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Bankruptcy and the per capita nucleolus

S. Huijink**  P.E.M.Bornt  J.H. Reijnierse  J. Kleppé
November 6, 2013

Abstract

This article characterizes the per capita nucleolus fokhgricy games
as a bankruptcy rule. This rule, called the cligths rule asda on the well-
known constrained equal awards principle. The essentlife of the rule
however is that, for each bankruptcy problem, it takes immoant a vector
of clights. These clights only depend on the vector of clawvh#e the height
of the estate determines whether the clights should bepirgtd as modi-
fied claims or as rights. Finally, it is seen that both thehikgrule and the
Aumann-Maschler rule can be captured within the family ctafled claim
and right rules.

Keywords: Bankruptcy, (per capita) nucleolus.
JEL classification number: C71, G33.

1 Introduction

In a bankruptcy problem an insufficient monetary estate bdsetdivided over
a number of claimants, each having a justified claim on thigtes Bankruptcy
rules propose general principles and procedures to solhalatnary bankruptcy
problem. From the wide variety of bankruptcy rules we jushirta mention the
constrained equal award rule, the constrained equal Idesand the Aumann-
Maschler rule (cf. Aumann and Maschler (1985)). An overviginbankruptcy
rules and their properties can be found in Thomson (2003).

O’Neill (1982) associates a cooperative bankruptcy gantb twansferable util-
ity to each bankruptcy problem. As a result, game theoretiatisn concepts
such as the Shapley value (cf. Shapley (1953)) and the rusléd. Schmeidler
(1969)) can be viewed as bankruptcy rules, too. Interdsgtiiigurns out that the
Aumann-Maschler rule coincides with the nucleolus in troatext (cf. Aumann
and Maschler (1985)).

*CentER and Econometrics and Operations Research Tilbukgtkdity, P.O. Box 90153, 5000
LE Tilburg, The Netherlands
fCorresponding author: s.huijink@tilburguniversity.edu



In this paper, we focus on the per capita nucleolus as firsbdoted by Grotte
(1970). For each transferable utility game, this solutioncept is based on the
maximal dissatisfaction per player for each coalition. egrithe per capita nucleo-
lus is closely related to the nucleolus, which is based omidvemal dissatisfaction
of each coalition.

This paper characterizes the per capita nucleolus for batdy games as a
bankruptcy rule, called the clights rule. The essentialuieaof this rule is that,
for each bankruptcy problem, it takes into account a vectatights. The clight
vector only depends on the claim vector and does not deperideoestate. The
clights rule allocates to each claimant at most his clighemvkthe estate is less
than the sum of the clights. In this case the clights can beadeas a modified
claim vector. However, each claimant will receive at leastdight when the es-
tate is more than the sum of the clights. Hence, in the latise the clights can be
viewed as the rights of the claimant. When the clights repremodified claims,
the clights rule divides the estate over the claimants uiegconstrained equal
award rule with the clights as new claims. Whenever the tdigbpresent rights,
the clights rule first assigns to every claimant its rightefihthe remaining estate
is divided using the constrained equal loss rule with thginal claims minus the
clights as the new claim vector. The proof that the per capitleolus coincides
with the clights rule uses a new Kohlberg (1971) type of ctiarization of the
per capita nucleolus which extends the idea of the charaatiem of the nucleolus
presented by Groote Schaarsberg et al. (2012).

As a final result, we show that both the clights rule and the AmmMaschler rule
can be captured within the general class of so-called claichright bankruptcy
rules. This class turns out to coincide with the class ofdasmg-constant-increasing
bankruptcy rules as introduced by Thomson (2008).

The remainder of this paper is structured as follows. IniSe@, some basic defi-
nitions concerning cooperative transferable utility garmed bankruptcy problems
are presented. Also, new Kohlberg-like characterizatwintbie nucleolus and the
per capita nucleolus are presented in this section. Se8tionmally introduces
the clights rule and shows that this rule corresponds to éheapita nucleolus. In
Section 4, claim and right bankruptcy rules are introduced.

2 Preliminaries

This section first recalls the definitions of the nucleolud #re per capita nucle-
olus. Secondly, it provides Kohlberg-like characteriaasi of both solution con-
cepts. Finally, it surveys bankruptcy problems and banksupules, focussing on
the concepts used in this paper.



2.1 The nucleolus and per capita nucleolus of transferabletility games

A transferable utilityTU-game is defined by the pdiV, v), whereN = {1,...,n}

is the finite set of players and: 2V — R is thecharacteristic function The set

of all TU-games with player seY is denoted by’ U and a TU-game with player
setN is abbreviated by. For every coalitions € 2V, v(9) is called theworth of

the coalition withv(2) = 0 by convention.

The cardinality of a coalitior§ € 2 is denoted byS|. By R" we denote the set
of all real-valued vectors withV| elements in which each coordinate corresponds
to aplayeri € N. ForS € 2"V we denote by® € R" the vector for whicke? = 1
foralli € Sande? =0foralli € N\S.

Theimputation set/(v), is defined by

I(v) ={z e RN |2; > v({i}) foralli e N,> a; = v(N)}.
ieN
The coreCore(v), (Gillies (1953)) consists of all imputations for which noadi-
tion would be better off if it would separate itself and gstworth. Formally, the
core is defined by

Core(v) = {z € RV | le > (S) forall S € 2V, le =v(N)}.
ics i€N
Forz,y € R! we havexr <, v, i.e, z is lexicographically smallethan (or equal
to) y, if z = y or if there exists a € {1, ..., ¢} such thatc;, = y;, for all
ke{l,...0 —1}andz, < y,.
Letv € TUN. Then theexcess:xc(S, z) of coalition S € 2% for an imputation
x € I(v) is defined by
exc(S,x) = v(S) — z(9).

For agame € TUY and imputation: € I(v) theexcess vectat(z) € R2™ has
as its coordinates the excesses 028l coalitions arranged in a weakly decreasing
order,i.e., O () > 0,1 (z) forall k € {1,...,2INl — 1}. The nucleolus is defined
as follows.

Definition 2.1. (cf. Schmeidler (1969))
Letv € TUY be such thaf (v) # @. Thenucleolusn(v), is the unique imputation
such thatd(n(v)) <z 0(y) forall y € I(v).

For a game € TU™ and an imputation: € I(v) we define theper capita excess
of any non-empty coalitios € 2V\{@} by
v(S) — 2(5)

excl (S, z) =
(S, x) 5

Theper capita excess vectér (z) € R2"™'~1 has as its coordinates the per capita
excesses of all non-empty coalitions arranged in a weaktyedsing orderi.e.,
0F (x) > 6F,,(x) forall k € {1,...,2IN — 2},
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Definition 2.2. (cf. Grotte (1970))
Letv € TUY be such thatl (v) # @. Then, theper capita nucleolyscn(v), is
the unique imputation such that’ (pen(v)) <p 6F(y) for all y € I(v).

2.2 Characterizations of the (per capita) nucleolus usingdlanced col-
lections

Besides the original definition of the nucleolus, there texigltiple characteriza-
tions that use balanced collections. One of the advantafjsese characteri-
zations is that they provide ways to quickly determine whethn imputation is
the nucleolus or not. The first of this type of characteraati was provided by
Kohlberg (1971). It uses the following definitions: A map 2V\{@} — [0, c0)
is calledbalancedif
Z p(S)e® = eV,
Se2N\{z}

Furthermore, a collectio8 ¢ 2V\ {2} of coalitions is calledbalancedif there
exists a balanced mapon N such that

B={S e2"\{z} | p(S) > 0}.

