
  

 

 

Tilburg University

Generation Capacity Investments in Electricity Markets

Gürkan, G.; Ozdemir, O.; Smeers, Y.

Publication date:
2013

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Gürkan, G., Ozdemir, O., & Smeers, Y. (2013). Generation Capacity Investments in Electricity Markets: Perfect
Competition. (CentER Discussion Paper; Vol. 2013-045). Econometrics.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://research.tilburguniversity.edu/en/publications/97828b2c-3630-4b66-8ac9-f24c469cefbd


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

 
 
 

No. 2013-045 

GENERATION CAPACITY INVEST
IN ELECTRICITY MARKE

PERFECT COMPETITION
 
 
 
 
 

By  
 
 

Gül Gürkan, Özge Özdemir, Yves Smeers
 
 
 
 

 
23 August, 2013 

 
 

 
 

ISSN 0924-7815 
ISSN 2213-9532 

TION CAPACITY INVESTMENTS 
IN ELECTRICITY MARKETS: 

PERFECT COMPETITION 

zdemir, Yves Smeers 

 

 
 



Generation Capacity Investments in Electricity Markets: Perfect Competition
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Abstract

In competitive electricity markets, markets designs basedon power exchanges where supply bidding

(barring demand-side bidding) is at the sole short run marginal cost may not guarantee resource adequacy.

As alternative ways to remedy the resource adequacy problem, we focus on three different market designs

in detail when demand is inelastic, namely an energy-only market with VOLL pricing (or a price cap), an

additional capacity market, and operating-reserve pricing. We also discuss demand-side bidding (i.e., a

price responsive demand) which can be seen as a categorically different alternative to remedy the resource

adequacy problem. We consider a perfectly competitive market consisting of three types of agents: genera-

tors, a transmission system operator, and consumers; all agents are assumed to have no market power. For

each market design, we model and analyze capacity investment choices of firms using a two-stage game

where generation capacities are installed in the first stageand generation takes place in future spot markets

at the second stage. When future spot market conditions are assumed to be knowna priori (i.e., determin-

istic demand case), we show that all of these two-stage models with different market mechanisms, except

operating-reserve pricing, can be cast as single optimization problems. When future spot market conditions

are not known in advance (i.e., under demand uncertainty), we essentially have a two-stage stochastic game.

Interestingly, an equilibrium point of this stochastic game can be found by solving a two-stage stochastic

program, in case of all of the market mechanisms except operating-reserve pricing. In case of operating-

reserve pricing, while the formulation of an equivalent deterministic or stochastic optimization problem is

possible when operating-reserves are based on observed demand, this simplicity is lost when operating-

reserves are based on installed capacities. We generalize these results for other uncertain parameters in spot

markets such as fuel costs and transmission capacities. Finally, we illustrate how all these models can be

numerically tackled and present numerical experiments. Inour numerical experiments, we observe that un-

certainty of demand leads to higher total generation capacity expansion and a broader mix of technologies

compared to the investment decisions assuming average demand levels. Furthermore for the same VOLL

(or price cap) level and under the assumptions of random demand with finite support and no forced outages,

energy-only markets with VOLL pricing tend to lead to total generation capacity below the peak load with a
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certain probability whereas energy markets with a forward capacity market or operating-reserve pricing re-

sult in higher investments. Finally, the regulator decisions (e.g., reserve capacity target) in capacity markets

and operating-reserve pricing can be chosen in such a way that results in very similar investment levels and

fuel mix of generation capacities in both market designs.

Keywords: electricity markets, generation investment modeling, capacity market, operating reserve pricing,

perfect competition equilibrium, stochastic optimization.

JEL codes:C61,C63,D41,C68,L94,Q48

1 Introduction

In the days of regulated monopolies, there was no issue of generation resource adequacy. Companies were

obligated to serve the demand and had to invest accordingly;an optimization model was used to compute the

expansion of generation capacity decisions that would satisfy demand at minimal investment and operations

costs (subject to reliability constraints that we will not discuss here). In compensation for this obligation,

electricity prices were regulated (often at average cost) in a way that guaranteed that the company could pay for

its expenses (including reimbursement of long term debt) and make a reasonable profit on equity. The theory

of peak load pricing for non-storable commodities, such as electricity, is the economic counterpart of these

computational models; it can be seen as an economic interpretation of the capacity expansion model in terms

of electricity prices that induce efficient investments andoperations. Of particular importance, the theory of

peak load pricing explains that the price of electricity in the highest demand period must embed a particular

(peak load) component to induce an efficient capacity mix. Both the capacity expansion models and the theory

of peak load pricing can be traced back to work conducted inÉlectricité de France in the fifties and sixties (see

the collection of early papers treating both subjects in Morlat and Bessière (1971)).

Capacity expansion models were extensively developed during the regulatory periods before loosing some

of their appeal after restructuring. After restructuring,generation and investments became the responsibility of

companies who had to make a profit on the electricity market. This gave rise to the question whether energy-

only electricity markets would provide incentives for adequate investments and thereby maintain security of

supply. This discussion focuses especially on those power plants which will only be needed to meet demand

at peak hours and therefore have to earn sufficient revenues in those hours to cover their investment costs. The

theory of peak load pricing, which was initially developed for the regulated monopoly, was later proved equally

relevant to perfectly competitive markets (in case of elastic demand, see Crew et al. (1995) for a survey). This

theory has become crucial today to explain why competitive electricity markets may not spontaneously provide

the right incentive to invest in generation capacity for peak load and to suggest remedies to this market failure.

