle

Based on the syndicated multi-channel cloud service delivery model, the authors
in [Papazoglou & van den Heuvel, 2011] has proposed a lifecycle for engineering CS-
BAs. Figure 1.7 illustrates an excerpt of this lifecycle focusing on the design and con-
figuration of an CSBA. There are three actors in the lifecycle, which will be introduced
in the following:

• Marketplace: stores and manages the cloud service specifications in its cloud
service repository. It also enables the publishing and querying for cloud ser-
vice specifications. Some marketplaces support also the procedures of pur-
chasing and contracting cloud services between the provider and the con-
sumer, e.g. the SAP Service Marketplace [SAP A.G., 2011] or the 4caaSt mar-
ketplace [Gómez et al., 2011].

• Cloud Service Providers: specify their cloud services using a uniform cloud service
specification language. Then, they can use a cloud service manipulation technique to
publish the cloud service specifications to a marketplace.

12

Figure 1.7: CSBA Engineering Lifecycle as proposed
in [Papazoglou & van den Heuvel, 2011]

Provider A

Cloud Service

Specification Marketplace

Cloud Service

Repository

Cloud Service

Specification

Cloud Service

Specification

Cloud Service A

Provider B

Cloud Service B

Provider C

Cloud Service C

CSBA Engineer

<<SaaS Blueprint>>

CSBA-1

meta-data

<<SaaS Blueprint>>

CSBA-2

meta-data

<<SaaS Blueprint>>

CSBA-3

meta-data

<<SaaS Blueprint>>

SaaS-1

meta-data

<<SaaS Blueprint>>

SaaS-2

meta-data

<<SaaS Blueprint>>

SaaS-3

meta-data

<<SaaS Blueprint>>

SaaS-4

meta-data

<<PaaS Blueprint>>

PaaS-1

meta-data

<<PaaS Blueprint>>

PaaS-2

meta-data

<<PaaS Blueprint>>

PaaS-3

meta-data

<<IaaS Blueprint>>

IaaS-1

meta-data

<<IaaS Blueprint>>

IaaS-2

meta-data

CSBA-1 Configuration B

Meta-data Link

alternative (xor)

CSBA-1

Configuration

A

alternative (xor)

Multiple alternative CSBA

configurations

Cloud Service

Specification

Cloud Service

Specification

Cloud Service

Specification
….. CSBA

Specification

S1 S2

S3

S4

S6

S5

Cloud Service-based

Application (CSBA)

CSBA Design

<<SaaS Blueprint>>

CSBA-1

meta-data

<<SaaS Blueprint>>

SaaS-1

meta-data

<<SaaS Blueprint>>

SaaS-2

meta-data

<<PaaS Blueprint>>

PaaS-1

meta-data

<<PaaS Blueprint>>

PaaS-2

meta-data

<<IaaS Blueprint>>

IaaS-1

meta-data

<<IaaS Blueprint>>

IaaS-2

meta-data

CSBA-1 Configuration B

alternative (xor)

A selected CSBA

configuration

Cloud Resources

CSBA Engineer

Select an

CSBA

configuration

Deploy the

CSBA

<<Cloud Service

Specification

Language>>

<<Cloud Service

Manipulation

Techniques>>

- Publish

<<Cloud Service

Manipulation

Techniques>>

- Query

<<Cloud Service

Manipulation Techniques>>

- Compose

<<Cloud Service

Specification

Language>>

<<Cloud Service

Specification

Language>>

<<Cloud Service

Specification

Language>>

• CSBA Engineers: Since an CSBA can be considered as a composite SaaS, an CSBA
engineer can use the cloud service specification language to specify his CSBA as a
cloud service specification. Then, by using the cloud service manipulation tech-
niques, he can query the marketplace to retrieve the cloud service specifications
required by his CSBA. The cloud service manipulation techniques also support the
CSBA engineer with the composition of the cloud service specifications. Com-
posing cloud service specifications results in several alternative CSBA configu-
rations. Definition 1.3 defines an CSBA configuration as a composition of all the
cloud service specifications required for configuring the deployment environ-
ment of the CSBA. Then, an optimum CSBA configuration is selected based on
predefined criteria, e.g. licensing or cost. Finally, the selected CSBA configura-
tion serves as a deployment manifest for configuring the deployment environ-
ment for the CSBA.

Definition 1.3 (CSBA Configuration) An CSBA configuration is a composition of all
the cloud service specifications required for configuring the deployment environment of an
CSBA.

13

The design and configuration of CSBAs in this lifecycle emphasizes the need of a
uniform cloud service specification language across all three layers of the cloud stack, so
that cloud service specifications created by various providers can be seamlessly as-
sembled into a complete CSBA configuration. Since an CSBA can be considered as a
composite SaaS, the cloud service specification language should also support the specifi-
cation of an CSBA. Furthermore, as cloud services and CSBA could be specified in a
uniform way, the lifecyle also signifies the need for a set of cloud service manipulation
techniques that support the publishing, querying, and composing cloud service speci-
fications with aim to configure an CSBA.

The research in this thesis is based on the CSBA engineering lifecycle proposed
in [Papazoglou & van den Heuvel, 2011] with the focus on the design and configura-
tion phase of an CSBA. It has been motivated by the need of a uniform cloud service
specification language and a set of cloud service manipulation techniques.

1.3 Problem Definition

Most of the existing languages for specifying cloud services concentrate only on the
IaaS layer, the Open Virtual Format (OVF) is a standard for specifying the packag-
ing and distribution information of an IaaS [DMTF, b], and the Open Cloud Com-
puting Interface (OCCI) is a standard for specifying the management API of an
IaaS [OCCI-Working Group, 2011]. On the PaaS layer, there are only a few propri-
etary specification languages based on an ad-hoc XML definition supported by the
commercial cloud vendors , e.g. the AmazonBeanstalk provided by Amazon for the
Amazon WS, an ad-hoc XML format provided by Microsoft for the Microsft Azure,
etc. On the SaaS layers, apart from the existing well-known languages for specify-
ing Web Services, i.e. the WS-* stack, some initiatives have been proposed to support
the automatic deployment and provisioning of SaaS applications, e.g. the Cafe tem-
plate [Mietzner et al., 2009] or the OASIS’s Topology and Orchestration Specification
for Cloud Applications (TOSCA) [OASIS, 2013]. As a summary, we observe that existing
languages for specifying cloud services are restricted for one particular layer of the cloud stack.

Another shortcoming of the existing cloud service specification languages is that
they aim to support only the specification of some particular aspects of a cloud ser-
vice. For instance on the PaaS/IaaS layer, they mostly capture only the technical de-
tails of a PaaS/IaaS to support its automatic deployment and provisioning. On the
SaaS layer, except some new initiatives like TOSCA [OASIS, 2013] that also aim to
support the automatic deployment and provisioning of a SaaS, the other specification
languages mostly target the operational and performance description for the SaaS con-
sumers. Furthermore, existing cloud service specification languages do not aim to assist the
CSBA engineer with techniques to publish, query, and compose cloud service specifications
across several vendors. Although there already exists a number of data manipulation

14

techniques, e.g. XQuery [W3C, 2013] and XPath [W3C, 1999a] for querying and ma-
nipulating XML data, SQL for querying and manipulating data stored in a database,
SPARQL [W3C, 2008] and SPARQL-Update [W3C, 2012] for querying and manipu-
lating data in an OWL data model, etc., there has not been any data manipulation
technique that targets the CSBA configuration using cloud service specifications, to
the best of our knowledge.

Problem Definition:

• There is a lack of a uniform specification language for cloud services across
all three layers of the cloud stack.

• There is a lack of techniques for publishing, querying, and composing cloud
service specifications with aim to support the configuration of an CSBA.

In the next section, the problem definition will be tackled by a concrete research
goal, which will then be decomposed into number of research questions.

1.4 Research Goal and Questions

To tackle the problem definition presented in the previous Section 1.3, we present in
the following the research goal of this thesis

The Research Goal of this thesis is twofold:

• G1: To develop a uniform specification language for cloud services across
three layers of the cloud stack.

• G2: To develop techniques associated with the cloud service specification lan-
guage to support the publishing, querying, and composition of cloud service
specifications.

Our research goal will be further scrutinized through a number of discrete research
questions that initially led the way how the research in this thesis has been conducted:

15

Research Questions:

• RQ1: What is the state-of-the-art in specification language support for
cloud services and what are their strengths and shortcomings?

• RQ2: How can we design and validate a uniform specification language
for cloud services across all three layers of the cloud delivery stack?

• RQ3: How can we design and validate a set of manipulation techniques
for publishing, querying, and composing cloud service specifications?

In the next section, we present the research methodology that has been adopted
from existing literature to guide us to systematically answer the research questions
and ultimately achieve our research goal.

1.5 Research Methodology

In this section, the research methodology used to systematically answer the research
questions will be reported. As mentioned from the beginning of the chapter, we po-
sition our research within the domain of engineering CSBAs, which basically falls un-
der the broader scope of Information System research6. Providing CSBA engineers
with a cloud service specification language and a cloud service manipulation tech-
nique conceptually belongs to the design science [Hevner et al., 2004]. As the result,
we have followed the design science methodology for information system research
in [Hevner et al., 2004] and structured our research in the following four main steps

Step 1: Problem Definition

Before conducting any research, one has to understand clearly the problem that
needs to be targeted. By identifying the research context and the motivation, we have
articulated a concrete problem definition in Section 1.3. The research goal has been de-
rived to target the problem definition and then it is decomposed into a set of research
questions in Section 1.4. The research questions initially determined the direction for
us to conduct this thesis.

Step 2: Literature Review

6In a general term, an Information System (IS) is any combination of information technol-
ogy and people’s activities that support operations, management and decision making (Wikipedia:
http://en.wikipedia.org/wiki/Information_system). O’Brien and Marakas have defined
in [O’Brien & Marakas, 2009] the five basic components of an IS: Personnel, Hardware, Software, Net-
works, and Data. Engineering CSBAs comprises of activities regarding the Software, hardware, net-
work and data, and thus belongs to this research scope

16

http://en.wikipedia.org/wiki/Information_system

Our objective in this step is to study extensively the existing approaches for speci-
fying cloud service and manipulating cloud service specification data. It is crucial to
understand the scope, purpose, and limitation of existing languages to discover the
reuse opportunities of existing features. Chapter 2 will report the result of this step
with a comprehensive comparison of existing approaches followed by an evaluation
of their strengths and shortcomings.

Step 3: Solution Design

The shortcomings of existing approaches for cloud service specification and ma-
nipulation have given us the direction to design the solution. Chapter 3 presents
an overview of our solution that comprised of a cloud service specification lan-
guage and a cloud service manipulation technique. The solution will be ex-
plored and illustrated through a running example, which is borrowed from a real-
world scenario that has been co-developed with our industry partners in the 4caaSt
project [European Comission, 2010]. Then in Chapter 4, the cloud service specification
language is introduced in detail with an abstract language model followed by its for-
malization in a formal knowledge model. Lastly, Chapter 5 introduces the cloud ser-
vice manipulation technique as a set of operators for manipulating and cross-relating
cloud service specification data.

Step 4: Validation and Evaluation

One of the most significant task in design science [Hevner et al., 2004] is the valida-
tion of the result to ensure its applicability in the real world. Regarding this task, we
have performed several different activities for validating our solution:

1. The technical soundness of the cloud service specification language is guaran-
teed by its mapping to a formal knowledge representation model described in
RDF/OWL [McGuinness & van Harmelen (Eds.), 2004]- a well-established stan-
dard for describing Internet resources and semantic web. Based on this for-
mal knowledge model, the operators defined by the cloud service manipula-
tion technique have been formalized using SPARQL [W3C, 2008] and SPARQL-
Update [W3C, 2012] operations, which are standards for manipulating RD-
F/OWL knowledge model. Using well-defined and widely-accepted standards
for knowledge representation and manipulation ensures the logical consistency
in our proposed solution.

2. The usability of our approach is demonstrated by using a running example
throughout the chapters of the thesis. This example is borrowed from a real-case
scenario that has been developed by the 4CaaSt community as one of the three
validation scenarios in the 4CaaSt project [European Comission, 2010]. Reusing

17

a scenario from the 4caaSt community shows that our solution solves a real-case
defined by a group of cloud computing practitioners.

3. The technical feasibility of our approach is proved by an internal “proof-of-
concept” prototype. This prototype will be reported in Section 6.1.

4. Within the 4caast community [European Comission, 2010], the proposed cloud
service specification language and manipulation technique have been adopted
as one of the core contributions of the 4caaSt project [Gómez et al., 2012]. Various
industry prototypes have been developed based on the concept of our solutions.
Future cloud products are also envisioned in this direction. In Section 6.2, we
will report the activities in the 4caast project to exhibit the practical validity of
the Blueprint Approach.

Also in this step, the final task is to evaluate how our solution can overcome the short-
comings identified in Step 2, and thus can be approved as an advanced contribution
to the domain of engineering CSBAs. In Section 6.3, we will evaluate our approach by
comparing it with existing approaches.

1.6 Contributions

To answer the research questions in Section 1.4, our work revolves around the concept
of Blueprint whose definition is given in Definition 1.4.

The contribution of this thesis is to provide a Blueprint Approach for engineering
CSBAs that includes the following components:

• C1: A well-defined Blueprint Specification Language (BSL) that provides a means
for cloud service providers to abstractly (i.e., independent of implementation)
and unambiguously specify a cloud service in a blueprint.

• C2: A set of Blueprint Manipulation Techniques (BMTs) for publishing, querying,
and composing blueprints with aim to support the design and configuration of
an CSBA.

Contribution C1 is the answer of the research question RQ2 and contribution C2 is the
answer to the research question RQ3. During the development of both C1 & C2, we
take into account the state-of-the-art analysis of existing specification languages for
cloud services. Hence, with the outcome of the two contributions C1 & C2, we have
also answered the research questions RQ1.

The Blueprint Approach has been developed during our participation in the Euro-
pean Commission’s (EC’s) 4CaaSt project [European Comission, 2010], which has the
goal of creating an advanced cloud platform that supports the optimized and flexible

18

hosting of Internet-scale multi-tier applications. The 4CaaSt platform will contain the
features necessary to facilitate the programming of rich applications and enable the
creation of a true business ecosystem where applications, platforms and infrastructure
from different providers can be traded, customized and combined. Real-world sce-
narios developed within the 4CaasT project will be used for purpose of validating the
applicability of the Blueprint Approach.

Definition 1.4 (Blueprint) A Blueprint is defined as a uniform, implementation-
agnostic specification of a cloud service on any layer of the cloud stack, i.e. SaaS,
PaaS or IaaS. There are three types of blueprints: SaaS blueprints are the SaaS
specifications, PaaS blueprints are the PaaS specifications, and IaaS blueprints are
the IaaS specification. A blueprint contains the following inter-related information
sets [Papazoglou & van den Heuvel, 2011]:

• Operational service description: This information set focuses on the description of
functional characteristics of a cloud service such as service types, messages, inter-
faces and operations, namely, the service’s signature.

• Performance-oriented service capabilities: This information set includes key perfor-
mance indicators (KPIs) associated with a cloud service. Typical examples of quan-
tifiable KPIs are upper and lower performance response time ranges and service
availability, throughput, delivery, latency, bandwidth, MTBF (Mean Time Between
Failure), MTRS (Mean Time to Restore Service), and so on.

• Resource utilization: This information set describes the physical infrastructure and
resources that are required to run a cloud service. In general, it expresses the work-
load profile including average and peak workload requirements. For instance, a
cloud service provider may declare specific technical features that must be taken into
account for his cloud service to operate properly, e.g., the server (disk I/O and net-
work) bandwidth required for true on-demand delivery of streaming media, such
as video and audio files. This set can express information packaged using existing
standard like the DMFT’s Open Virtualization Format (OVF) [DMTF, b].

• Policies: This information set prescribes, limits, or specifies any aspect of a business
agreement that is required to use a particular cloud service. It is typically annotated
with service level agreements (SLAs) and compliance rules and includes amongst
other things security, privacy and compliance requirements.

19

1.7 Assumptions and Limitations

Engineering CSBAs is a relatively new research domain and still contains many chal-
lenges that our blueprint approach cannot support. It is inevitable that our contribu-
tions still contain a number of assumptions and limitations, which will be explained
in the following:

• A1- Assumption regarding cloud application development: In this thesis, we assume
that cloud applications are developed following the CSBA style that reuses and
composes third-party cloud services across all three layers of the cloud stack, i.e.
SaaS, PaaS, and IaaS.

• A2- Assumption regarding application migration: When talking about migration, we
assume that an application needs to be (fully or partly) migrated to the cloud. It
means that we need to re-engineer the application following the CSBA style.

• L1- Limitation of the BSL: The BSL allows for specifying only certain information
sets of a cloud service. These information sets have been selected as the most
significant aspects of a cloud service specification from existing literature. These
information sets include, for instance, the operational description, performance
indicators, policy description, resource consumption, and resource requirements
of a cloud service.

• L2- Limitation of the BMTs: The BMTs introduce only the techniques needed at
the design time of an CSBA. In fact, we will only show how these techniques
are used within the design and configuration phase of the CSBA engineering
lifecycle introduced in Figure 1.7. Further supports at the runtime of an CSBA is
out of scope of the BMTs.

• L3- Dependency of the BMTs on the BSL: The BMTs have been developed based
on the BSL. Hence, an implementation of the BMTs works only on a concrete
representation of the BSL.

1.8 Thesis Structure

The rest of this thesis is structured as follows:
Chapter 2 presents our literature survey in specification languages and manipula-

tion techniques for cloud services. Existing approaches will be analyzed and com-
pared to identify their strengths and shortcomings as well as the reuse possibilities for
our solution.

Chapter 3 aims to provide the readers the overview of the Blueprint Approach includ-
ing its two components: the introduction of the BSL and the associated BMTs. This

20

chapter also contains the basic structural definition of a blueprint, its elements, and its
dependency links. We will also explain in this chapter how the two components of the
Blueprint Approach can assist the CSBA engineer within the design and configuration
phase of the CSBA engineering lifecycle introduced in Figure 1.7. A running example
is introduced in this chapter that will be used throughout the thesis to exemplify the
use of the Blueprint Approach.

Chapter 4 targets the first component of the Blueprint Approach and introduces the
Blueprint Specification Language (BSL). This language provides a common syntax for
specifying cloud services across all three layers of the cloud stack, i.e. SaaS, PaaS and
IaaS.

Chapter5 targets the second component of the Blueprint Approach and introduces a
set of Blueprint Manipulation Techniques (BMTs) to support the publishing, querying,
and composition of cloud service specifications across several providers. The BMTs
have been developed as a set of operators that work on blueprints created by using
the BSL.

Chapter 6 reports our efforts in validating the feasibility and applicability of the
Blueprint Approach. Our validation activities include (1) a self-developed “proof-by-
construction” implementation of the BSL and BMTs, and (2) our participation in de-
veloping an industry prototype within the 4caaSt project based on the concepts of the
BSL and BMTs. Afterwards, the evaluation of the BSL and BMTs is presented.

Chapter 7 summarizes the thesis with the emphasis on its advanced contributions
for the domain of engineering CSBAs. The limitations of this thesis are reviewed here
to derive future research directions that may be tackled by interested readers.

21

CHAPTER 2

STATE-OF-THE-ART ANALYSIS

This chapter reviews the state-of-the-art in specification languages and manipulation
techniques for cloud services. In Section 2.1, existing cloud service specification lan-
guages are reviewed and evaluated. These languages have been collected as related
work throughout our long-term research and collaboration with both academic and
industry partners in the cloud computing domain. We believe that they already rep-
resent the most state-of-the-art language supports for cloud service specification. Re-
garding the techniques to support cloud service manipulation we observe that there
has not been any work in this direction. Hence in Section 2.2, we review the generic
approaches in data manipulation, mapping and transformation, which gave us the
direction for developing the manipulation techniques for cloud service specifications.

2.1 Cloud Service Specification Languages
1 The concept of Blueprint is defined as a specification of a cloud service that abstracts
away from all specific technical details and complexities to facilitate the CSBA devel-
opers with the selection, customization and composition of cloud services across vari-
ous vendors. In this sense, the concept of blueprint is somewhat similar to the classical
“Abstract Data Type” concept in the 70’s that facilitates the abstraction of complex data
objects for the development of a reliable, efficient and flexible software. Guttag was
the first one who recognizes the significance of a precise specification of Abstract Data
Types. He proposed an algebraic specification language for abstract data types in his
earliest work in [Guttag, 1977].

1The result presented in this section has been partly published
in [Nguyen et al., 2012c] [Taher et al., 2012]

23

The need for a formal specification language for software components has also
been recognized in the component-based software development. Much of the work
has focused on the functional component specification with aim to facilitate the
component retrieval and reuse (a survey of work in this direction can be found
in [Mili et al., 1995]). However, these languages usually take into account only func-
tional specification. Additional languages like NoFun [Franch et al., 1999] have ap-
peared somewhat later to facilitate the non-functional specification of components that
enables a more precise component retrieval and matching.

Within the SOA domain, there exists already a large body of work in defining a stan-
dardized specification languages for software services, e.g. the most prominent and
widely accepted standard is the W3C standard WSDL [W3C, 2011]. These standard-
ized languages have a high potential reuse for specifying SaaSs, since cloud services
are the logical extension of software services in a SOA systems2. They may contribute
different aspects for cloud service specification on the SaaS layer.

In Section 2.1.1, we introduce the criteria used to evaluate the existing specification
languages for cloud services on all three layers of the cloud stack. In section 2.1.2, 2.1.3,
and 2.1.4, we review existing specification languages that target the cloud services on
each specific layer of the cloud stack, i.e. IaaS, PaaS, and SaaS respectively. Existing
specification languages for software services in the SOA domain are also reviewed in
Section 2.1.4 since they may have high potential reuse for specifying SaaSs. Finally,
Section 2.1.5 summarizes our analysis in this section.

2.1.1 Evaluation Criteria

In the subsequent sections, each existing specification language for cloud services
will be reviewed and evaluated using a set of predefined criteria. The evaluation
criteria presented in this section is an amalgamation of criteria used in existing sur-
veys [Sun et al., 2012a] [Papazoglou & Vaquero, 2012] of cloud service specification
languages. The motivation of selecting these criteria is twofold: (1) to be able to eval-
uate specification languages for all three cloud layers, and (2) to cover the multi-facets
of a language, e.g. its purpose, target audience, maturity, etc. With this set of criteria
for the evaluation, it is easier to estimate the reuse effort in case we would like to reuse
an existing language for developing a uniform cloud service specification language.

• Coverage: The language allows for specifying the business or technical data or
both of a cloud service.

2Whilst SOA puts focus on applying the service orientation principles on the application layer, e.g.
by composing loosely-coupled software services into an SBA, the cloud environment extends the service
orientation concept to the entire IT computing stack, i.e. across all three layers: application, platform
and infrastructure layers. The cloud promotes the reuse and composition of cloud services on all three
layers to build an CSBA. More details can be found in the discussion about the intersection of SOA and
cloud computing in Section 1.1.3

24

– Business Data: specify the Capability, Service Level Agreement (SLA), Pol-
icy, Business Rules and Compliance, Licensing, etc., of a cloud service

– Technical: specify the Operational Description, Quality-of-Service (QoS),
Elasticity, Resource Utilization, Deployment Environment, etc., of a cloud
service.

• Intended Users: We distinguish only the two users of a cloud service specifi-
cation language: Cloud Service provider and Cloud Service Consumer. This is
because our work is grounded on the CSBA engineering lifecycle (introduced in
Section 1.2) that involves only the Cloud Service Providers and CSBA Engineers.
An CSBA engineer is considered as a cloud service consumer as he is only in-
terested in reusing and composing cloud services within the lifecycle. A cloud
service consumer could also be an end-user who is only interested in using a
single cloud service.

• Purpose: Cloud service specifications described by a language aim to support
particular phases of the cloud service lifecycle

– Service Design: The specification serves as a design of a cloud service.

– Service Matching & Discovery: The specification can serve as a cloud ser-
vice request that can be matched against the specification of other cloud
services.

– Service Composition: The specification aims to support the composition of
cloud services.

– Service Binding: The specification contains also the binding details for con-
sumers to interact with a cloud service.

– Service Implementation: The specification contains also details that guide
the implementation of a cloud service.

– Service Deployment & Provisioning: The specification contains the require-
ments of the deployment environment and resource provisioning at run-
time of a cloud service.

• Representation: A language may provide different representation techniques.
Some languages provide concrete representation techniques like an ad-hoc XML
template or a proprietary template format. The others introduce only abstract
reference model. Other representation techniques include the use of a taxonomy
of attributes, a hash table, or an existing formal specification language.

• Maturity: We classify a language whether it is an academic proposal, a propri-
etary language of a vendor that might have already been used in a product, or a
standard.

25

• Extensibility: A language could provide an explicit extension point or it is un-
known.

• Features: This criterion indicates the specific goals or features of a language, e.g.
to support interoperability, to support a Model-driven Engineering approach, to
target a specific domain, or to increase usability, etc.

2.1.2 IaaS Specification Languages

The ability of manipulate, integrate and and orchestrate the deployment of IaaS re-
sources for cloud application development has been proposed in the early time of
cloud computing, e.g. through the “Sky Computing” [Keahey et al., 2009] and “Inter-
cloud” [Buyya et al., 2010] proposals. However these proposals falls short of propos-
ing a solution for the problem at hand due to a lack of standardized language to specify
the IaaS resources. Since then, much of the recent work in cloud computing specifi-
cally focus on supporting a common, standardized specification for IaaSs.

In this section, we review and evaluate the existing specification languages for IaaS.
The section is divided into two parts based on the two most common representation
techniques provided by these languages. We observe that one group of the IaaS spec-
ification languages is based on a template structure which is either a well-defined
standard, e.g. the OVF template [DMTF, b], or a proprietary template of a vendor,
e.g. Amazon Formation. The other group of IaaS specification languages follows the
model-driven engineering approach by specifying IaaS using models and model trans-
formations.

Template-based IaaS Specification Languages

The Distributed Management Task Force (DMTF) group3 has published open stan-
dards such as the Open Virtualization Format (OVF) [DMTF, b], to provide a pack-
aging and distribution format for virtual appliances (i.e. virtual machines host-
ing a complete software/middleware stack), and the Virtualization Management
(VMAN) [DMTF, a] specifications that address the management lifecycle of a vir-
tual environment to help promote interoperable cloud computing service. The
OVF [DMTF, b] is considered nowadays as an open standard for packaging and dis-
tributing virtual appliances. It contains a set of XML templates (conforming to prede-
fined XSDs) to support the specification of either the offering of an IaaS provider or
the infrastructure resource requirements of a SaaS or PaaS provider.

The work in [Galán et al., 2009] is grounded on the OVF template and proposes
a service definition language for IaaS provider to configure the deployment of their

3http://dmtf.org/

26

http://dmtf.org/

IaaSs in federated infrastructure clouds. The proposed service definition language ex-
tends the OVF to support the configuration of an IaaS with Key Performance Indica-
tors, deployment time parameters (e.g., hostnames, IP addresses and other application
specific details) for the virtual appliances4, runtime elasticity specification, and public
network specification. The authors in [Rodero-Merino et al., 2010] reuses this service
definition language proposal as the common IaaS description in an service lifecycle
management system that enables the management of IaaSs on top of several federated
infrastructure clouds. Central to this system is the Service Abstraction Layer (called
Claudia), which automates the deployment and runtime scaling of IaaSs described in
the aforementioned service description language.

Similar to OVF-based approaches, the Solution Deployment Descriptor (SDD) tem-
plate [OASIS, 2008] proposed by OASIS defines an XML schema to describe the char-
acteristics of an installable unit (IU) of software that are relevant for core aspects of
its installation, configuration, and maintenance. The benefits of this work include:
the ability to describe software solution packages for both single and multi-platform
heterogeneous environments, the ability to describe software solution packages inde-
pendent of the software installation technology or supplier, and the ability to provide
information necessary to permit full lifecycle maintenance of software solutions.

Chieu et al. introduce in [Chieu et al., 2010] a 3-tier cloud provisioning system to
simplify the deployment of applications on an IaaS cloud. Within this system, they in-
troduce the concept of “composite appliance” to automate the deployment of complex
applications. A composite appliance is a collection of individual appliance images that
are designed to work together with specific configurations. A composite appliance is
specified using an XML descriptor file and thus considered as a template-based IaaS
specification language provided by this cloud provisioning system.

InterCloud [Bernstein et al., 2009] is a federated Cloud Computing Environment
that enables the utilization of multiple infrastructure clouds for scaling purposes. Doc-
ument [Bernstein et al., 2009] targets the interoperability between the federated clouds
by providing a collection of proposals for “InterCloud” protocols and formats. One of
the InterCloud proposals is the use of Extensible Messaging and Presence Protocol
(XMPP) as the communication protocol between the cloud providers and the Inter-
cloud Directory and Exchange, which plays the role as the mediator within the In-
terCloud [Bernstein & Vij, 2010]. Furthermore, to facilitate the federation of cloud re-
sources among the cloud provider, the authors in [Bernstein & Vij, 2010] also propose
the use of the Resource Description Framework (RDF) [Manola & Miller, 2004] and an
ontology of cloud computing resources as a shared resource catalog across heteroge-
nous cloud providers.

4i.e. software components (e.g., web/application servers, database, operating system) running on
the VMs

27

In practice, an attempt to provide a JSON template5 for using cloud services is avail-
able from Amazon through their AWS CloudFormation offering [Amazon,]. This tem-
plate provides AWS developers with the ability to specify a collection of AWS cloud
resources and the provisioning of these resources in an orderly and predictable fash-
ion. Nevertheless, this template works only for AWS cloud platform and infrastruc-
ture resources and thus lacks interoperability. Another template-based support that
enables the orchestration of tasks for managing virtual machines is VMware vCen-
ter Orchestrator [VMWare,]. Nevertheless, both the AWS CloudFormation and the
VMware vCenter Orchestrator work only on their own IaaS resources, i.e., Amazon’s
cloud infrastructure resources and VMware vCenter Servers respectively, and thus
lacks interoperability across IaaS providers.

Model-driven Engineering Approach

Model-driven engineering approaches have also been used to support the speci-
fication and automatic deployment of IaaSs on the cloud. In general, model-driven
engineering deals with the provision of models, model transformations and code
generation for software development [Kleppe et al., 2003]. Model-driven engineering
approaches use model as the first-class entity during the whole lifecycle of specify-
ing, configuring and deploying an IaaS. By adopting a model-driven engineering ap-
proach, an IaaS provider can follow the guidelines to capture various aspects of an
IaaS, e.g. operational, QoS, policy, resource description, using models, which can then
be translated via standardized transformation rules into concrete deployment artifacts
for a particular platform.

To unlock the vendor lock-in problem concerning the APIs, the Open Grid Forum’s
Open Cloud Computing Interface (OCCI) working group (www.occi-wg.org) has been
developing a uniform API specification for remote management of Cloud Computing
infrastructure [OCCI-Working Group, 2011]. This API specification supports the de-
velopment of interoperable tools for common tasks including deployment, autonomic
scaling and monitoring. The scope of this specification defines all the high-level func-
tionality required for the life-cycle management of virtual machines (or workloads)
running on virtualization technologies (or containers) supporting service elasticity. At
this stage, the API specification has been proposed in terms of abstract models without
any concrete implementations or tool support.

Apart from the API specification, model-driven engineering approaches have
mostly been used for automating the deployment of IaaSs. For instance, Konstantinou
et al. propose in [Konstantinou et al., 2009] a virtual appliance model, which treats
virtual images as building blocks for IaaS composite solutions. Virtual appliances are
composed into virtual solution model and deployment time requirements are then
determined in a cloud-independent manner using a parameterized deployment plan.

5JavaScript Object Notation, a light-weight data interchange format: http://www.json.org/

28

http://www.json.org/

Collazo-Mojoca et al. present their idea of a virtual environment
in [Collazo-mojica et al., 2010] as an abstract model built on top of a group of
independent virtual appliances. The aim of this model is to provide an uncompli-
cated model for designing, configuring and deploying an IaaS solution. The model
allows for specifying independent virtual appliances with a service endpoint as the
connection between two appliances. Once the user is finished with the design and
configuration of the virtual environment model, the model can be persisted in an
XML file that can later be deployed on a cloud environment.

Other approaches

SmartFrog [Goldsack et al., 2009] is a declarative configuration framework that
aims to simplify the design, deployment, and management of distributed systems.
Components of a distributed system managed by SmartForg can be specified using a
hash table. The specification details in the hash table will be processed by SmartForg
to properly configure the components. SmartFrog has been released as an open source
solution since 2003.

Cloud# [Liu & Zic, 2011] is a formal specification language for modeling an IaaS
cloud wtih aim to provide transparency of the IaaS cloud to the consumers. Cloud#
is provided with a formal grammar which can be used by IaaS consumers to reason
about how services are delivered in an IaaS cloud. The goal of providing a high trans-
parency to IaaS consumers is to convince them to move business-critical applications
to the IaaS cloud.

Summary and Evaluation

Table 2.1 summarizes the survey in this section with a comparative evaluation of the
existing IaaS specification languages. We observe that there has been already a large
body of work in IaaS specification languages with aim to support the IaaS providers in
designing, deploying, and provisioning their IaaSs. These languages allow for spec-
ifying only the technical details of the deployment environment of an IaaS, i.e. by
adopting the OVF as the standard for specifying the virtual appliance packaging and
distributions. We conclude that existing IaaS specification languages based on the
well-defined OVF standard, e.g. the one defined in [Galán et al., 2009], have the high
potential reuse for defining an IaaS blueprint. However, they should be combined
with other languages to specify the business information, policy, and resource con-
sumption of an IaaS.

2.1.3 PaaS Specification Languages

The Service-Oriented Cloud Computing Architecture (SOCCA) proposed
in [Tsai et al., 2010] allows developers to build applications within an integrated

29

Approach Coverage Intended
Users

Purpose Representation Maturity Extensibility Features

[Galán et al., 2009] &
[Rodero-Merino et al., 2010]

Technical
(deploy-
ment
environ-
ment,
elasticity
rules)

IaaS
provider

Service Deployment
& Provisioning

XML Template used in Clau-
dia, an open
source Im-
plementation
(Affero GPL
licensing),
within the
EU-project
RESERVIOR

n/A IaaS language is
an extension of
OVF with KPI,
Deployment Time
Parameters, Elas-
ticity Specification,
and Public Net-
work Specification

SDD [OASIS, 2008] Technical
(deploy-
ment
environ-
ment)

IaaS
provider

Service Deployment
& Provisioning

XML Template OASIS Stan-
dard

n/A Software Distribu-
tion and Deploy-
ment

Composite Appliance
in [Chieu et al., 2010]

Technical
(deploy-
ment
environ-
ment)

IaaS
provider

Service Deployment
& Provisioning

XML Template used in IBM
Research
Compute
Cloud RC2
environment

XML
extension

n/A

Intercloud
[Bernstein & Vij, 2010] Technical IaaS

provider
Service Deployment
& Provisioning

RDF model Intercloud
proposal

n/A aims to federate re-
sources of several
IaaS clouds

Amazon CloudForma-
tion [Amazon,]

Technical IaaS con-
sumer

Service Deployment
& Provisioning

JSON Template Proprietary
Vendor For-
mat

n/A support also for
configuring PaaS
solutions of Ama-
zon

Virtual Solution Model
in [Konstantinou et al., 2009]

technical IaaS
provider

Service Design, Ser-
vice Composition,
Service Deployment
& Provisioning

Virtual Solution
Model built on
a modeling plat-
form, a component
of the IBM RSA
v7.5

IBM product n/A n/A

Virtual Environment
in [Collazo-mojica et al., 2010]

technical IaaS
provider

Service Design, Ser-
vice Composition,
Service Deployment
& Provisioning

Abstract Model
for Service Speci-
fication, but then
transformed into
XML format

Academic
Proposal with
Prototype

n/A n/A

OCCI
[OCCI-Working Group, 2011] Technical

(interface
specifica-
tion)

IaaS
provider

Service Management Specification
Model

Open Grid
Forum (OGF)
Recommen-
dation

n/A Standard API
Specification for
Cloud Service
Management

Cloud# [Liu & Zic, 2011] technical IaaS con-
sumer

Service Design, Ser-
vice Deployment &
Provisioning

Formal Specifica-
tion Language

Academic
Proposal

n/A aims to provide
more transparency
of the IaaS to the
consumers

SmartFrog
[Goldsack et al., 2009] technical IaaS

provider
Service Deployment
& Provisioning

Ordered hash table Academic
Proposal

n/A n/A

Table 2.1: Comparative Evaluation of IaaS Specification Languages

SOA framework. Cloud platform and infrastructure resources may be discovered
by a Cloud Broker Layer and a Cloud Ontology Mapping Layer for deploying the
application components. The multi-tenancy feature of cloud computing is also
supported by SOCCA where multiple instances of platform resources can be provided
to multiple tenants.

Windows Azure6 is a Microsoft cloud platform that can be used to build, deploy,

6Microsoft Windows Azure: http://www.windowsazure.com

30

http://www.windowsazure.com

and host applications on Microsoft’s data center. Services in Windows Azure are con-
figured by two XML files [Microsoft MSDN, 2011]:

• The service definition file describes the service model. It defines the roles in-
cluded with the service and their endpoints, and declares configuration settings
for each role. The default extension for the service definition file is .csdef

• The service configuration file specifies the number of instances to deploy for each
role and provides values for any configuration settings declared in the service
definition file. The default extension for the service configuration file is .cscfg.

The CompatibleOne platform7 is a cloud service broker that offers a simple and
unique interface for discovering and deploying the needed cloud resources. Service
requests are described in XML files named MANIFEST documents to capture the spe-
cific technical and business specifications. The MANIFEST document allows users to
specify both the IaaS resources like the computing, network, or storage resources and
the PaaS resources like a database or runtime container.

Cordys8 is a cloud platform that specializes in Business Process Management (BPM)
solution. The Cordys platform aims to support the design, execution, monitoring and
improvement of business processes. The business processes in Cordys are modeled
using the Business Process Model and Notation (BPMN). Services in Cordys are inte-
grated using the WS-* stack to support the business process design and execution.

Amazon Elastic Beanstalk9 is a PaaS solution that allows users of the Amazon Web
Services (AWS) to quickly deploy their applications and seamlessly manage the un-
derlying AWS resource during runtime. The AWSs that can be managed by Amazon
Elastic Beanstalk include the Amazon Elastic Cloud Compute (Amazon EC2), Ama-
zon Simple Storage Service (Amazon S3), Amazon Simple Notification Service (Ama-
zon SNS), Elastic Load Balancing, and Auto Scaling. Amazon Elastic Beanstalk is built
using familiar software stack to ensure the portability of users’ applications. The API
of Amazon Elastic Beanstalk is described using WSDL.10

Summary and Evaluation

Table 2.2 summarizes the survey in this section with a comparative evaluation of
the existing PaaS specification languages. There are only a few specification languages
that target the PaaS layer of the cloud stack. Most of them are proprietary languages
provided by a commercial PaaS provider with aim to assist the PaaS consumers in
composing and deploying the PaaS solutions. The representations of these languages

7http://www.compatibleone.org/bin/view/Main/
8http://www.cordys.com/
9http://aws.amazon.com/elasticbeanstalk/

10Amazon Elastic Beanstalk API Reference: http://docs.aws.amazon.com/

elasticbeanstalk/latest/api/Welcome.html

31

http://www.compatibleone.org/bin/view/Main/
http://www.cordys.com/
http://aws.amazon.com/elasticbeanstalk/
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/Welcome.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/Welcome.html

Approach Coverage Intended
Users

Purpose Representation Maturity Extensibility Features

Microsoft Azure Technical PaaS Con-
sumer

Service Deployment
& Provisioning

XML Format Proprietary
Format (Mi-
crosoft)

n/A n/A

CompatibleOne Technical PaaS Con-
sumer

Service Matching
& Discovery, Ser-
vice Deployment &
Provisioning

XML files (named
MANIFEST docu-
ments) to describe
the needed services

Proprietary
Format

n/A n/A

Cordys Technical PaaS Con-
sumer

Service Design, Ser-
vice Composition,
Service Deployment
& Provisioning

Services are de-
scribed by using
the WS-* standards

Proprietary
Format

n/A a BPM platform for
designing, execut-
ing, monitoring,
and improving
buisness processes

AmazonBeanstalk Technical PaaS Con-
sumer

Service Deployment
& Provisioning

using WSDL Proprietary
Format
(Amazon)

n/A a PaaS solution to
deploy and man-
age applications
on several AWSs,
e.g. Amazon EC2,
Amazon S3, etc.

Services in
SOCCA [Tsai et al., 2010]

Technical PaaS Con-
sumer

Service Deployment
& Provisioning

RDF/OWL Academic
Proposal

n/A n/A

Table 2.2: Comparison between PaaS Specification Languages

are only proprietary template formats. This limits the interoperability between several
PaaS providers and results in a vendor lock-in situation for the PaaS consumers. We
see no potential reuse of any existing PaaS specification language. However, this sur-
vey has helped us identify the essential information that should be captured in a PaaS
blueprint.

2.1.4 SaaS Specification Languages

The SaaS layer of the cloud stack is recognized as the intersection between the two
research domains SOA and Cloud Computing11. Hence, existing service specification
languages in SOA, e.g. the WS-* stack, may have a high reuse potential for specifying
SaaSs.

SaaS specification languages in the SOA domain

The de facto standard in specifying services in the SOA domain is to use the Web
Service Description Language (WSDL) [W3C, 2011]. It is an XML-based specification
schema that allows users to specify the interaces, operations, message structures, data
types of the message payload, binding protocols, and the endpoint addresses of a
(Web) service. Using WSDL, a web service can be specified with multiple interfaces
(portTypes), where each interface contains a set of operations and each operation is
defined with a set of input and output messages. An interface can be mapped to sev-
eral binding protocols and each binding protocol is defined for a particular endpoint
address of the web service.

11Please refer to the discussion about the intersection of SOA and Cloud Computing in Section 1.1.3

32

WSDL has been recognized as the dominant standard for specifying web services,
since it is backed by a strong industry support. However, WSDL focuses only on
the operational specification of a single service. Hence, other specification stan-
dards have been proposed to complement WSDL such as the Business Process Exe-
cution Language (WS-BPEL) [OASIS, 2007] for composing web services and the WS-
Policy [W3C, 2006] for specifying the policy description of a web service. As a result,
these standards have collectively form a Web Service technological stack (or the WS-*
stack).

WS-BPEL [OASIS, 2007] is an XML-based composition language for web services.
A WS-BPEL specification sits on top of the WSDL specifications of other web services
and defines a flow of interactions with these web services. WS-BPEL supports the ba-
sic constructs of a flow such as the sequence, parallel branches, conditional branches,
etc. For each service interaction, WS-BPEL supports the definition of input and output
messages by importing the WSDL of a constituting web service.

WS-Policy [W3C, 2006] supports the policy specification of a web service. Similar
to other standards in the WS-* stack, it is also an XML-based language and built on
top of the WSDL standard. Using WS-Policy, a policy profile can be defined for a web
service, which contains a set of policy alternatives. Each policy alternative contains
a set of policy assertions. Each policy assertion is specified for a WSDL operation to
prescribe either a requirement or capability of its exchanged messages (e.g. the en-
cryption, transport protocol, authentication, etc.) or a non-functional property related
to its selection and usage (e.g. QoS property).

One of the shortcomings of the WSDL is that it supports only the structural spec-
ification of a web service. To complement WSDL, the semantic web community
has introduced several initiatives to enrich a WSDL specification with more seman-
tic information. For instance, the OWL-S [W3C,] is an OWL ontology that allows
for describing the functional and operational semantics of a web service. The op-
erational semantics is described in the sub-ontology “Service Profile” and the func-
tional semantics is described in the other two sub-ontologies “Service Model” and
“Service Grounding” in conjunction with a WSDL specification. Another initiative
is the WSDL-S [W3C, 2005b] that supports semantic annotations directly on a WSDL
specification. Lastly, the Web Service Modeling Ontology (WSMO) provides a concep-
tual framework and a formal language for semantically describing all relevant aspects
of Web services in order to facilitate the automatic discovery, composition and bind-
ing [W3C, 2005a].

It is worth to mention that apart from the languages that specifically target the Web
Service technology there exist also other languages that aim for a more general speci-
fication of services in a SOA system, which will be mentioned in the following.

The W3C Unified Service Description Language (USDL) Incubator Group12 has

12http://www.w3.org/2005/Incubator/usdl/

33

http://www.w3.org/2005/Incubator/usdl/

been formed to develop a general languages for specifying both the business and
technical services. The outcome of this group is the Universal Service Description
Language (USDL) [Internet of Services,], which aims to complement the technical ser-
vice specifications, e.g. using WSDL, with business and operational information. The
language can be used by both the service consumers and providers for different pur-
poses: providers can design their services in a tradeable and consumable way whilst
consumers can use the language for service discovery based on the required business
capability. USDL is a generic language that aims for standardizing the service sector,
and hence can be extended in several industry domains. It is delivered as a set of
reference models that describe many business and technical aspects of a service.

The OASIS Reference Model for Service Oriented Architecture [OASIS, 2006] pro-
vides a reference model for building an entire SOA system. It aims to provide a com-
mon understanding of entities and their relationships in a SOA system and can be used
to develop standards for a specific entities in SOA. Not like WSDL and WS-BPEL, this
reference model is an abstract model that is not tied to any particular SOA technology
and hence can serve as a common reference models across several SOA implementa-
tions. The OASIS reference model defines three conceptual views: service ecosystem,
realization, and ownership, in which service specification falls under the realization
view.

The CBDI-SAE Meta Model for SOA [Everware-CBDI,] is a meta-model defining
the concepts in the CBDI Service Architecture & Engineering Reference Framework,
an initiative of the Everware-CBDI consulting company13. Similar to the OASIS ref-
erence model, CBDI-SAE Meta Model for SOA aims to provide a consensus on the
definition of a SOA system by conceptualizing the key components of many aspects of
a SOA system. Different aspects of SOA are captured in different modeling packages:
technology, organization, policy, business modeling, service modeling, deployment,
runtime, etc. The CBDI-SAE Meta Model is technology-agnostic. It can be imple-
mented using a concrete SOA technology, e.g. using the WS-* stack or REST.

It is interesting to see that both the OASIS Reference Model and the CBDI-
SAE meta model recognize the significance of a reference model for SOA while re-
maining technology-agnostic. Both of them use the Unified Modeling Language
(UML) [OMG, 2011] as the modeling and communication language for their mod-
els. Another initiative to define a reference model for SOA based on the UML is the
Service-oriented Architecture Modeling Language (SoaML) specification [OMG, 2012]
proposed by the Object Management Group (OMG). The SoaML specification pro-
vides a meta-model and an UML profile that cover both the business and technical
specification of a service. Its main goal is to support the modeling and design of a
service in a SOA system with a set of core attributes. SoaML can be extended with at-
tributes related to a specific domain. For instance, the work in [Elvesæter et al., 2011]

13http://everware-cbdi.com/home

34

http://everware-cbdi.com/home

has proposed specific service attributes and modeling guidelines to use the SoaML for
specifying services in the cloud domain. However, this set of attributes support only
ofr specifying SaaSs and does not have the intention to go further down to the lower
layers of the cloud stack.

Another approach for specifying SOA service in a technology-agnostic is to use the
Abstract Service Description (ASD) meta-model introduced in [Andrikopoulos, 2010].
The ASD meta-model in this work is a specification schema for specifying an inter-
face of a service including its structural, behavior and non-functional description. It
aggregates the important concepts found in widely adopted technologies like WSDL
and WS-BPEL, as well as from the high-level reference models like the OASIS reference
model for SOA and the CBDI-SAE meta-model. However, this approach captures only
the interface of a service and aims only to provide a mechanism to control the service
evolution.

Finally, O’Sullivan proposes in his thesis [O’Sullivan, 2006] a taxonomy of non-
functional properties for service specification. This work does not specifically tar-
get web services or services in a SOA system, but can be used for any types of ser-
vices. Its aim is to provide a more precise matching and discovery of services based
on their non-functional properties. The properties proposed in this work are domain-
independent and can be used in different industry domains.

One of the biggest disadvantages of the SaaS specification languages in the SOA
domain is that they do not aim to support the automatic deployment and provisioning
of a SaaS. In the following, we present some initiatives in providing SaaS specification
languages that aim to support the automatic deployment and provisioning of a SaaS.

Other SaaS specification languages

The Model Driven Engineering (MDE) research community has realized the benefit
of combining MDE techniques with application development and suggested combin-
ing MDE with cloud computing [Brunelière et al., 2010]. As the article describes, there
is no consensus on the models, languages, model transformations and software pro-
cesses for the model-driven development of cloud-based applications. Following the
MDE vision, the authors in [Hamdaqa et al., 2011] propose a meta-model that allows
cloud users to design SaaS applications independent of any platform and build in-
expensive elastic applications. From their point of view, a SaaS application should
avoid the vendor lock-in problem concerning the underlying platforms. This meta-
model support the description of the capabilities, technical interfaces, and configura-
tion data for the virtualized infrastructure resources of the cloud application service.
Similarly, the work in [Cai et al., 2009] presents a different customer-centric cloud ser-
vice model. This model concentrates on aspects such as the customer subscription,
capability, billing, etc., yet does not cover other technical aspects of the cloud services
including the technical interfaces of the cloud services, the elasticity, the required de-

35

ployment environment, etc. Other existing models, e.g. in [Thrash, 2010], also lack
a formal structure and dentitions (reducing their usability and reusability) or are not
explicit and assume tacit knowledge.