We call the grand coalitiov and the empty coalitiow trivial. Let z € I(v) and
defineB;(x) to be the set of the non-trivial coalitions for which the digsfaction
with imputationz is the highest. Formally,

Bi(z)={S € 2M\{@, N} | exc(S, x) > exe(T,z) forall T e 2N\{®,N}}.

Recursively, fork = 2,3, ... the sets3;(x) are defined by,
k—1
Bi(z) = {S € 2"\{{&, N} U | J Bu(2)} | exc(S,2) > exc(T, x)
(=1

k-1
forall T € 2M\{@, N} with T ¢ | | By(z)}.
=1

It is clear that there exists a uniquer) € N, such that
Bi(x) #oforallk € {1,...,t(z)}
Bi(x) =@ forallk € {t(z)+1,..}

Theorem 2.3. (cf. Kohlberg (1971))
Letv € TUY be such thaCore(v) # @ and letz € I(v). Then,z = n(v) if and
only if (J;_, Bk(x) is balanced for alls € {1, ..., ¢(x)}.

An alternative characterization is provided by Groote Scéizerg et al. (2012).
LetD C 2V and letH (D) be as follows:

H(D) = {5 €2V | &% € span(e™, {e" }rep)},

4



wherespandenotes the linear hdll Note thatH ({o}) = {@, N}.

Theorem 2.4. (cf. Groote Schaarsberg et al. (2012))

Letv € TUN be such thaCore(v) # @ and letz € I(v). Then,z = n(v) if
and only if there exists a sequentg, D, ..., D of non-empty subcollections of
2N\ {@, N'} with the following properties:

(i) forall r € {1,...,7} the collectionD, = | J;_, Dy, is balanced.

(7i) there exists a sequence of real numbersy,, ..., v, such that
exc(T,z) =, foreveryT € D, and allr € {1, ..., 7} and that

M=V 2 2 Ve

(i7) forall T € 2M\{{@, N} UD, } it holds that
T € H({S € D; : exc(S,z) > exc(T, x)}).

Both Theorems 2.3 and 2.4 require that (a part of) the coafitiare put into a
sequence of collections, and that all coalitions in a ctibechave the same excess.
Moreover, both sequences of collections have to satisfyséme balancedness
requirement. However, there are two important differerimssveen the theorems.
First, in Theorem 2.4 it is allowed that several collectibiase the same excess as
opposed to Theorem 2.3. In other words, in Theorem 2.4 itlgsveld to split a
large Kohlberg collection into multiple smaller collect® Second, Theorem 2.4
states that a non-trivial coalition either belongs to aesiilbn or it is in the span of
the collections with higher excesses, while Theorem 218staat each non-trivial
coalition belongs to collection. Hence, it is possible te asubset of the Kohlberg
collections to determine whether an imputation is the ralakor not,i.e., some
of the Kohlberg collections are irrelevant. Finally, notattthe sequence of the
original Kohlberg collections satisfies the three progsrtof Theorem 2.4.
We formulate another variant of the characterization ofllety. In this variant,
the idea of Groote Schaarsberg that not all Kohlberg catlestare relevant is
further exploited. For collection® C 2N denote byF (D) the set of theree
coalitions.i.e,, coalitions which are not in the spanDf Formally, the set of free
coalitions is given by

F(D) =2N\H (D).

Theorem 2.5. Letv € TUY be such thatore(v) # @ and letz € I(v). Then,
x = n(v) if and only if there exists a sequente, Ds, ..., D, of non-empty collec-
tions such th& D, C F(D,_;) for all » € {1,...,7}, that satisfies the following
properties:

(A) forall r € {1,..., 7} the collectionD, = | J;_, Dy is balanced and
F(D;) = 2.

tspan(e™N, {e"}rep) = { Z yse® | vs € Rforall S € DU {N}}
SeDU{N}

2Note thatD, = U Dy, and thatDy = &
k=1



(B) forallr € {1,...,7} and allT' € D, it holds that
exc(T,z) = max exc(S, ).
SeF(Dr-1)
Proof. “only if part”. We show how to define a sequentx, ...., D, of relevant
collections from the Kohlberg collections. In this proofewbbreviates; (n(v))
Let By, ..., By(n(v)) e the sequence of Kohlberg collections of the nucleolugnTh
determine the sequence of relevant collections with tHevihg algorithm:

r=1andD, = B;
while F(D,) # @ do
r=r+1
k, = argmin  {B,NF(D,_1) # 2}
Ce{1,..,t(n(v))}
5. Dy =B, NF(Dyr_1)
6: end while
7T T=7T

By construction we have tha, C F(D,_;) for all » € {1,....,7} and that
F(D,;) = @. Left to show is that the sequence satisfiéy and the remaining
part of (A).

For eachr < 7 we haveD, = By, N F(D,_1), which implies that the coalitions
in collectionD,. have maximum excess with respect to the nucleolus over the se
F(D,_1). This gives(B).

Left to prove is the balancedness of the collectidhsfor all » € {1,...7}, which
is shown by induction.

Basis: D; is balanced, being equal #;. Letr € {2,...,7} and assume that
D,_1 is balanced. Defin8;, = Uf;l B, and denot&; = By, N H(D,_1). Then,
By, is the disjoint union ofj andD,,i.e, GND, = @ andB;, = GUD,. Because
By, andD,_; are balanced, there exist for both collections a balanceg it
there exists @, wherep(T) > 0 for all T € By, and ana, wherea(T') > 0 for
all T € D,_1 with

eN = Z p(T)el = Z a(T)er.
TEBy, TeDyr—1

Furthermore, sinc§ C H(D,_;) we have that for evenp < G there exists a
vectorys € RPr—19{N} such that

¥ = Z ’y%eT.

TeD,r_1U{N}

Denotelr = > g.g p(S)y7 forall T € D,_; U{N}. By substituting the equation



above in the balancing equation 8f,, we find

eN = Z p(T)el

TEBkT

=S w(S)es + 3 p(m)e”
Seg TeD,

=> p(8) D> e+ ) p(M)e"
Seg TeD,_1U{N} TeDy

= Z Brel + Z p(T)er.
T€D,_1U{N} TeD,

Lete € (0,1) and take a convex combination of the equation above and the ba
ancing equation dD,._1:

N=e( Y e+ Y M) (1o X amel),

Teﬁr—IU{N} TGD”‘ Teﬁr—l

which rewrites to

N o1 (X (Br+0-2a@)+ X o)),

- 1—¢ —
IBN TeD,—1 TeDy

For ¢ sufficiently close to 0, this provides a balancing equatmn,. Hence,D,
is balanced, which provest).

“if part”. Consider a sequenc®,,..., D, of non-empty coalitions such that
D, C F(D,_1) forall » € {1,...,7} and that satisfieé4) and (B) of Theorem
2.5. We show that this sequence satisfies condit{ongi:) and(zi:) of Theorem
2.4.