In this paper, we consider three variations of competitive electricity market designs known as energy-only

market with VOLL pricing (or a price cap), a forward capacitymarket, and operating-reserve pricing as possi-

ble remedies to a market failure of insufficient generation capacity investment. We also discuss demand-side
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bidding which is strictly speaking not a remedy to a market failure but an alternative way to remove this market

failure. We formulate generation capacity investment decisions in these electricity market designs as two-stage

equilibrium problems, which is a natural way of modelling problems with multiple decision makers in a com-

petitive environment. We show that most of these equilibrium models can be cast in mathematical programming

formulations that are not too far from the early capacity expansion models. Establishing the exact relations be-

tween the two-stage equilibrium problems and the early capacity expansion models under these market designs

is one of the main objectives of this paper. We continue this introduction by formalizing the question of resource

adequacy in competitive electricity markets. We do so by referring to the early capacity expansion models (in

the most simplified setting) and to the interpretation of their dual solution in peak load pricing terms.

Consider the following simple generation capacity expansion model of a regulated monopoly where supply

and demand are located at a single node. There is a finite set ofplant typesK and a finite set of time segments

Ω (these can also be interpreted as states of the world, as we later do) each occurring with some durationπ(ω)

(that we later interpret as probabilities).d(ω) is the demand in time segmentω ; κk andck are the unit capacity

and unit generation cost of plantk; xk is the capacity of plant typek andyk(ω) is the generation of this plant

in time segmentω . Assuming the monopoly firm is regulated in a way that motivates cost minimization, the

capacity expansion model, together with its dual variables, β (ω)1 andp(ω)1, is stated as:

min∑
k

κkxk+∑
ω

π(ω)∑
k

ckyk(ω)

s.t. xk−yk(ω)≥ 0 π(ω)βk(ω) ∀ω ∀k

∑
k

yk(ω)−d(ω)≥ 0 π(ω)p(ω) ∀ω

yk(ω)≥ 0 xk ≥ 0 ∀ω ∀k.

(1)

This model allows the monopoly firm to determine an optimal investment portfolio of generation capacity

mix for satisfying various demand levels2. The closely related producer and consumer surplus maximization

problem has a richer economic content. LetP(ω ,d) be the inverse demand function of the market where the

price is given as a function of quantity supplied in time segment ω ∈ Ω. The producer and consumer surplus

maximization problem is written as:

max∑
ω

π(ω)

[

∫ d(ω)

0
P(ω ,ξ )dξ −∑

k

ckyk(ω)

]

−∑
k

κkxk

s.t. xk−yk(ω)≥ 0 π(ω)βk(ω) ∀ω ∀k

∑
k

yk(ω)−d(ω)≥ 0 π(ω)p(ω) ∀ω

yk(ω)≥ 0 xk ≥ 0 ∀ω ∀k,

(2)

1Note that we multiply these dual variables with their probabilities in the models (1) and (2) for the purpose of scaling.
2In the formulation (1), the demand constraint is assumed to be always binding ifck > 0,∀k. In more general market models with

transmission or unit commitment constraints, however, theoptimal solution might not be binding since technical and economic reasons
may drive generators to run even when power supply exceeds the demand. In these situations, generators may seek to maintain output
by offering to pay wholesale buyers to take their electricity. This could yield negative price in some locations or periods.
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where
∫ d(ω)

0
P(ω ,ξ )dξ is known as the consumers’ willingness to pay atd(ω). The KKT conditions of

problem (2) provide the necessary relations to explain the resource adequacy problem. Specifically the KKT

condition associated with a positive generation variableyk(ω) is stated as:

ck+βk(ω) = P(ω ,d(ω)) = p(ω), ∀ω . (3)

Alternatively, the KKT condition associated with a positive investment variablexk is stated as:

∑
ω

π(ω)βk(ω) = κk. (4)

The economic interpretation of (3) is that a plant of typek which is operating in time segmentω generates a

(scarcity or capacity) rentβk(ω) in that time segment; this rent is equal to the difference between the electricity

price p(ω) in that time segment and the plant’s fuel costck. The economic interpretation of (4) is that one

invests in a plant of typek when the duration (π) weighted sum of the rentsβk(ω) over all time segments

ω is equal to the investment costκk. Departing from this pricing scheme induces inefficiencies, either at the

consumption or generation side. The question of resource adequacy is whether restructured electricity markets

lead to electricity prices that satisfy these relations. Ifnot, there is a resource adequacy problem.

It is now recognized that the original restructured electricity markets do not spontaneously satisfy relations

(3) and (4). Because electricity is not storable, the market(barring demand-side bidding) clears in the short

run when demand is inelastic. The market therefore does not ensure (3), because it does not face a downward

sloping demand curve in the short run. Instead, the organization of the market sets the price at the bid of the

last plant selected to satisfy the demand, which used to be a widely used pricing scheme when liberalisation

was introduced in many countries such as in Europe and in the US. Barring market power and demand-side

bidding, this price is equal to the fuel cost of the last selected power plant in time segmentω . This implies

that the most expensive unit in operations over the different time segmentsω (the peak plant) does not make

any margin and hence (3) is not satisfied for that unit. This can be interpreted as follows: the electricity price

in the peak does not incorporate the necessary component, called as “scarcity rent”, that pays for the capacity

at peak demand. The peak plant therefore appears with a zero margin in (4) which is thus also never satisfied

for that equipment. This missing margin is now commonly referred to as the missing money. Stoft (2002)

was among the first ones to analyze investments by invoking insufficient payments for capacity. He explained

how, barring well developed demand-side bidding, pools andpower exchanges prevent prices on the market

to reflect scarcity in generation capacity (see also Cramtonand Stoft (2005, 2006)). Both Hogan (2005) and

Joskow (2007, 2008) also offer enlightening and in depth analysis of the missing money. Oren (2007) provides

a comprehensive description of the different techniques aimed at restoring resource adequacy; he also discusses

various implementations and gives an extensive list of references.

