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1 Introduction

In the last decades, there is an increased interest in studying diverse problems in economics and
optimal control theory using dynamic games. In particular, in environmental economics and macroe-
conomic policy coordination, dynamic games are a natural framework to model policy coordination
problems (see e.g. the books and references in [6], [18], [29] and [14]). In engineering the theory
is used to model problems in, e.g., finance, robust optimal control and pursuit-evasion problems.
Particularly in the area of robust optimal control the theory of linear quadratic differential games
has been extensively developed (see, e.g., [1], [21] and [3]). In engineering applications, using this
framework, are reported from diverse areas (robot control formation [15], interconnection of electric
power systems [26], multipath routing in communication networks [23], solving mixed H2/H∞ control
problems [24]).

In the theory of linear quadratic differential games the environment is modeled by a set of linear
differential equations and the objectives are modeled as functions containing just affine quadratic
terms. Assuming that players don’t cooperate and look for linear feedback strategies which lead
to a worse performance if they unilaterally deviate from it, leads to the study of so-called linear
feedback Nash equilibria (FNE). These strategies have the important property that they are strong
time consistent. A property which, e.g., does not hold under an open-loop information structure
(see, e.g., [2, Chapter 6.5]). This problem has been considered by many authors and dates back to
the seminal work of Starr and Ho [30]. For the fixed finite planning horizon there exists at most one
FNE (see e.g. [25], [27]). Whether a solution exists depends on the solvability of a related set of
coupled Riccati-type differential equations. Global existence and convergence properties of solutions
of these differential equations have, e.g., been studied in [28], [13] and [32]. Further, the problem of
calculating the solutions of these differential equations was considered in, e.g., [5] and [17]. In both
[2, Section 6.5] and [10, Chapter 8] one can find additional references and generalizations of these
results.

For an infinite planning horizon, the affine-quadratic differential game is solved in [12]. To find
the FNE in this game involves solving a set of coupled algebraic Riccati equations. Only a few
existence results are known for some special cases of these equations (see, e.g., [11] for an overview).
Moreover, for the multivariable case there are no computational algorithms available which provide all
equilibrium points. Some iterative schemes have been proposed in literature to find an equilibrium for
some special cases (see e.g. [20], [31], [27] and [22]). However, all of them just provide one equilibrium
(if convergence occurs). Since the number of equilibria can vary between zero and infinity it is clear
that, particularly when there is no additional information that a certain type of equilibrium point is
preferred or the number of equilibria is unknown, one would like to have an overview of all possible
equilibria.

Papavassilopoulos et al. considered in [28] a geometric approach for calculating the stabilizing
solutions of a set of feedback Nash algebraic Riccati equations. In that approach subspaces have
to be calculated which satisfy simultaneously some invariance properties. However, up to now, it is
unknown how to find these subspaces.

Also for the scalar case these set of equations can have multiple solutions. For instance, for the
most simple two-player scalar case where the performance criterion is a strict positive quadratic
function of both states and controls, the game can have one up to three different solutions (see [7] or
[10][Chapter 8.4], or [8] for the corresponding N -player game result). In [9] (or [10][Chapter 8.5]) a
numerical algorithm, based on the calculation of invariant subspaces for a certain matrix, was given
to calculate all equilibria for this special scalar game.
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In this note we generalize the approach taken in [9] to find all FNE for the affine-quadratic N -
player scalar case. The algorithm we will present is based on determining the real positive roots
and corresponding nullspaces of a polynomial matrix that can be derived from the with this game
associated set of coupled algebraic Riccati equations. The approach generalizes the approach taken
in [9].

This note is organized as follows. Section 2 introduces the problem and some notation. The
main result of the paper is stated in Section 3. Section 4 contains some concluding remarks. In the
Appendix we provide details on the derivation of the polynomial matrix which is essential in solving
the problem.

2 Preliminaries

In this section we introduce the set of algebraic Riccati equations that play an essential role in finding
the FNE for the linear affine-quadratic differential game. Since the same equations occur in solving
a simplified version of this game we will consider this simplified game here.
Consider the next N -person linear quadratic differential game, with dynamics

ẋ(t) = Ax(t) +
N∑

i=1

Biui(t), x(0) = x0 ∈ IRn, (1)

and where player i wishes to choose his control ui ∈ IRmi to minimize: limtf→∞ Ji(0, tf , x0, u1, · · · , uN)
where Ji equals

∫ tf

0

[xT (t), uT
1 (t), · · · , uT

N(t)]Mi[x
T (t), uT

1 (t), · · · , uT
N(t)]

Tdt. (2)

Here Mi =




Qi V T
i11 · · · · · · V T

i1N

Vi11 Ri1 V T
i22 · · · V T

i2N
. . .

