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Bankruptcy and the per capita nucleolus

S. Huijink ∗† P.E.M. Borm∗ J.H. Reijnierse∗ J. Kleppe∗

November 6, 2013

Abstract

This article characterizes the per capita nucleolus for bankruptcy games
as a bankruptcy rule. This rule, called the cligths rule, is based on the well-
known constrained equal awards principle. The essential feature of the rule
however is that, for each bankruptcy problem, it takes into account a vector
of clights. These clights only depend on the vector of claimswhile the height
of the estate determines whether the clights should be interpreted as modi-
fied claims or as rights. Finally, it is seen that both the clights rule and the
Aumann-Maschler rule can be captured within the family of so-called claim
and right rules.

Keywords: Bankruptcy, (per capita) nucleolus.
JEL classification number: C71, G33.

1 Introduction

In a bankruptcy problem an insufficient monetary estate has to be divided over
a number of claimants, each having a justified claim on this estate. Bankruptcy
rules propose general principles and procedures to solve anarbitrary bankruptcy
problem. From the wide variety of bankruptcy rules we just want to mention the
constrained equal award rule, the constrained equal loss rule and the Aumann-
Maschler rule (cf. Aumann and Maschler (1985)). An overviewof bankruptcy
rules and their properties can be found in Thomson (2003).
O’Neill (1982) associates a cooperative bankruptcy game with transferable util-
ity to each bankruptcy problem. As a result, game theoretic solution concepts
such as the Shapley value (cf. Shapley (1953)) and the nucleolus (cf. Schmeidler
(1969)) can be viewed as bankruptcy rules, too. Interestingly, it turns out that the
Aumann-Maschler rule coincides with the nucleolus in this context (cf. Aumann
and Maschler (1985)).

∗CentER and Econometrics and Operations Research Tilburg University, P.O. Box 90153, 5000
LE Tilburg, The Netherlands
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In this paper, we focus on the per capita nucleolus as first introduced by Grotte
(1970). For each transferable utility game, this solution concept is based on the
maximal dissatisfaction per player for each coalition. Hence, the per capita nucleo-
lus is closely related to the nucleolus, which is based on themaximal dissatisfaction
of each coalition.
This paper characterizes the per capita nucleolus for bankruptcy games as a
bankruptcy rule, called the clights rule. The essential feature of this rule is that,
for each bankruptcy problem, it takes into account a vector of clights. The clight
vector only depends on the claim vector and does not depend onthe estate. The
clights rule allocates to each claimant at most his clight when the estate is less
than the sum of the clights. In this case the clights can be viewed as a modified
claim vector. However, each claimant will receive at least his clight when the es-
tate is more than the sum of the clights. Hence, in the latter case the clights can be
viewed as the rights of the claimant. When the clights represent modified claims,
the clights rule divides the estate over the claimants usingthe constrained equal
award rule with the clights as new claims. Whenever the clights represent rights,
the clights rule first assigns to every claimant its right. Then, the remaining estate
is divided using the constrained equal loss rule with the original claims minus the
clights as the new claim vector. The proof that the per capitanucleolus coincides
with the clights rule uses a new Kohlberg (1971) type of characterization of the
per capita nucleolus which extends the idea of the characterization of the nucleolus
presented by Groote Schaarsberg et al. (2012).
As a final result, we show that both the clights rule and the Aumann-Maschler rule
can be captured within the general class of so-called claim and right bankruptcy
rules. This class turns out to coincide with the class of increasing-constant-increasing
bankruptcy rules as introduced by Thomson (2008).

The remainder of this paper is structured as follows. In Section 2, some basic defi-
nitions concerning cooperative transferable utility games and bankruptcy problems
are presented. Also, new Kohlberg-like characterizationsof the nucleolus and the
per capita nucleolus are presented in this section. Section3 formally introduces
the clights rule and shows that this rule corresponds to the per capita nucleolus. In
Section 4, claim and right bankruptcy rules are introduced.

2 Preliminaries

This section first recalls the definitions of the nucleolus and the per capita nucle-
olus. Secondly, it provides Kohlberg-like characterizations of both solution con-
cepts. Finally, it surveys bankruptcy problems and bankruptcy rules, focussing on
the concepts used in this paper.
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2.1 The nucleolus and per capita nucleolus of transferable utility games

A transferable utilityTU-game is defined by the pair(N, v), whereN = {1, ..., n}
is the finite set of players andv : 2N → R is thecharacteristic function. The set
of all TU-games with player setN is denoted byTUN and a TU-game with player
setN is abbreviated byv. For every coalitionS ∈ 2N , v(S) is called theworth of
the coalition withv(∅) = 0 by convention.
The cardinality of a coalitionS ∈ 2N is denoted by|S|. ByRN we denote the set
of all real-valued vectors with|N | elements in which each coordinate corresponds
to a playeri ∈ N . ForS ∈ 2N we denote byeS ∈ RN the vector for whicheSi = 1
for all i ∈ S andeSi = 0 for all i ∈ N\S.

The imputation set, I(v), is defined by

I(v) = {x ∈ RN | xi ≥ v({i}) for all i ∈ N,
∑

i∈N

xi = v(N)}.

The core,Core(v), (Gillies (1953)) consists of all imputations for which no coali-
tion would be better off if it would separate itself and get its worth. Formally, the
core is defined by

Core(v) = {x ∈ RN |
∑

i∈S

xi ≥ v(S) for all S ∈ 2N ,
∑

i∈N

xi = v(N)}.

Forx, y ∈ Rt we havex ≤L y, i.e., x is lexicographically smallerthan (or equal
to) y, if x = y or if there exists anℓ ∈ {1, ..., t} such thatxk = yk for all
k ∈ {1, ..., ℓ − 1} andxℓ < yℓ.
Let v ∈ TUN . Then theexcessexc(S, x) of coalitionS ∈ 2N for an imputation
x ∈ I(v) is defined by

exc(S, x) = v(S)− x(S).

For a gamev ∈ TUN and imputationx ∈ I(v) theexcess vectorθ(x) ∈ R2|N|
has

as its coordinates the excesses of all2|N | coalitions arranged in a weakly decreasing
order,i.e., θk(x) ≥ θk+1(x) for all k ∈ {1, ..., 2|N | − 1}. The nucleolus is defined
as follows.

Definition 2.1. (cf. Schmeidler (1969))
Letv ∈ TUN be such thatI(v) 6= ∅. Thenucleolus, n(v), is the unique imputation
such thatθ(n(v)) ≤L θ(y) for all y ∈ I(v).

For a gamev ∈ TUN and an imputationx ∈ I(v) we define theper capita excess
of any non-empty coalitionS ∈ 2N\{∅} by

excP (S, x) =
v(S)− x(S)

|S|
.

Theper capita excess vectorθP (x) ∈ R2|N|−1 has as its coordinates the per capita
excesses of all non-empty coalitions arranged in a weakly decreasing order,i.e.,
θPk (x) ≥ θPk+1(x) for all k ∈ {1, ..., 2|N | − 2}.
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Definition 2.2. (cf. Grotte (1970))
Let v ∈ TUN be such thatI(v) 6= ∅. Then, theper capita nucleolus, pcn(v), is
the unique imputation such thatθP (pcn(v)) ≤L θP (y) for all y ∈ I(v).

2.2 Characterizations of the (per capita) nucleolus using balanced col-
lections

Besides the original definition of the nucleolus, there exist multiple characteriza-
tions that use balanced collections. One of the advantages of these characteri-
zations is that they provide ways to quickly determine whether an imputation is
the nucleolus or not. The first of this type of characterizations was provided by
Kohlberg (1971). It uses the following definitions: A mapρ : 2N\{∅} → [0,∞)
is calledbalancedif

∑

S∈2N\{∅}

ρ(S)eS = eN .

Furthermore, a collectionB ⊂ 2N\{∅} of coalitions is calledbalancedif there
exists a balanced mapρ onN such that

B = {S ∈ 2N\{∅} | ρ(S) > 0}.

We call the grand coalitionN and the empty coalition∅ trivial. Let x ∈ I(v) and
defineB1(x) to be the set of the non-trivial coalitions for which the dissatisfaction
with imputationx is the highest. Formally,

B1(x) =
{

S ∈ 2N\{∅, N} | exc(S, x) ≥ exc(T, x) for all T ∈ 2N\{∅, N}
}

.

Recursively, fork = 2, 3, ... the setsBk(x) are defined by,

Bk(x) =
{

S ∈ 2N\
{

{∅, N} ∪

k−1
⋃

ℓ=1

Bℓ(x)
}

| exc(S, x) ≥ exc(T, x)

for all T ∈ 2N\{∅, N} with T /∈
k−1
⋃

ℓ=1

Bℓ(x)
}

.

It is clear that there exists a uniquet(x) ∈ N, such that
{

Bk(x) 6= ∅ for all k ∈ {1, ..., t(x)}

Bk(x) = ∅ for all k ∈ {t(x) + 1, ...}

Theorem 2.3. (cf. Kohlberg (1971))
Letv ∈ TUN be such thatCore(v) 6= ∅ and letx ∈ I(v). Then,x = n(v) if and
only if

⋃s
ℓ=1 Bk(x) is balanced for alls ∈ {1, ..., t(x)}.