Guaranteeing resource adequacy therefore requires eliminating the missing money by creating enough ca-
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pacity rentβk(ω) to cover the capital costs of an efficient generation system,including the capacity cost of the

peak plant. This in turn requires changing the electricity pricing mechanism. In an energy-only system, the idea

is to price electricity at a high value that is supposed to reflect the value of lost load (VOLL), known as VOLL

pricing, when demand is curtailed. In perfectly competitive markets, Stoft (2002) shows that VOLL pricing re-

sults in optimal generation capacity investments. However, in reality VOLL is difficult to estimate and therefore

a price cap (which is in general lower than VOLL) is used. If the price cap induced by the regulator is not high

enough, this will constrain prices from rising up to their competitive levels at peak hours, yielding underinvest-

ment in generation capacity (e.g., see Joskow (2008)). An alternative solution for avoiding market failure is to

implement a capacity market where the regulator imposes some capacity target in line with historical data and

expected demand and the firms contributing to the sufficient investment level receive numerations accordingly.

In order to increase the robustness against market power, many variants of capacity markets have been proposed

regarding the implementation of the market design and the treatment of demand response (e.g., Cramton and

Stoft (2005), Joskow (2008), Hobbs et al. (2007), Cramton and Ockenfels (2011)). Here we assume a forward

capacity market where capacity is auctioned before the investment decision is made and the resulting capacity

payment is certain for the lifetime of the plant. A more sophisticated alternative remedy is to apply some form

of reliability or operating-reserve pricing so that electricity price increases when the reserve margin decreases

(Stoft (2002), Hogan (2005), Hogan (2009)). Lastly, as a categorically different alternative, ensuring a price

responsive demand in the short-run as well as in the long-runmay remedy the resource adequacy issue.

In recent years, more and more countries have implemented (e.g., US states) or are planning to implement

a variety of these market mechanisms aimed at stimulating investments in new generation capacity, such as

scarcity pricing when capacity is inadequate or capacity payments via additional capacity markets next to the

electricity market. For policy analysis in real world problems, practical tools are needed to gain insights into

the social implications of a market design or a policy target(see e.g., Schroeder (2012) and Allcott (2012)

for examples of real world applications). Thus, we concentrate on these four mechanisms (including demand-

side bidding briefly) in our analysis with the following contributions. We first expand on existing short run

equilibrium models of restructured systems to include generation capacity decisions under these resource ade-

quacy mechanisms and uncertainty about future electricitymarket conditions. The natural approach is to resort

to complementarity formulations as this mathematical programming paradigm has been extensively used to

model restructured electricity systems. We then assess theextent to which these models can be restated as op-

timization problems as solvers for optimization problems are now numerous and quite powerful. Furthermore,

we provide insights about to what extent the investment incentives are affected by these different mechanisms

under demand uncertainty. To this end, we illustrate how allthese models can be numerically tackled and

present some numerical experiments.

We assume price-taking firms and hence exclude market power.Even if real markets may depart from per-

fect competition, perfect competition models provide an essential benchmark for imperfect competition models.

Moreover, real markets may suffer from inefficiencies as a result of regulatory intervention or market design.

Utilizing perfect competition models still allows policy makers to gain insights into the social implications of
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a market design or a policy target (e.g., Allcott (2012)). Inaddition, there are computational reasons. Multi-

stage imperfect competition models are difficult if not impossible to solve. This is already true for two-stage

investment and operation models that are EPEC (equilibriumproblem subject to equilibrium constraints) when

involving market power (see Ralph and Smeers (2006), Hu and Ralph (2007) for more details on these and

related complications). More general models involving a sequence of cycle of investment and operations are

at this stage computationally unexplored. Last, the experience of reformed markets indeed shows that market

power mitigation instruments are effective and that properly designed reformed markets function competitively

and hence can be modeled under the perfect competition assumption. For example, the market monitoring

results of PJM (2012) and CASIO (2012) indicate that market prices are at or near competitive levels most of

the time in US states. Furthermore, the European Union and its Member States are underway to move towards

a fully integrated European electricity market by 2014 withthe aim to increase competition and maximize

the economic welfare of all players. In some of the regions (e.g., Germany-Belgium-France-The Netherlands)

where the integration has already taken place for some time,significant price convergence is observed between

the countries in most of the hours, which is a good indicator for competitiveness (see DG ENERGY (2012)).

To sum up, in this paper we will deal with a computable representation of the incentives to invest in power

markets functioning under perfect competition.

In reality, generation capacity expansion is a multi-period process. The market induces the creation of new

capacities and the retirement of old ones. A full version of the capacity expansion model therefore involves

a sequence of successive cycles of investment and operations (e.g., Schroeder (2012)). We limit our analysis

to simplified models that represent a single cycle of investment and operation: investment takes place in the

first stage at some investment costs; the market operates in the second stage with generators collecting sales

revenues and incurring fuel costs. This restriction is madefor the sake of the presentation. In contrast with

multi-period imperfect competition models, it is perfectly possible to implement the mechanisms considered

here in a multi-period context since convexity is in generalpreserved under perfect competition.