Vi1N Vi2N · · · · · · RiN


 =:

[
Qi V T

i

Vi Ri

]
, with Mi = MT

i and Rii > 0, i ∈ N̄ 1.

Notice that we make no definiteness assumptions w.r.t. matrix Qi and that the minimization problem
has no solution if Rii is an indefinite matrix, i.e. if Rii has one or more negative eigenvalues.

The linear feedback information structure of the game means that all players know at any point
in time the current state of the system and the cost function of their opponents. Furthermore, the
set of admissible control actions, Us, are linear functions of the current state of the system2, i.e.:

{
u = [uT

1 · · ·uT
N ]

T | ui(t) = Fix(t), where σ(A +BF ) ⊂ lC−

}
.

Here B is the block-row matrixB := [B1, · · · , BN ] and F is the block-column matrix F := [F T
1 , · · · , F

T
N ]

T .
To assure that Us is nonempty we assume (A,B) to be stabilizable. Notice that the assumption that
the players use simultaneously stabilizing controls introduces the cooperative meta-objective of all
players to stabilize the system (see, e.g., the introduction of Sections 7.2 and 7.4 of [10] for a discus-
sion).

1N̄ := {1, · · · , N} and A > 0 means that matrix A is positive definite.
2σ(H) denotes the spectrum of matrix H ; lC− = {λ ∈ lC | Re(λ) < 0}; lC+ = {λ ∈ lC | Re(λ) > 0}.
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Then, u∗ ∈ Us is called a feedback Nash equilibrium if the usual inequalities apply, i.e., no player
can improve his performance by a unilateral deviation from this set of equilibrium actions. Intro-
ducing the notation u∗

−i(α) := u∗ where u∗

i has been replaced by the arbitrary input function α the
formal definition reads as follows

Definition 2.1 (F ∗

1 , · · · , F
∗

N), or u
∗ ∈ Us, is called a feedback Nash equilibrium if for i ∈ N̄, for all

t0 ≥ 0 and x0, limtf→∞ Ji(t0, tf , x0, u
∗) ≤ limtf→∞ Ji(t0, tf , x0, u

∗

−i(α)), where x(.) satisfies (1) with
x(t0) = x0, and the input α is such that u∗

−i(α) ∈ Us. �

To facilitate a brief statement of the next Theorem 2.3 we use some shorthand notation.

Notation 2.2 diag(Di) is the block-diagonal matrix where the ith diagonal block-entry equals Di.

B̃ is the block-diagonal matrix B̃T := diag(BT
1 , B

T
2 , · · · , B

T
N); K is the block-column matrix K :=

[KT
1 , · · · , K

T
N ]

T ; In is the n× n identity matrix; Ei+1 is obtained from the block-column matrix con-
taining N + 1 zero blocks, where block i+ 1 is replaced by the identity matrix, i.e.
ET

i+1 = [0mi×n 0mi×m1
· · · 0mi×mi−1

Imi
0mi×mi+1

· · · 0mi×mN
], i ∈ N̄ ; Block-row i of matrix G equals

block-row i+1 ofMi, excluding its first block-entry, i ∈ N̄ , i.e. G := [M1E2 · · · MNEN+1]
T [0m̄×n Im̄]

T ,
where m̄ =

∑N

1=1mi. Block-entry i of block-column matrix Z is the (i+ 1)th block-entry of the first
block-column of matrix Mi, i.e. Z := [M1E2 · · · MNEN+1]

T [In 0 · · · 0]T = [V T
111 · · · V T

N1N ]
T . �

Theorem 2.3 Assume G is invertible. The linear quadratic differential game (1,2) has a feedback
Nash equilibrium (F1, · · · , FN) for every initial state if and only if

F = −G−1(Z + B̃TK). (3)

Here Ki, i ∈ N̄ , are symmetric solutions of the coupled algebraic Riccati-type equations

AT
clKi +KiAcl + [In F T ]Mi[In F T ]T = 0, i ∈ N̄, (4)

satisfying σ(Acl) ⊂ lC−, where Acl := A+BF . Further, Ji = xT
0Kix0. �

3 The algorithm

From Theorem 2.3 it follows that the solvability of (4) plays a crucial role in finding all FNE. For
special cases of (4) it has been shown that these equations may have no, one, or more than one set
of stabilizing solutions (see e.g. [10, Chapter 8]).

