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Abstract

The identification of parameters in a nonseparable single-index models with corre-

lated random effects is considered in the context of panel data with a fixed number of

time periods. The identification assumption is based on the correlated random-effect

structure: the distribution of individual effects depends on the explanatory variables

only by means of their time-averages. Under this assumption, the parameters of inter-

est are identified up to scale and could be estimated by an average derivative estimator

based on the local polynomial smoothing. The rate of convergence and asymptotic

distribution of the proposed estimator are derived along with a test whether pooled

estimation using all available time periods is possible. Finally, a Monte Carlo study

indicates that our estimator performs quite well in finite samples.
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1 Introduction

The single-index models, linking the response variable to regressors by means of a single

linear combination, encompass a large number of practically applied models. To estimate

these models, a significant amount of literature has been devoted in recent years to the

local derivative and average derivative estimation. The average derivative estimation based

on the Nadarava-Watson kernel regression (Gasser and Müller, 1984) was proposed and

studied, for example, by Härdle and Stoker (1989) and Newey and Stoker (1993). As the

local linear regression offers some advantages over the Nadaraya-Watson estimator (Fan and

Gijbels, 1992), the average derivative estimation relying on the local polynomial regression

was proposed by Hristache et al. (2001) and Li et al. (2003), for instance. Nevertheless,

these classical estimators are primarily designed for cross-sectional data and the average

derivative estimation for panel data is relatively scarce.

The main difficulty in dealing with nonlinear panel data is caused by the presence of

individual specific heterogeneity, especially in the fixed effect models, which allow the in-

dividual effects to be correlated with the explanatory variables. Although the unobserved

individual specific heterogeneity could be eliminated or treated as parameters to be esti-

mated in linear or additive panel data models, such approaches cannot be readily applied

to nonlinear panel data models as they results in inconsistent estimators due to the in-

cidental parameters problem (Lancaster, 2000). Nevertheless, there has been a number

of attempts to consistently estimate the nonlinear panel data models with specific model

forms. For example, Manski (1987) and Charlier et al. (1995) proposed a (smoothed)

maximum score estimator for discrete choice model; Honoré (1992) artificially censors the

dependent variable in the censored regression model such that the individual fixed effect

could be differenced away; Kyriazidou (1997) introduced a semiparametric method to es-

timate the parameters of sample selection models in panel data; and Abrevaya (1999)

proposed a rank-based estimator for monotone transformation models. Additionally, there

is also a branch of literature which aims at improving the performance of existing esti-

mators that treat individual effects as parameters via bias-correction (e.g., see Hahn and

Newey, 2004, or Bester and Hansen, 2009b). However, these approaches rely on paramet-

ric assumptions for specific structural model or on asymptotics, where both the number of
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observations and time dimension go to infinity.

Most recently, several papers have provided the identification and estimation for marginal

effects in nonlinear panel models. Chernozhukov et al. (2013) derive bounds for marginal

effects and propose two novel inference methods for parameters as solutions to nonlinear

programs. Further, Bester and Hansen (2009a) achieve identification of average marginal

effects in a correlated random effects (CRE) model by imposing that the individual-effect

distribution depends on each covariate only through a scalar function of the values ob-

served over time. Finally, the most similar work to the current paper is by Hoderlein and

White (2012), who derive a generalized version of differencing that identifies local average

responses in a general nonseparable model (without single-index structure). Considering

two time periods and without assuming additional functional form restrictions or restric-

tions on the dependence between regressors and fixed effects, they identify effects for the

subpopulation of individuals, who have not experienced a change in covariates between the

two time periods.

Our identification strategy relies on an assumption similar to Bester and Hansen

(2009a): the distribution of individual effects depends on the explanatory variables only

by means of their time-averages. At the same time, the resulting estimator is close to

Hoderlein and White (2012) in the sense that one estimates the derivatives of the first

differences of a particular regression function. The crucial difference lies in the identifica-

tion assumption of the CRE model, which is more restrictive assumptions than the one in

Hoderlein and White (2012), but provides several practical advantages. First, our method

can identify the regression coefficients and marginal effects for the whole population rather

than for a subpopulation only. Second, although two time periods are also sufficient for

identification, we do not restrict the estimation to only two time periods and make an

explicit use of multiple time periods to improve estimation (this also renders a stability

test if more than two time periods are available). Finally, let us mention that the model

and its estimation – being based on a general nonlinear model – suits many applications

such as those relying on various discrete-choice and limited-dependent-variables models as

discussed in Hoderlein and White (2012) in details.

In the rest of the work, we first show how the parameters of interest are identified in

Section 2. Next, a semiparametric average derivative estimation procedure is developed
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in Section 3, which is easy to compute and does not require numerical optimization. The

rate of convergence and asymptotic distribution of the proposed estimator are derived in

Section 4 and the finite sample performance of the procedure is documented by Monte

Carlo experiments in Section 5. Proofs are included in the Appendices.

2 Identification

The panel data consist of n observations of time series Yi = (Yi1, . . . , YiT )′ and Xi =

(Xi1, . . . , XiT )′ for a dependent variable Yit and a vector of explanatory variablesXit, which

are independent and identically distributed across individual observations i ∈ {1, . . . , n}.

The number T of time periods is assumed to be finite and fixed. A general nonseparable

model with an unobserved individual effects αi can be described as

Yit = φ(Xit, αi, Uit),

where the individual effect αi may be a vector of any finite dimension and Uit represents

unobservables. In this paper, we assume more structure in that the explanatory variables

enter into the mean response function only through a single linear index such that

Yit = φ(X ′itβ, αi, Uit), (1)

where β is a vector parameter that is common to all individuals i and αi is a scalar or

vector of individual fixed effects. This class of single-index models includes panel-data

censored and truncated Tobit models (e.g., Yit = max{X ′itβ + αi + Uit, 0}), binary choice

models (e.g., Yit = I(X ′itβ+αi+Uit > 0)), or duration models with unobserved individual

heterogeneity and random censoring. Our interest lies in the effect of Xit on Yit, that is,

we aim to estimate parameters β and the marginal effects of Xit on Yit.

First, the assumptions for the identification of β are introduced.

Assumption 1. Let (Ω, F, P ) be a complete probability space on which are defined the

random vectors αi : Ω → A,A ⊆ Rda, and (Yit, Xit, Uit) : Ω → Y × X × U , Y ⊆ R,X ⊆

Rd,U ⊆ Rdu , for any i ∈ N, t = 1, . . . , T , and finite integers da, d, du, and T . Let for

all i ∈ N and t = 1, . . . , T hold that: (i) E(|Yit|) < ∞; (ii) Yit = φ(X ′itβ, αi, Uit), where
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β ∈ Rd is a vector of d parameters and φ is an unknown Borel-measurable function, which

is not constant on the support of X ′itβ for any (αi, Uit) ∈ A × U ; and (iii) realizations of

(Yit, Xit) are observable, whereas those of (αi, Uit) are not observable.

Assumption 1 formally specifies the data generating process and is similar to Assump-

tion A1 of Hoderlein and White (2012). While we allow for more than two time periods,

we impose a functional form restriction: the exact functional form may be unknown, but

the dependent variable Yit depends on the explanatory variables Xit only by means of a

linear index X ′itβ. A general data generating process without a single-index structure will

be discussed later in the case when a researcher is interested only in the average partial

effects of Xit on Yit. Further, αi in the above model is unobserved and time invariant and

can be correlated with the covariates Xit (see Assumption 3 below).

Assumption 2. Unobservables Uit are independent of αi and Xis and identically dis-

tributed for all i = 1, . . . , n and s, t = 1, . . . , T .

Assumption 2 is the strict exogeneity assumption. The idiosyncratic error term Uit

is assumed to be uncorrelated with the explanatory variables of all past, current, and

future time periods of the same individual. Although this is stronger than Assumption

A3 of Hoderlein and White (2012), dependence between the ‘usual’ error term and the

explanatory variables is not ruled out by Assumption 2. For example, a linear panel

data model Yit = αi + X ′itβ + εit, where εit = g(αi, X
′
itβ)Uit, satisfies Assumptions 1–2,

but exhibits heteroscedasticity depending on the linear index and the individual effect.

Assumption 2 however rules out the presence of lagged dependent variables: the weakest

form of Assumption 2 required here is that Uit is independent of (Xi(t−1), Xt, Xi(t+1)). The

model thus cannot possess dynamics.

The next assumption formulates the main identification restriction on the explanatory

variables that are related to the individual effects αi.

Assumption 3. Let us assume that (i) there are no time-constant covariates in Xit, that

(ii) random vectors Xit are identically and continuously distributed for all i ∈ N and

t = 1, . . . , T , and that, for some fixed 1 ≤ t′ < T , (iii) the joint distributions FXt,Xt−t′ of

(Xit, Xi(t−t′)) are identical for all i ∈ N and t′ < t ≤ T . Then the conditional distribution

Fα|Xt,Xt−t′
of the individual effect is assumed to depend on Xt and Xt−t′ only by means of
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their average: Fα|Xt,Xt−t′
(αi|Xit, Xi(t−t′)) = Fα|Xt,Xt−t′

(αi|Xit+Xi(t−t′)). Additionally, the

defined distribution functions are twice continuously differentiable with uniformly bounded

derivatives on X .

Assumption 3 is the key assumption for the identification of β. Similarly to other esti-

mation methods that rely on some kind of differencing across time, variables constant over

time cannot be included in the model. More importantly, Assumption 3 restricts the pro-

cess {Xit} and the joint process {Xit, Xi(t−t′)} to be identically distributed for a fixed time

gap t′ (the time gap t′, 1 ≤ t′ < T , is a fixed quantity from now on unless stated otherwise).

In particular, the joint distribution FXt,Xt−t′ (Xit, Xi(t−t′)) is assumed to be time invariant

in order to estimate using jointly all available time periods (this will be further discussed

and tested by means of a χ2 statistics in Section 4). This assumption is however not neces-

sary for estimation at any fixed time t. Finally, while αi and Xit or Xi(t−t′) depend on each

other in general, the CRE models impose, for instance, that the individual effects αi depend

on covariates Xit only via their time-averages X̄i = T−1
∑T

i=1Xit (see Bester and Hansen,

2009a, for a discussion of various CRE assumptions). In the case of two time periods,

this implies in Assumption 3 that the conditional distribution Fα|Xt,Xt−t′
(αi|Xit, Xi(t−t′))

depends only on the sum Xit+Xi(t−t′) rather than individual values. (Bester and Hansen,

2009a, argued that it is not possible to identify marginal effect using two time periods

in the general CRE model if Fα|Xt,Xt−t′
(αi|Xit, Xi(t−t′)) = Fα|Xt,Xt−t′

(αi|h(Xit, Xi(t−t′)))

with a general unknown function h).