Although we focus mainly on electricity demand being uncertain and/or fluctuating with a very low elas-

ticity, our methodology and results summarized below can beeasily generalized to spot markets with other

uncertainties (i.e., fuel costs, transmission capacities, wind generation etc.). For given wind capacity and

volatile wind generation, one can substitute demand with residual demand levels (i.e., demand minus wind).

Under uncertainty about future electricity market conditions, real world problems including generation capacity

investment decisions lead to stochastic equilibrium problems (e.g., Schroeder (2012) and Allcott (2012)) that

are large scale and computationally more complex to solve than a stochastic optimization problem. Equilibrium

problems are indeed broader than optimization problems which is addressed in detail by Gabriel et al. (2012). In

this paper, we not only emphasize the link between optimization and equilibrium problems but also show that,

regarding the problem of generation capacity investments in perfectly competitive electricity markets, most of

the formulations of stochastic equilibrium problems can becast as two-stage stochastic programs.

We consider a perfectly competitive market consisting of three types of agents namely generators, a trans-

mission system operator (TSO), and consumers; all agents are price takers. Generators are assumed to be risk
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neutral and maximize their expected profits. The transmission system operator sells transmission services in

order to maximize the value of its infrastructure and consumers are simply represented by an inelastic demand

in most of the paper, except in Section 6 where we consider a price responsive demand. It may also be of in-

terest to include risk averseness of generators by using “coherent risk measures” (e.g., Ehrenmann and Smeers

(2011) and Ralph and Smeers (2011)). The resulting problemsare still stochastic equilibrium problems which

are somewhat modified versions of the stochastic equilibrium problems presented in this paper. When the mar-

kets are “perfectly competitive” and “complete”, the formulation of an equivalent two-stage stochastic program

is still possible as shown by Ralph and Smeers (2011). The main contributions of this paper can be summarized

as follows:

• We expand the existing short-run models of restructured electricity system to include both uncertainty

of spot market conditions (i.e., demand uncertainty) and resource adequacy mechanisms, such as VOLL

pricing, capacity market, and operating-reserve pricing,and also demand-side bidding as an alternative.

• In perfect competition, we show that most of the formulations of these “equilibrium” models are in

fact equivalent to or can be cast as optimization problems. In particular, in the stochastic setting this

result indicates the prevalence of two-stage stochastic programming for providing solutions to stochastic

equilibrium models. We believe that this result is helpful for making an economic assessment of the

investment incentives in new generation capacity in real world systems for the following reasons: in

Sections 8 and 9, we explain how we can solve a two-stage stochastic program as a nonlinear or linear

optimization problem. Due to the availability of powerful and efficient nonlinear programming solvers

and decomposition methods for two-stage stochastic programs, solving a two-stage stochastic program is

computationally much faster than solving a stochastic equilibrium model for large scale systems, which

we also observe in our numerical experiments. In only one case of operating-reserve pricing, we obtain

a complementarity problem that is not equivalent to an optimization problem.

• In perfect competition, we show that single and two-stage representation of these “equilibrium” models

are equivalent. In other words, the open loop equilibria andthe closed loop equilibria of these models

coincide.

• We use sample-path methods and provide detailed algorithmic approaches for numerically tackling all

these models, which allows solving these computationally complex stochastic problems by utilizing de-

terministic off-the-shelf solvers. We also illustrate that these algorithmic approaches help further decrease

the computational time compared to solving the two-stage equilibrium problem as a potentially very large

MCP (Mixed Complementarity Problem) including all the firstand second stage decision variables.

• Through numerical experiments, we gain insights on the impact of demand uncertainty and to what

extend these different mechanisms can remedy the resource adequacy issue. In particular, we first find
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that uncertainty of demand leads to higher total generationcapacity expansion and a broader mix of

technologies compared to the investment decisions assuming average demand levels. Furthermore for the

same VOLL (or price cap) level, energy-only markets with VOLL pricing tend to lead to total generation

capacity below the peak load with a certain probability whereas energy markets with a forward capacity

market or operating-reserve pricing result in higher investments assuming random demand with finite

support and no forced outages3. Last, the regulator decisions (e.g., reserve capacity target) in capacity

markets and operating-reserve pricing can be chosen in sucha way that results in very similar investment

levels and fuel mix of generation capacities in both market designs.

The rest of the paper is organized as follows. In Section 2, wegive the set up and notation used throughout

the paper. In Section 3, we first introduce the deterministicinvestment and operations model (in the context

of a two-stage equilibrium problem under perfect competition) and present it in two different formulations.

One is a single-stage (open loop) version of the model where generators simultaneously invest and decide

operations knowing future market prices. The other formulation is a two-stage (closed loop) model in which

investment and operation decisions are made sequentially.Generators operate the capacities inherited from the

first stage to maximize their profits. This market operation results in marginal values of plants that generators

take into account in the first stage in order to decide on theirinvestments. The distinction between open and

closed loop models is important when there is market power. We show that this distinction is irrelevant here:

both models are equivalent and can be reformulated as a single optimization problem of the standard capacity

expansion type. Although Section 3 begins with a deterministic model, the rest of the paper elaborates on

stochastic models involving demand that is unknown at the time of investment. In Section 3.2 we extend the

formulation to a stochastic energy-only equilibrium modeland again find that it is equivalent to a stochastic

capacity expansion model, which is a two-stage stochastic program. In Section 4, we take up the capacity

market formulation, which we find again equivalent to a convex stochastic programming problem. In Section 5,

we consider the more novel question of operating-reserve pricing for which we give two formulations that differ

by the computation of the operating-reserves. One formulation refers the reserve to observed demand; the other

refers it to the total capacity. The former one turns out to bea convex stochastic optimization problem, but the

latter is not. In Section 6, we give a brief discussion of demand-side bidding which we treat by assuming price

responsive demand; this can be thought of a completely different way of addressing resource adequacy issue.