For the scalar case where all entries in the cost functions, except Qi and Rii, are zero, an eigenvalue
based approach was used in [9] to find all solutions of (4). In this section we generalize this eigenvalue
based approach to calculate all stabilizing solutions of (4).

To stress we consider the scalar case, we will use lower-case notation. Assume s̄i := BG−1B̃T ei 6=
0, i ∈ N̄ , where ei ∈ IRN is the ith standard basis vector. Following [9] (see also [10, Chapter 8.5.3])
let λ := −acl. Then, with yi := s̄iki, y

[1] := y := [y1, · · · , yN ]
T and S̄ := diag(s̄i), we have S̄k = y.
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Therefore, with F T = −(Z + B̃T S̄−1y)TG−T , (4) can be rewritten as a set of quadratic polynomial
equations in yi:

−2λyi + s̄i[1 F T ]Mi[1 F T ]T = 0, i ∈ N̄. (5)

The above equations (5) constitute a set of N polynomial equations fi in N unknowns y1, · · · , yN ,
i.e.,

fi(y1, · · · , yN) = 0, i ∈ N̄ . (6)

For all i ∈ N̄ the degree3, di, of fi is two. Consequently, if the solution set of (5) is a zero-dimensional
set, an upper bound is given by the Bézout number m := ΠN

i=1di = 2N .
Below we give an algorithm from which in most cases one can determine all stabilizing solutions

of (5). Let v := [1 yT y[2]
T

· · · y[N ]T ]T , where y[i] is the vector4 which elements contains all

(
N
i

)

monomials consisting of the product of i variables from y1, · · · , yN . By convention, let y[1] = y and
y[0] = 1. Furthermore, let U(λk) denote a matrix polynomial in λ where the greatest degree of the
polynomials appearing as entries of U is k. The algorithm is based on the next theorem which is
proved in the Appendix.

Theorem 3.1 Let y be a solution of (5), v be as introduced above and λ := −acl. Then, provided
some invertibility conditions are met (see Appendix for details), there exists a polynomial matrix
U(λN ) ∈ IR2N×2N such that λ is an eigenvalue of U(λN ) and v is a corresponding eigenvector. �

This results then in the next algorithm to calculate all solutions of (5).

Algorithm 3.2

Step 1: Calculate the polynomial matrix U(λN ) such that λv = U(λN )v (see Appendix).
Step 2: Calculate Λ := {λ > 0 | det(λI − U(λN)) = 0}.
Step 3: For all λi ∈ Λ repeat the following steps.
3.1: Calculate the eigenspace of U(λN

i ).
3.2: If the dimension of the eigenspace is one proceed with Step 3.3, else terminate the algorithm.
3.3: Calculate an eigenvector v of U(λN

i ). Let v =: [v0, · · · , vN , vN+1, · · · ]
T . Then ki :=

vi
v0s̄i

, i ∈ N̄ ,
is a candidate solution of (4). Verify by substituting ki into (4), whether it solves (4).
Step 4: end of algorithm. �

3The degree of a monomial yα1

1 .yα2

2 · · · yαN

N is α1 + · · ·+ αN . The (total) degree of a polynomial f in y1, · · · , yN is
the maximum degree of all (nonzero) monomials in f

4For convenience we will use the lexicographic ordering here. That is, if α = (α1, · · · , αN ) and β = (β1, · · · , βN )

are the exponents associated with two monomials yα1

1 · · · yαN

N and y
β1

1 · · · yβN

N , respectively, α > β if in the vector
difference α−β the left-most nonzero entry is positive. The entries of y[i] are arranged in decreasing order (so the first
entry contains the monomial with highest order etc.). This ordering of the entries of v is also known as the graded
lexicographic ordering (see e.g. [4]).
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In case Algorithm 3.2 is completed successfully one has found all solutions of (4). Clearly a more
detailed study of the structure of matrix U(λN ) is needed to get more insight into the question how
restrictive the invertibility assumptions we made are. Furthermore, the case that the dimension of
the eigenspace in Step 3.2 is larger than one has to be elaborated. This is in particular important
for providing an estimate of the number of solutions. This is, however, beyond the scope of this paper.