Condition(A) implies(i). Furthermore(B) implies (ii) sinceF (D,) S F(D,_1).
Property(iii) is inferred as follows. Let” € 2N\ {{@, N}UD; }. By (A) we have
that 7(D,;) = o, hence there exists a unique < {1,..,7} with
T € F(D,—1)\F(D,). Furthermore] € F(D,_1)\F(D,) impliesexc(T,z) < ~,
andezc(S,z) >, forall S € D,. Therefore, we have

T € F(Dr-1)\F(Dy) = H(D;)\H(Dr—1)
C H(Dy)
CH({S€D;: exc(S,z) >y}
C H({S € D;: exc(S,z) > exc(T,x)})

This proves(iii) of Theorem 2.4. Hence, Theorem 2.5 implies Theorem 2.8



Wallmeier (1983) showed that Theorem 2.3 can be reformilikat@rovide a char-

acterization of the per capita nucleolus. Similarly, theeottwo characterizations
of the nucleolus above can be reformulated. In this paperfaltowing per capita

variant of Theorem 2.5 is used.

Theorem 2.6. Letv € TUY be such thaCore(v) # @ and letx € I(v). Then,
x = pen(v) if and only if there exists a sequengéy, D, ..., D, of non-empty
collections such thab,. C F(D,_;) forall r € {1, ..., 7} that satisfy the following
properties:

(A) forallr e {1,...,7} the collectionD, = | J;._, Dy, is balanced and

F(D;) =2.
(B) forallr € {1,...,7} and allT' € D, it holds that
excP(T,z) = max excl(S,z).
SG]"('DT,H

2.3 Bankruptcy problems, bankruptcy rules and bankruptcy games

A bankruptcy problenis denoted by N, E, c¢), whereN = {1, ...,n} is the set of
claimants which will be calledplayers E € R is the monetary estate that has to
be divided over the players, and: ]Rﬂf is the vector otlaims By the nature of a
bankruptcy problem, the sum of claims exceeds the estatey < ZieN ¢. The
class of bankruptcy problems oviis denoted byBRY .

A bankruptcy rulef : BRY — Rﬁ is a function that assigns to each bankruptcy
problem (N,E,c) € BRY a vector f(N,E,c) € RY such that
Yien JilN,E,c) = Eand0 < f(N, E,c) < c. The reader is referred to Thom-
son (2003) for a detailed overview on bankruptcy rules.

Definition 2.7. Theconstrained equal award rule (CEi)defined by
CEA;(N,E,c) =min{a, ¢}

for all bankruptcy problem¢N, E,c) € BRY and alli € N, wherea is such that

Z min{a,¢;} = E.

i€EN
The constrained equal award rule divides the estate as agaissible among the
players, given that no one can receive more than his claim.

Definition 2.8. Theconstrained equal loss rule (CEis)defined by
CEL;(N,E,c) = max{0,¢; — 8}

for all bankruptcy problems$N, E, ¢) € BRY and alli € N, whereg is such that

Z max{0,¢; — B} = E.

1EN



The constrained equal loss rule divides the loss, whichascthim minus the
amount received, as equal as possible among the playegs) tiiat no one can
receive a negative amount. The constrained equal awardmdleonstrained equal
loss rule are closely related, which is shown in the follaywrell-known proposi-
tion.

Proposition 2.9. The constrained equal award rule is the dual of the consadin
equal loss rule and vice versa, i.e.,

CEA(N,E,c)=c—CEL(N,» ¢;— E,c)
iEN

for all bankruptcy problem$N, E, c) € BRY.

A rule that combines the constrained equal award and camstia&qual loss rule
is the Aumann-Maschler rule.

Definition 2.10. (cf. Aumann and Maschler (1985))
TheAumann-Maschler rule (AMijs defined by

CEA(N,E, }c) it Y ic;>E,
AM(N,E,c) = ieN
( ) %c—i—C’EL(N,E—Z%ci,%c) if Z%ci<E,
1EN iEN

for all bankruptcy problem$N, E, c) € BRY.

We refer to Aumann and Maschler (1985) for a motivation basethe concede
and divide principle and consistency.

O'Neill (1982) associates with every bankruptcy problém, E,¢) € BRY a
corresponding bankruptcy gamg . € TUY . In each bankruptcy game, the worth
of coalition S € 2% is the part of the estate that is left after the players oattié
coalition,i.e,, N\ S, receive their claim. Formally,

Vg (S) = max{0, E — Z ¢} forall § e 2V,
iEN\S

It is readily checked thaC'ore(vg,.) # @ for all (N, E,c) € BRY, so one can
use the theorems in Section 2.2 in order to characterizeptrec@pita) nucleolus.
The nucleolus for bankruptcy games corresponds to the Ansvaaschler rule.

Theorem 2.11. (cf. Aumann and Maschler (1985))
Let(N,E,c) € BRY and letvg . be the corresponding bankruptcy game. Then

AM(N,E,c) =n(vg,).



3 Acharacterization of the per capita nucleolus as a bankrufcy
rule

This section introduces a new bankruptcy ralthat is based on so called clights.
These clights can be interpreted as either the claims ofl#yes when the estate
is relatively small or as the rights of the players when thatess relatively large.
Moreover, it is proven that this new bankruptcy rule coiesidvith the per capita
nucleolus of the corresponding bankruptcy game. Througtieiremainder of
this paper we assume for notational ease and without lossredrglity that claim
vectors are weakly increasifg.

Definition 3.1. Theclights bankruptcy rule is defined by

CEA(N, E,é(c)) ity 6i(c) > E
- 1EN
o, B, c) := 3(c) + CEL(N,E =) di(c),c—6(c) if Y _6i(c) < E @)
1EN 1EN

for all bankruptcy problem¢N, E, c) € BRY, where theclight vectors(c) € RY
is recursively defined for all € N by

1
0i(c) = je{l Z}{m jei—(n—1) Z(Fg } 2

7777

First of all we observe that the clights are monotonic.

Lemma 3.2. Let (N, E,c) € BRY be a bankruptcy problem and létc) be the
corresponding clight vector. Then, for alk {2,...,n},

52(0) Z 52'_1(0).
Proof. Leti € {2,...,n}. Then

1
0i0) = amax | {7 (e - ”‘1256 )}

1
Zje{rl???i{—l}{nJrj—l jei—(n—1) 25‘5 }
1 i1
2 ey Lo U — (= D08}
= z’fl(C)- [

Swith N = {1, ...n} we assume that; < ¢z < ... < cp.
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Moreover, note thai(c) is independent of’. Also, each clight is non-negative and
less than the claim of the corresponding player, which vadlérom the following

lemma.

Lemma 3.3. Let (N, E,¢) € BRY be a bankruptcy problem and létc) € RN

be the corresponding clight vector. Then, fora#t N,
1

1
R =000 S

Proof. Leti € N. Then

di(c) = max {ﬁ jei—(n—1) Zé@ } —cz,

je{l,...,i}

since the right hand side corresponds to the gasel. Consequentlyy;(c) >

forall j € N and

1
dil) = ma { e (jei - ”—12‘56 )}

1
< max {1 je)
jefl,.., it \n+7—1
_ i 4
_n—i—i—lcz'

Example 3.1. Part 1 (calculation of the clight vector):

0

Consider a bankruptcy problem with player g€t = {1,2,3,4} and vector of

claimsc = (4,9,10,19). Then
1
n+1-—1

d2(c) = max {—— ! (]02— (n—1) Zég )

je{12y n+75—1

01(c) = (101 —(n— 1)0) = 34 =1

2
—max{— 9—§ 0, Ve 9 —

U'IOO

-1}
- {21 3}
= max{27,
= 3,

d3(c) = Inax{2l 3g 2§} = 3g

d4(c) = max{4 7, 72 735} = 7—.

“The final equation is due to the fact t

n 1 1 n+(i+1)

11

< srmoforalli € {1,...,n - 1}.