To derive the main identification result, additional regularity assumptions are needed:

differentiability of the function φ and existence of an integrable majorant to enable the

interchange of integration and differentiation. The abbreviated notation F (α|xt, xt−t′) ≡

Fα|Xt,Xt−t′
(α|Xit = xt, Xi(t−t′) = xt−t′) and f(α|xt, xt−t′) ≡ fα|Xt,Xt−t′

(α|Xit = xt, Xi(t−t′) =

xt−t′) is used.

Assumption 4. The function φ(v, α, u) is twice continuously differentiable with respect to

v ∈ R for each (α, u) ∈ A × U . Moreover, E[φ′xb(X
′
itβ, αi, Uit)] <∞, where φ′xb(v, α, u) =

∂φ(v, α, u)/∂v.

Assumption 5. For each (xt, xt−t′) ∈ Rd×Rd, there exists a σ-finite measure µ(.|xt, xt−t′)

absolutely continuous with respect to F (·|xt, xt−t′) so that there exists a Radon-Nikodym
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density f such that F (dα|xt, xt−t′) = f(α|xt, xt−t′)µ(dα|xt, xt−t′) for each α ∈ A.

Assumption 6. For each (xt, xt−t′) ∈ Rd × Rd and t′ < t ≤ T , there exists an integrable

dominating function D(αi, Uit|xt, xt−t′) such that

sup
‖v−x′β‖<ε

|φ′xb(v, αi, Uit)f(αi|xt, xt−t′)| ≤ D(αi, Uit|xt, xt−t′),

sup
‖v−x′β‖<ε

∣∣∣∣φ(v, αi, Uit)
∂f(αi|xt, xt−t′)

∂x

∣∣∣∣ ≤ D(αi, Uit|xt, xt−t′).

The main identification result is presented below under Assumptions 1–6. Although we

assume for simplicity that the explanatory variables are continuously distributed, discrete

regressors can be also included under the assumptions analogous to other identification

results for single-index models (e.g., Ichimura, 1993). Furthermore, note that the result

of the following theorem holds both if the expectations are taken across all cross-sectional

units and all time periods as well as if the expectations are taken only across cross-sectional

units for a fixed time period t, t′ < t ≤ T .

Theorem 1. Under the Assumption 1-6, β is identified up to scale by

β =
{
E
(
E
[
φ
′
xb(X

′
itβ, αi, Uit)|Xit, Xi(t−t′)

])}−1
× E

{
∂

∂Xit
E[(Yit − Yi(t−t′))|Xit, Xi(t−t′)]

}
∝ E

{
∂

∂Xit
E[(Yit − Yi(t−t′))|Xit, Xi(t−t′)]

}
,

provided that the denominator is finite and non-zero. Moreover, when φ(X ′itβ, αi, Uit) =

X ′itβ + ψ(αi, Uit), β is point identified.

Theorem 1 states that the parameters of interest are propotional to quantity δt′ =

E{∂E[(Yit − Yi(t−t′))|Xit, Xi(t−t′)]/∂Xit}, that is, to the average derivative of E[Yit −

Yi(t−t′)|Xit, Xi(t−t′)] with respect to Xit. By estimating δt′ , β will thus be estimated up to

scale. The identification of β requires only two time periods when considering to the sim-

plest case t′ = 1; the estimator based on t′ = 1 is further referred to as the first-difference

average derivative estimation δFD = δ1.

Remark 1. In Theorem 1, t′ can equal to any integer smaller than the total number T

of time periods. Although we primarily concentrate on the case of one fixed t′ here, one
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can actually obtain T − 1 different estimators based on δ1, δ2, . . . , δT−1 for any given T .

In general, δt′ 6= δt′′ for t′ 6= t′′ because we have not imposed that the joint distribution

(Xit, Xi(t−t′)) is the same as that of (Xit, Xi(t−t′′)). To solve the problem of different average

derivatives and estimators for different values of t′, they can be normalized by their norms

||δt′ || – using δt′/||δt′ || = β/‖β‖ for all t′ < T – since the parameters are identified only up

to scale. Subsequently, it is possible to combine their information and to base the weighted

average derivative estimator on

δW =

T−1∑
t′=1

wt′ · δt′/||δt′ ||, (2)

where wt′ represents suitably chosen weights (e.g., proportional to the variance of δt′).

Finally, note that when φ(X ′itβ, αi, Uit) = X ′itβ + ψ(αi, Uit), that is, in the linear panel

models with non-additive errors, Theorem 1 shows that β is point identified and there is

no need for scale normalization. In this case, δt′ = δt′′ for any t′ 6= t′′, which renders other

possibilities how to combine estimates δ1, δ2, . . . , δT−1; see Section 3 for more details.

Remark 2. As in Bester and Hansen (2009a), if the interest of researcher lies only in

the partial effects of Xit on Yit with individual heterogeneity held constant, that is, in

the partial effects averaged over the distribution of individual-specific effects, then our

model specification with its single-index structure could be relaxed to a general nonsep-

arable structure Yit = φ(Xit, αi, Uit). If the average partial effect is defined by δAPE =

E[∂φ(Xit, αi, Uit)/∂Xit], then this average partial effects δAPE is identified and could also

be estimated by

δAPE = E

[
∂

∂Xit
E[(Yit − Yi(t−t′))|Xit, Xi(t−t′)]

]

The proof is analogous to the proof of Theorem 1 and is omitted here.

3 Estimation

To estimate the expectation δt′ = E{∂E[Yit − Yi(t−t′)|Xit, Xi(t−t′)]/∂Xt} for given t′, 1 ≤

t′ < T , we first estimate the expectation E[Yit − Yi(t−t′)|Xit, Xi(t−t′)] and its derivative by

means of the local linear or polynomial regression and then the outer expectation will be
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evaluated. Later, we derive the asymptotic distribution of the proposed estimator δ̂t′ of δt′ ,

relying on the properties of the local polynomial estimators, including the uniform strong

consistency and asymptotic normality, established by Masry (1996) and Masry (1997) for

general mixing processes.

Let us denote ∆Yit,t′ = Yit − Yi(t−t′) and Zit,t′ = (X ′it, X
′
i(t−t′))

′. For the local poly-

nomial regression, non-negative kernel weights Kh(t) = K(t/hn)/hdn are used, where the

bandwidth hn is for simplicity common to all variables. To estimate the expectationm(z) =

E[∆Yit,t′ |Zit,t′ = z] and its derivatives δt′(z) = m′1(z) = ∂E[(Yit − Yi(t−t′))|Zit,t′ = z]/∂Xit

and δ̃t′(z) = m′2(z) = ∂E[(Yit − Yi(t−t′))|Zit,t′ = z]/∂Xi(t−t′), we can consider the local

linear regression minimizing

n∑
i=1

T∑
t=t′+1

[
∆Yit,t′ − b0,t′(z)− (Zit,t′ − z)b1,t′(z)

]2
Kh

(
Zit,t′ − z

)
, (3)

where the least squares estimate b̂t′(z) = (̂b0,t′(z), b̂
′
1,t′(z))

′ estimates (i) m(z) by the only

element of b̂0,t′(z) and (ii) the derivatives ∂m(z)/∂z = (δt′(z)
′, δ̃t′(z)

′)′ by the 2d elements

of b̂1,t′(z). Similarly to Härdle and Stoker (1989), the local linear estimator would require

that a kernel K of order p > 2d is used to guarantee the
√
n consistency of the average

derivative estimator proposed later. An alternative lies in the use of the local polynomial

regression of order p > d, which includes higher powers of Zit,t′ − z in (3). Denoting

|k| = k1 + . . . + k2d the “length” of a vector k = (k1, . . . , k2d) ∈ N2d
0 and understanding

zk = zk11 × . . .× z
k2d
2d , the local polynomial estimator can be defined as a minimizer of

n∑
i=1

T∑
t=t′+1

∆Yit,t′ −
p∑
|k|=0

(Zit,t′ − z)kbk,t′(z)

2

Kh

(
Zit,t′ − z

)
; (4)

the parameters of interest are again the 2d elements of b̂1,t′(z), which estimate ∂m(z)/∂z =

(δt′(z)
′, δ̃t′(z)

′)′.

The least squares solution of (3) can be explicitly formulated using some matrix no-

tation. Denoting the vectors of responses ∆Yi,t′ = (∆Yi(t′+1),t′ , . . . ,∆YiT,t′)
′ and ∆Yt′ =

(∆Y ′1,t′ , . . . ,∆Y
′
n,t′)

′, the corresponding matrices of the explanatory variables Zi,t′(z) =

(Zi(t′+1),t′ − z, . . . , ZiT,t′ − z)′ and Zt′(z) = {(Zki,t′(z))
p
|k|=0}

n
i=1 (where the latter includes
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intercept), and the matrix of kernel weights Wt′(z) = diag{Kh(Zit,t′ − z)}n, Ti=1,t=t′+1, the

estimate minimizing (4) equals

b̂t′(z) = (̂b′0,t′(z), b̂
′
1,t′(z), . . . , b̂

′
p,t′(z))

′ = [Zt′(z)
′Wt′(z)Zt′(z)]

−1Zt′(z)
′Wt′(z)∆Yt′

(provided that Zt′(z) has a full rank, see also Assumption 3).

Given that we are interested in estimating δt′(z), that is, the first to dth elements of

b1,t′(z), the local derivative estimator of δt′(z) is given by

δ̂t′(z) = Lb̂t′(z) = L · [Zt′(z)′Wt′(z)Zt′(z)]
−1Zt′(z)

′Wt′(z)∆Yt′ , (5)

where L = (e2, . . . , ed+1)
′ and ej represents a vector with its jth element equal to 1 and

all other elements equal to 0. Note that in (5) and in the case of other estimators, the

dependence on the size n of cross-section units is marked by the hat and is kept implicit

to avoid clutter (the asymptotic properties will be derived for n→∞, while T is fixed).