Example 3.3 Consider 2 players who like to track a predefined signal w(.), for the system ṡ(t) =
s(t)+u1(t)+u2(t). The players base their actions on the gap x(t) := s(t)−w(t) between the signal and
system. Player i controls ui and wants to achieve tracking at minimal cost Ji. So he has an incentive
to shift the burden of tracking the system to the other player. Assume J1 =

∫
∞

0
x2(t)+u2

1(t)+
1
2
u2
2(t)dt

and J2 =
∫
∞

0
2x2(t) + 1

4
u2
1(t) + u2

2(t)dt. Then x(t) satisfies ẋ(t) = x(t) + u1(t) + u2(t) + c(t), where
c(t) := w(t)− ẇ(t) and x(0) = s(0)− w(0). Assume c(t) ∈ L2(0,∞). Then, with A = 1, B = [1 1],
M1 = diag(1, 1, 1

2
), M2 = diag(2, 1

4
, 1), ZT = [0 0] and G = B̃ = I2, Theorem 2.3 applies. (4) reduces

to 2(−1 + k1 + k2)k1 − k2
1 − 1 − 1

2
k2
2 = 0 and 2(−1 + k1 + k2)k2 − k2

2 − 2 − 1
4
k2
1 = 0. Following

Algorithm 3.2 we first calculate matrix U(λ2). Using the procedure outlined in the appendix, with
ā = −1, s̄i = 1, yi = ki, λ = −1 + y1 + y2 and vT = [1 y1 y2 y1y2], we obtain λI − U(λ2) =


1 + λ −1 −1 0
0 1− 9

7
λ 8

7
λ −1

2 4
7
λ 1− 9

7
λ −1

−16
7
λ 2 + 32

49
λ2 96

49
λ2 1− 25

7
λ


. The determinant of λI − U(λ2) is p(λ) = −431

49
λ4 + 4λ3 +

1290
49

λ2 − 172
7
λ + 9. p(λ) has one positive root λ = 1.5092. A corresponding eigenvector of U(λ2) is

v = [.3899 .4090 .5693 .5972]T . This yields the unique solution KT = [k1, k2] = [1.0491, 1.4601] of (4).
So this affine-quadratic game has a unique FNE. The equilibrium strategies uT (t) = [u1(t), u2(t)],
are given by (see [12]):

u(t) = −Kx(t) −

∫
∞

t

e





1.5092 −0.4110
0.4110 1.5092



(t−s)

Kc(s)ds.

In case the signal w(t) = e−µt and s(0) = 0, we obtain from the above equation that, with c(s) =
(1 + µ)e−µt, a = λ and b = −0.4110, the FNE are

u1(t) = −k1x(t) +
(1 + µ)(bk2 − (µ+ a)k1)

(µ+ a)2 + b2
e−µt and

u2(t) = −k2x(t) +
(1 + µ)(−bk1 − (µ+ a)k2)

(µ+ a)2 + b2
e−µt,

respectively. From the cost functions we infer that player 2 has the incentive to achieve accurate
tracking with as much as possible control used by player 1. This is confirmed in Figure 1. Player
2 uses the first period most control in order to achieve good tracking. This point is illustrated in
the left-hand panel. After t = 0.2 this role is shifted to player 1. The right-hand panel provides a
complete picture. Furthermore, we see from this plot that some overreaction occurs. �
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Figure 1: Graphs Example 3.3. u1 : dotted line; u2 : dashed line; x : full line.

4 Concluding Remarks

In this note we considered a numerical algorithm to calculate all feedback Nash equilibria of the
regular indefinite infinite-planning horizon linear-quadratic differential game. To that end we had to
trace all stabilizing solutions of a set of coupled algebraic Riccati equations. For the scalar case we
indicated a numerical algorithm by which in most cases all solutions of the algebraic Riccati-type
equations can be calculated. The algorithm is based on determining the real positive eigenvalues
and corresponding eigenspace of a 2N × 2N polynomial matrix that has degree N . To determine the
points where the polynomial matrix becomes singular, we calculated the roots of its determinant.
This determinant is an 2N order polynomial. A more detailed study of this algorithm and a numerical
stable implementation of it remains a topic of future research.