Part 2 (small estate):

ConsiderN ={1,2,3,4} andc= (4,9, 10,19) as above and tak& = 10.5. Con-
sequentlys(c) = (1,3,32,722) and>", y 6i(c) = 152 > 10.5 = E. In this
case, the clight vectof(c) is interpreted as the appropriate vector of claims and
o(N,E,c) = CEA(N,E,(c)) = (1,3,3%,3%).

Part 3 (large estate):

ConsiderN = {1,2,3,4} andc = (4,9, 10, 19) as above but now také = 20.5.
Consequentlyj(c) = (1,3,32,723). Now}_,.y di(c) =152 < 20.5 = E. In this
case, the clight vectaf(c) is interpreted as the vector of rights and
o(N,E,c)=6(c)+CEL(N,E =Y, 0i(c),c—8(c)) = (1,3,33,123).

Part 4 (A hydraulic interpretation):

Suppose that the estate symbolizes an amount of water andhbaclaims
symbolize the amount of water claimed. Then, each claim earffiresented by
a bucket which has the volume of that claim. In the clighte syleach bucket is
split into two smaller buckets, namely the clights buckétgotumed(c) and the
remainder bucket of volume— §(c). This is visualized in Figure 1, where the
water will be poured into the buckets at the arrow and any spiérwill flood from
the buckets of volumEc) into the buckets of volume— d(c).

player 1 2 3 4 1 2 3 4

\

8
6
d(c) 4
2

0 R

2 L L

i o

c—96(c)| 6 S
8
10
12

Figure 1: The buckets of therule.
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In Figure 2, the small estate case, i.€.,= 10.5, is visualized. The water is poured
into the buckets at the arrow and the result is visualizedheydashed area.

player 1 2 3 4 1 2 3 4

8
6
d(c) 4
2

0 R

2 Lo

i .

c—96(c)| 6 s
8
10
12

Figure 2:0(N, 10.5, ¢) visualized.

In Figure 3, the case with the large estate = 20.5 is visualized. Again the

water is poured into the buckets at the arrow, but now therevisrflow of size

E—3,cn6(c) =205 — 152 = 52, Again, the result is visualized by the
dashed area.

player 1 2 3 4 1 2 3 4

{

8

6

5(c)| 4
2

0

2

4

c—d)| 6 B =6.75

8

10

12

Figure 3:0(N, 20.5, ¢) visualized.
A

The playerj € {1,...,i} with highest index for whom the maximum in (2) is
attained fow; (¢) is of importance later on. This player is called the cligtgtement
of claimant; and is formally defined below.

Definition 3.4. Let (N, E,c) € BRY be a bankruptcy problem, létc) be the
corresponding clight vector and léte N. Then, the)(c)-clight argument
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a(i) € N of playeri € N is defined by

a(i) := max {j | 6i(c) = ﬁ jei —(n—1) Zég } (3)

je{l,...,i}

The next lemma states monotonicitydfr)-clight arguments.

Lemma 3.5. Let(N, E,c) € BR" be a bankruptcy problem. Then, for all
i€{2,..,n},
a(i) > a(i —1).

Proof. Leti € {2,...,n} and letk € {1,...,a(i — 1)}. We show thau(i) > k,
which completes the proof. By the deflnltlon @fi — 1) we have that

a(i—1)—1 k—1
1 1
el (e = (=12 0(0) 2 T (R~ (=12 ()

which rewrites to

) a(i—1)—1 k1
a(i—1) k n— 1 a1

— . >— _ '

<n+a(i—1)—1 n—i—k—l)cl1_n+a(i_1)_1;5€(0) n+k—1;5€(c)

i . . a(i—1) k
Sincec; > ¢;—1 and P iy > oo we have

( a(i —1) B k >c>( a(i—1) B k )c
ntali—1)—1 n+k—1/""\n+a(li-1)-1 n+k-1/"""
Hence,

a(i—-1)—1 k-1

- i > Oe(c)— 5
(n—i—a(i—l)—l n—i—k:—l)c —n+a(i_1)_1; e(c) n+k_1z; o(c)
which rewrites back to
1 a(i—1)—1 1 b1
—————(a(i—=1)¢;i—(n—1 > ; 1)
ey GGt Ll )géf(c)) g (ke (n— ;%
Hencea(i) > a(i — 1). -

In the following lemma it is shown that the clight-argumeifitath players except
player1 can not be playet.

Lemma 3.6. Let(N, E,c) € BRN. Then, for alli € {2,...,n},

a(i) > 2.
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Proof. Sincea(i) > a(i — 1) (Lemma 3.5), we only have to prove thg) > 2.
By definition we have thaf; (c) = 1¢;. Note that

1 1 1
o = g —— (2¢9 — (n—1)= )
2(c) max{nCQ,n+2_ 1( ca—(n )ncl)}
Since
1 1 1 n—1 1
. (23— (n—1)=c1) > ———(2c9 — ==
n—|—2—1(c2 (n )ncl)_n—i—l(c2 @) n?
we obtaina(2) > 2. [ |

The following corollary provides an explicit expressiom fioe clight vector of two-
and three-player bankruptcy problems.

Corollary 3.7. Letc € ]Rf be a vector of claims. Then,

s = | (e 3ea— Jer) " = (1,2),
@©=9,1. 1 1 1 1. 3 1 1 :
(501, 5C2 — g1, max{5c3—5c1, 503—562—501}) if N ={1,2,3}.

The next lemma shows that the subsequent difference initifegis less than the
subsequent difference in the claims.

Lemma 3.8. Let (N, E,c) € BRY be a bankruptcy problem and létc) be the
corresponding clight vector. Then, for alk {2,...,n},

1

. _ 5. <
%(0) =0im1(0) < T

(Ci — Cz’—l)-

Proof. Leti € {2,...,n}. The proof is split into two cases, depending on the
clight-argument.

Case(1): Assumen(i) <i— 1. Then

! )c; — (n — c)) —0;,—1(c
5@(0) — 51‘71(0) = m(a(l)cz ( 1) ; (5g( )) 5171( )
1 a(i)—1
< R (oz(z)cZ (n—1) 2 5@(0))
1 a(i)—1
- e (a(i)ei—1 — (n —1) ; de(c))
_a(i) ‘
n4 a(z) -1 (e = eima)
n41i— 1(ci i1

15



Caseg(2): Assume thati(i) = i. Then,

1

di(c) —di—1(c) = m zcZ (n—1) Zée —d;_1(c)
= il Zfé B 1001 (0
Coni—1V e (e nt i1 it i1
L n nti—2
= i 1 i o : ;
s LGl ;‘” g1 (o)
1—2 .
1 1 n+i—2
< B 1 5 11— _7517
- n+z—1(w "o ; A ) Y T 1(c)
< #(lcl - (n - 1) iéé(c)) - #Cifl
Snti—l — n+i—1
) 1—2
n+i—2 1 '
Tnti-l (n +(i—1)—1 ((1_1)‘%1_(”_1);54(0)))
1 1
B m iei = (n—1) 2515 e
1
Bl e (GBI R R U Zée ))
1
RS ETL)

where the first inequality follows from the fact that ; > %ci,l (Lemma 3.3).
|

The next example acts as a stepping stone for the proof thatlitihts rule coin-
cides with the per capita nucleolus of a bankruptcy game.