Based on the IaaS specification language proposed by Galan et al.
in [Galán et al., 2009], Chapman et al. defines in [Chapman et al., 2010] a mani-
fest language called Application Description Language to serve as a contract between an
application developer and an IaaS provider. In this contract, architectural constraints
and invariants regarding the infrastructure resource provisioning for an application
are specified and can be used for on-demand cloud infrastructure provisioning
at run-time. The abstract syntax of the manifest language is modeled using the
Essential Meta-Object Facility (EMOF), an OMG standard part of the Model Driven
Architecture initiative14. Using the manifest language to specify the structure of an
application, i.e., the application components and their required Virtual Execution
Environments (VEE), the Reservoir architecture in [Rochwerger et al., 2009]can auto-
matically provision the VEE instances that can run simultaneously without conflict on
a federated cloud infrastructure of multiple providers. KPI monitoring mechanisms
and elasticity rules in the manifest act as a contract that guarantees the required
Service Level Agreement (SLA) between the application developer and the Reservoir
architecture.

A cloud-agnostic middleware is introduced in [Maximilien et al., 2009] that can sit
on top of many PaaS/IaaS offerings and enable a platform-agnostic SaaS development.
They provide a meta-model for describing SaaS applications and their needed cloud
resources, and APIs and middleware services for the deployment.

Sun et al. propose in [Sun et al., 2012b] the use of ontology to specify and match the
resource requirements of a SaaS application with the available resources of the cloud
infrastructure. They provide also a resource allocation support based on the ontology
mapping technique.

The Cafe application and component templates [Mietzner, 2010] are a relevant ap-
proach for cloud-based SaaS development. Cafe provides an ad-hoc composition tech-
nique for application components and cloud resources following the Service Compo-
nent Architecture (SCA). However, this approach requires SaaS developers to possess
intricate technical knowledge of the application architecture and the physical cloud
deployment environment to select and compose the right application components and
cloud resources.

The Topology and Orchestration Specification for Cloud Applications
(TOSCA) [OASIS, 2013] is an OASIS standardization initiative for describing the
deployment topology of a composite application in the cloud environment. TOSCA
defines generic templates for specifying nodes and node relationships in an applica-
tion topology, where each node is defined explicitly with management operations.

14OMG MOF: http://www.omg.org/mof/

36

http://www.omg.org/mof/

Furthermore, TOSCA introduces the concept of management plan, which orchestrates
the management operations of the nodes using standards like WS-BPEL. Using
TOSCA as the underlying specification of the deployment topology, the concept of a
portable management of cloud service has been introduced in [Binz et al., 2012].

Summary and Evaluation

Table 2.3 summarizes our review in this section with a comparative evaluation of
the specification languages for SaaSs in both the SOA and Cloud domains. When look-
ing at the languages supported in the SOA domain, we find a large body of widely
adopted standards for building SOA systems, e.g. the WS-* stack contains a set of
W3C standards, the SoaML [OMG, 2012] is an OMG standard, and the CBDI-SAE ref-
erence model [Everware-CBDI,]. Most of them cover both the business and technical
specification of a SaaS and aim to support all the phases of a service lifecycle. We see a
great benefit to reuse these languages for specifying SaaSs. In the following we discuss
our interests in reusing the existing SaaS specification languages:

• WS-Policy [W3C, 2006] has the high potential reuse for defining a policy descrip-
tion in a blueprint due to its wide adoption and simplicity.

• The ASD meta-model [Andrikopoulos, 2010] has the high potential reuse for
defining the service interface of a SaaS blueprint. The reason of adopt-
ing this meta-model is that it has unified all the important concepts of
the WSDL [W3C, 2011], WS-BPEL [OASIS, 2007], OASIS Reference Model for
SOA [OASIS, 2006], and CBDI-SAE Meta-model for SOA [Everware-CBDI,], into
a single meta-model for describing software service interfaces in SOA.

• SoaML [OMG, 2012] and USDL [Internet of Services,] have the high potential
reuse for specifying the business information of a blueprint. However, we would
rather consider them as the potential add-ons for our cloud service specification
language.

Apart from the well-known standards for specifying Web Services, we observe a lot
of interesting language initiatives in specifying the deployment environment of a SaaS
application, e.g. Chapman et al. [Chapman et al., 2010], Cafe [Mietzner et al., 2009]
and TOSCA [OASIS, 2013]. We draw our particular attention to TOSCA because of
its support for specifying the deployment topology and management plan for a cloud
application. These two features have not been supported by any other languages.
However, TOSCA does not support the specification of cloud services on all three lay-
ers of the cloud stack and does not consider the composition of these specifications as
the deployment topology of a cloud application. This is where our work is differen-
tiated from TOSCA. Nevertheless, we see a great benefit of using TOSCA to generate
a deployment configuration and management plan for an CSBA configuration with
blueprints.

37

Approach Coverage Intended
Users

Purpose Representation Maturity Extensibility Features

O’Sullivan [O’Sullivan, 2006] Business Service
Consumer

Service Matching &
Discovery

Attribute Taxon-
omy

academic
proposal

n/A Domain indepen-
dent

USDL
[Internet of Services,] Business

& techni-
cal

Service
consumer,
Service
provider

Service Design, Ser-
vice Matching & Dis-
covery, Service Bind-
ing

Reference Meta-
model

Standardization
through a
W3C Incuba-
tor Group

yes Domain indepen-
dent, Standardiza-
tion in the service
sector

WS-* stack including
WSDL [W3C, 2011], WS-
BPEL [OASIS, 2007],
WS-Policy [W3C, 2006],
etc.

Technical Service
consumer,
Service
Provider

Service Design, Ser-
vice Matching &
Discovery, Service
Composition, Service
Binding, Service
Implementation

XML Template W3C Stan-
dard

Basic XML
extension

Intended for SOA
& Web Service De-
velopment

CBDI-SAE Meta-model for
SOA [Everware-CBDI,]

Business
& Techni-
cal

Service
Con-
sumer &
Provider

Service Design, Ser-
vice Composition,
Service Implementa-
tion, Service Deploy-
ment & Provisioning

Reference meta-
model in UML

Company
Proposal

n/A Technology-
independent,
reference model
for a SOA system

OASIS Reference Model
for SOA [OASIS, 2006]

Business
& Techni-
cal

Service
Con-
sumer &
Provider

Service Design, Ser-
vice Composition,
Service Implementa-
tion

Reference meta-
model in UML

Official OA-
SIS Standard

n/A Technology-
independent,
reference model
for a SOA system

SoaML [OMG, 2012] Business
& Techni-
cal

Service
Provider

Service Design Reference meta-
model in UML and
a UML profile

OMG Specifi-
cation

yes Support for SOA
and cloud services

Abstract Service
Description meta-
model [Andrikopoulos, 2010]

Technical Service
consumer,
Service
provider

Service Design Reference meta-
model in UML

academic
proposal

n/A support for service
evolution control

Manifest Language
in [Chapman et al., 2010]

Technical SaaS
Provider

Service Deployment
& Provisioning

EMOF-metamodel Academic
Proposal

n/A based on the
IaaS specifica-
tion language
in [Galán et al., 2009]

Application Meta-model
in [Hamdaqa et al., 2011]

Business
& Techni-
cal

SaaS
provider
& Con-
sumer

Service Modelling &
Design, Service De-
ployment & Provi-
sioning

Reference Meta-
Model

Academic
Proposal

n/A n/A

Cafe tem-
plate [Mietzner, 2010]

Technical SaaS
Provider

Service Deployment
& Provisioning

Ad-hoc XML Tem-
plate

Academic
Proposal

n/A n/A

TOSCA [OASIS, 2013] Technical SaaS
provider

Service Deployment
& Provisioning, Ser-
vice Management

Ad-hoc XML Tem-
plate

OASIS stan-
dard

n/A with aim for
portable manage-
ment of application

Customer-centric model
in [Cai et al., 2009]

Business SaaS
provider
& con-
sumer

Service Design, Ser-
vice Matching & Dis-
covery

Reference Model Academic
Proposal

n/A n/A

Cloud-agnostic middle-
ware [Maximilien et al., 2009]

Technical SaaS
provider

Service Deployment
& Provisioning

Reference Meta-
model

Academic
Proposal

n/A n/A

Ontology-based
Resource Alloca-
tion [Sun et al., 2012b]

Technical SaaS
provider

Service Deployment
& Provisioning

RDF/OWL ontol-
ogy

Academic
Proposal

n/A n/A

Table 2.3: Comparative Evaluation of SaaS Specification Languages

38

2.1.5 Summary and Evaluation of Existing Cloud Service Specifica-
tion Languages

In general, we observe that most of the existing specification languages are restricted
only for cloud services on a particular layer of the cloud stack. Besides, they usually
cover either the technical specification of a cloud service, e.g. packaging and distri-
bution of virtual appliances, APIs, scalability, etc, or the business specification, e.g.
policy, SLAs, etc. They fail to cover the holistic picture of cloud services across all
three layers of the cloud stack.

Regarding the intended purpose of the language, the most common purpose is to
support the specification of technical meta-data that serve for the automatic deploy-
ment and provisioning of a cloud service. Other purposes address the vendor lock-in
problem by proposing a standardized language for specifying either the management
API or the virtual appliance packaging information. However concerning the vendor
lock-in there are still many unsolved compatibility issues beside the API compatibility,
such as the data format, billing, metering, error handling, logging, or cloud manage-
ment and administration, as pointed out by Vambenepe in [Vambenepe, 2009]. Service
composition has not been recognized much as the purpose in an existing language. Es-
pecially, the idea of supporting the vertical composition of cloud services between two
adjacent layers has not been found in any languages.

Extensibility is also very limited in existing specification languages, which prevents
the combination of several languages.

As a conclusion, the state of the art analysis has identified the shortcoming that
there is currently a lack of a uniform specification language that:

1. Can be used for cloud services on all three cloud layers.

2. Unifies all views on a cloud service, e.g. from the customer’s view on the opera-
tional description, APIs and policy, to the developer’s view on service composi-
tion, deployment environment and runtime provisioning issues.

3. Can assist the CSBA engineers to manipulate and compose cloud services speci-
fications of several vendors to address their application needs.

4. Can easily be extended or incorporated with external languages or specification
schemas

5. Aims to become an open standard for the cloud computing community

The derived issues above have served as the requirements for developing the concept
of Blueprint, which will be introduced in the next Chapter 3. Subsequently, chapter 4
will introduce a specification language for the blueprint. The goal of the blueprints
is to support the CSBA engineers in manipulating and composing appropriate cloud
services for their CSBAs.

39

2.2 Cloud Service Manipulation Techniques

Recent specification languages that are based on standardization efforts like the
OVF [DMTF, b], the OCCI [OCCI-Working Group, 2011], and TOSCA [OASIS, 2013],
have proposed to use a common shared set of information to specify cloud services on
a certain layer of the cloud stack. The adoption of these approaches would open the
market and allow differentiation of cloud service offerings based on their different ca-
pabilities and service level agreements. Some languages have been provided together
with a technique for manipulating the cloud service specifications, e.g. most of the
model-driven engineering approaches provide the ability to edit and compose model
entities. However, these techniques work only for cloud services on the same layer of
the cloud stack. We observe the lack of a technique or toolset that supports the manip-
ulation and cross-linking of cloud service specifications across all three layers of the
cloud stack.

Cloud service manipulation techniques respond to the need to create, retrieve, up-
date, and delete cloud service specifications that exist in a cloud service repository,
which corresponds to the basic CRUD data manipulation operations. Furthermore,
since cloud service specifications can be assembled to form a complete CSBA config-
uration, the manipulation techniques should also support the composition of cloud
service specifications. Having the desired features of the manipulation techniques in
mind, we review in the following the most prominent data manipulation approaches
that work on multiple data models.

Most of the specification languages introduced in the previous Section 2.1 use tem-
plates or models to store the specification data. XML is the most commonly chosen
template-based representation whilst the other model-driven approaches also support
the transformation of specification models into XML documents. Hence, studying the
existing support on manipulating XML documents is crucial as it promises the unified
technique that works with several distinctive specification languages. In the following
we review the existing support for manipulating an XML document:

• XSL Transformation (XSLT) [W3C, 1999b]: is a language for transforming an
XML document to another XML document. The old XML document remains
unchanged and a new XML document is created with the same data but a differ-
ent schema. The transformation is driven by a set of template rules specified in
an XSLT document.

• XQuery [W3C, 2013]: is a query language that provides the mechanisms to ex-
tract and manipulate data in XML documents. XQuery uses XPath [W3C, 1999a]
to identify a certain position in an XML document, and defines the five opera-
tions FOR, LET, WHERE, ORDER BY, RETURN (FLWOR) to perform data ex-
traction or manipulation. The semantics of the FLWOR operations is similar to a

40

SELECT-FROM-WHERE clause to perform a JOIN operation in SQL.

• XMLBeans15 is a technology for manipulating XML documents by transform-
ing it into Java types. By compiling an XML schema, XMLBeans enables access
to instances of that schema following the JavaBeans-style with “get” and “set”
methods.

In model-driven engineering, The QVT (queries/views/transformations) lan-
guage [OMG, 2011] is a set of OMG standards that support the model transformation.
The QVT language works with any models that conform to the Meta-Object Facility
(MOF) 2.0 meta model16. As explained in its name, this language supports the query-
ing of data in a model, the view on a model to create a new one, and the transformation
of a model to another one.

When working with semantic data models described in
RDF [Manola & Miller, 2004] and OWL [W3C, 2004], SPARQL [W3C, 2008] and
SPARQL-Update [W3C, 2012] are the most prominent query and manipulation
languages that operate on a RDF/OWL data model. SPARQL support SQL-like query
operations such as SELECT (to retrieve data in a table format), CONSTRUCT (to
retrieve data in the RDF format), ASK (to perform a simple true/false checking), and
DESCRIBE (to extract a RDF sub-model from the RDF data model). SPARQL-Update
supports manipulation operations such as the INSERT (to insert data or triples into a
RDF model) and DELETE (to delete data or triples from a RDF model).

The work in [Pahl et al., 2009] introduces an ontology-based framework for mod-
eling software architectures. The interesting part in this framework is that it does
not only support the specification of an architecture style, but also provide a set
of ontology-based operators for manipulating and composing architecture styles for
defining the architecture of a software system. Since CSBA can also be considered as
an architecture style that combines all the architectural principles and patterns from
both SOA and Cloud domains, the operators for manipulating and composing styles
in this work are very much related to our goal of defining a set of operators for cloud
service manipulation.

The vision of generic model management has started in 2000 by Bernstein et
al. [Bernstein et al., 2000]. By recognizing the problem of data heterogeneity and mis-
match between different database schemas, Bernstein et al started a new research
area in generic model management [Bernstein et al., 2000]. Models and model map-
pings are the two first-class objects in this research area. In this early work, the au-
thors have sketched out the definition of models and model mappings, as well as
the preliminary work on defining the operators for matching, differencing, and merg-
ing models. The Match operator has been recognized as the most important opera-

15XMLBeans: http://xmlbeans.apache.org/
16OMG MOF: http://www.omg.org/mof/

41

http://xmlbeans.apache.org/
http://www.omg.org/mof/

tor to create a model mapping. The first proposal for the Match operator appeared
in [Madhavan et al., 2001] that specifically targeted the database schema matching
problem. Since then, several improvements for the Match operator have appeared,
such as the implementation of the Match operator in Rondo [Melnik et al., 2003] using
a graph matching algorithm called “Similarity Flooding” or an approach to combine
several schema matching approaches to implement the Match operator in the COMA
system [Do & Rahm, 2002]. In his Phd thesis [Melnik, 2004], Melnik has developed a
full set of generic model management operators based on the vision of Bernstein et
al. This set of operators include both the elementary operators that work on a single
model such as INSERT, DELETE, EXTRACT, UPDATE, and the complex operators that
work between two models such as MATCH, MERGE, SPLIT, etc.

Our work towards the support of manipulation techniques for blueprints has
been inspired by the generic model management operators defined by Melnik
in [Melnik, 2004]. We have taken into consideration the applicability of these generic
operators for cloud service specifications, selected a subset of them, and extended
their definitions towards the requirements of the blueprint manipulation techniques,
namely to support the publishing, querying, and composition of blueprints. Since
the blueprints will be described using OWL [W3C, 2004], the formalization and im-
plementation of these operators will rely on the use of SPARQL [W3C, 2008] and
SPARQL-Update [W3C, 2012] - the existing well-established standards in querying
and manipulating OWL models.

42

CHAPTER 3

THE BLUEPRINT APPROACH

This chapter introduces the Blueprint Approach as a support for the CSBA engineering
lifecycle. By proposing the concept of Blueprint as an abstract, uniform specification
of cloud services across all three layers of the cloud stack, the Blueprinting Approach is
a novel solution that allows CSBA engineers to flexibly (re-)configure their CSBAs by
assembling multiple alternative SaaS, PaaS, and IaaS specifications.

The chapter is organized as follows:

• In Section 3.1 we introduce the Blueprint Approach that includes the following
two components: the Blueprint Specification Language (BSL) and the Blueprint
Manipulation Techniques (BMTs). A motivating scenario that has been adopted
from an industrial case study is also introduced in this section to motivate the
use of the Blueprint Approach for engineering CSBAs.

• In Section 3.2, we define the structure of a Blueprint with aim to support the
development of the BSL and the BMTs afterwards.

• In Section 3.3, we introduce the BSL as the first component of the Blueprint Ap-
proach.

• In Section 3.4, we introduce the BMTs as the second component of the Blueprint
Approach.

• In Section 3.5, we explain how the BSL and BMTs could be used by cloud service
providers and CSBA engineers within the htCSBA engineering lifecycle.

43

3.1 Introduction

The Blueprint Approach has been developed to support the design and configuration of
an CSBA with the two components: the Blueprint Specification Language (BSL) and
the Blueprint Manipulation Technique(BMTs). In particular:

• The Blueprint Specification Language (BSL): provides a specification language for
cloud service providers to abstractly (i.e., independent of implementation) and
unambiguously specify their cloud services on any layer of the cloud stack, i.e.,
SaaS, PaaS or IaaS. Figure 3.1 shows how cloud services can be specified in a se-
ries of SaaS, PaaS, and IaaS blueprints using the BSL. Please note that we consider
an CSBA as a composite SaaS and hence use the SaaS blueprint for its specifica-
tion. The structure of a blueprint will be defined in the next Section 3.2.1, which
includes the definitions of the fundamental elements and the dependency links
of a blueprint.

• The Blueprint Manipulation Techniques (BMTs): provide a set of manipulation tech-
niques that operate on the blueprints. These techniques allow a cloud service
provider to publish his blueprints to a marketplace repository or delete his exist-
ing blueprints in the repository. The BMT also supports an CSBA engineer to
query for the needed blueprints, and to flexibly compose multiple blueprints to
configure his CSBA. Figure 3.2 illustrates these BMT techniques.

Composing blueprints results in creating the dependency links between them.
The precise definition of a dependency link between blueprints will be given in
the next Section 3.2.2. Such a dependency link can exist between two blueprints
on the same or two adjacent layers. A blueprint may also have two alternative
dependency links, e.g. the SaaS-2 blueprint in Figure 3.2 has two alternative
dependency links on the PaaS-1 and PaaS-2 blueprints.

Figure 3.1: Blueprint Approach - Blueprint Specification Language

<<IaaS Blueprint>>

IaaS-2

used to

specify

Blueprint Specification Language (BSL)

<<SaaS Blueprint>>

SaaS-1
<<SaaS Blueprint>>

SaaS-2 <<SaaS Blueprint>>

SaaS-3

<<PaaS Blueprint>>

PaaS-1 <<PaaS Blueprint>>

PaaS-2
<<PaaS Blueprint>>

PaaS-3

<<IaaS Blueprint>>

IaaS-1

44

Figure 3.2: Blueprint Approach - Blueprint Manipulation Techniques

Blueprint Manipulation

Techniques (BMTs)

Marketplace

Blueprint Repository

used to query

<<SaaS Blueprint>>

CSBA-1

<<SaaS Blueprint>>

CSBA-2

<<SaaS Blueprint>>

SaaS-1

<<SaaS Blueprint>>

SaaS-2

<<SaaS Blueprint>>

SaaS-3

<<PaaS Blueprint>>

PaaS-1

<<PaaS Blueprint>>

PaaS-2

<<PaaS Blueprint>>

PaaS-3

<<IaaS Blueprint>>

IaaS-1
<<IaaS Blueprint>>

IaaS-2

CSBA-1 Configuration B

Dependency

Link

alternative (xor)

CSBA-1

Configuration

A

alternative (xor)

Blueprint

used to publish

used to delete

used to compose

Together, the BSL and BMTs provide a comprehensive method for (1) creating
cloud service and CSBA specification using blueprints, (2) publishing blueprints to
a blueprint repository, (3) deleting existing blueprints in a blueprint repository, (4)
querying blueprints from a blueprint repository, and (5) composing blueprints to con-
figure an CSBA. In Figure 3.2, by composing multiple blueprints, two alternative con-
figurations for the CSBA-1 can be created, namely the CSBA-1-Configuration-A
and CSBA-1-Configuration-B. The reason of having two alternative configura-
tions for the CSBA-1 is because the blueprint SaaS-2 has two alternative dependency
links on the PaaS-1 and PaaS-2 blueprints.

Having explained the use of the BSL and BMTs for designing and configuring an
CSBA, we claim that using the Blueprint Approach delivers the following benefits for
an CSBA engineer:

• The Blueprint Approach aims to support a full automation and optimization of

45

CSBA configuration by allowing cloud service specification at any layer of the
cloud stack to be appropriately composed with (through the dependency links)
or decomposed from other cloud service specifications at the same or on another
adjacent layer. It also seeks to simplify the complexity of managing all alterna-
tive configurations of an CSBA with a variety of third-party SaaS, PaaS and IaaS
options. As an example in Figure 3.2, all possible configurations of the CSBA-1
can be derived and managed efficiently. Based on some predefined criteria, an
optimum configuration of the CSBA-1 can be easily determined.

• Portability of an SaaS across several PaaS/IaaS clouds can also be derived to
leverage the benefits of elasticity and scale. As an example, from the CSBA con-
figuration in Figure 3.2, it can be derived that there are two alternative deploy-
ment options for the SaaS-2: the PaaS-1 and PaaS-2. In other words, SaaS-2
is portable between PaaS-1 and PaaS-2.

• Traceability can also be supported for configuration decisions throughout all
top-down cloud layers, from the application layer down to the platform and
infrastructure layers or vice versa. This results into an ideal closed-feedback
loop for selecting an optimum configuration or improving an existing con-
figuration of an CSBA. As an example, the CSBA-1 in Figure 3.2 may be
tested with the two alternative configuration CSBA-1-Configuration-A and
CSBA-1-Configuration-B and the test yields that the performance of the
CSBA-1-Configuration-A configuration is better than the performance of the
CSBA-1-Configuration-B configuration. Based on the performance indica-
tors exposed in the PaaS-1 and PaaS-2 blueprints, an CSBA engineer is able
to discover the reason that hosting the SaaS-2 on the PaaS-2 results in a better
performance than hosting it on the PaaS-1.

From the architecture point of view, the Blueprint Approach supports the independent
layering of cloud services within a typical cloud stack, i.e. the cloud services can now
be considered as composable and interchangeable building blocks of an CSBA config-
uration. Hence, the Blueprint Approach promotes the two fundamental characteristics
of a SOA: the reuse and composition of independent, loosely-coupled cloud services
across three layers of the cloud stack. Practically speaking, by adopting the Blueprint
Approach, an CSBA engineer can now freely pick and choose discrete SaaSs from mul-
tiple providers to compose a coherent and integrated CSBA, and for each of these con-
stituting SaaSs there is a variety of alternative PaaS/IaaS solutions for its deployment
and provisioning.

Prior to the development of the BSL and the BMT, it is necessary to define the struc-
ture of a blueprint, i.e. the fundamental elements of a blueprint, and the dependency
links between blueprints. The next Section 3.2 discusses this topic. Then, Section 3.3

46

Figure 3.3: Actors and their Cloud Services in the Taxi Tilburg Scenario.

S3

Calculate

Route

S4

Confirm

Order

MySQL-PaaS

· Offering: SQL Database

· Requirements: Linux VM

PostgreSQL-PaaS

· Offering: SQL Database

JBoss-PaaS

· Offering:

JEE Application Server

VehicleMgt-SaaS

· Offering:

Vehicle Management

Software

· Requirements:

Context Information

Service

JEE Application Server

SQL Database

MapB-SaaS

· Offering:

Map Service

MapA-SaaS

· Offering:

Map Service

CaaS-SaaS

· Offering:

Context Information

Service

MapProviderA MapProviderB

AutoInc

JavaExpert
DatabaseProviderBDatabaseProviderA

SaaS Layer

PaaS Layer

S1

Receive

Order

S2

Allocate

Taxi
S5

Reject

Order

is required for

is required for

TelecomInc

TaxiOrdering-CSBA

· Offering:

Taxi Ordering Application

· Requirements:

Vehicle Management Software

Map Service

Taxi Tilburg

Ubuntu-IaaS

· Offering: Linux VM

BestHosting IaaS Layer

and Section 3.4 provide more details about the two components of the Blueprint Ap-
proach, i.e. the BSL and the BMTs respectively. Finally, Section 3.5 explains how the
BSL and BMTs can be used to support the cloud service providers and CSBA engi-
neers within the CSBA engineering lifecycle.

47

Case Study: the Taxi Tilburg Scenario
To motivate the use of the Blueprint Approach within the CSBA engineering lifecycle, we introduce in this

section a scenario called Taxi Tilburg Scenario, which is about the design and configuration of an CSBA in the
today’s industrial reality. The scenario is a modification of the Taxi Application Scenario that was originally
co-developed with several industrial IT companies like Telefonica, Telecom Italia, Ericson, 2ndQuadrant and
SAP as a case study for the EC’s 4CaaSt project [European Comission, 2010]. In this scenario, a company
called TaxiTilburg would like to develop an CSBA that can support the tasks of receiving an order for taxi
from a customer, checking current status of taxi fleet to allocate a taxi, calculating the route to the customer,
and finally, confirming or rejecting the order. TaxiTilburg decides to follow the CSBA engineering lifecycle
to design and configure their CSBA by assembling cloud service specifications that can be retrieved from a
cloud service marketplace.

Figure 3.3 presents the actors involved in the scenario that collaborate in a marketplace, through which
their cloud services can be advertised and purchased. The actors and their cloud services are briefly explained
as follows.

BestHosting: is an IaaS provider that provides different types of Virtual Machines (VMs). One of his IaaSs
is the Ubuntu-IaaS that offers “Linux Virtual Machines (VMs)”. Each VM is configured with 3Ghz CPU speed
and 3 GiB memory size.

JavaExpert: is a PaaS provider, specialized in hosting Java based applications. The provider offers
a PaaS called JBoss-PaaS, which is a pre-configured “JEE Application Server” running on his on-premise
infrastructure. Each customer can request up to 4 instances of the JBoss-PaaS. The JBoss-PaaS is elastic as
its computing resource capacity can be scaled up and down in terms of CPU speed (Ghz) and memory size
(GiB). More specifically, the JBoss-PaaS can be configured to have the CPU speed between 2 Ghz and 4 Ghz
and the memory size between 2 GiB and 4 GiB. Besides, its network link can have a bandwidth between 2
and 3 Gbit/s.

The other PaaS providers in the scenario are DatabaseProviderA and DatabaseProviderB. They
are experts in providing storage services, especially SQL databases. The difference in their “SQL database”
offerings is that DatabaseProviderA allows their customers to request for maximum 4 instances of their
MySQL-PaaS, each with 3 TB storage, whilst DatabaseProviderB supports only up to 3 instances of
PostgreSQL-PaaS, each with 2 TB storage. Furthermore, whilst DatabaseProviderB always hosts his
PostgreSQL-PaaS in-house, DatabaseProviderA allows their customers to deploy his MySQL-PaaS on an
external “Linux VM”.

On the SaaS layer, Auto Inc. is an established medium-scale enterprise that has spotted a business
opportunity providing a “Vehicle Management Software” in the Netherlands. They plan to offer the software
as a SaaS called VehicleMgt-SaaS, since this provides ubiquitous and common access for their prospective
customers, e.g., taxi providers and car-hiring providers. To implement the VehicleMgt-SaaS, AutoInc has
contracted a software company to develop a vehicle management software in Java. The software contains
a number of binary files, e.g. the .war and .jar files, and data configuration files, e.g. database dump file.
These artefacts require a “JEE Application Server” and a “SQL database” for their deployment. To obtain the
context information of each of the vehicle in the fleet, AutoInc relies on external “Context Information Service”
provider for this functionality. Regarding the Quality of Service (QoS) of their VehicleMgt-SaaS, Auto Inc.

promises to their customers that the maximum response time of their SaaS is 6s and the minimum availability
of their SaaS is 98% on 24/7. To meet this objective, experts of Auto Inc. have determined that they need
to deploy the vehicle management SaaS on an JEE application server with CPU Speed ≥ 2Ghz and memory
size ≥ 2 GiB, and they need a SQL database with capacity ≥ 2 TB.

48

The other SaaS providers include: the TelecomInc who provides a “Context Information Service” called
CaaS-SaaS, the MapProviderA who provides a “Map Service” called MapA-SaaS, and the MapProviderB
who provides another “Map Service” called MapB-SaaS. All these three SaaSs are hosted on-premise. There
is no information regarding the QoS of the CaaS-SaaS. In contrast, the MapProviderA promises that their
MapA-SaaS has a response time ≤ 3s and the availability ≥ 98%. A slightly better QoS is offered by the
MapProviderB for their MapB-SaaS, i.e. response time ≤ 2s and the availability ≥ 99%.

TaxiTilburg is an CSBA provider that offers the “Taxi Ordering Application” in the form of an end-
to-end process-based CSBA called TaxiOrdering-CSBA, as shown in Figure 3.3. The process is composed of
several steps including Receive Order, Allocate Taxi, Calculate Route, Confirm Order, and Reject Order. In
order to implement the steps S1 (Receive Order), S4 (Confirm Order), S5 (Reject Order), TaxiTilburg has
developed an in-house SMS software component that is able to receive new orders by sms, and send order
confirmations or rejections to customers also by sms. Unfortunately, due to lack of expertise, TaxiTilburg has
to rely on third-party SaaS offerings for managing its taxi fleet and for calculating routes, which are the two
necessary functionalities to implement step S2 (Allocate Taxi) and step 3 (Calculate Route) in its TaxiOrdering-
CSBA process. These two required functionalities are captured as the two functional requirements “Vehicle
Management Software” and “Map Service”.

TaxiTilburg has promised to its customers the QoS level (responseTime(s) ≤ 15)&(availability(%) ≤ 98)

of their CSBA. To maintain this predefined QoS level, TaxiTilburg has distributed the required maximum
response time to each step contained in TaxiOrdering-CSBA process. For the step S2 (Allocate Taxi) that
relates to the requirement “Vehicle Management Software”, the required maximum response time is set to
6s, and for the step 3 (Calculate Route) that relates to the requirement “Map Service”, it is set to 3s. The
required minimum avaialability 98% remains same for all steps.

Table 3.1 summarizes all the cloud services in the Taxi Tilburg Scenario including (1) their offerings and
requirements, and (2) the QoS and resource specifications for their offerings and requirements.

The Taxi Tilburg Scenario promotes a uniform specification language to exist so that cloud services across
all three layers can be specified in a uniform way. This language should also allow to specify the policy in general
and QoS in particular of a cloud service. Resource specification for PaaSs/IaaSs should also be supported by
this language. Furthermore, the scenario also motivates the need of manipulation techniques that supports
the publishing, querying, modifying, and composing cloud service specifications to configure an CSBA. As an
example, cloud service providers in this scenario have a desire to publish their cloud service specifications to a
marketplace repository. Some cloud service providers, e.g. the Taxi Tilburg and AutoInc, would like to
query the marketplace repository to retrieve cloud services that can match their requirements. In particular,
Taxi Tilburg is the one who would like to compose external cloud service specifications to configure their
Taxi Ordering CSBA.

Throughout the rest of the thesis, this scenario will also be used as a running example to illustrate how
the Blueprint Approach can be applied to support a uniform cloud service specification language and a set of
cloud service manipulation techniques for configuring an CSBA.

49

Table 3.1: QoS and Resource Specifications for Cloud Services in the
Taxi Tilburg Scenario.

Offering or Requirement QoS Specification Resource Specification

Cloud Service - TaxiOrdering-CSBA

Offering - Taxi Ordering Application (responseTime(s) ≤ 15) & (availabil-
ity(%) ≥ 98)

n/A

Requirement - Vehicle Management

Software

(responseTime(s) ≤ 6) & (availabil-
ity(%) ≥ 98)

n/A

Requirement -Map Service (responseTime(s) ≤ 3) & (availabil-
ity(%) ≥ 98)

n/A

Cloud Service - MapA-SaaS

Offering - Map Service (responseTime(s) ≤ 3) & (availabil-
ity(%) ≥ 98)

n/A

Cloud Service - MapB-SaaS

Offering - Map Service (responseTime(s) ≤ 2) & (availabil-
ity(%) ≥ 99)

n/A

Cloud Service - VehicleMgt-SaaS

Offering - Vehicle Management Software (responseTime(s) ≤ 6) & (availabil-
ity(%) ≥ 98)

n/A

Requirement -Context Information

Service

n/A n/A

Requirement -SQL database n/A capacity(TB) ≥ 2
Requirement -JEE Application Server n/A (CPUSpeed(Ghz) ≥ 2) & (mem-

ory(GiB) ≥ 2) & (networkBand-
width(GBit/s) ≥ 2)

Cloud Service - CaaS-SaaS

Offering - Context Information Service n/A n/A

Cloud Service - Jboss-PaaS

Offering - JEE Application Server n/A (2 ≤ CPUSpeed(Ghz) ≤ 4) & (2
≤memory(GiB)≤ 4) & (2≤ net-
workBandwidth(Gbit/s ≤ 3)

Cloud Service - PostgreSQL-PaaS

Offering - SQL database n/A capacity(TB) = 2

Cloud Service - MySQL-PaaS

Offering - SQL database n/A capacity(TB) = 3
Requirement -Linux VM n/A n/A

Cloud Service - Ubuntu-IaaS

Offering - Linux VM n/A (CPUSpeed(Ghz) = 3) & (mem-
ory(GiB) = 3)

50

3.2 Blueprint Structure Definition

In this Section, we define the structure of a blueprint. This task is necessary for the
development of the BSL and BMTs as it provides a precise understanding of what
types of information are captured in a blueprint.

The concept of a blueprint has been defined in Definition 1.4 as a uniform,
implementation-agnostic cloud service specification on any layer of the cloud stack.
Definition 1.4 has also identified the information sets that should be contained in a
blueprint. To enrich this definition, we also aimed to derive the requirements from
a group of experts in the cloud computing domain. The process of eliciting require-
ments was rather informal, i.e. we have only organized project meetings and online
workshops among the 4caast community [European Comission, 2010] to understand
their requirements for a common, standardized cloud service specification. The par-
ticipants in these workshops and meetings comprise of both academic and industry
partners. As a result, we were able to enrich the Definition 1.4 with the desired fea-
tures that are relevant to the practical needs of current industrial cloud providers.

The blueprint structure introduced in this section is defined based on the informa-
tion sets identified in Definition 1.4. It has also been consolidated with the desired
features proposed by our industrial partners. We present in Definition 3.1 the derived
blueprint structure.

Definition 3.1 (Blueprint Structure) A blueprint comprises of:

• A set of fundamental blueprint elements.

• A set of dependency links between the blueprint elements.

• A set of policy profiles and resource profiles that are attached to blueprint elements
to specify their policy and resource properties.

The rest of this section refines the Definition 3.1 through the following topics:

• Section 3.2.1 defines the fundamental blueprint elements.

• Section 3.2.2 defines the dependency links between the blueprint elements.

• Section 3.2.3 defines a policy profile.

• Section 3.2.4 defines a resource profile.

• Section 3.2.5 introduces the blueprint classification criteria based on the blueprint
structure introduced in this section.

51

It is worth to mention that within the EC’s 4caaSt FP7
project [European Comission, 2010] that involves industrial key players in cloud
computing such as Telefonica, SAP, Erricson, etc., the derived blueprint structure
has been continuously used as a standard, uniform and implementation-agnostic
specification of a cloud services. It has also been validated that the blueprints defined
following our structure definition are capable to capture all the necessary aspects of
an industrial cloud service, yet still remain simple enough to be used by our industry
partners.

3.2.1 Blueprint Elements

Definition 3.2 defines the fundamental elements of a blueprint.

Definition 3.2 (Blueprint Elements) A blueprint includes the following elements:

• An Offering: specifies the functional and non-functional characteristics of the of-
fered cloud service.

• Zero or many Deployment Artifacts: are parts of the offering. They are the physical
pieces of information that need to be deployed or installed to enable the offering.

• Zero or many Requirements: specify the functional and non-functional characteris-
tics of the required cloud services.

In the following, we will explain the details of these three blueprint elements.

Offering

An offering represents the cloud service offered by the blueprint. It specifies the
functional and non-functional characteristics of the offered cloud service. The offerings
on different layers of the cloud stack may expose different characteristics. Our as-
sumption of classifying cloud services based on the three layers of the cloud stack
results into the classification of three different types of blueprints and offerings: (1)
a SaaS blueprint contains a SaaS offering, (2) a PaaS blueprint contains a PaaS offer-
ing, and (2) an IaaS blueprint contains an IaaS offering. In fact, most of the current
commercial cloud service offerings can be easily classified into these three types, e.g.
Amazon EC2, Flexiant, VMWare, GoGrid are the most known IaaS offerings; Microsoft
Azures, Force.com, and Google App Engine are typical PaaS offerings; and SalesForce,
Dropbox and Google App are the typical SaaS offerings.

The general, layer-agnostic functional characteristics of an offering include:

• Functionality: indicates what is offered as a cloud service to the consumers. Ex-
amples of functionalities may cross all three layers of the cloud stack and include

52

for instance: “SMS service” (SaaS), “Map Service” (SaaS), “Servlet Container”
(PaaS), “SQL Database” (PaaS), “Linux Virtual Machine” (IaaS), “Ethernet Net-
work Link” (IaaS), etc.

• Range of instances: indicates the minimum and maximum number of cloud ser-
vice instances that can be provided to a single customer.

• Multi-tenancy: indicates whether a single cloud service instance can simultane-
ously serve several customers.

• Endpoint (optional): indicates the location where the cloud service can be ac-
cessed. This characteristic is specified only in the case the cloud service has al-
ready been deployed and is ready to consume.

On each specific layer of the cloud stack, the offering may expose further layer-specific
functional characteristics including:

• On the SaaS layer: the technical interface specifies the signature and protocol of
a SaaS. Its purpose is to enable the programmatic interaction between the con-
sumers and the SaaS. As an example, the technical interface of a SaaS may in-
clude a WSDL document as its signature and a WS-BPEL document as its proto-
col.

• On the PaaS and IaaS layers:

– Information about the product and technology used to implement a PaaS/I-
aaS: This characteristic provides some transparancy for the consumers to
deploy their applications. Examples of products and technologies include
the “JBoss Application Server” product that implements both the “Servlet
Container” and the “JEE Application Server” technologies.

– The resource description of a PaaS/IaaS: indicates the computing, storage
and network resource capacity that is currently being provisioned to the
PaaS/IaaS to function properly.

Regarding the non-functional characteristics of an offering, we specify them in terms
of the policy characteristics regarding the communication with the service, service
selection, and service usage. Policy characteristics can be specified for an offering on
any layer of the cloud stack. The topic of policy specification in a blueprint will be
followed up in the next Section 3.2.3.

Deployment Artifact

Inspired by the definition of an UML artifact1, a deployment artifact in a blueprint
is the specification of a physical piece of information that is part of an offering and

1OMG, OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2, p197

53

normally used for deploying or installing the offering. The specification of a deploy-
ment artifact includes its name, its type (binary file, configuration file, data dump file,
composition script, etc.) and the location to retrieve it.

On the SaaS layer, examples of deployment artifacts of a SaaS offering include the
binary files or deployable application packages that implement the SaaS, or the config-
uration files for configuring its deployment environment. On the PaaS layer, platform
installation binaries, e.g. Tomcat .jar binaries, are the essential deployment artifacts of
a PaaS offering. On the IaaS layer, the virtual images and/or virtual network config-
uration files, e.g. an OVF [DMTF, b] or AMI2, are examples of deployment artifacts of
an IaaS offering.

Requirement

A requirement specifies a required cloud service in the blueprint. It could be a
SaaS, PaaS, or IaaS requirement indicating a required SaaS, PaaS, or IaaS provided by
a third-party cloud vendor. A requirement and an offering on the same layer of the
cloud stack have the similar structure, since both of them specify an abstract cloud
service that is either offered or required by the blueprint. The only difference is that a
requirement cannot be specified with an endpoint whilst an offering, once it has been
deployed, can be specified with a concrete endpoint.

A requirement can also be attached with a policy specification to indicate its re-
quested policy capabilities, or a PaaS/IaaS requirement can also be attached with a
resource specification to specify its requested resource capabilities.

Examples of Blueprints and Blueprint Elements in the Taxi Tilburg Scenario

Each blueprint and its elements are assigned with a unique ID. Figure 3.4 introduces four blueprints: (1)
the blueprint with the unique ID TaxiOrdering-CSBA-BP is the specification of the TaxiOrdering-CSBA
that supports an CSBA for ordering a taxi, (2) the blueprint with the unique ID VehicleMgt-BP is the
specification of the Vehiclemgt-SaaS that provides a software for managing vehicle fleets, (3) the blueprint
with the unique ID MySQL-BP is the specification of the MySQL-PaaS that offers a MySQL database server,
and (4) the blueprint with the unique ID Ubuntu-BP is the specification of the Ubuntu-IaaS that offers a
Linux virtual machine. Let us focus the sample blueprint VehicleMgt-BP in Figure 3.4 and explain its
elements in more details:

• VehicleMgt-BP is a SaaS blueprint that provides a SaaS offering (unique ID=VehicleMgt-Off)
for managing vehicle fleets.

• Two deployment artifacts (unique ID=App.war) and (unique ID=Data.zip) exist as parts of the
VehicleMgt-Off offering. The App.war is a war file containing the entire vehicle management

2Amazon Machine Images: https://aws.amazon.com/amis

54

application binaries. The Data.zip contains all the data dump files and data configuration scripts
to be installed in a relational database.

• The VehicleMgt-BP requires the following third-party cloud services:

– A context information service (unique ID=VehicleMgt-Req1) is required to provide the
surrounding context information of each vehicle. It is classified as a SaaS requirement in the
VehicleMgt-BP blueprint.

– A relational database (unique ID=VehicleMgt-Req2) is required for the installation of the
deployment artifact Data.zip so that all the needed data of the vehicle management appli-
cation can be correctly configured and persisted. It is classified as a PaaS requirement in the
VehicleMgt-BP blueprint.

– A JEE application server (unique ID=VehicleMgt-Req3) is required for the deployment of the
deployment artifact App.war. It is classified as a PaaS requirement in the VehicleMgt-BP
blueprint.

Although we did not specify an IaaS requirement for an IaaS blueprint in our case study, this case in general
is still valid. One of the most common examples is that an IaaS blueprint requires a network link, which is
classified as an IaaS requirment in our definition. For instance, our case study could be extended so that the
Ubuntu-BP blueprint can contain an IaaS requirement for a “Ethernet 2Gbit network link”.

The definition of the fundamental elements of a blueprint (Definition 3.2) makes
it become a self-contained, composable units with an offering and a set of re-
quirements. Configuring end-to-end CSBAs using blueprints follows the princi-
ples in component-based software engineering [Szyperski, 2002] and service compo-

Figure 3.4: Examples of Blueprints and Blueprint Elements in the Taxi
Tilburg Scenario

Legend

• Blueprint

• Offering

• Deployment Artefact

• Requirement

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA-BP”

<<SaaS Offering>>
ID=“TaxiOrdering-CSBA-Off”

Taxi Ordering Application <<SaaS Requirement>>
ID=“TaxiOrdering-Req2”

Map Service

<<SaaS Requirement>>
ID=“TaxiOrdering-Req1”

Vehicle Management
Software

<<PaaS Blueprint>>
ID=“MySQL-BP”

<<PaaS Offering>>
ID=“MySQL-Off”
SQL Database

<<IaaS Requirement>>
ID=“MySQL-Req1”

Linux VM

<<IaaS Blueprint>>
ID=“Ubuntu-BP”

<<IaaS Offering>>
ID=“Ubuntu-Off”

Linux VM

(a) SaaS Blueprint for an CSBA

(b) SaaS Blueprint

(c) PaaS Blueprint (d) IaaS Blueprint

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

55

sition [Papazoglou, 2003] to compose a number of discrete blueprints by (1) matching
the requirements of a blueprint with the offerings of other existing blueprints, and (2)
linking the requirements with the matched offerings through the “dependency links”.
Whilst the support for matching and linking between an offering and a requirement
is part of the Blueprint Manipulation Technique (BMT) introduced in the subsequent
section 3.4, we define in the following Section 3.2.2 the “dependency links” that may
exist within a blueprint and between two blueprints.

3.2.2 Blueprint Dependency Links

Former related work in component-based system formally defines the two forms of
dependency links for a component-based software deployment: the the intra- and
inter-dependency links [Belguidoum & Dagnat, 2007]. Intra-dependency links exist
between the provided and required services of the same component. They are defined
by the component producer and used to perform the installation. Inter-dependency
links result from the installation and indicate the dependencies between the required
services of a component with the provided services of other components. They are
typically used to perform deinstallation and replacement.

Inspired by this definition of component dependency links, one of the options to
define the dependency links between the blueprint elements is to follow the same
concepts of the component dependency links. In particular, we could have two types
of dependency links: (1) the internal ones between an offering and the requirements of
the same blueprint, and (2) the external ones between a requirement and an offering of
two distinct blueprints. However, one of the drawback of this solution is not to able to
distinguish between the dependency between two elements on the same cloud layer
(normally the functional dependency) and the dependency between two elements on
two adjacent layers (normally the deployment dependency). Given this reason, we
decided to take into account the cloud layers and define in the Definition 3.3 the two
types of blueprint dependency links: the vertical and horizontal links. Then in Propo-
sition 3.1, we restrict the existence of these two types of blueprint dependency links.
We will also explain afterwards the assumptions that have resulted into the restriction
rules.

56

Definition 3.3 (Blueprint Dependency Links) A blueprint dependency link indi-
cates a functional dependency between two blueprint elements. It has one of the following
two types:

• Vertical Link: exists between two blueprint elements on two adjacent layers of the
cloud stack. The blueprint element on the higher layer is the depender and the
blueprint element on the lower layer is the dependeee. For instance, a SaaS offering
can have a vertical link on a PaaS requirement.

• Horizontal Link: exists between two blueprint elements on the same layer of the
cloud stack. For instance, a SaaS offering can have a horizontal link on a SaaS
requirement.

Proposition 3.1 (Restrictions on the Blueprint Dependency Links) We define the
following restrictions on the existence of a vertical or horizontal link:

• A Vertical Link: can only exist between an Offering (the depender on the
higher cloud layer) and a Requirement (the dependee on the lower cloud layer)
within the same blueprint.

• Horizontal Link: can only exist

– between an Offering (the depender) and a Requirement (the dependee)
within the same blueprint.

– between a Requirement (the depender) and an Offering (the dependee)
of two different blueprints.

The restrictions of blueprint dependency links have been derived due to the follow-
ing assumptions:

1. A Deployment Artefact does NOT have any dependency links: A deployment artefact
is part of an offering and thus does not need to have any explicit dependency
links. It is normally associated with an installation/deployment cookbook con-
taining the instructions of which requirements (of the blueprint) are needed for
its deployment and how to perform the deployment, e.g. using the Chef cook-
book for deploying Tomcat3.

2. A Requirement-to-Requirement dependency link does NOT exist: Our assumption
states that if a requirement has a dependency link on another requirement, these
two should be defined together in a single requirement.

3. An Offering-to-Offering dependency link does NOT exist: Our assumption states that

3http://community.opscode.com/cookbooks/tomcat

57

http://community.opscode.com/cookbooks/tomcat

Figure 3.5: Examples of Vertical and Horizontal Links in the Taxi
Tilburg Scenario

(a) Sample horizontal and vertical links

within the Vehicle-Mgt-BP blueprint

(b) Sample horizontal links among several blueprints

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

<<SaaS Blueprint>>
ID=“CaaS-BP”

<<SaaS Offering>>
ID=“CaaS-Off”

Context Information Service

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

<<PaaS Blueprint>>
ID=“MySQL-BP”

<<PaaS Offering>>
ID=“MySQL-Off”
SQL Database

<<IaaS Requirement>>
ID=“MySQL-Req1”

Linux VM

<<PaaS Blueprint>>
ID=“Jonas-BP”

<<PaaS Offering>>
ID=“Jonas-Off”

JEE Application Server

<<PaaS Blueprint>>
ID=“PostgreSQL-BP”

<<PaaS Offering>>
ID=“PostgreSQL-Off”

SQL Database

<<IaaS Blueprint>>
ID=“Ubuntu-BP”

<<IaaS Offering>>
ID=“Ubuntu-Off”

Linux VM

alternative (xor)

Legend

• Blueprint

• Offering

• Deployment Artefact

• Requirement

• Horizontal Dependency

• Vertical Link

this type of dependency link can always be represented through a composition
of an Offering-to-Requirement dependency link and a Requirement-to-Offering
dependency link.