Recalling Theorem 1, the parameters β are proportional to δt′ = E[δt′(z)]. The finite-

sample average derivative estimator of β can thus be defined for a given t′ as

δ̂t′ =
1

n(T − t′)

n∑
i=1

T∑
t=t′+1

δ̂t′(Zit,t′) =
1

n(T − t′)

n∑
i=1

T∑
t=t′+1

L · b̂t′(Zit,t′). (6)

Since β is identified only up to scale, this estimator in equation (6) should be scale nor-

malized.

Remark 3. The weighted average derivative estimator corresponding to (2) can be defined

by

δ̂W =

T−1∑
t′=1

wnt′ · δ̂t′/||δ̂t′ ||, (7)

where weights wnt′ can possibly depend on the sample size.

Remark 4. For the linear models with non-additive errors

φ(X ′itβ, αi, Uit) = X ′itβ + ψ(αi, Uit), (8)
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Theorem 1 indicates that β is point identified. In this case, the pooling of estimators

for different levels of t′ can be replaced by pooling the objective functions as the iden-

tified parameters δ1, . . . , δT−1 are equal to β for all 1 ≤ t′ < T . In particular, the

pairwise-difference local derivative estimator δ̂PW (z) can be defined as Lb̂(∗)(z), where

b̂(∗)(z) = (̂b′0,(∗)(z), . . . , b̂
′
p,(∗)(z))

′ minimizes, for example, in the case of the local polyno-

mial regression (4),

T−1∑
t′=1

n∑
i=1

T∑
t=t′+1

∆Yit,t′ −
p∑
|k|=0

(Zit,t′ − z)kb|k|,(∗)(z)

2

Kh(Zit,t′ − z);

that is, the minimization is performed jointly across all values of t′. The corresponding

pairwise-difference average derivative estimator of β then equals

δ̂PW =
2

nT (T − 1)

T−1∑
t′=1

n∑
i=1

T∑
t=t′+1

δ̂PW (Zit,t′) =
2

nT (T − 1)

T−1∑
t′=1

n∑
i=1

T∑
t=t′+1

Lb̂(∗)(Zit,t′). (9)

Remark 5. Note that this pairwise-difference average derivative estimator is also appli-

cable in nonlinear random-effect models. Contrary to the fixed-effect or CRE models,

where the multiplicative constants in Theorem 1, E{E[φ
′
xb(X

′
itβ, αi, Uit)|Xit, Xi(t−t′)]}, are

generally different for various t′, the random-effect specification, where the individual ef-

fects are independent of the covariates Xt, implies that E[φ
′
xb(X

′
itβ, αi, Uit)|Xit, Xi(t−t′)] =

E[φ
′
xb(X

′
itβ, αi, Uit)|Xit] does not depend on t′. Thus, the scaling coefficients in Theorem 1

are independent of t′ as in the case of the linear model (8). The parameters β are however

estimated only up to scale in the random-effect model.

The proposed estimator δ̂t′ in equation (6) is similar to the least-square average deriva-

tive estimator of Li et al. (2003), but the underlying data are no longer independent and

identically distributed in our case (e.g., because of the individual effects αi). As the num-

ber T of time periods is finite, the dependence is however limited to a fixed number of time

periods. To establish the uniform consistency of the local derivative estimator δ̂t′(z) and

the consistency and asymptotic distribution of the average derivative estimator δ̂t′ based

on the local polynomial regression (4), the following assumptions are used (in the case of

the estimator based on the local linear smoothing (3), the kernel function would instead
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be of order p).

Assumption 7.

1. As n→ +∞, the bandwidth hn satisfies nh2p+2
n → 0 and nh2d+2

n / lnn→∞.

2. The kernel K is bounded with a compact support and
´
K(u)du = 1,

´
uK(u)du = 0,

and
´
uu′K(u)du = cI2d for some c > 0, where Ik denotes the k× k identity matrix.

3. Let D ⊂ R2d denote a compact support of the identically distributed random vectors

Zit,t′ = (X ′it, X
′
i(t−t′))

′ and assume that the density function fz of Zit,t′ exists, is

bounded, and twice continuously differentiable.

4. Further, let function m(z) = E[∆Yit,t′ |Zit,t′ = z] be (p + 1) times differentiable with

all partial derivatives being uniformly bounded and Lipschitz on D ⊂ R2d and let

m(Zit,t′) and its (p+ 1) derivatives in absolute values have finite expectations.

5. Finally, errors Vit,t′ = E(∆Yit,t′ |Zit,t′) = ∆Yit,t′ − m(Zit,t′) have finite fourth mo-

ments. Assume that (co)variances σ2t′(z) = E(V 2
it,t′ |Zit,t′ = z) and σts,t′(z1, z2) =

E(Vit,t′Vis,t′ |Zit,t′ = z1, Zis,t′ = z2) for t′ < s ≤ T and t′ < t ≤ T are continuous in z

and (z1, z2), respectively.

Assumptions 7.1 and 7.2 are standard assumptions on the bandwidth and kernel in the

average derivative estimation (e.g., Härdle and Stoker, 1989, and Li et al., 2003). Addi-

tionally, Assumption 7.3 imposes that the explanatory variables have a compact support.

If this common assumption in the semiparametric literature is not satisfied, it can be im-

posed by means of trimming (see Li and Racine, 2007, Chapter 8, for various examples).

The existence of p + 1 derivatives in Assumption 7.4, which is also reflected implicitly in

Assumption 7.1 as p > d, is also common to many average derivative estimators (e.g.,

Härdle and Stoker, 1989). If inconvenient, it can be relaxed by estimating iteratively using

the procedure of Hristache et al. (2001), which requires only the existence of the second

derivatives irrespective of the dimension d.

Under the stated assumptions, the uniform consistency of δ̂t′(z) follows directly from

Masry (1996, Theorem 4).
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Theorem 2. Under Assumptions 1–7, δ̂t′(z) is uniformly consistent on D: supz∈D |δ̂t′(z)−

δt′(z)| = O(lnn · [n−1/2h−d−1n ]) +O(hpn) as n→ +∞.

Using the consistency of δ̂t′(z), the asymptotic distribution of the average derivative

estimator can be now derived.

Theorem 3. Under Assumptions 1–7, the average derivative estimator δ̂t′ defined in equa-

tion (6) for some t′, 1 ≤ t′ < T , is consistent and asymptotically normal:

√
n
(
δ̂t′ − E[m′1(Zit,t′)]− hpnLAt′

)
F→ N (0,Φt′ + Ωt′) ,

where At′ is defined in Lemma 1,

Φt′ =
1

(T − t′)2
T∑

t=t′+1

T∑
s=t′+1

E
[
σst,t′(Zit,t′ , Zis,t′) ·G[d],1(Zit,t′)G[d],1(Zis,t′)

′]

with G[d],1(z) = L[Mf (z)]−1Qf (z)e1 and matrices of kernel weights Mf (z) and Qf (z) are

defined in Appendix B, and

Ωt′ =
1

(T − t′)2
T∑

t=t′+1

T∑
s=t′+1

Cov
[
m′1(Zit,t′),m

′
1(Zis,t′)

]
.

Theorem 3 proves that the average derivative estimator δ̂t′ of E[m′1(Zit,t′)], which equals

β up to scale, β ∝ E[m′1(Zit,t′)], is consistent and asymptotically normal for any given t′.

The bias term hpnLAt′ is generally present as we assume only
√
nhp+1

n → 0, where p denotes

the order of the local polynomial approximation. It becomes negligible if
√
nhpn → 0 by

choosing a large order of the polynomial or a smaller bandwidth. The asymptotic variance

of the estimator resembles the result of Li et al. (2003) as it consists of two components

corresponding to the asymptotic variance of
√
n{δ̂t′ − hpnLAt′ − n−1

∑n
i=1m

′
1(Zit,t′)} and

√
n{n−1

∑n
i=1m

′
1(Zit,t′) − E[m′1(Zit,t′)]}, respectively, which are asymptotically indepen-

dent. The asymptotic variance however does not depend here only on the expected vari-

ance of the errors and first-order conditions, but also on their covariances over time as

the regression errors Vit,t′ = ∆Yit,t′ − m(Zit,t′) can exhibit heteroscedasticity and serial

correlation.
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4 Test of stationarity

In Sections 2 and 3, a weak form of stationarity of Xit, requiring the pairs of data from

periods t and t − t′ to be jointly identically distributed across time t, is assumed so that

estimation of β by δt′ = E{∂E[(Yit − Yi(t−t′))|Xit, Xi(t−t′)]/∂Xit} can be based on all

available time periods. In this section, we focus on constructing a test of this assump-

tion, provided that one observes the data for at least three time periods. The estimation

procedure actually relies on the implication of the stationarity assumption that the expec-

tation δs,t′ = E{∂E[(Yit − Yi(t−t′))|Xit, Xi(t−t′)]/∂Xit|t = s} evaluated at one fixed time

s, t′ < s ≤ T , does not depend on the time point s. Thus, this implication can be stated as

δs,t′ = δs′,t′ for all s and s′, t′ < s, s′ ≤ T , that is, different pairs of time periods (s, s− t′)

and (s′, s′ − t′) produce the same estimates (the time difference t′ is fixed).

If the number T of time periods is larger than t′+1 (e.g., T > 2 if t′ = 1), there are T −

t′ − 1 possible expressions for δt′ : δt′+1,t′ , . . . , δT,t′ , which are all equal under Assumptions

1–6, see Theorem 1. Denoting all these expressions as δ∗t′ = (δ′t′+1,t′ , . . . , δ
′
T,t′)

′, we will

thus test the null hypothesis that δt′+1,t′ = δt′+2,t′ = · · · = δT,t′ :

H0 : Rt′δ
∗
t′ = 0

Ha : Rt′δ
∗
t′ 6= 0,

(10)

where the [d(T − t′ − 1)] × [d(T − t′)] matrix Rt′ can be expressed (using ιk as a symbol

for the vector with length k and all elements equal to 1) as

Rt′ =



Id −Id 0 . . . 0

Id 0 −Id . . . 0

...
...

...
. . .

...

Id 0 0 . . . −Id


=
[
ι(T−t′−1),−I(T−t′−1)×(T−t′−1)

]
⊗ Id.