An alternative characterization is provided by Groote Schaarsberg et al. (2012).
LetD ⊆ 2N and letH(D) be as follows:

H(D) = {S ∈ 2N | eS ∈ span(eN , {eT }T∈D)},
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wherespandenotes the linear hull1. Note thatH({∅}) = {∅, N}.

Theorem 2.4. (cf. Groote Schaarsberg et al. (2012))
Let v ∈ TUN be such thatCore(v) 6= ∅ and letx ∈ I(v). Then,x = n(v) if
and only if there exists a sequenceD1,D2, ...,Dτ of non-empty subcollections of
2N\{∅, N} with the following properties:

(i) for all r ∈ {1, ..., τ} the collectionD̄r =
⋃r

k=1Dk is balanced.

(ii) there exists a sequence of real numbersγ1, γ2, ..., γτ such that
exc(T, x) = γr for everyT ∈ Dr and all r ∈ {1, ..., τ} and that
γ1 ≥ γ2 ≥ ... ≥ γτ .

(iii) for all T ∈ 2N\
{

{∅, N} ∪ D̄τ

}

it holds that
T ∈ H

(

{S ∈ D̄τ : exc(S, x) ≥ exc(T, x)}
)

.

Both Theorems 2.3 and 2.4 require that (a part of) the coalitions are put into a
sequence of collections, and that all coalitions in a collection have the same excess.
Moreover, both sequences of collections have to satisfy thesame balancedness
requirement. However, there are two important differencesbetween the theorems.
First, in Theorem 2.4 it is allowed that several collectionshave the same excess as
opposed to Theorem 2.3. In other words, in Theorem 2.4 it is allowed to split a
large Kohlberg collection into multiple smaller collections. Second, Theorem 2.4
states that a non-trivial coalition either belongs to a collection or it is in the span of
the collections with higher excesses, while Theorem 2.3 states that each non-trivial
coalition belongs to collection. Hence, it is possible to use a subset of the Kohlberg
collections to determine whether an imputation is the nucleolus or not,i.e., some
of the Kohlberg collections are irrelevant. Finally, note that the sequence of the
original Kohlberg collections satisfies the three properties of Theorem 2.4.
We formulate another variant of the characterization of Kohlberg. In this variant,
the idea of Groote Schaarsberg that not all Kohlberg collections are relevant is
further exploited. For collectionsD ⊆ 2N , denote byF(D) the set of thefree
coalitions. i.e., coalitions which are not in the span ofD. Formally, the set of free
coalitions is given by

F(D) = 2N\H(D).

Theorem 2.5. Let v ∈ TUN be such thatCore(v) 6= ∅ and letx ∈ I(v). Then,
x = n(v) if and only if there exists a sequenceD1,D2, ...,Dτ of non-empty collec-
tions such that2 Dr ⊆ F(D̄r−1) for all r ∈ {1, ..., τ}, that satisfies the following
properties:

(A) for all r ∈ {1, ..., τ} the collectionD̄r =
⋃r

k=1Dk is balanced and
F(D̄τ ) = ∅.

1span(eN , {eT }T∈D) =
{

∑

S∈D∪{N}

γSe
S | γS ∈ R for all S ∈ D ∪ {N}

}

2Note thatD̄r =
r
⋃

k=1

Dk and thatD̄0 = ∅
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(B) for all r ∈ {1, ..., τ} and allT ∈ Dr it holds that
exc(T, x) = max

S∈F(D̄r−1)
exc(S, x).

Proof. “only if part”. We show how to define a sequenceD1, ....,Dτ of relevant
collections from the Kohlberg collections. In this proof, we abbreviateBk(n(v))
by Bk.
LetB1, ...,Bt(n(v)) be the sequence of Kohlberg collections of the nucleolus. Then,
determine the sequence of relevant collections with the following algorithm:

1: r = 1 andD1 = B1

2: while F(D̄r) 6= ∅ do
3: r = r + 1
4: kr = argmin

ℓ∈{1,...,t(n(v))}

{

Bℓ ∩ F(D̄r−1) 6= ∅
}

5: Dr = Bkr ∩ F(D̄r−1)
6: end while
7: τ = r

By construction we have thatDr ⊆ F(D̄r−1) for all r ∈ {1, ..., τ} and that
F(Dτ ) = ∅. Left to show is that the sequence satisfies(B) and the remaining
part of(A).

For eachr ≤ τ we haveDr = Bkr ∩ F(D̄r−1), which implies that the coalitions
in collectionDr have maximum excess with respect to the nucleolus over the set
F(D̄r−1). This gives(B).
Left to prove is the balancedness of the collectionsD̄r for all r ∈ {1, ...τ}, which
is shown by induction.
Basis: D̄1 is balanced, being equal toB1. Let r ∈ {2, . . . , τ} and assume that
D̄r−1 is balanced. DefinēBkr =

⋃kr
ℓ=1 Bℓ and denoteG = B̄kr ∩H(D̄r−1). Then,

B̄kr is the disjoint union ofG andDr, i.e., G∩Dr = ∅ andB̄kr = G∪Dr. Because
B̄kr andD̄r−1 are balanced, there exist for both collections a balanced map, i.e.,
there exists aρ, whereρ(T ) > 0 for all T ∈ B̄kr , and anα, whereα(T ) > 0 for
all T ∈ D̄r−1 with

eN =
∑

T∈B̄kr

ρ(T )eT =
∑

T∈D̄r−1

α(T )eT .

Furthermore, sinceG ⊆ H(D̄r−1) we have that for everyS ∈ G there exists a
vectorγST ∈ RD̄r−1∪{N} such that

eS =
∑

T∈D̄r−1∪{N}

γST e
T .

DenoteβT =
∑

S∈G ρ(S)γ
S
T for all T ∈ D̄r−1∪{N}. By substituting the equation
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above in the balancing equation ofB̄kr , we find

eN =
∑

T∈B̄kr

ρ(T )eT

=
∑

S∈G

ρ(S)eS +
∑

T∈Dr

ρ(T )eT

=
∑

S∈G

ρ(S)
∑

T∈D̄r−1∪{N}

γST e
T +

∑

T∈Dr

ρ(T )eT

=
∑

T∈D̄r−1∪{N}

βT e
T +

∑

T∈Dr

ρ(T )eT .

Let ε ∈ (0, 1) and take a convex combination of the equation above and the bal-
ancing equation of̄Dr−1:

eN = ε
(

∑

T∈D̄r−1∪{N}

βT e
T +

∑

T∈Dr

ρ(T )eT
)

+ (1− ε)
(

∑

T∈D̄r−1

α(T )eT
)

,

which rewrites to

eN =
1

1− εβN

(

∑

T∈D̄r−1

(

εβT + (1− ε)α(T )
)

eT +
∑

T∈Dr

ρ(T )eT
)

.

Forε sufficiently close to 0, this provides a balancing equation for D̄r. Hence,D̄r

is balanced, which proves(A).

“if part”. Consider a sequenceD1, ...,Dτ of non-empty coalitions such that
Dr ⊆ F(D̄r−1) for all r ∈ {1, ..., τ} and that satisfies(A) and(B) of Theorem
2.5. We show that this sequence satisfies conditions(i), (ii) and(iii) of Theorem
2.4.

Condition(A) implies(i). Furthermore,(B) implies(ii) sinceF(D̄r)(F(D̄r−1).
Property(iii) is inferred as follows. LetT ∈ 2N\

{

{∅, N}∪D̄τ

}

. By (A) we have
that F(D̄τ ) = ∅, hence there exists a uniquer ∈ {1, ..., τ} with
T ∈F(D̄r−1)\F(D̄r). Furthermore,T ∈F(D̄r−1)\F(D̄r) impliesexc(T, x) ≤ γr
andexc(S, x) ≥ γr for all S ∈ D̄r. Therefore, we have

T ∈ F(D̄r−1)\F(D̄r) = H(D̄r)\H(D̄r−1)

⊆ H(D̄r)

⊆ H
(

{S ∈ D̄τ : exc(S, x) ≥ γr}
)

⊆ H
(

{S ∈ D̄τ : exc(S, x) ≥ exc(T, x)}
)

.

This proves(iii) of Theorem 2.4. Hence, Theorem 2.5 implies Theorem 2.4.�
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Wallmeier (1983) showed that Theorem 2.3 can be reformulated to provide a char-
acterization of the per capita nucleolus. Similarly, the other two characterizations
of the nucleolus above can be reformulated. In this paper, the following per capita
variant of Theorem 2.5 is used.

Theorem 2.6. Let v ∈ TUN be such thatCore(v) 6= ∅ and letx ∈ I(v). Then,
x = pcn(v) if and only if there exists a sequenceD1,D2, ...,Dτ of non-empty
collections such thatDr ⊆ F(D̄r−1) for all r ∈ {1, ..., τ} that satisfy the following
properties:

(A) for all r ∈ {1, ..., τ} the collectionD̄r =
⋃r

k=1Dk is balanced and
F(D̄τ ) = ∅.

(B) for all r ∈ {1, ..., τ} and allT ∈ Dr it holds that
excP (T, x) = max

S∈F(D̄r−1)
excP (S, x).