Section 7 outlines how all our results can be generalized forother uncertain elements in spot markets, such

as unit generation costs and transmission capacities. We discuss various algorithmic approaches for handling

these models numerically in Section 8. We report numerical results in Section 9 and provide insights to what

extent the remedies to the missing money, discussed in Sections 3, 4, and 5, incite the generators to invest in

generation capacity. Conclusions terminate the paper. Finally, Appendix contains the proofs of some theorems,

lemmas, and propositions.

3Note that under different assumptions (e.g., forced outages, demand distribution without a finite support), VOLL pricing (with high
values of VOLL) may also result in similar investment levelsas the other market designs (see the result of Hobbs et al. (2001)).
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2 Set-up and Notation

We consider a market with a regulator and three types of agents; namely generators, a transmission system

operator (a TSO), and consumers. Generators and the TSO are price takers and maximize profits at given

prices; consumers are represented by an inelastic demand. Generators and consumers are spatially distributed

in an electricity transmission network which is operated bythe TSO. Generation and transmission of electricity

take place in the spot market and the locational marginal pricing is assumed to clear the spot market.

The regulator intervenes to remedy the lack of incentive to invest; his/her role differs depending on the

market design. In an energy-only electricity market, he/she sets the price of the unserved energy (VOLL) or

the price cap in case of demand curtailment. In an electricity market with a forward capacity market, he/she

sets the capacity target to guarantee resource adequacy andrewards the firms who contribute to the sufficient

investments to reach the target. Finally, in an electricitymarket with operating-reserve pricing, he/she sets

the price of the operating-reserve and provides the firms with additional payments whenever the systems total

reserve is scarce.

We consider agents interacting in a two-stage set-up: generators invest in their generation capacities in the

first stage and the generation is dispatched in the second stage where the spot market clears to satisfy demand

under transmission limitations. Under all market designs,the demand is first assumed to be constant during

the whole year. Then we consider a random demand which variesover a year and extend our analysis under

uncertainty of demand. The following notation would apply in a purely deterministic world:

Sets

N : set of all demand nodes

G : set of all firms

Ig : set of supply nodes of firmg∈ G

I : set of all supply nodes (I := ∪gIg)

Kg : set of plant types of firmg∈ G

L : set of electricity transmission lines in the network

Parameters

cg
ik : unit generation cost of plant typek∈ Kg owned by firmg∈ G at supply nodei ∈ Ig

κk : unit capacity cost of plant typek∈ Kg

dn : demand at noden∈ N

PTDFl , j : power transmitted through linel ∈ L due to one unit of power injection from node

j ∈ {N∪ I} to an arbitrary hub4 node

hl : capacity limit of linel ∈ L

VOLL : the value of unserved energy or lost load

4PTDF is calculated based on a hub node inn∈ N in a standard DC load flow model. The choice of hub node is arbitrary. That is,

9



Variables:

Second Stage:

yg
ik : quantity of power generated by plant typek∈ Kg of firm g∈ G at supply nodei ∈ Ig

f j : net power flow dispatched by TSO from nodej ∈ {N∪ I}

δn : unserved (curtailed) energy at noden∈ N

p j : locational market price (nodal price) at nodej ∈ {N∪ I} which corresponds to shadow

price of market clearing constraint

First Stage:

xg
ik : capacity of plant typek∈ Kg owned by firmg∈ G at nodei ∈ Ig.

3 Energy-only Market

We start our analysis with an energy-only electricity market. In an energy-only market with inelastic (exoge-

nous) demand, the price of electricity is set by the market atthe bid of the most expensive plant generating

unless the demand is curtailed. When demand is curtailed, the price is capped by the regulator at the value

of loss load (VOLL) or a price cap. During the hours of curtailment, the peak plant obtains extra margin to

compensate its missing money for the whole year. The demand is first assumed to be constant during the whole

year in Section 3.1. In Section 3.2, we consider a random demand which varies over a year.

3.1 Two-stage Equilibrium Model with Constant Exogenous Demand

In Section 3.1.1, we give the exact formulation of the interactions between the agents in an energy-only market

at both stages when demand is fixed and we show some characteristics of both the short run and the long run

perfect competition equilibria. By using these characteristics, we show in Section 3.1.2 that solving a single

optimization problem where all the generation capacities are determined by a central decision maker finds a

perfect competition equilibrium of the two-stage game introduced in Section 3.1.1.

3.1.1 The Perfect Competition Equilibrium as Mixed Complementarity Problem

We next formulate each agent’s problem in the two-stage gamewhere firms give their investment decisions,x,

simultaneously at the first stage and they decide on their optimal generation levels,y, in the spot market at the

second stage. Note that demand is exogenous and known to all firms who are price takers at both stages.

Second Stage: At the second stage, each firmg∈ G maximizes its short term profit from the spot market by

optimization problem (5):

the flows resulting from a power injection at one node and an equal withdrawal at another do not depend on the location of thehub.
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Π∗
g(x

g) := max
yg ∑

i∈Ig
∑

k∈Kg

(pi −cg
ik)y

g
ik

s.t.