Example 3.2. (Example 3.1 continued)

Part 1 (small estate):

Consider the bankruptcy problefV, £, ¢) with N = {1,2,3,4}, £ = 10.5
andc = (4,9,10,19). As we have seed(c) = (1,3,32,72}), o(N,E,c) =
(1,3,31,31), a(1) = 1, a(2) = a(3) = 2 anda(4) = 4. The corresponding
bankruptcy game and the per capita excesseg of, F, ¢) are as follows:
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5 {1y | {2 | {3 {4} 1.2y | {1.3} | {1.4} {2,3}
v(S) 0 0 0 0 0 0 0 0
exc”(S,0) | -1 | =3 | =331 -31 -2 —23 —23 -33
S {2,4} | {3,4} | {1,2,3} | {1,2,4} | {1,3,4} | {2,3,4} | {1,2,3,4}
v(S) 0 0 0 0.5 L5 6.5 105
exc” (S, 0) -3z | =31 | —25 —21 -2 -1 0

SetD; = {{1},{2,3,4}}, D> = {{1,2},{1,3,4}} and D3 = {{1,3},{1,4}}.
Then,D; C 2M\{@,N} = F({o}) and clearlyD; = {{1},{2,3,4}} is bal-
anced. Furthermore, the coalitions i have the highest per capita excess of all
(free) coalitions.  Similarly, D, € 2M\{2,{1},{2,3,4,N} = F(D;) and
Dy = {{1},{2,3,4},{1,2},{1,3,4}} is balanced since = (3,2, %, 1) is a cor-
responding balanced map. The coalitionsip have the highest per capita excess
of all current free coalitions.

Furthermore, D3 C {{3},{4} {1,3}.{1,4} {2, 3},{2,4} {1, 2,3} {1, 2, 4}} =F(D,)
andDs = {{1},{2,3,4},{1,2},{1,3,4},{1,3},{1,4} } is balanced since

p = (%324 3 1)is a corresponding balanced map. The coalitionsTig
have the highest per capita excess of all current free doakt Finally, note that

F(D3) = @. Using Theorem 2.6 we conclude thatV, £, c) = pen(vg,.).

Part 2 (large estate):

Consider the bankruptcy probleifV, £, c) with N = {1,2, 3 4}, E = 20.5
andc = (4,9,10,19). As we have seer(c) = (1,3,32,72), o(N,E,c) =
(1,3,33,121), a(1) = 1, a(2) = a(3) = 2 and a(4) = 4. The corresponding
bankruptcy game and the per capita excesses of, F, ¢) are as follows:

5 {1y | {2 | {3 {4} {2y | {13y | {14 {2,3}
v(S) 0 0 0 0 0 0 15 0
exc”(S,0) | -1 | -3 | =33 | —122 -2 -23 —63 -33
S {2,4} | {3,4} | {1,2,3} | {1,2,4} | {1,3,4} | {2,3,4} | {1,2,3,4}
v(S) 6.5 75 L5 105 115 16.5 20.5
exc’ (S, 0) —42 | —43 | 25 -25 -2 -1 0

Now takeD; ={{1},{2,3,4} }, Do={{1,2},{1, 3,4} } andD3={{1,2,4},{1,2,3} }.
RegardingD; and D, we refer to part (1). Moreover,

DsC{(3}.{4}1.{1, 3} {1,4}.{2,3},{2,4} {1,2,3}.{1,2,4}} =F (D) and

D3 = {{1} {2 3,4}, {1,2},{1,3,4},{1,2,4},{1,2 3}} is balanced since

have the highest per capita excess of all the current fredat(ma;. Finally, note
that 7(D3) = @. Again, using Theorem 2.6 we can conclude th@v, F, c) =

pen(vE.e).

Part 3 (general remarks on the cases):
The relevant collections of these examples can be expregdbd clight-argument
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vector. For both cases{ = 10.5 and £ = 20.5) we have that

Dy = {{1},{2,3,4}} = {{1,....,a(1) — 1} U {1}, N\{1}},
Dy = {{1,2},{1,3,4}} = {{1,....,a(2) — 1} U {2}, N\{2}}.

Furthermore, wher® = 10.5, we have that

Ds = {{1,3},{1,4}} = {{1,....,a(3) — 1} U {3}, {1, ....,a(4) — 1} U {4} },

and whenE = 20.5, we have that

Dy = {{1,3,4},{1,2,3}} = {N\{3}, N\{4}}.

This structure of the relevant collections will form the isasf the proof of our
main result. JAN

Theorem 3.9.Let(N, E, c) € BRY and letvg . be the corresponding bankruptcy
game. Then,
o(N, E,¢) = pen(vp..).

Proof. In this proofo(N, E, c) is abbreviated ter andvg . is abbreviated ta.
Furthermore, since and the per capita nucleolus both depend continuously on the
estatel), we assume that_,_ d¢(c) # E.

In order to apply Theorem 2.6 we will do the following:
Part I: Definer, and for allr € {1, ..., 7}, define appropriate relevant collections
D, and show thaD,. ¢ F(D,_1).
Part Il: Show that the sequené@®,, ..., D, satisfies conditiofiA) of Theorem 2.6,
i.e, D, = U, Dy is balanced for alt € {1, ...,7} and F(D,) = @.
Part Ill: Show that the sequend@®, ..., D, satisfies conditior{B) of Theorem
2.6,i.e,forallr € {1,..,7} and allS € D, it holds that
excP(S,0) = max exc”(T,0).

TG]'—(Dr—l)

Part I: Define

min{ i € N | §;(c) > a} if Y di(c) > E,
t:= leN 4
min{i € N |¢; —di(c) > B} if Y dilc) <E,
teN
in which o and 3 are determined by}, n min{a,é,(c)} = FE and

E =3 enoe(c) = > ey max{0,c, — d,(c) — B}, respectively. Note that the
clights rule allocates the estate in the following way:

di(c) if i <t,
a if i« > ¢and de(c) > E,

= ®
ci—p ifi>tand ) dl(c) < E.

LeN
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Additionally, defineS, := {1,...,a(r) — 1} U {r} for eachr € {1,...,t — 1} and
define

D, = {S,,N\{r}} forallr € {1,...,t — 1}.

Furthermore, it < nand)_,.y d/(c) > E, then, defines,. := {1, ...,m—1}u{r}
for eachr € {t,...,n}, wherem is defined by

—a — 071 6(c)

m= argmax . (6)
se{l,...,t} : v({1,...,s—1}U{t})=0 s

Such anm exists because({1, ...,a(t) — 1} U {t}) = 0 (Lemma .4, where it is
used that < n).

Moreover, ift < n, define
Dy {{st,...,sn} if > pen delc) > E,
{N\{t}, ...,N\{n}} if > endelc) <E.

For allr < t we have
H(D,) = {S S CA{l,..,r}}U{N\S: S cC{1, ...,r}}.

Moreover, ift < n we have

and ift = n we have )
H(D;_y) = 2",

so we definer := min{t,n — 1}.

This gives thatF (D,_1) = {S: 1 < |SN{r,...,n}| < n—r}forallr < rwhich
implies thatD, ¢ F(D,_;) forallr € {1,...,7}.

Part Il: By construction we have tha(D,) = @. It remains to prove thab,

is balanced for ali € {1,...,7}. The balancedness proof is split into two parts
depending on whether= 1 or not.

Partll.a: If t =1, then

D, — {{1},....{n}} if > enoe(c) > E,
{N\{1},....N\{n}} if 3 ycnde(c) <E.
Choosep({i}) = 1 for all i € N to define a balanced map )t ,_ d/(c) > E.
Choosep(N\{i})= -1 for all i€ N to define a balanced map3f .\ (c) < E.