2.3 Bankruptcy problems, bankruptcy rules and bankruptcy games

A bankruptcy problemis denoted by(N,E, c), whereN = {1, ..., n} is the set of
claimants, which will be calledplayers, E ∈ R+ is the monetary estate that has to
be divided over the players, andc ∈ RN

+ is the vector ofclaims. By the nature of a
bankruptcy problem, the sum of claims exceeds the estate,i.e., E ≤

∑

i∈N ci. The
class of bankruptcy problems onN is denoted byBRN .

A bankruptcy rulef : BRN → RN
+ is a function that assigns to each bankruptcy

problem (N,E, c) ∈ BRN a vector f(N,E, c) ∈ RN
+ such that

∑

i∈N fi(N,E, c) = E and0 ≤ f(N,E, c) ≤ c. The reader is referred to Thom-
son (2003) for a detailed overview on bankruptcy rules.

Definition 2.7. Theconstrained equal award rule (CEA)is defined by

CEAi(N,E, c) = min{α, ci}

for all bankruptcy problems(N,E, c) ∈ BRN and all i ∈ N , whereα is such that
∑

i∈N

min{α, ci} = E.

The constrained equal award rule divides the estate as equalas possible among the
players, given that no one can receive more than his claim.

Definition 2.8. Theconstrained equal loss rule (CEL)is defined by

CELi(N,E, c) = max{0, ci − β}

for all bankruptcy problems(N,E, c) ∈ BRN and all i ∈ N , whereβ is such that
∑

i∈N

max{0, ci − β} = E.
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The constrained equal loss rule divides the loss, which is the claim minus the
amount received, as equal as possible among the players, given that no one can
receive a negative amount. The constrained equal award ruleand constrained equal
loss rule are closely related, which is shown in the following well-known proposi-
tion.

Proposition 2.9. The constrained equal award rule is the dual of the constrained
equal loss rule and vice versa, i.e.,

CEA(N,E, c) = c− CEL(N,
∑

i∈N

ci − E, c)

for all bankruptcy problems(N,E, c) ∈ BRN .

A rule that combines the constrained equal award and constrained equal loss rule
is the Aumann-Maschler rule.

Definition 2.10. (cf. Aumann and Maschler (1985))
TheAumann-Maschler rule (AM)is defined by

AM(N,E, c) =















CEA(N,E, 12c) if
∑

i∈N

1
2ci ≥ E,

1
2c+ CEL(N,E −

∑

i∈N

1
2ci,

1
2c) if

∑

i∈N

1
2ci < E,

for all bankruptcy problems(N,E, c) ∈ BRN .

We refer to Aumann and Maschler (1985) for a motivation basedon the concede
and divide principle and consistency.

O’Neill (1982) associates with every bankruptcy problem(N,E, c) ∈ BRN a
corresponding bankruptcy gamevE,c ∈ TUN . In each bankruptcy game, the worth
of coalitionS ∈ 2N is the part of the estate that is left after the players outside the
coalition, i.e., N\S, receive their claim. Formally,

vE,c(S) = max{0, E −
∑

i∈N\S

ci} for all S ∈ 2N .

It is readily checked thatCore(vE,c) 6= ∅ for all (N,E, c) ∈ BRN , so one can
use the theorems in Section 2.2 in order to characterize the (per capita) nucleolus.
The nucleolus for bankruptcy games corresponds to the Aumann-Maschler rule.

Theorem 2.11. (cf. Aumann and Maschler (1985))
Let (N,E, c) ∈ BRN and letvE,c be the corresponding bankruptcy game. Then

AM(N,E, c) = n(vE,c).
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3 A characterization of the per capita nucleolus as a bankruptcy
rule

This section introduces a new bankruptcy ruleσ that is based on so called clights.
These clights can be interpreted as either the claims of the players when the estate
is relatively small or as the rights of the players when the estate is relatively large.
Moreover, it is proven that this new bankruptcy rule coincides with the per capita
nucleolus of the corresponding bankruptcy game. Throughout the remainder of
this paper we assume for notational ease and without loss of generality that claim
vectors are weakly increasing.3

Definition 3.1. Theclights bankruptcy ruleσ is defined by

σ(N,E, c) :=















CEA(N,E, δ(c)) if
∑

i∈N

δi(c) ≥ E,

δ(c) + CEL(N,E −
∑

i∈N

δi(c), c − δ(c)) if
∑

i∈N

δi(c) < E,
(1)

for all bankruptcy problems(N,E, c) ∈ BRN , where theclight vectorδ(c) ∈ RN

is recursively defined for alli ∈ N by

δi(c) := max
j∈{1,...,i}

{ 1

n+ j − 1

(

jci − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

. (2)

First of all we observe that the clights are monotonic.

Lemma 3.2. Let (N,E, c) ∈ BRN be a bankruptcy problem and letδ(c) be the
corresponding clight vector. Then, for alli ∈ {2, ..., n},

δi(c) ≥ δi−1(c).

Proof. Let i ∈ {2, ..., n}. Then

δi(c) = max
j∈{1,...,i}

{ 1

n+ j − 1

(

jci − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

≥ max
j∈{1,...,i−1}

{ 1

n+ j − 1

(

jci − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

≥ max
j∈{1,...,i−1}

{ 1

n+ j − 1

(

jci−1 − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

= δi−1(c). �

3With N = {1, ...n} we assume thatc1 ≤ c2 ≤ ... ≤ cn.
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Moreover, note thatδ(c) is independent ofE. Also, each clight is non-negative and
less than the claim of the corresponding player, which follows from the following
lemma.

Lemma 3.3. Let (N,E, c) ∈ BRN be a bankruptcy problem and letδ(c) ∈ RN

be the corresponding clight vector. Then, for alli ∈ N ,

1

n
ci ≤ δi(c) ≤

i

n+ i− 1
ci.

Proof. Let i ∈ N . Then

δi(c) = max
j∈{1,...,i}

{ 1

n+ j − 1

(

jci − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

≥
1

n
ci,

since the right hand side corresponds to the casej = 1. Consequently,δj(c) ≥ 0
for all j ∈ N and

δi(c) = max
j∈{1,...,i}

{ 1

n+ j − 1

(

jci − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

≤ max
j∈{1,...,i}

{ 1

n+ j − 1
jci

}

=
i

n+ i− 1
ci.

4
�

Example 3.1. Part 1 (calculation of the clight vector):
Consider a bankruptcy problem with player setN = {1, 2, 3, 4} and vector of
claimsc = (4, 9, 10, 19). Then

δ1(c) =
1

n+ 1− 1

(

1c1 − (n− 1)0
)

=
1

4
4 = 1

δ2(c) = max
j∈{1,2}

{
1

n+ j − 1

(

jc2 − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

= max{
1

4
· 9−

3

4
· 0,

2

5
· 9−

3

5
· 1}

= max{2
1

4
, 3}

= 3,

δ3(c) = max{2
1

2
, 3

2

5
, 2

3

8
} = 3

2

5
,

δ4(c) = max{4
3

4
, 7, 7

1

2
, 7

24

35
} = 7

24

35
.

4The final equation is due to the fact that i
n+1−1

< i+1
n+(i+1)−1

for all i ∈ {1, ..., n− 1}.

11



Part 2 (small estate):
ConsiderN = {1, 2, 3, 4} andc= (4, 9, 10, 19) as above and takeE =10.5. Con-
sequently,δ(c) = (1, 3, 32

5 , 7
24
35 ) and

∑

i∈N δi(c) = 15 3
35 > 10.5 = E. In this

case, the clight vectorδ(c) is interpreted as the appropriate vector of claims and
σ(N,E, c) = CEA(N,E, δ(c)) = (1, 3, 31

4 , 3
1
4 ).

Part 3 (large estate):
ConsiderN = {1, 2, 3, 4} andc= (4, 9, 10, 19) as above but now takeE = 20.5.
Consequently,δ(c) = (1, 3, 32

5 , 7
24
35 ). Now

∑

i∈N δi(c) = 15 3
35 < 20.5 =E. In this

case, the clight vectorδ(c) is interpreted as the vector of rights and
σ(N,E, c) = δ(c)+CEL(N,E−

∑

i∈N δi(c), c−δ(c)) = (1, 3, 33
4 , 12

3
4 ).

Part 4 (A hydraulic interpretation):
Suppose that the estate symbolizes an amount of water and that the claims
symbolize the amount of water claimed. Then, each claim can be represented by
a bucket which has the volume of that claim. In the clights rule σ, each bucket is
split into two smaller buckets, namely the clights buckets of volumeδ(c) and the
remainder bucket of volumec − δ(c). This is visualized in Figure 1, where the
water will be poured into the buckets at the arrow and any overspill will flood from
the buckets of volumeδ(c) into the buckets of volumec− δ(c).

player 1 2 3 4 1 2 3 4

δ(c)

c− δ(c)

0

2

4

6

8

2

4

6

8

10

12
Figure 1: The buckets of theσ rule.
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In Figure 2, the small estate case, i.e.,E = 10.5, is visualized. The water is poured
into the buckets at the arrow and the result is visualized by the dashed area.