Consg(xg) :
yg

ik ≤ xg
ik (β g

ik) ∀i ∈ Ig,k∈ Kg

yg
ik ≥ 0 ∀i ∈ Ig,k∈ Kg,

(5)

whereβ g is the vector of Lagrange multipliers associated with the capacity constraints (yg ≤ xg) and is referred

as capacity/scarcity rent. Note that the nodal prices,p, enter as parameters to firms’ second stage problems.

Since all firms are price-takers under perfect competition,they act as if they cannot affect the value ofp. As an

important consequence, the nodal prices will also be taken as parameters in firms’ first stage problems given in

(10).

For a given set of generation decisions{yg}g∈G of the firms and nodal prices{p j} j∈{N∪I}, if there exists

a price difference between any two nodes in the spot market, TSO decides on imports/export flows{ f j} j∈N∪I

as long as there are available transmission possibilities and it maximizes its profits from the transmission of

electricity. Specifically, TSO effectively acts as an arbitrageur. TSO’s problem is given by (6):

max
f

∑
j∈{N∪I}

p j f j

s.t.

ConsTSO:

∑
j∈{N∪I}

f j = 0 (ρ)

∑
j∈{N∪I}

PTDFl , j f j ≤ hl (λ+
l ) ∀l

− ∑
j∈{N∪I}

PTDFl , j f j ≤ hl (λ−
l ) ∀l ,

(6)

whereρ ,λ+
l , andλ−

l are Lagrange multipliers of problem (6). In (6),ConsTSOis the set of Kirchoff law

based transmission constraints faced by TSO in the electricity network. TSO is also a price-taker and cannot

affect the nodal prices,p, to maximize its profit.

Finally, the nodal prices are determined to clear the spot market when supply matches the demand minus

possible curtailments. In case of a curtailment, the electricity is priced at VOLL by the regulator. The spot

market clearance conditions are given in (7):

MCP Market :
0≤ ∑

g∈G
∑

k∈Kg

yg
jk +δ j + f j −d j ⊥ p j ≥ 0 ∀ j ∈ {N∪ I}

0≤VOLL− pn ⊥ δn ≥ 0 ∀n∈ N,

(7)

where p j represents the locational marginal price of unit power ($/MWh) at nodej ∈ {N∪ I} andδn is the
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curtailed energy. Note that nodej may be both a supply and a demand node. If it is only a supply node, thenδ j

andd j equal to zero or if it is only a demand node then(yg
jk)g∈G,k∈K equal to zero.

The spot market equilibrium conditions consist of the KKT optimality conditions of problem (5) for all

firms g ∈ G, the KKT optimality conditions of TSO’s problem (6), and themarket clearance conditions (7),

which can altogether be formulated by the mixed complementarity problem (MCP) (8). An equilibrium point

satisfying the conditions in MCP (8) consists of the optimalgeneration quantitiesy∗ for all firms and the optimal

import/export flow decisionsf ∗ for TSO in the spot market:

MCP Firms(x) :
0≤ cg

ik − p∗i +β ∗g
ik ⊥ y∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤ x∗g
ik −y∗g

ik ⊥ β ∗g
ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

MCP TSO:

0≤ hl − ∑
j∈{N∪I}

PTDFl , j f ∗j ⊥ λ ∗+
l ≥ 0 ∀l

0≤ hl + ∑
j∈{N∪I}

PTDFl , j f ∗j ⊥ λ ∗−
l ≥ 0 ∀l

p∗j −ρ∗+∑
l∈L

PTDFl , j(λ ∗−
l −λ ∗+

l ) = 0 ∀ j ∈ {N∪ I}

∑
j∈{N∪I}

f ∗j = 0

MCP Market :
0≤ ∑

g∈G
∑

k∈Kg

y∗g
jk +δ ∗

j + f ∗j −d j ⊥ p∗j ≥ 0 ∀ j ∈ {N∪ I}

0≤VOLL− p∗n ⊥ δ ∗
n ≥ 0 ∀n∈ N.

(8)

Boucher and Smeers (2001) consider a competitive equilibrium of a game in spot market where none of

the agents (firms, consumers, and TSO) has market power. The interactions between firms and TSO in (5) and

(6), respectively, is an example of such a game. Boucher and Smeers (2001) also introduce an optimization

problem referred to as Optimal Power Flow Problem (OPF). In our setting, for givenx, the OPF problem with

exogenous demand corresponds to a linear program (LP) as given in (9):

min
{y,δ , f}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik +VOLL∑
n

δn

s.t.

ConsMarket :
∑
g∈G

∑
k∈Kg

yg
jk +δ j + f j ≥ d j (p j) ∀ j ∈ {N∪ I}

δn ≥ 0 ∀n∈ N

f satisfyConsTSO

yg satisfyConsg(xg) ∀g∈ G.

(9)
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Let (y∗,δ ∗) and p∗ be the optimal primal solution (generation quantities, curtailed demand) and optimal

dual solution (nodal prices) of OPF problem (9) for a givenx, respectively. Boucher and Smeers (2001) show

that the solution(y∗,δ ∗, p∗) is also a competitive equilibrium of the game between firms and TSO defined in (8)

and vice versa. Indeed, it is easy to verify that the set of necessary and sufficient optimality conditions of the

LP (9) is equivalent to the MCP (8). Therefore, we may solve the LP (9) directly and take its optimal solution

as a perfect competition equilibrium of the spot market at the second stage.