Part [L.b: Assumet > 1 and letr € {1,...,7}. Takee > 0 sufficiently small.
Again this part is split into two parts. First, we show tlat is balanced for all
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r < t. Then we show thab; is balanced.
Part ll.b1: Lett > 1, assume < ¢ and let

p(S;) =eforallie {2,..,r},

p(N\{i}) =+ > Tgzar-130(Sk) foralli € {2,...,r},
k=i+1

PIN\{1}) =1 = p(N\{K}),
k=2

p({1}) = p(N\{1}) = > p(Sk).
k=2
p(S) =0else

Since allp-values except(/N\{1}) andp({1}) are in the order of, bothp(N\{1})
andp({1}) are strictly positive.
Leti > r. Then

> p(8) =Y p(N\{k})
k=1

S:S31
= p(N\{1}) + > p(N\{k})
k=2
= 1= p(N\{k}) + > p(N\{k})
k=2 k=2
=1. @)
Let: < r. Then,
S oS =p(S)+ D p(N\ED+ D Licam-130(Sk)
S:83i k=1,k#i k=i+1
= p(N\{E}) + p(Si) = p(N\{D) + D Ti<agey-132(Sk)
k=1 k=i+1
= p(N\{k})

k=1
L,

(8)

in which equation (8) has been shown in (7). Herleg,.p p(S)e” = e which
completes the proof that thisforms a balanced map for the case: ¢.

Part 11.b2: Lett > 1, assume that = t. Sincer < 7 = min{¢,n — 1}, we have
t = 7. Again, this part is split into two, depending on whethey_  d¢(c) > E or
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Part Il.b2i: Lett > 1,7 =t =7 and assumé_,.y d,(c) > E. Then,

p(S;) =2eforalli e {2,...,t — 1},
p(S;) = eforallie {t,..,n},

t—1 n

p(N\{i}) = e+ Z Lii<a(k)—132(Sk) + Lii<m—1} ZP(Sk)
k=i+1 k=t

foralli e {2,...,t — 1},

t—1
p(N\{1}) =1—e =) p(N\{K}),
k=2

t—1 n
p({1}) = p(N\{1}) + ¢ — Z 1{1§a(k)—1}P(Skz) - ]1{1§m—1} Z p(Sk)-
k=2 k=t

p(S) =0else

Since allp-values except(/N\{1}) andp({1}) are in the order of, bothp(N\{1})
andp({1}) are strictly positive.
Leti > ¢. Then

t—1
> p(S) = p(Si) + Y p(N\{k})
S:531 k=1
t—1
=+ p(N\{1}) + D>_ p(N\{k})
t—1 = t—1
=c+1-c—Y p(N\{k})+ > p(N\{k})
k=2 k=2

=1
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Let: < t. Then

t—1 n
> p(S) = p(Si) + p(N\{E}) + Lgicm—1y > p(Sk)
§:55i k=1 keti h—t
t—1
+ Liica(r)—13P(Sk)
k=it+1
t—1 n
= p(N\{k}) + p(Si) — p(N\{i}) + Lii<m—1} > _ p(Sk)
k=1 k=t
t—1
+ > Li<ag-132(Sk)
k=it1

T

1
p(N\{k}) +¢

k=1
t—1

=) _p(N\{k}) + p(N\{1}) +¢
k=2

=(1—-¢)+e¢

=1

i

Hence,Y gcp, p(S)e® = e, which completes Part 11.b2i.

Part Il.b2ii: Lett > 1,r =t = 7 and assume_,.y d,(c) < E. Then,
Dy = Dy—1 U B, whereB = {N\{1},..., N\{n}}. SinceB is balanced (see
Part Il.a) andD;_ is balanced (seRart Il.b1) we have thaD; is balanced.

Part Il: For all cases it is shown tha@, is balanced for alt € {1,...,7}.

Part lll:  The proof is split into two parts. In the first paRdrt IlIA ), we provide
an upper bound for the per capita excesses of coalitio/m,._1). In the second
part Part IlIB ), it is shown that the coalitions i € D, are equal to this upper
bound.

First, note thatS € F(D,_;) implies that there exists at least oje> r such that
JjeSs.

Part IIA: Letr € {1,...,7} and letS € F(D,_1). The proof is split into two
parts, depending on whethefS) = 0 or v(S) > 0.

Part llIA.a: Letr € {1,..,7} and letS € F(D,_1). Assume thav(S) = 0
and defines = min{|S|,r}. Again there are two parts, depending on whether
9r(c) < op0ré,(c) > oyp.

Part llIA.al: Letr € {1,...,7}, S € F(D,_1) and letv(S) = 0. Assume that
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or(c) < o,. We have

excl (S, 0) = %
O > i1 00—

1581 9)

L0 > 021 0e(c) = b, (c) (10)

S

=S5 80(e) — L6, (0) + 2160 (c)

S

— 32071 Gule) — L, (c) L 6:(0)

S n—1
L ZX () m gy lse — (o DT | A g
S n—1
_ or(c) —or
n—1

Let us clarify the steps in the elaboration above. At (9) tlwing is used: If

r > s, then we first remove the— s players which receive the most. Then, we re-
place the remaining players with playérs.., s — 1 andr, which is possible since
there is a playey € S such thatj > r. At (10), it is used thabd, (¢c) < o,, which
implies thatd,(c) < oy forall ¢ € {1, ...,r}. Finally, (11) follows from (2).

To conclude this part: for alb € F(D,_1) with v(S) = 0 andd,.(c) < o, we
have thatxzc? (S, o) < %

Part lIA.a2: Letr € {1,...,7}, letS € F(D,_1) and letv(S) = 0. Assume that
dr(c) > o,. Thisimplies thad ., 0, > E andr > t. Then, since € {1,..., 7},
the definition ofr andr > ¢ we have that = ¢. Furthermore, we have

excl(S,0) < Und WS Slw (12)

1
_ O—Zizlw—at
S

Dy, je(c) —a (13)
<z > d(e) — o (14)
m

We clarify the elaboration. (12) follows frofartlllA.ali until (9). At (13) we
use (5) and at (14) we use (6) together with the fact ti{at) = 0 implies that

v({1,...,s —1}U{r}) =0.
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To conclude this part: if;(c) > o; (and hence ., d, > E) we have for all
_ _ m—1 —a
S € F(Dy_1) with v(S) = 0 thateze? (S, ) < —2=i=1 20—

Part IlIA.a: FromPart IllIA.al andPart llIA.a2 we obtain that for all
r€{1,..,7}and allS € F(D,_1) with v(S) = 0,

or(c)—cr

if r <t,

n—1
exc”(S,0) < § “XEL I it pand S, by(c) > E,
blo)er if r =tand 3,y delc) < E.

Part IlIA.b: Letr € {1,....,7}, letS € F(D,_1), assume that(S) > 0 and let
ke {r,..,n}\S. We have

v(S) — Z(ges oy

excl (S, 0) = 5
U(S) = 2opes Tt + DoreN\(SULKY) € — 2oteN\(SUk}) OF
_ E_ZéeN\S = pes Uf+ZeeN\(5u{k}) Cf—ZZEN\(SU{k}) o¢
S|
 E—c—(E—oy)
S|
< O — Ck
— n-—1
<" a (16)
n—1

To clarify, (15) uses the fact that;, < ¢; for all i € N. Inequality (16) follows
from the fact that- < k together with the fact that; | — 0;_1 < ¢; — o; for all
i€{2,..,n} (Lemma3.8).