α = 3.25

player 1 2 3 4 1 2 3 4

δ(c)

c− δ(c)

0

2

4

6

8

2

4

6

8

10

12
Figure 2:σ(N, 10.5, c) visualized.

In Figure 3, the case with the large estateE = 20.5 is visualized. Again the
water is poured into the buckets at the arrow, but now there isoverflow of size
E −

∑

i∈N δ(c) = 20.5 − 15 3
35 = 529

70 . Again, the result is visualized by the
dashed area.

β = 6.75

player 1 2 3 4 1 2 3 4

δ(c)

c− δ(c)

0

2

4

6

8

2

4

6

8

10

12
Figure 3:σ(N, 20.5, c) visualized.

△

The playerj ∈ {1, ..., i} with highest index for whom the maximum in (2) is
attained forδi(c) is of importance later on. This player is called the clight-argument
of claimanti and is formally defined below.

Definition 3.4. Let (N,E, c) ∈ BRN be a bankruptcy problem, letδ(c) be the
corresponding clight vector and leti ∈ N . Then, theδ(c)-clight argument

13



a(i) ∈ N of playeri ∈ N is defined by

a(i) := max
j∈{1,...,i}

{

j | δi(c) =
1

n+ j − 1

(

jci − (n− 1)

j−1
∑

ℓ=1

δℓ(c)
)

}

(3)

The next lemma states monotonicity inδ(c)-clight arguments.

Lemma 3.5. Let (N,E, c) ∈ BRN be a bankruptcy problem. Then, for all
i ∈ {2, ..., n},

a(i) ≥ a(i− 1).

Proof. Let i ∈ {2, ..., n} and letk ∈ {1, ..., a(i − 1)}. We show thata(i) ≥ k,
which completes the proof. By the definition ofa(i− 1) we have that

1

n+a(i−1)−1

(

a(i−1)ci−1−(n−1)

a(i−1)−1
∑

ℓ=1

δℓ(c)
)

≥
1

n+k−1

(

kci−1−(n−1)

k−1
∑

ℓ=1

δℓ(c)
)

which rewrites to

( a(i−1)

n+a(i−1)−1
−

k

n+k−1

)

ci−1≥
n− 1

n+a(i−1)−1

a(i−1)−1
∑

ℓ=1

δℓ(c)−
n−1

n+k−1

k−1
∑

ℓ=1

δℓ(c).

Sinceci ≥ ci−1 and a(i−1)
n+a(i−1)−1 ≥ k

n+k−1 we have

( a(i− 1)

n+ a(i− 1)− 1
−

k

n+ k − 1

)

ci ≥
( a(i− 1)

n+ a(i− 1)− 1
−

k

n+ k − 1

)

ci−1.

Hence,

( a(i−1)

n+a(i−1)−1
−

k

n+k−1

)

ci≥
n−1

n+a(i−1)−1

a(i−1)−1
∑

ℓ=1

δℓ(c)−
n−1

n+k−1

k−1
∑

ℓ=1

δℓ(c).

which rewrites back to

1

n+a(i−1)−1

(

a(i−1)ci−(n−1)

a(i−1)−1
∑

ℓ=1

δℓ(c)
)

≥
1

n+k−1

(

kci−(n−1)
k−1
∑

ℓ=1

δℓ(c)
)

.

Hence,a(i) ≥ a(i− 1). �

In the following lemma it is shown that the clight-argument of all players except
player1 can not be player1.

Lemma 3.6. Let (N,E, c) ∈ BRN . Then, for alli ∈ {2, ..., n},

a(i) ≥ 2.
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Proof. Sincea(i) ≥ a(i − 1) (Lemma 3.5), we only have to prove thata(2) ≥ 2.
By definition we have thatδ1(c) = 1

n
c1. Note that

δ2(c) = max{
1

n
c2,

1

n+ 2− 1

(

2c2 − (n− 1)
1

n
c1
)

}.

Since

1

n+ 2− 1

(

2c2 − (n− 1)
1

n
c1
)

≥
1

n+ 1

(

2c2 −
n− 1

n
c2
)

=
1

n
c2,

we obtaina(2) ≥ 2. �

The following corollary provides an explicit expression for the clight vector of two-
and three-player bankruptcy problems.

Corollary 3.7. Letc ∈ RN
+ be a vector of claims. Then,

δ(c) =

{

(

1
2c1,

2
3c2 −

1
3c1

)

if N = {1, 2},
(

1
3c1,

1
2c2 −

1
6c1,max{1

2c3−
1
6c1,

3
5c3−

1
5c2−

1
15c1}

)

if N = {1, 2, 3}.

The next lemma shows that the subsequent difference in the clights is less than the
subsequent difference in the claims.

Lemma 3.8. Let (N,E, c) ∈ BRN be a bankruptcy problem and letδ(c) be the
corresponding clight vector. Then, for alli ∈ {2, ..., n},

δi(c)− δi−1(c) ≤
i

n+ i− 1
(ci − ci−1).

Proof. Let i ∈ {2, ..., n}. The proof is split into two cases, depending on the
clight-argument.
Case(1): Assumea(i) ≤ i− 1. Then

δi(c)− δi−1(c) =
1

n+ a(i)− 1

(

a(i)ci − (n− 1)

a(i)−1
∑

ℓ=1

δℓ(c)
)

− δi−1(c)

≤
1

n+ a(i)− 1

(

a(i)ci − (n− 1)

a(i)−1
∑

ℓ=1

δℓ(c)
)

−
1

n+ a(i) − 1

(

a(i)ci−1 − (n − 1)

a(i)−1
∑

ℓ=1

δℓ(c)
)

=
a(i)

n+ a(i)− 1
(ci − ci−1)

≤
i

n+ i− 1
(ci − ci−1).
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Case(2): Assume thata(i) = i. Then,

δi(c) − δi−1(c) =
1

n+ i− 1

(

ici − (n− 1)

i−1
∑

ℓ=1

δℓ(c)
)

− δi−1(c)

=
1

n+ i−1

(

ici−(n−1)
i−2
∑

ℓ=1

δℓ(c)
)

−
n−1

n+ i−1
δi−1(c)−δi−1(c)

=
1

n+i−1

(

ici−(n−1)
i−2
∑

ℓ=1

δℓ(c)
)

−
n

n+i−1
δi−1(c)−

n+i−2

n+i−1
δi−1(c)

≤
1

n+i−1

(

ici−(n−1)

i−2
∑

ℓ=1

δℓ(c)
)

−
1

n+i−1
ci−1−

n+i−2

n+i−1
δi−1(c)

≤
1

n+ i− 1

(

ici − (n− 1)

i−2
∑

ℓ=1

δℓ(c)
)

−
1

n+ i− 1
ci−1

−
n+ i−2

n+ i−1

( 1

n+ (i−1)−1

(

(i−1)ci−1−(n−1)

i−2
∑

ℓ=1

δℓ(c)
)

)

=
1

n+ i− 1

(

ici − (n− 1)
i−2
∑

ℓ=1

δℓ(c)
)

−
1

n+ i− 1
ci−1

−
( 1

n+ i− 1

(

(i− 1)ci−1 − (n− 1)
i−2
∑

ℓ=1

δℓ(c)
)

)

=
i

n+ i− 1

(

ci − ci−1

)

where the first inequality follows from the fact thatδi−1 ≥ 1
n
ci−1 (Lemma 3.3).

�

The next example acts as a stepping stone for the proof that the clights rule coin-
cides with the per capita nucleolus of a bankruptcy game.

Example 3.2. (Example 3.1 continued)
Part 1 (small estate):
Consider the bankruptcy problem(N,E, c) with N = {1, 2, 3, 4}, E = 10.5
and c = (4, 9, 10, 19). As we have seen,δ(c) = (1, 3, 32

5 , 7
24
35 ), σ(N,E, c) =

(1, 3, 31
4 , 3

1
4 ), a(1) = 1, a(2) = a(3) = 2 and a(4) = 4. The corresponding

bankruptcy game and the per capita excesses ofσ(N,E, c) are as follows:

16



S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}

v(S) 0 0 0 0 0 0 0 0

excP (S, σ) −1 −3 −3 1
4

−3 1
4

−2 −2 1
8

−2 1
8

−3 1
8

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

v(S) 0 0 0 0.5 1.5 6.5 10.5

excP (S, σ) −3 1
8

−3 1
4

−2 5
12

−2 1
4

−2 −1 0

SetD1 =
{

{1}, {2, 3, 4}
}

, D2 =
{

{1, 2}, {1, 3, 4}
}

and D3 =
{

{1, 3}, {1, 4}
}

.
Then,D1 ⊆ 2N\{∅, N} = F({∅}) and clearlyD̄1 =

{

{1}, {2, 3, 4}
}

is bal-
anced. Furthermore, the coalitions inD1 have the highest per capita excess of all
(free) coalitions. Similarly,D2 ⊆ 2N\{∅,{1},{2,3,4},N} = F(D̄1) and
D̄2 =

{

{1},{2,3,4},{1,2},{1,3,4}
}

is balanced sinceρ = (13 ,
2
3 ,

1
3 ,

1
3) is a cor-

responding balanced map. The coalitions inD2 have the highest per capita excess
of all current free coalitions.
Furthermore,D3⊆

{

{3},{4},{1, 3},{1, 4},{2, 3},{2, 4},{1, 2, 3},{1, 2, 4}
}

=F(D̄2)
andD̄3 =

{

{1}, {2, 3, 4}, {1, 2}, {1, 3, 4}, {1, 3}, {1, 4}
}

is balanced since
ρ = (16 ,

4
6 ,

2
6 ,

1
6 ,

1
6 ,

1
6 ) is a corresponding balanced map. The coalitions inD3

have the highest per capita excess of all current free coalitions. Finally, note that
F(D̄3) = ∅. Using Theorem 2.6 we conclude thatσ(N,E, c) = pcn(vE,c).