4. An Offering-to-Requirement dependency link does NOT exist between two blueprints:
This assumption is due to the fact that we would like to keep a blueprint as a
self-contained, composable unit so that its offering can only depends on internal
requirements. Furthermore, an external requirement can always be replicated to
an internal requirement of a blueprint.

5. A Requirement-to-Offering dependency link does NOT exist within a blueprint: A re-
quirement represents an external cloud service required by the blueprint and
obviously cannot have a dependency link on the offering of the same blueprint.

6. A Requirement-to-Offering dependency link between two blueprints does NOT ex-
ist as a vertical link. A Requirement-to-Offering dependency link between two
blueprints indicates that the requirement of a blueprint can be fulfilled by the
offering of another blueprint. We assume that a requirement can only be fulfill
by an offering on the same cloud layer. Hence, this dependency link is always a
horizontal link.

58

Examples of Vertical and Horizontal Links in the Taxi Tilburg Scenario

Following up the example in Figure 3.4, the sample vertical and horizontal links within the
VehicleMgt-BP blueprint are introduced in Figure 3.5(a) and yield the following information:

• The SaaS offering VehicleMgt-Off wants to reuse the context information service functionality of
a third-party SaaS (represented by the SaaS requirement VehicleMgt-Req1). There is a horizontal
link between VehicleMgt-Off and VehicleMgt-Req1 to indicate this dependency.

• The SaaS Offering VehicleMgt-Off requires a SQL database (represented by the PaaS require-
ment VehicleMgt-Req2) to deploy the artifact Data.zip. There is a vertical link between
VehicleMgt-Off and VehicleMgt-Req2 to indicate this dependency.

• The SaaS offering VehicleMgt-Off requires a JEE application server (represented by the PaaS
requirement VehicleMgt-Req3) to deploy the artifact App.war. There is a vertical link between
VehicleMgt-Off and VehicleMgt-Req3 to indicate this dependency.

Figure 3.5(a) shows that the VehicleMgt-BP blueprint is still “unresolved”, i.e. it
still contains three unmatched requirements. In the further configuration activities for
the VehicleMgt-BP blueprint, the three requirements need to be matched by query-
ing, selecting and composing appropriate cloud service offerings of other blueprints
that can be retrieved from the marketplace repository. Matching a requirement with
an offering creates a horizontal link between them. The VehicleMgt-BP blueprint
becomes “resolved” if all of its requirements have horizontal links with the offerings
of the other blueprints.

Figure 3.5(b) visualizes the sample “resolved” VehicleMgt-BP together with the
other blueprints in the Taxi Tilburg Scenario. The requirement VehicleMgt-Req1
now has a horizontal link with the CaaS-Off offering of the CaaS-BP blueprint, the
requirement VehicleMgt-Req3 has a horizontal link with the Jonas-Off offering
of the Jonas-BP blueprint, and the requirement VehicleMgt-Req2 has two alterna-
tive horizontal links, one with the MySQL-Off offering of the MySQL-BP blueprint and
the other one with the PostgreSQL-Off offering of the PostgreSQL-BP blueprint.

3.2.3 Policy Profiles in a Blueprint

In the previous Section 3.2.1, the offering and requirement have been defined as the
two essential elements of a blueprint. An offering has been defined as the provided
cloud service of a blueprint and a requirement has been defined as a required, exter-
nal cloud service. In the context of cloud computing where an external cloud service
offered by a third-party provider is certainly not under control of the users, it is of

59

particular importance to consider its policy properties, e.g. Quality of Service (QoS)4,
security, privacy, cost, etc, before actually selecting and using it. In this section, we
define the concept of a Policy Profile that can be attached to an offering or requirement
to specify the assertions on its policy properties.

Policy properties of an offering or requirement can be specified in the form of policy
assertion following the definition in the WS-Policy framework [W3C, 2006]: “A policy
assertion represents a requirement, capability, or other property of a behavior . . . Some
policy assertions specify traditional requirements and capabilities that will manifest
themselves in the messages exchanged (e.g., authentication scheme, transport proto-
col selection). Other policy assertions have no wire manifestation in the messages
exchanged, yet are relevant to service selection and usage (e.g., privacy policy, QoS
characteristics)”. Policy assertions according to this definition cover a vast area of pol-
icy properties, i.e. from the ones related to message exchange to the ones related to
service selection and usage, for instance QoS and privacy properties. If following the
WS-Policy framework, policy assertions can be further grouped into different policy
alternatives within a policy profile. For brevity reason we assume that a policy profile
does not need to be defined with different policy alternatives. Definition 3.4 defines a
policy profile.

Definition 3.4 (Policy Profile) A policy profile can be specified for an offering or re-
quirement of a blueprint. It is a non-ordered collection of policy assertions. A policy
assertion specifies the value range for a policy property.

Unfortunately, the WS-Policy framework does not come with a concrete taxonomy
of policy properties for (Web) services. It would rather leave the definition of policy
properties to users’ hand.

The S-Cube Quality Reference Model (QRM) presented
in [Gehlert & Metzger, 2008] has been developed by the S-Cube consortium5 and is
intended to provide a unified terminology for describing different QoS properties of
SBAs. Quality models from diverse domains such as service-oriented-computing,
business process management, grid computing, and software engineering have been
analyzed in order to extract the relevant QoS properties for SBAs. The QoS properties
in the QRM are organized into categories such as performance, dependability, usabil-
ity, etc., and provides a clear hierarchy between the QoS categories and properties,
e.g. performance contains response time and throughput and latency is a type of
response time. Furthermore according to their definition, some of the QoS categories
cover also other policy characteristics of a cloud service such as security, cost, and
data policy. Hence, the S-Cube QRM seems to be an appropriate reference point for

4http://www.s-cube-network.eu/km/terms/q/quality-of-service-qos
5S-Cube Network of Excellence: http://www.s-cube-network.eu/

60

http://www.s-cube-network.eu/km/terms/q/quality-of-service-qos
http://www.s-cube-network.eu/

Figure 3.6: Example of Policy Profiles in the Taxi Tilburg Scenario

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<Policy Profile>>

VehicleMgt-PP01

• response time (s) <=6

• availability (%) >= 98

<<Policy Profile>>

VehicleMgt-PP03

•availability (%) >= 98

<<Policy Profile>>

VehicleMgt-PP02

• response time (s) <= 3

• availability (%) >= 98

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

Legend

• Blueprint

• Offering

• Deployment Artefact

• Requirement

• Horizontal Dependency

• Vertical Dependency

defining policy properties for a cloud service.
To exemplify the use of policy properties in our work, we select from the S-Cube

QRM the two policy properties Response Time (in s) and Availability (in %). These pol-
icy properties have been selected based on our observation on the most concerned
policy properties of current commercial cloud provider, e.g. Amazon. With these
selected policy properties, policy assertions can be specified as the value range of
the policy properties (with a maximum value, or a minimum value, or both), e.g.
“ResponseTime(s) ≤ 6” or “Availability(%) ≤ 98”.

Examples of Policy Profiles in the Taxi Tilburg Scenario

Examples of policy profiles of the sample VehicleMgt-BP blueprint are given in Figure 3.6. The
policy profile VehicleMgt-PP01 specifies the assertions on the response time and availability of the
VehicleMgt-Off offering, i.e. ResponseTime(s) ≤ 6 & Availability(%) ≥ 98. To enable these pol-
icy assertions, the provider of the VehicleMgt-BP blueprint has specified two further policy profiles: (1)
VehicleMgt-PP02 that contains the assertions on the required response time and availability of the SaaS
requirement VehicleMgt-Req1, and (2) the policy profile VehicleMgt-PP02 that contains the assertion
on the required availability of the two PaaS requirements VehicleMgt-Req2 and VehicleMgt-Req3.

3.2.4 Resource Profiles in a Blueprint

As discussed in the previous Section 3.2.3, policy properties specify the QoS, security,
privacy, cost, etc, with aim to support the users with the selection of third-party cloud

61

services. In case the users intend to use a cloud service as it is and are not much
interested in configuring its underlying infrastructure, policy properties are the key
supportive non-functional properties during the service selection process. However,
if the users are also interested in configuring the underlying infrastructure of the cloud
service, they need to know more about the resource consumption characteristics of a
cloud service.

Current PaaS/IaaS vendors allow customers to configure their PaaS/IaaS offerings
based on a predefined set of resource properties, e.g. “sizing” the CPU speed and mem-
ory capacity of the Virtual Machines or configuring the storage capacity of a database.
From the configuration of the resource properties, prices of the PaaS/IaaS offerings
can then be calculated accordingly. For instance, Amazon allows their customer to
choose among different types of EC2 instances, based on the need of memory, the
Elastic Compute Unit (ECU)6, storage capacity, type of system (32-bit or 64-bit), I/O
performance, and the volume of I/O data that can be optimized for persistent stor-
age in the attached Amazon Elastic Block Store (EBS)7. Similar to Amazon, Windows
Azure provides a way for customers to configure their virtual machines based on the
need of CPU speed, RAM, storage capacity and network bandwidth8. Private cloud
users that use VMWare Workstation to manage their VMs can also specify their VM
configurations based on the predefined specification format9.

Taking into account the need of specifying the resource properties for a PaaS/IaaS,
the blueprint approach allows for specifying the Resource Profile that can be attached
to either a PaaS/IaaS offering or requirement. Definition 3.5 defines a resource profile.

Definition 3.5 (Resource Profile) A resource profile can be specified for a PaaS/IaaS of-
fering or requirement. A resource profile is a non-ordered collection of resource assertions.
Each resource assertion specifies the value range of a resource property.

By examining the resource specifications of several PaaS/IaaS vendors, the
blueprint approach defines the following typical categories of resource properties:

• Computing Resource Properties: specify the computing capabilities of a PaaS/I-
aaS including, for instance, the CPU related properties, memory properties, CPU
type, etc.

6Amazon’s Definition of ECU: “We use several benchmarks and tests to manage the consistency
and predictability of the performance of an EC2 Compute Unit. One EC2 Compute Unit provides
the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. This is also the
equivalent to an early-2006 1.7 GHz Xeon processor referenced in our original documentation”

7Amazon EBS: http://aws.amazon.com/ebs/
8https://www.windowsazure.com/en-us/pricing/calculator/?scenario=

virtual-machines
9http://www.vmware.com/support/ws5/doc/intro_vmspec_ws.html#wp1014257

62

http://aws.amazon.com/ebs/
https://www.windowsazure.com/en-us/pricing/calculator/?scenario=virtual-machines
https://www.windowsazure.com/en-us/pricing/calculator/?scenario=virtual-machines
http://www.vmware.com/support/ws5/doc/intro_vmspec_ws.html#wp1014257

Figure 3.7: Examples of Resource Profiles in the Taxi Tilburg Scenario

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<Resource Profile>>

VehicleMgt-RP01

•capacity (TB) >= 2

<<Resource Profile>>

VehicleMgt-RP02

• CPUSpeed (Ghz) >= 2

• memory (GiB) >= 2

• networkBandwith (Gbit/s) >= 2

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

Legend

• Blueprint

• Offering

• Deployment Artefact

• Requirement

• Horizontal Dependency

• Vertical Dependency

• Storage Resource Properties: specify the storage capability of a PaaS/IaaS, in-
cluding, for instance, the disk storage size, I/O performance, type of disks, etc.

• Network Resource Properties: specify the networking capability of a PaaS/IaaS,
including, for instance, the network latency, bandwidth, etc.

With the definition of the categories of resource properties, resource assertions can be
specified to describe the value range of a resource property (with a maximum value, or
a minimum value, or both), e.g. “3 ≤ CPUSpeed(Ghz) ≤ 4” or “networkLatency(s) ≤
30”.

Examples of Resource Profiles in the Taxi Tilburg Scenario

Examples of resource profiles of the sample VehicleMgt-BP blueprint are given in Figure 3.7. The
resource profile VehicleMgt-RP01 specifies the assertion on the storage capacity of the VehicleMgt-Req2
PaaS requirement. The resource profile VehicleMgt-RP02 specifies the assertions on the CPU speed,
memory size, and network bandwidth of the VehicleMgt-Req3 PaaS requirement.

3.2.5 Blueprint Classification

A blueprint might be classified according to the following dimensions:

• Classification based on the three layers of the cloud stack: Blueprints can be clas-
sified based on the positioning of its cloud service offering on one of the three

63

layers of the cloud stack: SaaS, PaaS, or IaaS. In this thesis, we often distinguish
between the three types of blueprints: a SaaS blueprint containing a SaaS offer-
ing, a PaaS blueprint containing a PaaS offering, and an IaaS blueprint contains
an IaaS offering.

• Classification based on its Configuration Status - resolved blueprint or unresolved
blueprint: A blueprint has the status “unresolved” if at least one of its require-
ments is still unmatched, i.e. there exists no horizontal link for this requirement.
For instance, the VehicleMgt-BP blueprint in Figure 3.5(a) is “unresolved” as
it still contains three unmatched requirements.

In contrast, a blueprint has the status “resolved” if all of its requirements have
already been matched, represented by the horizontal links, by at least an offering.
Figure 3.5(b) illustrates the “resolved” version of the VehicleMgt-BP blueprint
showing that all of its requirements already have a horizontal link.

• Classification based on the Marketplace Status - source blueprint or target blueprint:
If a blueprint has already been submitted to a marketplace to indicate that the
cloud service is ready to be purchased and reused by the other cloud service
providers or CSBA engineers, it is called a Source Blueprint. Source blueprints
are typically stored in a blueprint repository of a marketplace and publicly ac-
cessible for any marketplace users. In contrast, a blueprint specifying an under-
developing cloud service or CSBA is called a Target Blueprint. For instance in the
Taxi Tilburg Scenario, the TaxiOrdering-CSBA is a target blueprint whilst the
other blueprints are source blueprints.

A target blueprint is usually unresolved, and thus requires source blueprints
from a blueprint repository to fulfill its requirements. Source blueprints can
be both resolved and unresolved. In case an unresolved source blueprint is re-
trieved from a repository to resolve a target blueprint, the source blueprint iter-
atively needs to be resolved too.

3.3 Blueprint Specification Language (BSL)

The BSL has been developed to support the specification of blueprints as the abstract,
uniform cloud service specifications across all layers of the cloud stack. We introduce
in the following the main features of the BSL:

• The BSL allows cloud service providers to specify blueprints as the cloud service
specifications on all three layers of the cloud stack, i.e. SaaS blueprints, PaaS
blueprints, and IaaS blueprints. An CSBA engineer can also use the BSL to spec-
ify his CSBA as a composite SaaS blueprint.

64

• The BSL has been developed based on the blueprint structure defined in the pre-
vious section 3.2. Please note that this blueprint structure has been consolidated
from a number of desired features proposed by our industry partners.

• The BSL covers both the technical and business aspects of a cloud service spec-
ification. The technical aspect includes, for instance, the specifications of the
technical interface of a SaaS, the product and technology used to implement a
PaaS/IaaS, the deployment artefacts of a cloud service, the required resource ca-
pacity for deploying a cloud service, etc. The business aspect is specified in terms
of the policy specification for a cloud service, which may include the QoS, cost,
licensing, etc.

• The BSL aims to support the design and configuration of an CSBA within the
CSBA engineering lifecycle. An CSBA engineer can use the BSL to specify his
CSBA design in a SaaS blueprint. Then, his SaaS blueprint can be composed with
the other blueprints to configure his CSBA. Finally, the composition of blueprints
serves as a manifest to configure the deployment environment of his CSBA.

• The BSL is designed in a modular way to increase the usuability. It contains the
following inter-related BSL modules:

– BSL Core Module: allows to specify blueprints on all three layers of the
cloud stack. This module is designed based on the blueprint structure defi-
nition in Section 3.2.

– BSL SaaS Module: extends the BSL Core Module to specify a SaaS blueprint.

– BSL PaaS Module: extends the BSL Core Module to specify a PaaS blueprint.

– BSL IaaS Module: extends the BSL Core Module to specify an IaaS bluer-
pint.

– BSL Policy Description Module: allows to specify a policy profile that can
be associated with an offering or requirement in a blueprint. This module
is designed based on the definition of a policy profile in Section 3.2.3.

– BSL Resource Description Module: allows to specify a resource profile that
can be associated with a PaaS/IaaS offering or requirement in a PaaS/IaaS
blueprint. This module is designed based on the definition of a resource
profile in Section 3.2.4.

– BSL Interface Description Module: allows to specify the interface descrip-
tions that can be associated with a SaaS offering or requirement in a SaaS
blueprint. This module is designed based on existing languages or specifi-
cation schemas that support the specification of (Web) service interface.

65

Figure 3.8: Examples of Blueprints in the Taxi Tilburg Scenario specified
by the BSL

Marketplace

Blueprint Repository

<<SaaS Blueprint>>
ID=“CaaS-BP”

<<SaaS Offering>>
ID=“CaaS-Off”

Context Information Service

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

<<PaaS Blueprint>>
ID=“MySQL-BP”

<<PaaS Offering>>
ID=“MySQL-Off”
SQL Database

<<IaaS Requirement>>
ID=“MySQL-Req1”

Linux VM

<<PaaS Blueprint>>
ID=“Jonas-BP”

<<PaaS Offering>>
ID=“Jonas-Off”

JEE Application Server

<<PaaS Blueprint>>
ID=“PostgreSQL-BP”

<<PaaS Offering>>
ID=“PostgreSQL-Off”

SQL Database

<<IaaS Blueprint>>
ID=“Ubuntu-BP”

<<IaaS Offering>>
ID=“Ubuntu-Off”

Linux VM

Legend

• Blueprint

• Offering

• Deployment Artefact

• Requirement

• Horizontal Dependency

• Vertical Link

<<SaaS Blueprint>>
ID=“MapA-BP”

<<SaaS Offering>>
ID=“MapA-Off”

Map Service

<<SaaS Blueprint>>
ID=“MapB-BP”

<<SaaS Offering>>
ID=“MapB-Off”

Map Service

• The BSL is designed in an extensible way so that users can incorporate external
languages or specification schemas.

Following the OMG’s model-driven engineering methodology [Kleppe et al., 2003],
the BSL has been developed as a domain-specific modeling language (DSML) with
aim to provide language constructs for specifying blueprints using models. In model-
driven engineering, a DSML is a modeling language that is tailored to particular con-
straints and assumptions of an application domain [Chen et al., 2005]. Following the
definition of a DSML in [Chen et al., 2005], the BSL has been developed with the fol-
lowing components:

66

• The BSL Abstract Syntax: introduces the language constructs to model a
blueprint. It is described using the UML class diagram.

• The BSL Concrete Syntax: introduces a concrete XSD template to specify a
blueprint. The mapping between the BSL Abstract Syntax and the Concrete Syn-
tax is also provided.

• The BSL Semantic Domain: introduces the formalization of the BSL Abstract Syn-
tax as a knowledge representation schema described by the Web Ontology Lan-
guage (OWL)- a well-established formal framework for knowledge representa-
tion. The mapping between the BSL Abstract Syntax and the Semantic Domain
is also provided.

In the subsequent chapter 4, these BSL components will be explained in details.

Examples of Blueprints specified by the BSL in the Taxi Tilburg Scenario

Figure 3.8 illustrates some examples of blueprints that have been specified in the Taxi Tilburg Scenario.
By using the BSL, cloud service providers have created a number of blueprints to specify their cloud services
including: the VehicleMgt-SaaS, the MapA-SaaS, the MapB-SaaS, the CaaS-SaaS, the JBoss-PaaS,
the MySQL-PaaS, the PostgreSQL-PaaS, and the Ubuntu-IaaS. These blueprints have also been pub-
lished as source blueprints to the marketplace blueprint repository.

In the next chapter 4, we will provide more details about representing these blueprints using the BSL
abstract and concrete syntax.

3.4 Blueprint Manipulation Techniques (BMTs)

The Blueprint Manipulation Techniques (BMTs) have been developed based on
the idea of supporting the generic model operators for manipulating data models
in [Melnik, 2004]. In fact, we have taken into account the applicability of these generic
operators for the blueprints, selected a subset of them, and extended their definitions
towards the requirements of the manipulation techniques that should be used to sup-
port the CSBA engineering lifecycle. In particular, the BMTs comprise of the following
manipulation techniques:

• Publishing a blueprint to a repository, e.g. a marketplace repository.

• deleting an existing blueprint in the repository.

• Querying blueprints from a repository.

67

Figure 3.9: Examples of using the BMT in the Taxi Tilburg Scenario

Marketplace

Blueprint Repository

Query

Compose

Example of Use Case 1: Querying for a blueprint

Example of Use Case 2: Composing 2 blueprints

“Vehicle Management Software”

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”
Vehicle Management

Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA”

<<SaaS Offering>>
ID=“TaxiOrdering-CSBA-Off”

Taxi Ordering CSBA

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req1”
Vehicle Management Software

Horizontal link

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”
Vehicle Management

Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA”

<<SaaS Offering>>
ID=“TaxiOrdering-CSBA-Off”

Taxi Ordering CSBA

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req1”
Vehicle Management Software

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”
Vehicle Management

Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

• Composing blueprints to form a complete CSBA configuration.

In the subsequent chapter 5, a set of operators will be introduced that work directly
on the blueprints to support these techniques.

68

Examples of using the BMT in the Taxi Tilburg Scenario

To exemplify the use of the BMT, let us consider the following two sample use cases of the BMT within
the Taxi Tilburg Scenario, as illustrated in Figure 3.9:

• Case 1- Querying for a blueprint: TaxiTilburg is looking for a blueprint from a repository that offers
a “Vehicle Management Software” as a SaaS. He submits his request for a “Vehicle Management Soft-
ware” to the marketplace repository. There is only one blueprint that offers the “Vehicle Management
Software” as a SaaS offering, namely the VehicleMgt-BP blueprint.

• Case 2- Composing blueprints: After successfully querying the VehicleMgt-BP blueprint,
TaxiTilburg now needs to compose it with his TaxiOrdering-CSBA-BP blueprint. Compos-
ing blueprints comprises of two steps: (1) identify the matching between a requirement of the
TaxiOrdering-CSBA-BP blueprint with the offering of the VehicleMgt-BP blueprint, and (2)
create a horizontal link from the requirement to the offering . Matching between a requirement and an
offering does not only include the functional matching, but also include the matching of their policy
profiles and/or resource profiles.

3.5 Blueprint Approach in Support of the CSBA Engi-
neering Lifecycle

The aim of this section is to explain how the Blueprint Approach can be used within
the CSBA engineering lifecycle to support the design and configuration of an CSBA.
Figure 3.10 illustrates the CSBA engineering lifecycle with the support of the Blueprint
Approach. Blueprints in this lifecycle are distinguished between source and target
blueprints10, i.e. cloud service providers use source blueprints to specify their cloud ser-
vices and CSBA engineers use target blueprints to specify their CSBAs. In Figure 3.10,
we also denote where the two components of the blueprint approach, i.e. the BSL and
BMTs, are used to support the lifecycle steps.

In Step 1, cloud service providers would like to commoditize their cloud services.
To do so, their cloud services need to be specified in a uniform format and then pub-
lished in a marketplace repository so that the marketplace users can discover and
make use of the offered cloud services. Cloud service providers can use the BSL to
specify their cloud service in a source blueprint.

In Step 2, cloud service providers use the support of the BMT to publish their source
blueprints to a marketplace’s blueprint repository. They can also use the BMT to delete
their existing blueprints in the repository.

In Step 3, an CSBA engineer would like to develop a new CSBA using cloud ser-

10please refer the classification of blueprints based on their marketplace status in Section 3.2.5

69

Figure 3.10: Blueprint Language Support for CSBA Engineering Life-
cycle

Provider A

Source

Blueprint

Marketplace

Blueprint

Repository

Source

Blueprint

Source

Blueprint

Cloud Service A

Provider B

Cloud Service B

Provider C

Cloud Service C

CSBA Engineer

<<SaaS Blueprint>>

CSBA-1

meta-data

<<SaaS Blueprint>>

CSBA-2

meta-data

<<SaaS Blueprint>>

CSBA-3

meta-data

<<SaaS Blueprint>>

SaaS-1

meta-data

<<SaaS Blueprint>>

SaaS-2

meta-data

<<SaaS Blueprint>>

SaaS-3

meta-data

<<SaaS Blueprint>>

SaaS-4

meta-data

<<PaaS Blueprint>>

PaaS-1

meta-data

<<PaaS Blueprint>>

PaaS-2

meta-data

<<PaaS Blueprint>>

PaaS-3

meta-data

<<IaaS Blueprint>>

IaaS-1

meta-data

<<IaaS Blueprint>>

IaaS-2

meta-data

CSBA-1 Configuration B

Meta-data Link

alternative (xor)

CSBA-1

Configuration

A

alternative (xor)

Multiple alternative CSBA

configurations

Source

Blueprint
Source

Blueprint
Source

Blueprint
... Target Blueprint

S1 S2

S3

S4

S6

S5

Cloud Service-based

Application (CSBA)

CSBA Design

<<SaaS Blueprint>>

CSBA-1

meta-data

<<SaaS Blueprint>>

SaaS-1

meta-data

<<SaaS Blueprint>>

SaaS-2

meta-data

<<PaaS Blueprint>>

PaaS-1

meta-data

<<PaaS Blueprint>>

PaaS-2

meta-data

<<IaaS Blueprint>>

IaaS-1

meta-data

<<IaaS Blueprint>>

IaaS-2

meta-data

CSBA-1 Configuration B

alternative (xor)

A selected CSBA

configuration

Cloud Resources

CSBA Engineer

Deploy the CSBA

configuration

BSL

BSL

BMT

Blueprint Specification

Language (BSL)

Blueprint Manipulation

Techniques (BMT)

Blueprint Approach components

BSL

BSL

BMT

- Publish

- Delete

BMT

- Compose

Step 1: Specify

Cloud Service

Step 2: Publish or Modify

Source Blueprints
Step 3: Specify

CSBA

Step 5:

Compose

Blueprints

Step 6: Select an

optimum CSBA

configuration

Step 1: Specify

Cloud Service

Step 1: Specify

Cloud Service

Step 4: Query

Source Blueprints

BMT

- Query
BSL

vices. To do this, he uses the BSL to specify all the necessary information of his
new CSBA. The BSL allows the CSBA engineer to describe not only the functionality
and policies (e.g., minimum and maximum values for the end-to-end response time
and/or availability percentage) of the new CSBA , but also the cloud services required
by his CSBA. At the end of this step, the CSBA engineer has completed his CSBA spec-
ification in a Target Blueprint that contains the CSBA offering and the requirements for
third-party cloud services.

In order to transform the Target Blueprint into a complete end-to-end CSBA con-
figuration that can be used to deploy the CSBA on the physical cloud resources, the
requirements contained in the target blueprint must be matched by the offerings of
the other source blueprints. In Step 1, the Source Blueprints have been specified using
the same BSL language and in Step 2 they have been published to well-known loca-
tion(s) like the marketplace’s blueprint repository. Therefore, source blueprints can be
queried for matching the requirements in the target blueprint. The technique to query
source blueprints is performed in Step 4 with the support of the BMTs.

In Step 5, the target blueprint and a number of source blueprints can composed using
the support of the BMTs. This step results in several alternative configurations of the
CSBA, each of which is an end-to-end composition of blueprints.

70

Figure 3.11: Specifying and Configuring the target blueprint
TaxiOrdering-CSBA-BP

Iteratively Querying Source Blueprints

It
e

ra
ti
v
e

ly
 C

o
m

p
o

s
in

g
 t
h

e

n
e

w
ly

 r
e

tr
ie

v
e

d
 S

o
u

rc
e

B
lu

e
p

ri
n

ts

Marketplace

Blueprint Repository

<<SaaS Blueprint>>
ID=“CaaS-BP”

<<SaaS Offering>>
ID=“CaaS-Off”

Context Information Service

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

<<PaaS Blueprint>>
ID=“MySQL-BP”

<<PaaS Offering>>
ID=“MySQL-Off”
SQL Database

<<IaaS Requirement>>
ID=“MySQL-Req1”

Linux VM

<<PaaS Blueprint>>
ID=“Jonas-BP”

<<PaaS Offering>>
ID=“Jonas-Off”

JEE Application Server

<<PaaS Blueprint>>
ID=“PostgreSQL-BP”

<<PaaS Offering>>
ID=“PostgreSQL-Off”

SQL Database

<<IaaS Blueprint>>
ID=“Ubuntu-BP”

<<IaaS Offering>>
ID=“Ubuntu-Off”

Linux VM

alternative (xor)

Legend

• Blueprint

• Offering

• Deployment Artefact

• Requirement

• Horizontal Dependency

• Vertical Link

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA”

<<SaaS Offering>>
ID=“TaxiOrdering-CSBA-Off”

Taxi Ordering CSBA

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req1”
Vehicle Management Software

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req2”

Map Service

<<SaaS Blueprint>>
ID=“MapA-BP”

<<SaaS
Offering>>

ID=“MapA-Off”
Map Service

<<SaaS Blueprint>>
ID=“MapB-BP”

<<SaaS
Offering>>

ID=“MapB-Off”
Map Service

alternative
(xor)

The next Step 6 allows the developer to select, among several alternative CSBA con-
figurations, the optimum configuration. Selection criteria might include for instance
the cost, the end-to-end performance, the existing resource constraints, or other long-
term business strategies. In this thesis, we do not discuss this step of selecting the
optimum CSBA configuration. As shown in the lifecycle in Figure 3.10, this step is not
supported by the blueprint approach.

Example of following the CSBA engineering lifecycle in the Taxi Tilburg Scenario

The company TaxiTilburg decides to follow the CSBA engineering lifecycle to configure their
TaxiOrdering-CSBA. Figure 3.11 illustrates the result of performing from Step 3 to Step 6 of the lifecy-
cle, namely the specification of the CSBA in a target blueprint called TaxiOrdering-CSBA-BP using the
BSL, and the configuration of the TaxiOrdering-CSBA-BP blueprint using the BMT.

After creating a target blueprint TaxiOrdering-CSBA-BP using the BSL, TaxiTilburg subsequently
uses the BMT to query for appropriate source blueprints from the marketplace repository whose offerings can
be used to match with the requirements of the target blueprint.

Then, TaxiTilburg uses the BMT to compose the target blueprint TaxiOrdering-CSBA-BP with
the newly retrieved source blueprints, i.e. the VehicleMgt-BP, MapA-BP, and MapB-BP blueprints. The
newly retrieved source blueprints may also contain requirements, e.g. the VehicleMgt-BP blueprint. Hence,

71

this querying and composing tasks have to be executed iteratively until the entire configuration of the target
blueprint no longer contains any further requirement.

The Composing technique supported by the BMT is used to compose two blueprints. It comprises of two
steps:

• Identify a matching between a requirement of the first blueprint and the offering of the second blueprint.
The matching technique does not only take into account the functionality matching, but also the policy
and resource matching, i.e. whether the policy assertions specified in the Policy Profile attached to
the requirement can be satisfied by the policy assertions specified in the Policy Profile attached to
the offering. For instance, the two SaaS offerings MapA-Off and MapB-Off can be matched with
the SaaS requirement TaxiOrdering-CSBA-Req2, because (1) both MapA-Off and MapB-Off

offer the “Map Service” functionality and the TaxiOrdering-CSBA-Req2 requires a “Map Service”
functionality; and (2) the policy assertions specified for the MapA-Off and MapB-Off regarding the
maximum response time and minimum availability can satisfy the policy assertions specified for the
requirement TaxiOrdering-CSBA-Req2. Furthermore on the PaaS and IaaS layers, matching is
also based on the resource specification specified in the Resource Profiles , e.g. the VehicleMgt-BP
blueprint has some resource assertions specified for its PaaS requirement VehicleMgt-Req2 regard-
ing the required CPU speed, memory size and network bandwidth, and these assertions can be satisfied
by the resource assertions of the PaaS offering JBoss-Off.

• If a matching can be found between a requirement and an offering, they can be linked by a horizontal
link.

It is worth noting in Figure 3.11 that there could be alternative matching results for a requirement, e.g.
there are two matching results for the requirement TaxiOrdering-CSBA-Req2 blueprint and the re-
quirement VehicleMgt-Req1. This results in alternative compositions of blueprints to configure the
TaxiOrdering-CSBA. The next step after configuring an CSBA is to select among the alternative con-
figurations the optimum one to be deployed on the physical cloud infrastructure. The selection strategy might
depend on a variety of criteria such as the cost, licensing issues, or some private business constraints. For
brevity reason we do not discuss the criteria for selecting an CSBA configuration in this thesis. As an example,
a configuration for the TaxiOrdering-CSBA that involves the MapA-BP blueprint to match the requirement
TaxiOrdering-CSBA-Req2, and the MySQL-BP blueprint to match the requirement VehicleMgt-Req1
can be selected.

72

CHAPTER 4

BLUEPRINT SPECIFICATION LANGUAGE

The concept of blueprint has been introduced in Definition 1.4 as a uniform specifica-
tion for cloud services across all three layers of the cloud stack. Then, the blueprint
structure has been defined in Section 3.2. Based on the blueprint structure defini-
tion, this chapter introduces a uniform language for specifying blueprints, called the
Blueprint Specification Language (BSL).

The chapter is organized as follows:

• Section 4.1 introduces the BSL as a Domain-specific Modelling Language with
the following components: the abstract syntax, the concrete syntax, the mapping
between concrete and abstract syntax, the semantic domain, and the mapping
between the abstract syntax and the semantic domain.

• Section 4.2 introduces the BSL abstract syntax using the Universal Modelling
Language (UML) class diagram notations.

• Section 4.3 introduces the BSL concrete syntax as a Blueprint XSD Template.
Mapping from the BSL abstract syntax model to the Blueprint XSD Template
is also explained in this section.

• Section 4.4 introduces the BSL semantic domain as a Blueprint Schema described
by the Web Ontology Language (OWL) - a well-established formal framework
for knowledge representation.

73

4.1 Introduction

Following the OMG’s model-driven engineering methodology [Kleppe et al., 2003],
the BSL has been developed as a domain-specific modeling language (DSML) with
aim to provide language constructs for specifying blueprints using models. In model-
driven engineering, a DSML is a modeling language that is tailored to particular con-
straints and assumptions of an application domain [Chen et al., 2005]. A DSML has
been formally defined in [Chen et al., 2005] as a five-tuple of: Abstract Syntax A, Con-
crete Syntax C, Semantic Domain S, Semantic Mapping MS and Syntactic Mapping MC.
The abstract syntax A defines the concepts, relationships, and integrity constraints
available in the language. The concrete syntax C defines the specific notation used to
express models, which may be graphical, textual or mixed. The syntactic mapping
MC : C −→ A: assigns syntactic constructs (graphical, textual or both) to the elements
of the abstract syntax. The semantic domain S is usually defined in some formal frame-
work, in terms of which the meaning of the models is explained. Finally, the semantic
mapping MS : A −→ S: relates syntactic concepts to those of the semantic domain.

Throughout this chapter, the five components A, C, MC, S, MS of the BSL will be
subsequently introduced. Figure 4.1 illustrates the content of the chapter showing
which BSL components will be introduced in which subsequent section. The lan-
guages that are used to specify the BSL components are called meta-languages. In
the following, we briefly explain our choices of meta-languages for specifying the BSL
components:

• BSL Abstract Syntax: The specification of the BSL abstract syntax requires a
meta-language that can express its concepts, relationships, and integrity con-
straints. Since we are following the OMG’s model-driven engineering method-
ology to define the BSL [Kleppe et al., 2003], we adopt the Universal Modeling
Language (UML) class diagram as the meta-language for specifying the BSL ab-
stract syntax. In Section 4.2, we introduce the BSL model as the specification of the
BSL abstract syntax in UML. The choice of using UML is also aligned with the
MOF’s four-layer meta-modeling architecture defined by the OMG1: the UML is
on the M2 layer and the BSL model is on the M1 layer.

• BSL Concrete Syntax and BSL Syntactic Mapping: In the context of cloud com-
puting where blueprints are supposed to be exchanged frequently on the Web,
a uniform XML-based representation of blueprints seems to be an appropriate
representation format for the data exchange purpose. Hence, we adopt the XML
schema (XSD) representation technique to define a concrete syntax for the BSL.
Section 4.3 will introduce the Blueprint XSD Template as the BSL concrete syntax.
The BSL syntactic mapping will also be explained in Section 4.3 as the mapping

1Meta Object Facility (MOF): http://www.omg.org/mof/

74

http://www.omg.org/mof/

Figure 4.1: Overview of BSL components

BSL Abstract Syntax model

in UML

(Section 4.2)

BSL Concrete Syntax =

Blueprint XSD Template

(Section 4.3)

BSL Semantic Domain =

Blueprint Schema in OWL

(Section 4.4)

BSL syntactic

mapping

(Section 4.3)

BSL semantic

mapping

(Section 4.4)

from the Blueprint XSD Template to the BSL Meta-model in UML.

• BSL Semantic Domain and BSL Semantic Mapping: According to Emerson et
al. [Emerson et al., 2004], the semantic domains and the associated semantic
mappings define the semantics for a DSML, and these semantics give a precise
meaning to those models that we can create using the DSML. Since blueprint
itself can be considered as a knowledge-intensive specification of a cloud ser-
vice [Papazoglou & Vaquero, 2012], an existing formal framework for knowl-
edge representation seems appropriate for the purpose of formalizing the BSL
semantics. In Section 4.4, we explain our choice of using the Web Ontology
Language (OWL) [McGuinness & van Harmelen (Eds.), 2004] - the existing well-
established standard for knowledge representation for Internet-based resources
and semantic web- to formalize the BSL semantics. Subsequently, a Blueprint
Schema model described in OWL will be introduced as the BSL semantic domain.
A mapping between the BSL abstract syntax model in UML to the Blueprint Schema
Model in OWL will also be explained in Section 4.4 as the BSL Semantic Mapping.

75

Figure 4.2: Positioning the BSL Model and the instantiated Blueprint
Models within the MOF’s meta-modelling architecture

M3 Layer (MOF): specifies the

meta-meta-model for the UML

meta-model

<<meta-model>>

MOF meta-meta-model

<<meta-model>>

UML meta-model

BSL model

Blueprint Model

M2 Layer (UML): specifies the

metaclasses for the UML meta-

model

M1 Layer (User Model): specifies

classes for the BSL model

M0 Layer (Real-world Objects):

specifies concrete blueprint objects

that are instances of the BSL model

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Blueprint ModelBlueprint Model

<<instanceOf>><<instanceOf>>

4.2 The BSL Abstract Syntax Model

In this section, the BSL abstract syntax model (BSL model, for short) is introduced us-
ing the UML class diagram notations to represent the abstract syntax for specifying
blueprints. No concrete notations or implementation considerations for the BSL will
be mentioned in this section. In Figure 4.2, we position the BSL model on the M1
layer (the User Model layer) of the OMG’s MOF meta-modeling architecture. The BSL
model is described by the UML (the M2 layer) and aims to provide concepts (described
by the UML classes) and relationship between the concepts (described by the UML
relations) for modeling blueprints. In fact, there exists another modeling possibility
that extends the UML metamodel in the M2 layer with concepts aimed to generate a
blueprint model. This solution would be more coherent to standard UML extension
mechanism and deliver more UML-consistent models. In the future work, we will re-
consider which modeling approach (the M1 or M2 layer) would be the best fit for the
BSL model.

Using the BSL model, users can instantiate a Blueprint Model that contains concrete
blueprint data objects. Alongside with the introduction of the BSL model in this sec-
tion, we will also provide the examples of using it to instantiate a Blueprint Model
containing sample blueprint data objects.

The BSL model is divided in several interrelated BSL modules to reduce its complex-
ity and increase the understandability of the language. Figure 4.3 illustrates these BSL
modules and the “import” dependencies among them. In the following, we briefly

76

introduce each BSL module:

• BSL core module: this module provides the abstract syntax for specifying a
blueprint that contains the meta-data elements of a cloud service (i.e. offering,
deployment artifacts, requirements, etc.) on any layer of the cloud stack, as well
as the links between these elements. Section 4.2.1 will introduce the language
model of the BSL core module.

• BSL policy description module: this module provides the abstract syntax for
specifying the policy offering/requirement of a cloud service offering/require-
ment on all three layers of the cloud stack. Hence, this module can be imported
into the BSL core module to enable the policy specification in a blueprint. Sec-
tion 4.2.2 will introduce the language model of the policy description module.

• BSL resource description module: this module provides the abstract syntax for
specifying the provided/required resource description of a Paas offering/re-
quirement or IaaS offering/requirement. Hence, this module is imported into
the BSL PaaS Module and the BSL IaaS Module to enable the resource specifica-
tion in a PaaS or IaaS blueprint. Section 4.2.3 will introduce the language model
of the BSL resource description module.

• BSL interface description module: This module provides the abstract syntax for
specifying the provided/required technical interfaces, i.e. the signature and pro-
tocol, of a SaaS offering/requirement. The focus of this module here is to pro-

Figure 4.3: Overview of the BSL Modules

BSL Modules in UML

77

mote the interoperability between the SaaSs by ensuring the compatibility be-
tween the provided technical interface of a SaaS offering and the required in-
terface of a SaaS requirement. Therefore, this module is imported into the BSL
SaaS Module to eanble the interface specification in a SaaS blueprint. We reuse
the concepts of existing meta-models for specifying (Web) service interfaces to
define this language module. Section 4.2.4 will introduce the language model of
the BSL interface description module.

• BSL IaaS Module: this module extends the abstract syntax in the BSL core mod-
ule for the purpose of specifying an IaaS blueprint. Section 4.2.5 will introduce
the language model of the BSL IaaS module.

• BSL PaaS Module: this module extends the abstract syntax in the BSL core mod-
ule for the purpose of specifying a PaaS blueprint. It also imports the BSL IaaS
module to allows for specifying an IaaS requirement in a PaaS blueprint. Sec-
tion 4.2.6 will introduce the language model of the BSL PaaS module.

• BSL SaaS Module: this module extends the abstract syntax in the BSL core mod-
ule for the purpose of specifying a SaaS blueprint. It also imports the BSL PaaS
module to allows for specifying an PaaS requirement in a SaaS blueprint. Sec-
tion 4.2.7 will introduce the language model of the BSL SaaS module.

4.2.1 The BSL Core Module

The language model of the BSL core module is presented in Figure 4.4 using the UML
class diagram notations2. The BSL core module has four essential language concepts,
namely Blueprint, Offering, Deployment Artifact, and Requirement, corresponding to the
concept of the blueprint elements previously introduced in Section 3.2.1. Each lan-
guage concept in the BSL core module is modeled with a set of predefined properties.
A property of a concept has either a basic data type, e.g. int, string, boolean, etc., or a
complex document types. Within the BSL core module, we use the complex type Policy
Profile for representing the policy description of a cloud service. The abstract syntax
for specifying a Policy Profile will be introduced in the BSL policy description module
in the next Section 4.2.2. In the following, each concept in the BSL core module and
their properties will be explained:

• Blueprint is the central concept of the BSL core module as it represents a cloud ser-
vice meta-data specification provided by a cloud service provider. A blueprint
has basic properties including a name, an optional short textual description, the
ownership information, the version information, the releaseDate, and the status of

2The enumeration class is represented as a comment in this model since the modelling tool we use
(named Jude) does not support an explicit construct for modeling an enumeration class

78

Figure 4.4: The BSL Core Module in UML

the blueprint. The status of a blueprint is defined as its configuration status3 and
is specified by its provider to indicate whether it has been resolved or not. A
blueprint consists of blueprint elements, in particular, an Offering and a set of
zero or many Requirements. The composition relationship (dark diamond) be-
tween a blueprint and its offering and requirements indicates a part-of integral
relationship4.

• Offering: represents the cloud service offered by the blueprint. The offering has
the following properties: a mandatory offeringName (with type of string) to spec-
ify the name of the cloud service offered to the blueprint consumer, an optional
offeringType to specify the type of the offered cloud service, and an optional end-
point (with type of URI) to specify the URI endpoint location for programmatic
interactions with the offering. The offered cloud service ranges across three lay-
ers of the cloud stack, i.e. it could be a composite CSBA, or a SaaS, PaaS, or IaaS.
Inspired by the Debian package management approach [Aoki, 2007], the name of
an offering follows a keyword-based approach. This enables an easy searching
and matching of offerings that provide the needed cloud services. The type of the
cloud service is a simple string specifying the common categorization of cloud
services, e.g. it can follow the general classification of cloud abstraction layers
“SaaS”, “PaaS” and “IaaS”, or be more specific like a “database”, “application
server”, “servlet container”. The endpoint of an offering might be unknown
at the design time of the blueprint. After the blueprint has been fully config-
ured and can be used to deploy the cloud service, this property can be updated
to specify the concrete endpoint for the cloud service consumers. The elastic-

3Please refer to the classification of blueprints based on the configuration status in the previous
Section 3.2.5

4This means if the blueprint ceases to exist, all the parts cease to exist too.

79

ity of an offering is optionally specified in terms of the minimum and maximum
number of instances of the cloud service that can be offered for each consumer.
An optional Policy Profile capturing the policy characteristics (including the QoS,
regulatory, licensing, security, etc.., characteristics) could be attached to the of-
fering to specify the policy conditions under which the offering is delivered to
the consumers.

• Deployment Artifact: An offering contains zero or many Deployment Artifacts,
which are the physical pieces of information that need to be deployed and in-
stalled for the provisioning of the offering. The information of a deployment ar-
tifact encompasses: a mandatory artifact name, an optional artifact type indicating
whether this artifact is a software binary, composition script, database configu-
ration and startup file, or some other kinds of configuration files. An optional
artifact location can be specified to indicate the URI location from which the arti-
fact can be downloaded and installed.

• Requirement: The abstract syntax for specifying a requirement is similar to the
one used for specifying an offering, except that a requirement obviously has no
endpoint. In particular, a requirement has the mandatory requirementName and
requirementType properties to indicate the name and type of a particular cloud
service needed by a blueprint. A requirement may be optionally specified with
the required minimum and maximum number of instances that should be pro-
vided, and an optional Policy Profile to specify the policy constraints under which
the needed cloud service should be provided.

Since the offering and requirement classed in the BSL core module are quite identical,
another modeling option is to define an abstract class as a super class capturing their
commonalities. Then, the offering and requirement classes only need to specialize
their differences. This modelling option would indeed deliver a cleaner model for the
BSL and will definitely be considered in the next improvement cycle of the language.

Extensibility of the BSL core module

The BSL core module introduced in this section defines a generic blueprint schema
for specifying all categories of cloud services on all cloud abstraction layers “SaaS”,
“PaaS” and “IaaS”. This module will be extended in the subsequent sections 4.2.7,4.2.6,
and 4.2.5 to specify the blueprint schema for cloud services on each of these three
layers of the cloud stack.

However in general, cloud services may be further classified into different specific
categories, i.e. logistics SaaS, database PaaS, machine IaaS, and may thus need to
be specified with additional properties for which the blueprint schema defined by
the BSL modules may not be sufficient. We acknowledge this important requirement

80

Figure 4.5: Extending the BSL with the external Metering Schema

and thus design our BSL core module in an extensible way, i.e. the BSL core mod-
ule in Figure 4.4 allows for defining category-specific properties ext_property of type
ExtendedProperty for all the language concepts Blueprint, Offering, Deployment Artifact,
or Requirement. The type ExtendedProperty can be considered as the extension point of
the BSL, through which a cloud service provider can extend the language constructs
following the two ways:

• The BSL core module provides a simple way for extending its language con-
struct by allowing the category-specific properties ext_property to be defined
with the type definition SimpleExtendedProperty. The type SimpleExtendedProp-
erty extends the type ExtendedProperty and consists of a property name (p_name),
property type (p_type), and property value (p_value). As an example, if a
blueprint provider wants to specify that his offering is already a product listed
on the marketplace “4caast” and can only be purchased via a “4caast” con-
tract, he could extend his offering with the following two simple extended
properties: {p_name=‘isProduct’, p_type=‘xsd:boolean’, p_value=‘true’}, and
{p_name=‘marketplace’, p_type=‘xsd:string’, p_value=‘4caast’}.

• Another way to extend the language constructs of the BSL is to import the exter-
nal language schemas and specify that the external language constructs extend
the ExtendedProperty concept. Figure 4.5 presents a sample BSL extension that
supports the definition of Metering Section as an ext_property. This BSL exten-
sion has been defined for the 4caaSt marketplace [European Comission, 2010]
to allows the blueprint providers to specify the metering information for their
blueprints, which is needed for accounting purpose as soon as their blueprints
are published and purchased on the 4CaaSt marketplace.