As Theorem 3 also establishes the asymptotic distribution of
√
n(δ̂s,t′−hpnLAt′−E[m′1(Zis,t′)])

for any given t′ < s ≤ T and hpnLAt′ − E[m′1(Zis,t′)] have the same value under the null
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hypothesis for all s, the test (10) is equivalent to

H0 : Rt′ δ̄
∗
t′ = 0

Ha : Rt′ δ̄
∗
t′ 6= 0,

where δ̄∗t′ = (δ̄′t′+1,t′ , . . . , δ̄
′
T,t′)

′ and δ̄s,t′ = (δ̂s,t′ − hpLAt′ − E[m′1(Zis,t′)]) for all s =

t′ + 1, . . . , T .

Let us now establish the asymptotic distribution of δ̄∗t′ .

Theorem 4. Under Assumptions 1–7 and the null hypothesis Rt′ δ̄∗t′ = 0, we have

√
nδ̄∗t′

F→ N
(

0, Φ̃t′ + Ω̃t′

)
,

where Φ̃t′ and Ω̃t′ are square matrices consisting of (T − t′ − 1)× (T − t′ − 1) blocks of di-

mensions d×d; the blocks with coordinates (k, l) within matrices Φ̃t′ and Ω̃t′ have the forms

Φ̃
(k,l)
t′ = E[σkl,t′(Zik,t′ , Zil,t′)·G[d],1(Zit,t′)G[d],1(Zis,t′)

′] and Ω̃
(k,l)
t′ = Cov[m′1(Zik,t′),m

′
1(Zil,t′)],

where G[d],1(z) = L[Mf (z)]−1Qf (z)e1 and matrices of kernel weights Mf (z) and Qf (z) are

defined in Appendix B.

Theorem 4 implies that a χ2 test statistics can be constructed in the following way:

since the (asymptotic) distributions of Rt′ δ̄∗t′ and Rt′δ
∗
t′ are identical under H0, it holds

that

TSt′ = n(Rt′δ
∗
t′)
′
(

Φ̃t′ + Ω̃t′

)−1
(Rt′δ

∗
t′)

F→ χ2{d
(
T − t′ − 1

)
}

under H0. Using a consistent estimate ̂̃Φt′ +
̂̃
Ωt′ of Φ̃t′ + Ω̃t′ and the average derivative

estimator δ̂∗t′ of δ
∗
t′ , it follows that

T̂ St′ = n(Rt′ δ̂
∗
t′)
′
(̂̃

Φt′ +
̂̃
Ωt′

)−1
(Rt′ δ̂

∗
t′)

F→ χ2{d
(
T − t′ − 1

)
}.

The null hypothesis H0 is thus rejected against the alternative Ha at significance level α

if T̂ St′ > χ2
α{d (T − t′ − 1)}. In such a case, the estimator (6) based on all observed time

periods cannot be used, but instead a weighted average of estimators obtained at various

time periods t has to be employed similarly to (7).
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5 Simulation results

This section reports evidence on the finite sample behavior of estimators constructed us-

ing the proposed identification principle for several classical panel models with correlated

random effects. The aim is to compare the average-derivative estimator with the existing

procedures designed specifically for each individual model. The data generating processes

exhibit two important features: nonzero correlation between individual effects and the

covariates and strictly stationary covariates.

The models contain two stationary regressors X1it and X2it, which are independent for

all i and generated by X1it = X1it−1/2 + u1it, X1i0 ∼ N(0, 4/3), X2it = X2it−1/3 +

u2it, X2i0 ∼ N(0, 9/8), u1it ∼ N(0, 1), u2it ∼ N(0, 1), where the number of individu-

als is n = 100 and the number of time periods is T = 8. The individual effects, generated

by αi = T−1
∑T

t=1X2it + ηi, ηi ∼ U(−1/2, 1/2), are correlated with X2it, but they are

independent of X1it. The true regression parameters are always β1 = 1 and β2 = −1.

We first consider the CRE linear model: Yit = X1itβ1 +X2itβ2 +αi+εit, where the εit’s

are independently drawn from N(0, 1). Next, we consider the binary-choice logistic model:

Yit = I(X1itβ1 +X2itβ2 + αi + εit > 0), where the εit’s are independently drawn from the

standard logistic distribution. This models is analyzed in the case of homoscedastic logit

with εit ∼ Λ(0, 1), heteroscedastic logit with εit ∼ Λ(0, exp(1 + α2
i )), and random-effect

logit with εit ∼ Λ(0, 1), where the individual effect αi ∼ N(0, 1). Finally, we consider the

censored regression model: Yit = max{0, X1itβ1 + X2itβ2 + αi + εit}, where the εit’s are

independently drawn from N(0, 1). For each model, 1000 samples are generated.

As there are two regressors in the original models, our multivariate local polynomial

regression contains four regressors. The order of polynomials that we use in simulations

is thus p = 3. To implement the average derivative estimators, choices need to be made

for the kernel function K and the bandwidth hn. We use the quartic kernel, noting that

the choice of the kernel function has typically a rather limited impact on performance of

nonparametric estimators. The bandwidth, which equals σjhn for each variable (σj denotes

here the standard deviation of the jth covariate), is selected by the least-squares cross-

validation method. The leave-one-out local polynomial estimator of mt′(Zit,t′) is obtained

by m̂h
−i,t′(Zit,t′) = e′1

(
Z ′−i,t′W

h
−i,t′Z−i,t′

)−1
Z ′−i,t′W

h
−i,t′∆Y−i,t′ , where the dependence of
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the weighting matrix W on the bandwidth hn is now explicitly stated, and the bandwidth

hn minimizes the least squares criterion given by

CV (hn) =
N∑
i=1

∑
t>t′

[
∆Yit,t′ − m̂h

−t′(Zit,t′)
]2
. (11)

For the linear model, as the scale effect exactly equals one, our average derivative

estimators δ̂t′ defined in equation (6) could consistently estimate the parameters (not just

up to scale) for t′ = 1, . . . , (T − 1). For the weighted average derivative estimators δ̂W

defined in equation (7), we adopt two different weighting functions:

δ̂WStd =
T−1∑
t′=1

δ̂t′/Std(δ̂t′)∑T−1
t′=1 1/Std(δ̂t′)

, δ̂WRMSE =
T−1∑
t′=1

δ̂t′/RMSE(δ̂t′)∑T−1
t′=1 1/RMSE(δ̂t′)

,

where Std(δ̂t′) and RMSE(δ̂t′) denote the standard deviation and root mean squared

error of δ̂t′ , respectively. The pairwise-difference average derivative estimator δ̂PW defined

in equation (9) is evaluated as well. The results are reported in Table 1. The third

column indicates the true parameters, while the fourth to the last columns report the

bias, RMSE, 2.5% quantile, median, and 97.5% quantile of the estimates, respectively.

In the linear model, our estimators are compared with the stardard fixed effect estimator

δ̂FElinear using the within-group estimation procedure. While all estimators are practically

unbiased, the RMSE of δ̂t′ is increasing with the time difference t′. This is not surprising as

the number of observations after differencing decreases as t′ grows and the first-difference

estimator δ̂1 is thus most precise. Even smaller RMSEs are obtained by the weighted

and pairwise-difference estimators. The RMSE of these average derivative estimators are

roughly 30–50% larger than those of the within-group estimator.

For the binary-choice logit model, several alternative methods are reported for compar-

ison. The first comparison is made with the conditional fixed-effect logit estimator δ̂FElogit.

Furthermore, we consider the pairwise smoothed maximum score estimator δ̂SMS
PW in Char-

lier et al. (1995). To make it comparable with the first-difference estimator δ̂1, we also

include the first-difference smoothed maximum score estimator δ̂SMS
1 . In all cases (even

for the fixed-effect logit), estimates are normalized such that their norms equal to 1. The

simulation results are summarized in Tables 2–4 for the homoscedastic, heteroscedastic,
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Table 1: The bias, RMSE, and quartiles of all estimators in the CRE linear model.

Parameters True Bias RMSE LQ Median UQ
δ̂1 β1 1 0.0015 0.0589 0.8881 1.0035 1.1224

β2 -1 0.0033 0.0615 -1.1245 -0.9954 -0.8782
δ̂2 β1 1 0.0008 0.0610 0.8844 1.0015 1.1289

β2 -1 0.0032 0.0633 -1.1217 -0.9963 -0.8708
δ̂3 β1 1 -0.0009 0.0618 0.8800 0.9977 1.1181

β2 -1 0.0044 0.0678 -1.1278 -0.9933 -0.8612
δ̂4 β1 1 0.0007 0.0739 0.8590 0.9999 1.1500

β2 -1 0.0070 0.0825 -1.1497 -0.9924 -0.8300
δ̂5 β1 1 0.0028 0.0888 0.8249 1.0022 1.1742

β2 -1 0.0041 0.0934 -1.1789 -0.9974 -0.8113
δ̂6 β1 1 -0.0033 0.1128 0.7790 0.9985 1.2172

β2 -1 -0.0012 0.1283 -1.2577 -0.9979 -0.7585
δ̂7 β1 1 -0.0075 0.2186 0.5514 0.9942 1.4044

β2 -1 -0.0069 0.2331 -1.4854 -1.0065 -0.5519
δ̂WStd β1 1 0.0002 0.0505 0.9019 1.0000 1.0965

β2 -1 0.0032 0.0531 -1.1005 -0.9962 -0.8990
δ̂WRMSE β1 1 0.0002 0.0505 0.9019 1.0000 1.0965

β2 -1 0.0031 0.0531 -1.1005 -0.9963 -0.8990
δ̂PW β1 1 0.0022 0.0552 0.8879 1.0007 1.1075

β2 -1 0.0020 0.0558 -1.1122 -0.9976 -0.8879
δ̂FElinear β1 1 0.0006 0.0377 0.9293 0.9998 1.0731

β2 -1 0.0019 0.0379 -1.0717 -0.9984 -0.9260

Note: For the linear models, the estimators do not have to be scale
normalized. LQ and UQ are 2.5% and 97.5% quantiles, respectively.
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Table 2: The bias, RMSE, and quartiles of all estimators in the CRE logit model.