Part 2 (large estate):
Consider the bankruptcy problem(N,E, c) with N = {1, 2, 3, 4}, E = 20.5
and c = (4, 9, 10, 19). As we have seen,δ(c) = (1, 3, 32

5 , 7
24
35 ), σ(N,E, c) =

(1, 3, 33
4 , 12

1
4 ), a(1) = 1, a(2) = a(3) = 2 and a(4) = 4. The corresponding

bankruptcy game and the per capita excesses ofσ(N,E, c) are as follows:

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3}

v(S) 0 0 0 0 0 0 1.5 0

excP (S, σ) −1 −3 −3 3
4

−12 3
4

−2 −2 3
8

−6 1
8

−3 3
8

S {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

v(S) 6.5 7.5 1.5 10.5 11.5 16.5 20.5

excP (S, σ) −4 5
8

−4 1
2

−2 1
12

−2 1
12

−2 −1 0

Now takeD1=
{

{1}, {2, 3, 4}
}

,D2=
{

{1, 2}, {1, 3, 4}
}

andD3=
{

{1, 2, 4}, {1, 2, 3}
}

.
RegardingD1 andD2 we refer to part (1). Moreover,
D3⊆

{

{3},{4},{1, 3},{1, 4},{2, 3},{2, 4},{1, 2, 3},{1, 2, 4}
}

=F(D̄2) and
D̄3 =

{

{1}, {2, 3, 4}, {1, 2}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}
}

is balanced since
ρ = (16 ,

3
6 ,

1
6 ,

2
6 ,

1
6 ,

1
6 ) is a corresponding balanced map. The coalitions inD3

have the highest per capita excess of all the current free coalitions. Finally, note
that F(D̄3) = ∅. Again, using Theorem 2.6 we can conclude thatσ(N,E, c) =
pcn(vE,c).

Part 3 (general remarks on the cases):
The relevant collections of these examples can be expressedby the clight-argument
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vector. For both cases (E = 10.5 andE = 20.5) we have that

D1 =
{

{1}, {2, 3, 4}
}

=
{

{1, ...., a(1) − 1} ∪ {1}, N\{1}
}

,

D2 =
{

{1, 2}, {1, 3, 4}
}

=
{

{1, ...., a(2) − 1} ∪ {2}, N\{2}
}

.

Furthermore, whenE = 10.5, we have that

D3 =
{

{1, 3}, {1, 4}
}

=
{

{1, ...., a(3) − 1} ∪ {3}, {1, ...., a(4) − 1} ∪ {4}
}

,

and whenE = 20.5, we have that

D3 =
{

{1, 3, 4}, {1, 2, 3}
}

=
{

N\{3}, N\{4}
}

.

This structure of the relevant collections will form the basis of the proof of our
main result. △

Theorem 3.9.Let(N,E, c) ∈ BRN and letvE,c be the corresponding bankruptcy
game. Then,

σ(N,E, c) = pcn(vE,c).

Proof. In this proofσ(N,E, c) is abbreviated toσ andvE,c is abbreviated tov.
Furthermore, sinceσ and the per capita nucleolus both depend continuously on the
estateE, we assume that

∑

ℓ∈N δℓ(c) 6= E.

In order to apply Theorem 2.6 we will do the following:
Part I: Defineτ , and for allr ∈ {1, ..., τ}, define appropriate relevant collections
Dr and show thatDr ⊂ F(D̄r−1).
Part II: Show that the sequenceD1, ...,Dτ satisfies condition(A) of Theorem 2.6,
i.e., D̄r =

⋃r
ℓ=1Dℓ is balanced for allr ∈ {1, ..., τ} andF(D̄τ ) = ∅.

Part III: Show that the sequenceD1, ...,Dτ satisfies condition(B) of Theorem
2.6, i.e., for all r ∈ {1, ..., τ} and allS ∈ Dr, it holds that
excP (S, σ) = max

T∈F(D̄r−1)
excP (T, σ).

Part I: Define

t :=















min{ i ∈ N | δi(c) ≥ α} if
∑

ℓ∈N

δℓ(c) > E,

min{ i ∈ N | ci − δi(c) ≥ β} if
∑

ℓ∈N

δℓ(c) < E,
(4)

in which α and β are determined by
∑

ℓ∈N min{α, δℓ(c)} = E and
E −

∑

ℓ∈N δℓ(c) =
∑

ℓ∈N max{0, cℓ − δℓ(c) − β}, respectively. Note that the
clights rule allocates the estate in the following way:

σi =























δi(c) if i < t,

α if i ≥ t and
∑

ℓ∈N

δℓ(c) > E,

ci − β if i ≥ t and
∑

ℓ∈N

δℓ(c) < E.

(5)
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Additionally, defineSr := {1, ..., a(r) − 1} ∪ {r} for eachr ∈ {1, ..., t − 1} and
define

Dr =
{

Sr, N\{r}
}

for all r ∈ {1, ..., t − 1}.

Furthermore, ift < n and
∑

ℓ∈N δℓ(c) > E, then, defineSr := {1, ...,m−1}∪{r}
for eachr ∈ {t, ..., n}, wherem is defined by

m = argmax
s∈{1,...,t} : v({1,...,s−1}∪{t})=0

−α−
∑s−1

ℓ=1 δℓ(c)

s
. (6)

Such anm exists becausev
(

{1, ..., a(t) − 1} ∪ {t}
)

= 0 (Lemma .4, where it is
used thatt < n).

Moreover, ift < n, define

Dt =

{

{

St, ..., Sn

}

if
∑

ℓ∈N δℓ(c) > E,
{

N\{t}, ..., N\{n}
}

if
∑

ℓ∈N δℓ(c) < E.

For all r < t we have

H(D̄r) =
{

S : S ⊂ {1, ..., r}} ∪ {N\S : S ⊂ {1, ..., r}
}

.

Moreover, ift < n we have
H(D̄t) = 2N

and if t = n we have
H(D̄t−1) = 2N ,

so we defineτ := min{t, n − 1}.

This gives thatF(D̄r−1) = {S : 1 ≤ |S∩{r, ..., n}| ≤ n−r} for all r ≤ τ which
implies thatDr ⊂ F(D̄r−1) for all r ∈ {1, ..., τ}.

Part II: By construction we have thatF(D̄τ ) = ∅. It remains to prove that̄Dr

is balanced for allr ∈ {1, ..., τ}. The balancedness proof is split into two parts
depending on whethert = 1 or not.
Part II.a: If t = 1, then

D1 =

{

{

{1}, ..., {n}
}

if
∑

ℓ∈N δℓ(c) > E,
{

N\{1}, ..., N\{n}
}

if
∑

ℓ∈N δℓ(c) < E.

Chooseρ({i}) = 1 for all i ∈ N to define a balanced map if
∑

ℓ∈N δℓ(c) > E.
Chooseρ(N\{i})= 1

n−1 for all i∈N to define a balanced map if
∑

ℓ∈N δℓ(c)<E.
Part II.b: Assumet > 1 and letr ∈ {1, ..., τ}. Takeε > 0 sufficiently small.
Again this part is split into two parts. First, we show thatD̄r is balanced for all
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r < t. Then we show that̄Dt is balanced.
Part II.b1: Let t > 1, assumer < t and let

ρ(Si) = ε for all i ∈ {2, ..., r},

ρ(N\{i}) = ε+
r

∑

k=i+1

1{i≤a(k)−1}ρ(Sk) for all i ∈ {2, ..., r},

ρ(N\{1}) = 1−
r

∑

k=2

ρ(N\{k}),

ρ({1}) = ρ(N\{1}) −
r

∑

k=2

ρ(Sk).

ρ(S) = 0 else.