First Stage: At the first stage, each firmg∈ G determines its optimal investment quantitiesxg maximizing its

long term profit which is equal to its optimal short term profitfrom the spot market at the second stage minus

its investment cost. Since firms are price-takers, they act as if the market price is given, and hence the nodal

prices,p, appear as parameters in firms’ both first and second stage problems (10) and (5), respectively. Given

p, each firmg∈ G maximizes its long term profit by optimization problem (10) at the first stage:

max
xg≥0

∑
i∈Ig

∑
k∈Kg

(pi −cg
ik)y

∗g
ik (x

g)− ∑
i∈Ig

∑
k∈Kg

κkx
g
ik (10)

where{y∗g
ik (x

g), ∀g, i,k} are the optimal generation quantities of firms in the spot market at equilibrium for given

(xg)g∈G. Next, in Lemma 3.1, we show that each firm’s optimal investment is equal to its optimal generation

amount in the spot market at equilibrium when we have constant demand5. This is an intuitive result for

deterministic investment problems with fixed demand level;however we are not aware of a formal proof.

Lemma 3.1. Let x∗g be the vector of optimal investment quantities of each firm g∈ G for (10) and y∗ be the

vector of optimal generation quantities from OPF problem (9) for x= x∗. Then y∗g = x∗g for all g ∈ G.

Proof. There are two possibilities fory∗g as a solution of OPF problem forx= x∗: y∗g
ik = x∗g

ik , or y∗g
ik < x∗g

ik . The

latter cannot hold at optimum of the first stage problem of firmg ∈ G, since one can always decreasex∗g
ik to

the level ofy∗g
ik and achieve a higher profit. In other words, the latter is always dominated by the former which

achieves the same cost for OPF problem and a higher profit for firm g∈ G.

In the next lemma, we provide a characterization for the optimality conditions of each firm’s capacity

decisions at the first stage. This type of formulation for deterministic problems has also been formulated in

the literature and explicitly illustrates the impact of thescarcity rents determined at the second stage on the

firm’s investment decisions at the first stage. We see that firms have an incentive to invest if the scarcity rents

determined at the second stage offset their investment cost. This is a very intuitive result which can also be

observed in early capacity expansion models developed during regulatory periods. A corresponding result (with

the expectation of scarcity rents) will appear later when firms choose their capacity under demand uncertainty

in Section 3.2.1, as well as when the firms have market power atthe first stage as shown by Gürkan et al. (2012).

5Note that this result will not hold for all periods and all firms when we have multiple demand periods, see Section 3.2 for details.
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Lemma 3.2. Let x∗ = {x∗g}g∈G be a point such that lower level problem (9) has a feasible solution andΠ∗
g(x

g)

is finite for all g∈ G in the neighborhood of x∗. Then x∗ is an equilibrium of the first-stage game if and only if

there existsβ ∗ such that

0≤−β ∗g
ik +κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg. (11)

Proof. Firm g’s problem (10) can also be formulated as follows:

max
xg≥0

Π∗
g(x

g)− ∑
i∈Ig

∑
k∈Kg

κkx
g
ik

whereΠ∗
g(x

g) is the optimal objective function value for problem (5) at a given xg and given prices. Note that

(5) is a linear program wherexg is the right hand side parameter. It is well known thatΠ∗
g(·) is a concave

function ofxg. Π∗
g(x

g) is also subdifferentiable atx∗g whenΠ∗
g(x

g) is finite in the neighborhood ofx∗. Hence,

x∗g is an optimal solution of (10) for each firmg∈ G if and only if there existβ ∗g
ik ∈

∂Π∗
g(x

∗g)

∂xg
ik

satisfying the

necessary and sufficient optimality conditions

0≤−β ∗g
ik +κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

Therefore, a solution to this two-stage game, if it exists, should satisfy the optimality conditions given in

(11) at the first stage and the optimality conditions given in(8) at the second stage simultaneously, and vice

versa. Combining these with Lemma 3.1, we obtain the next lemma.

Lemma 3.3. If there exists a solution x∗ to the two-stage game then it satisfies the following complementarity

conditions:

0≤ cg
ik − p∗i +κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤ ∑
g∈G

∑
k∈Kg

x∗g
jk +δ ∗

j + f ∗j −d j ⊥ p∗j ≥ 0 ∀ j ∈ {N∪ I}

0≤VOLL− p∗n ⊥ δ ∗
n ≥ 0 ∀n∈ N

( f ∗, p∗,ρ∗,λ ∗+,λ ∗−) satisfy MCPTSO.

(12)

Moreover, if there exists a solution to the complementarityconditions in (12), then it is a solution to the two-

stage game.

Proof. See Appendix.
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3.1.2 An Equivalent Single Optimization Problem

It is easy to see that since we will always havex∗ = y∗ in the two-stage game with constant demand, (10) and

(5) reduce to the following single-stage formulation:

Π̄∗
g(x

g) := max
xg ∑

i∈Ig
∑

k∈Kg

(pi −cg
ik −κk)x

g
ik

s.t. xg
ik ≥ 0 ∀i ∈ Ig,k∈ Kg.

(13)

The market clearance conditions can also be modified such that yg in (7) is replaced withxg (say in (7′)).

Then, one can easily verify that the equilibrium conditionsof the resulting single-stage game ((13), (6), and (7)′)

are equivalent to the complementarity conditions given in (12); therefore by using Lemma 3.3, the solution of

this single-stage game is equal to the solution of the two-stage game in Section 3.1.1. In other words, in perfect

competition open loop and closed loop equilibria coincide.