Appendix

Let Q be a square matrix with entries qij . Then d(Q) := [q11 · · · qnn] denotes the row vector consisting
of all main diagonal entries of Q. Further t(Q) := [q12 · · · q1nq23 · · · qn−1n] is the row vector obtained
by stacking all the upper triangular entries of Q row by row.

Lemma 4.1 Let Q be a symmetric matrix, d = [d1 · · · dN ]
T and D = diag(dT ) = diag(di) be a

diagonal matrix. Then
1. yTQy = d(Q)y2 + 2t(Q)y[2].
2. yTDQDy = d(Q)diag(d2

T

)y2 + 2t(Q)diag(d[2]
T

)y[2].

Proof Lemma 4.1.

1. Since qij = qji this follows directly from yTQy =
∑

i=1,j=1 qijyiyj.

2. Let z := Dy. Then, by item 1, yTDQDy = d(Q)z2 + 2t(Q)z[2]. Next notice that z2 = diag(d2i )y
2

and the entry of z[2] containing zizj equals didjyiyj . So z[2] = diag(d[2]
T

)y[2]. �

Next, let M̃i := diag(Imi
, G−T )Midiag(Imi

, G−1) =:

[
Qi Ṽ T

i

Ṽi R̃i

]
; b̃ := [ b1

s̄1
· · · bN

s̄N
]T ;
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C0 := S̄




[
1 − ZT

]
M̃1

[
1 − ZT

]T
...[

1 − ZT
]
M̃N

[
1 − ZT

]T


 ;

C1 := −2


λI + S̄




Ṽ T
1 ZT R̃1

...

Ṽ T
N − ZT R̃N


 diag(b̃T )


 ;

C2 := S̄




d(R̃1)
...

d(R̃N)


 diag(b̃2

T

); and

C3 := 2S̄




t(R̃1)
...

t(R̃N )


 diag(b̃[2]

T

).

As a first step in the derivation of matrix U we have the next Lemma 4.2.

Lemma 4.2 Let p0 := −C−1
2 C0; p1(λ) the linear polynomial matrix −C−1

2 C1(λ) and p2 := −C−1
2 C3.

Then, y2 := [y21 · · · y
2
N ]

T satisfies:

y2 = p0 + p1(λ)y + p2y
[2], (7)

where y[2] := [y1y2 · · · y1yN y2y3 · · · y2yN · · · yN−1yN ]
T is the vector consisting of all monomials of the

product of 2 variables from y1, · · · , yN .

Proof Lemma 4.2. First note that (5) can be rewritten as

−2λyi + s̄i[1 − (Z + B̃T S̄−1y)T ]M̃i[1 − (Z + B̃T S̄−1y)T ]T = 0.

Or,

−2λeTi y + s̄i[1 − ZT ]M̃i[1 − ZT ]T − 2s̄i(Ṽ
T
i − ZT R̃i)B̃

T S̄−1y

+s̄iy
T S̄−1B̃R̃iB̃

T S̄−1y = 0, i ∈ N̄ .

Since S̄−1B̃ = diag( bi
s̄i
), using Lemma 4.1.2, the above equation can be rewritten as

−2λeTi y + s̄i[1 − ZT ]M̃i[1 − ZT ]T + s̄id(R̃i)diag(b̃
2T )y2 +

−2s̄i(Ṽ
T
i − ZT R̃i)diag(b̃

T )y + 2s̄it(R̃i)diag(b̃
[2]T )y[2] = 0.

Which yields: C0 + C1(λ)y + C2y
2 + C3y

[2] = 0. �

Next, let y
[i]
−j denote the vector that contains the entries of y[i] except the monomials that con-

tain yj and, with w2 := y2, wi+2 := [y21y
[i]T

−1 · · · y2Ny
[i]T

−N ]
T , i = 0, · · · , N − 1. Then, using induction,

the next Lemma 4.4 shows that under some invertibility assumptions wi+2 is a linear combination of
y[j], j = 0, · · · , i+2. The parameters are in this case polynomial matrices in λ. To prove this result,
we use the next intermediate result.
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Lemma 4.3 For every k and j there exist matrices C1 and C2 such that:

y[j]yk = C1,j,ky
[j+1] + C2,j,kwj+1, j ∈ N − 1.