Parameters True Bias RMSE LQ Median UQ
δ̂1 β1 0.7071 -0.0073 0.0695 0.5548 0.7057 0.8259

β2 -0.7071 -0.0005 0.0685 -0.8320 -0.7085 -0.5639
δ̂2 β1 0.7071 -0.0054 0.0725 0.5568 0.7069 0.8413

β2 -0.7071 0.0021 0.0733 -0.8306 -0.7073 -0.5406
δ̂3 β1 0.7071 -0.0028 0.0778 0.5414 0.7079 0.8527

β2 -0.7071 0.0059 0.0798 -0.8408 -0.7063 -0.5223
δ̂4 β1 0.7071 -0.0038 0.0884 0.5132 0.7062 0.8573

β2 -0.7071 0.0073 0.0889 -0.8582 -0.7080 -0.5148
δ̂5 β1 0.7071 -0.0004 0.1060 0.4711 0.7125 0.8873

β2 -0.7071 0.0169 0.1099 -0.8821 -0.7017 -0.4612
δ̂6 β1 0.7071 -0.0077 0.1370 0.4103 0.7088 0.9274

β2 -0.7071 0.0199 0.1426 -0.9120 -0.7054 -0.3742
δ̂7 β1 0.7071 -0.0334 0.2633 0.0369 0.7316 0.9964

β2 -0.7071 0.0880 0.3203 -0.9923 -0.6753 0.2017
δ̂WStd β1 0.7071 -0.0002 0.0598 0.5836 0.7108 0.8208

β2 -0.7071 0.0049 0.0603 -0.8121 -0.7034 -0.5712
δ̂WRMSE β1 0.7071 -0.0003 0.0597 0.5834 0.7107 0.8206

β2 -0.7071 0.0048 0.0602 -0.8122 -0.7035 -0.5715
δ̂FElogit β1 0.7071 -0.0039 0.0457 0.6147 0.7042 0.7936

β2 -0.7071 -0.0009 0.0455 -0.7888 -0.7100 -0.6084
δ̂SMS
(1) β1 0.7071 -0.0481 0.1233 0.4688 0.6533 0.8839

β2 -0.7071 -0.0275 0.1182 -0.8833 -0.7571 -0.4677
δ̂SMS
PW β1 0.7071 -0.0290 0.1041 0.4851 0.6811 0.8796

β2 -0.7071 -0.0127 0.1106 -0.8744 -0.7322 -0.4756

Note: LQ and UQ are 2.5% and 97.5% quantiles, respectively. For
comparison, all parameters, including true ones, are normalized such that
||β|| = 1.

and random-effect logits, respectively. The ordering of various average-derivative estima-

tors stays the same as in the case of the linear regression model. It achieves again RMSEs

larger by 30–50% than the fixed-effects logit, which exhibits generally the smallest RMSE –

even in the heteroscedastic model as its inconsistency influences the parameters in absolute

values, but not after normalization. On the other hand, the first-difference and weighted

average derivative estimates always outperform the smoothed maximum score estimation.

For the CRE Tobit model, we compare our method with the estimator δ̂Honore ob-

tained by trimmed least squares of Honoré (1992) and with the bias corrected Jack-knife

estimator δ̂Jackknife of Hahn and Newey (2004). Again, all methods deliver practically
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Table 3: The bias, RMSE, and quartiles of all estimators in the CRE logit model with
heteroscedasticity.

Parameters True Bias RMSE LQ Median UQ
δ̂1 β1 0.7071 -0.0095 0.0844 0.5173 0.7060 0.8402

β2 -0.7071 0.0003 0.0824 -0.8558 -0.7083 -0.5422
δ̂2 β1 0.7071 -0.0087 0.0891 0.5194 0.7013 0.8572

β2 -0.7071 0.0026 0.0904 -0.8545 -0.7129 -0.5150
δ̂3 β1 0.7071 -0.0071 0.0959 0.4919 0.7071 0.8776

β2 -0.7071 0.0061 0.0970 -0.8707 -0.7071 -0.4794
δ̂4 β1 0.7071 -0.0070 0.1071 0.4734 0.7044 0.8854

β2 -0.7071 0.0094 0.1084 -0.8809 -0.7098 -0.4649
δ̂5 β1 0.7071 -0.0027 0.1283 0.4242 0.7100 0.9370

β2 -0.7071 0.0223 0.1378 -0.9056 -0.7042 -0.3493
δ̂6 β1 0.7071 -0.0132 0.1644 0.3315 0.7008 0.9653

β2 -0.7071 0.0291 0.1814 -0.9434 -0.7133 -0.2571
δ̂7 β1 0.7071 -0.0727 0.3486 -0.2737 0.7176 0.9980

β2 -0.7071 0.1223 0.3930 -0.9929 -0.6754 0.4520
δ̂WStd β1 0.7071 -0.0022 0.0738 0.5509 0.7087 0.8368

β2 -0.7071 0.0055 0.0743 -0.8346 -0.7055 -0.5475
δ̂WRMSE β1 0.7071 -0.0023 0.0737 0.5512 0.7088 0.8367

β2 -0.7071 0.0054 0.0741 -0.8344 -0.7054 -0.5477
δ̂FElogit β1 0.7071 -0.0050 0.0556 0.5863 0.7042 0.8045

β2 -0.7071 -0.0007 0.0552 -0.8101 -0.7100 -0.5939
δ̂MS
1 β1 0.7071 -0.0480 0.1327 0.4618 0.6477 0.9107

β2 -0.7071 -0.0236 0.1303 -0.8870 -0.7619 -0.4131
δ̂MS
PW β1 0.7071 -0.0293 0.1091 0.4847 0.6810 0.8865

β2 -0.7071 -0.0114 0.1161 -0.8747 -0.7323 -0.4628

Note: LQ and UQ are 2.5% and 97.5% quantiles, respectively. For
comparison, all parameters, including true ones, are normalized such that
||β|| = 1.
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Table 4: The bias, RMSE, and quartiles of all estimators in the random effects logit model.

Parameters True Bias RMSE LQ Median UQ
δ̂1 β1 0.7071 -0.0033 0.0744 0.5424 0.7054 0.8398

β2 -0.7071 0.0047 0.0756 -0.8401 -0.7088 -0.5429
δ̂2 β1 0.7071 0.0002 0.0721 0.5517 0.7091 0.8385

β2 -0.7071 0.0077 0.0739 -0.8340 -0.7051 -0.5450
δ̂3 β1 0.7071 -0.0046 0.0829 0.5295 0.7059 0.8611

β2 -0.7071 0.0054 0.0848 -0.8483 -0.7083 -0.5085
δ̂4 β1 0.7071 -0.0035 0.0966 0.4971 0.7080 0.8833

β2 -0.7071 0.0100 0.0992 -0.8677 -0.7062 -0.4688
δ̂5 β1 0.7071 -0.0164 0.1166 0.4516 0.7001 0.8905

β2 -0.7071 0.0024 0.1140 -0.8922 -0.7140 -0.4549
δ̂6 β1 0.7071 -0.0213 0.1548 0.3393 0.7038 0.9418

β2 -0.7071 0.0123 0.1537 -0.9407 -0.7104 -0.3362
δ̂7 β1 0.7071 -0.0602 0.3095 -0.1038 0.7040 0.9962

β2 -0.7071 0.0865 0.3346 -0.9943 -0.6982 0.2467
δ̂WStd β1 0.7071 -0.0022 0.0640 0.5718 0.7056 0.8238

β2 -0.7071 0.0037 0.0652 -0.8204 -0.7086 -0.5669
δ̂WRMSE β1 0.7071 -0.0022 0.0639 0.5717 0.7054 0.8238

β2 -0.7071 0.0036 0.0651 -0.8205 -0.7088 -0.5669
δ̂PW β1 0.7071 -0.0053 0.0697 0.5629 0.7042 0.8313

β2 -0.7071 0.0017 0.0703 -0.8265 -0.7100 -0.5558
δ̂FElogit β1 0.7071 -0.0007 0.0484 0.6100 0.7066 0.7995

β2 -0.7071 0.0027 0.0491 -0.7924 -0.7076 -0.6007
δ̂MS
1 β1 0.7071 -0.0371 0.1284 0.4637 0.6675 0.9149

β2 -0.7071 -0.0131 0.1325 -0.8860 -0.7446 -0.4037
δ̂MS
PW β1 0.7071 -0.0243 0.1051 0.4922 0.6817 0.8744

β2 -0.7071 -0.0079 0.1103 -0.8705 -0.7317 -0.4851

Note: LQ and UQ are 2.5% and 97.5% quantiles, respectively. For
comparison, all parameters, including true ones, are normalized such that
||β|| = 1.
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Table 5: The bias, RMSE, and quartiles of all estimators in the CRE Tobit model.

Parameters True Bias RMSE LQ Median UQ
δ̂1 β1 0.7071 -0.0005 0.0396 0.6259 0.7085 0.7832

β2 -0.7071 0.0017 0.0398 -0.7799 -0.7057 -0.6127
δ̂2 β1 0.7071 -0.0012 0.0422 0.6175 0.7073 0.7818

β2 -0.7071 0.0013 0.0420 -0.7865 -0.7069 -0.6235
δ̂3 β1 0.7071 -0.0008 0.0446 0.6110 0.7090 0.7936

β2 -0.7071 0.0021 0.0450 -0.7916 -0.7053 -0.6084
δ̂4 β1 0.7071 0.0003 0.0540 0.6006 0.7091 0.8068

β2 -0.7071 0.0045 0.0547 -0.7995 -0.7052 -0.5909
δ̂5 β1 0.7071 0.0002 0.0629 0.5785 0.7094 0.8235

β2 -0.7071 0.0058 0.0638 -0.8157 -0.7048 -0.5673
δ̂6 β1 0.7071 -0.0087 0.0879 0.5188 0.7049 0.8492

β2 -0.7071 0.0020 0.0868 -0.8549 -0.7093 -0.5280
δ̂7 β1 0.7071 -0.0205 0.1574 0.3358 0.7038 0.9435

β2 -0.7071 0.0143 0.1565 -0.9419 -0.7104 -0.3313
δ̂WStd β1 0.7071 -0.0004 0.0363 0.6313 0.7081 0.7742

β2 -0.7071 0.0015 0.0363 -0.7756 -0.7061 -0.6330
δ̂WRMSE β1 0.7071 -0.0004 0.0363 0.6314 0.7081 0.7741

β2 -0.7071 0.0015 0.0364 -0.7755 -0.7061 -0.6330
δ̂Honore β1 0.7071 -0.0006 0.0260 0.6535 0.7066 0.7557

β2 -0.7071 0.0003 0.0260 -0.7570 -0.7076 -0.6549
δ̂Jackknife β1 0.7071 0.0001 0.0230 0.6616 0.7074 0.7512

β2 -0.7071 0.0008 0.0230 -0.7499 -0.7068 -0.6600

Note: LQ and UQ are 2.5% and 97.5% quantiles, respectively. For
comparison, all parameters, including true ones, are normalized such that
||β|| = 1.

unbiased estimates and the average-derivative estimator exhibits again RMSEs that are

approximately 40% larger than those of the methods specialized to the censored regression

models.