To conclude this part: Forall € {1,...,7} and allS € F(D,_1) with v(S) > 0
we have due to (5) that

rlaer g < ¢,
erc(S,0) < Tt = femeif = tand Yey dile) > F,
=£ if r=tand Y,y de(c) < E.

Part IIIA:  We have frompart [lIA.a andpart IlIA.b that for allr € {1,...,7}
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and allS € F(D,_,) it holds that

orle) —er if r < ¢,
n—1
m—1
- Z de(c) — a
=1 if r =1, d(c) > E anduv(S) =0,
- - m leN
exc (S,0) < O‘_Clt if r=t, Z d¢(c) > E andov(S) > 0,
;_ (eN
L= it it r=1,% d(c) < E andu(S) = 0,
ne teN
_51 itr=1,3 6,(c) < F andu(S) > 0.
(" teN

m—1
: _ a—c — > ey de(c)—a dt—c -5
Now we will show for the case = ¢ that 7= < — andi=gt < 5.

If r =tand) . de(c) > E, then

—Yp e —a = ) —a
> 17)
m a(t)

_(s(——t)lct — %&(0)) — (18)
a a(t)

_a®) o wra®-1

it T+ —r o —«

> -l e ! (19)
o o — C
on-—1"

To clarify, (17) uses (6), which also uses Lemma .4, and ($8543). Finally, at
(19) we use (4).

Furthermore, for the case = ¢ and ),y d/(c) < E we have by (4) that
—B > &(c) — ¢; which implies that®=% < —Z_ Hence, we obtain for all

n—

r € {l,..,7}and allS € F(D,_1) the following:

( m ifr<t
n—1 ’
m—1

. — Z de(c) —
exc’ (S,0) < =1 if r = ¢and Z de(c) > E, (20)
m (eEN

_51 ifr:tand26g(c)<E.

|- eN
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Part llIB: Letr € {1,...,7}. The proof is split into two parts, depending on
whetherr < ¢ or not.

Part llIB.a: Letr € {1,...,7} and assume that< t. Then,D, = {S,, N\{r}}
and we have fol, that

excl (S,,0) = ezal(r) (21)
a(r)—1
_0- Zezl(r) 0¢ — O (22)
a(r)_lé n+a(r) — 16 a(r) 5
- 3 w0 - T+
- a(r)
a(r)—1 1 a(r)—1
= > Si(0)——(a(r)er—(n—=1) Y _ d(c))
P n—1 = 5.(c)
- B a(r) B +7:—1 (23)
_ or(c) — ¢
n—1

We clarify the elaboration. At (21), (22) and (23), we use bem 4, (5), and (3),
respectively.

And for N\{r} we have

eac? (N\ (1}, 0) = "M = utemian 7

n—1
 E—-c¢—(E—-o0)
N n—1 (24)
:M, (25)

n—1

We clarify the elaboration. At (24) we use Lemma .5 and at (@&use (5).

To conclude this partzzc? (S, o) = exe? (N\{r},o) = 2&—r,

Part IlIB.b: Letr € {1,...,7} and assume that = ¢. There are two cases,
depending on whethex”,_ de(c) > Eor) , nde(c) < E.

Part lIB.b1: Letr € {1,...,7}, letr = ¢ and assume that_,_, d¢(c) > E.
Then,D; = {5, ..., S, } and by (6) and the construction §f we have that(S;) =
0and

= ) - a

exc (S, 0) = -
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Furthermore, foiS; with j > ¢ we have that

m—1
—Zgzlnjé(c) -« ZexcP(Sj,U) (26)
0—=> pes, 0¢
> T 27)
_ X () e (28)
m

To clarify: (26), (27) and (28), follow from (20), the factatw(S;) > 0 and the
definition of S, respectively.

m—1
To conclude this partezc” (T, o) = M forall T € D,.
Part IlIB.b2: Let » = t and assume) ,.ydé/(c) < L. Then,

Dy = {N\{t},..., N\{n}} and for allj > ¢ we have

ercP (N\1j}.0) v(N\{5}) = Xrem g5y o

n—1
 E—c¢j—(E—-o0j)
N Jn—l : (29)
_ =B
=7 (30)

We clarify the elaboration. At (29) we use Lemma .5 and at (88)user =t
together with (5).

To conclude this parezc” (T, 0) = —Z forall T € D;.

Part 1lIB: From Part llIB.a, Part Il1IB.b1 andPart 1lIB.b2 we obtain for all
re{l,..,7} and allS € D, that

orle) —er if r < ¢,
n—l1 ©
— > (o) —a
€ZCCP(S, o) = lm if r =¢and Zé@(c) > F, (31)
8 teN
— if r=tand ) d(c) < E.
teN

Partlll: FromPart IlIA , especially (20), and frorRart IlIB , especially (31), we
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obtain for allr € {1,...,7}, all S € F(D,_1) and allT € D,

( —
orle) — if r < ¢,
n—1
m—1
=Y de(c)—a
crc(So)zer Lo)=3 T ity andS e E @D
m teN
_ﬁl if r=tand "dy(c)<E.
S teN
Hence, by Theorem 2.6 we obtaiiV, E, ¢) = pen(vg ). [ |

In the proof of Theorem 3.9 it is seen that the relevant doakt of the per capita
nucleolus have a special structure for bankruptcy gameis.i3 formalized in the
following corollary.

Corollary 3.10. Let (N,E,c) € BRY be a bankruptcy problem and let
x = pen(vge). Then there exists a player € {1,...,n} and a sequence
Dy,...,D; C 2M\{@, N}, wherer = min{t,n — 1}, that satisfy(A) and (B)
of Theorem 2.6, where

D, = {{1,...,a(r) =1} U{r}, N\{r}},

if » < 7. Furthermore,

{1,...,a(r) — 13U{r}, N\{r}} if 7<t,
Dr=¢{{1,....,m — 1}U{r}, ... {1,...,m — 1}U{n}} if r=tand >,y di(c)>E,
{N\{r},.... N\{n}} if r=tand ),y de(c)<E,

for somem € {1,...,7}.

4 The claim and right family of bankruptcy rules

This section shows that both the Aumann-Maschler rule amdltphts rule belong
to the same family of bankruptcy rules: the claim and rightifg

Both the Aumann-Maschler rule and the clights rule have tiffiergnt regimes
depending on the size of the estate. For the Aumann-Masualikerthe estate is
considered to be small if the estate is less than half of tta¢amount claimed and
large otherwise. Hence, half of the sum of the claims can ée ae a switch-point
for the Aumann-Maschler rule. Moreover, each player rexeat most half of his
claim in the first regime. Therefore, half of his claim can bersas his modified
claim. On the other hand, in the second regime, half of thiencia considered to
be his right, since each player will receive at least halfisfdaim.
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The clights rule has a similar setup. Namely, the estatensidered to be small if
the estate is less than the total amount of the clights anddtsge is large other-
wise. Hence, the switch-point for the clights rule is the saftthe clights. Similar

to the Aumann-Maschler rule, the clights act as new claintkerfirst regime and
rights in the second regime. Note that in both the Aumannetlas rule and the
clights rule the constraint equal award rule is used in tl& fegime and the con-
straint equal loss rule in the second.

To show that both the Aumann-Maschler rule and the clightthasle are based on
the same conceptual idea, we use the concept of claim andfuigttions, which
are formalized below. L&t C RY be the set of weakly increasing (claim) vectors.

Definition 4.1. A function\ : C — C is called aclaim and right functionif
¢ — M) € Cforall ¢ € C. The class of claim and right functions is denoted
by A.