Proof Lemma 4.3: y[j]yk = C1,j,ky
[j+1] + y2kC̃2,j,ky

[j−1]
−k = C1,j,ky

[j+1] + C2,j,kwj+1. �

Lemma 4.4 Assume matrices P̄i+2, i ∈ N − 1, (see proof below) are invertible. Then there exist
matrices P0,i+2(λ

i) and Pj,i+2(λ
i+2−j), i = 0, · · · , N − 1, j = 1, · · · , i+ 2, such that:

wi+2 = P0,i+2(λ
i) +

i+2∑

j=1

Pj,i+2(λ
i+2−j)y[j], i = 0, · · · , N − 2, (8)

wN+1 = P0,N+1(λ
N−1) +

N∑

j=1

Pj,N+1(λ
N+1−j)y[j]. (9)

Proof Lemma 4.4. We prove this lemma by induction.
For i = 0 this follows from (7) with P0,2 := p0, P1,2 := p1(λ) and P2,2 := p2.
Next assume that (8) holds for i = m, m < N − 2. We show that (8) also holds for i = m+ 1 and
how matrices Pj,k+1 are related to Pr,s, r = 1, · · · , N, s = 1, · · · , k. To that end first note that there

exist matrices Dk,m+2 such that: wm+3 =
∑N

k=1Dk,m+2ykwm+2. So, using the induction argument
and Lemma 4.3, respectively, we have that wm+3 equals:

N∑

k=1

Dk,m+2

(
P0,m+2(λ

m)yk +

m+2∑

j=1

Pj,m+2(λ
m+2−j)y[j]yk

)
=

N∑

k=1

Dk,m+2P0,m+2(λ
m)yk+

N∑

k=1

Dk,m+2

(
m+2∑

j=1

Pj,m+2(λ
m+2−j)(C1,j,ky

[j+1] + C2,j,kwj+1)

)
.

Next, introduce
P̃0,m+2(λ

m) := [D1,m+2P0,m+2(λ
m) · · ·DN,m+2P0,m+2(λ

m)] and

Es,j(λ
m+2−j) :=

∑N

k=1Dk,m+2Pj,m+2(λ
m+2−j)Cs,j,k, s = 1, 2. Then, the above expression for wm+3

can be rewritten as

P̃0,m+2(λ
m)y +

m+2∑

j=1

(
E1,j(λ

m+2−j)y[j+1] + E2,j(λ
m+2−j)wj+1

)
.
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Therefore, in case matrix P̄m+2 := I − E2,m+2(λ
0) is invertible, it follows from the above equation

that wm+3 equals:

P̄−1
m+2P̃0,m+2(λ

m)y +

m+2∑

j=1

P̄−1
m+2E1,j(λ

m+2−j)y[j+1] +

m+1∑

j=1

P̄−1
m+2E2,j(λ

m+2−j)wj+1 = P̄−1
m+2P̃0,m+2(λ

m)y +

m+2∑

j=1

P̄−1
m+2E1,j(λ

m+2−j)y[j+1] +
m+1∑

j=1

P̄−1
m+2E2,j(λ

m+2−j) ∗

(
P0,j+1(λ

j−1) +

j+1∑

s=1

Ps,j+1(λ
j+1−s)y[s]

)
.

So, with

P0,m+3(λ
m+1) :=

m+1∑

j=1

P̄−1
m+2E2,j(λ

m+2−j)P0,j+1(λ
j−1),

P1,m+3(λ
m+2) :=

m+1∑

j=1

P̄−1
m+2E2,j(λ

m+2−j)P1,j+1(λ
j) +

P̄−1
m+2P̃0,m+2(λ

m),

Pk,m+3(λ
m+3−k) :=

m+1∑

j=k−1

P̄−1
m+2E2,j(λ

m+2−j)Pk,j+1(λ
j+1−k)

+P̄−1
m+2E1,k−1(λ

m+3−k), k = 2, · · · , m+ 2,

Pm+3,m+3(λ
0) := P̄−1

m+2E1,m+2(λ
0),

equation (8) results for i = m+ 1.
Finally, assume (8) holds for i = 0, · · · , N − 2. Then, since wN+1 =