Altogether, the average derivative estimators (both the first-differenced and weighted

forms) deliver a robust performance across a range of nonlinear panel data models. Al-

though they do not reach the precision of the estimation methods specialized to each

particular model, they offer much wider applicability than the methods specifically de-

signed for one kind of model and open up possibility to estimate many new panel data

models with correlated random effects.
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6 Conclusion

Both regression coefficients and marginal effects in nonseparable single-index models with

correlated random effects are shown to be identified. The suggested estimation procedure

relies on the local polynomial regression and the average derivative estimation. The esti-

mation of the slope coefficients requires only two time periods and is not only consistent

and asymptotically, but also exhibits reasonably good finite sample performance in a vari-

ety of panel data models. The procedure is currently limited to static panel data models

and an extension to dynamic panel data is a topic of future research.
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A Proof of Theorem 1

This appendix provides the proof of the main identification result.

Proof of Theorem 1. Under fairly general conditions, expectation E[Yit|Xit, Xi(t−t′)] and

its derivatives are nonparametrically identified from the observed data and can be written

at (xt, xt−t′) as

E[Yit|Xit = xt, Xi(t−t′) = xt−t′ ] = E[φ(X ′itβ, α, ut)|Xit = xt, Xi(t−t′) = xt−t′ ]

=

ˆ
φ(x′tβ, α, ut)× FUt,α|Xt,Xt−t′

(dut, dα|Xit = xt, Xi(t−t′) = xt−t′).

To simplify the notation, we write F (ut, α|xt, xt−t′) ≡ FUt,α|Xt,Xt−t′
(ut, α|Xit = xt, Xi(t−t′) =

xt−t′). Further, f(α|xt, xt−t′) ≡ fα|Xt,Xt−t′
(α|Xit = xt, Xi(t−t′) = xt−t′). Applying succes-

sive conditioning leads to

E[Yit|Xit = xt, Xi(t−t′) = xt−t′ ]

=

ˆ [ˆ
φ(x′tβ, α, ut)FU |α,Xt,Xt−t′

(dut|α, xt, xt−t′)
]
f(α|xt, xt−t′)dα

=

ˆ [ˆ
φ(x′tβ, α, ut)FU (dut)

]
f(α|xt, xt−t′)dα,

where FU denotes the distribution function of Uit, which is independent of αi, Xit, and

Xi(t−t′) by Assumption 2, and f(α|xt, xt−t′) ≡ fα|Xt,Xt−t′
(α|Xit = xt, Xi(t−t′) = xt−t′)

denotes the conditional density of α.

As Assumptions 4, 5, and 6 ensure that the derivatives of this expectation exist and

the valid interchange the order of integration and derivative, it follows that

∂

∂xt
E[Yit|Xit = xt, Xi(t−t′) = xt−t′ ] =

ˆ ˆ [
∂

∂xt
φ(x′tβ, α, ut)

]
FU (dut)f(α|xt, xt−t′)dα

+

ˆ [ˆ
φ(x′tβ, α, ut)FU (dut)

]
∂

∂xt
f(α|xt, xt−t′)dα.

(A.1)

As ∂
∂xt

φ(x′tβ, α, ut) = φ
′
xb(x

′
tβ, α, ut)β, the first part of the right handside of the above
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equation (A.1) can be rewritten as

β

ˆ ˆ
φ
′
xb(x

′
tβ, α, ut)FU (dut)f(α|xt, xt−t′)dα = βE

[
φ
′
xb(X

′
itβ, αi, Uit)|Xit = xt, Xi(t−t′) = xt−t′

]
.

(A.2)

The second part of the above equation (A.1) can be expressed, by Assumption 3 im-

plying f(α|xt, xt−t′) = f(α|xt + xt−t′), as

ˆ [ˆ
φ(x′tβ, α, ut)FU (dut)

]
f ′(α|xt + xt−t′)dα. (A.3)

The marginal effects of the covariates on the above conditional expectation (A.1) thus

consist of two parts. The first part (A.2) represents the direct effect of a change in Xit

averaged over the individual unobserved heterogeneity, whereas the second part (A.3)

reflects the effect of a change in αi on Yit that caused by the change of Xit. However, when

considering the marginal effects of the value Xit on past Yi(t−t′), the first part of the effect

disappears as Yi(t−t′) does not depend on Xit. Therefore, we can write

∂

∂xt
E[Yi(t−t′)|Xit = xt, Xi(t−t′) = xt−t′ ] =

ˆ [ˆ
φ(x′t−t′β, α, ut−t′)FU (dut−t′)

]
∂

∂xt
f(α|xt, xt−t′)dα

(A.4)

=

ˆ [ˆ
φ(x′t−t′β, α, ut−t′)FU (dut−t′)

]
f ′(α|xt + xt−t′)dα.

(A.5)

Since Xit and Xi(t−t′) are identically distributed, integrating the conditional expecta-

tions (A.3) and (A.5) leads to the same quantity:

EXt,Xt−t′

{ˆ [ˆ
φ(x′t−t′β, α, ut−t′)FU (dut−t′)

]
f ′(α|xt + xt−t′)dα

}
= EXt,Xt−t′

{ˆ [ˆ
φ(x′tβ, α, ut)FU (dut)

]
f ′(α|xt + xt−t′)dα

}
.
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This result implies that (A.1) can be rewritten using (A.2) as

E

{
∂

∂xt
E[Yit|Xit = xt, Xi(t−t′) = xt−t′ ]

}
=βE

[
φ
′
xb(X

′
itβ, αi, Uit)|Xit = xt, Xi(t−t′) = xt−t′

]
− E

{
∂

∂xt
E[Yi(t−t′)|Xit = xt, Xi(t−t′) = xt−t′ ]

}
.

Therefore, similar to Härdle and Stoker (1989), β could be identified up to scale and the

average estimator can be based on

δt′ = γt′β = βE
{
E
[
φ
′
xb(X

′
itβ, αi, Uit)|Xit, Xi(t−t′)

]}
= E

{
∂

∂Xit
E[Yit − Yi(t−t′)|Xit, Xi(t−t′)]

}
,

where γt′ = E
(
E
[
φ
′
xb(X

′
itβ, αi, Uit)|Xit, Xi(t−t′)

])
is a scalar (assumed to be nonzero).

Finally, when φ(X ′tβ, α, Ut) = X ′tβ+ψ(α,Ut), we have φ′xb(X
′
tβ, α, Ut) = 1 and γt′ = 1

for all t′. In this case, β is point identified for each t′.

B Proofs of Theorems 3 and 4

For the proofs of Theorems 3 and 4, we need to introduce notation, which is closely related

to Masry (1996) and Li et al. (2003). Moreover, note that Assumptions 1–7 cover all

assumptions used in Li et al. (2003) and Masry (1996) so that their results regarding the

local polynomial estimator can be applied in the current context. After introducing the

notation and some auxiliary lemmas, the proofs of the main theorems follow.

First, assuming that m(·) has p+ 1 derivatives at point z0, we can approximate m(z)

locally by a multivariate polynomial of order p:

m(z) ≈
∑

0≤|k|≤p

1

k!
Dkm(v)|v=z0(z − z0)k,

where k = (k1, . . . , k2d), k! = k1!× · · · × k2d!, |k| =
∑2d

i=1 ki, z
k = zk11 × · · · × z

k2d
2d and

∑
0≤|k|≤p

=

p∑
j=0

j∑
k1=0

· · ·
∑

k2d=0;k1+···+k2d=j
, and (Dkm)(z) =

∂km(z)

∂zk11 . . . ∂zk2d2d

.
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Further define (Vit,t′ = ∆Yit,t′ −m(Zit,t′))

τ̄t′,j(z) =
1

n(T − t′)

n∑
i=1

T∑
t>t′

(
∆Yit,t′ −m(Zit,t′)

)(Zit,t′ − z
hn

)j
Kh

(
Zit,t′ − z

)
=

1

n(T − t′)

n∑
i=1

T∑
t>t′

Vit,t′

(
Zit,t′ − z

hn

)j
Kh

(
Zit,t′ − z

)
,

and

s̄t′,j(z) =
1

n(T − t′)

n∑
i=1

T∑
t>t′

(
Zit,t′ − z

hn

)j
Kh

(
Zit,t′ − z

)
, Kh(u) =

1

h2dn
K

(
u

hn

)
.

Following Masry (1996) and Li et al. (2003), we write τ̄t′,j in a matrix form by using a

lexicographical order in the following manner. Let

Ni =

i+ 2d− 1

2d− 1


be the number of distinct 2d-tuples with |j| ≡ j1 + · · · + j2d = i (Ni is the number of

distinct derivatives of total order i). These Ni 2d-tuples will be arranged as a sequence in

a lexicographical order with the highest priority to the last position so that (0, . . . , 0, i) is

the first element in the sequence and (i, 0, . . . , 0) is the last element, and let g−1|j| denote

this one-to-one map. Arrange the N|j| values of the τ̄t′,j in a column vector τ̄t′,|j| according

to this order. Then (τt′,|j|)k = τ̄t′,g|j|(k). Define τt′ = (τ ′t′,0, τ
′
t′,1, . . . , τ

′
t′,p)

′, where τt′,i

is a Ni × 1 vector with elements of τ̄t′,j(z) arranged in the above lexicographical order.

Note that τt′ is of dimension N × 1 with N =
∑p

i=0Ni. Similarly, column vector mp+1(z)

denotes the Np+1 elements of derivatives (1/j!(Djm))(z) for |j| = p + 1 using the same

lexicographical order

Next, the possible values of s̄t′,j+k are also arranged in a matrix St′,|j|,|k| in a lexico-
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graphical order with the (l,m)th element [St′,|j|,|k|]lm = s̄t′,g|j|(l)+g|k|(m). Now define

St′ =



St′,0,0 St′,0,1 . . . St′,0,p

St′,1,0 St′,1,1 . . . St′,1,p
...