Note that the functions\(c) = 0, A(c) = ¢, A(c) = 3c andX(c) = d(c), for all
c € C, are all claim and right functions.

With each claim and right function one can define a bankruptlgythat is based on
two regimes. The first regime occurs when the estate is iogritito coveri(c).

In this case\(c) is viewed as the claim vector rather thartself. The second
regime occurs when the estate is sufficient to coMed and in this case\(c) is
considered as a right vector and- \(c) is considered as the vector of claims
in the remaining bankruptcy problem. Subsequently, withim first regime, the
constrained equal award rule is used and within the secamthee the constrained
equal loss rule is used. The resulting family of rules isezhthe claim and right
family and is formally defined as follows.

Definition 4.2. Let A € A be a claim and right function. Thelaim and right
bankruptcy ruleC' R* is defined by

CEA(N,E, \(c)) if Y " Ni(e)>E,
A _ iEN
CRIN, B,c) = A)+CEL(N, E=Y Ni(c),e=A(0)) if Y Ni(c)<E,
1EN 1EN

for all bankruptcy problem$N, E, ¢) € BRY.

Using the four examples of claim and right functions disedsabove, we have the
following.

Theorem 4.3. CEA, CEL, AM ando are claim and right bankruptcy rules.

As a final remark, we want to state that is readily seen thatlthim and right fam-
ily of bankruptcy rules coincides with the increasing-dans-increasing family of
bankruptcy rules introduced by Thomson (2008).
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Appendix: The lemmas used in the proof of Theorem 3.9

Lemma .4. Let(N, E, c¢) € BR" be a bankruptcy problem and I&tc), a(i), and
t defined as in2), (3), and(4), respectively. Let < n. Then, for all

{1,...,n—=1} if > de(c) > E,

= LeN
{1,...,t =1} if > de(c) < E,

leN

it holds that

ve({1,...,a(i) — 1} U {i}) = 0.

Proof. Letk =n —1if X ,.nyde(c) > E,and letk =t — 1if Y, 5 de(c) < E.
Proving thawg ({1, ...,a(i) — 1} U {i}) = 0 for i = k implies that it holds for all
i € {1,...,k}. The worth of the coalition is given by

k—1 n
vpe({l, . a(k) =1} U{k}) =max{0,E - ) - Y ab,
i=a(k) i=k+1

hence, proving thak' — Zf;;(k) i — Y impa G < Ois sufficient.
First we will prove that

n

k
E<Y> 6i(e)+ > e —(n—k)(cx — dr(c)). (33)
=1

i=k+1
If > cnde(c) > E,s0k =n — 1, we have

E < Z di(c)
ieN

n—1
= 6i(¢) + 6n(c)
i=1

n—1
< Z 51(0) +cp —cp—1+ 5n71(c)7 (34)
=1

where (34) follows from Lemma 3.8.
If > sende(c) < E,s0k =t — 1, we have

t—1 n
E=Y 68ic)+> (c:—B)
i=1 1=t
t—1 n
= 6il0)+> ci—(n—t+1)B
=1 1=t

t—1 n
<N 80+ e — (n—t+1)(c-1 — di1(c)), (35)
=1 1=t
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where (35) follows from (4).
Now we will prove thatty — Zf:al(k) Ci— Y g1 G <O

n

E— kz:lcl Z

=a(k) i=k+1
k n k—1 n
<Y i)+ Y = (n—k)(ex — dr(c) — ¢i — ci (36)
=1 i=k+1 i=a(k) i=k+1
a(k)—1 k-1 k-1
= > G0+ > bile) +0k(e) + (n—k)ok(c) + (k—n)er — Y @
i=1 i=a(k) i=a(k)
a(k)—1 k—1
= > 6i(0)+ (n—k+1)o(c) + (k—n)er — > (e — 6i(c))
i=1 i=a(k)
a(k)—1
< di(c) + (n —k+1)ék(c) + (k —n)cy
a(k -1
a(k)
Za (n— k+1)<n+a(k)_1 v Za ) +(k—n)ex (37)
a(k)—1
_((n=k+1)a(k) (n—k+1)(1—n) ‘
_ ( PR —i—(k—n))ck—i—( o) 1 +1) ; 5i(c)
a(k)—1
~ra(k)+ (BE—n)(n—1) a(k)+ (k—n)(n—1) ‘
= ( n ot a(k) — 1 Je+ ( n ot alh) — 1 ) z; %(e)
<0 (38)
We clarify the elaboration. At (36), (37), and (38) we havedi§33), (3), and the
fact thata(k) < k < n, respectively. [ |

Lemma. 5. Let(N, E, c¢) € BR" be a bankruptcy problem witf{c) andt defined
as in(2) and (4) respectively. Then, for all

(1, t—1} if o) >E

leN

icd{l,...,n—1} if Y d(c) < Fandt =n,
leN

{1,...,n} if > 0s(c) < Eandt < n,
teN

it holds that
FE— C; Z 0

Proof. Note that provingl > ¢; fori =t —1(ori = n — 1 ori = n) implies
that it holds for alli € {1,...,t — 1} (ori € {1,...,m — 1} ori € N). The proof
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is split into two cases depending on whethey, , d¢(c) > Eor)_, . de(c) < E.

Case 1. Assumg_ . d¢(c) > E. Then by (4), we have

t—1 n
E > 6e)+ ) 6ia(c). (39)
/=1 {=t

By (2) we have that

6t-1(c) > -l -1 - n-l Z de(c),

ntt—1-1" ntt-1-1 &
which can be rewritten to
t —1 n+t—2
Zag Ce1 = ———0r-1(0). (40)
Now we will prove thatE —cp_1 > 0:
t—2
E—ci1> Y 6p(c)+(n—t+2)6-1(c) — i1 (41)
=1
t—1 n+t—2 —-n
> n_lct,l— p— di—1(c)+(n—t+2)d—1(c)+ _1ct,1 (42)
t—n n+t—2 n2—nt+2n—n-+t—2
= 01T, 0r—1(c)+ p— de—1(c)
t— 2 _nt
= _Tict—1 0 _Tll de—1(c)
n—t
== 1(n5t,1(c) —¢i-1)
> 0. (43)

We clarify the elaboration. At (41), (42), and (43), we us®)(340), and Lemma
3.3, respectively.

Case 2: Assumg_,  d,(c) < E. Again, this case is split into two parts, depend-
ing whethert =n ort < n.
Case 2a: We havg’,_ v d/(c) < E and assume that= n. Then

E—c,_1> Z 0p(c) — cp—1

>Za ) +28,-1(c) — 1 (44)

22@-(0)—# ( Cn—1— 2(5 >_Cn 1 (45)
=1

32



To clarify: at (44) we use Corollary 3.2 and at (45) we use (2).

Case 2b: We havg . v d¢(c) < E and assume that< n. Then

V=
n—1
—Z& c) +cp — ﬁ+z co —
=t
n—1
> Z(Sg )+ ¢n — (n—1 — On—1(c) + Z(c(g — (er — de())) (46)
/=t

—Zé +25n 1 )+cn_cn—1-

We clarify the elaboration. At (46) we use (4) together witte tfact that
ci-1 —o0i—1 < ¢ —o;foralli € {2,...,n} (Lemma 3.8). Using this we have

_CH>Z5 +2(5n1 )"’_Cn_cnfl_cn

—Z(S +2(5n 1 )—Cn,1

> 0. (47)

We clarify the elaboration: At (47) we use Case 2a. [ |
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