Since allρ-values exceptρ(N\{1}) andρ({1}) are in the order ofε, bothρ(N\{1})
andρ({1}) are strictly positive.
Let i > r. Then

∑

S:S∋i

ρ(S) =
r

∑

k=1

ρ(N\{k})

= ρ(N\{1}) +

r
∑

k=2

ρ(N\{k})

= 1−

r
∑

k=2

ρ(N\{k}) +

r
∑

k=2

ρ(N\{k})

= 1. (7)

Let i ≤ r. Then,

∑

S:S∋i

ρ(S) = ρ(Si) +
r

∑

k=1,k 6=i

ρ(N\{k}) +
r

∑

k=i+1

1{i≤a(k)−1}ρ(Sk)

=

r
∑

k=1

ρ(N\{k}) + ρ(Si)− ρ(N\{i}) +

r
∑

k=i+1

1{i≤a(k)−1}ρ(Sk)

=

r
∑

k=1

ρ(N\{k})

= 1, (8)

in which equation (8) has been shown in (7). Hence,
∑

S∈D̄r
ρ(S)eS = eN which

completes the proof that thisρ forms a balanced map for the caser < t.
Part II.b2: Let t > 1, assume thatr = t. Sincer ≤ τ = min{t, n − 1}, we have
t = τ . Again, this part is split into two, depending on whether

∑

ℓ∈N δℓ(c) > E or
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∑

ℓ∈N δℓ(c) < E.
Part II.b2i: Let t > 1, r = t = τ and assume

∑

ℓ∈N δℓ(c) > E. Then,

ρ(Si) = 2ε for all i ∈ {2, ..., t − 1},

ρ(Si) = ε for all i ∈ {t, ..., n},

ρ(N\{i}) = ε+

t−1
∑

k=i+1

1{i≤a(k)−1}ρ(Sk) + 1{i≤m−1}

n
∑

k=t

ρ(Sk)

for all i ∈ {2, ..., t − 1},

ρ(N\{1}) = 1− ε−

t−1
∑

k=2

ρ(N\{k}),

ρ({1}) = ρ(N\{1}) + ε−

t−1
∑

k=2

1{1≤a(k)−1}ρ(Sk)− 1{1≤m−1}

n
∑

k=t

ρ(Sk).

ρ(S) = 0 else.

Since allρ-values exceptρ(N\{1}) andρ({1}) are in the order ofε, bothρ(N\{1})
andρ({1}) are strictly positive.
Let i ≥ t. Then

∑

S:S∋i

ρ(S) = ρ(Si) +

t−1
∑

k=1

ρ(N\{k})

= ε+ ρ(N\{1}) +

t−1
∑

k=2

ρ(N\{k})

= ε+ 1− ε−

t−1
∑

k=2

ρ(N\{k}) +

t−1
∑

k=2

ρ(N\{k})

= 1.
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Let i < t. Then

∑

S:S∋i

ρ(S) = ρ(Si) +

t−1
∑

k=1,k 6=i

ρ(N\{k}) + 1{i≤m−1}

n
∑

k=t

ρ(Sk)

+

t−1
∑

k=i+1

1{i≤a(k)−1}ρ(Sk)

=

t−1
∑

k=1

ρ(N\{k}) + ρ(Si)− ρ(N\{i}) + 1{i≤m−1}

n
∑

k=t

ρ(Sk)

+

t−1
∑

k=i+1

1{i≤a(k)−1}ρ(Sk)

=

t−1
∑

k=1

ρ(N\{k}) + ε

=

t−1
∑

k=2

ρ(N\{k}) + ρ(N\{1}) + ε

= (1− ε) + ε

= 1,

Hence,
∑

S∈D̄t
ρ(S)eS = eN , which completes Part II.b2i.

Part II.b2ii: Let t > 1, r = t = τ and assume
∑

ℓ∈N δℓ(c) < E. Then,
D̄t = D̄t−1 ∪ B, whereB =

{

N\{1}, ..., N\{n}
}

. SinceB is balanced (see
Part II.a ) andD̄t−1 is balanced (seePart II.b1 ) we have that̄Dt is balanced.
Part II: For all cases it is shown that̄Dr is balanced for allr ∈ {1, ..., τ}.

Part III: The proof is split into two parts. In the first part (Part IIIA ), we provide
an upper bound for the per capita excesses of coalitions inF(D̄r−1). In the second
part (Part IIIB ), it is shown that the coalitions inS ∈ Dr are equal to this upper
bound.
First, note thatS ∈ F(D̄r−1) implies that there exists at least onej ≥ r such that
j ∈ S.
Part IIIA: Let r ∈ {1, ..., τ} and letS ∈ F(D̄r−1). The proof is split into two
parts, depending on whetherv(S) = 0 or v(S) > 0.
Part IIIA.a: Let r ∈ {1, ..., τ} and letS ∈ F(D̄r−1). Assume thatv(S) = 0
and defines = min{|S|, r}. Again there are two parts, depending on whether
δr(c) ≤ σr or δr(c) > σr.
Part IIIA.a1: Let r ∈ {1, ..., τ}, S ∈ F(D̄r−1) and letv(S) = 0. Assume that
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δr(c) ≤ σr. We have

excP (S, σ) =
0−

∑

ℓ∈S σℓ

|S|

≤
0−

∑s−1
ℓ=1 σℓ − σr
s

(9)

≤
0−

∑s−1
ℓ=1 δℓ(c) − δr(c)

s
(10)

=
−
∑s−1

ℓ=1 δℓ(c)−
n+s−1
n−1 δr(c) +

s
n−1δr(c)

s

=
−
∑s−1

ℓ=1 δℓ(c)−
n+s−1
n−1 δr(c)

s
+

δr(c)

n− 1

≤
−
∑s−1

ℓ=1 δℓ(c)−
1

n−1

(

scr − (n− 1)
∑s−1

ℓ=1 δℓ(c)
)

s
+

δr(c)

n− 1
(11)

=
δr(c)− cr
n− 1

.

Let us clarify the steps in the elaboration above. At (9) the following is used: If
r > s, then we first remove ther− s players which receive the most. Then, we re-
place the remaining players with players1, ..., s− 1 andr, which is possible since
there is a playerj ∈ S such thatj ≥ r. At (10), it is used thatδr(c) ≤ σr, which
implies thatδℓ(c) ≤ σℓ for all ℓ ∈ {1, ..., r}. Finally, (11) follows from (2).

To conclude this part: for allS ∈ F(D̄r−1) with v(S) = 0 andδr(c) ≤ σr we
have thatexcP (S, σ) ≤ δr(c)−cr

n−1 .

Part IIIA.a2: Let r ∈ {1, ..., τ}, letS ∈ F(D̄r−1) and letv(S) = 0. Assume that
δr(c) > σr. This implies that

∑

ℓ∈N δℓ > E andr ≥ t. Then, sincer ∈ {1, ..., τ},
the definition ofτ andr ≥ t we have thatr = t. Furthermore, we have

excP (S, σ) ≤
0−

∑s−1
ℓ=1 σℓ − σr
s

(12)

=
0−

∑s−1
ℓ=1 σℓ − σt
s

=
−
∑s−1

ℓ=1 δℓ(c) − α

s
(13)

≤
−
∑m−1

ℓ=1 δℓ(c) − α

m
. (14)

We clarify the elaboration. (12) follows fromPartIIIA.a1i until (9). At (13) we
use (5) and at (14) we use (6) together with the fact thatv(S) = 0 implies that
v({1, ..., s − 1} ∪ {r}) = 0.

23



To conclude this part: ifδt(c) > σt (and hence
∑

ℓ∈N δℓ > E) we have for all

S ∈ F(D̄t−1) with v(S) = 0 thatexcP (S, σ) ≤
−

∑m−1
ℓ=1 δℓ(c)−α

m
.

Part IIIA.a: FromPart IIIA.a1 andPart IIIA.a2 we obtain that for all
r ∈ {1, ..., τ} and allS ∈ F(D̄r−1) with v(S) = 0,

excP (S, σ) ≤















δr(c)−cr
n−1 if r < t,

−
∑m−1

ℓ=1 δℓ(c)−α

m
if r = t and

∑

ℓ∈N δℓ(c) > E,
δt(c)−ct
n−1 if r = t and

∑

ℓ∈N δℓ(c) < E.

Part IIIA.b: Let r ∈ {1, ..., τ}, let S ∈ F(D̄r−1), assume thatv(S) > 0 and let
k ∈ {r, ..., n}\S. We have

excP (S, σ) =
v(S)−

∑

ℓ∈S σℓ

|S|

≤
v(S)−

∑

ℓ∈S σℓ +
∑

ℓ∈N\(S∪{k}) cℓ −
∑

ℓ∈N\(S∪{k}) σℓ

|S|
(15)

=
E−

∑

ℓ∈N\S cℓ−
∑

ℓ∈S σℓ+
∑

ℓ∈N\(S∪{k}) cℓ−
∑

ℓ∈N\(S∪{k}) σℓ

|S|

=
E − ck − (E − σk)

|S|

≤
σk − ck
n− 1

≤
σr − cr
n− 1

. (16)

To clarify, (15) uses the fact thatσi ≤ ci for all i ∈ N . Inequality (16) follows
from the fact thatr ≤ k together with the fact thatci−1 − σi−1 ≤ ci − σi for all
i ∈ {2, ..., n} (Lemma 3.8).

To conclude this part: For allr ∈ {1, ..., τ} and allS ∈ F(D̄r−1) with v(S) > 0
we have due to (5) that

excP (S, σ) ≤
σr − cr
n− 1

=











δr(c)−cr
n−1 if r < t,

α−cr
n−1 if r = t and

∑

ℓ∈N δℓ(c) > E,
−β
n−1 if r = t and

∑

ℓ∈N δℓ(c) < E.