...
. . .

...

St′,p,0 St′,p,1 . . . St′,p,p


and Bt′(z) =



St′,0,p+1

St′,1,p+1

...

St′,p,p+1


.

Similar matrices are defined also for kernel moments µj =
´
R2d u

jK(u)du and vs,j =
´
R2d usu

jK(u)du, where us is the sth component of vector u. Thus, let Mi,j and Qs,i,j

be Ni × Nj dimensional matrices whose (l,m)-th elements are given by µgi(l)+gj(m) and

vs,gi(l)+gj(m), respectively, s = 1, . . . , 2d, and let

M =



M0,0 M0,1 . . . M0,p

M1,0 M1,1 . . . M1,p

...
...

. . .
...

Mp,0 Mp,1 . . . Mp,p


, B =



M0,p+1

M1,p+1

...

Mp,p+1


, andQs =



Qs,0,0 Qs,0,1 . . . Qs,0,p

Qs,1,0 Qs,1,1 . . . Qs,1,p
...

...
. . .

...

Qs,p,0 Qs,p,1 . . . Qs,p,p


.

Finally, we define Mf (z) = Mf(z) and Qf (z) =
∑2d

s=1 f
′
s(z)Qs, where f

′
s(z) is the s-th

component of the first derivative f ′(z) of the density function f(z) of Zit,t′ , s = 1, . . . , 2d.

Using this notation, Masry (1996), equation (2.13), and Li et al. (2003), equation (A.9),

showed that

β̂t′(z)−β(z) = S−1t′ (z)τt′(z) +hp+1
n S−1t′ Bt′(z)mp+1(z) + op(h

p+1
n ), 0 ≤ |k| ≤ p, (A.6)

where β̂t′ = (β̂′t′,0, β̂
′
t′,1, . . . , β̂

′
t′,p)

′, β̂t′,k = h
|k|
n b̂k,t′ , and b̂k,t′ are the estimates of parameters

bk,t′ in objective function (4). Note that the subscript n denoting the cross-sectional

dimension is kept implicit as there are many other subscripts needed already. The limits

are taken and all asymptotic statements are stated for n→ +∞ as T is fixed.

Further recall that our local derivative estimator is defined as the first d elements of

δ̂t′(z) = h−1n β̂t′,1(z) = h−1n Lβ̂t′(z) = Lb̂t′(z) as in equation (5) and the average derivative
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estimator is defined as in equation (6) by

δ̂t′ =
1

n(T − t′)

n∑
i=1

T∑
t=t′+1

δ̂t′(Zit,t′) =
1

n(T − t′)h

n∑
i=1

T∑
t=t′+1

Lβ̂t′(Zit,t′).

To simplify notation, let It′ denote the index set {it, t′}n ,T
i=1,t=t′+1. Sorting the sequence

{Zit,t′} by the cross-sectional and the time indices, it is possible to express double sums

with respect to i and t as
∑

l∈It′
Zl =

∑n
i=1

∑T
t>t′ Zit,t′ , or with a slight abuse of notation,

by
∑n(T−t′)

l=1 Zl.

To derive the asymptotic distribution of δ̂t′ in Theorem 3, we will consider the following

sample average of β̂t′ − β as in Li et al. (2003), substituting from (A.6),

1

n(T − t′)
∑
l∈It′

[β̂t′(Zl)− β(Zl)]

=
1

n(T − t′)
∑
l∈It′

S−1t′ (Zl)τt′(Zl) +
hp+1
n

n(T − t′)
∑
l∈It′

S−1t′ Bt′(Zl)mp+1(Zl) + op(h
p+1
n )

= A1
t′ + hp+1

n A2
t′ + o(hp+1

n ),

(A.7)

whereA1
t′ = 1

n(T−t′)
∑

l∈It′
S−1t′ (Zl)τt′(Zl) andA2

t′ = 1
n(T−t′)

∑
l∈It′

S−1t′ (Zl)Bt′(Zl)mp+1(Zl).

Additionally, since Lemma A.1 of Li et al. (2003) holds for the strongly mixing processes

and implies S−1t′ (z) = (Mf (z))−1 − hnG(z) + o(hn) a.s. uniformly in z ∈ D, where

Gf (z) = (Mf (z))−1Qf (z)(Mf (z))−1, elements of A1
t′ can be further decomposed to1

A1
t′ =

1

n(T − t′)
∑
l∈It′

[
e′r(M

f (Zl))
−1τt′(Zl)− hne′rGf (Zl)τt′(Zl)

]
+ (s.o.)

≡ J1
t′,r − hJ2

t′,r + (s.o.),

(A.8)

where J1
t′,r = 1

n(T−t′)
∑

l∈It′
e′r(M

f (Zl))
−1τt′(Zl) and J2

t′,r = 1
n(T−t′)

∑
l∈It′

e′rG
f (Zl)τt′(Zl).

The following lemmas state the properties of terms A2
t′ , J

1
t′,r = e′rJ

1
t′ , and J

2
t′,r = e′rJ

2
t′ ;

again, all asymptotic statements are for n→ +∞ and T being fixed.

Lemma 1. A2
t′ = At′ +O(hn) a.s., where At′ = M−1BE[mp+1(Zit,t′)].

Proof. Lemma A.1 by Li et al. (2003) again implies that sup z∈D|(st′(z))−1−(Mf (z))−1| =
1We write An = Bn+(s.o.) to denote the fact that Bn is the leading term of An, (s.o.) stands for terms

that have smaller order than Bn.
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O(hn) a.s. and Masry (1996) have shown that sup z∈D|Bt′(z)−Bf(z)| = O(hn) a.s. Thus,

A2
t′ = 1

n(T−t′)M
−1B

∑
l∈It′

mp+1(Zl) + O(hn) a.s. As Assumption 7.4 guarantees that

mp+1(.) is bounded and uniformly continuous, mp+1(Zl) forms T -dependent sequence and

thus a stationary and strong mixing process. Therefore, by the Corollary of Blum et al.

(1963), 1
n(T−t′)

∑n
i=1

∑
t>t′mp+1(Zit,t′) converges to E[mp+1(Zit,t′)] almost surely. Thus,

A2
t′ = M−1BE[mp+1(Zit,t′)] +O(hn) = At′ +O(hn) a.s.

Lemma 2. J1
t′,r = Op

(
(nhdn)−1

)
for r = 2, . . . , 2d+ 1.

Proof. This is verified by Li et al. (2003, Lemma A.3).

Lemma 3. J2
t′,r → N(0,Φt′,r) in distribution for r = 2, . . . , 2d+ 1, where

Φt′,r =
1

(T − t′)2
T∑

t=t′+1

T∑
s=t′+1

E
[
σts,t′(Zit,t′ , Zis,t′)(G(Zit,t′))r,1(G(Zis,t′))r,1

]

and matrix G(z) = Gf (z)Mf (z) = [Mf (z)]−1Qf (z).

Proof. The proof closely follows Li et al. (2003, Lemma A.4). Denote Vit,t′ = ∆Yit,t′ −

m(Zit,t′); then

J2
t′,r =

1

n(T − t′)
∑
l∈It′

e′rG
f (Zl)τt′(Zl)

=
1

n(T − t′)
∑
l∈It′

∑
0≤|j|≤p

(Gf (Zl))r,jτt′,j(Zl)

=

[
1

n(T − t′)

]2 ∑
l∈It′

∑
i∈It′

∑
0≤|j|≤p

Vi(G
f (Zl))r,j

(
Zi − Zl
hn

)j
Kh(Zi − Zl)

=

[
1

n(T − t′)

]2 ∑
l∈It′

∑
i∈It′ ,i 6=l

∑
0≤|j|≤p

Vi(G
f (Zl))r,j

(
Zi − Zl
hn

)j
Kh(Zi − Zl)

+

[
1

n(T − t′)

]2 ∑
i∈It′

Vi(G
f (Zi))r,0Kh(0)

=2

[
1

n(T − t′)

]2 n(T−t′)∑
l=1

n(T−t′)∑
i>l

Ht′,r(Zi, Zl) +Op((n
3/2h2dn )−1),

where (n3/2h2dn )−1 → 0 by Assumption (7).1 and the symmetrized elements

Ht′,r(Vi, Zi;Vl, Zl) =
∑

0≤|j|≤p

1

2

[
Vi(G

f (Zl))r,j

(
Zi − Zl
hn

)j
+ Vl(G

f (Zi))r,j

(
Zl − Zi
hn

)j]
Kh(Zi−Zl).
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Let for i, l ∈ It′

Ht′,r(Vi, Zi) = E[Ht′,r(Zi, Zl)|Vi, Zi] =
1

2

∑
0≤|j|≤p

ViE

[
(Gf (Zl))r,j

(
Zi − Zl
hn

)j
Kh(Zi − Zl)|Zi

]
.

As E
[
(Gf (Zl))r,j

(
Zi−Zl
hn

)j
Kh(Zi − Zl)|Zi

]
=
´

(Gf (zl))r,jf(zl)
(
Zi−zl
hn

)j
Kh(Zi−zl)dzl =

´
(Gf (Zi+hnu))r,ju

jf(Zi+hnu)K(u)du = (Gf (Zi))r,j
´
ujK(u)duf(Zi)+O(hn) = (Gf (Zi))r,jµjf(Zi)+

O(hn), it follows thatHt′,r(Vi, Zi) = 1
2Vi
∑

0≤|j|≤p(G
f (Zi))r,jµjf(Zi) = 1

2Vi(G
f (Zi)M

f (Zi))r,1 =

1
2Vi(G(Zi))r,1, i ∈ It′ . Therefore, by the U -statistics H-decomposition we have

J2
t′,r =

2

n(T − t′)
∑
i∈It′

Ht′,r(Vi, Zi)+(s.o.) =
1

n

n∑
i=1

[
1

T − t′
T∑
t>t′

Vit,t′(G(Zit,t′))r,1

]
+(s.o.).