81

Figure 4.6: Example of a Blueprint specified by the BSL Core Module

BSL Core Module

Blueprint Model specifying a Blueprint

External Metering Schema

instantiate

Example of a Blueprint specified by the BSL Core Module

By instantiating the language concepts and their relations in the BSL core module, a Blueprint Model can
be created for the purpose of specifying blueprints. Figure 4.6 depicts a sample Blueprint Model for specifying
the sample VehicleMgt-BP blueprint that has been instantiated from the BSL Core Module. This model
contains instances of the BSL concepts, which have been assigned with a unique ID during the instantiation,
e.g. the unique ID of the blueprint is VehicleMgt-BP. The details of the VehicleMgt-BP blueprint have
already been introduced in the previous chapters and thus will not be repeated here. Instead, we would like to
explain the two alternative usage of the extended properties supported by the BSL Core Module. In Figure 4.6,
the VehicleMgt-BP blueprint is specified with two simple extended properties: the VehicleMgt-BP-Ext1
for indicating whether the blueprint is already a product and the VehicleMgt-BP-Ext2 for indicating the
marketplace where the blueprint can be found. Instead of using the simple extended properties for extending
a BSL language construct, the VehicleMgt-Off offering is extended with an external language construct,
i.e. the 4CaaStMet-1 is an extended property of type Metering Section supported by the external
Metering Schema that has been introduced previously in Figure 4.5.

82

Figure 4.7: The BSL Policy Description Module in UML

4.2.2 The BSL Policy Description Module

The BSL policy description module illustrated in Figure 4.7 has been developed as a
simplified version of the WS-Policy language [W3C, 2006]. It defines the concept of
a Policy Profile to capture the promised policy capabilities of an offered cloud service
or the policy requirements of a required cloud service. Following the Definition 3.4 in
the previous Section 3.2.3, policy profile is defined as a non-ordered collection of policy
assertions. A policy assertion contains a statement about a Policy Property, e.g. avail-
ability, response time, throughput, security, privacy etc., associated with a maximum
value and a minimum value and , e.g. “minValue = 98%” for the availability, and “max-
Value = 6s” for the response time in seconds. A policy property is of type “monotonic”,
“antitonic”, or “non-ordinal”. Monotonic policy properties order their values with in-
creasing order, e.g. availability and throughput; antitonic policy properties order their
values with decreasing order, e.g. response time, failure rate; and non-ordinal policy
properties are those whose values cannot be ordered without further specific order-
ing criteria, such as security, licensing, privacy, etc. The maxValue is used to specify
the value of a non-ordinal policy property, e.g. “maxValue= Basic256Rsa15” for the
security.

The BSL concept policy profile is imported to the BSL core module, to enable the spec-
ification of policy capabilities for an offering or policy requirements for a requirement
in a blueprint. Since WS-Policy is a well-known language for specifying service policy,
the decision to develop the BSL Policy Module as a simplified version of the WS-Policy
language has also another benefit regarding the interoperability with existing service
description languages.

83

Figure 4.8: Example of a Policy Profile specified by the BSL Policy De-
scription Module

BSL Policy Module

instantiate

Blueprint Model specifying a Policy Profile

Example of a Policy Profile specified by the BSL Policy Description Module

By instantiating the language concepts and their relations in the BSL policy description module, a Blueprint
Model can be created for the purpose of specifying a policy profile. Figure 4.8 depicts a sample Blueprint
Model containing the VehicleMgt-PP1 policy profile that, according to our running example, is attached
to the VehicleMgt-Off offering to indicate its policy capabilities. Two policy assertions are specified in the
VehicleMgt-PP1 policy profile, one for specifying the maximum response time and the other for specifying
the minimum availability of the cloud service offering.

4.2.3 The BSL Resource Description Module

The BSL resource description module introduced in Figure 4.9 defines the concept of a
Resource Profile to capture the offered resource capabilities of an offered PaaS/IaaS or
the required resource capabilities of a required PaaS/IaaS. From a first glance, the defi-
nition of the BSL resource description module looks similar the BSL policy description
module. It is indeed the case since we have also reused the structure of the WS-Policy
language [W3C, 2006] for the development of the BSL resource description module.
There is a small extension in this module in the way that we propose also a classifica-
tion of types of resource properties: Computing, Network, and Storage, which in our

84

Figure 4.9: The BSL Resource Description Module in UML

opinion covers the most common resource properties of a cloud service.
A resource profile has been defined in Definition 3.5 in the previous Section 3.2.4

as a non-ordered collection of resource assertions. Each resource assertion contains a
statement about a Resource Property. This BSL module also provides a predefined cat-
egorization of resource properties, in which we classify them into Computing Resource
Properties, e.g. the CPU-type, CPU-Speed, RAM, etc., Storage Resource Properties, e.g.
capacity, I/O bandwidth, etc., and Network Resource Properties, e.g. NetworkLatency,
NetworkBandwidth, etc. An assertion specifies a resource property with a maximum
value and a minimum value, e.g. “minValue = 2” for the CPU-speed in Ghz, “min-
Value = 2” for the network bandwidth in Gbit/s, etc. The resource property can be of
type “monotonic”, “antitonic”, or “non-ordinal”. Monotonic resource properties order
their values with increasing order, e.g. network bandwidth and CPU-Speed; antitonic
resource properties order their values with decreasing order, e.g. network latency, net-
work delay, etc.; and non-ordinal resource properties are those whose values cannot
be ordered without further specific ordering criteria, e.g. the CPU type. The maxValue
is used to specify the value of a non-ordinal resource property, e.g. “maxValue= Intel
Dual Core” for the CPU type.

The BSL concept resource profile is imported into the BSL PaaS module and the BSL
IaaS module to support the specification of the offered or required resource capabilities

85

Figure 4.10: Example of a Resource Profile specified by the BSL Re-
source Description Module

BSL Resource Description Model

instantiate

Blueprint Model Specifying a Resource Profile

for a PaaS/IaaS offering or a PaaS/IaaS requirement respectively.

Example of a Resource Profile specified by the BSL Resource Description Module

By instantiating the language concepts and their relations in the BSL resource description module, a
Blueprint Model can be created for the purpose of specifying a resource profile. Figure 4.10 depicts a sample
Blueprint Model containing the VehicleMgt-RP2 resource profile that, according to our running example,
is attached to the VehicleMgt-Req3 requirement (i.e. the requirement for a JEE application server)
to indicate the required resource capacities of this requirement. Three resource assertions are specified in
the VehicleMgt-RP2 resource profile for specifying the required CPU speed, memory size, and network
bandwidth.

4.2.4 The BSL Interface Description Module

On the SaaS layer, a SaaS offering is a provided cloud software service and a SaaS
requirement is a required cloud software service in a blueprint. The interfaces of

86

a SaaS need to be described in a consistent manner so that they can be discovered
and composed easily across blueprint providers. Existing approaches for describing
component interfaces and web service interfaces could be revised and then reused for
describing cloud service interfaces. In its early time, component-based system has
already realized the need of having a uniform description of component interface,
e.g. the IDL in the CORBA framework, that comprises of a set of operations with in-
put, output and exception parameters. A comprehensive description of a component
interface has been proposed in [Beugnard et al., 1999] that has four levels: syntactic,
behavioral, synchronization and QoS.

The de-facto standard for describing web service interfaces is the WS-* family,
which basically consists of a number of XML-based specification schemas, e.g. WSDL
schema for specifying a Structural Interface, Abstract BPEL schema for specifying an
Behavior Protocol, and the WS-Policy schema for specifying a Policy Profile. Other ini-
tiatives like the CBDi Reference model [Everware-CBDI,] or OASIS SOA reference
model [OASIS, 2006] provide a complete technology-agnostic service description, i.e.
no specific technologies are required for describing services. Apart from the service
interface, these reference models cover also other aspects of services.

Another approach for describing software service interface in a technology-agnostic
way has been presented in [Andrikopoulos, 2010] using an underpinning Abstract Ser-
vice Description (ASD) meta-model as the specification schema. An instantiated ASD
is a service interface description containing the following layers, according to its meta-
model in [Andrikopoulos, 2010]:

• structural layer: contains the method signatures and their message parameters
required for the interaction of the clients with the service

• behavioral layer: contains the records describing the perceived behavior of the
service in terms of exchange of messages grouped under service operations, and
the conditions under which message exchanges may occur.

• non-functional layer: adopts the simplified version of the WS-Policy schema for
the description of QoS characteristics in the forms of assertions that are associ-
ated with the services.

Given that the non-functional layer of this ASD meta-model has been captured in our
BSL Policy Description Module in Section 4.2.2, we decide to develop the BSL Inter-
face Description module based on its structural and behavioral layers. The reason for
reusing the ASD meta-model is because it aggregates the concepts found in widely
adopted technologies like WSDL and BPEL, with the ones from higher-level descrip-
tion models like the OASIS SOA reference model [OASIS, 2006]and the CBDI SOA
meta model [Everware-CBDI,]. Furthermore, our aim is not to invent yet-another-
language for specifying service interfaces, but only to find a solid technology-agnostic

87

Figure 4.11: The BSL Interface Description Module

representation of cloud service interfaces that serves as a significant module of the BSL
model.

Figure 4.11 introduces the BSL interface description module for specifying the in-
terfaces of a SaaS. In this module, an Interface Description of a service consists of at
least a Signature and zero or more Protocol. A signature of a service defines the static
description of a service with its operational semantics. In particular, it is composed of
operations, i.e., specific functions that a service provides by consuming input messages
and producing output or fault messages. An operation has a name and follows one of
the following messaging patterns: one-way(i.e. input only), notification (i.e. output
only), request-response (i.e. input-output), or solicit-response (i.e. output-input). In-
put, output, and fault messages are logically organized in typed parameters. The param-
eter type could be a simple type, e.g. int, boolean, string etc., or a complex document
type.

88

Figure 4.12: The BSL IaaS Module in UML

A protocol is designed on top of the signature, managing the ordering aspect of
executing service operations. In particular, it may encompass a number of activities
organized according to the sequencing relationship sType, i.e. an activity can follow,
be concurrent (ichoice) or be exclusive (echoice) with another activity. A protocol can
contain nested protocols that are also organized following the sequencing relationship
sType. An activity entails a logical functionality that has a name and performs an ac-
tion, which could receive an incoming service request for an operation and then reply
with a response, or invoke an external operation of another service. Operational Condi-
tions are defined as sets of constraints and then attached to an operation or behavioral
protocol as the pre- and post-, and invariant-conditions of its execution. A constraint
specifies a particular operational condition through a string-based expression and a
URI indicator of the constraint language used to formulate the constraint expression.

For brevity reason, we do not introduce an example of using the BSL Interface De-
scription module as we assume that the interface of a SaaS blueprint in the Taxi Tilburg
Scenario, e.g. the VehicleMgt-BP blueprint, can be specified using a WSDL docu-
ment and a BPEL document.

4.2.5 The BSL IaaS Module

The BSL IaaS module in Figure 4.12 extends the BSL core module by specifying the
two types of IaaS offering/requirement, the virtual machine offering/requirement and

89

Figure 4.13: Example of an IaaS blueprint specified by the BSL IaaS
Module

BSL IaaS Module

instantiate

A Blueprint Model specifying an IaaS blueprint
A Blueprint Model specifying a PaaS

blueprint that contains an IaaS requirement

Network-as-a-service (NaaS) offering/requirement. Virtual machine offerings/re-
quirements are specified with information about its operating system and resource
capacity. NaaS offerings/requirements are specifies with information about its net-
work type and network resource capacity. The resource capacity is specified in terms
of the Resource Profile, which is a concept imported from the BSL Resource Description
Module presented in the previous Section 4.2.3.

Regarding the dependency links between the elements of an IaaS blueprint, the BSL
IaaS module supports the specification of:

• A “horizontal link” between an IaaS offering and an IaaS requirement within
the same IaaS blueprint. This horizontal link indicates the need for a cross-IaaS
integration.

• A“horizontal link” between an IaaS requirement and an IaaS offering of two dis-
tinctive blueprints. This horizontal link indicates that the IaaS offering can be
reused to fulfill the IaaS requirement, and thus is usually used to compose an
IaaS blueprint with other blueprints.

90

It is easy to recognize that the BSL IaaS module introduced in this section is very
simple. Given a number of existing approaches that already focus on the specification
format for an IaaS, e.g. the OVF [DMTF, b] or OCCI [OCCI-Working Group, 2011],
our blueprint definition for an IaaS is very minimum. Nevertheless, by taking into ac-
count the extensibility of the BSL core module, existing specification standards like the
OVF [DMTF, b] for specifying the packaging and distribution of virtual appliances and
OCCI [OCCI-Working Group, 2011] for specifying the management APIs, can easily
be incorporated into our blueprint definition for an IaaS through the extended prop-
erties. As an example, Figure 4.13 will introduce an IaaS offering that is specified with
a reference to its packaging information stored in an OVF file.

Example of an IaaS blueprint specified by the BSL IaaS Module

By instantiating the language concepts and their relations in the BSL IaaS module, a Blueprint Model can
be created for the purpose of specifying an IaaS blueprint. Figure 4.13 depicts a sample Blueprint Model for
specifying the Ubuntu-BP blueprint that, according to our running example, is an IaaS blueprint containing
the Ubuntu-Off virtual machine offering. Linux operating system is used in the virtual machine offering and
the resource capacity of the virtual machine is specified in the Ubuntu-Off-RP1 resource profile. The ISO
image file of the virtual machine is specified as a deployment artefact in the blueprint. To enable portability
across different infrastructure cloud, the packaging information of this IaaS offering is specified in a separate
OVF file that is referenced through a URI by the simple extended property Ubuntu-Off-Ext1.

Figure 4.13 also shows that the MySQL-Req1 virtual machine requirement can also be specified for another
blueprint in another Blueprint Model using the BSL IaaS Module (in this case, it is a PaaS blueprint called
MySQL-BP). Between the MySQL-Req1 requirement and the Ubuntu-Off offering there is a horizontal link
indicating that Ubuntu-Off is being used to fulfill MySQL-Req1. This is an example of composing an IaaS
blueprint.

4.2.6 The BSL PaaS Module

This section explains the language constructs provided by the BSL PaaS module for
specifying PaaS blueprints. Figure 4.14 presents the BSL PaaS module in relationships
with other BSL modules. The BSL PaaS module extends the BSL core module, putting
more focus on specifying the product, technology and resource capacity of a PaaS
offering or requirement.

A PaaS offering or requirement must be specified with either the property prod-
uct of type Platform Product to indicate its product information, or with the property
technology of type Platform Technology to specify its technology information. The BSL
PaaS module defines a Platform Product with its name, vendor info, version info, re-
lease date, and an URI referencing the web resource to get more information about
the product. A platform product implements one or more platform technologies. A

91

Figure 4.14: The BSL PaaS Module in UML

platform technology is specified with a name, version info, owner, and a URI pointing
to a web address providing more information on the technology. The BSL PaaS mod-
ule reuses the 4caast categorization of immigrant platform technologies that should be
provided by the PaaSs in the cloud [Binz et al., 2011]:

• Web Hosting: This type of technology is used to implement Web Servers to host
web sites. Typical examples are the Servlet Container, PHP, and ASP.NET tech-
nologies.

• Application Server: This type of technology is used to implement an Application
Server to host applications. Typical examples are the JEE and .Net technology.

• Integration Service: This type of technology is used to implement an EAI com-
ponent for distributed applications. Typical examples are an Enterprise Service
Bus (ESB), or a JMS server.

• Database: Nowadays, database technology can be sub-divided into SQL and
non-SQL technologies. Example of non-SQL technologies are MapReduce5 and

5MapReduce: Simplified Data Processing on Large Clusters http://research.google.com/

archive/mapreduce.html

92

http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html

Figure 4.15: Example of an PaaS blueprint specified by the BSL PaaS
Module

BSL PaaS Module

instantiate

A Blueprint Model specifying a PaaS blueprint
A Blueprint Model specifying a SaaS

blueprint with a PaaS requirement

BLOB-based technology. Examples of database products that implement MapRe-
duce include MongoDB, Apache Hadoop, etc. Example of implementing BLOB-
based is the storage in Microsoft Azure.

• Composition Engine: This type of technology is used to implement service com-
position engines including the engine for Web Service compositions, e.g. WS-
BPEL Engine6, or for composing telecom services, e.g. the Ericsson composition
engine [Niemoeller et al., 2009].

Dependency links between offerings and requirements in a PaaS blueprint may also
exist. The BSL PaaS module allows for specifying:

• A horizontal link between a PaaS Offering and a PaaS Requirement within the same
PaaS blueprint. This horizontal link indicates a need for a cross-PaaS integration.

• A vertical link between a PaaS Offering and an IaaS Requirement within the same

6OASIS Web Services Business Process Execution Language (WSBPEL) https://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

93

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

PaaS blueprint. This vertical link indicates a need for a vertical PaaS-IaaS de-
ployment.

• A horizontal link between a PaaS Requirement and a PaaS Offering in two distinc-
tive PaaS blueprints. This fulfillment link indicates that the PaaS offering can be
reused to fulfill the PaaS requirement, thus is normally used to compose a PaaS
blueprint with another blueprint.

Example of a PaaS blueprint specified by the BSL PaaS Module

By instantiating the language concepts and their relations in the BSL PaaS module, a Blueprint Model
can be created for the purpose of specifying an PaaS blueprint. Figure 4.15 depicts a sample Blueprint Model
for specifying the MySQL-BP blueprint that, according to our running example, is a PaaS blueprint containing
the MySQL-Off PaaS offering and the MySQL-Req1 virtual machine requriement. MySQL is specified as the
platform product of the MySQL-Off and SQL is specified as its platform technology. The resource capacity
of the MySQL-Off is specified in the MySQL-RP1 resource profile. A vertical link is specified between
MySQL-Off and MySQL-Req1 to indicate that the PaaS Offering needs to be deployed on a Linux virtual
machine.

Figure 4.15 also shows that the VehicleMgt-Req2 PaaS requirement can also be specified for another
blueprint in another Blueprint Model using the BSL PaaS Module (in this case, it is the VehicleMgt-BP
SaaS blueprint). Between the VehicleMgt-Req2 requirement and the MySQL-Off offering there is a
horizontal link indicating that MySQL-Off is being used to fulfill VehicleMgt-Req2. This is an example
of composing a PaaS blueprint with another blueprint.

4.2.7 The BSL SaaS Module

This section explains the language constructs provided by the BSL SaaS module to
describe SaaS blueprints. Figure 4.16 presents the BSL SaaS module in relationships
with other BSL modules. In particular, the BSL SaaS module extends the BSL core
module by providing new language concepts for defining a SaaS offering, SaaS de-
ployment artefact, and SaaS requirement. A SaaS Offering has all the properties of an
Offering, and may further provide an Interface Description to enable programmatic in-
teractions with the consumers. As we will see later in the discussion about the Interface
Description of a SaaS in Section 4.2.4, existing languages or specification schemas can
be reused to describe these the two levels of a SaaS interface description: the signature
and protocol. Similarly, a SaaS Requirement has also all the properties of a Requirement,
and may further expose a required Interface Description.

Another important property of a SaaS offering or requirement is its category. This
property allows for a better matchmaking between SaaS offerings and requirements,
i.e. by first matching their categories. To the best of our knowledge, there have
been not many initiatives in categorizing SaaS or, in general, services on the Web.

94

Figure 4.16: The BSL SaaS Module in UML

The BSL SaaS module reuses a comprehensive SaaS categorization provided by In-
tel [Intel, 2010] for defining the value range of the property category. The BSL SaaS
module has also defined the relationships among its language constructs to allow for
the specification of the vertical, horizontal, and fulfillment link. Notably are the fol-
lowing blueprint dependency links defined by the BSL SaaS module:

• Horizontal links could exist from a SaaS offering to many SaaS requirements to
indicate functional dependencies on another third-party SaaS.

• Horizontal links could exit from a SaaS requirement to a SaaS offering of two dis-
tinctive blueprints to indicate that the SaaS requirement can be fulfilled by the
SaaS offering. Obviously, a SaaS requirement can be fulfilled by several different
SaaS offerings.

• Vertical links could exist between a SaaS offering and many PaaS requirements

95

Figure 4.17: Example of a SaaS blueprint specified by the BSL SaaS
Module

BSL SaaS module

instantiate

A Blueprint Model specifying a SaaS blueprint
A Blueprint Model specifying another

SaaS blueprint

(defined by the BSL PaaS module) to indicate the deployment dependencies on
the third-party PaaSs.

Finally, it is worth to remark that a common practice on the SaaS layer is to reuse exist-
ing standards for specifying business-related meta-data of a SaaS. The Universal Ser-
vice Description Language (USDL) and the SOAML languages are the most prominent
candidates for the reuse. A business meta-data specification described in one of these
2 languages can be easily incorporated into a SaaS blueprint specification by using the
extended properties ext_property provided by the BSL Core module in Section 4.2.1.

96

Example of an SaaS blueprint specified by the BSL SaaS Module

By instantiating the language concepts and their relations in the BSL SaaS module, a Blueprint Model can
be created for the purpose of specifying a SaaS blueprint. In Figure 4.6, we have shown a sample Blueprint
Model containg the VehicleMgt-BP blueprint. The offing of this blueprint is, in fact, classified as a SaaS
offering. Hence, using the BSL SaaS module, Figure 4.17 extends the specification of the VehicleMgt-BP
blueprint with more SaaS-related meta-data information. For instance, the VehicleMgt-Off offering is
classified as a SaaS offering in the Logistics industry domain. Details of the technical interface of this
offering has been specified in the VehicleMgt-ID1 interface description, which has been specified using the
BSL Interface Description Module.

Between the offering VehicleMgt-Off and the requirement VehicleMgt-Req1, a horizontal link has
been specified to indicate a functional dependency from the SaaS offering to a SaaS requirement. Vertical links
have been specified to indicate the deployment dependencies between the SaaS offering VehicleMgt-Off

and the two PaaS requirements VehicleMgt-Req2 and VehicleMgt-Req3.
Lastly, Figure 4.17 also shows that the SaaS requirement VehicleMgt-Req1 has a horizontal link to the

CaaS-Off offering of another blueprint. This type of horizontal link (from a requirement to an offering of
two distinct blueprint) indicates a fulfillment dependency. A horizontal link in this case signifies an example
of composing two SaaS blueprints.

4.3 BSL Concrete Syntax in XML

The BSL model introduced in the previous Section 4.2 is an abstract syntax model
for specifying blueprints, without proposing any concrete representation techniques
for the users. In the context of cloud computing where blueprints, as the cloud ser-
vice specifications, are supposed to be exchanged frequently on the Web for the pur-
pose of combining cloud services across different providers, a semi-structured data
format seems appropriate for the purpose of representing blueprints. Towards this
goal, this section proposes a XML schema template for describing blueprints in XML
documents.

Inclined with the emergence of the web, the concept of semi-structured data
emerged in the late 20th century to target the desire for data exchange and integra-
tion across heterogeneous data sources on the Web. Semi-structured data are those
defined with irregular, often unknown-in-advance schema definition, or even when
the schema is known, it may change often and without notice [Suciu, 1998]. Semi-
structured data models are hence called self-describing as the schema definition is
embedded in the data model so that the data can be read, parsed, and understood
easily. Among others, XML is the most appealing technique used for describing semi-
structured data. XML is a markup language for describing data in a document that
can be easily understood and exchanged on the Web. To define the meta-structure of
a type of XML documents, one has to define a document called XML Schema. Among
others, the XSD, which was published as a W3C recommendation in May 2001, is one

97

Figure 4.18: The Blueprint XSD Template

Blueprint

Basic Information

Offerings

Requirements

Deployment Artefacts

Basic Information Section
• blueprintID [1]: UUID

• blueprintName [1]: string

• description [0..1]: String

• ownership [1] : String

• version [0..1]: String

• releaseDate [0..1]: Date

• isProduct [0..1]: boolean

• multi-tenant [0..1]: boolean

• status [0..1]:{‘resolved’ | ‘unresolved’}

• ext_property [0..*]:: BlueprintProperty

Offerings Section
• Offering [1]:

• offeringID [1]:: UUID

• offeringName [1] : String

• offeringType [0..1]:: {SaaS, PaaS, IaaS}

• interface [0..1]:: URI

• endpoint [0..1] :: URI

• maxNrOfInstance[1]:: int

• minNrOfInstance [1]:: int

• offeredPolicy [0…1]:: URI

• ext_property [0..*]: BlueprintProperty

Deployment Artefacts Section
• Deployment Artefact [0…*]:

• artefactID [1]:: UUID

• artefactName [1] : String

• artefactType [0..1]:: String

• artefactLocation [1]:: URI

• ext_property [0..*]: BlueprintProperty

Requirements Section
• Requirement [0…*]:

• requirementD [1]: UUID

• requirementName [1] : String

• requirementType [0..1]:: {SaaS, PaaS, IaaS}

• interface [0..1]:: URI

• maxNrOfInstance[1]:: int

• minNrOfInstances[1]:: int

• requiredPolicy [0…1]:: URI

• matchedOffering [0..1]:: UUID

• ext_property [0..*]: BlueprintProperty

Architecture Topology

Architecture Topology Section
• vertical link [0..*]:

• source [1]: UUID

• target [1] : UUID

• horizontal link[0..*]:

• source [1]: UUID

• target [1] : UUID

Required Blueprints

BlueprintProperty

(Option 1)
• p_name [1] : string

• p_type [1]: QName

• p_value [1] : string

BlueprintProperty

(Option 2)
• p_name [1] : string

• xs:any [1..*]

of the most used languages for defining an XML schema document7.
Based on the BSL model in Section 4.2, we have developed and proposed

in [Nguyen et al., 2011][Nguyen et al., 2012a] the Blueprint XSD Template as the BSL
concrete syntax for specifying blueprints in XML documents. Within the 4caaSt com-
munity [European Comission, 2010], we are extensively using the blueprint XSD tem-
plate as the uniform specification and interchange format for blueprints. Blueprints
described using this template can be easily queried from a marketplace repository,
and then customized and composed by the CSBA engineers to address their applica-
tion requirements.

The Blueprint XSD template is depicted in Figure 4.18. The BSL Syntactic Map-
ping from the BSL model to the template is quite straightforwards. Each concept in
the BSL model is mapped to an XSD element in the template. Properties of a model
concept are mapped to properties of the corresponding XSD element. In addition, an
XSD element representing a blueprint, offering, deployment artefact, or requirement,
is specified with a Universally Unique Identifier (UUID)8 so that it can be uniquely
referenced within a blueprint and across blueprints. There are some specific details of
the mapping that are listed in the following:

7http://www.dblab.ntua.gr/~bikakis/XML%20and%20Semantic%20Web%20W3C%

20Standards%20Timeline-History.pdf
8http://en.wikipedia.org/wiki/Universally_unique_identifier

98

http://www.dblab.ntua.gr/~bikakis/XML%20and%20Semantic%20Web%20W3C%20Standards%20Timeline-History.pdf
http://www.dblab.ntua.gr/~bikakis/XML%20and%20Semantic%20Web%20W3C%20Standards%20Timeline-History.pdf
http://en.wikipedia.org/wiki/Universally_unique_identifier

• The blueprint XSD template does not distinguish between SaaS, PaaS, and IaaS
blueprints. The classification of a blueprint can be determined by checking the
field offeringType in the Offering Section.

• The “horizonal link” between the concepts “Requirement” and “Offering” in the
BSL model is mapped into the property matched_offering of the XSD element “Re-
quirement”. The matched_offering property specifies a UUID reference to the of-
fering that can fulfill the requirement. Therefore, a blueprint is “resolved” if all
the matched_offering property of all the requirements are specified with a value.

• In case the template is used to specify a “resolved” blueprint, the “Required
Blueprints” section is used to store the blueprints whose offerings have been
identified to fulfill a requirement. In case of specifying an “unresolved”
blueprint, this section is empty.

• The vertical and horizontal links within a blueprint are specified in a separate
template section “Topology Section”, each with a “source” and a “target” prop-
erty that specify the UUID references to the source and target elements of the
link.

• The BSL Interface Description module and the BSL Policy Description module
have not been mapped into the blueprint XSD template. Instead, a simplified
approach has been used in the blueprint XSD template that uses a URI to ref-
erence an Interface Description or a Policy Profile, with the assumption that this
document has been specified by a well-known standard specification format, e.g.
WSDL and WS-Policy.

• The BSL Resource Description module has not been mapped into the blueprint
XSD template. Instead, a blueprint provider can use the ext_property in each
template section to specify the resource properties.

Please note that the blueprint XSD template can also be customized for specifying
blueprints in a particular category. Similar to the extended properties of the concepts
in the BSL model, the blueprint XSD template supports defining user-defined proper-
ties ext_property for the “Blueprint, Offering, Deployment Artifact and Requirement”
XSD elements. Each ext_property element may be needed for a particular category of
cloud services and thus can be specified with a property name p_name, property type
p_type, and property value p_value, or with a property name p_name and an XML wild-
card xs:any.

99

4.4 Formalizing the BSL Semantics

The previous Section 4.3 introduces a blueprint XSD template as a concrete XML-based
syntax of the BSL. This blueprint XSD template allows cloud service providers to de-
scribe their blueprints in XML documents. However, XML is barely a syntax format for
information exchange on the Web, i.e. an informal XML representation of a blueprint
does not provide an explicit specification of the intended meanings of the blueprints,
their elements and their links. There is a need to formalize the semantics of the BSL
to provide a precise meanings of the blueprints, their elements and their links. The
purpose of defining the formal semantics of the BSL is twofold:

• To support a more precise blueprint discovery and selection process: Given the
formal semantics, blueprints can be more precisely matched, compared and se-
lected.

• To support an automatic composition of blueprints: A formal semantics of
blueprint will help overcome the interoperability issue between the blueprints.

Given this motivation, we will first explain in Section 4.4.1 the choice of the Web
Ontology Language (OWL) as the knowledge representation language for formalizing
the semantics of the BSL. The formalization has been conducted as the transformation
of the BSL model into a set of inter-related OWL models. The result of the transfor-
mation will be presented in Section 4.4.2. The limitations of our transformation will
also be reported. Lastly, by using a technique provided by the World Wide Web (W3C)
consortium for serializing an OWL model into an XML document [Motik et al., 2009],
we also present in Section 4.4.2 a concrete OWL/XML representation format for the
BSL. In comparison with the purely syntactic XML-based representation technique
presented in Section 4.3, the OWL/XML representation technique is enriched with
more semantics to provide a more precise and consistent way of representing and
linking blueprints as the resources and resource relationships on the Internet.

4.4.1 The choice of Web Ontology Language (OWL) for formalizing
the BSL Semantics

The history of semantic web started with the invention of the Resource Description
Framework (RDF) [Manola & Miller, 2004], which is an approach to enhance the lack
of semantics of XML by providing a consistent, standardized way to describe re-
sources on the Web and the relationships among the resources. The RDF Schema
(RDFS) [Brickley & Guha, 2004] extends RDF by providing mechanisms to describe
a group of related resources as a class and the relationships between the classes as
properties. A class defined by RDFS may have multiple sub- and superclasses and a
property in RDFS can be defined with multiple pairs of domain and range classes.

100

The Web Ontology Language (OWL) [McGuinness & van Harmelen (Eds.), 2004] is
an ontology modeling language recommended by the W3C that adds more vocabulary
to describe classes and properties of the RDFS, e.g. it can describe relations between
classes (such as disjointness), cardinality (for example, “exactly one”), equality, richer
typing of properties, and characteristics of properties (such as symmetry). OWL is de-
signed for use by applications that need to process the content of information rather
than just presenting information to humans [Balani, 2005]. It facilitates greater ma-
chine interpretability of Web content than that supported by XML, RDF, and RDFS
by providing additional vocabulary along with formal semantics [Balani, 2005]. It has
been claimed by Horrocks in [Horrocks et al., 2007] that OWL is based on the Descrip-
tion Logic, which is “a family of knowledge representation languages that can be used
to represent the knowledge of an application domain in a structured and formally
well-understood way” [Baader et al., 2008]. In fact, the formal semantics of OWL (and
all its sub-languages) has been provided by Horrocks in [Horrocks et al., 2007] us-
ing SHOIN(DL) and SHIF(DL), the two very expressive members of the Description
Logic(DL) family.

Given that OWL is formally underpinned by the Description Logic, which is a fam-
ily of formal knowledge representation language [Baader et al., 2008], the transforma-
tion of the BSL model into a set of inter-related OWL models would provide the suf-
ficient level of formalism for our BSL contribution. This motivation has led us to the
choice of OWL to formalize our BSL model. The result of the BSL-to-OWL transforma-
tion will be reported in the next Section 4.4.2. Furthermore, the W3C has also provided
a concrete XML-based syntax called OWL/XML [Motik et al., 2009] for serializing an
OWL model into an XML document for information exchange purpose. We have also
used OWL/XML as the concrete representation technique for specifying blueprints in
XML documents. In the next section, the OWL/XML representation of the BSL will
also be reported.

4.4.2 BSL-to-OWL Transformation

Having modeled the BSL model in the previous Section 4.2 using the UML class dia-
gram, the contribution of this section is to formalize the BSL semantics by transforming
the BSL model into a set of inter-related OWL models: the Blueprint Core Ontology cap-
turing the formal semantics of the BSL core module, the SaaS/PaaS/IaaS Blueprint Ontol-
ogy capturing the formal semantics of the BSL SaaS/PaaS/IaaS modules, the Interface
Description Ontology capturing the formal semantics of the BSL interface description
module, the Resource Description Ontology capturing the formal semantics of the BSL
resource description module, and the Policy Description Ontology capturing the formal
semantics of the BSL policy description module.

The most precise way of transforming a UML model to an OWL model is to use

101

Figure 4.19: Blueprint Core Ontology

Blueprint Core Ontology

Legend

Blueprint

xsd:string

xsd:string

xsd:string

Offering RequirementDeployment

Artifact

xsd:string

Policy Profile

<<OWL Enumeration>>

owl:oneOf

{‘SaaS’ | ‘PaaS’ | ‘IaaS’}

xsd:int

xsd:anyURI

name

description

ownership

version

releaseDate

xsd:string

xsd:Date

xsd:string

xsd:string

xsd:anyURI

artName

artType

artLocation

offeringName

offeringType

{maxInstances |

minInstances}

endpoint

hasRequirement

hasArtifact

requiredPolicyofferedPolicy

1

0..1

0..1

0..1

1

1 0..*

0..*

1

1

0..1

1 1

1
1

0..1 0..1

0..1

0..1
0..1

owl:Class

rdf:DataType

owl:DataProperty

owl:ObjectProperty

ExtendedProperty

xsd:string

xsd:QName

xsd:string

p_name

p_type

p_value

1

1

1

ext_property

0..*

0..*

0..*

0..*

Policy Description

Ontology

requirementName

requirementType

{maxInstances |

minInstances}

ext_property

ext_property

ext_property

SimpleExtended

Property

<<OWL Enumeration>>

owl:oneOf

- resolved

- unresolved

status
1

Is a

hasOffering

xsd:boolean

multitenant 0..1
0..1 multitenant

the Ontology Definition Metamodel (ODM) defined by the OMG [OMG, 2009]. The
ODM document provides a UML profile for modelling RDF and OWL. It also provides
a full guideline for the UML-to-OWL transformation. However for brevity reason,
we decide for a more light-weight and ad-hoc approach by following the transforma-
tion guidelines in [Hart et al., 2004][Gasevic et al., 2004] to transform the BSL modules

102

into OWL models. As an example, Figure 4.19 illustrates the Blueprint Core Ontology
described in OWL as the result of transforming the BSL core module. For brevity rea-
son in this section, we do not discuss the OWL models of other BSL modules in this
section. In the following, the transformation techniques are summarized:

• Each UML class is mapped to an OWL class.

• A relation between two UML classes is mapped to an object property between
two corresponding OWL classes. An object property in OWL is defined between
two OWL classes, one of which is the domain and the other is the range.

• Attributes of an UML class with simple data types are mapped to data properties
of the corresponding OWL class. A data property in OWL uses the data types
defined by the XML schema, e.g. xsd:string, xsd:int, etc., as the specification of
the data range.

• Attributes of an UML class with enumeration data type are mapped to OWL
enumeration data types.

• Cardinality constraints between two UML classes or between a UML class and
its attributes are preserved for OWL object properties or data properties.

• Composition relations are used in the UML model indicate the part-of integral
relationships, e.g. an offering or requirement only belongs to a blueprint and if
the blueprint ceases to exist, all of its offering and requirements cease to exist
too. As pointed out in [Hart et al., 2004], composition is not a supported model-
ing feature in OWL. OWL allows only for declaring an object property or data
property as “functional”, i.e. an instance of the property domain has only one
unique instance of the property range, yet it supports no existence constraint be-
tween the instances of the classes. Hence, existence constraints are left out of
the mapping and defined as additional constraints on top of the OWL blueprint
schema.

• The SimpleExtendedProperty concept in the BSL core module has been proposed
as a simple syntax for specifying a user-defined property for a language con-
cept in the BSL core module. The Blueprint Ontology has been developed
as the formalization of the BSL core module semantics. Hence, an OWL
class SimpleExtendedProperty has been introduced for the OWL blueprint
schema that represents a user-defined property with a name, type, and value.

Our intention for doing the BSL-to-OWL transformation was only to provide a for-
mal underpinning of our BSL contribution. We did not aim to provide a rich semantic
model for the blueprints. Therefore while doing the transformation, we did not use

103

Figure 4.20: A Sample OWL Blueprint Model containing the
VehicleMgt-BP blueprint

Blueprint Core Ontology

Legend

bp:Blueprint

xsd:string

bp:Offering xsd:string

bp:name

bp:offeringName

1

1

1

owl:Class

rdf:DataType

owl:DataProperty

owl:ObjectProperty

<<OWL Enumeration>>

owl:oneOf

- resolved

- unresolved

bp:status 1

bp:hasOffering

A sample OWL Blueprint Model

taxi:VehicleMgt-BP

taxi:VehicleMgt-Off

“VehicleMgt

Blueprint”

“Vehicle

Management

Software”

”unresolved”

bp: name

bp:offeringName

bp:status
rdf:type

rdf:type

owl:Individual

bp:hasOffering

bp := “http://www.eriss.org/BlueprintCoreOntology.owl”

bp := “http://www.eriss.org/BlueprintCoreOntology.owl”

taxi := “http://www.eriss.org/TaxiOrderingBM.owl”

the full features of OWL that were originally developed for the semantic web commu-
nity. The limitation of our transformation is explained in the following in terms of a
confined set of selected OWL features:

• We use the basic features to define an OWL Class, Individual, Data Type, Object
Property, and Data Property.

• We use the subClassOf and disjointWith axioms for the Classes.

• We use the cardinality and existence restrictions on the Object and Data Proper-
ties.

• We classify whether an Object or Data Property is functional or not.

Despite the aforementioned limitation, our proposed OWL models for the BSL already
capture all the necessary formal knowledge for representing meta-data of a cloud ser-
vice. Using these OWL models, instances of the OWL classes (called OWL individuals)
can be populated to represent blueprints and their associated meta-data elements. To
avoid the confusion between an OWL class and an OWL individual, the populated

104

OWL individuals are defined in a separate OWL Blueprint Model. Figure 4.20 illus-
trates a sample OWL Blueprint Model containing two sample OWL individuals, i.e.
the VehicleMgt-BP blueprint and VehicleMgt-Off offering in our running exam-
ple, which have been populated from the OWL classes “Blueprint” and “Offering” of
the Blueprint Core Ontology. Please note that for brevity reason, Figure 4.20 does not
show the complete VehicleMgt-BP blueprint in the sample OWL Blueprint Model,
i.e. not all the data properties of the individuals are shown in the example and fur-
ther individuals specifying requirements, deployment artefacts, extended properties,
interface description, resource profiles, and policy profiles are absent.

All the OWL models described in this section have been modeled using the Pro-
tege tool9. Based on the OWL/XML syntax proposed in [Motik et al., 2009], Protege
supports also the serialization of the OWL models into XML documents (we call them
OWL/XML documents to distinguish from the purely syntactic XML representation in
Section 4.3). The sample OWL Blueprint Models have also been created and serialized
by Protege as OWL/XML documents capturing the sample blueprints.

9http://protege.stanford.edu/

105

CHAPTER 5

BLUEPRINT MANIPULATION TECHNIQUES

The blueprint approach aims to compartmentalize the monolithic cloud service de-
livery stack in three different layers of cloud services, i.e. SaaS, PaaS, IaaS, and use
the concept of blueprints as the uniform specification of cloud services across all these
three layers. We have proposed in the previous chapter 4 a Blueprint Specification
Language (BSL) for cloud service providers to specify their blueprints in a uniform
and consistent manner. The advantage of following the blueprint approach is that
blueprints specified by the BSL can be flexibly manipulated and composed into an
end-to-end CSBA configuration1. The Blueprint Manipulation Techniques (BMTs) have
been developed exactly for this purpose. Inspired by the model management opera-
tors that have been developed in [Melnik, 2004] for the purpose of manipulating data
models, the BMTs have been developed as a set of BMT Operators to support the CSBA
engineers with the publishing, querying, and composition of several blueprints avail-
able in a repository.

5.1 Introduction

The BMTs are defined as the techniques that support the publishing, deleting, query-
ing, and composition of blueprints. The purpose of this section is to give a general
introduction of the BMTs by explaining how the BMTs can be used to support the
CSBA engineers and cloud service providers within the CSBA engineering lifecycle.

In Figure 5.1, we review the CSBA Engineering Lifecycle that has been introduced
in the previous section 1.2. By using the BSL, a blueprint can be specified in a Blueprint

1According to Definition 1.3, Section 1.2, an CSBA configuration is a composition of blueprints re-
quired for configuring the deployment environment of an CSBA

107

Figure 5.1: BMT Supports for the CSBA Engineering Lifecycle

Provider A

Source

Blueprint

Model

Marketplace

Blueprint

Repository

Source

Blueprint

Model

Source

Blueprint

Model

Cloud Service A

Provider B
Cloud Service B

Provider C
Cloud Service C

CSBA Engineer

<<SaaS Blueprint>>

CSBA-1

meta-data

<<SaaS Blueprint>>

CSBA-2

meta-data

<<SaaS Blueprint>>

CSBA-3

meta-data

<<SaaS Blueprint>>

SaaS-1

meta-data

<<SaaS Blueprint>>

SaaS-2

meta-data

<<SaaS Blueprint>>

SaaS-3

meta-data

<<SaaS Blueprint>>

SaaS-4

meta-data

<<PaaS Blueprint>>

PaaS-1

meta-data

<<PaaS Blueprint>>

PaaS-2

meta-data

<<PaaS Blueprint>>

PaaS-3

meta-data

<<IaaS Blueprint>>

IaaS-1

meta-data

<<IaaS Blueprint>>

IaaS-2

meta-data

CSBA-1 Configuration B

Meta-data Link

alternative (xor)

CSBA-1

Configuration

A

alternative (xor)

Multiple alternative CSBA

configurations

Source

Blueprint

Model

Source

Blueprint

Model

Source

Blueprint

Model

... Target

Blueprint Model

S1 S2

S3

S4

S6

S5

Cloud Service-based

Application (CSBA)

CSBA Design

CSBA Engineer

BMT

- Query

BSL

BSL

BMT

Blueprint Specification

Language

Blueprint Manipulation

Technique

Blueprint Approach components

BSL

BSL

BMT

- Publish

- Delete

BSL

BMT

- Compose

Specify CSBA

Specify Cloud

Service

Specify Cloud

Service

Specify Cloud

Service

Model, which is an instance of the BSL model. We distinguish between a source
blueprint models specifying existing blueprints in a repository and a target blueprint
model specifying a blueprint under development2. The role of each BMT technique is
also shown in Figure 5.1. In particular:

• Supports for a Cloud Service Provider:

– Publish: A cloud service provider can use this technique to publish a source
blueprint model to a blueprint repository. A blueprint repository, for in-
stance, may belong to a marketplace that enables the advertisement and
purchasing of blueprints.

– Delete: A cloud service provider can use this technique to delete a source
blueprint model from a blueprint repository.

• Supports for a CSBA engineer:

– Query: An CSBA engineer can use this technique to query for the needed
source blueprint models from a repository.

– Compose: An CSBA engineer can use this technique to compose two or
more blueprint models to form an CSBA configuration.

The aforementioned BMT techniques have been developed as a set of BMT Opera-
tors that support the manipulation and composition of blueprint models. Hence, the

2The classification between source and target blueprints has been introduced in the previous Sec-
tion 3.2.5

108

Figure 5.2: The BMT Topics in relation with the BSL Topics

OWL Blueprint

Ontologies

(Section 4.2)

OWL Blueprint

Model

(Section 4.2)

Conceptual Definition Formalization

BMT Operators:

Insert, Delete, Query, Match,

Link, Unlink, Resolve

BSL Model in UML

(Section 4.1)

Blueprint Model in UML

(Section 4.1)

Blueprint

Model

is instance of is populated from

e1 :={”ns:VehicleMgt-BP”,“SaaSBlueprint’’ ,

(“name” , “string” , “VehicleMgt Blueprint”),

(“ownership” , “string” , “AutoInc”), . . .}

…………...

r1 :=(“hasOffering”, “ns:VehicleMgt-BP”, “ns:VehicleMgt-Off”)
……...

Blueprint Model M,

M.ns= “http://www.eriss.org/VehicleMgt-BP#”

Tuple-based Representation of a

Blueprint Model (Section 5.2.1)

RDF Graph G, G.uri = “http://www.eriss.org/VehicleMgt-BP#”

ns:VehicleMgt-BP

ns:VehicleMgt-Off ns:VehicleMgt-Req1

bp:hasOffering bp:hasRequirement

…………..

“VehicleMgt Blueprint”^^xsd:string

“AutoInc”^^xsd:string

bp:name

bp:ownership

bp:horizontalLink

…………..

ns:= <http://www.eriss.org/VehicleMgt-BP#>

bp:=<http://www.eriss.org/BlueprintOntology.owl#>

xsd:=<http://www.w3.org/2001/XMLSchema\#>

rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns\#
bp:SaaSBlueprint

rdf:type

RDF Graph of a Blueprint Model

(Section 5.2.2)

is a
is equivalent to

work on
are defined with

Blueprint

Model

BSL

Model

BMT

Operators

(Sections

5.3)

Implementation

- Graph operations

- SPARQL Operations

- SPARQL-Update

Operations

RDF/XML

documents

(Section 4.2)

RDF/XML

documents

(Section 4.2)

work on

BMT

Topics

BSL

Topics

Blueprint

Model as

the

 BMT

Operand

(Section

5.2)

SPARQL-Server

Jena Fuseki

HTTP

imports

Java Programs using

the Jena Framework API

Java Objects using the

Jena Framework API

(Section 5.2.3)

is parsed to,

is serialized from

(Sections 5.4 – 5.9)

blueprint models are considered as the BMT Operands. Figure 5.2 introduces the topics
that will be covered in this chapter:

• Blueprint models as the BMT Operands: A blueprint model is an instance of the
BSL model that specifies a blueprint. It serves as the operand of a BMT oper-
ator. In Section 5.2 we introduce the concept of a blueprint model through the
following topics:

– Conceptual Definition: Section 5.2.1 introduces a tuple-based representa-
tion of a blueprint model. This representation is equivalent to the UML-
based representation that has been introduced in the previous Section 4.2,
yet is simpler for being used to explain the input and output of a BMT op-
erator.

– Formalization: Section 5.2.2 formalizes a blueprint model as a Resource De-
scription Framework (RDF) Graph. In the previous Section 4.4, a blueprint
model has been introduced as a model described by the Web Ontology Lan-
guage (OWL). Since the OWL language extends the RDF vocabulary, an

109

OWL model is also a RDF graph. Formalizing a blueprint model as a RDF
Graph has the advantage that the BMT operators that work on the blueprint
models can be formalized as the basic graph operations, the SPARQL oper-
ations [W3C, 2008] for querying RDF Graphs, or the SPARQL-Update oper-
ations [W3C, 2012] for updating RDF Graphs.

– Implementation: Section 5.2.3 introduces the implementation of a blueprint
model as a set of Java objects implementing the Jena Framework API3. It is
also possible to use the Jena Framework API to parse a RDF/XML docu-
ment into a blueprint model, and vice versa to serialize a blueprint model
into a RDF/XML document.

• BMT Operators: Section 5.3 presents an overview of all the BMT operators. Then,
in the subsequent sections 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9, each BMT operator is
introduced in detail with the following topics:

– Conceptual Definition: the signature and functionality of each operator will
be introduced with the blueprint models as its operands.

– Formalization: Since a blueprint model is formalized as a RDF Graph, the
formalization of a BMT operator follows one of the following techniques:

∗ By using basic graph operations: Basic graph operations can be used for
modifying an RDF graph or identifying matchings between two RDF
graphs.

∗ By using SPARQL operations: The SPARQL operations [W3C, 2008] can
be used for querying RDF Graphs from a RDF Dataset. The SPARQL
language defines a RDF Dataset as a collection of RDF Graphs, against
which a SPARQL query can be executed.

∗ By using SPARQL-Update operations: The SPARQL-Update opera-
tions [W3C, 2012] can be used for updating and managing RDF Graphs
in a RDF Graph Store. The SPARQL-Update language defines a RDF
Graph store as a similar concept to a RDF Dataset4. However unlike
the RDF Dataset, a RDF Graph Store also allows for adding and delet-
ing RDF graphs.

– Implementation: The BMT operators have been implemented as Java pro-
grams using the Jena Framework API. The Jena Framework API supports
the creation and manipulation of RDF Graphs, as well as the execution
of SPARQL queries and SPARQL-Update statements against a RDF Graph
Store. The Jena Fuseki server5 is used as a RDF Graph Store server.