Part IIIA: We have frompart IIIA.a andpart IIIA.b that for all r ∈ {1, ..., τ}
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and allS ∈ F(D̄r−1) it holds that

excP (S, σ) ≤



















































































δr(c) − cr
n− 1

if r < t,

−
m−1
∑

ℓ=1

δℓ(c)− α

m
if r = t,

∑

ℓ∈N

δℓ(c) > E andv(S) = 0,

α− ct
n− 1

if r = t,
∑

ℓ∈N

δℓ(c) > E andv(S) > 0,

δt − ct
n− 1

if r = t,
∑

ℓ∈N

δℓ(c) < E andv(S) = 0,

−β

n− 1
if r = t,

∑

ℓ∈N

δℓ(c) < E andv(S) > 0.

Now we will show for the caser = t that a−ct
n−1 ≤

−
∑m−1

ℓ=1 δℓ(c)−α

m
andδt−ct

n−1 ≤ −β
n−1 .

If r = t and
∑

ℓ∈N δℓ(c) > E, then

−
∑m−1

ℓ=1 δℓ(c)− α

m
≥

−
∑a(t)−1

ℓ=1 δℓ(c)− α

a(t)
(17)

=
−
(

a(t)
n−1ct −

n+a(t)−1
n−1 δt(c)

)

− α

a(t)
(18)

≥
− a(t)

n−1ct +
n+a(t)−1

n−1 α− α

a(t)
(19)

=
α− ct
n− 1

.

To clarify, (17) uses (6), which also uses Lemma .4, and (18) uses (3). Finally, at
(19) we use (4).

Furthermore, for the caser = t and
∑

ℓ∈N δℓ(c) < E we have by (4) that

−β ≥ δt(c) − ct which implies thatδt−ct
n−1 ≤ −β

n−1 . Hence, we obtain for all
r ∈ {1, ..., τ} and allS ∈ F(D̄r−1) the following:

excP (S, σ) ≤















































δr(c)− cr
n− 1

if r < t,

−

m−1
∑

ℓ=1

δℓ(c)− α

m
if r = t and

∑

ℓ∈N

δℓ(c) > E,

−β

n− 1
if r = t and

∑

ℓ∈N

δℓ(c) < E.

(20)
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Part IIIB: Let r ∈ {1, ..., τ}. The proof is split into two parts, depending on
whetherr < t or not.
Part IIIB.a: Let r ∈ {1, ..., τ} and assume thatr < t. Then,Dr =

{

Sr, N\{r}
}

and we have forSr that

excP (Sr, σ) =
0−

∑a(r)−1
ℓ=1 σℓ − σr
a(r)

(21)

=
0−

∑a(r)−1
ℓ=1 δℓ − δr
a(r)

(22)

=

−

a(r)−1
∑

ℓ=1

δℓ(c) −
n+ a(r)− 1

n− 1
δr(c) +

a(r)

n− 1
δr(c)

a(r)

=

−

a(r)−1
∑

ℓ=1

δℓ(c)−
1

n−1

(

a(r)cr−(n−1)

a(r)−1
∑

ℓ=1

δℓ(c)
)

a(r)
+
δr(c)

n−1
(23)

=
δr(c)− cr
n− 1

.

We clarify the elaboration. At (21), (22) and (23), we use Lemma .4, (5), and (3),
respectively.

And for N\{r} we have

excP (N\{r}, σ) =
v(N\{r}) −

∑

ℓ∈N\{r} σℓ

n− 1

=
E − cr − (E − σr)

n− 1
(24)

=
δr(c)− cr
n− 1

. (25)

We clarify the elaboration. At (24) we use Lemma .5 and at (25)we use (5).

To conclude this part:excP (Sr, σ) = excP (N\{r}, σ) = δr(c)−cr
n−1 .

Part IIIB.b: Let r ∈ {1, ..., τ} and assume thatr = t. There are two cases,
depending on whether

∑

ℓ∈N δℓ(c) > E or
∑

ℓ∈N δℓ(c) < E.
Part IIIB.b1: Let r ∈ {1, ..., τ}, let r = t and assume that

∑

ℓ∈N δℓ(c) > E.
Then,Dt = {St, ..., Sn} and by (6) and the construction ofSt we have thatv(St) =
0 and

excP (St, σ) =
−
∑m−1

ℓ=1 δℓ(c)− α

m
.
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Furthermore, forSj with j > t we have that

−
∑m−1

ℓ=1 δℓ(c) − α

m
≥ excP (Sj, σ) (26)

≥
0−

∑

ℓ∈Sj
σℓ

|Sj|
(27)

=
−
∑m−1

ℓ=1 δℓ(c) − α

m
. (28)

To clarify: (26), (27) and (28), follow from (20), the fact that v(Sj) ≥ 0 and the
definition ofSj, respectively.

To conclude this part:excP (T, σ) =
−
∑m−1

ℓ=1 δℓ(c)−α

m
for all T ∈ Dt.

Part IIIB.b2: Let r = t and assume
∑

ℓ∈N δℓ(c) < E. Then,
Dt =

{

N\{t}, ..., N\{n}
}

and for allj ≥ t we have

excP (N\{j}, σ) =
v(N\{j}) −

∑

ℓ∈N\{j} σℓ

n− 1

=
E − cj − (E − σj)

n− 1
(29)

=
−β

n− 1
. (30)

We clarify the elaboration. At (29) we use Lemma .5 and at (30)we user = t
together with (5).

To conclude this part:excP (T, σ) = −β
n−1 for all T ∈ Dt.

Part IIIB: From Part IIIB.a , Part IIIB.b1 and Part IIIB.b2 we obtain for all
r ∈ {1, ..., τ} and allS ∈ Dr that

excP (S, σ) =



































δr(c)− cr
n− 1

if r < t,

−
∑m−1

ℓ=1 δℓ(c)− α

m
if r = t and

∑

ℓ∈N

δℓ(c) > E,

−β

n− 1
if r = t and

∑

ℓ∈N

δℓ(c) < E.

(31)

Part III: FromPart IIIA , especially (20), and fromPart IIIB , especially (31), we
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obtain for allr ∈ {1, ..., τ}, all S ∈ F(D̄r−1) and allT ∈ Dr

excP (S, σ)≤excP (T, σ)=















































δr(c)− cr
n− 1

if r < t,

−
m−1
∑

ℓ=1

δℓ(c)−α

m
if r=t and

∑

ℓ∈N

δℓ(c)>E,

−β

n− 1
if r=t and

∑

ℓ∈N

δℓ(c)<E.

(32)

Hence, by Theorem 2.6 we obtainσ(N,E, c) = pcn(vE,c). �

In the proof of Theorem 3.9 it is seen that the relevant coalitions of the per capita
nucleolus have a special structure for bankruptcy games. This is formalized in the
following corollary.

Corollary 3.10. Let (N,E, c) ∈ BRN be a bankruptcy problem and let
x = pcn(vE,c). Then there exists a playert ∈ {1, ..., n} and a sequence
D1, . . . ,Dτ ⊂ 2N\{∅, N}, whereτ = min{t, n − 1}, that satisfy(A) and (B)
of Theorem 2.6, where

Dr =
{

{1, ..., a(r) − 1} ∪ {r}, N\{r}
}

,

if r < τ . Furthermore,

Dτ=











{

{1, ..., a(τ) − 1}∪{τ}, N\{τ}
}

if τ <t,
{

{1, ...,m − 1}∪{τ}, ..., {1, ...,m − 1}∪{n}
}

if τ=t and
∑

ℓ∈N δℓ(c)>E,
{

N\{τ}, ..., N\{n}
}

if τ=t and
∑

ℓ∈N δℓ(c)<E,

for somem ∈ {1, ..., τ}.

4 The claim and right family of bankruptcy rules

This section shows that both the Aumann-Maschler rule and the clights rule belong
to the same family of bankruptcy rules: the claim and right family.

Both the Aumann-Maschler rule and the clights rule have two different regimes
depending on the size of the estate. For the Aumann-Maschlerrule, the estate is
considered to be small if the estate is less than half of the total amount claimed and
large otherwise. Hence, half of the sum of the claims can be seen as a switch-point
for the Aumann-Maschler rule. Moreover, each player receives at most half of his
claim in the first regime. Therefore, half of his claim can be seen as his modified
claim. On the other hand, in the second regime, half of the claim is considered to
be his right, since each player will receive at least half of his claim.
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The clights rule has a similar setup. Namely, the estate is considered to be small if
the estate is less than the total amount of the clights and theestate is large other-
wise. Hence, the switch-point for the clights rule is the sumof the clights. Similar
to the Aumann-Maschler rule, the clights act as new claims inthe first regime and
rights in the second regime. Note that in both the Aumann-Maschler rule and the
clights rule the constraint equal award rule is used in the first regime and the con-
straint equal loss rule in the second.

To show that both the Aumann-Maschler rule and the clight based rule are based on
the same conceptual idea, we use the concept of claim and right functions, which
are formalized below. LetC ⊆ RN

+ be the set of weakly increasing (claim) vectors.

Definition 4.1. A functionλ : C → C is called aclaim and right functionif
c − λ(c) ∈ C for all c ∈ C. The class of claim and right functions is denoted
byΛ.

Note that the functionsλ(c) = 0, λ(c) = c, λ(c) = 1
2c andλ(c) = δ(c), for all

c ∈ C, are all claim and right functions.