(A.9)

Therefore, by the Lindenberg central limit theorem,
√
nJ2

t′,r → N(0,Φt′,r) for r = 2, . . . , 2d+

1, where

Φt′,r = V ar

[
1

T − t′
T∑
t>t′

Vit,t′(G(Zit,t′))r,1

]

=
1

(T − t′)2
T∑

t=t′+1

T∑
s=t′+1

E
[
σts,t′(Zit,t′ , Zis,t′)(G(Zit,t′))r,1(G(Zis,t′))r,1

]
.

Lemma 4. Define d × 1 vectors J2
t′,[d] = LJ2

t′ = (J2
t′,2, . . . , J

2
t′,d+1)

′ and (G(z))[d],1 =

LG(z)e1 = ((G(z))2,1, . . . , (G(z))d+1,1)
′, where (G(z))r,1 is the (r, 1)-th element of G(z) =

[Mf (z)]−1Qf (z). Then
√
nJ2

t′,[d] → N(0,Φt′), where

Φt′ =
1

(T − t′)2
T∑

t=t′+1

T∑
s=t′+1

E
[
σts,t′(Zit,t′ , Zis,t′)(G(Zit,t′))[d],1[(G(Zis,t′))[d],1]

′] .
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Proof. By the equation (A.9) in the proof of Lemma 3, we know that

Cov(
√
nJ2

t′,r,
√
nJ2

t′,m)

=
1

n

[
1

T − t′

]2
E

( n∑
i=1

T∑
t>t′

Vit,t′(G(Zit,t′))r,1

) n∑
j=1

T∑
s>t′

Vjs,t′(G(Zjs,t′))m,1

+ (s.o.)

=
1

n

[
1

T − t′

]2 n∑
i=1

E

[(
T∑
t>t′

Vit,t′(G(Zit,t′))r,1

)(
T∑
s>t′

Vis,t′(G(Zis,t′))m,1

)]
+ (s.o.)

=
1

(T − t′)2
T∑

t=t′+1

T∑
s=t′+1

E
[
σts,t′(Zit,t′ , Zis,t′)(G(Zit,t′))r,1(G(Zis,t′))m,1

]
+ (s.o.)

=(Φt′)r−1,m−1 + o(1).

where r,m = 2, . . . , d + 1. Hence, V ar(
√
nJ2

1,t′) = Φt′ + o(1). Analogously to Li et al.

(2003, Lemma A.5), one can easily show that the result of Lemma 3 and the Crammer-Wold

device imply
√
nJ2

1,t′ → N(0,Φt′).

Proof of Theorem 3: Let δ̃t′ = 1
n(T−t′)

∑n
i=1

∑
t>t′m

′
1(Zit,t′) and define d×1 vectorsAt′,[d] =

LAt′ , Akt′,[d] = LAkt′ , and J
k
t′,[d] = LJkt′ (recalling that L = (e2, . . . , ed+1)

′), where k = 1, 2

and At′,j = e′jAt′ , A
k
t′,j , and J

k
t′,j are defined in (1), (A.7)–(A.8), j = 2, . . . , d+ 1. By the

results of Lemmas 2 and 4, and from equations (6), (A.7), and (A.8), we have

√
n
(
δ̂t′ − δ̃t′ − hpnAt′,[d]

)
=

√
n

h

 1

n(T − t′)
∑
l∈It′

[Lβ̂t′(Zl)− Lβ(Zl)− hp+1
n A1,t′ ]


=

√
n

h

(
A1
t′,[d] + hp+1A2

t′,[d] − h
p+1
n At′,[d] + op(h

p+1
n )

)
=

√
n

h

[
J1
t′,[d] − hJ

2
t′,[d] + hp+1

n (A2
t′,[d] −At′,[d]) + op(h

p+1
n )

]
=Op((nh

d+2
n )−1/2)−

√
nJ2

t′,[d] +Op(n
1/2hp+1

n )

=−
√
nJ2

t′,[d] + op(1)→ N(0,Φt′),

(A.10)

where the last equality follows from Assumption 7.1. Under Assumption 7, and by the
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Lindenberg central limit theorem, it also follows that

√
n
[
δ̃t′ − E

(
m′1(Zit,t′)

)]
=

1√
n

n∑
i=1

[
1

T − t′
T∑
t>t′

m′1(Zit,t′)− E
(
m′1(Zit,t′)

)]
→ N(0,Ωt′),

where

Ωt′ =
1

(T − t′)2
T∑

t=t′+1

T∑
s=t′+1

Cov
[
m′1(Zit,t′),m

′
1(Zis,t′)

]
.

Similarly to Li et al. (2003), it can be shown that

Cov
(√

n(δ̂t′ − δ̃t′ − hpnAt′,[d]),
√
n
[
δ̃t′ − E

(
m′1(Zit,t′)

)])
=

1

n
Cov

 1

T − t′
∑
l∈It′

[
m̂′1(Zl)−m′1(Zl)− hpnAt′,[d]

]
,

1

T − t′
∑
l∈It′

[
m′1(Zl)− E

(
m′1(Zit,t′)

)]
=

1

n
E

 1

T − t′
∑
l∈It′

[
m̂′1(Zl)−m′1(Zl)− hpnAt′,[d]

]
· 1

T − t′
∑
l∈It′

[
m′1(Zl)− E

(
m′1(Zit,t′)

)]
=

[
1

T − t′

]2∑
t>t′

E
(
E
[
m̂′1(Zit,t′)−m′1(Zit,t′)− hpnAt′,[d]|Zi1,t′ , . . . , ZiT,t′

] [
m′1(Zit,t′)− E

(
m′1(Zit,t′)

)])
=

[
1

T − t′

]2∑
t>t′

E
(
E
[
m̂′1(Zit,t′)−m′1(Zit,t′)

]
·
[
m′1(Zit,t′)− E

(
m′1(Zit,t′)

)])
→ 0,

(A.11)

where the convergence to zero follows from Masry (1996, Theorem 6). Consequently,

√
n
(
δ̂t′ − hpnAt′,[d] − E[m′1(Zit,t′)]

)
=
√
n(δ̂t′ − δ̃t′ − hpnA1,t′) +

√
n
[
δ̃t′ − E

(
m′1(Zit,t′)

)]
→N(0,Φt′ + Ωt′).

Proof of Theorem 4. From the equation (A.9) in Lemma 3 (restricted to a fixed time pe-
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riod), it follows that (Vit,t′ = ∆Yit,t′ −m(Zit,t′))

Cov(
√
nJ2

t′,r(Zik,t′),
√
nJ2

t′,m(Zil,t′))

=nE

[(
1

n

n∑
i=1

Vik,t′(G(Zik,t′))r,1

)(
1

n

n∑
i=1

Vil,t′(G(Zil,t′))m,1

)]

=
1

n

n∑
i=1

E
[
σkl,t′

(
Zik,t′ , Zil,t′

)
· (G(Zik,t′))r,1 · (G(Zil,t′))m,1

]
=E

[
σkl,t′

(
Zik,t′ , Zil,t′

)
· (G(Zik,t′))r,1 · (G(Zil,t′))m,1

]
=(Φ̃

(k,l)
t′ )r−1,m−1 + op(1),

where r,m = 2, . . . , d + 1, and t′ < k, l ≤ T . Combined with equation (A.10) and using

the notation from the proof of Theorem (3), we have

Cov
(√

n
[
δ̂k,t′ − δ̃k,t′ − hpnAt′,[d](Zik,t′)

]
,
√
n
[
δ̂l,t′ − δ̃l,t′ − hpnAt′,[d](Zil,t′)

])
=Cov

(
−
√
nJ2

t′,[d](Zik,t′),−
√
nJ2

t′,[d](Zil,t′)
)

+ o(1)

=E
[
σkl,t′

(
Zik,t′ , Zil,t′

)
· (G(Zik,t′))[d],1 · [(G(Zil,t′))[d],1]

′]+ op(1)

=Φ̃
(k,l)
t′ + op(1).

where the (r,m)-th element of Φ̃
(k,l)
t′ is (Φ̃

(k,l)
t′ )r−1,m−1. Therefore by the same argument

as in equation (A.11), it holds that

Cov(
√
nδk,t′ ,

√
nδl,t′)

=nCov
([
δ̂k,t′ − hpnAt′,[d](Zik,t′)− E

(
m′1(Zit,t′)

)]
,
[
δ̂l,t′ − hpnAt′,[d](Zil,t′)− E

(
m′1(Zit,t′)

)])
=nCov

([
δ̂k,t′ − δ̃k,t′ − hpnAt′,[d](Zik,t′)

]
,
[
δ̂l,t′ − δ̃l,t′ − hpnAt′,[d](Zil,t′)

])
+ nCov

([
δ̂k,t′ − δ̃k,t′ − hpnAt′,[d](Zik,t′)

]
,
[
δ̃l,t′ − E

(
m′1(Zit,t′)

)])
+ nCov

([
δ̃k,t′ − E

(
m′1(Zit,t′)

)]
,
[
δ̂l,t′ − δ̃l,t′ − hpAt′,[d](Zil,t′)

])
+ nCov

([
δ̃k,t′ − E

(
m′1(Zit,t′)

)]
,
[
δ̃l,t′ − E

(
m′1(Zit,t′)

)])
=Φ̃

(k,l)
t′ + nCov

([
δ̃k,t′ − E

(
m′1(Zit,t′)

)]
,
[
δ̃l,t′ − E

(
m′1(Zit,t′)

)])
+ op(1)

=Φ̃
(k,l)
t′ +

1

n
E

{[
n∑
i=1

(
m′1(Zik,t′)

)
− E

(
m′1(Zit,t′)

)] [ n∑
i=1

(
m′1(Zil,t′)

)
− E

(
m′1(Zit,t′)

)]′}
+ op(1)

=Φ̃
(k,l)
t′ + Ω̃

(k,l)
t′ ,
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where Ω̃
(k,l)
t′ = Cov

(
m′1(Zik,t′),m

′
1(Zil,t′)

)
.

According to Theorem 3,
√
nδk,t′ → N

(
0, Φ̃

(k,k)
t′ + Ω̃

(k,k)
t′

)
, where Ω̃

(k,k)
t′ = V ar

[
m′1(Zit,t′)

]
and Φ̃

(k,k)
t′ = E

[
σ2t′(Zit,t′)(G(Zit,t′))[d],1

[
(Gs(Zit,t′))[d],1

]′]. Using the Crammer-Wold de-

vice, it directly follows that
√
nδ
∗
t′ → N(0, Φ̃t′ + Ω̃t′).
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