3Jena Framework API: http://jena.apache.org/
4We use the term RDF Graph Store synonymously for a RDF Dataset
5Jena Fuseki: http://jena.apache.org/documentation/serving_data/

110

http://jena.apache.org/
http://jena.apache.org/documentation/serving_data/

Figure 5.3: A sample Blueprint Model in UML

Blueprint Model
Blueprint Model

MOF’s meta

 modelling architecture

M3 Layer (MOF): specifies the

meta-meta-model for the UML

meta-model

M2 Layer (UML): specifies the

metaclasses for the UML meta-

model

M1 Layer (User Model): specifies

classes for the BSL model

M0 Layer (Real-world Objects):

specifies concrete blueprint

objects that are instances of the

BSL classes

<<is instance of>>

<<is instance of>>

<<is instance of>>

BSL Model in UML

Blueprint Model

A sample Blueprint Model in UML specifying the VehicleMgt-BP blueprint

<<is instance of>>

5.2 Blueprint Model as the BMT Operand

During the introduction of the BSL model in the previous Section 4.2, we have also
introduced the concept of a blueprint model as an instance of the BSL model that is
created to specify a blueprint. Examples of blueprint models have been introduced in
the previous Section 4.2 using the UML class diagram notations to specify the sample
instantiated blueprints.

A blueprint model is defined as an instance of the BSL model that specifies a single blueprint.
It contains model elements that are instances of the BSL classes, e.g. the instances
of the classes “Blueprint”, “Offering”, “PolicyProfile”, etc. Figure 5.3 illustrates an
example of a blueprint model specifying the VehicleMgt-BP blueprint in the Taxi
Tilburg Scenario. The blueprint model in this example is represented using the UML
class diagram notations. It is positioned on the M0 layer of the MOF’s meta-modeling

111

architecture, which is the layer of real-world object model.
Although a blueprint model can be represented using the UML class diagram no-

tations like the examples introduced in the previous Section 4.2, a graphical UML-
based representation of a blueprint model is not suitable for defining the operators
that work on it. We introduce in the following an abstract tuple-based representation
of a blueprint model that is equivalent to the UML-based representation, yet simpler
for explaining the input and the output of each operator that we are going to define in
the subsequent sections.

5.2.1 A Tuple-based Representation of a Blueprint Model

In this section, we introduce a tuple-based representation for a blueprint model that is
equivalent to its UML-based graphical representation. The reason for introducing this
tuple-based representation is because it is suitable for defining inputs and outputs of
the BMT operators that we will define in the subsequent sections.

An element e in a Blueprint Model M, i.e. e ∈ M, is an instance of a BSL class, e.g.
“Blueprint”, “Offering”, “Requirement”, etc. It is represented as the following tuple:

e := {id :: URI, class :: string, att∗}, (5.1)

where

• id: the unique ID of an element e defined in terms of an URI reference.

• class: the name of the BSL class from which e is instantiated, e.g. “Blueprint”,
“Offering”, etc.

• att∗: zero or more attributes. Each attribute att is defined with a 3-tuple of at-
tribute name, type, and value:

att := (name :: string, type :: string, value :: string|URI) where

– name: the name of the attribute as defined in the BSL class, e.g “name”,
“type”, “maxNrOfInstances”, etc.

– type: the type of the attribute as defined in the BSL class. It could be a
primitive type, e.g. string, int, boolean, etc., or a complex type defined by
another BSL class.

– value: the value of the attribute.

If the type is specified as a primitive type, then value should conform
to the type. For instance, type = “int′′ & value = “6′′, or type =

“boolean′′ & value = “true′′.
If the type is specified as a complex type defined by a BSL class c, then value
stores the URI reference to another element e′ that is an instance of the class
c. For instance, type = “PolicyPro f ile′′ & value = “ns:VehicleMgt-PP1′′.

112

A relation may exist between two elements in a blueprint model. These relations have
been defined in the BSL model as the relations between the BSL classes, e.g. “ha-
sOffering”, “hasRequirement”, “horizontalLink”, “verticalLink”, etc. A relation r in a
Blueprint Model M, i.e. r ∈ M, between the source element es and the target element
et is represented as the following tuple:

r := (name :: string, ids :: URI, idt :: URI), (5.2)

where

• name: the name of the relation as defined by the BSL, e.g. “has Offering”, “has
Requirement”, “horizontal link”, “vertical link”, etc.

• ids: the unique ID of the source element es in M, i.e. ∃!es ∈ M, r.ids = es.id.

• idt: the unique ID of the target element et, i.e. ∃!et, r.idt = et.id. Please note that
et may belong to another Blueprint Model M′.

Lastly, a Blueprint Model M is defined with a namespace ns, a finite set of elements ei,
and a finite set of relations rj:

M := {ns :: string, e∗, r∗}, (5.3)

where

• ns: the namespace of the model M. It is used as the unique ID of the blueprint
model.

• e∗ the elements in M.

• r∗ the relations in M. Please note that the source element of a relation has to
belong to M, i.e. ∀rj ∈ M, ∃!ei ∈ M, rj.ids = ei.id, but the target element can
belong to another Blueprint Model M′.

Example 5.1 (Example of a Tuple-based Representation of a Blueprint Model) We introduce in the follow-
ing a sample blueprint model M specifying the VehicleMgt-BP blueprint in the Taxi Tilburg Scenario:

113

URI Prefix declarations:

ns := “http://www.eriss.org/VehicleMgt-BP#′′

ns1 := “http://www.eriss.org/CaaS-BP#′′

ns2 := “http://www.eriss.org/MySQL-BP#′′

ns3 := “http://www.eriss.org/PostgreSQL-BP#′′

ns4 := “http://www.eriss.org/JBoss-BP#′′

(5.4)

Elements in M:

e1 := {“ns:VehicleMgt-BP′′,“SaaSBlueprint′′,

(“name′′, “string′′, “VehicleMgt Blueprint′′),

(“ownership′′, “string′′, “AutoInc′′), . . .}

e2 := {“ns:VehicleMgt-Off′′,“SaaSO f f ering′′,

(“o f f eringName′′, “string′′, “Vehicle Management Software′′),

(“o f f eringType′′, “string′′, “SaaS′′), . . .

(“policy′′, “PolicyPro f ile′′, “ns : VehicleMgt− PP1′′), . . .}

e3 := {“ns:VehicleMgt-Req1′′,“SaaSRequirement′′,

(“requirementName′′, “string′′, “Context Information Service′′),

(“requirementType′′, “string′′, “SaaS′′), . . .} >>

e4 := {“ns:VehicleMgt-Req2′′,“PaaSRequirement′′,

(“requirementName′′, “SQL database′′),

(“requirementType′′, “string′′, “PaaS′′), . . .} >>

. . .

(5.5)

Relations in M:

r1 := (“hasO f f ering′′, “ns:VehicleMgt-BP′′, “ns:VehicleMgt-Off′′)

r2 := (“hasRequirement′′, “ns:VehicleMgt-BP′′, “ns:VehicleMgt-Req1′′)

r3 := (“hasRequirement′′, “ns:VehicleMgt-BP′′, “ns:VehicleMgt-Req2′′)

r4 := (“hasRequirement′′, “ns:VehicleMgt-BP′′, “ns:VehicleMgt-Req3′′)

r5 := (“horizontalLink′′, “ns:VehicleMgt-Off′′, “ns:VehicleMgt-Req1′′)

r6 := (“verticalLink′′, “ns:VehicleMgt-Off′′, “ns:VehicleMgt-Req2′′)

. . .

(5.6)

Finally, the Blueprint Model M:

M := {“http://www.eriss.org/VehicleMgt-BP#′′, e1, e2, e3, . . . , r1, r2, r3, . . .} (5.7)

Please note that within the Blueprint Model M, the r21, r22, r23, r24 relations are the four examples of horizontal
links that exist across two Blueprint Models. The target elements of these relations do not belong to M but
the other Blueprint Models.

114

5.2.2 Formalizing a Blueprint Model as a RDF Graph

We choose to formalize a Blueprint Model as a RDF graph [Klyne & Caroll, 2004] due
to the following two reasons:

• In the previous Section 4.4 we have formalized the BSL model as a set of OWL
blueprint ontologies. By populating individuals of the OWL classes in these
OWL blueprint ontologies, a blueprint model can be instantiated as another
OWL model containing the instances of the OWL class. However, an OWL-based
blueprint model is suitable only for the purpose of representing and reasoning
on a blueprint.

An OWL model is also a RDF Graph, since the OWL language extends
the RDF vocabulary [Dean & Schreiber, 2004]. For the purpose of manipu-
lating and exchanging data of an OWL model, its RDF Graph should be
used [Patel-Schneider et al., 2004]. Hence, for the purpose of defining and for-
malizing the BMT operators to manipulate a blueprint model, we decide to use
its RDF Graph representation.

• SPARQL [W3C, 2008] and SPARQL-Update [W3C, 2012] are the two well-
established standards defining operations for manipulating and querying RDF
Graphs. The use of RDF Graph as the formalization of a blueprint model will
enable the formalization of the BMT operators using the SPARQL and SPARQL-
Update operations.

• An RDF Graph is a labeled acyclic directed graph. The fact that the nodes of the
graph can be labeled with the blueprint elements and their attributes, and the
edges of the graph can be labelled with the relationship names (e.g. the horizon-
tal and vertical links between the blueprint elements) provides an easier solution
for the structural matching between two RDF graphs (i.e. two blueprint models).
In fact, the structural matching between two RDF graphs will be used in the next
Section 5.7 as the formalization of our Match operator introduced also in this
section.

A RDF Graph is formally defined as a set of RDF triples [Klyne & Caroll, 2004]. A RDF
triple contains three components: (1) subject as the URI reference of a RDF resource, (2)
predicate as the URI reference of a RDF property, and (3) object as the URI of another
RDF resource or a RDF typed literal.

Let us consider a RDF Graph G as the formalization of the blueprint model M with
the following URI prefix declarations:

• bp:=<http://www.eriss.org/BlueprintOntology.owl#> : URI prefix declaration
for the OWL Blueprint Ontologies

115

• rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#> : URI prefix declara-
tion for the RDF syntax

• xsd:= <http://www.w3.org/2001/XMLSchema#> : URI prefix declaration for
the XSD data types

Then, the mapping between a tuple-based representation of the blueprint model M
and its RDF Graph G is explained in the following:

• The namespace M.ns is formalized as the URI G.uri of the RDF Graph G:

M.ns = G.uri

• An element e = {e.id, e.class, att∗} ∈ M is formalized as the following RDF
triple in G:

“e.id rd f : type bp : e.class”

• Each attribute att = (att.name, att.type, att.value) ∈ e with a primitive type
att.type is formalized as the following triple in G:

“e.id bp : att.name att.valueˆˆxsd:att.type”

Figure 5.4: Example of formalizing a Blueprint Model M as an RDF
Graph G

Legend

RDF Graph G, G.uri = “http://www.eriss.org/VehicleMgt-BP#”

ns:VehicleMgt-BP

ns:VehicleMgt-Off ns:VehicleMgt-Req1

bp:hasOffering bp:hasRequirement

…………..

“VehicleMgt

Blueprint”^^xsd:string

“AutoInc”^^xsd:string

bp:name

bp:ownership

bp:horizontalLink

…………..

ns:= <http://www.eriss.org/VehicleMgt-BP#>

bp:=<http://www.eriss.org/

BlueprintOntology.owl#>

xsd:=<http://www.w3.org/2001/XMLSchema\#>

rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-

ns\#

bp:SaaSBlueprint

rdf:type

ns1:CaaS-Off

bp:horizontalLink

e1 :={”ns:VehicleMgt-BP”,“SaaSBlueprint’’ , (“name” , “string” , “VehicleMgt Blueprint”),

(“ownership” , “string” , “AutoInc”), . . }

e2 :={”ns:VehicleMgt-Off”, “SaaSOffering” , ….

(“policy”, “PolicyProfile”, “ns:VehicleMgt-

PP1”)…}

e3 :={ “ns:VehicleMgt-Req1”,“SaaSRequirement” ,……}

…………...

r1 :=(“hasOffering”, “ns:VehicleMgt-BP”, “ns:VehicleMgt-Off”)

r2 :=(“hasRequirement”, “ns:VehicleMgt-BP”, “ns:VehicleMgt-Req1”)

r5 :=(“horizontalLink”, “ns:VehicleMgt-Off”, “ns:VehicleMgt-Req1”)

r21 :=(“horizontalLink”, “ns:VehicleMgt-Req1”, “ns1:CaaS-Off”)

Blueprint Model M, M.ns= “http://www.eriss.org/VehicleMgt-BP#”

ns:= <http://www.eriss.org/VehicleMgt-

BP#>

ns1:=<http://www.eriss.org/CaaS-BP#>

RDF Graph G’, G’.uri = “http://www.eriss.org/CaaS-BP#”

ns1:=<http://www.eriss.org/CaaS-BP#>

ns:VehicleMgt-PP1

bp:policy

ns:VehicleMgt-BP

“VehicleMgt

Blueprint”^^xsd:string

bp:hasOfferin

g

RDF

Resource

RDF Literal

RDF Property

RDF Graph GRDF Graph

116

• Each attribute att = (att.name, att.type, att.value} ∈ e with a complex type
att.type is formalized as the following triple in G:

“e.id bp : att.name att.value”

• Each relation r = (r.name, r.ids, r.idt) ∈ M is formalized as the following triple
in G:

“r.ids bp : r.name r.idt”

Figure 5.4 illustrates an example of mapping a tuple-based representation of a Blueprint Model M into a RDF
Graph G. The Blueprint Model M specifying the VehicleMgt-BP blueprint can now be formally represented
as a RDF Graph. The nodes in the graph G are either a RDF resource or a RDF typed literal, whilst an edge
in G is a RDF property.

5.2.3 Implementation

The Jena Framework API is a Java API that supports the creation and manipulation
of RDF Graphs6. In particular, its com.hp.hpl.jena.rdf.model package contains the
following Java interfaces:

• The Model interface is used to implement a RDF Graph.

• The Resource interface is used to implement a RDF resource in a Model.

• The Literal interface is used to implement a RDF typed literal in a Model.

• The Property interface is used to implement a RDF property in a Model.

• The Statement interface is used to implement a RDF triple in a Model.

The concept of blueprint model has been developed as a class named BlueprintModel
that implements the jena’s Model interface. This class also contains a URI-typed
namespace ns that serves as the unique ID of a blueprint model.

Furthermore, the Jena Framework also supports the serialization of a RDF
graph into an XML document following the concrete RDF/XML syntax defined
in [Beckett, 2004] and vice versa, a RDF Graph can be parsed from a RDF/XML docu-
ment using the Jena Framework.

6Jena’s Model Package: http://jena.apache.org/documentation/javadoc/jena/com/

hp/hpl/jena/rdf/model/package-summary.html

117

http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/package-summary.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/rdf/model/package-summary.html

5.3 BMT Operators

The BMT operators have been developed based on the idea of model management
operators supported in [Melnik, 2004]. In his thesis work [Melnik, 2004], Melnik has
developed a set of generic model management operators that can assist users in ma-
nipulating any kinds of data model. In the previous Section 5.2 we have defined the
concept of a blueprint model as a kind of data model specifying a cloud service. Hence,
the idea of model management operators can easily be ported to the definition of the
BMT operators that work on the blueprint models. In this section, we introduce an in-
tuitive definition of the BMT operators. The selected BMT operators to be scrutinized
in this thesis have been determined from the following two criteria:

• We have analyzed the work of Melnik in [Melnik, 2004], and select those opera-
tors that are significant for manipulating cloud service specifications.

• The concept of blueprint has been extensively used within the 4caaSt
project [European Comission, 2010]. Within the project community, there is a
desire of developing a toolset for the blueprint and the BMT operators clearly
represent the desired functionalities that should be supported by this toolset.
The selected BMT operators in this chapter reflect the desired functionalities of
the blueprint toolset to support the CSBA developers in publishing, querying,
and composing several blueprints available in the marketplace to fulfill their ap-
plication requirements.

Table 5.1 introduces the list of the BMT operators together with the BMT techniques
that they support:

Table 5.1: BMT Operators supporting the BMT Techniques.

Supported
Technique

Operator’s
Signature

Operator’s Functionality

Publish a
Blueprint to
a Repository

Insert (BlueprintModel M) supports the insertion of a blueprint model M into a repository. The
blueprint model M is identified in the repository with its namespace
M.ns
A cloud service provider, after specifying his blueprint in a blueprint
model M, may want to use this operator to publish his blueprint model to
a repository

Delete a
Blueprint in
a Repository

Delete (String ns) this operator supports the deletion of a blueprint model M in the reposi-
tory based on its namespace ns.
A cloud service provider may want to use this operator to delete his
blueprint model in a repository by indicating the namespace of the
blueprint model M to be deleted.

118

Query
Blueprint(s) from
a Repository

BlueprintModel
Query (String namespace)

this operator returns a blueprint model from the repository that has the
namespace as specified in the input parameter namespace.
An CSBA Engineer may want to use this operator to query a blueprint
model based on its namespace.

BlueprintModel*
Query (String offeringName)

this operator returns all the blueprint models that contain an offering
with the same name as the input parameter offeringName.
An CSBA Engineer may want to use this operator to query the needed
blueprint models based on their offering names.

BlueprintModel*
Query ()

this operator returns all the blueprint models in the repository.
An CSBA Engineer may want to use this operator to query all the existing
blueprint models.

Compose
Blueprints

Mapping*
Match (Requirement e, Offering
e’)

this operator performs a matching between the requirement e ∈ M and
the offering e′ ∈ M′ in two distinct blueprint model M and M′. The
return contains (1) a set of mappings between an attributes of e and at-
tributes of e′, and (2) a mapping e 7→ e′ if it exists. A mapping e 7→ e′ indi-
cates that the requirement e ∈ M can be fulfilled by the offering e′ ∈ M′.
An CSBA Engineer may want to execute this operator to identify whether
a mapping e 7→ e′ exists between a requirement e ∈ M and an offering
e′ ∈ M′.

Link (Requirement e, Offering e’) This operator uses the Match operator to identify whether a mapping
e 7→ e′ exists. If this is the case, the operator then creates a “horizontal
link” between the requirement e ∈ M to the offering e′ ∈ M′ to indicate
that e is resolved by e′.
An CSBA Engineer may want to use this operator to compose two
blueprint models M and M′ by resolving a requirement e ∈ M with the
offering e′ ∈ M′ through a horizontal link.

Unlink (Requirement e, Offering
e’)

this operator supports the deletion of a horizontal link between e and e′,
if there currently exists such a link.

BlueprintModel*
Resolve (BlueprintModel M)

this operator supports an automatic composition of blueprint models to
resolve all the requirements of an input blueprint model M. In particular,
given the input blueprint model M, this operator:

1. uses the Query operator to retrieve all the current blueprint mod-
els from the repository.

2. composes M with the newly retrieved blueprint models using
the Link operator, if possible.

3. The newly retrieved blueprint models may also contain require-
ments. This operator iteratively uses the Link operator to resolve
all the requirements of these blueprint models.

The return of this operator is a composition of blueprint models. If the
return contains M, the Resolve operator is considered as “successful” and
the return can be used as input for generating a deployment plan for M.
If the return does not contain M, the Resolve operator is considered as
“failed” and the return does not contain any useful information.

In the subsequent Sections, we will introduce each BMT operator in detail.

119

Figure 5.5: The Insert Operator

Cloud Service

Provider

Blueprint Repository

Insert

BSL model

<<is instance of>>

BMT

Operators

Blueprint Model

5.4 The Insert Operator

The conceptual definition of the Link operator is introduced in the subsection 5.4.1, fol-
lowed by its formalization in subsection 5.4.2 and implementation in subsection 5.4.3.

5.4.1 Conceptual Definition

• Signature: Insert (BlueprintModel M)

• Input: the blueprint model M specifying a blueprint.

• Output: n/a.

• Fault: is returned if there is already another blueprint model M’ in the repository
that has the same namespace , i.e. ∃M′, M′.ns = M.ns.

• Functionality: Figure 5.5 explains the functionality of the Insert operator. It sup-
ports a cloud service provider to insert a newly created blueprint model M into a
repository. A cloud service provider, after using the BSL to specify his blueprint
in a blueprint model, may want to use this operator to publish his blueprint model
to a marketplace repository. This operator also makes sure that there exists no
other blueprint model M′ with the same namespace in the repository, otherwise
a fault is returned.

5.4.2 Formalization

In this section, we formalize the semantics of the Insert operator. The input blueprint
model M can be formalized as a RDF Graph G with the model namespace M.ns as the
graph ID G.uri, e.g. G.uri = M.ns. Therefore, the Insert operator can be formalized as
the loading of an existing RDF Graph G into a RDF Graph Store using the SPARQL-
Update operation “LOAD URI_ f rom INTO GRAPH G.uri”

The SPARQL-Update statement “LOAD URI_ f rom INTO GRAPH G.uri” supports
the creation of a new empty graph with the ID G.uri in the RDF Graph Store and then

120

reading the content of an existing RDF Graph G located at the URI_ f rom URI into this
new graph.. This LOAD statement returns a fault if there exists already a RDF graph
with the same graph ID G.uri.

5.4.3 Implementation

Algorithm 5.1 Inserting a Blueprint Model

1: function INSERT(BlueprintModel M)
2: URI_ f rom: The URI of the RDF Graph of M.
3: execute the following SPARQL-Update statement:
4: “LOAD URI_ f rom INTO GRAPH M.ns”
5: if failure then
6: return “Model already exists”.
7: end if
8: end function

The implementation of the Insert operator is explained in the pseudo algorithm 5.1
with the support of the Jena Framework for executing the SPARQL-Update statement.
Input of the algorithm is a blueprint model M. In Line 3, the SPARQL-Update oper-
ation LOAD. . . INTO GRAPH is executed to create a new, empty RDF Graph in the
target RDF Graph Store with the namespace of M as the new graph ID.

For implementing a RDF Graph Store, we create an experimental Graph Store using
the Jena Fuseki server that can process SPARQL-Update statements.

5.5 The Delete operator

The conceptual definition of the Delete operator is introduced in the subsection 5.5.1,
followed by its formalization in subsection 5.5.2 and implementation in subsec-
tion 5.5.3.

5.5.1 Conceptual Definition

• Signature: Delete (String namespace)

• Input: the namespace of the blueprint model M that needs to be deleted.

• Output: n/a.

• Fault: is returned if there exists no blueprint model M with the input namespace
, i.e. @M, M.ns = namespace.

121

Figure 5.6: The Delete Operator

Cloud Service

Provider

Delete

BMT

Blueprint Repository

X
• Functionality: Figure 5.6 explains the functionality of the Delete operator. It sup-

ports the deletion of an existing blueprint model M in a repository, e.g. in case
a deprecated blueprint model may need to be deleted upon the request of its
provider. The deleted blueprint model M is identified by its namespace. Delet-
ing the blueprint model M means deleting all of its elements e∗ ∈ M and rela-
tions r∗ ∈ M.

5.5.2 Formalization

In this section, we formalize the semantics of the Delete operator. A blueprint model M
can be formalized as a RDF Graph G. Therefore, the Delete operator can be formalized
as the deletion of a RDF Graph G out of a RDF Graph Store using the SPARQL-Update
operation “DROP GRAPH”. In particular, the SPARQL-Update statement “DROP
GRAPH namespace” supports the deletion of an existing RDF Graph G in a RDF graph
store that has G.uri = namespace. This update statement returns a fault if there exists
no RDF graph G with G.uri = namespace.

122

5.5.3 Implementation

Algorithm 5.2 Deleting a Blueprint Model

1: function DELETE(String namespace)
2: execute the following SPARQL-Update statement:
3: “DROP GRAPH namespace” # Deleting all the RDF Graph G with G.uri = namespace

4: if failure then
5: return “Model does not exist”.
6: else
7: return “Model deleted successfully”.
8: end if
9: end function

The implementation of the Delete operator is explained in the pseudo algorithm 5.2. In
Line 3, a SPARQL-Update statement is executed with the support of the Jena Frame-
work API to delete a RDF Graph. We use the Jena Fuseki server as a RDF graph store
that can process SPARQL-Update statements.

5.6 The Query Operator

The conceptual definition of the Query operator is introduced in the subsection 5.6.1,
followed by its formalization in subsection 5.6.2 and implementation in subsec-
tion 5.6.3.

5.6.1 Conceptual Definition

The Query operator has three variants that support different criteria for querying
blueprint models.

• Signature:

– Case 1: BlueprintModel|null Query(String namespace)

– Case 2: BlueprintModel* Query(String offName)

– Case 3: BlueprintModel* Query()

• Input: is either a namespace (Case 1) or an offering name (Case 2)

• Output: A set of blueprints that match the query criteria.

• Functionality: Figure 5.7 explains the functionality of the Query operator. The
Query operator supports the query of blueprint model(s) from a repository that
match the given criteria. We support the following query criteria:

123

Figure 5.7: The Query Operator and its Variants

CSBA Engineer

Query by

namespace

BMT

Query by

offering name

Query All

Blueprint Repository

– Querying based on the namespace: The namespace of a blueprint model is
used as its unique ID in a repository. Hence, only one blueprint model that
has a matched namespace may be selected and returned.

– Querying based on the offering name: Each blueprint model M contains
only one offering

e ∈ M, e.class = “SaaSO f f ering′′|“PaaSO f f ering′′|“IaaSO f f ering′′.

The offering e is always defined with a mandatory attribute:

att =<< “o f f eringName′′, “string′′, att.value >>

to specify the name of the offering. In this case, a blueprint model M is se-
lected and returned if its att.value can be matched with the input parameter
offName by a simple string matching approach.

– Querying all current blueprint models in the repository.

Example 5.2 (Examples of Querying Blueprint Models) Figure 5.8 illustrates two examples of using the
Query operator in case 1 and case 2. In the first example, an CSBA engineer would like to query a blueprint
model using its namespace. A namespace of a blueprint model serves as its globally unique ID. Hence, only
one blueprint model “VehicleMgt-BP” is returned . In the second example, the CSBA engineer would like
to query all the blueprint models that offers a “SQL Database”. The return in this case is the two matched
blueprint models “MySQL-BP” and “PostgreSQL-BP”.

124

Figure 5.8: Example of using the Query Operator

CSBA Engineer

Case 2: Query

(``SQL Database’’)

Blueprint Repository

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service
Case 1: Query

(``http://

autoinc.com#VehicleMgt-BP’’)

<<PaaS Blueprint>>
ID=“MySQL-BP”

<<PaaS Offering>>
ID=“MySQL-Off”
SQL Database

<<IaaS Requirement>>
ID=“MySQL-Req1”

Linux VM

<<PaaS Blueprint>>
ID=“PostgreSQL-BP”

<<PaaS Offering>>
ID=“PostgreSQL-Off”

SQL Database

5.6.2 Formalization

In this section, we formalize the semantics of the Query operator. A blueprint model
M can be formalized as a RDF Graph G. Therefore, all the three variants of the Query
operator can be formalized as the query of RDF Graphs Gi from a RDF Graph Store
using the SPARQL operations “SELECT” and “CONSTRUCT”. In particular,:

• Case 1: The SPARQL query

“CONSTRUCT { ?s ?p ?o } WHERE

{ GRAPH <namespace> { ?s ?p ?o }. }

supports the query of an RDF Graph G that has its graph ID G.uri = namespace.

• Case 2: The SPARQL query

“PREFIX bp:<http://www.eriss.org/BlueprintOntology.owl#>

SELECT DISTINCT ?g WHERE

{ GRAPH ?g { ?s bp:hasOffering ?o . FILTER regex(?o, o f f Name, “i”).} }”;

supports the query of the graph IDs of all the RDF Graphs Gi that match the
graph pattern “?s bp:hasOffering ?o . FILTER regex(?o, o f f Name, “i”).”. This
graph pattern contains a RDF triple “?s bp:hasOffering ?o”, in which “?o” is a

125

RDF typed literal and can be matched with the input o f f Name using the regex()
string matching function supported by SPARQL.

Then, given the resulting list of graph IDs, the query operator in case 1 can be
applied to subsequently query each RDF graph based on its ID.

• Case 3: The SPARQL query

“SELECT DISTINCT ?g WHERE

{ GRAPH ?g { ?s ?p ?o .}”;

supports the query of all the graph IDs, since the graph pattern “?s ?p ?o” can be
matched by any RDF Graph in the graph store.

Then, given the resulting list of graph IDs, the query operator in case 1 can be
applied to subsequently query each RDF graph based on its ID.

5.6.3 Implementation

Algorithm 5.3 Query a Blueprint Model based on its namespace

1: function QUERY(String namespace)
2: # Create a new Blueprint Model M as the result of a SPARQL query

3: BlueprintModel M = execute the following SPARQL query:
4: “CONSTRUCT { ?s ?p ?o }
5: WHERE
6: { GRAPH <namespace> { ?s ?p ?o } . }”; # Get all the triples from the RDF Graph <namespace>

7: M.ns = namespace; # Specify the namespace for M

8: return M.
9: end function

The implementation of the Query operator in case 1 is explained in the pseudo algo-
rithm 5.3. In Line 3, a blueprint model M can be created as the result of executing the
SPARQL operation “CONSTRUCT”. Then in Line 7, we specify the namespace for M.

126

Algorithm 5.4 Query Blueprint Models based on the name of its Offering

1: function QUERY(String o f f Name)
2: List<BlueprintModel> result: list of the returned Blueprint Models;
3: # Query all the namespaces of the matched Blueprint Models

4: List<URI> allNSs = execute the following SPARQL query:
5: “ PREFIX bp:<http://www.eriss.org/BlueprintOntology.owl#>
6: SELECT DISTINCT ?g WHERE
7: { GRAPH ?g { ?s bp:hasOffering ?o . FILTER regex(?o, o f f Name, “i”).}}”;
8: for all (URI ns ∈ allNSs) do
9: BlueprintModel M = Query(ns); # Query a Blueprint Model based on its namespace

10: Add M to result;
11: end for
12: return result.
13: end function

The implementation of the Query operator in case 2 is explained in the pseudo algo-
rithm 5.4. In Line 4, we execute the SPARQL operation “SELECT” to query the list of
namespaces of the matched blueprint models. Then in Line 9, we use the implemen-
tation of the Query operator in case 1 (Algorithm 5.3) to query each Blueprint Model
based on its namespace.

Algorithm 5.5 Query all Blueprint Models

1: function QUERY

2: List<BlueprintModel> result: list of the returned Blueprint Models;
3: # Query the namespaces of all Blueprint Models

4: List<URI> allNSs = execute the following SPARQL query:
5: “SELECT DISTINCT ?g WHERE
6: { GRAPH ?g { ?s ?p ?o .}}”;
7: for all (URI ns ∈ allNSs) do
8: BlueprintModel M = Query(ns); # Query a Blueprint Model based on its namespace

9: Add M to result;
10: end for
11: return result.
12: end function

The implementation of the Query operator in case 3 is explained in the pseudo al-
gorithm 5.5. In Line 4, we execute the SPARQL operation “SELECT” to query the list
of namespaces of all the Blueprint Models. Then in Line 8, we use the implementation
of the Query operator in case 1 (Algorithm 5.3) to query each Blueprint Model based
on its namespace.

127

5.7 The Match Operator

In this section, we discuss the behavior of applying the Match operator between a
requirement e in a blueprint model M and an offering e′ in another blueprint model
M′ with the constraint that e and e′ need to be defined on the same layer of the cloud
stack, i.e.:

(e.class = “SaaSRequirement′′ ∧ e′.class = “SaaSO f f ering′′) ∨
(e.class = “PaaSRequirement′′ ∧ e′.class = “PaaSO f f ering′′) ∨
(e.class = “IaaSRequirement′′ ∧ e′.class = “IaaSO f f ering′′) ∨ .

(5.8)

The goal of applying this operator is twofold:

1. to yield a set of mappings between the attributes {att∗} ∈ e and the attributes
{att′}∗ ∈ e′. An mapping between an attribute att ∈ e and an attribute att′ ∈ e′,
denoted as att 7→ att′, has the meaning that att and att′ have equivalent defini-
tions (i.e. their names and types) and the value of att′ is “better” than the value
of att.

2. to identify whether a mapping from e to e′, denoted as e 7→ e′, exists. A map-
ping e 7→ e′ has the meaning that the requirement e ∈ M can be fulfilled by the
offering e′ ∈ M′.

The conceptual definition of the Match operator is introduced in the subsection 5.7.1,
followed by its formalization in subsection 5.7.2 and implementation in subsec-
tion 5.7.3.

5.7.1 Conceptual Definition

• Signature: Mapping* Match(Requirement e, Offering e’)

• Input: a requirement e in the blueprint model M and an offering e′ in another
blueprint model M′. e and e′ are defined on the same layer of the cloud stack.

• Output: is a set of mappings, which may contain:

– a set of attribute mappings (att 7→ att′)∗, with att ∈ e, att′ ∈ e′.

– a requirement-offering mapping e 7→ e′.

• Functionality: Figure 5.9 explains the functionality of the Match operator. Basi-
cally, it executes the following two steps:

– Step 1 - Attributes Matching: The Match operator subsequently matches
each pair of attributes (att, att′) to identify whether an attribute mapping
att 7→ att′ exists.

128

Figure 5.9: The Match operator between a Requirement and an Offer-
ing

<<Blueprint>>
M’

<<Blueprint>>
M

<<Requirement>>

e

• att1

• att2

• ….

<<Offering>>

e'

• att'1

• att'2

• ….

Match

att1 att’1

Mapping

<<Requirement>>

e

• att1

• att2

• ….

• atti

• …

<<Offering>>

e'

• att'1

• att'2

• ….

• att‘i

• ….

atti att’i

e e’

Step 1:
Attributes
Matching

Step 2:
Requirement-Offering Matching

– Step 2- Requirement-Offering Matching : The Match operator uses the re-
sults of the attributes matching step to identify whether a requirement-
offering mapping e 7→ e′ exists.

In the following we explain the functionality of the Match operator in detail. The
subsection 5.7.1.1 introduces the Step 1 - Attributes Matching. Then, the subsec-
tion 5.7.1.2 restricts the scope of Step 1 for brevity reason. Lastly, the Step 2 -
Requirement-Offering Matching is explained in subsection 5.7.1.3.

5.7.1.1 Step 1: Attributes Matching

According to the BSL, a requirement e is defined with a set of attributes {att}∗, which
contains (1) the core attributes defined by the BSL Core Module for specifying any kind
of cloud service requirement, (2) the SaaS-specific attributes defined by the BSL SaaS
Module for specifying a SaaS requirement, (3) the PaaS-specific attributes defined by
the BSL PaaS Module for specifying a PaaS requirement, and (4) the IaaS-specific at-
tributes defined by the BSL IaaS Module for specifying an IaaS requirement. Similarly,

129

the BSL also defines an equivalent set of core and layer-specific attributes {att′}∗ for
specifying an offering e′. Table 5.2 lists the two sets of attributes {att}∗ and {att′}∗ for
specifying a requirement e and an offering e′ respectively. It also shows which attribute
att ∈ e can be matched with which attribute att′ ∈ e′ and which matching technique
can be used to derive a mapping att 7→ att′. An important assumption for the attribute
matching between two blueprints in this section is that the two blueprints share the
same syntax and semantics definition of the attributes, e.g. by using the same ontol-
ogy definition for the attributes. Without this assumption, attribute matching would
become much more complicated.

Table 5.2: Attributes Matching between a Requirement e ∈ M and an
Offering e′ ∈ M′

Attributes of a Requirement e ∈ M Attributes of an Offering e′ ∈ M′ Matching Technique

Core Attributes

att(“requirementName′′,
“string′′, att.value)

att′(“o f f eringName′′,
“string′′, att′.value)

att 7→ att′ ⇐⇒ att.value = att′.value
(String Matching)

att(“requirementType′′,
“string′′, att.value)

att′(“o f f eringtype′′,
“string′′, att′.value)

att 7→ att′ ⇐⇒ att.value = att′.value
(String Matching)

att(“maxNrO f Instances′′,
“int′′, att.value)

att′(“maxNrO f Instances′′,
“int′′, att′.value)

att 7→ att′ ⇐⇒ att.value ≤ att′.value
(Integer Comparison)

att(“minNrO f Instances′′,
“int′′, att.value)

att′(“minNrO f Instances′′,
“int′′, att′.value)

att 7→ att′ ⇐⇒ att.value ≤ att′.value
(Integer Comparison)

att(“multitenant′′,
“boolean′′, att.value)

att′(“multitenant′′,
“boolean′′, att′.value)

att 7→ att′ ⇐⇒ att.value = att′.value
(Boolean Matching)

att(“requiredPolicy′′,
“PolicyPro f ile′′, att.value)

att′j(“o f f eredPolicy′′,
“PolicyPro f ile′′, att′.value)

att 7→ att′ ⇐⇒ ∃ē ∈ M, ē.id = att.value,
∃ē′ ∈ M′, ē′.id = att′.value,
ē.class = ē′.class = “PolicyPro f ile′′,
ē 7→ ē′ (Policy Profile Matching)

att(“extproperty′′,
“ExtendedProperty′′, att.value)

att′j(“extproperty′′,
“ExtendedProperty′′, att′.value)

att 7→ att′ ⇐⇒ ∃ē ∈ M, ē.id = att.value,
∃ē′ ∈ M′, ē′.id = att′.value,
ē.class = ē′.class = “ExtendedProperty′′,
ē 7→ ē′ (Extended Property Matching)

SaaS-specific Attributes

att(“category′′,
“SaaSCategory′′, att.value)

att′(“category′′,
“SaaSCategory′′, att′.value)

att 7→ att′ ⇐⇒ att.value = att′.value
(String Matching)

att(“requiredInter f ace′′,
“Inter f aceDescrtipion′′, att.value)

att′(“providedInter f ace′′,
“Inter f aceDescription′′, att′.value)

att 7→ att′ ⇐⇒ ∃ē ∈ M, ē.id = att.value,
∃ē′ ∈ M′, ē′.id = att′.value,
ē.class = ē′.class = “Inter f aceDescription′′,
ē 7→ ē′ (Interface Description Matching)

PaaS-specific Attributes

130

att(“product′′,
“Plat f ormProduct′′, att.value)

att′(“product′′,
“Plat f ormProduct′′, att′.value)

att 7→ att′ ⇐⇒ ∃ē ∈ M, ē.id = att.value,
∃ē′ ∈ M′, ē′.id = att′.value,
ē.class = ē′.class = “Plat f ormProduct′′,
ē 7→ ē′ (Platform Product Matching)

att(“technology′′,
“Plat f ormTechnology′′, att.value)

att′(“technology′′,
“Plat f ormTechnology′′, att′.value)

att 7→ att′ ⇐⇒ ∃ē ∈ M, ē.id = att.value,
∃ē′ ∈ M′, ē′.id = att′.value,
ē.class = ē′.class = “Plat f ormTechnology′′,
ē 7→ ē′ (Platform Technology Matching)

att(“resourceDescription′′,
“ResourcePro f ile′′, att.value)

att′(“‘resourceDescription′′,
“ResourcePro f ile′′, att′.value)

att 7→ att′ ⇐⇒ ∃ē ∈ M, ē.id = att.value,
∃ē′ ∈ M′, ē′.id = att′.value,
ē.class = ē′.class = “ResourcePro f ile′′,
ē 7→ ē′ (Resource Profile Matching)

IaaS-specific Attributes

att(“resourceDescription′′,
“ResourcePro f ile′′, att.value)

att′(“‘resourceDescription′′,
“ResourcePro f ile′′, att′.value)

att 7→ att′ ⇐⇒ ∃ē ∈ M, ē.id = att.value,
∃ē′ ∈ M′, ē′.id = att′.value,
ē.class = ē′.class = “ResourcePro f ile′′,
ē 7→ ē′ (Resource Profile Matching)

att(“operatingSystem′′,
“string′′, att.value) ∈ e

att′(“operatingSystem′′,
“string′′, att′.value) ∈ e′

att 7→ att′ ⇐⇒ att.value = att′.value
(String Matching)

att(“networkType′′,
“string′′, att.value) ∈ e

att′(“networkType′′,
“string′′, att′.value) ∈ e′

att 7→ att′ ⇐⇒ att.value = att′.value
(String Matching)

For a pair of attributes (att, att′) that have primitive types “string”, “int”, and
“boolean”, Table 5.2 introduces simple, straightforward matching techniques to iden-
tify a mapping att 7→ att′, namely the string matching, the comparison for integer
values, and the boolean matching.

For a pair of attributes (att, att′) that are defined with a complex type, e.g.
“PolicyProfile”, “ResourceProfile”, “InterfaceDescription”, etc., the attribute values
att.value and att′.value are the URI reference to other elements in the Blueprint Models
M and M′. Matching (att, att′) in these cases leads to the matching between two other
elements ē ∈ M, ē.id = att.value and ē′ ∈ M′, ē′.id = att′.value, since a mapping
att 7→ att′ exists if and only if a mapping ē 7→ ē′ exists. More sophisticated matching
techniques are required to derive a mapping att 7→ att′ in these cases. In the following,
we briefly discuss the matching techniques that have been introduced in Table 5.2:

• Policy Profile Matching: The Policy Profile concept has been defined in the BSL Pol-
icy Description Module as a set of Policy Assertions that specify the value range
for a certain Policy Property. Matching a Policy Profile ē ∈ M with a Policy Profile
ē′ ∈ M′ aims to identify whether a mapping ē 7→ ē′ exists. A mapping ē 7→ ē′

means that any policy assertion specified in ē can be fulfilled by at least a policy
assertion specified in ē′.

131

In [Andrikopoulos et al., 2010], the authors have developed a matching tech-
nique between two QoS assertions by relatively positioning their intervals (value
ranges) on their dimension of their common QoS property. Although this work
focuses particularly on the QoS assertions, the technique can be reused to match
two policy assertions in two distinct policy profiles.

• Resource Profile Matching: On the PaaS and IaaS layer, the Resource Profile concept
has been defined in the BSL Resource Description Module as a set of Resource
Assertions that specify the value range for a certain Resource Property. Matching
a Resource Profile ē ∈ M with another Resource Profile ē′ ∈ M′ aims to identify
whether a mapping ē 7→ ē′ exists. A mapping ē 7→ ē′ implies that a resource
assertion in ē can be fulfilled by at least a resource assertion in ē′.

The Resource Profile Matching follows the same principle of Policy Profile
Matching. Hence, the technique introduced in [Andrikopoulos et al., 2010] can
also be reused.

• Interface Description Matching: On the SaaS layer, the Interface Description con-
cept has been defined by the BSL Interface Description Module as a language
construct used to specify both the Signature and the Protocol of a SaaS require-
ment (i.e. the required interface) or of a SaaS offering (i.e. the provided inter-
face). Matching a required interface description ē ∈ M with a provided interface
description ē′ ∈ M′ aims to verify the interface compatibility, i.e. whether the
provided interface ē′ is compatible with the required interface ē. This matching
comprises of the matching of their signatures and protocols.

Since our BSL Interface Description Model has been developed based on the ASD
Meta-model in [Andrikopoulos, 2010], the matching of two Interface Descrip-
tions relies on the technique developed in [Andrikopoulos, 2010] that supports
verifying the compatibility between a client’s required service interface with a
provider’s offered service interface.

• Platform Product Matching: According to the BSL, a Platform Product is defined
with the following attributes: a name (string), vendor (string), version (string),
release date (Date), and info (URI). A matching between two platform products
comprises of the mandatory matching their names and vendors. If their versions
and release dates are specified, they need to be matched as well.

• Platform Technology Matching: According to the BSL, a Platform Technology has
a similar structure like a Platform Product. A matching between two platform
technologies comprises of the mandatory matching their names and vendors. If
their versions and release dates are specified, they need to be matched as well.

132

• Extended Property Matching: According to the BSL, an Extended Property is de-
fined as an extension point of the BSL that allows users to incorporate external
languages or specification schemas. Hence, the matching between two extended
properties requires user’s decisions or external matching mechanisms.

5.7.1.2 Restricting the Scope of Attributes Matching

In the previous section, we have discussed in Table 5.2 several techniques that should
be applied for matching a pair of attributes (att, att′), att ∈ e, att′ ∈ e′ between a
requirement e in a blueprint model M and an offering e′ in another blueprint model
M′. We have shown that due to the complex structure of a requirement and an offering
defined by the BSL, a matching between them involves several sophisticated matching
techniques, e.g. Policy Profile Matching, Resource Profile Matching, Interface Descrip-
tion Matching, etc.

Due to the limited scope of the thesis, we do not discuss all these matching tech-
niques in detail. Interested readers are refer to the existing matching approaches that
have been mentioned in the previous section 5.7.1.1. The aim of this section is to re-
strict the scope of attributes matching between a requirement and an offering. In par-
ticular, we would like to simplify the structure definition of a requirement and an
offering, rather use their definitions in the BSL. Then, the attributes matching between
a requirement and an offering will be defined based on their simplified structure defi-
nition.

Table 5.3: Attributes Matching between a simplified requirement e ∈
M and a simplified offering e′ ∈ M′

Attributes of a Requirement e ∈ M Attributes of an Offering e′ ∈ M′ Matching Technique

Core Attributes (mandatory)

att1(“requirementName′′,
“string′′, att1.value)

att′1(“o f f eringName′′,
“string′′, att′1.value)

att1 7→ att′1 ⇐⇒ att1.value = att′1.value
(String Matching)

att2(“requirementType′′,
“string′′, att2.value)

att′2(“o f f eringtype′′,
“string′′, att′2.value)

att2 7→ att′2 ⇐⇒ att2.value = att′2.value
(String Matching)

Newly defined SaaS-specific Attributes (optional)

att3(“maxResponseTime(s)′′,
“int′′, att3.value)

att′3(“maxResponseTime(s)′′,
“int′′, att′3.value)

att3 7→ att′3 ⇐⇒ att3.value ≤ att′3.value
(Integer Comparison)

att4(“minAvailability(%)′′,
“int′′, att4.value)

att′4(“minAvailability(%)′′,
“int′′, att′4.value)

att4 7→ att′4 ⇐⇒ att4.value ≥ att′4.value
(Integer Comparison)

Newly defined PaaS/IaaS-specific Attributes (optional)

133

att5(“minCPUSpeed(Ghz)′′,
“int′′, att5.value)

att′5(“minCPUSpeed(Ghz)′′,
“int′′, att′5.value)

att5 7→ att′5 ⇐⇒ att5.value ≥ att′5.value
(Integer Comparison)

att6(“minMemory(Gb)′′,
“int′′, att6.value)

att′6(“minMemory(Gb)′′,
“int′′, att′6.value)

att6 7→ att′6 ⇐⇒ att6.value ≥ att′6.value
(Integer Comparison)

att7(“minBandwidth(Gbit/s)′′,
“int′′, att7.value)

att′7(“minBandwidth(Gbit/s)′′,
“int′′, att′7.value)

att7 7→ att′7 ⇐⇒ att7.value ≥ att′7.value
(Integer Comparison)

att8(“minCapacity(TB)′′,
“int′′, att8.value)

att′8(“minCapacity(TB)′′,
“int′′, att′8.value)

att8 7→ att′8 ⇐⇒ att8.value ≥ att′8.value
(Integer Comparison)

Table 5.3 introduces our simplified structure definition of an offering and a require-
ment, which contains the following types of attribute:

• We keep using the two core attributes defined by the BSL for specifying the name
and type of a requirement or an offering.

– att1(“requirementName′′, “string′′, att1.value) and
att′1(“o f f eringName′′, “string′′, att′1.value): These are the mandatory
attributes that specify the name of a requirement and an offering. They are
considered as the most important pair of attributes to be matched.

– att2(“requirementType′′, “string′′, att2.value) and
att′2(“o f f eringType′′, “string′′, att′2.value) : These are the mandatory
attributes that specify the cloud layer of a requirement and an offering, i.e.
SaaS, PaaS or IaaS. Matching this pair of attributes is important because the
matching between a requirement and an offering can only be performed on
the same cloud layer.

• On the SaaS layer, we acknowledge the significance of a policy specification for
a SaaS requirement and a SaaS offering. Currently, the BSL allows for this type
of specification to be defined in a Policy Profile. However, as discussed in the
previous section 5.7.1.1, matching two policy profiles is a complicated task that
has been addressed by existing approaches. Hence, to simplify the matching
between two policy specifications, we extend the structure of a SaaS require-
ment and a SaaS offering defined by the BSL with the following policy-related
attributes:

– att3(“maxResponseTime(s)′′, “int′′, att3.value) and
att′3(“maxResponseTime(s)′′, “int′′, att′3.value): These two attributes specify
the maximum response time (measured in seconds) of a SaaS requirement
and a SaaS offering.

134

– att4(“minAvailability(%)′′, “int′′, att4.value) and
att′4(“minAvailability(%)′′, “int′′, att′4.value): These two attributes specify
the minimum availability (measured in %) of a SaaS requirement and a
SaaS offering.

• On the PaaS/IaaS layers, we acknowledge the significance of a resource specifi-
cation for a PaaS/IaaS requirement and a PaaS/IaaS offering. Currently, the BSL
allows for this type of specification to be defined in a Resource Profile. However, as
discussed in the previous section 5.7.1.1, matching two resource profiles is simi-
lar to the matching between two policy profiles and may require external match-
ing techniques due to its complexity. Hence, to simplify the matching between
two resource specifications, we extend the structure of a PaaS/IaaS requirement
and a PaaS/IaaS offering defined by the BSL with the following resource-related
attributes:

– att5(“minCPUSpeed(Ghz)′′, “int′′, att5.value) and
att′5(“minCPUSpeed(Ghz)′′, “int′′, att′5.value): These two attributes specify
the minimum CPU Speed (measured in GHz) of a PaaS/IaaS require-
ment and a PaaS/IaaS offering. They are normally used for specifying a
computing resource.