With each claim and right function one can define a bankruptcyrule that is based on
two regimes. The first regime occurs when the estate is insufficient to coverλ(c).
In this case,λ(c) is viewed as the claim vector rather thanc itself. The second
regime occurs when the estate is sufficient to coverλ(c) and in this caseλ(c) is
considered as a right vector andc − λ(c) is considered as the vector of claims
in the remaining bankruptcy problem. Subsequently, withinthe first regime, the
constrained equal award rule is used and within the second regime, the constrained
equal loss rule is used. The resulting family of rules is called the claim and right
family and is formally defined as follows.

Definition 4.2. Let λ ∈ Λ be a claim and right function. Theclaim and right
bankruptcy ruleCRλ is defined by

CRλ(N,E, c) =















CEA(N,E, λ(c)) if
∑

i∈N

λi(c)≥E,

λ(c)+CEL(N,E−
∑

i∈N

λi(c), c−λ(c)) if
∑

i∈N

λi(c)<E,

for all bankruptcy problems(N,E, c) ∈ BRN .

Using the four examples of claim and right functions discussed above, we have the
following.

Theorem 4.3.CEA, CEL, AM andσ are claim and right bankruptcy rules.

As a final remark, we want to state that is readily seen that theclaim and right fam-
ily of bankruptcy rules coincides with the increasing-constant-increasing family of
bankruptcy rules introduced by Thomson (2008).
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Appendix: The lemmas used in the proof of Theorem 3.9

Lemma .4. Let(N,E, c) ∈ BRN be a bankruptcy problem and letδ(c), a(i), and
t defined as in(2), (3), and(4), respectively. Lett < n. Then, for all

i ∈











{1, . . . , n − 1} if
∑

ℓ∈N

δℓ(c) > E,

{1, . . . , t− 1} if
∑

ℓ∈N

δℓ(c) < E,

it holds that

vE,c({1, . . . , a(i)− 1} ∪ {i}) = 0.

Proof. Let k = n− 1 if
∑

ℓ∈N δℓ(c) > E, and letk = t− 1 if
∑

ℓ∈N δℓ(c) < E.
Proving thatvE,c({1, ..., a(i)− 1}∪ {i}) = 0 for i = k implies that it holds for all
i ∈ {1, ..., k}. The worth of the coalition is given by

vE,c({1, ..., a(k) − 1} ∪ {k}) = max{0, E −

k−1
∑

i=a(k)

ci −

n
∑

i=k+1

ci},

hence, proving thatE −
∑k−1

i=a(k) ci −
∑n

i=k+1 ci ≤ 0 is sufficient.
First we will prove that

E ≤

k
∑

i=1

δi(c) +

n
∑

i=k+1

ci − (n − k)(ck − δk(c)). (33)

If
∑

ℓ∈N δℓ(c) > E, sok = n− 1, we have

E ≤
∑

i∈N

δi(c)

=
n−1
∑

i=1

δi(c) + δn(c)

≤
n−1
∑

i=1

δi(c) + cn − cn−1 + δn−1(c), (34)

where (34) follows from Lemma 3.8.
If
∑

ℓ∈N δℓ(c) < E, sok = t− 1, we have

E =
t−1
∑

i=1

δi(c) +
n
∑

i=t

(ci − β)

=

t−1
∑

i=1

δi(c) +

n
∑

i=t

ci − (n− t+ 1)β

<

t−1
∑

i=1

δi(c) +

n
∑

i=t

ci − (n− t+ 1)(ct−1 − δt−1(c)), (35)
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where (35) follows from (4).
Now we will prove thatE −

∑k−1
i=a(k) ci −

∑n
i=k+1 ci ≤ 0:

E −
k−1
∑

i=a(k)

ci −
n
∑

i=k+1

ci

≤

k
∑

i=1

δi(c) +

n
∑

i=k+1

ci − (n− k)(ck − δk(c)) −

k−1
∑

i=a(k)

ci −

n
∑

i=k+1

ci (36)

=

a(k)−1
∑

i=1

δi(c) +

k−1
∑

i=a(k)

δi(c) + δk(c) + (n− k)δk(c) + (k − n)ck −

k−1
∑

i=a(k)

ci

=

a(k)−1
∑

i=1

δi(c) + (n− k + 1)δk(c) + (k − n)ck −

k−1
∑

i=a(k)

(ci − δi(c))

≤

a(k)−1
∑

i=1

δi(c) + (n− k + 1)δk(c) + (k − n)ck

=

a(k)−1
∑

i=1

δi(c)+(n−k+1)
( a(k)

n+a(k)−1
ck−

n−1

n+a(k)−1

a(k)−1
∑

i=1

δi(c)
)

+(k−n)ck (37)

=
((n− k + 1)a(k)

n+ a(k)− 1
+ (k − n)

)

ck +
((n − k + 1)(1 − n)

n+ a(k)− 1
+ 1

)

a(k)−1
∑

i=1

δi(c)

=
(a(k) + (k − n)(n− 1)

n+ a(k)− 1

)

ck +
(a(k) + (k − n)(n− 1)

n+ a(k) − 1

)

a(k)−1
∑

i=1

δi(c)

≤ 0. (38)

We clarify the elaboration. At (36), (37), and (38) we have used (33), (3), and the
fact thata(k) ≤ k < n, respectively. �

Lemma .5. Let(N,E, c) ∈ BRN be a bankruptcy problem withδ(c) andt defined
as in(2) and (4) respectively. Then, for all

i ∈























{1, . . . , t− 1} if
∑

ℓ∈N

δℓ(c) > E,

{1, . . . , n− 1} if
∑

ℓ∈N

δℓ(c) < E andt = n,

{1, . . . , n} if
∑

ℓ∈N

δℓ(c) < E andt < n,

it holds that
E − ci ≥ 0

Proof. Note that provingE ≥ ci for i = t − 1 (or i = n − 1 or i = n) implies
that it holds for alli ∈ {1, ..., t − 1} (or i ∈ {1, ..., n − 1} or i ∈ N ). The proof
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is split into two cases depending on whether
∑

ℓ∈N δℓ(c) > E or
∑

ℓ∈N δℓ(c) < E.

Case 1: Assume
∑

ℓ∈N δℓ(c) > E. Then by (4), we have

E >

t−1
∑

ℓ=1

δℓ(c) +

n
∑

ℓ=t

δt−1(c). (39)

By (2) we have that

δt−1(c) ≥
t− 1

n+ t− 1− 1
ct−1 −

n− 1

n+ t− 1− 1

t−1−1
∑

ℓ=1

δℓ(c),

which can be rewritten to
t−2
∑

ℓ=1

δℓ(c) ≥
t− 1

n− 1
ct−1 −

n+ t− 2

n− 1
δt−1(c). (40)

Now we will prove thatE − ct−1 ≥ 0:

E − ct−1 >

t−2
∑

ℓ=1

δℓ(c) + (n− t+ 2)δt−1(c)− ct−1 (41)

≥
t−1

n−1
ct−1−

n+t−2

n−1
δt−1(c)+(n−t+2)δt−1(c)+

1−n

n−1
ct−1 (42)

=
t−n

n−1
ct−1−

n+t−2

n−1
δt−1(c)+

n2−nt+2n−n+t−2

n−1
δt−1(c)

=
t− n

n− 1
ct−1 +

n2 − nt

n− 1
δt−1(c)

=
n− t

n− 1
(nδt−1(c)− ct−1)

≥ 0. (43)

We clarify the elaboration. At (41), (42), and (43), we use (39), (40), and Lemma
3.3, respectively.

Case 2: Assume
∑

ℓ∈N δℓ(c) < E. Again, this case is split into two parts, depend-
ing whethert = n or t < n.
Case 2a: We have

∑

ℓ∈N δℓ(c) < E and assume thatt = n. Then

E − cn−1 >
∑

ℓ∈N

δℓ(c)− cn−1

≥

n−2
∑

j=1

δj(c) + 2δn−1(c)− cn−1 (44)

≥

n−2
∑

j=1

δj(c) + 2
(1

2
cn−1 −

1

2

n−2
∑

j=1

δj(c)
)

− cn−1 (45)

= 0.
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To clarify: at (44) we use Corollary 3.2 and at (45) we use (2).

Case 2b: We have
∑

ℓ∈N δℓ(c) < E and assume thatt < n. Then

E =

t−1
∑

ℓ=1

δℓ(c) +

n
∑

ℓ=t

(cℓ − β)

=

t−1
∑

ℓ=1

δℓ(c) + cn − β +

n−1
∑

ℓ=t

(cℓ − β)

≥

t−1
∑

ℓ=1

δℓ(c) + cn − (cn−1 − δn−1(c) +

n−1
∑

ℓ=t

(cℓ − (cℓ − δℓ(c))) (46)

=

n−2
∑

j=1

δj(c) + 2δn−1(c) + cn − cn−1.

We clarify the elaboration. At (46) we use (4) together with the fact that
ci−1 − σi−1 ≤ ci − σi for all i ∈ {2, ..., n} (Lemma 3.8). Using this we have

E − cn ≥

n−2
∑

j=1

δj(c) + 2δn−1(c) + cn − cn−1 − cn

=

n−2
∑

j=1

δj(c) + 2δn−1(c)− cn−1

≥ 0. (47)

We clarify the elaboration: At (47) we use Case 2a. �
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