∑N

k=1Dk,NykwN , we can
rewrite wN+1 as:

N∑

k=1

Dk,N

(
P0,N(λ

N−2)yk +
N−1∑

j=1

Pj,N(λ
N−j)y[j]yk+

PN,N(λ
0)y[N ]yk

)
=

N∑

k=1

Dk,NP0,N(λ
N−2)yk +

N∑

k=1

Dk,N

(
N−1∑

j=1

Pj,N(λ
N−j)(C1,j,ky

[j+1] + C2,j,kwj+1)

)
+

[D1,NPN,N · · ·DN,NPN,N ]wN+1.

So, introducing
P̃0,N(λ

N−2) := [D1,NP0,N(λ
N−2) · · ·DN,NP0,N(λ

N−2)] and
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Es,j(λ
N−j) :=

∑N

k=1Dk,NPj,N(λ
N−j)Cs,j,k, s = 1, 2, the above equation for wN+1 can be rewritten as

follows, provided matrix P̄N := I − [D1,NPN,N · · ·DN,NPN,N ] is invertible.

wN+1 = P̄−1
N P̃0,N(λ

N−2)y +
N−1∑

j=1

P̄−1
N E1,j(λ

N−j)y[j+1] +

N−1∑

j=1

P̄−1
N E2,j(λ

N−j)wj+1

= P̄−1
N P̃0,N(λ

N−2)y +

N−1∑

j=1

P̄−1
N E1,j(λ

N−j)y[j+1] +

N−1∑

j=1

P̄−1
N E2,j(λ

N−j)

(
P0,j+1(λ

j−1) +

j+1∑

s=1

Ps,j+1(λ
j+1−s)y[s]

)
.

Then, with

P0,N+1(λ
N−1) :=

N−1∑

j=1

P̄−1
N E2,j(λ

N−j)P0,j+1(λ
j−1),

P1,N+1(λ
N) :=

N−1∑

j=1

P̄−1
N E2,j(λ

N−j)P1,j+1(λ
j) +

P̄−1
N P̃0,N(λ

N−2),

Pk,N+1(λ
N+1−k) :=

N−1∑

j=k−1

P̄−1
N E2,j(λ

N−j)Pk,j+1(λ
j+1−k)

+P̄−1
N E1,k−1(λ

N+1−k), k = 2, · · · , N,

equation (9) results. Which completes the proof. �

Remark 4.5 Note that the calculation of the matrices Ci,j,k and Di,j can be done off-line. Further-
more, following the lines of the proof of Lemma 4.4 one can recursively calculate the matrices Pi,j.
�

Construction matrix U(λN ).
To calculate matrix U(λN ) let ā := a− BG−1Z and Ui block-row i of U . Then,
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1) λ ∗ 1 = −ā ∗ 1 + 1TNy
[1] =: U0v.

2) λ ∗ y[i] = −āy[i] +
N∑

j=1

yjy
[i] =

= −āy[i] +

N∑

j=1

(C1,i,jy
[i+1] + C2,i,jwi+1)

= −āy[i] +

N∑

j=1

C1,i,jy
[i+1] +

N∑

j=1

C2,i,j

(
P0,i+1(λ

i−1) +
i+1∑

k=1

Pk,i+1(λ
i+1−k)y[k]

)
=

N∑

j=1

C2,i,jP0,i+1(λ
i−1) +

i−1∑

k=1

(
N∑

j=1

C2,i,jPk,i+1(λ
i+1−k)

)
y[k]

+

(
−āI +

N∑

j=1

Pi,i+1(λ)

)
y[i] +

(
N∑

j=1

C1,i,j +
N∑

j=1

Pi+1,i+1(λ
0)

)
y[i+1] =: Uiv, i ∈ N − 1.

3) λ ∗ y[N ] = −āy[N ] +
N∑

j=1

yjy
[N ] = −āy[N ] + 1TNw

[N+1]

= 1TNP0,N+1(λ
N−1) +

N−1∑

j=1

1TNPj,N+1(λ
N+1−j)y[j] +

(
1TNPN,N+1(λ)− āI

)
y[N ] =: UNv.

�

Proof of Theorem 3.1. From the above construction it is clear that U(λN )v = λv. �
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