– att6(“minMemory(Gb)′′, “int′′, att6.value) and
att′6(“minMemory(Gb)′′, “int′′, att′6.value): These two attributes specify
the minimum memory size (measured in Gbyte) of a PaaS/IaaS require-
ment and a PaaS/IaaS offering. They are normally used for specifying a
computing resource.

– att7(“minBandwidth(Gbit/s)′′, “int′′, att7.value) and

att′7(“minBandwidth(Gbit/s)′′, “int′′, att′7.value): These two attributes spec-
ify the minimum network bandwidth (measured in Gbit/s) of a PaaS/IaaS
requirement and a PaaS/IaaS offering. They are normally used for a net-
work resource.

– att8(“minCapacity(TB)′′, “int′′, att8.value) and
att′8(“minCapacity(TB)′′, “int′′, att′8.value): These two attributes spec-
ify the minimum storage capacity (measured in Terabyte) of a PaaS/IaaS
requirement and a PaaS/IaaS offering. They are normally used for a storage
resource.

In summary, Table 5.3 has simplified the structure definition of a requirement e and an
offering e′ as the two sets of attributes {att1, . . . , att8} and {att′1, . . . , att′8} of primitive
types “string” and “int”. Matching techniques for each pair (atti, att′i) have also been
introduced in Table 5.3 to identify whether a mapping atti 7→ att′i exists. Through-

135

Figure 5.10: Examples of Attributes Matching between a simplified
Requirement and a simplified Offering

<<Blueprint>>
VehicleMgt-BP

<<Blueprint>>
TaxiScenario-CSBA

<<SaaS Requirement>>

TaxiScenario-CSBA-Req1

• att1 (“requirementName”, “string”,

“Vehicle Management Software”)

• att2 (“requirementType”, “string”, “SaaS”)

• att3 (“maxResponseTime(s)”, “int”, “6”)

• att14(“minAvailability(%)”, “int”, “98”)

<<SaaS Offering>>

VehicleMgt-Off

• att'1 (“offeringName”, “string”, “Vehicle

Management Software”)

• att'2 (“offeringType”, “string”, “SaaS”)

• att'3 (“maxResponseTime(s)”, “int”, “5”)

• att'4(“minAvailability(%)”, “int”, “99”)

Match

att1 att'1

att2 att'2

att3 att'3

att4 att'4

<<SaaS Requirement>>

TaxiScenario-CSBA-Req1

• att1 (“requirementName”, “string”,

“Vehicle Management Software”)

• att2 (“requirementType”, “string”, “SaaS”)

• att3 (“maxResponseTime(s)”, “int”, “6”)

• att14(“minAvailability(%)”, “int”, “98”)

<<SaaS Offering>>

VehicleMgt-Off

• att'1 (“offeringName”, “string”, “Vehicle

Management Software”)

• att'2 (“offeringType”, “string”, “SaaS”)

• att'3 (“maxResponseTime(s)”, “int”, “5”)

• att'4(“minAvailability(%)”, “int”, “99”)

<<Blueprint>>
Jboss-BP

<<Blueprint>>
VehicleMgt-BP

<<PaaS Requirement>>

VehicleMgt-Req3

• att1 (“requirementName”, “string”, “JEE

Application Server”)

• att2 (“requirementType”, “string”, “PaaS”)

• att3 (“minCPUSpeed(Ghz)”, “int”, “2”)

• att4(“minMemory(Gb)”, “int”, “1”)

• att5(“minBandwidth(Gb)”, “int”, “2”)

<<PaaS Offering>>

Jboss-Off

• att'1 (“offeringName”, “string”, “JEE

Application Server”)

• att'2 (“offeringType”, “string”, “PaaS”)

• att'3 (“minCPUSpeed(Ghz)”, “int”, “3”)

• att'4(“minMemory(Gb)”, “int”, “2”)

• att‘5(“minMemory(Gbit/s)”, “int”, “2”)

Match

att1 att'1
att2 att'2

Mapping
att3 att'3

att4 att'4
att5 att‘5

<<PaaS Requirement>>

VehicleMgt-Req3

• att1 (“requirementName”, “string”, “JEE

Application Server”)

• att2 (“requirementType”, “string”, “PaaS”)

• att3 (“minCPUSpeed(Ghz)”, “int”, “2”)

• att4(“minMemory(Gb)”, “int”, “1”)

• att5(“minBandwidth(Gb)”, “int”, “2”)

<<PaaS Offering>>

Jboss-Off

• att'1 (“offeringName”, “string”, “JEE

Application Server”)

• att'2 (“offeringType”, “string”, “PaaS”)

• att'3 (“minCPUSpeed(Ghz)”, “int”, “3”)

• att'4(“minMemory(Gb)”, “int”, “2”)

• att‘5(“minMemory(Gbit/s)”, “int”, “2”)

out the rest of this chapter we will use this simplified version of matching between a
requirement and an offering.

136

Example 5.3 (Attributes Matching between a simplified Requirement and a simplified Offering)
Figure 5.10 illustrates two examples of applying the Match operator to yield the attributes matching
between a requirement and an offering. The left side of the Figure illustrates the matching between the SaaS
Requirement “TaxiScenario-CSBA-Req1” and the SaaS offering “VehicleMgt-Off”. This matching results into
a set of attribute mappings indicating that all the attributes of the SaaS requirement can be mapped to
the attributes of the SaaS offering. The right side of the Figure illustrates a different example of attributes
matching between the PaaS requirement “VehicleMgt-Req3” and the PaaS offering “Jboss-Off”.

5.7.1.3 Step 2: Requirement-Offering Matching

This section introduces the second step of executing the Match operator between a
requirement e and an offering e′ to identify whether a mapping e 7→ e′ exists. Based on
the results of attributes matching between e and e′ in Step 1, we define in the following
the deduction rules to derive a mapping e 7→ e′. Please note that these rules are defined
based on the simplified structure definition of a requirement and an offering in the previous
section 5.7.1.2.

A mapping e 7→ e′ exists if both of the following rules are satisfied:

• ∃att1 7→ att′1 & ∃att2 7→ att′2: There exists mappings between their core at-
tributes, i.e. att1.name = “requirementName′′ & att′1.name = “o f f eringName′′

and att2.name = “requirementType′′ & att′2.name = “o f f eringType′′.

• ∃atti ∈ e, 3 ≤ i ≤ 8 =⇒ (∃att′i ∈ e′) ∧ (atti 7→ att′i): If an optional attribute
atti, 3 ≤ i ≤ 8, is specified for the requirement e, then an equivalent attribute
att′i must also be specified for the offering e′ and there must exist a mapping
atti 7→ att′i. For instance,

∃att3 ∈ e, att3.name = “maxResposneTime′′ =⇒

(∃att′3 ∈ e, att′3.name = “maxResposneTime′′) & (att3 7→ att′3).

Example 5.4 (Matching between a Requirement and an Offering) Figure 5.11 follows up the Example 5.3 to
show that the SaaS Requirement “TaxiScenario-CSBA-Req1” can be mapped to the SaaS offering “VehicleMgt-
Off”, since there exist mappings not only between their core attributes, i.e. “requirementName” vs “offering-
Name” and “requirementType” vs “offeringType”, but also between their optional attributes, e.g. “maxRe-
sponseTime” vs “maxResponseTime”and “minAvailability” vs “minAvailability”. Similarly, the right side of the
Figure also yields a mapping from the PaaS requirement “VehicleMgt-Req3” to the PaaS offering “Jboss-Off”.

137

Figure 5.11: Mapping Identification between a Requirement and an
Offering

<<Blueprint>>
Jboss-BP

<<Blueprint>>
VehicleMgt-BP

<<PaaS Requirement>>

VehicleMgt-Req3

• att1 (“requirementName”, “string”, “JEE

Application Server”)

• att2 (“requirementType”, “string”, “PaaS”)

• att3 (“minCPUSpeed(Ghz)”, “int”, “2”)

• att4(“minMemory(Gb)”, “int”, “1”)

• att5(“minBandwidth(Gb)”, “int”, “2”)

<<PaaS Offering>>

Jboss-Off

• att'1 (“offeringName”, “string”, “JEE

Application Server”)

• att'2 (“offeringType”, “string”, “PaaS”)

• att'3 (“minCPUSpeed(Ghz)”, “int”, “3”)

• att'4(“minMemory(Gb)”, “int”, “2”)

• att‘5(“minMemory(Gbit/s)”, “int”, “2”)

Match

att1 att'1
att2 att'2

Mapping
att3 att'3

att4 att'4
att5 att‘5

<<PaaS Requirement>>

VehicleMgt-Req3

• att1 (“requirementName”, “string”, “JEE

Application Server”)

• att2 (“requirementType”, “string”, “PaaS”)

• att3 (“minCPUSpeed(Ghz)”, “int”, “2”)

• att4(“minMemory(Gb)”, “int”, “1”)

• att5(“minBandwidth(Gb)”, “int”, “2”)

<<PaaS Offering>>

Jboss-Off

• att'1 (“offeringName”, “string”, “JEE

Application Server”)

• att'2 (“offeringType”, “string”, “PaaS”)

• att'3 (“minCPUSpeed(Ghz)”, “int”, “3”)

• att'4(“minMemory(Gb)”, “int”, “2”)

• att‘5(“minMemory(Gbit/s)”, “int”, “2”)

VehicleMgt-Req3 Jboss-Off

<<Blueprint>>
VehicleMgt-BP

<<Blueprint>>
TaxiScenario-CSBA

<<SaaS Requirement>>

TaxiScenario-CSBA-Req1

• att1 (“requirementName”, “string”,

“Vehicle Management Software”)

• att2 (“requirementType”, “string”, “SaaS”)

• att3 (“maxResponseTime(s)”, “int”, “6”)

• att14(“minAvailability(%)”, “int”, “98”)

<<SaaS Offering>>

VehicleMgt-Off

• att'1 (“offeringName”, “string”, “Vehicle

Management Software”)

• att'2 (“offeringType”, “string”, “SaaS”)

• att'3 (“maxResponseTime(s)”, “int”, “5”)

• att'4(“minAvailability(%)”, “int”, “99”)

Match

att1 att'1

att2 att'2

att3 att'3

att4 att'4

<<SaaS Requirement>>

TaxiScenario-CSBA-Req1

• att1 (“requirementName”, “string”,

“Vehicle Management Software”)

• att2 (“requirementType”, “string”, “SaaS”)

• att3 (“maxResponseTime(s)”, “int”, “6”)

• att14(“minAvailability(%)”, “int”, “98”)

<<SaaS Offering>>

VehicleMgt-Off

• att'1 (“offeringName”, “string”, “Vehicle

Management Software”)

• att'2 (“offeringType”, “string”, “SaaS”)

• att'3 (“maxResponseTime(s)”, “int”, “5”)

• att'4(“minAvailability(%)”, “int”, “99”)

TaxiScenario-CSBA-Req1 VehicleMgt-Off

138

5.7.2 Formalization

In this section, we formalize the semantics of the Match operator when applying it
between a requirement e in a blueprint model M and an offering e′ in another blueprint
model M′. The two blueprint models M and M′ can be formalized as the two RDF
Graphs G and G′, in which e and e′ can be formalized as a RDF resources (graph nodes)
in G and G′ respectively. Attributes of e and e′ can be formalized as the RDF properties
(adjacent edges of e and e′) in G and G′. Figure 5.12 illustrates the formalization of the
blueprint models M and M′, the elements e ∈ M, e′ ∈ M′, as well as all the attributes
att∗ ∈ e and att′∗ ∈ e′.

Figure 5.12 also illustrates that the Match operator can be formalized as a graph
matching operator that works on the two nodes e ∈ G and e′ ∈ G′ of two distinct
graphs G and G′ and returns a set of graph morphisms, which may contain:

• A set of graph morphisms between the adjacent edges of e and the adjacent edges
of e′.

• A graph morphism between e and e′.

Figure 5.12: Formalizing a Matching between a Requirement and an
Offering as a set of Graph Morphisms

RDF Graph G

e

…………..

att1.value^^xsd:stringrequirementName

requirementType

att8.value^^xsd:int

att2.value^^xsd:string

minCapacity(TB)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

RDF

Resource

RDF Literal

RDF PropertyRDF Graph

Graph

Morphism

att3.value^^xsd:int
maxResponseTime(s) att'3.value^^xsd:int

maxResponseTime(s)

Graph

Matching

RDF Graph G

e

…………..

att1.value^^xsd:stringrequirementName

requirementType

att8.value^^xsd:int

att2.value^^xsd:string

minCapacity(TB)

att3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

139

5.7.3 Implementation

Algorithm 5.6 Matching between a Requirement and an Offering using the Match op-
erator

1: function MATCH(Requirement e, Offering e′)
2: List<Mapping> mappingList: the list storing the mappings for the return;
3: # Step 1: Attributes Matching

4: for all atti ∈ e, att′i ∈ e′ do
5: Matching follows the rules defined in Table 5.3;
6: if ∃(atti 7→ att′i) then
7: Add (atti 7→ att′i) to mappingList;
8: end if
9: end for

10: # Step 2: Requirement-Offering Matching

11: if (∃(att1, att′1) ∈ mappingList) & (∃(att2, att′2) ∈ mappingList) then # 1st priority

matching: the core attributes “requirementName” vs “offeringName’, and “requirementType” vs. “offeringType”

12: for all atti ∈ e, 3 ≤ i ≤ 8 do # For all optional attributes of e, e.g. “maxResposneTime”, “minBand-

width”, “minCPUSpeed”,...

13: if @(atti 7→ att′i) ∈ mappingList then # if an attribute mapping does not exist

14: return mappingList; # Then just return the mapping list containing only the attributes map-

pings

15: end if
16: end for
17: Add e 7→ e′ to mappingList; # If all attribute mappings exists, then a mapping e 7→ e′ also exists

18: end if
19: return mappingList; # Return the list of attribute mappings with or without e 7→ e′

20: end function

The implementation of the Match operator is explained in the pseudo algorithm 5.6.
From Line 4 to Line 9, the operator performs the Step 1: Attributes matching following
the rules defined in Table 5.3. Each identified attribute mapping att 7→ att′ is added
into the list of mappings mappingList. Then in Step 2: Requirement-Offering Matching
from Line 11 to Line 18, the operator evaluates the attributes matching results to iden-
tify whether a mapping between the requirement e and the offering e′, i.e. e 7→ e′,
exists. The evaluation comprises of checking if there exist mappings between the core
attributes of e and e′ (Line 11), and also between their optional attribute (Line 12-15).
Finally, if a mapping e 7→ e′ exists, it will be added into the mappingList, which is the
output of the operator.

By executing the Match operator, the user is able to identify all possible mappings
between the attributes of e and the attributes of e′, as well as the evaluation whether a

140

mapping e 7→ e′ exists.

5.8 The Link and Unlink Operators

The conceptual definition of the Link and Unlink operators is introduced in the subsec-
tion 5.8.1, followed by their formalization in subsection 5.8.2 and implementation in
subsection 5.8.3.

5.8.1 Conceptual Definition

• Signature:

– Link (Requirement e, Offering e’)

– Unlink (Requirement e, Offering e’)

• Input: a requirement e in a blueprint model M and an offering e′ in another
blueprint model M′.

• Output: n/a.

• Functionality: The Link operator supports the linking of a requirement e ∈ M
with an offering e′ ∈ M′ through a horizontal link to indicate that e′ is used
to resolve e. Before creating a horizontal link, the Link operator uses the Match
operator to check if e can be matched with e′. The Unlink operator is used for the
opposite purpose. If there already exists a horizontal link between e and e′, the
Unlink simply removes it.

The Link and Unlink operators can be used by a CSBA Engineer to compose and
decompose two blueprint models through the horizontal links. Their definitions
are simple. However, as an CSBA configuration has been defined in Defini-
tion 1.3, Section 1.2 as a composition of blueprint models, these two operators
play an important roles in supporting the (re-)configuration of an CSBA.

Example 5.5 (Examples of using the Link and Unlink operators) Figure 5.13 illustrates an example of using
the Link and Unlink operators. First, the Link operator uses the Match operator to check if the SaaS
requirement “TaxiOrdering-CSBA-Req1” can be matched with the SaaS offering “VehicleMgt-Off”. According
to our previous Example 5.4, this matching exists. Hence, the Link operator is able to create a horizontal link

141

Figure 5.13: Examples of using the Link and Unlink Operators

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA”

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req1”
Vehicle Management Software

Link Unlink

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA”

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req1”
Vehicle Management Software

Horizontal link

between them.
The effect of applying the Unlink operator is opposite. It removes the horizontal link between the require-

ment “TaxiOrdering-CSBA-Req1” and the offering “VehicleMgt-Off”.

5.8.2 Formalization

In this section, we formalize the semantics of the Link and Unlink operators when ap-
plying them between a requirement e in a blueprint model M and an offering e′ in
another blueprint model M′. The two blueprint models M and M′ can be formalized
as the two RDF Graphs G and G′, in which e and e′ can be formalized as the two RDF
resources (graph nodes) in G and G′ respectively. Figure 5.14 illustrates the formaliza-
tion of the blueprint bodels M and M′ and the elements e ∈ M, e′ ∈ M′.

Figure 5.14 also illustrates that the Link operator can be formalized as the creation
of a cross-edge between the two graphs G and G′. The Unlink operator works in the
other way around, i.e. it removes the cross-edge between G and G′.

142

Figure 5.14: Formalizing the Link and Unlink Operators

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G

e

…………..

att1.value^^xsd:stringrequirementName

requirementType

att8.value^^xsd:int

att2.value^^xsd:string

minCapacity(TB)

att3.value^^xsd:int
maxResponseTime(s)

Link

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G

e

…………..

att1.value^^xsd:stringrequirementName

requirementType

att8.value^^xsd:int

att2.value^^xsd:string

minCapacity(TB)

att3.value^^xsd:int
maxResponseTime(s)

Unlink

5.8.3 Implementation

Algorithm 5.7 Pseudo implementation of the Link and Unlink operators

1: function LINK(Requirement e, Offering e′)
2: Let M be the BlueprintModel, e ∈ M;
3: # Execute the Match operator between e and e′ to get the list of mappings

4: List<Mapping> mappingList = Match(e, e′);
5: # If there exists a mapping e 7→ e′

6: if (e 7→ e′) ∈ mappingList then
7: # Create in M a “horizontalLink” relation between e and e′

8: Create a new Relation r = (“horizontalLink′′, e.id, e′.id);
9: Add r to M;

10: end if
11: end function
12:

13: function UNLINK(Requirement e, Offering e′)
14: Let M be the BlueprintModel, e ∈ M;
15: if ∃ r ∈ M, r = (“horizontalLink′′, e.id, e′.id) then
16: Delete r out of M;
17: end if
18: end function

143

The implementation of the Link and Unlink operators is explained in the pseudo al-
gorithm 5.7. In Line 4, the Match operator is executed between the requirement e and
the offering e′ to identify the mappings between them. In Line 6, the operator checks
whether a mapping e 7→ e′ exists. If this is the case, a new horizontal link is created as
a new relation r ∈ M.

The pseudo implementaion of the Unlink operator is introduced from Line 13 to
Line 18. It simply identifies whether a horizontal link r ∈ M already exists between
the requirement e and the offering e′. If this is the case, the horizontal link will be
deleted out of M.

5.9 The Resolve Operator
7 This section introduces the Resolve operator for an automatic composition of
Blueprint Models to form an end-to-end configuration of an CSBA. The conceptual
definition of the Resolve operator is introduced in the subsection 5.9.1, followed by its
formalization in subsection 5.9.2 and implementation in subsection 5.9.3.

5.9.1 Conceptual Definition

• Signature: BlueprintModel* Resolve (BlueprintModel M)

• Input: The blueprint model M

• Output: A composition of blueprint models. As we have introduced in the pre-
vious Section 5.8, two blueprint models can be composed by the Link operator
through a horizontal link.

• Functionality: Figure 5.15 explains the functionality of the Resolve operator. The
input blueprint model M is called the target blueprint model. The Resolve operator
is used to resolve the target blueprint model, which means to resolve all of its
requirements, i.e. req1 and req2. Resolving a requirement means to find an
offering that can fulfill the requirement and use the Link operator to create a
horizontal link between them. The Resolve operator tries to resolve the target
bluperint model in the following three steps:

– Step 1 - Query all the source blueprint models: this step queries all the
blueprint models from the repository (called the source blueprint models), us-
ing the Query operator.

7The result presented in this section has been published in [Nguyen et al., 2012b]

144

Figure 5.15: The Resolve Operator

SOff-C

SOff-E

Target Blueprint Model
M

TOff

req1 req2

SOff-BSOff-A

SOff-D

alternative (xor)

alternative (xor)

req4

req3

Target Blueprint Model

TOff

req1 req2

Resolve
BMT

Step 1: Query all the Source Blueprint Model

Blueprint

Repository

CSBA Engineer

Step 2: Resolve all the Requirements

SOff-C

SOff-E
SOff-B

SOff-A
SOff-D

X
X

Step 3: Prune the composition

Legend

• Blueprint

• Offering

• Requirement

• Horizontal Link

• Vertical Link

SOff-C

SOff-E

Target Blueprint Model
M

TOff

req1 req2

SOff-BSOff-A

SOff-D

alternative (xor)

alternative (xor)

req4

req3

SOff-C

SOff-E

Target Blueprint Model
M

TOff

req1 req2

SOff-BSOff-A

alternative (xor)

req3

Abstract Resolved Blueprints (ARB) model of M

Output

– Step 2 - Resolve all the requirements: this step tries to resolve the require-
ments of both the target blueprint model M and the source blueprint mod-
els. It uses the Link operator to create a horizontal link (if possible) between
a requirement and an offering of two distinct blueprint models. After per-
forming this step, a requirement may be resolved by only one offering, e.g,
the requirement req1 in Figure 5.15, or it may be resolved by two or more
alternative offerings, e.g. the requirements req2 and req3 in Figure 5.15, or
it may not be resolved at all, e.g. the requirement req4 in Figure 5.15. The

145

result of this step is a composition of blueprint models that has been created
by cross-linking the requirements with the offerings through the horizontal
links.

– Step 3 - Prune the composition: By the end of step 2, a requirement may
already be resolved by the Link operator, or it may still remain unresolved.
This step subsequently deletes all the blueprint models that still contain un-
resolved requirements. For instance in Figure 5.15, the blueprint model con-
taining the offering Off-D and the requirement req4 is deleted since the
requirement req4 is still unresolved. Lastly, this step returns a composition
of blueprint models that no longer contains any unresolved requirements.

If the returned composition of blueprint models does not contain the target
blueprint model M, the resolution is considered as “failed” and the composition
does not contain any useful information. In opposite, if the returned composi-
tion contains the target blueprint model M, the resolution is considered as “suc-
cessful” and the returned composition of blueprint models is called the Abstract
Resolved Blueprints (ARB) model of M. An ARB model of the target blueprint
model M specifies all the possible composition of source blueprint models to
resolve the requirements of M.

From the engineering point of view, an CSBA engineer can specify his CSBA in a
target blueprint model M and then use the Resolve operator to generate an ARB
model of M (if there exists any). The ARB model of M can then be used as the
configuration of the CSBA’s deployment environment using cloud services. Typ-
ically, it is used to generate a deployment plan for the CSBA. As an example, the
TOSCA standard specification [OASIS, 2013] can be used at this point to specify
the deployment topology and deployment plan for the CSBA.

Example 5.6 (Examples of using the Resolve operator) Figure 5.16 illustrates an example of using the Re-
solve operator for the TaxiScenario-CSBA blueprint model. In Step 1, the Resolve operator uses the
Query operator to query all the existing blueprint models in the repository, namely all the blueprint models
introduced in our Taxi Tilburg Scenario.

Then, in Step 2, the Resolve operator uses the Link operator to create horizontal links between a re-
quirement and an offering whenever a matching is found between them. As illustrated in Figure 5.16, the
requirements TaxiOrdering-CSBA-Req2 and VehicleMgt-Req2 have two alternative horizontal links.
The result of this step is a composition of blueprint models through the horizontal links.

Since the result of step 2 does not contain any unresolved requirements, Step 3 does not need to perform

146

Figure 5.16: Example of applying the Resolve Operator

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA”

<<SaaS Offering>>
ID=“TaxiOrdering-CSBA-Off”

Taxi Ordering CSBA

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req1”
Vehicle Management Software

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req2”

Map Service
CSBA Engineer

Resolve

Query all the Source Blueprint Model

It
e

ra
ti

v
e

ly
 M

a
tc

h
in

g
 a

n
d

 L
in

k
in

g

th
e

 n
e

w
ly

 r
e

tr
ie

v
e

d
 S

o
u

rc
e

B
lu

e
p

ri
n

t
M

o
d

e
ls

Blueprint

Repository

<<SaaS Blueprint>>
ID=“CaaS-BP”

<<SaaS Offering>>
ID=“CaaS-Off”

Context Information Service

<<SaaS Blueprint>>
ID=“VehicleMgt-BP”

<<SaaS Offering>>
ID=“VehicleMgt-Off”

Vehicle Management Software

ID=“App.war”

<<PaaS Requirement>>
ID=“VehicleMgt-Req3”
JEE Application Server

ID=“Data.zip”

<<PaaS Requirement>>
ID=“VehicleMgt-Req2”

SQL Database

<<SaaS Requirement>>
ID=“VehicleMgt-Req1”

Context Information Service

<<PaaS Blueprint>>
ID=“MySQL-BP”

<<PaaS Offering>>
ID=“MySQL-Off”
SQL Database

<<IaaS Requirement>>
ID=“MySQL-Req1”

Linux VM

<<PaaS Blueprint>>
ID=“Jonas-BP”

<<PaaS Offering>>
ID=“Jonas-Off”

JEE Application Server

<<PaaS Blueprint>>
ID=“PostgreSQL-BP”

<<PaaS Offering>>
ID=“PostgreSQL-Off”

SQL Database

<<IaaS Blueprint>>
ID=“Ubuntu-BP”

<<IaaS Offering>>
ID=“Ubuntu-Off”

Linux VM

alternative (xor)

Legend

• Blueprint

• Offering

• Deployment Artefact

• Requirement

• Horizontal Dependency

• Vertical Link

<<SaaS Blueprint>>
ID=“TaxiOrdering-CSBA”

<<SaaS Offering>>
ID=“TaxiOrdering-CSBA-Off”

Taxi Ordering CSBA

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req1”
Vehicle Management Software

<<SaaS Requirement>>
ID=“TaxiOrdering-CSBA-Req2”

Map Service

<<SaaS Blueprint>>
ID=“MapA-BP”

<<SaaS Offering>>
ID=“MapA-Off”

Map Service

<<SaaS Blueprint>>
ID=“MapB-BP”

<<SaaS Offering>>
ID=“MapB-Off”

Map Service

alternative (xor)

BMT

any pruning task. The result of step 2 is returned as an ARB model of the TaxiScenario-CSBA blueprint

model.
Using the ARB model as the output of the Resolve operator, the CSBA engineer of the Taxi Tilburg

company is able to configure the deployment environment of the TaxiScenario-CSBA. More specifically, he
knows which SaaSs, PaaSs, and IaaSs of external providers are needed by the TaxiScenario-CSBA, and in which
order these cloud services should be deployed. For instance, the Jonas-BP blueprint needs to be deployed so
that it can be used by the VehicleMgt-BP blueprint to deploy its software binaries. Either the MySQL-BP
blueprint or the PostgreSQL-BP blueprint should be deployed so that the data of the VehicleMgt-BP
can be managed. In case the MySQL-BP blueprint is selected, then the Ubuntu-BP blueprint needs to be
deployed first, which provides a linux virtual machine hosting the MySQL-BP blueprint.

147

Figure 5.17: Formalizing the Resolve Operator

Step 1: Querying RDF Graphs
RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G

e

…………..

att1.value^^xsd:stringrequirementName

requirementType

att8.value^^xsd:int

att2.value^^xsd:string

minCapacity(TB)

att3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

Step 2: Cross-linking RDF Graphs

Step 3: Pruning the Solution Tree
alternative (xor)

alternative (xor)

RDF Graph G

e

…………..

att1.value^^xsd:stringrequirementName

requirementType

att8.value^^xsd:int

att2.value^^xsd:string

minCapacity(TB)

att3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

RDF Graph G’

e'

…………..

att'1.value^^xsd:string offeringName

offeringType

att'8.value^^xsd:int

att'2.value^^xsd:string

minCapacity(TB)

att'3.value^^xsd:int
maxResponseTime(s)

alternative (xor)

alternative (xor)

X
5.9.2 Formalization

In this section, we formalize the semantics of the Resolve operator. The target blueprint
model M can be formalized as a RDF graph G whilst all the source blueprint models
M′i can be formalized as the RDF Graphs G′i . In the following, we explain the semantics
of each step of the Resolve operator in terms of graph operations

• Step 1: The semantics of this Step has been formalized in Section 5.6 as the use
of SPARQL operation to query all the RDF graphs G′i from a RDF Graph Store.

• Step 2: The semantics of this Step has been formalized in Section 5.8 as the iter-
ative cross-linking of two nodes in two distinct RDF graphs. The result of this
step is an aggregated graph AG, in which G and all the G′i are the subgraphs.
Figure 5.17 illustrates the aggregated graph AG as the result of performing both
Step 1 and Step 2.

• Step 3: The Resolve operator traverses through the aggregated graph AG, iden-
tifies a node of type “Requirement” that still has no “horizontalLink” edge. If
such as node is identified, the subgraph containing it will be pruned. Finally, the
aggregated graph AG is returned.

148

5.9.3 Implementation

The implementation of the Resolve operator is explained in the pseudo algorithm 5.8.
In Line 5, source blueprint models are queried from the repository using the Query op-
erator. These source blueprint models are stored in a list of blueprint models listBMs.
In Line 6, the target blueprint model is added to listBMs. Line 5 and 6 are basically
the implementation of Step 1 of the Resolve operator.

From Line 9 to Line 13, Step 2 of the operator is implemented. The operator tra-
verses through all the requirements and offerings of all the blueprint models in the
listBMs. For each pair of a requirement e and offering e′, the Link operator is applied.
A horizontal link may be created if e can be fulfilled by e′.

Step 3 of the operator is implemented from Line 17 to Line 19. The operator tra-
verses again through all the requirements in all blueprint models in the listBMs and
identifies those that do not have a “horizontalLink” relation. If such a requirement is
identified, the blueprint model containing it is deleted out of listBMs using the helper
function DeleteBlueprintModel.

Finally in Line 20, the listBMs is returned as the output ARB.
The helper function DeleteBlueprintModel is implemented from Line 25 to Line 31.

It supports the deletion of a blueprint model M out of the list listBMs. Firstly in
Line 26, it deletes all the “horizontalLink” relations that exists between other blueprint
models and the offering of M. Then from Line 29 to Line 31, all elements and relations
in M are deleted and finally M is deleted out of the listBMs.

149

Algorithm 5.8 Pseudo implementation of the Resolve operator

1: function RESOLVE(BlueprintModel targetBM)
2: List<BlueprintModel> listBMs; # The list of Blueprint Models listBMs that will be returned as the

resolution result

3:

4: # Step 1: listBMs is initialized by querying all the source blueprint models from the repository

5: listBMs = Query();
6: Add targetBM to the listBMs;
7:

8: # Step 2: Fulfill all the requirements of all Blueprint Models in listBMs

9: for all Element e ∈ BlueprintModel M ∈ listBMs, e.type = “Requirement′′ do
10: for all Element e′ ∈ BlueprintModel M′ ∈ listBMs, e′.type = “O f f ering′′

do
11: Link(e, e′); # a horizontal link may or may not be created between the Requirement e and the Offering

e′

12: end for
13: end for
14:

15: # Step 3: Pruning the solution

16: # Running a loop to detect a Blueprint Model M ∈ listBMs that still contains “unresolved” requirements

17: while (∃ Element e ∈ BlueprintModel M ∈ listBMs, e.type =

“Requirement′′) &
(@ Relation r ∈ M, r.name = “horizotnalLink′′, r.ids = e.id) do

18: DeleteBlueprintModel (M, listBMs); # Delete the BlueprintModel M using the help function

19: end while
20: return listBMs; # Return the list of Blueprint Models as the resolution result

21: end function
22:

23: # Help function to delete a blueprint model M out of the solution list listBMs

24: function DELETEBLUEPRINTMODEL(BlueprintModel M, List<BlueprintModel>
listBMs)

25: # Remove all the horizontal links from another Blueprint Model M′ to the offering of M, i.e.:

26: for all (Relation r′ ∈ BlueprintModel M′ ∈ listBMs, r′.name =

“horizontalLink′′

and Element e ∈ M, e.type = “O f f ering′′ with r′.idt = e.id) do
27: Delete r
28: end for
29: Delete all Elements e∗ ∈ M;
30: Delete all Relations r∗ ∈ M;
31: Delete M out of listBMs;
32: end function

150

5.10 Discussion

This chapter has introduced a set of operators that collectively implement the pro-
posed Blueprint Manipulation Techniques (BMTs). The original idea of developing
this set of operators stems from the model management operators developed by
Melnik [Melnik, 2004]. It is important to remark that this work aims only to pro-
pose a set of most essential operators that has been selected by the 4CaaSt consor-
tium [European Comission, 2010]. The selected operators in this chapter reflect the
desired functionalities of the blueprint toolset to support the CSBA developers in pub-
lishing, querying, and composing several blueprints available in the marketplace to
fulfill their application requirements. In the future work we will continuously gather
feedbacks from the cloud development community to extend this set of operators to a
more complete toolset for cloud application development with the blueprints.

Given the current set of operators there have been already remarks and improve-
ment suggestions among the 4CaaSt community, which we would like to discuss in
the following:

• More expressive query language: This chapter has introduced the simplistic ver-
sions of the Query operator with the namespace and the offering name as input.
The idea is only to demonstrate some simple definitions of the Query opertor.
In the future work, a more expressive query language is expected to support
more complex query options. In fact, currently with SPARQL the users can al-
ready form complex query expressions to query the blueprints from a repository.
However, SPARQL is a quite technical language that is not familiar with people
outside the semantic web community. A more user-friendly blueprint query lan-
guage is expected at this point.

• Operator for checking the consistency of the blueprints: An instantiated blueprint may
be modified by the user in different cases: e.g. updating its content, extending
it with external languages, etc. These activities could lead to an inconsistency of
a blueprint against the BSL syntax. Hence, an operator is needed to check the
consistency coherence of blueprints to the BSL syntax.

• A common ontology of attributes for matching: Currently, the Match operator is per-
formed on a common set of attributes defined by the BSL syntax. Given the sit-
uation that two blueprints with extensions need to be matched, then the Match
operator could not function properly on the two extension parts, since they may
be defined with different attribute structure. To prevent this problem, a common
ontology of attributes could be developed in the future to support a more precise
matching between blueprints. Then, the implementation of the Match operator
will restrict the matching so that it only support the matching of attributes that
exist in this ontology.

151

CHAPTER 6

VALIDATION

One of the most significant task in design science [Hevner et al., 2004] is the validation
of the result to ensure its applicability in the real world. As we have discussed in the
Introduction Chapter 1, section 1.5, the validation of the Blueprint Approach has been
performed on four levels:

1. The technical soundness of the BSL is guaranteed by its map-
ping to a formal knowledge representation model described in RD-
F/OWL [McGuinness & van Harmelen (Eds.), 2004]- a well-established stan-
dard for describing Internet resources and semantic web. Based on this formal
knowledge model, the operators defined by the BMT’s have been formalized
using SPARQL [W3C, 2008] and SPARQL-Update [W3C, 2012] operations,
which are standards for manipulating RDF/OWL knowledge model. Using
well-defined and widely-accepted standards for knowledge representation
and manipulation ensures the logical consistency in our proposed Blueprint
Approach.

2. The usability of the BSL and BMT’s is demonstrated by using a running example
throughout the previous chapters of the thesis. This example is borrowed from
a real-case scenario that has been developed by the 4CaaSt community as one of
the three validation scenarios in the 4CaaSt project [European Comission, 2010].
Reusing a scenario from the 4caaSt community shows that our solution solves a
real-case defined by a group of cloud computing practitioners.

3. The technical feasibility of the BSL and BMT’s is proved by an internal “proof-
of-concept” prototype that has been implemented using well-known standard-
ized languages and widely adopted tools.

153

4. The practical validity of our approach is exhibited through our participation
in various industry prototypes that have been developed based on the pro-
posed BSL and BMTs in the 4caaSt project. Within the scope of this project,
the proposed Blueprint Approach has been adopted as one of its core contribu-
tions [Gómez et al., 2012]. Future cloud products of our industry partners in the
project are also envisioned in this direction. Applying the Blueprint Approach in
the 4caaSt prototypes helps validate the applicability of the Blueprint Approach
in the cloud computing domain, since it can be proved to meet the expectations
of our industry partners in the project.

Since the first two types of validation have been introduced in the previous chapters
of the thesis, in this chapter we focus on the last two validation activities. In particular,
Section 6.1 introduces a proof-of-concept prototype for the Blueprint Approach. Then
in Section 6.2, we will report our activities in the 4caast project to demonstrate the
practical validity of the Blueprint Approach.

6.1 Technical Feasibility of the Blueprint Approach

In this section, we aim to validate the feasibility of realizing the BSL and BMT’s
through a proof-of-concept prototype. Towards this goal, the Taxi Tilburg Scenario in-
troduced in the previous Section 3.1 will be reused for the implementation. The fol-
lowing subsection 6.1.1 introduces the underlying technologies and tools that are used
to build this prototype. Subsection 6.1.2 presents an overview of the prototype archi-
tecture. Then, the functionalities provided by the prototype are explained in subsec-
tion 6.1.3. Some experiments with the prototype are reported in subsection 6.1.4 and
subsequently our findings are discussed in subsection 6.1.5. Lastly, subsection 6.1.6
summarizes our activity in validating the technical feasibility of the Blueprint Ap-
proach.

6.1.1 Underlying Technologies and Tools

The BSL has been formalized in the previous Chapter 4 as a set of OWL blueprint
ontologies, and a blueprint model can be created by instantiating the OWL classes de-
fined in these OWL blueprint ontologies. We use the well-known tool named Protege1

for modeling the OWL blueprint ontologies. The Protege tool also supports the cre-
ation of a blueprint model as an instance of the OWL blueprint ontologies. A blueprint
model is also described in OWL, hence it is called an OWL-based blueprint model.
Other features supported by the Protege tool include the reasoning mechanism to en-
sure the consistency of an OWL-based blueprint model against the OWL blueprint on-

1Protege tool: http://protege.stanford.edu/

154

http://protege.stanford.edu/

Figure 6.1: The proof-of-concept prototype for the Blueprint Ap-
proach

Blueprints in the Taxi Tilburg Scenario

Jena Fuseki

SPARQL Server

HTTP

<<XML File>>

RDF/XML

Blueprints

Jena Framework Libraries

- Insert.java

- Delete.java

- Query.java

- Match.java

- Link.java

-Resolve.java

….

- BlueprintModel.java

- Mapping.java

- ARB.java

….

Protégé 3.7.1

<<XML File>>

OWL-based

Blueprint Models
<<XML File>>

OWL-based

Blueprint Models

read/write
is loaded into

Java Programs implementing

the BMT Operators

<<XML File>>

OWL Blueprint

Ontology

Used to create

is instance of

tologies, and the serialization of both the OWL blueprint ontologies and OWL-based
blueprint models into XML documents. As a summary, we rely on the Protege tool to
formally develop the BSL as a set of OWL Blueprint Ontologies and then create some
sample OWL-based blueprint models.

The Jena Framework Libraries2 is a well-known open-source Java framework for
building Semantic Web applications. It supports a Java API for manipulating RDF
data, an ontology for manipulating OWL and RDFS ontologies, and a set of other
rule-based inferring and querying engines for RDF and OWL data sources. Given the
various useful supports of the Jena framework we decided to use it for the purpose of
implementing the BMT’s operators in Java.

6.1.2 Architecture

Figure 6.1 illustrates the overall architecture of the prototype. The upper part of the fig-
ure explains the use of the Protege tool to create several OWL-based blueprint models
for the Taxi Tilburg Scenario. Please note that the tool Protege also supports the con-
sistency checking of the instantiated OWL-based blueprint models against the OWL

2Jena Framework: http://jena.apache.org/

155

http://jena.apache.org/

blueprint ontologies and the serialization of both the OWL blueprint ontologies and
the OWL-based blueprint models into XML files.

The lower part of Figure 6.1 illustrates the architecture of our proof-of-concept im-
plementation for the BMT operators. The operators have been implemented as Java
Programs that reuse the Jena Framework Libraries3 for the following purposes:

• Parsing an XML document into a RDF model (a Java object implementing the
Jena’s Model interface).

• Manipulating RDF resources, RDF properties, RDF literals, etc. in a RDF Model.

• Executing SPARQL queries and SPARQL-Update statements against a RDF
Graph Store.

• Serializing a RDF Model into an XML file.

We use the Jena Fuseki server4 as the implementation of a RDF graph Store that can
process SPARQL queries and SPARQL-Update statements. The Java programs that
involve the execution of SPARQL queries and SPARQL-Update statements are consid-
ered as clients of the Jena Fuseki server. The server is started on localhost and then it
can load the sample OWL-based blueprint models in the Taxi Tilburg Scenario into its
RDF Graph Store.

6.1.3 Functionality

This section summarizes the functionalities offered by the prototype:

• Using the provided Blueprint Ontologies modeled in Protege, the users can in-
stantiate new blueprints to specify their cloud services on any layer of the cloud
stack. The users are also supported with the ontologies for modelling the policy
and resource description of their cloud services.

• Using the Protege tool, the users can verify whether their blueprints are consis-
tent with the Blueprint Ontologies

• By executing the Insert.java (or Delete.java) program with a blueprint as input, the
user can upload a blueprint to (or delete a blueprint from) the Jena Fuseki server.

• By specifying a query in the SPARQL language and inputing this query into
the Query.java program, the user can query the needed blueprints from the Jena
Fuseki server.

3Jena Framework: http://jena.apache.org/
4Jena Fuseki: http://jena.apache.org/documentation/serving_data/

156

http://jena.apache.org/
http://jena.apache.org/documentation/serving_data/

• By executing the Resolve.java program for an input blueprint, the user can run an
automatic composition of blueprints. This program reuses the Match, Link, and
Query programs to retrieve the needed blueprints from the Jena Fuseki server,
performs matchmakings between their offerings and requirements, and finally
composes them into the final result.

6.1.4 Validation Experiment

For the purpose of validating the technical feasibility of the blueprint approach, we
performed the following experiments on our prototype:

1. As the first step, the needed blueprints for the Taxi Tilburg Scenario were modeled
using the Protege tool. The TaxiOrdering-CSBA blueprint was considered
as the target blueprint that needs to be resolved and the other blueprints were
considered as the source blueprints.

2. The Insert operator (implemented by the Insert.java program) was used to up-
load the source blueprints to the Jena Fuseki server.

3. The Query operator was executed with different (complex) query expressions
defined in SPARQL. In particular:

• First, the source blueprints were queried based on their functional offering,
e.g. querying for “Database”, “Context-as-a-service” blueprints, etc.

• Then, the source blueprints were also queried based on both their functional
offering and policy and resource properties, e.g. querying for a “Database”
blueprint that offers more than 2 TB.

4. As the last experiment step, the TaxiOrdering-CSBA was resolved by execut-
ing the Resolve.java program. The result was an OWL/XML file containing two
alternative compositions of bluerpints.

6.1.5 Findings and Discussion

In general, the experiment results have helped us confirm the intended functionalities
of the prototype. However, we also encounter the following issues that need to be
considered in the future work:

• Using the Protege tool ensures the consistency of the instantiated OWL-based
blueprints. However, for some reasons the user may need to modify his
blueprint without using the tool. This leads to inconsistency between his
blueprints and the schema defined in the Blueprint Ontologies. At the moment,

157

there is no support for verifying the consistency of a blueprint outside the Pro-
tege tool. This issue points to the need to develop a BMT operator to verify the
consistency of a blueprint.

• Currently, querying blueprints is supported with query expressions described
in SPARQL. Although SPARQL is already a powerful query language for RDF
data, it is quite a technical language and not very popular for users outside the
semantic web community. We are thinking of supporting a more generic, user-
friendly blueprint query language in the future work.

• Regarding the resolution functionality, we observe the following issues:

– We were not able to justify the performance of the resolution due to the
small scope of the validation scenario. In the future work, we expect to per-
form measurements on the response time and reliability of the resolution
functionality. At this moment, only the expected behavior of this function-
ality can be confirmed.

– We see the possibility to limit the solution space of the resolution process
by involving the user’s decision in each incremental resolution step. As
we have seen in Section 5.9, the resolution process is an iterative process to
resolve the requirements of the blueprints. If the resolution process can be
broken down to each iteration, in which the user is able to select a subset
of the alternative results for the next iteration, the solution space is smaller
and the performance will be increased. This issue will also be taken into
account in our future development of the resolution functionality.

6.1.6 Summary

For the purpose of validating the technical feasibility of the Blueprint Approach, we
used the Web Ontology Language (OWL), the well-established standard language for
specifying semantic web resources, to formalize the semantics of the BSL model. Then,
we also use OWL to create sample blueprint models as the instances of the BSL model
to specify cloud services in the Taxi Tilburg Scenario. To be noticed, this scenario is a
simplified version of a 4caast demonstration scenario, which has been co-developed
with several industry partners for validation purposes. For demonstrating the func-
tionality of the BMT operators, we have developed them as Java programs that reuse
the Jena Framework APIs. The sample OWL-based blueprint models in the Taxi Tilburg
Scenario are treated as RDF Models in these programs, so that they can be manipulated
and composed. In general, our experiments in this section have shown that it is fea-
sible to follow this path of implementation to realize a complete toolset for the BSL
and the BMT’s, although some of the important findings should be taken into account

158

in the next development phase to improve the consistency and performance of the
approach.

6.2 Practical Validity of the Blueprint Approach

This section reports our activities in validating the applicability of the
Blueprint Approach through our participation in the EC’s 4caaSt FP7
project [European Comission, 2010]. From the early phase of this project, the
blueprint approach has already been recognized as one of its main innova-
tions [Gómez et al., 2012]. Its development started with a collaborative case study
design with our industry partners in the 4caaSt project such as Telefonica, TelecomI-
talia, SAP, etc., which resulted in a set of 4caaSt’s demonstration scenarios. The 4caaSt
scenarios have been used throughout the four-year project term for validating the
research results in general and the blueprint approach in particular. We introduce
in the following subsection 6.2.1 the Taxi Application Scenario that has extensively
been used during the course of the project for validating the Blueprint Approach.
The prototype architecture implementing this scenario will then be introduced in
subsection 6.2.2. Subsection 6.2.3 demonstrates how the components of this prototype
architecture are modeled in a set of blueprints and how the blueprints are resolved
to form a complete cloud application for the scenario. As part of the prototype, the
blueprint toolset is introduced in subsection 6.2.4 to support the management and
composition of blueprints. Finally, evaluation results of the Blueprint Approach
are reported in subsection 6.2.5 and 6.2.6. Whilst the subsection 6.2.5 presents the
evaluation result only within the 4CaaSt community, in subsection 6.2.6 we report the
results of an more general questionnaire that has been tailored towards a group of
knowledgeable audience in the SOA and Cloud Computing domain.

6.2.1 4caaSt’s Taxi Application Scenario

Among the three validation scenarios in the 4CaaSt project, the benefit of using
blueprints for cloud application development has been emphasized at most in the Taxi
Application Scenario [Gómez et al., 2012]. This scenario has the objective to evaluate
several features and technologies provided by the 4CaaSt project. For the full details
of the scenario please refer to the description in [Gómez et al., 2012]. In the following
we summarize the scenario to give the readers an overview of the validation context.

The Taxi Application Scenario is based on a hypothetical software company called
SaaSSolutionS that develops a SaaS application for managing taxi fleets. There is
another SaaS provider in this scenario called FindMyWay.com who offers a Context-
as-a-Service (CaaS) that provides context information in real or near-real time. The
4CaaSt platform and 4CaaSt marketplace developed by the 4CaaSt project participate

159

Figure 6.2: Architecture Overview of the Taxi Application Proto-
type [Andrikopoulos et al., 2013]

VM

REST2SOAP
C-CAST CMF

WAR

REST2SOAP
Google Services

WAR

Java 6 (JDK)

JOnAS

Taxi Company
Stuttgart WAR

Taxi Company S.
Transmitter WAR

Taxi Company
Brussels WAR

Taxi Company B.
Transmitter WAR

JBIMulti2

WAR

Orchestra WAR

Extended
ServiceMix

PostgreSQL

Tenant
Registry

Service
Registry

Config.
Registry

Taxi Service
Provider

(BPEL Process ZIP)

Context Integration
Processes (CIPs)

(BPEL Processes ZIPs)

Active
MQ

JMS
Topic

Proxy

Google Maps
Web Services

CaaS

in this scenario as the offerings of a stakeholder called 4CaaSt who plays both the roles
as a PaaS provider and as a marketplace. Finally the scenario involves two Small-
and-Medium-Enterprise (SME) customers called Taxi Company Stuttgart and Taxi
Company Brussels, who own their fleets of radio taxis.

The scenario starts when one of the two customer SME begins to browse the 4CaaSt
marketplace for a Taxi fleet management software that meets their expectations. After
finding the SaaS provided by SaaSSolutions they decide to contract this solution with
the 4CaaSt marketplace. This contracting activity triggers the 4CaaSt marketplace to
resolve both the technical and business requirements of this SaaS. With the CaaS solu-
tion provided by FindMyWay.com and the platform solutions provided by the 4CaaSt
platform, it is able to resolve all the requirements of the taxi fleet management soft-
ware. Lastly, the taxi fleet management software is deployed on the 4CaaSt platform
and becomes ready-to-use for the Taxi Company Stuttgart and Taxi Company Brussels.

6.2.2 Taxi Application Architecture

In this section, we explain the architecture of the taxi application prototype
that has been developed by our partners in the 4CaaSt project. Figure 6.2 il-
lustrates the components that are parts of the deployed prototype, which in-

160

clude [Andrikopoulos et al., 2013]:

• Taxi Application: This component is provided by SaaSSolutions to implement
the taxi management application for both the Taxi Company Stuttgart and Taxi
Company Brussels. It contains the following software artefacts: Taxi Company
Stuttgart WAR, Taxi Company Stuttgart Transmitter WAR, Taxi Company Brus-
sels WAR, Taxi Company Brussels Transmitter WAR, and Taxi Service Provider
(BPEL Process ZIP). The web-based front-end of the Taxi Application is imple-
mented by the WAR files and its back-end is implemented as a set of BPEL pro-
cesses.

• Context Integration Framework: This component is provided by SaaSSolutions
to integrate with an external context information provider and an external map
provider. It contains the following software artefacts: Context Integration Pro-
cesses (CIPs), REST2SOAP CaaS CMF WAR, and REST2SOAP Google Services
WAR.

• Enteprise Service Bus (ESB): This component is provided by SaaSSolutions to en-
able the message communication between the Taxi Application component and
the Context Information Framework component. It contains the following software
artefacts: Extended ServiceMix, Active MQ, and JBIMulti2 WAR.5.

• JOnaS, Orchestra and PostgreSQL: These are the components provided by the
4CaaSt platform. JOnaS6 is an open-source Servlet container to deploy the WAR
files, Orchestra7 is an open-source BPEL engine for hosting BPEL processes, and
PostgreSQL8 is an open source database solution.

• CaaS: The SaaS offered by FindMyWay.com to provide context information at
real-time.

• Google Maps Service: the map service of Google.

6.2.3 Blueprint and Blueprint Resolution

For the design, configuration and deployment of the Taxi Application scenario, blueprint
has been used as the uniform specification of (a group of) components of this proto-
type. Each blueprint specifies the requirements, offerings and artifacts needed for
deploying the solution.

5This ESB component is actually provided by Apache ServiceMix (http://servicemix.apache.
org/), an open source solution for implementing an ESB

6http://jonas.ow2.org/xwiki/bin/view/Main/
7http://orchestra.ow2.org/xwiki/bin/view/Main/WebHome
8http://www.postgresql.org/

161

http://servicemix.apache.org/
http://servicemix.apache.org/
http://jonas.ow2.org/xwiki/bin/view/Main/
http://orchestra.ow2.org/xwiki/bin/view/Main/WebHome
http://www.postgresql.org/

Figure 6.3: Components of the 4CaaSt Taxi Application Scenario that
have been modeled in the blueprints

VM

REST2SOAP
C-CAST CMF

WAR

REST2SOAP
Google Services

WAR

Java 6 (JDK)

JOnAS
Taxi Company
Stuttgart WAR

Taxi Company S.
Transmitter WAR

Taxi Company
Brussels WAR

Taxi Company B.
Transmitter WAR

JBIMulti2
WAR

Orchestra WAR

Extended
ServiceMix

PostgreSQL

Tenant
Registry

Service
Registry

Config.
Registry

Taxi Service
Provider

(BPEL Process ZIP)

Context Integration
Processes (CIPs)

(BPEL Processes ZIPs)

Active
MQ

JMS
Topi

c

Proxy

Google
Maps Web

Services

CaaS

TaxiScenario
Blueprint

CIF Blueprint

CaaS Blueprint

Apache Service
Mix Blueprint

Jonas+Orchestra
Blueprint

PostgresQL
Blueprint

In the following subsection 6.2.3.1, we report our activities in co-developing the
Blueprint Specification Language(BSL) with our partners in the 4CaaSt project and
subsequently explain in detail the blueprints that have been created based on this lan-
guage for the Taxi Application Scenario. In Subsection 6.2.3.2, we explain how to per-
form the blueprint resolution in the Taxi Application Scenario.

6.2.3.1 Blueprint Specification

A number of desired features for the blueprint definition have been derived from the
need of a standardized cloud service description format in 4caaSt. We have organized
several online and face-to-face meetings to gather these desired features from our in-
dustry partners. Then, we implemented the BSL in an XSD Template and distributed it
to the 4caaSt community to get feedbacks. We organized a “blueprint training” virtual
workshop to explain the concept of blueprint and train our industry partners how to
use the XSD blueprint template. As the cloud service offerings identified in the 4caaSt

162

Figure 6.4: Blueprints of the 4Caast Taxi Application Scenario

• Blueprint

• Resource Requirements

BPEL Composition Engine

on Servlet Container v2.5
context-as-a-service

postgreql Database

TaxiScenario-v03

ASM-v01

Enterprise

Service Bus

Context Information

Framework

CIF-v01

Enterprise

Service Bus

PostgreSQL-v02

Blueprint
CaaS-v03

JOnAS-Orchestra-v3

CaaS-ERISS-

v01

BPEL Composition

Engine on Servlet
Container v2.5

BPEL Composition

Engine on Servlet
Container v2.5

scenarios are the real industrial offerings of our partners, we requested them to use
the provided XSD blueprint template to describe their blueprints in XML and submit
them to our blueprint repository. A set of XML-based blueprints have been created by
our industry partners for the 4caast Taxi Application Scenario.

From the feedbacks of our partners during the collaborative development of the
BSL, it has shown that the Blueprint XSD Template is capable to capture all the neces-
sary aspects of an industrial cloud service offering and simple enough to be used by
our industry partners. Following our guidelines during the blueprint training work-
shop, a TelecomItalia representative was able to design a blueprint “on-the-fly” for
his cloud service. We experienced just a little amount of emails exchanged for the
blueprint template support, which confirms its simplicity of use.

Figure 6.4 illustrates the blueprints that have been created by our 4CaaSt partners
for the Taxi Application Scenario and how the components of the taxi application are
captured in the blueprints. The list of the these blueprints is described in the follow-
ing [Andrikopoulos et al., 2013]:

• TaxiScenario-v03: This is the blueprint describing the Taxi Application. It pro-
vides a “Taxi Management SaaS” and has three requirements: an “Enterprise
Service Bus”, a “Context Information Framework”, and a “BPEL Composition
Engine on Servlet Container v2.5”. The first and second requirements represent
the two functionalities needed by the offering and the last requirement indicates
a platform component needed to deploy the war files and zip files, which are the

163

artefacts of this blueprint.

• CIF-v01: This is the blueprint that provides a “Context Information Framework”
(CIF) product. It contains a number of artefacts that implement the CIF prod-
uct. It exposes also three requirements needed for deploying and configuring the
artefacts: a “BPEL Composition Engine on Servlet Container v2.5” , a “Context-
as-a-Service”, and an “Enterprise Service Bus”.

• JOnAS-Orchestra-v3: This blueprint provides an integrated product containing
an Orchestra BPEL composition engine that has been preconfigured and pre-
deployed on a JOnAS application server. The JOnAS application server sup-
ports also a servlet container that can host servlet v2.5. Hence, this blueprint can
be classified as a “BPEL Composition Engine on Servlet Container v2.5”. This
blueprint is ready for installation, thus contains no further requirements.

• ASM-v01: This blueprint provides the Apache Service Mix product. This type
of offering can be classified as a “Enterprise Service Bus”. The blueprint con-
tains a number of artefacts that implement the product and the following two
requirements: a “BPEL Composition Engine on Servlet Container v2.5” and a
“postgresql database”.

• PostgreSQL-v02: This blueprint provides a “postgresql database” product. The
blueprint is ready for installation and thus contains no further requirements.

• CaaS-BP-v03: This blueprint provides a “Context-as-a-Service” product. The
blueprint is ready for installation and thus contains no further requirements.

• CaaS-ERISS-v01: Similar to the CaaS-BP-v03 blueprint, this is another alternative
blueprint which also provides a “Context-as-a-Service” product. The blueprint
is provided by a different provider in the marketplace. It is also ready for instal-
lation and contains no requirements.

Figure 6.4 shows an intuitive illustration of all seven aforementioned blueprints
that are involved in the Taxi Application scenario. Please note that, for the sake of
brevity, only the blueprint name and the requirements of each blueprint are shown in
the figure.

6.2.3.2 Blueprint Resolution

During the contracting of the Taxi Application, the requirements of the TaxiScenario-
v03 blueprint are resolved to offerings of the source blueprints that are stored in the
blueprint repository. The resolution is performed by following an algorithm that for
each distinct solution creates the abstract resolved blueprint (ARB) for the Taxi ap-
plication with all of the dependency blueprints embedded. Figure 6.5 and Figure 6.6

164

Figure 6.5: Candidate Abstract Resolved Blueprint (ARB) 1

CIF-v01

TaxiScenario-v03

BPEL Composition Engine on

Servlet Container v2.5
Enterprise

Service Bus
Context Information Framework

BPEL Composition

Engine on Servlet
Container v2.5

context-as-

a-service

Enterprise

Service
Bus

ASM-v01

database

BPEL Composition

Engine on Servlet
Container v2.5

ASM-v01

database

CaaS-v03JOnAS-

Orchestra-
v3

PostgreSQL-

v02

JOnAS-

Orchestra-v3

JOnAS-

Orchestra-
v3

JOnAS-

Orchestra-
v3

PostgreSQ

L-v02

BPEL Composition Engine

on Servlet Container v2.5

-Vertexes
• Blueprint/Offering
• Resource Requirements
-Edges
• Is resolved by

show the two possible solutions for the resolution process. They differ in the choice of
the Context-as-a-Service component, which is required by the CIF-v01 blueprint. Both
solutions fulfill all of the requirements specified by the TaxiScenario-v03 blueprint and
represent a physically deployable architecture.

Figure 6.6: Candidate Abstract Resolved Blueprint (ARB) 2

CIF-v01

TaxiScenario-v03

BPEL Composition Engine on

Servlet Container v2.5
Enterprise

Service Bus
Context Information Framework

BPEL Composition

Engine on Servlet
Container v2.5

context-as-

a-service

Enterprise

Service
Bus

ASM-v01

database

BPEL Composition

Engine on Servlet
Container v2.5

ASM-v01

database

CaaS-

ERISS-
v01

JOnAS-

Orchestra-
v3

PostgreSQL-

v02

JOnAS-

Orchestra-v3

JOnAS-

Orchestra-
v3

JOnAS-

Orchestra-
v3

PostgreSQ

L-v02

BPEL Composition Engine

on Servlet Container v2.5

-Vertexes
• Blueprint/Offering
• Resource Requirements
-Edges
• Is resolved by

165

Figure 6.7: Architecture of the 4caaSt Blueprint Toolset

Blueprint

repository

XML-based

ARB

Blueprint Editor

Blueprint

Resolution

Engine

BlueprintHQ

Blueprint

Editor Server

SOAP

messages

SOAP

messages
Marketplace

Blueprint

SOAP API

…...

XML

Blueprints

XML

Blueprints

XML

Blueprints

BlueprintEXE

SOAP

messages

Blueprint Visualizer

XML

Blueprints

XML

Blueprints

XML

Blueprints

Note that the “Context-as-a-service (CaaS)” requirement is a part of the CIF-
v01 blueprint, which is resolved recursively after the CIF-v01 blueprint has al-
ready been used to resolve the “Context Information Framework” requirement of the
TaxiScenario-v03 blueprint. The two resolved solutions are passed to the marketplace
in order to select the one that best fits the customer’s preferences. Finally, the deploy-
ment manager for a physical deployment of the target service configuration is invoked
with the chosen solution.

To understand how the blueprints in the Taxi Application Scenario are managed
and composed by the resolution process, the next section 6.2.4 introduces the Blueprint
Toolset that supports these tasks.

6.2.4 Blueprint Toolset Support

The blueprint toolset has been built with aim to validate the use of the BMT operators
in the practice. The toolset has been extensively used by all three 4CaaSt demonstra-
tion scenarios for this purpose. It supports a number of tools for managing and manip-
ulating XML-based blueprints in a repository, as well as for composing blueprints into
a deployable CSBA configuration. Figure 6.7 depicts the architecture of the blueprint
toolset, which contains the following components:

• Blueprint repository: is where all the XML-based blueprints in the 4caaSt project
are stored. Currently, it is implemented as a MySQL database storing the XML
files.

166

• BlueprintHQ (Blueprint Headquarter): is a Web Service providing a SOAP API
that can be used by external components for accessing the blueprint repository
and the resolution engine via SOAP message communication. The SOAP API
contains the following SOAP operations:

– addBlueprint(String blueprintXML): is the implementation of the BMT op-
erator Insert. It accepts the entire XML-based blueprint as input and inserts
this blueprint into the blueprint repository. A fault SOAP message is re-
turned if there already exists another blueprint in the repository with the
same ID.

– deleteBlueprint(String blueprintID): is the implementation of the BMT op-
erator Delete. It accepts the blueprint ID as input, identifies the blueprint
in the repository with this ID, and finally deletes this blueprint out of the
blueprint repository. A fault SOAP message is returned if there exists no
blueprint in the repository with the input blueprintID.

– getBlueprint(String blueprintID) and getAllBlueprints(): is the implemen-
tation of the BMT operator Query to query a blueprint from the repository
based on its unique blueprintID, or to query all the existing blueprints in
the repository.

– resolveBlueprint(String blueprintXML): is the implementation of the BMT
operator Resolve. Input of this operation is an entire XML-based blueprint.
The BlueprintHQ will invoke the Blueprint Resolution Engine, which is an-
other component of the toolset, with the input XML-based blueprint. The
actual execution of the Resolve operator takes place in the blueprint reso-
lution engine. For every invocation, the BlueprintHQ receives a resolution
result (called Abstract Resolved Blueprint(ARB)). After all the ARBs have
been retrieved, the BlueprintHQ combines them into a list of ARBs and re-
turns the list as the output of the operation.

The BlueprintHQ’s SOAP API has been implemented using NuSOAP9, a SOAP
Toolkit for PHP. Its WSDL can be accessed under: http://blueprinthq.

host-for.me/4CaaSt/blueprint_hq.php?wsdl. We have also built a test
client for the BlueprintHQ under http://blueprintexe.host-for.me/

4CaaSt/blueprintHQ.htm# for testing purpose. This SOAP API is consumed
by (1) the marketplace component provided by our 4caaSt partners Telefonica
and SAP to productize a blueprint and advertise it in a marketplace, (2) the
Blueprint Editor provided by our 4caaSt partner FranceTelecom to enable the
editing and managing of blueprints, and (3) our BlueprintEXE server that sup-
ports a web-based user interface for visualization purpose.

9NuSOAP: http://sourceforge.net/projects/nusoap/

167

http://blueprinthq.host-for.me/4CaaSt/blueprint_hq.php?wsdl
http://blueprinthq.host-for.me/4CaaSt/blueprint_hq.php?wsdl
http://blueprintexe.host-for.me/4CaaSt/blueprintHQ.htm#
http://blueprintexe.host-for.me/4CaaSt/blueprintHQ.htm#
http://sourceforge.net/projects/nusoap/

• Blueprint resolution engine: is the engine that actually performs the resolution
of an input XML-blueprint by iteratively performing the matchmaking of its re-
quirements against the existing blueprints in the blueprint repository and finally
producing a set of alternative Abstract Resolved Blueprints (ARBs) as the result.
Each ARB is a possible combination of blueprints that constitute a cloud applica-
tion. During the course of the 4caaSt project, we have worked with the folowing
two implementations of the blueprint resolution engine:

– Ericsson composition engine: During the first three years of the 4caaSt
project, the Ericsson composition engine [Niemoeller et al., 2009] has been
enhanced with the implementation of the blueprint resolution so that it
could function as a blueprint resolution engine in our 4caaSt blueprint
toolset. The midterm demonstration of the 4caaSt project has shown that
the Ericsson composition engine is capable of delivering the expected reso-
lution functionality. However, its performance still needs a lot of improve-
ments.

– IMDEA resolver: Recently, we have collaborated with the IMDEA Software
Institute10 in the co-development of the IMDEA resolver, which is an alter-
native blueprint resolution engine that aims to replace the Ericsson’s com-
position engine with a better performance as well as more advanced fea-
tures. The first release of the IMDEA resolver has met all the expectations re-
garding the performance of the blueprint resolution. By testing the IMDEA
resolver with a 4caaSt scenario that involves seven source blueprint models
in the repository and a target blueprint model, the time to get a solution is
quite acceptable (about 332-662 ms) depending on the network conditions.

The IMDEA resolver is a Java application that provides a Web service (with
SOAP/HTTP messaging) and runs on top of a Glassfish 3.1+ application
server. The main Java technologies involved in the implementation are Java
XML Binding (JAXB) and Java Web Services (JAX-WS), of which Glassfish
and its Metro component are the reference implementations.

• Blueprint Editor: is a Web interface that allows end-users to interact with the
blueprint repository, e.g. to add, modify, display, or delete blueprints. It is cur-
rently provided and maintained by FranceTelecom, our partner in the 4caaSt
project.

• Blueprint Visualizer: is a Web-based tool to visualize and resolve a
blueprint. Hosted on the BlueprintEXE server, this tool communicates with the
BlueprintHQ via SOAP messages to retrieve blueprints from the repository for

10IMDEA Software Institute: http://software.imdea.org/about.html

168

http://software.imdea.org/about.html

visualization purpose. Furthermore, it can also be used to trigger the resolution
of a blueprint at the resolution engine.

– The Blueprint Visualizer is accessible here: http://blueprintexe.

host-for.me/4CaaSt/blueprint_sdk_main.php

– A tutorial video showing how to use the Blueprint Visualizer can be seen
here: http://youtu.be/7UX5NfvP-Mw?hd=1

• Marketplace: This component consumes the SOAP APIs of the BlueprintHQ ser-
vice, with aim to retrieve blueprints and expose them as products to the cus-
tomers. As long as a target blueprint is selected by the customer, the marketplace
will trigger the resolution of the target blueprint in order to form the complete
configuration for its deployment environment. Currently, the marketplace com-
ponent is provided and maintained by Telefonica and SAP, our partners in the
4caaSt project.

The following components of the toolset: BlueprintEXE, BlueprintHQ, blueprint
repository and blueprint resolution engine, are currently hosted on Flexiscale virtual
machines11 (supported by our 4caaSt partner Flexiant).

By using the blueprint toolset to demonstrate the manipulation and composition
of blueprints in the Taxi Application Scenario, we have shown the feasibility of im-
plementing a complete industry toolset for the BMT operators. We have particularly
focused on the support for the design and configuration phase of the Taxi Application.
Additional components supporting the runtime phase, e.g. the deployment controller,
monitoring component, adaptation engine, etc., can easily be integrated to the toolset
in the future via standard SOAP communication.

6.2.5 Evaluating the Blueprint Approach within the 4CaaSt Commu-
nity

As described in the 4CaaSt Whitepaper [Gómez et al., 2012], the Blueprint Approach
is one of the core contributions of the 4CaaSt project. Hence, it is crucial to evaluate its
practical validity after demonstrating it in the Taxi Application Scenario. An evalua-
tion questionnaire [Arozarena et al., 2012] has been created by the 4CaaSt project team
and sent to the partners who have participated in the process of creating blueprints for
the Taxi Application Scenario. The purpose of this questionnaire is to assess the cur-
rent applicability of the Blueprint Approach and provide improvement suggestions
for the future work in this direction.

The evaluation criteria contained in this questionnaire were taken from that
presents the S-Cube quality reference model, which include [Arozarena et al., 2012]:

11Flexiscale: http://www.flexiscale.com/

169

http://blueprintexe.host-for.me/4CaaSt/blueprint_sdk_main.php
http://blueprintexe.host-for.me/4CaaSt/blueprint_sdk_main.php
http://youtu.be/7UX5NfvP-Mw?hd=1
http://www.flexiscale.com/

• Learnability (notation scale –, -, 0, +, ++): Easiness of the blueprint model under-
standing.

• Effectiveness (notation scale –, -, 0, +, ++): Accuracy and completeness of the
blueprint that the user designs with respect to the user’s application or technol-
ogy.

• Efficiency of use (notation scale –, -, 0, +, ++): Effort and means put in designing
and applying the blueprint.

Four 4CaaSt partners who have created the Taxi Application blueprint (TaxiScencario-
v03), the Context-as-a-Service blueprint (CaaS-v03), the JOnAS/Orchestra blueprint
(JOnAS-Orchestra-v3), and the Context Integration Framework blueprint (CIF-v01),
have responded to this questionnaire with their assessments. In the following we
summarize the evaluation result that has been reported in [Arozarena et al., 2012]:

• Regarding the Learnability: This criterion receives two “++” and two “0”, which
indicates a quite high appreciation of the users in learning and using the
blueprints. General comments state that since the blueprint is designed as an
XSD template, it can be easily and intuitively created without extra learning ef-
fort. The good documentation and examples have also received lots of apprecia-
tions.

• Regarding the Effectiveness: This criterion receives three “+” and one “0”. The
good score of this criterion confirms the accuracy and completeness of the cur-
rent blueprint structure. The extension mechanism of the blueprint template
has been acknowledged as a significant feature for integrating with existing lan-
guages. There is also an interesting comment stating that since the blueprint
is currently only capable to capture only one cloud service, several blueprints
would be needed for several variants of the same cloud service. It is likely clearer
to have a separate blueprint for each service variant, yet very inefficient if the
number of variants is high.

• Regarding the Efficiency of use: This criterion receives two “+” and two “0”. The
score of this criterion is fairly good. It indicates that the users can work easily
with the current design of the blueprint template. The feedbacks of this criterion
stated that it did not require many hours to create a blueprint. The neutral scores
in this case only indicate that several feedback cycles were needed to create a
stable structure definition in the current blueprint template version.

6.2.6 Evaluating the Blueprint Approach in a broader Scope

The previous subsection 6.2.5 reports an evaluation activity that has been specifically
tailored towards the 4CaaSt partners who have contributed to the Taxi Application

170

Scenario demonstration. The result is somewhat useful for the future development
of the Blueprint Approach since it reflects the assessment of those who have worked
directly with the blueprints. It does, however, not represent a general and objective
assessment of the practical validity of our approach.

For the purpose of evaluating the Blueprint Approach in a more objective way, we
have approached a group of knowledgeable people in the SOA and Cloud Computing
domains with a more general questionnaire. Some of the target audiences are already
familiar with the concept of blueprints. Some other are not and thus, need more time
to get acquainted to the approach through the related literature and tools. The ques-
tionnaire contains 10 questions and is divided into three parts:

• Part 1 - Understanding the Participant’s Segmentation: in this part we would
like to understand the knowledge background of the participant in the field of
cloud computing as well as his/her work circumstance.

• Part 2 - Evaluating the Blueprint Approach: in this part we would like the par-
ticipant to give his/her assessment on the practical validity of the Blueprint Ap-
proach.

• Part 3 - Improvement Suggestions: in this part we would like to collect the im-
provement suggestions for the future development of the Blueprint Approach.

Out of the 22 people who have been asked to participate in the questionnaire, 14 peo-
ple have delivered a complete result. The details of these anwers can be found in
Appendix B. In the following, we analyze the 14 complete answers.12

6.2.6.1 Part 1: Understanding the Participant’s Segmentation

In this part we would like to understand the knowledge background of the participant
in the field of cloud computing as well as his/her work circumstance.

12Please note that in the questionnaire we used different terminologies for the Blueprint Approach,
i.e. we use “Blueprint XSD Template” to refer to a concrete syntax of the BSL, and “Blueprint Web
Service Interface” to refer to a concrete implementation of the BMT operators. The purpose is to increase
the understandability for the technical audience.

171

Q1. To which extent are you familiar with cloud application development?

• Low

• Medium

• High

Q2. Your work is...

• Technically-oriented in an Academic Organization

• Technically-oriented in an Industry Organization

• Business/Economic-oriented in an Academic Organization

• Business/Economic-oriented in an Industry Organization

Q3.What is your intended usage of the blueprint approach?

• For further internal R&D activities

• For commercial product and service development

• Both

• Others

• No intended usage at all

Figure 7.1 in the Appendix B presents the results of the three questions Q1, Q2, and Q3
about the background and work circumstance of the participants. The majority of the
participants (11 out of 14) have an adequate knowledge on cloud application devel-
opment and 3 of them are already experts in the cloud computing domain. The ques-
tionnaire has gained attention from both academic and industry organization where
there are slightly more people from the academia (8) than from the industry (6). It
is understandable that most of the participants have a technical background (10 out
of 14) as the Blueprint Approach involves much technical knowledge. Lastly, what is
also interesting is to understand the intended usage of the Blueprint Approach. The
majority of the participants (11 out of 14) would like to adopt this approach for further
internal Research & Development activities whilst 4 participants would like to apply it
immediately for their commercial products and services. This information gives us the
encouragement that the Blueprint Approach has actually gained much interest from
the outside community.

172

6.2.6.2 Part2: Evaluating the Blueprint Approach

In this part we report the participants’ assessments on the practical validity of the
Blueprint Approach. The question Q4, Q5, Q6 and Q7 in the questionnaire aim to
evaluate the current capability and design of both the Blueprint XSD Template and
the Blueprint Web Service Interface.

Q4. The Blueprint Template has been developed as an XML-based template to capture a
complete specification of a cloud service. The current version of the Blueprint Template is
able to...

• 4a. help the cloud providers shape their cloud service specifications in a more struc-
tured and meaningful way.

• 4b. serve as a uniform specification of cloud services that can be shared and composed
among a number of developers and cloud providers.

• 4c. provide a possibility for cross-linking cloud service specifications with aim to
facilitate the design and configuration of composite cloud applications.

• 4d. facilitate a more efficient discovery and selection of cloud services on a market-
place.

• 4e. help reduce the effort of (re-)composing the cloud service in different composite
cloud applications.

• 4f. enable a more efficient way to aggregate prices from different pricing models as
well as resolve the business conflicts.

• 4g. support the specification of the architecture topology of an entire cloud applica-
tion, from which an automatic deployment plan can be generated.

The question Q4 is used to evaluate the current capability of the Blueprint Template.
It has been designed as a rating scale question (1 = strongly disagree, 2 = disagree, 3
= neutral, 4= agree, 5 = strongly agree). The upper part of Figure 7.2 in the Appendix
B visualizes the average scores of this question. All participants has agreed that the
Blueprint Template has achieved its goal to help the cloud providers shape their cloud
service specifications in a more structured and meaningful way (statement 4a). The
other statements 4b, 4c, 4d, 4e and 4g have also received relatively good feedbacks.
However, the statement 4f only receives an intermediate score, which clearly indicates
that the blueprint template is still not able to support the aggregation of prices and res-
olution of business conflicts. This can be explained in the way that the current version
of the blueprint template still does not take this information into account and relies on
its extension mechanism for supporting the price specification, price aggregation and

173

business conflict resolution.

Q5. The current design of the Blueprint Template...

• 5a. has captured all the essential information of a cloud service specification.

• 5b. is easy to understand and follow.

• 5c. is logically divided into meaningful template sections, each focusing on a partic-
ular information set of a cloud service specification.

• 5d. can easily be extended to incorporate external languages or specification
schemas, e.g. for specifying monitoring and accounting information.

• 5e. supports the interchangeability between heterogeneous systems thanks to its
XML-based definition.

• 5f. does not require additional training/guidance to understand and apply.

The question Q5 is used to evaluate the current design of the Blueprint Template.
It has been designed as a rating scale question (1 = strongly disagree, 2 = disagree,
3 = neutral, 4= agree, 5 = strongly agree). The lower part of Figure 7.2 in the Ap-
pendix B visualizes the average scores of this question. In general, the current design
of the template is acceptable. The highest score was given to statement 5c stating that
the template has been designed with a logical and understandable structure. From
the result of this question, we recognize the two biggest concerns: (1) regarding the
statement 5f, the template might be difficult for the users so that additional training
and guidance is still much expected, and (2) regarding the statement 5a, the template
might still be incomplete so that additional information elements of a cloud service
specification need to be incorporated into the future version of the template.

Q6. Currently, the Blueprint Template contains the following elements: Offering, Deploy-
ment Artefact(s), Requirement(s), Architecture Topology. What are the 3 most important
elements that should (still) be supported in the next version of the Blueprint Template?

• 6a. Offering

• 6b. Deployment Artefacts

• 6c. Requirements

• 6d. Architecture Topology

In the question Q6, we would like the participants to select the most important el-
ements of the current blueprint template. The result of this question is visualized
in the upper part of Figure 7.3 in the Appendix B. The aim of this question is to re-

174

vise the significance/validity of these elements for the future template version. The
majority of participants (12 out of 14) agrees that “Offering” and “Requirement” are
the inherent elements of the template. There are some doubts about the role of the
“Deployment Artefacts” and “Architecture Topology” elements in the template. A
logical explanation for it is that some participants may expect a clear boundary be-
tween the Blueprint Template (which aims to support the design and composition
of cloud services) and other cloud specification formats like OVF [DMTF, b] and
TOSCA [OASIS, 2013] (which aim to support the the configuration of the deployment
environment of cloud services)

Q7. The Blueprint Web Service Interface has been developed to support a set of function-
alities for creating, manipulating, and composing blueprints. The current version of the
Blueprint Web Service Interface is able to...

• 7a. provide the essential functionalities in managing and composing cloud services.

• 7b. (through the Resolve operation) facilitate the automatic discovery and composi-
tion of cloud service specifications to meet certain application’s requirements.

• 7c. deliver reliable results.

• 7d. deliver a reasonable performance.

• 7e. easy to integrate with external systems.

The question Q7 aims to evaluate the current capabilities of the Blueprint Web Ser-
vice Interface, which is a Web Service-based implementation of the BMT operators.
The average scores of this question are visualized in the lower part of Figure 7.3 in the
Appendix B. Although this question has received reasonably good scores, the biggest
concern remains in the completeness of the provided functionalities (statement 7a).
The evaluatio result of the statement 7a is totally in-line with a large number of sug-
gested functionalities for the next version of the Blueprint Web Service Interface that
will be reported in the next Question Q8. Furthermore, one of the significant remarks
in the result of this question is that the “Resolve” operation has gained a lot of ap-
preciations as a significant functionality that supports the automatic discovery and
composition of cloud service specifications for engineering cloud applications.

6.2.6.3 Part 3: Improvement Suggestions

The third part of the questionnaire contains three questions that ask for the partici-
pants’ recommendations to improve the Blueprint Approach in the future work.

175

Q8. In your opinion, what are the 3 most important functionalities that are currently
missing in the Blueprint Web Service Interface ?

The question Q8 is an open question asking for the suggested functionalities for
the Blueprint Web Service Interface. From the result of the previous question Q7 we
already see that the participants also have some doubts about the completeness of
the provided functionalities. For this question, a list of desired functionalities have
been provided, which will be discussed and evaluated in the following regarding their
significance and implementability (notation scale –, -, 0, +, ++):

• Listing and grouping blueprints: There is a desire of grouping (tagging)
blueprints so that they can be organized into meaningful groups (not necessar-
ily hierarchically). This desire involves the definition of blueprint categories and
a category-based management of blueprints in the repository. Significance (+),
Implementability (+)

• Checking the compliance of regulatory (e.g. Sarbens-Oxley) and other compli-
ance requirements against the end-to-end Blueprint model: This is indeed a legit-
imate recommendation since the composition of web services may have to face
the situation in which several cloud services operate under different regulatory
rules. However, this topic involves a large body of knowledge and may require
much effort in the future work. Significance (++), Implementability (-)

• Rich querying of the blueprint repository: The simplicity of the current query-
ing functionality is a known shortcoming of the Blueprint Approach. A more
generic query operation together with a rich query language will definitely be
developed in the next step to support the users with more complex query ex-
pressions. However, this desire also requires relatively much effort. Significance
(++), Implementability (-).

• Automatic substitution of blueprints: We only consider this suggestion as a
“nice-to-have” feature for the future work. Significance (0), Implementability
(0)

• Generate Deployment Plan: This is an important suggestion. However, a num-
ber of related approaches like OVF [DMTF, b] and TOSCA [OASIS, 2013] have
already been developed in this direction. Hence, we would like to combine these
approaches with the Blueprint Approach and reuse their features to generate a
deployment plan for the blueprints, rather than develop this feature on our own.
Significance (-), Implementability (+)

• Semantic support for blueprints: Although our theoretical work on the blueprint
has been based on semantic web technologies like RDF and OWL, we do not

176

intend to provide the semantics support for the users in the near future. Signifi-
cance (-), Implementability (0).

• Check the XML syntax of new/updated blueprints: This is a valid suggestion
since we would always like to ensure the consistency of the blueprints that are
submitted to the repository. In our opinion, it is also feasible to implement the
consistency checking functionality. Significance (+), Implementability (++)

• Support for an interactive resolution to allow users to provide their choices,
knowledge in the process of resolving blueprints: This is an interesting sugges-
tion to improve the performance and reliability of the resolution process. Signif-
icance (++), Implementability (0)

Q9. In your opinion, what are the 3 most important language extensions for the Blueprint
Template?

• 9a. A language for specifying the Metering Information for a blueprint including
e.g. a description of what needs to be measured (event, time, quantity, etc.), and
the measurement unit (number of invocation, number of notification, millisecond,
second, GB, MB, etc.).

• 9b. A language for specifying the Monitoring Information for a blueprint including
e.g. a description of what needs to be monitored (physical memory, current CPU
load, bandwidth, etc.) and the monitoring unit (GByte, Gbit/s, CPU-Instruction,
etc.)

• 9c. A language for specifying the Constraints among several blueprints including
e.g. the business or regulatory compliance rules between the blueprint providers.

• 9d. A language for specifying the Deployment Environment of a blueprint including
e.g. the properties of the virtual machine nodes and network links used to deploy the
blueprint together with their vertical and horizontal elasticity.

• 9e. A language for specifying the Pricing Information of a blueprint including e.g.
the pricing model (pay-per-use for subscription-based), price unit, price aggregation
strategy, etc.

• 9f. A language for specifying the Service Level Agreements (SLA) of a blueprint
including e.g. the required performance level of a cloud service, the penalty and
compensation policy , etc.

The Blueprint Template provides an extension mechanism which can be used to in-
corporate external languages or specification schemas. We use the question Q9 to ask
for selecting the potential language extensions that play an important role in cloud ap-

177

plication development. The list of potential language extensions have been provided
in the question. The result of this question is visualized in the upper part of Figure 7.4
in Appendix B. The most desired language extension is for specifying the Service-level
Agreement (SLA) of a blueprint (statement 9f). Another important language extension
is for specifying the constraints between the blueprints to support the specification of
business or regulatory compliance rules between the blueprint providers (statement
9c). Other proposals for specifying the deployment environment, the pricing informa-
tion, and the metering and monitoring information, also receive much attention from
the participants.

Q10. In your opinion, what are the 3 most important components that should be supported
in the future development of the Blueprint Approach?

• 10a. A software tool to generate and configure the deployment environment of a
blueprint

• 10b. A software tool to monitor the runtime SLA of a blueprint, e.g. to monitor
the response time, throughput and availability of the cloud service specified in that
blueprint

• 10c. A software tool to monitor the resource consumption of a blueprint, e.g. to
monitor the CPU load and the memory and bandwidth consumptions.

• 10d. A visualization tool for blueprints and blueprint compositions that enables
easy and intuitive editing tasks.

• 10e. A software tool that helps manage the entire lifecycle of a blueprint, i.e. from
the design and composition to the deployment, monitoring, and retirement.

Currently, the Blueprint Approach supports (1) a Blueprint XSD template for speci-
fying a cloud service in a blueprint, and (2) a Blueprint Web Service Interface for man-
aging and composing blueprints. In the last question Q10, we would like to ask for
recommendations for the additional tools that should be supported by the Blueprint
Approach in the future. The lower part of Figure 7.4 in the Appendix B visualizes the
result of this question. The majority of the participants (12 out of 14) points out the sig-
nificance of having a visualization tool for blueprints and blueprint compositions that
enables easy and intuitive editing tasks. The second most important tool support is a
lifecycle management tool for the blueprints. Both of the two most desired tool sup-
ports are already in the list of our future developments. In particular, the beta-version
of the visualization tool13 has been introduced to the 4CaaSt community.

13The beta-version of the blueprint visualization tool is located under http://blueprintexe.
host-for.me/4CaaSt/blueprint_sdk_main.php

178

http://blueprintexe.host-for.me/4CaaSt/blueprint_sdk_main.php
http://blueprintexe.host-for.me/4CaaSt/blueprint_sdk_main.php

CHAPTER 7

CONCLUSIONS AND FUTURE ISSUES

The convergence of Service-Oriented Architecture (SOA) and Cloud Computing in-
troduces a novel approach to the engineering of distributed, geographically dispersed
Service-based Applications (SBAs). Composing SBAs using a syndication of hetero-
geneous cloud-based software-as-a-service (SaaSs), platform-as-a-service (PaaSs) and
infrastructure-as-a-service (IaaSs) allows an SBA developer to take advantage of their
different functionalities and qualities to build a tailored solution that meets specific
business requirements. SBAs that are built this way are called Cloud Service-Based
Applications (CSBAs).

However, current approaches for engineering CSBAs usually lead to a vendor lock-
in situation where the constituting SaaSs used to compose an CSBA are delivered as
monolithic, one-size-fits-all solution stacks coupled to proprietary platforms and in-
frastructures. These monolithic SaaS stacks are usually not customizable, extendable
and interoperable. To support a more flexible approach for engineering CSBAs, we
propose in this thesis the concept of Blueprint as an abstract, uniform specification of
a cloud service across all three layers of the cloud stack, i.e. SaaS, PaaS and IaaS. The
contribution of this thesis is to provide a Blueprint Approach for engineering CSBAs
that includes the following components:

• A well-defined Blueprint Specification Language (BSL) that provides a means for
cloud service providers to abstractly (i.e., independent of the implementation)
and unambiguously specify a cloud service in a blueprint. Chapter 4 has intro-
duced the BSL as a Domain-specific Modelling Language that comprises of the
following components: the BSL abstract syntax model in UML, the Blueprint
XSD Template as the BSL concrete syntax, and the OWL blueprint ontologies as
the formalization of the BSL semantics. Mappings between the three components

179

of the BSL have also been explained in this chapter.

• A set of Blueprint Manipulation Techniques (BMTs) for publishing, querying, and
composing blueprints with aim to support the design and configuration of an
CSBA. In Chapter 5, we have developed these techniques as the BMT operators
that work on the blueprints. Each BMT operator has been introduced in detail
including its conceptual definition, formalization and implementation.

Following the blueprint approach, CSBA developers can create sophisticated CSBAs
from heterogeneous SaaS, PaaS, and IaaSs offered by different providers to achieve
end-to-end business requirements. A sample CSBA has been used as a running exam-
ple throughout the thesis to demonstrate our approach, i.e. the TaxiScenario-CSBA. It
has also been implemented as a “proof-of-concept” prototype to prove the feasibility
of the blueprint approach. To demonstrate the applicability of the blueprint approach
in the cloud computing domain, a blueprint toolset has been co-developed with our
industry partners within the scope of the 4caaSt project [European Comission, 2010].

Given the research results, we review in Section 7.1 the research questions of the
thesis and provide the answer for each question. Then, in Section 7.2 we evaluate our
results based on the criteria of design science. Finally, in Section 7.3 , we present the
issues that can be developed in the future to tackle the limitations of our research.

7.1 Research Questions and Answers

In the previous Section 1.4, we have defined four distinct research questions for the
thesis. In this section, we provide the answers to them.

RQ1: What is the state-of-the-art in specification language supports for cloud services
and what are their strengths and shortcomings?

The state-of-the-art in cloud service specification languages has been extensively
discussed in Chapter 2. We discovered that these languages are restricted to a certain
cloud layer, e.g. SaaS, PaaS, or IaaS. On the IaaS layer there exists a large body of
work on IaaS definition languages that aim to support an automatic packaging and
deployment of IaaS solutions on an infrastructure cloud. On the PaaS layer, there exist
only proprietary PaaS specification languages supported by particular vendors. On
the SaaS layer, existing well-established standards in Web services and SOA services
can certainly be reused for specifying SaaSs. We identified the lack of a uniform spec-
ification language for cloud services across all three layers of the cloud stack. As the
result, we proposed the Blueprint Approach to address this shortcoming.

RQ2: How can we design and validate a uniform specification language for cloud ser-
vices across all three layers of the cloud delivery stack?

180

Chapter 4 has proposed the BSL as the uniform specification language for cloud ser-
vices across all three layers of the cloud delivery stack. The BSL is divided into mod-
ular modules to cover all aspects of a cloud service specification. Depending on the
cloud layer, a user of the BSL can choose the appropriate modules to specify his cloud
service, e.g. he can choose the BSL SaaS Module (which imports the BSL Core Mod-
ule, BSL Policy Module and BSL Interface Description Module) to specify his SaaS, or
he can choose the BSL PaaS module (which imports the BSL Core Module, BSL Pol-
icy Module, and BSL Resource Description Module) to specify his PaaS. Furthermore,
the BSL is designed in an extensible way so that external languages and specification
schemas can easily be incorporated.

A concrete XML-based syntax of the BSL has been proposed and the semantics of
the BSL has also been formalized as an OWL schema model. The validation of the BSL
has been performed through the distribution of the XML-based template to our indus-
try partners in the 4caaSt project [European Comission, 2010] to gain feedbacks. The
result has shown that the BSL has captured all the needed features of a uniform cloud
service specification language, yet is still simple enough to be used by the industry
people.

RQ3: How can we design and validate a set of manipulation techniques for publishing,
querying, and composing cloud service specifications

Another goal of developing the Blueprint Approach, next to the BSL, is to develop a
set of associated techniques that aim to support the publishing, querying and compo-
sition of cloud service specifications. By using the BSL, cloud services can be specified
in blueprints. The Blueprint Manipulation Techniques (BMTs) have been developed in
Chapter 5 as a set of BMT operators that aim to support the manipulation and compo-
sition of blueprints.

In Chapter 5 we have introduced a set of BMT Operators including their concep-
tual definitions, formalization, and pseudo implementation. To prove the feasibility
of these operators, a proof-of-concept prototype has been built using the existing se-
mantic web technologies in querying, updating and manipulating OWL/RDF data.
We have also participated into the development of the 4caaSt blueprint toolset, which
has been built based on the ideas of the BMT operators. The 4caaSt blueprint toolset is
currently being used in several industry prototypes and attracts a lot of interests from
the cloud market leaders like Telefonica, SAP, FranceTelecome, etc.

7.2 Evaluation

As introduced in the previous Section 1.5, the development of the Blueprint Ap-
proach conceptually belongs to design science. Hence, it is necessary to evaluate

181

the research result against the requirements for an effective design science research.
In [Hevner et al., 2004], a list of criteria for evaluation has been introduced. In the
following, we use these criteria for evaluating our research result:

Design as an Artifact: Our work delivers the following viable artefacts:

• The BSL as a Domain-specific Modeling Language including:

– The BSL abstract syntax as an UML model

– The BSL concrete syntax as an XSD template

– The BSL formal semantics as a set of OWL ontologies.

• A set of BMT operators for manipulating and composing blueprints, including

– Their conceptual definitions.

– Their formalizations.

– Their prototype implementations.

All the artefacts have been introduced with a running example.

Problem Relevance: In the previous Section 1.3, we have identified the problem defi-
nition of our research as the lack of a uniform cloud service specification language and
a set of associated techniques to manipulate and compose cloud service specifications.
The development of the Blueprint Approach, which comprises of the BSL and the BMTs,
is totally in line with the problem definition.

Design Evaluation: The Blueprint Approach has been evaluated using an experimental
method. More specifically:

• We opt to evaluate the applicability of our approach using a CSBA engineer-
ing scenario driven from an industrial case of the 4caaSt project. In Chapter 4
and 5, we have demonstrated how the BSL and BMTs are able to support the
specification, manipulation, and composition of cloud services within this CSBA
engineering scenario.

• Evaluation activities have been continuously performed within the 4caaSt com-
munity with aim to gain feedbacks on the utility, quality and applicability of the
Blueprint Approach. In particular, we have organized several meeting and train-
ing sessions to motivate the use of our Blueprint Approach within the scope of
the 4caaSt project. After the four-year term of the 4caaSt project, the Blueprint
Approach has received many positive feedbacks from our industry partners on
addressing current shortcomings in the CSBA engineering domain. It has also
become one of the core contributions of the 4caaSt project.

182

Research Contributions: The contributions of this work have been discussed in detail
at the beginning of this chapter.

Research Rigor: The semantics of the BSL has been formalized as a set of OWL on-
tologies. The reason for choosing the OWL language for formalizing the BSL is that it
is a well-established standard language for knowledge representation. It has also been
proved in [Horrocks et al., 2007] that OWL is based on the Description Logic, which
is “a family of knowledge representation languages that can be used to represent the
knowledge of an application domain in a structured and formally well-understood
way”. The formalization of the BSL as a set of OWL ontologies would provide the
sufficient level of formalism for our BSL contribution.

By instantiating the OWL classes defined in the OWL ontologies, blueprints can
be formally specified as OWL models too. Since the OWL language extends the RDF
vocabulary, an OWL-based blueprint model is also a RDF graph. We used the formal
structure of a blueprint as a RDF graph to formalize the BMT operators that work on it.
More specifically, the BMT operators have been formalized as either (1) SPARQL op-
erations for querying RDF Graphs, or (2) SPARQL-Update for updating RDF graphs,
or (3) basic graph operations for manipulating a graph data structure.

However, it is important to mention that given the innovative nature of our work
in the domain of CSBA engineering, we would prefer to put focus on the applicability
of the BSL and BMTs, rather than pursuing to prove their mathematical rigor.

Design as a Search Process: The development of the Blueprint Approach has been moti-
vated by the lack of a uniform cloud service specification language and a set of associ-
ated manipulation techniques to support CSBA engineers and cloud service providers
within the CSBA Engineering Lifecycle. Given this motivation, we have performed
an extensive state-of-the-art analysis on the current language approaches. The result
has shown that existing languages are typically restricted to a certain cloud layer and
thus not completely suitable to be used in the CSBA engineering lifecycle. This has
given us the motivation to develop the BSL. Moreover, the CSBA engineering lifecy-
cle has also pointed out the need to develop the associated techniques to manipulate
and compose cloud service specifications. This need has led to the development of
the BMTs. Inspired by the idea of model management operators that have been de-
veloped in [Melnik, 2004] for manipulating data models, we have developed a set of
operators to support the BMTs. Finally, to validate the feasibility and applicability of
our solutions, we have built a proof-of-concept prototype as well as participated in
several demonstration prototypes in the 4caaSt project. In summary, the development
of the Blueprint Approach has really been a search process starting always with a prob-
lem definition, then searching for a solution among the existing state-of-the-arts, then
building a solution, and finally validating that the solution we built is applicable.

Communication of the Research: The thesis has been presented in a way that is in-

183

teresting to both technical and non-technical audiences. Firstly in Chapter 1, high-
level descriptions of the motivation, problem definition, goal and questions of the the-
sis have been introduced to motivate both the technical and non-technical audiences.
Then, Chapter 3 has presented the core contributions of the thesis that are still under-
standable for non-technical audiences. More in-depth technical details about the BSL
and BMTs have been presented in Chapter 4 and 5 that aim merely to the technical
audiences.

7.3 Future Issues

Engineering CSBAs is a relatively new research domain and still contains many chal-
lenges that our Blueprint Approach cannot support. It is inevitable that our contribu-
tions still contain a number of limitations, which have already been explained in the
previous section 1.7. In this section, we present the future work and directions, some
of which also address the limitations:

• Extensions of the BSL: Currently, the BSL allows for specifying only limited in-
formation categories of a cloud service, e.g. its functionality, policy, resource,
interface, etc. These categories have been selected as the most significant aspects
of a cloud service specification from existing literature and from the discussions
with our industry partners. However, several important aspects of a cloud ser-
vice have been left out such as the pricing model, licensing, regulatory rules,
etc. In order to have a complete picture of a cloud service specification, several
extensions are required for the BSL in the future.

• Extensions of the Policy and Resource Description Modules: Currently the BSL lacks
of an expressive policy and resource description for a cloud service. This is due
to the fact that we decided to adopt the WS-Policy constructs for this purpose. In
the future we will consider extending the policy and resource description mod-
ules with more expressive language constructs. This extension will involve the
support to specify the Service-level Agreement (SLA) policy, the pricing policy,
and the penalty and compensation policy of a cloud service.

• Continuous validation and improvement of the BSL: A concrete XSD template of the
BSL has been created and distributed to our industry partners in the 4caast com-
munity [European Comission, 2010]. However, this XSD template still lacks a
general acceptance and adoption of a larger cloud community and requires fur-
ther validation activities in the future.

• Extensions of the BMTs: Based on the requirements derived from the 4caaSt
project, we have discussed only the most important operators for engineering

184

CSBAs: the Insert, Delete, Query, Match, Link, Unlink, and Resolve operators.
These operators aim to support the CSBA engineers and cloud service providers
only at the design phase of the CSBA engineering lifecycle. Future research direc-
tions may target the runtime phase of the lifecycle and introduce more operators
to support this phase.

• The need of a Blueprint Constraint Language: A CSBA configuration has been de-
fined in Definition 1.3, Section 1.2 as a composition of blueprints to configure
the deployment environment of an CSBA. Currently, there is a lack of a lan-
guage used to express invariant constraints in an CSBA configuration. These
constraints may come from different sources like the global Service Level Agree-
ment (SLA) terms, deployment constraints, data residency constraints, auditabil-
ity constraints, security constraints, etc. The CSBA engineers should be able to
use this language to specify these constraints that will govern both the compo-
sition of blueprints at the design time and the behaviors of cloud services at
runtime. We call such a language the Blueprint Constraint Language.

185

APPENDIX A: ACRONYMS AND GLOSSARY

4CaaSt Project acronym: The 4CaaSt project aims to create an advanced PaaS Cloud
platform which supports the optimized and elastic hosting of internet-scale,
multi-tier applications and embeds all the necessary features easing program-
ming of rich applications and enabling the creation of a true business ecosystem
where applications coming from different providers can be tailored to different
users, mashed up and traded together [European Comission, 2010]

BMT Blueprint Manipulation Techniques: are defined as the techniques for publish-
ing, querying, and composing blueprints with aim to support the design and
configuration of an CSBA.

BSL Blueprint Specification Language: provides a means for cloud service providers
to abstractly (i.e., independent of implementation) and unambiguously specify a
cloud service in a blueprint.

CSBA Cloud Service-based Application: is a type of SBA that is developed by reusing
and composing cloud services across all three layers of the cloud stack, i.e. SaaS,
PaaS, and IaaS.

Configuration In communications or computer systems, a configuration is an ar-
rangement of functional units according to their nature, number, and chief
characteristics. Often, configuration pertains to the choice of hardware, soft-
ware, firmware, and documentation. The configuration affects system function
and performance. Source: Federal Standard 1037C. Link: http://www.its.
bldrdoc.gov/fs-1037/fs-1037c.htm

Deployment According to the Open Grid Forum’s CDDLM Foundation document
the deployment can be defined as follows: “Deploying any complex, distributed
service presents many challenges related to service configuration and manage-
ment. These range from how to describe the precise, desired configuration of
the service, to how we can automatically and repeatedly deploy, manage and

187

http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm

then remove the service. Deployment description challenges include how to
represent the full range of service and resource elements, how to support service
“templates” (where some description files can be used later on as a base for fu-
ture deployment), service composition, correctness checking, and so on. Deploy-
ment challenges include automation, correct sequencing of operations across dis-
tributed resources, service lifecycle management, clean service removal, security,
and so on. Addressing these challenges is highly relevant to Grid computing at
a number of levels, including configuring and deploying individual Web Ser-
vices (including WS-RF and other dialects), and composite systems made up of
many co-operating Web Services.”. Source: S-Cube Knowledge Model. Link:
http://www.s-cube-network.eu/km/terms/s/service-deployment.

IaaS Infrastructure-as-a-Service: The capability provided to the consumer is to provi-
sion processing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which can in-
clude operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating sys-
tems, storage, and deployed applications; and possibly limited control of select
networking components (e.g., host firewalls). [Mell & Grance, 2009]

OWL Web Ontology Language: is an ontology modeling language recommended by
the World Wide Web Consortium. [McGuinness & van Harmelen (Eds.), 2004]

OVF Open Virtualization Format: is considered nowadays as an open standard for
packaging and distributing virtual appliances. It contains a set of XML tem-
plates (conforming to predefined XSDs) to support the specification of either the
offering of an IaaS provider or the infrastructure resource requirements of a SaaS
or PaaS provider. [DMTF, b]

PaaS Platform-as-a-Service: The capability provided to the consumer is to deploy
onto the cloud infrastructure consumer-created or acquired applications created
using programming languages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the underlying cloud in-
frastructure including network, servers, operating systems, or storage, but has
control over the deployed applications and possibly configuration settings for
the application-hosting environment. [Mell & Grance, 2009]

QoS Quality of Service: is a quality attribute sub-concept that represents those qual-
ity attributes that can be measured objectively or they are unmeasurable but can
take objective values. For example, security attributes are QoS attributes but can-
not be measured. However, the values that they take are objective. QoS attributes
are typical constituents of SLAs (e.g response time and availability).Source:

188

http://www.s-cube-network.eu/km/terms/s/service-deployment

S-Cube Knowledge Model. Link: http://www.s-cube-network.eu/km/

terms/q/quality-of-service-qos.

RDF Resource Description Framework: is a standardized approach to de-
scribe resources on the Web and the relationships among the re-
sources [Manola & Miller, 2004]

SaaS Software-as-a-Service: The capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The applications are
accessible from various client devices through either a thin client interface, such
as a web browser (e.g., web-based email), or a program interface. The consumer
does not manage or control the underlying cloud infrastructure including net-
work, servers, operating systems, storage, or even individual application capa-
bilities, with the possible exception of limited user-specific application configu-
ration settings. [Mell & Grance, 2009]

SBA Service-based Application: is composed by a number of possibly independent
services, available in a network, which perform the desired functionalities of
the architecture. Such services could be provided by third parties, not nec-
essarily by the owner of the service-based application. Note that a service-
based application shows a profound difference with respect to a component-
based application: while the owner of the component-based application also
owns and controls its components, the owner of a service-based application
does not own, in general, the component services, nor it can control their exe-
cution. [Andrikopoulos et al., 2008]

SLA Service-level Agreement: is that part of a service contract where the level of ser-
vice is formally defined. In practice, the term SLA is sometimes used to refer
to the contracted delivery time (of the service) or performance. Source: S-Cube
knowledge model. Link: http://www.s-cube-network.eu/km/terms/s/
service-level-agreement

SOA Service-oriented Architecture: is a logical structure of loosely coupled and inter-
operable software services that can be easily shared within and between enter-
prises, via published and discoverable interfaces [Papazoglou, 2007]

UML Unified Modeling Language: is a standardized (ISO/IEC 19501:2005), general-
purpose modeling language in the field of software engineering. The Unified
Modeling Language includes a set of graphic notation techniques to create visual
models of object-oriented software-intensive systems. Source: Wikipedia. Link:
http://en.wikipedia.org/wiki/Unified_Modeling_Language

189

http://www.s-cube-network.eu/km/terms/q/quality-of-service-qos
http://www.s-cube-network.eu/km/terms/q/quality-of-service-qos
http://www.s-cube-network.eu/km/terms/s/service-level-agreement
http://www.s-cube-network.eu/km/terms/s/service-level-agreement
http://en.wikipedia.org/wiki/Unified_Modeling_Language

APPENDIX B: RESULT OF THE QUESTIONNAIRE

EVALUATION

In this appendix, we report the detailed results of the questionnaire evaluation of the
Blueprint Approach that has been discussed in the previous Section 6.2.6.

191

Figure 7.1: Participant’s Information(Results of Question 1,2 and 3)

192

Figure 7.2: Evaluating the Blueprint Approach(Results of Question 4
and 5)

193

Figure 7.3: Evaluating the Blueprint Approach(Results of Question 6
and 7)

194

Figure 7.4: Improvement Suggestions(Results of Question 9 and 10)

195

BIBLIOGRAPHY

[Allmendinger & Lombreglia,] Allmendinger, G. & Lombreglia, R. Four Strategies
for the Age of Smart Services. Harvard Business Review, 83(10), 131–145.

[Amazon,] Amazon. AWS Formation. online information.Available at
http://aws.amazon.com/cloudformation/.

[Andrikopoulos, 2010] Andrikopoulos, V. (2010). A Theory and Model for the Evolution
of Software Services. Open access publications from tilburg university.

[Andrikopoulos et al., 2010] Andrikopoulos, V., Fugini, M., Papazoglou, M. P., Parkin,
M., Pernici, B., & Siadat, S. H. (2010). Qos contract formation and evolution. In EC-
Web (pp. 119–130).

[Andrikopoulos et al., 2013] Andrikopoulos, V., Strauch, S., Exertier, F., Legrand, J.,
Momm, C., Vogel, J., Niemoeller, J., Lelli, F., Carrie, S., Moulos, V., Kranas, P.,
Moltchanov, B., Nguyen, D. K., Woodcock, K., Junker, F., Ivanovic, D., Wettinger,
J., García, S., & Arozarena, P. (2013). Use Case Applications eMarketPlace for SMEs:
Report on Integration. 4CaaSt Internal Project Deliverable 8.1.4.

[Andrikopoulos et al., 2008] Andrikopoulos et al., V. (2008). State of the Art Report on
Software Engineering Design Knowledge and Survey of HCI and Contextual Knowledge.
Project Deliverable PO-JRA-1.1.1, S-Cube Network of Excellence.

[Aoki, 2007] Aoki, O. (2007). Debian reference. available at
http://www.debian.org/doc/manuals/debian-reference/index.en.html.

[Armbrust et al., 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H.,
Konwinski, A., Lee, G., Patterson, D. A., Rabkin, A., & Zaharia, M. (2009). Above the
Clouds: A Berkeley View of Cloud Computing. Technical report.

197

[Arozarena et al., 2012] Arozarena, P., Dao, M., Exertier, F., Pelletier, B., Junker, F.,
Garcí, S., Spriestersbach, A., Andrikopoulos, V., Strauch, S., Moltchanov, B., Moulos,
V., & Giesmann, A. (2012). Use Case Applications eMarketPlace for SMEs: Report
on Experimentation Results. 4CaaSt Project Deliverable 8.1.5.

[Baader et al., 2008] Baader, F., Horrocks, I., & Sattler, U. (2008). Description Logics.
In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of Knowledge Represen-
tation chapter 3, (pp. 135–180). Elsevier.

[Balani, 2005] Balani, N. (2005). The Future of the Web is Semantic. IBM Developer-
Works.

[Beckett, 2004] Beckett, D. (2004). Rdf/xml syntax specification. W3C Recommenda-
tion.

[Belguidoum & Dagnat, 2007] Belguidoum, M. & Dagnat, F. (2007). Dependency man-
agement in software component deployment. Electron. Notes Theor. Comput. Sci., 182,
17–32.

[Bernstein et al., 2009] Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., & Mor-
row, M. (2009). Blueprint for the intercloud - protocols and formats for cloud com-
puting interoperability. In Proceedings of the Fourth International Conference on Internet
and Web Applications and Services: IEEE Computer Society.

[Bernstein & Vij, 2010] Bernstein, D. & Vij, D. (2010). Intercloud directory and ex-
change protocol detail using xmpp and rdf. In Proceedings of the 2010 6th World
Congress on Services, SERVICES ’10 (pp. 431–438). Washington, DC, USA: IEEE Com-
puter Society.

[Bernstein et al., 2000] Bernstein, P. A., Halevy, A. Y., & Pottinger, R. A. (2000). A
vision for management of complex models. SIGMOD Rec., 29(4), 55–63.

[Beugnard et al., 1999] Beugnard, A., Jézéquel, J.-M., Plouzeau, N., & Watkins, D.
(1999). Making components contract aware. Computer, 32(7), 38–45.

[Binz et al., 2012] Binz, T., Breiter, G., Leymann, F., & Spatzier, T. (2012). Portable
Cloud Services Using TOSCA. IEEE Internet Computing, 16(03), 80–85.

[Binz et al., 2011] Binz, T., Exertier, F., Jiménez-Peris, R., Geoghegan, P., Oskarsson, J.,
Porcher, G., Pelletier, B., Riggs, S., Rodero-Merino, L., Souillard, C., Spriestersbach,
A., & Strauch, S. (2011). Immigrant paas technologies: Components design and
open specification d7.2.1. 4CaaSt project Deliverable.

[Brickley & Guha, 2004] Brickley, D. & Guha, R. (2004). Rdf vocabulary description
language 1.0: Rdf schema. W3C Recommendation.

198

[Brunelière et al., 2010] Brunelière, H., Cabot, J., & Frédéric, J. (2010). Combining
model-driven engineering and cloud computing. In Proceedings of the 4th edition
of Modeling, Design, and Analysis for the Service Cloud.

[Buyya et al., 2010] Buyya, R., Ranjan, R., & Calheiros, R. (2010). Intercloud: Utility-
oriented federation of cloud computing environments for scaling of application ser-
vices. In Proceedings of the ICA3PP 2010, volume LNCS 6081: Springer.

[Cai et al., 2009] Cai, H., Zhang, K., Wang, M., Li, J., Sun, L., & Mao, X. (2009). Cus-
tomer centric cloud service model and a case study on commerce as a service. In
Proceedings of the IEEE International Conference on Cloud Computing.

[Chapman et al., 2010] Chapman, C., Emmerich, W., Márquez, F. G., Clayman, S., &
Galis, A. (2010). Software Architecture Definition for On-Demand Cloud Provi-
sioning. In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing (HPDC’10) (pp. 61–72).

[Chen et al., 2005] Chen, K., Sztipanovits, J., & Neema, S. (2005). Toward a semantic
anchoring infrastructure for domain-specific modeling languages. In Proceedings of
the 5th ACM international conference on Embedded software, EMSOFT ’05 (pp. 35–43).
New York, NY, USA: ACM.

[Chieu et al., 2010] Chieu, T., Mohindra, A., Karve, A., & Segal, A. (2010). Solution-
Based Deployment of Complex Application Services on a Cloud. In Proceedings of
the IEEE International Conference on Service Operations and Logistics and Informatics
(SOLI).

[Collazo-mojica et al., 2010] Collazo-mojica, X. J., Sadjadi, S. M., Kon, F., & Silva, D. D.
(2010). Virtual environments: Easy modeling of interdependent virtual appliances
in the cloud.

[Dean & Schreiber, 2004] Dean, M. & Schreiber, G. (2004). Owl web ontology language
reference. W3C Recommendation.

[DMTF, a] DMTF. DMTF to Develop Standards for Managing a Cloud Computing
Environment, http://www.dmtf.org/standards/cloud.

[DMTF, b] DMTF. Open Virtualization Format (OVF),
http://www.dmtf.org/standards/ovf.

[Do & Rahm, 2002] Do, H.-H. & Rahm, E. (2002). Coma: a system for flexible combi-
nation of schema matching approaches. In Proceedings of the 28th international con-
ference on Very Large Data Bases, VLDB ’02 (pp. 610–621).: VLDB Endowment.

199

[Elvesæter et al., 2011] Elvesæter, B., Berre, A.-J., & Sadovykh, A. (2011). Specifying
services using the service oriented architecture modeling language (soaml) - a base-
line for specification of cloud-based services. In CLOSER (pp. 276–285).

[Emerson et al., 2004] Emerson, M. J., Sztipanovits, J., & Bapty, T. (2004). A mof-based
metamodeling environment. j-jucs, 10(10), 1357–1382.

[European Comission, 2010] European Comission (2010). 4CaaSt: Building the PaaS
Cloud of the Future. Information & Communication Technologies Unit. Project Ob-
jectives Document.

[European Commision, 2009] European Commision (2009). European union interna-
tional trade in services - analytical aspects - data 2003 - 2007.

[Everware-CBDI,] Everware-CBDI. CBDI-SAE Meta Model for SOA v2. CBDI-SAE
specification.

[Fitzsimmons & Fitzsimmons, 2004] Fitzsimmons, J. A. & Fitzsimmons, M. J. (March
2004). Service Management: Operations, Strategy, and Information Technology. Irwin
Professional Pub, 4th edition.

[Forrester Research Inc, 2011] Forrester Research Inc (2011). Research : Sizing the
cloud.

[Franch et al., 1999] Franch, X., Pinyol, J., & Vancells, J. (1999). Browsing a component
library using non-functional information. In Proceedings of the 1999 Ada-Europe In-
ternational Conference on Reliable Software Technologies, Ada-Europe ’99 (pp. 332–343).
London, UK, UK: Springer-Verlag.

[Galán et al., 2009] Galán, F., Sampaio, A., Rodero-Merino, L., Loy, I., Gil, V., & Va-
quero, L. M. (2009). Service Specification in Cloud Environments Based on Exten-
sions to Open Standards. In Proceedings of the Fourth International ICST Conference on
Communication System Software & Middleware (COMSWARE ’09) (pp. 1–12).

[Gasevic et al., 2004] Gasevic, D., Djuric, D., Devedzic, V., & Damjanovi, V. (2004).
Converting uml to owl ontologies. In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, WWW Alt. ’04 (pp. 488–489). New
York, NY, USA: ACM.

[Gehlert & Metzger, 2008] Gehlert, A. & Metzger, A. (2008). Quality reference model
for sba. S-Cube project deliverable CD-JRA-1.3.2.

[Gómez et al., 2012] Gómez, S. G., Carrié, S., Spriestersbach, A., Binz, T., Moltchanov,
B., Strauch, S., Toth, D., & Arozarena, P. (2012). Use case applications emarketplace
for smes: Scenario definition d8.1.2. 4CaaSt Project Deliverable 8.1.2.

200

[Gómez et al., 2011] Gómez, S. G., Vogel, J., Giessmann, A., Menychtas, A., &
Gatzioura, A. (2011). Marketplace functions: Components design and open specifi-
cation. Project deliverable D3.2.1 (Month 12), EU FP7 project 4caaSt.

[Gómez et al., 2012] Gómez et al. (2012). A 4caast whitepaper, 4caast technical value
proposition, version 1.0.

[Goldsack et al., 2009] Goldsack, P., Guijarro, J., Loughran, S., Coles, A., Farrell, A.,
Lain, A., Murray, P., & Toft, P. (2009). The smartfrog configuration management
framework. SIGOPS Oper. Syst. Rev., 43(1), 16–25.

[Guttag, 1977] Guttag, J. (1977). Abstract data types and the development of data
structures. Commun. ACM, 20(6), 396–404.

[Hamdaqa et al., 2011] Hamdaqa, M., Livogiannis, T., & Tahvildari, L. (2011). A refer-
ence model for developing cloud applications. In In proceedings of CLOSER’11.

[Hart et al., 2004] Hart, L., Emery, P., Colomb, B., Raymond, K., Taraporewalla, S.,
Chang, D., Ye, Y., Kendall, E., & Dutra, M. (2004). OWL Full and UML 2.0 Compared.
Technical report.

[Hevner et al., 2004] Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design
science in information systems research. MIS Q., 28(1), 75–105.

[Horrocks et al., 2007] Horrocks, I., Patel-Schneider, P. F., McGuinness, D. L., & Welty,
C. A. (2007). OWL: a Description Logic Based Ontology Language for the Semantic
Web. In F. Baader, D. Calvanese, D. McGuinness, D. Nardi, & P. F. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation, and Applications (2nd
Edition) chapter 14. Cambridge University Press.

[Intel, 2010] Intel (2010). Intel cloud computing taxonomy and ecosystem analysis.
IT@Intel Brief, Intel Information Technology.

[Internet of Services,] Internet of Services. Unified service description lan-
guage (usdl) specification. available online at http://www.internet-of-
services.com/index.php?id=288&L=0.

[Kazarian & Hanlon, 2010] Kazarian, B. & Hanlon, B. (2010). Smb cloud adoption
study dec 2010 - global report. Microsoft Press.

[Keahey et al., 2009] Keahey, K., Tsugawa, M., Matsunaga, A., & Fortes, J. (2009). Sky
computing. IEEE Internet Computing, 13(5), 43–51.

[Kleppe et al., 2003] Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The
Model Driven Architecture : Practice & Promise. Addison-Wesley Professional.

201

[Klyne & Caroll, 2004] Klyne, G. & Caroll, J. J. (2004). Resource description framework
(rdf): Concepts and abstract syntax. W3C Recommendation.

[Konstantinou et al., 2009] Konstantinou, A. V., Eilam, T., Kalantar, M., Totok, A. A.,
Arnold, W., & Snible, E. (2009). An Architecture for Virtual Solution Composition &
Deployment in Infrastructure Clouds. In Proceedings of the 3rd International Workshop
on Virtualization Technologies in Distributed Computing (VTDC ’09) (pp. 9–18).

[Krill, 2009] Krill, P. (2009). The cloud-soa connection. InfoWorld article.

[Liu & Zic, 2011] Liu, D. & Zic, J. (2011). Cloud#: A specification language for model-
ing cloud. In IEEE CLOUD (pp. 533–540).

[Lusch et al., 2008] Lusch, R. F., Vargo, S. L., & Wessels, G. (2008). Toward a conceptual
foundation for service science: contributions from service-dominant logic. IBM Syst.
J., 47(1), 5–13.

[Madhavan et al., 2001] Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic
schema matching with cupid. In Proceedings of the 27th International Conference on
Very Large Data Bases, VLDB ’01 (pp. 49–58). San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.

[Manola & Miller, 2004] Manola, F. & Miller, E. (2004). RDF Primer. W3C Recommen-
dation.

[Maximilien et al., 2009] Maximilien, E. M., Ranabahu, A., Engehausen, R., & Ander-
son, L. C. (2009). Toward Cloud-Agnostic Middlewares. In Proceeding of the 24th
ACM SIGPLAN conference on Object Oriented Programming Systems Languages & Ap-
plications (pp. 619–626).

[McGuinness & van Harmelen (Eds.), 2004] McGuinness, D. L. & van Harme-
len (Eds.), F. (2004). OWL Web Ontology Language Overview. W3C Recommendation.

[Mell & Grance, 2009] Mell, P. & Grance, T. (2009). The NIST Definition of Cloud Com-
puting. National Institute of Standards and Technology, Information Technology
Laboratory.

[Melnik, 2004] Melnik, S. (2004). Generic Model Management: Concepts And Algorithms
(Lecture Notes in Computer Science). Secaucus, NJ, USA: Springer-Verlag New York,
Inc.

[Melnik et al., 2003] Melnik, S., Rahm, E., & Bernstein, P. A. (2003). Rondo: a pro-
gramming platform for generic model management. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, SIGMOD ’03 (pp. 193–204).
New York, NY, USA: ACM.

202

[Microsoft MSDN, 2011] Microsoft MSDN (2011). Windows Azure Schema Reference.
online.

[Mietzner, 2010] Mietzner, R. (2010). A Method and Implementation to Define and Provi-
sion Variable Composite Applications, and its usage in Cloud Computing. Dissertation,
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik,
Germany.

[Mietzner et al., 2009] Mietzner, R., van Lessen, T., Wiese, A., Wieland, M., Karastoy-
anova, D., & Leymann, F. (2009). Virtualizing Services and Resources with ProBus:
The WS-Policy-Aware Service and Resource Bus. In Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS (pp. 617–624).

[Mili et al., 1995] Mili, H., Mili, F., & Mili, A. (1995). Reusing software: Issues and
research directions. IEEE Trans. Softw. Eng., 21(6), 528–562.

[Motik et al., 2009] Motik, B., Parsia, B., & Patel-Schneider, P. F. (2009). Owl 2 web
ontology language - xml serialization. W3C Recommendation.

[Nguyen et al., 2012a] Nguyen, D. K., Lelli, F., Papazoglou, M. P., & van den Heuvel,
W.-J. (2012a). Blueprinting approach in support of cloud computing. Future Internet,
4(1), 322–346.

[Nguyen et al., 2012b] Nguyen, D. K., Lelli, F., Papazoglou, M. P., & van den Heuvel,
W.-J. (2012b). Issue in automatic combination of cloud services. In ISPA (pp. 487–
493).

[Nguyen et al., 2011] Nguyen, D. K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M. P.,
& van den Heuvel, W.-J. (2011). Blueprint Template Support for Cloud-based Ser-
vice Engineering. In Proceedings of the 4th European ServiceWave Conference.

[Nguyen et al., 2012c] Nguyen, D. K., Taher, Y., Papazoglou, M. P., & van den Heuvel,
W.-J. (2012c). Service-based application development on the cloud - state of the art
and shortcomings analysis. In CLOSER (pp. 395–400).

[Niemoeller et al., 2009] Niemoeller, J., Fikouras, I., de Rooij, F., Klostermann, L.,
Stringer, U., & Olsson, U. (2009). Ericsson Composition Engine - Next-generation
IN. Ericsson Review, 02, 22–27.

[OASIS, 2006] OASIS (2006). Reference Model for Service Oriented Architecture 1.0 .
OASIS Standard.

[OASIS, 2007] OASIS (2007). Web Services Business Process Execution Language Ver-
sion 2.0. OASIS standard.

203

[OASIS, 2013] OASIS (2013). Oasis topology and orchestration specification for cloud
applications (tosca) v1.0. OASIS Specification (ongoing).

[OASIS, 2008] OASIS (September 2008). Solution deployment descriptor specification 1.0,
http://docs.oasis-open.org/sdd/v1.0/os/sdd-spec-v1.0-os.pdf. Technical report, OASIS.

[O’Brien & Marakas, 2009] O’Brien, J. & Marakas, G. (2009). Introduction to Information
Systems. McGraw-Hill Education.

[OCCI-Working Group, 2011] OCCI-Working Group (2011). Open cloud computing
interface - infrastructure.

[OMG, 2009] OMG (2009). Ontology definition metamodel (odm) version 1.0. OMG
Specification.

[OMG, 2011] OMG (2011). Meta object facility (mof) 2.0 query/view/transformation,
v1.1. OMG Standard.

[OMG, 2011] OMG (2011). Unified modeling language (uml), v2.4.1. OMG Specifica-
tion.

[OMG, 2012] OMG (2012). Service oriented architecture modeling language (soaml)
specification, v1.0.1. OMG Specification.

[O’Sullivan, 2006] O’Sullivan, J. J. (2006). Towards a precise understanding of service prop-
erties. PhD thesis, Queensland University of Technology.

[Pahl et al., 2009] Pahl, C., Giesecke, S., & Hasselbring, W. (2009). Ontology-based
modelling of architectural styles. Inf. Softw. Technol., 51(12), 1739–1749.

[Papazoglou, 2003] Papazoglou, M. (2003). Service-oriented computing: Concepts,
characteristics and directions. In Fourth International Conference on Web Information
Systems Engineering (WISE’03) (pp. 3–).

[Papazoglou & Vaquero, 2012] Papazoglou, M. & Vaquero, L. (2012). Knowledge Ser-
vice Engineering Handbook, chapter Knowledge-Intensive Cloud Services: Trans-
forming the Cloud Delivery Stack, (pp. 449–494). CRC Press.

[Papazoglou, 2007] Papazoglou, M. P. (2007). Web Services: Principles and Technology.
Prentice Hall.

[Papazoglou, 2012] Papazoglou, M. P. (2012). Web Services: Principles and Technology.
Pearson Education Canada, 2th edition.

[Papazoglou & van den Heuvel, 2011] Papazoglou, M. P. & van den Heuvel, W.-J.
(2011). Blueprinting the cloud. IEEE Internet Computing, 15(6), 74–79.

204

[Patel-Schneider et al., 2004] Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004).
Owl web ontology language: Semantics and abstract syntax. W3C Recommenda-
tion.

[Rochwerger et al., 2009] Rochwerger et al., B. (2009). The Reservoir Model & Archi-
tecture for Open Federated Cloud Computing. IBM Journal of Research & Develop-
ment, 53(4).

[Rodero-Merino et al., 2010] Rodero-Merino, L., Vaquero, L. M., Gil, V., Galán, F.,
Fontán, J., Montero, R. S., & Llorente, I. M. (2010). From infrastructure delivery
to service management in clouds. Future Gener. Comput. Syst., 26(8), 1226–1240.

[SAP A.G., 2011] SAP A.G. (2011). The sap service marketplace.

[Suciu, 1998] Suciu, D. (1998). Semistructured data and xml.

[Sun et al., 2012a] Sun, L., Dong, H., & Ashraf, J. (2012a). Survey of service description
languages and their issues in cloud computing. In Semantics, Knowledge and Grids
(SKG), 2012 Eighth International Conference on (pp. 128–135).: IEEE.

[Sun et al., 2012b] Sun, Y. L., Harmer, T., & Stewart, A. (2012b). Specifying cloud ap-
plication requirements: an ontological approach. In CloudComp 2012.

[Szyperski, 2002] Szyperski, C. (2002). Component Software: Beyond Object-Oriented Pro-
gramming. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2nd
edition.

[Taher et al., 2011] Taher, Y., Lelli, F., Nguyen, D. K., & Parkin, M. (2011). Service engi-
neering and lifecycle management - blueprinting the cloud: Scientific and technical
report. Project deliverable D2.1.1 (Month 12), EU FP7 project 4caaSt.

[Taher et al., 2012] Taher, Y., Nguyen, D. K., Lelli, F., van den Heuvel, W.-J., & Papa-
zoglou, M. P. (2012). On engineering cloud applications-state of the art, shortcom-
ings analysis, and approach. Scalable Computing: Practice and Experience, 13(3).

[Thrash, 2010] Thrash, R. (2010). Building a cloud computing specification: funda-
mental engineering for optimizing cloud computing initialtives. Computer Science
Corporation (CSC) Whitepaper.

[Tsai et al., 2010] Tsai, W.-T., Sun, X., & Balasooriya, J. (2010). Service-oriented cloud
computing architecture. 2010 Seventh International Conference on Information Technol-
ogy New Generations, (pp. 684–689).

[Vambenepe, 2009] Vambenepe, W. (2009). Reality check on cloud portability. online.

205

[van den Heuvel, 2009] van den Heuvel, W.-J. (2009). Changing the Face of the Global
Digital Economy - Smart Service Networks as a Catalyst for Innovation: Inaugural Speech
by W. J. A. M. van den Heuvel. University Tilburg.

[VMWare,] VMWare. VMware vCenter Orchestrator. available online:
http://www.vmware.com/products/vcenter-orchestrator/overview.html.

[W3C,] W3C. Owl-s: Semantic markup for web services. Web Ontology Working
Group, available at http://www.ai.sri.com/daml/services/owl-s/1.2/overview/.

[W3C, 1999a] W3C (1999a). XML Path Language (XPath) Version 1.0. W3C Recom-
mendation.

[W3C, 1999b] W3C (1999b). Xsl transformations (xslt) version 1.0. W3C Recommen-
dation.

[W3C, 2004] W3C (2004). Owl web ontology language overview. W3C Recommenda-
tion.

[W3C, 2005a] W3C (2005a). Web Service Modeling Ontology (WSMO). W3C Member
Submission.

[W3C, 2005b] W3C (2005b). Web Service Semantics - WSDL-S. W3C Member Submis-
sion.

[W3C, 2006] W3C (2006). Web Services Policy 1.2 - Framework (WS-Policy). W3C
Member Submission.

[W3C, 2008] W3C (2008). Sparql query language for rdf. W3C Recommendation.

[W3C, 2011] W3C (2011). Web Services Description Language (WSDL) 1.1. W3C Note.

[W3C, 2012] W3C (2012). Sparql 1.1 update. W3C Proposed Recommendation.

[W3C, 2013] W3C (2013). XQuery 3.0: An XML Query Language. W3C Candidate
Recommendation.

All links and references are last checked on the 06.09.2013

206

SIKS DISSERTATION SERIES

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database
of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically
Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of
Business Conversations within the Language/
Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of
Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the
Legitimate User-Driven Specification of
Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and
Analysis of a Multi-Agent Mechanism
for Discrete Reallocation.

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennis-
technologie; een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge
for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in
Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of
Clinical Patient Management

2000-8 Veerle Coup (EUR)

207

Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design
Considerations, Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for
Database Management

2001-1 Silja Renooij (UU)
Qualitative Approaches to
Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages:
Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces
with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia:
A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on
Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure
for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of
Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation
language for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models
in Business Systems Design

2002-01 Nico Lassing (VU)

Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based
document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects
for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph
Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling
Electronic Environments inhabited by
Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology
of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel
For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering:
Exploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications
with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics:
Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for
Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches
to Modelling, Programming and Verifying
Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML
Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design:

208

Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving
Main-Memory Database Performance

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in
Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning
About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence
in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported
by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence
and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of
virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental
studies on the interaction between medium,
innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language
Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia
information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes
across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)

Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance
of Indexes to Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability,
Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction:
Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of
Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for
Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process
Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd
onderwijs, een opstap naar abstract denken,
vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale
Informatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument;
explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions
for embodied agents

2004-13 Wojciech Jamroga (UT)

209

Using Multiple Models of Reality:
On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations
in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for
Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of
Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models
for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating
multidisciplinary design teams

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing
Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the
Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving
Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars
for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation
for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building
Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)

Storage, Querying and Inferencing for
Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative
Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering
- A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen
van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on
the Semantic Web; Exploring how
semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on
Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for
probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art
and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery
in Database Systems by Exploiting
Application Semantics

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use
of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in
learning to solve problems

210

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented
Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods
& Tools for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency
and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing
User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people,
our technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information
Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign
- towards a Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning
of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with
Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural
Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming:
A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for
Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval
of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and
Evolutionary MCMC

2006-26 Vojkan Mihajlović (UT)
Score Region Algebra: A Flexible Framework for
Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries
from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML
Element Retrieval

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and
Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in
Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right
to Privacy: a Legislative Framework for
Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification
in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

211

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional
Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles
in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision
Support: A Rational Approach to Dynamic
Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments;
Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal
investigations in Institutions and
Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development and management of adaptive
business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a
Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use:
A research on residential adoption and usage
of broadband internet in the Netherlands
between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and
process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic
in Web Information Systems

2007-24 Georgina Ramírez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process
Improvement

2008-01 Katalin Boer-Sorbán (EUR)
Agent-Based Simulation of Financial
Markets: A modular,continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling
and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus:
a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards
unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies
on process-aware information systems
from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to
Clinical Guidelines, an Artificial Intelligence
Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design
and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of
Approximate Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user:
assistance can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations:
A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of
Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers
with Less Effort

212

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge
Representation and Algorithms for the Markov
Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the
Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval:
Improving Precision and Performance
of Focused Text Search

2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht. Een onderzoek
naar de effecten van de introductie van
elektronisch berichtenverkeer met de overheid
op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management
of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange
in Air Traffic Management Plan Repair
using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech
Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for
IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations
in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of
Annotators, Embodied Agents, Users, and
Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for
Extracting, Representing and Querying
Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using
Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical
and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy
Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational
Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge
Intensive Tasks - Based on Knowledge,
Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery
and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis
in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction
of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive
interactive applications

213

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-
Universitaet zu Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to
service-enabled ontologies (making ontologies
work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns
and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning
and Collaboration in Agent-Mediated
Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences
on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through
Relational Mapping

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development
of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement
and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of
Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution
with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management:
Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect
Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management:
An Incremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde
normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners
in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners
in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology
for learning resources in a multilingual context

2009-39 Christian Stahl (TUE,
Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach
Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations
into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks
using Heuristic Search and Mobile Ambients

214

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked
Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT)
Work flows in Life Science

2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing
Framework for Multimedia documents

2010-04 Olga Kulyk (UT)
Do You Know What I Know? Situational Awareness
of Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries
and Retrieval Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of
Free Software. Protecting user freedoms in a
world of software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy,
Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent
Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using
Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in
Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of
Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources:
Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime
by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous
and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs
Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means
of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to
Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient
Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient
Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing
on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos (CWI)
Database Cracking: Towards Auto-tuning
Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries
in data cleaning, structuring, and retrieval

215

2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous
Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture:
Automatically solving Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty
in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical
Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning;
Facilitating competence development
through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in
virtual agents

2010-40 Mark van Assem (VU)
Converting and Integrating Vocabularies
for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a
multi-supplier setting - the computational
e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to
Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive
and User-adapted Access to Heterogeneous
Data Sources, Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of
software services

2010-46 Vincent Pijpers (VU)

e3alignment: Exploring Inter-Organizational
Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants:
Challenges, Techniques, Examples

2010-48 Withdrawn

2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions

2010-50 Bouke Huurnink (UVA)
Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)
Understanding and supporting information
seeking tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for Human-Computer Teams:
Exploring the Use of Cognitive Models of
Trust and Attention

2010-53 Edgar Meij (UVA)
Combining Concepts and Language Models for
Information Access

2011-01 Botond Cseke (RUN)
Variational Algorithms for Bayesian Inference
in Latent Gaussian Models

2011-02 Nick Tinnemeier(UU)
Organizing Agent Organizations.
Syntax and Operational Semantics of an
Organization-Oriented Programming Language

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification of
Component-Based Information Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning;
Formal analysis and empirical evaluation
of temporal-difference learning algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age -
Increasing the Performance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommendations in
Cultural Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation for
High Load Human Computer Interaction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of

216

Robust Task-Oriented Dialogues

2011-09 Tim de Jong (OU)
Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness:
An Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent Scheduling
for Airport Ground Handling

2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based
Artificial Markets

2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value of
Link Evidence for Information Retrieval

2011-16 Maarten Schadd (UM)
Selective Search in Games of Different Complexity

2011-17 Jiyin He (UVA)
Exploring Topic Structure:
Coherence, Diversity and Relatedness

2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex games

2011-19 Ellen Rusman (OU)
The Mind ’ s Eye on Personal Profiles

2011-20 Qing Gu (VU)
Guiding service-oriented software engineering -
A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of
Service-Oriented Systems

2011-22 Junte Zhang (UVA)
System Evaluation of
Archival Description and Access

2011-23 Wouter Weerkamp (UVA)
Finding People and their Utterances
in Social Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for Interpersonal Coordination
with Virtual Humans On Specifying, Scheduling and
Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU))
Analysis and Validation of
Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human Communication -
Emotion Regulation and Involvement-Distance
Trade-Offs in Embodied Conversational
Agents and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through
autonomous management of design patterns

2011-28 Rianne Kaptein(UVA)
Effective Focused Retrieval by Exploiting
Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP):
Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic Approaches
for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliometric
Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdependence:
Logical and Game-theoretical Investigations

2011-35Maaike Harbers (UU)
Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design:
a cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data,
Applications for Preference Learning
and Supervised Network Inference

2011-38
Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents
in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management in

217

Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed
Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through
Mental State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through
Software Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for
Alternative Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information Delivery:
A Rule-based Architecture for the
Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU)
Exploring Computational Models for Intelligent
Support of Persons with Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking for a
Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for
task-oriented spoken dialogues: design aspects
influencing interaction quality

2012-01 Terry Kakeeto (UvT)
Relationship Marketing for SMEs in Uganda

2012-02 Muhammad Umair (VU)
Adaptivity, emotion, and Rationality in
Human and Ambient Agent Models

2012-03 Adam Vanya (VU)
Supporting Architecture Evolution by
Mining Software Repositories

2012-04 Jurriaan Souer (UU)
Development of Content Management
System-based Web Applications

2012-05 Marijn Plomp (UU)
Maturing Interorganisational Information Systems

2012-06 Wolfgang Reinhardt (OU)
Awareness Support for Knowledge Workers
in Research Networks

2012-07 Rianne van Lambalgen (VU)
When the Going Gets Tough: Exploring
Agent-based Models of Human Performance
under Demanding Conditions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management Support for
Context-Aware Service Platforms

2012-10 David Smits (TUE)
Towards a Generic Distributed
Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large:
Preprocessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data Integration
in Semantic Web Information Systems

2012-13 Suleman Shahid (UvT)
Fun and Face: Exploring non-verbal expressions
of emotion during playful interactions

2012-14 Evgeny Knutov(TUE)
Generic Adaptation Framework for
Unifying Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU)
Social Agents. Agent-Based Modelling of
Integrated Internal and Social Dynamics of
Cognitive and Affective Processes.

2012-16 Fiemke Both (VU)
Helping people by understanding them -
Ambient Agents supporting task
execution and depression treatment

2012-17 Amal Elgammal (UvT)
Towards a Comprehensive Framework
for Business Process Compliance

2012-18 Eltjo Poort (VU)
Improving Solution Architecting Practices

2012-19 Helen Schonenberg (TUE)
What’s Next? Operational Support for
Business Process Execution

2012-20 Ali Bahramisharif (RUN)
Covert Visual Spatial Attention, a Robust
Paradigm for Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT)

218

Intelligence, politie en veiligheidsdienst:
verenigbare grootheden?

2012-23 Christian Muehl (UT)
Toward Affective Brain-Computer Interfaces:
Exploring the Neurophysiology of Affect
during Human Media Interaction

2012-24
Laurens van der Werff (UT)

Evaluation of Noisy Transcripts
for Spoken Document Retrieval

2012-25 Silja Eckartz (UT)
Managing the Business Case Development in
Inter-Organizational IT Projects:
A Methodology and its Application

2012-26 Emile de Maat (UVA)
Making Sense of Legal Text

2012-27 Hayrettin Gurkok (UT)
Mind the Sheep! User Experience Evaluation &
Brain-Computer Interface Games

2012-28 Nancy Pascall (UvT)
Engendering Technology Empowering Women

2012-29 Almer Tigelaar (UT)
Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)
Designing Human-Centered Systems for
Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)
A Learning by Construction Approach for
Higher Order Cognitive Skills Improvement,
Building Capacity and Infrastructure

2012-32 Wietske Visser (TUD)
Qualitative multi-criteria preference
representation and reasoning

2012-33 Rory Sie (OUN)
Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)
Evolutionary analysis in PPI
networks and applications

2012-35 Evert Haasdijk (VU)
Never Too Old To Learn – On-line Evolution
of Controllers in Swarm- and Modular Robotics

2012-36 Denis Ssebugwawo (RUN)
Analysis and Evaluation of
Collaborative Modeling Processes

2012-37 Agnes Nakakawa (RUN)
A Collaboration Process for

Enterprise Architecture Creation

2012-38 Selmar Smit (VU)
Parameter Tuning and Scientific Testing
in Evolutionary Algorithms

2012-39 Hassan Fatemi (UT)
Risk-aware design of value
and coordination networks

2012-40 Agus Gunawan (UvT)
Information Access for SMEs in Indonesia

2012-41 Sebastian Kelle (OU)
Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)
Reflection Amplifiers in
self-regulated Learning

2012-43 Withdrawn

2012-44 Anna Tordai (VU)
On Combining Alignment Techniques

2012-45 Benedikt Kratz (UvT)
A Model and Language for
Business-aware Transactions

2012-46 Simon Carter (UVA)
Exploration and Exploitation of Multilingual
Data for Statistical Machine Translation

2012-47 Manos Tsagkias (UVA)
Mining Social Media: Tracking Content
and Predicting Behavior

2012-48 Jorn Bakker (TUE)
Handling Abrupt Changes in
Evolving Time-series Data

2012-49 Michael Kaisers (UM)
Learning against Learning - Evolutionary
dynamics of reinforcement learning algorithms
in strategic interactions

2012-50 Steven van Kervel (TUD)
Ontologogy driven Enterprise
Information Systems Engineering

2012-51 Jeroen de Jong (TUD)
Heuristics in Dynamic Sceduling; a practical framework
with a case study in elevator dispatching

2013-01 Viorel Milea (EUR)
News Analytics for Financial Decision Support

2013-02 Erietta Liarou (CWI)
MonetDB/DataCell: Leveraging the Column-store
Database Technology for Efficient and

219

Scalable Stream Processing

2013-03 Szymon Klarman (VU)
Reasoning with Contexts in Description Logics

2013-04 Chetan Yadati(TUD)
Coordinating autonomous planning and scheduling

2013-05 Dulce Pumareja (UT)
Groupware Requirements Evolutions Patterns

2013-06 Romulo Goncalves(CWI)
The Data Cyclotron: Juggling Data and
Queries for a Data Warehouse Audience

2013-07 Giel van Lankveld (UvT)
Quantifying Individual Player Differences

2013-08 Robbert-Jan Merk(VU)
Making enemies: cognitive modeling for
opponent agents in fighter pilot simulators

2013-09 Fabio Gori (RUN)
Metagenomic Data Analysis:
Computational Methods and Applications

2013-10 Jeewanie Jayasinghe Arachchige(UvT)
A Unified Modeling Framework for Service Design

2013-11 Evangelos Pournaras(TUD)
Multi-level Reconfigurable
Self-organization in Overlay Services

2013-12 Marian Razavian(VU)
Knowledge-driven Migration to Services

2013-13 Mohammad Safiri(UT)
Service Tailoring: User-centric creation of
integrated IT-based homecare services
to support independent living of elderly

2013-14 Jafar Tanha (UVA)
Ensemble Approaches to
Semi-Supervised Learning Learning

2013-15 Daniel Hennes (UM)
Multiagent Learning -
Dynamic Games and Applications

2013-16 Eric Kok (UU)
Exploring the practical benefits of
argumentation in multi-agent deliberation

2013-17 Koen Kok (VU)

The PowerMatcher: Smart Coordination
for the Smart Electricity Grid

2013-18 Jeroen Janssens (UvT)
Outlier Selection and One-Class Classification

2013-19 Renze Steenhuizen (TUD)
Coordinated Multi-Agent Planning and Scheduling

2013-20 Katja Hofmann (UvA)
Fast and Reliable Online Learning
to Rank for Information Retrieval

2013-21 Sander Wubben (UvT)
Text-to-text generation by
monolingual machine translation

2013-22 Tom Claassen (RUN)
Causal Discovery and Logic

2013-23 Patricio de Alencar Silva(UvT)
Value Activity Monitoring

2013-24 Haitham Bou Ammar (UM)
Automated Transfer in Reinforcement Learning

2013-25 Agnieszka Anna Latoszek-Berendsen (UM)
Intention-based Decision Support.
A new way of representing and implementing clinical
guidelines in a Decision Support System

2013-26 Alireza Zarghami (UT)
Architectural Support for Dynamic
Homecare Service Provisioning

2013-27 Mohammad Huq (UT)
Inference-based Framework Managing Data Provenance

2013-28 Frans van der Sluis (UT)
When Complexity becomes Interesting:
An Inquiry into the Information eXperience

2013-29 Iwan de Kok (UT)
Listening Heads

2013-30 Joyce Nakatumba (TUE)
Resource-Aware Business Process Management:
Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)
Blueprint Model and Language for
Engineering Cloud Applications

220

	Contents
	List of Tables
	List of Figures
	Preface
	Introduction
	Research Context
	Service-oriented Architecture (SOA) and Service-based Applications (SBA)
	Cloud Computing
	The Intersection of SOA and Cloud Computing

	Motivation
	Problem Definition
	Research Goal and Questions
	Research Methodology
	Contributions
	Assumptions and Limitations
	Thesis Structure

	State-of-the-art Analysis
	Cloud Service Specification Languages
	Evaluation Criteria
	IaaS Specification Languages
	PaaS Specification Languages
	SaaS Specification Languages
	Summary and Evaluation of Existing Cloud Service Specification Languages

	Cloud Service Manipulation Techniques

	The Blueprint Approach
	Introduction
	Blueprint Structure Definition
	Blueprint Elements
	Blueprint Dependency Links
	Policy Profiles in a Blueprint
	Resource Profiles in a Blueprint
	Blueprint Classification

	Blueprint Specification Language (BSL)
	Blueprint Manipulation Techniques (BMTs)
	Blueprint Approach in Support of the CSBA Engineering Lifecycle

	Blueprint Specification Language
	Introduction
	The BSL Abstract Syntax Model
	The BSL Core Module
	The BSL Policy Description Module
	The BSL Resource Description Module
	The BSL Interface Description Module
	The BSL IaaS Module
	The BSL PaaS Module
	The BSL SaaS Module

	BSL Concrete Syntax in XML
	Formalizing the BSL Semantics
	The choice of Web Ontology Language (OWL) for formalizing the BSL Semantics
	BSL-to-OWL Transformation

	Blueprint Manipulation Techniques
	Introduction
	Blueprint Model as the BMT Operand
	A Tuple-based Representation of a Blueprint Model
	Formalizing a Blueprint Model as a RDF Graph
	Implementation

	BMT Operators
	The Insert Operator
	Conceptual Definition
	Formalization
	Implementation

	The Delete operator
	Conceptual Definition
	Formalization
	Implementation

	The Query Operator
	Conceptual Definition
	Formalization
	Implementation

	The Match Operator
	Conceptual Definition
	Step 1: Attributes Matching
	Restricting the Scope of Attributes Matching
	Step 2: Requirement-Offering Matching

	Formalization
	Implementation

	The Link and Unlink Operators
	Conceptual Definition
	Formalization
	Implementation

	The Resolve Operator
	Conceptual Definition
	Formalization
	Implementation

	Discussion

	Validation
	Technical Feasibility of the Blueprint Approach
	Underlying Technologies and Tools
	Architecture
	Functionality
	Validation Experiment
	Findings and Discussion
	Summary

	Practical Validity of the Blueprint Approach
	4caaSt's Taxi Application Scenario
	Taxi Application Architecture
	Blueprint and Blueprint Resolution
	Blueprint Specification
	Blueprint Resolution

	Blueprint Toolset Support
	Evaluating the Blueprint Approach within the 4CaaSt Community
	Evaluating the Blueprint Approach in a broader Scope
	Part 1: Understanding the Participant's Segmentation
	Part2: Evaluating the Blueprint Approach
	Part 3: Improvement Suggestions

	Conclusions and Future Issues
	Research Questions and Answers
	Evaluation
	Future Issues

	Appendix A: Acronyms and Glossary
	Appendix B: Result of the Questionnaire Evaluation
	Bibliography
	SIKS Dissertation Series