Next, we show that a perfect competition equilibrium of the two-stage (or one-stage) game can be found by

solving a particular single optimization problem which we introduce below in (14). This formulation is nothing

but a variation of early capacity expansion models, given in(1), used for decisions of regulated monopolies. In

this formulation, one can also think that the investment amounts of all firms are decided by a central decision

maker or a regulated monopoly who is minimizing the total cost of the system (i.e., total generation, investment,

and dispatch costs):

min
{x,δ , f}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

(cg
ik +κk)x

g
ik +VOLL∑

n
δn

s.t. ∑
g∈G

∑
k∈Kg

xg
jk +δ j + f j ≥ d j (p j) ∀ j ∈ {N∪ I}

x,δ ≥ 0

f satisfyConsTSO.

(14)

Theorem 3.4. A solution to the optimization problem (14), if it exists, isa solution of the two-stage game.

Moreover, if there exists a solution of the two-stage game, then it is also a solution of the optimization problem

(14).

Proof. The necessary and sufficient optimality conditions of the linear program in (14) is equivalent to the

complementarity conditions given in (12). By using Lemma 3.3, the result follows immediately.

By using Theorem 3.4, the uniqueness and existence of competitive equilibria for the two-stage game in

Section 3.1.1 may also be established. The existence follows from the existence of a solution to the optimization
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problem (14), i.e., if it is feasible and bounded. Moreover,if the solution to (14) is unique, then clearly there is

a unique perfect competition equilibrium to the two-stage game.

3.2 Two-stage Equilibrium Model with Stochastic ExogenousDemand

In Section 3.1, we focused on a constant demand load over a year and showed that single (open loop) and

two-stage (closed loop) games are equivalent; furthermore, one can find the perfect competition equilibrium by

solving a single optimization problem. We have done this to present the notation and the basic properties of

the underlying mathematical model. Clearly, demand is seasonal and time varying in reality. Moreover, future

demand is uncertain. Both seasonality and uncertainty of future demand affect the choice of the plant type.

While a constant yearly demand would lead to selecting a single technology in the solution of (14), seasonality

and uncertainty of demand imply a portfolio of technologies. We thus extend the preceding model and consider

the more realistic case in which demand is uncertain and varies, say, over a year. First, we prove that one can

find a perfect competition equilibrium to the two-stage gameunder demand uncertainty by solving a two-stage

stochastic program. We then show that the equivalence of single and two-stage games still holds in a perfectly

competitive market when demand is random and has finite number of possible scenarios. In other words, the

open loop equilibria and the closed loop equilibria coincide.

In Section 3.2.1, we analyze the solution of the two-stage competitive game outlined in Section 3.1.1 under

demand uncertainty. We then introduce in Section 3.2.2 a two-stage stochastic program where a central decision

maker decides on the capacity levels of all firms minimizing the total expected cost at the upper level under

demand uncertainty. He/she then chooses the optimal generation quantities of all firms as demand is observed

at the lower level. The spirit of this stochastic program is not very far away from the early capacity expansion

model given in (1). We end Section 3.2.2 with Theorem 3.7 by showing that a solution of this two-stage

stochastic program is also a solution of the two-stage stochastic game. Finally, in Section 3.2.3 we give the

single-stage formulation of the two-stage stochastic gamewhen the random demand has discrete distribution.

We show that an equilibrium of the single-stage formulationis also an equilibrium of the two-stage formulation

3.2.1 The Perfect Competition Equilibrium under Demand Uncertainty

Consider now the case when the investment decision at the first stage should be made before observing the

uncertain demand at the second stage. The notation of the two-stage model under uncertainty will be almost

identical to the notation given in Section 2 except we will utilize ω ∈ Ω to denote the uncertainty in demand

that can take different values in different states of the world ω ∈ Ω, each occurring with some probability. We

will also denote the dependency of the second stage variables with respect toω in order to facilitate the main

distinction between the first stage variables and the secondstage variables where the former do not depend on

ω ∈ Ω. To derive our theoretical results, we will assume that the probability distribution of demand,d(ω),

is known. This assumption is valid in situations where the dispatch of electricity and market clearance in the
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spot market repeats itself and the distribution of demand can be estimated from historical data. In practice, also

as part of our numerical procedures in Section 8, we will needonly a sample ofd(ω) rather than the entire

distribution ofd(ω). Without knowing the exact distribution of the random variable, samples ofd(ω) may be

obtained simply from historical data or, for instance, fromcomputation-based simulations (where it may be

easier to estimate the so-called basic factors, but since these factors interact in nonlinear and/or non-smooth

ways, numerical procedures are needed to draw the samples).

Second Stage: For now, we suppose thatdn(ω) indicates continuous random demand at noden with a general

distributionΨn. Let (Ω,F ,Ψ) denote the common underlying probability space whereΨ represents the joint

probability distribution for the random demand vectord(ω) := {dn(ω)}n∈N with E[|d(ω)|] < ∞. Then for

givenω ∈ Ω, we can write the second stage problem of each firmg∈ G in (5), TSO’s problem in (6), and the

market clearing conditions in (7) in the state of the worldω (i.e., with second stage variables depending onω).

For instance for givenxg, the second stage problem of each firmg∈ G in state of the worldω is given as:

Π∗
g(ω ,xg) := max

yg(ω)
∑
i∈Ig

∑
k∈Kg

(pi(ω)−cg
ik)y

g
ik(ω)

s.t.

Consg(ω ,xg) :
yg(ω)≤ xg

ik (β g
ik(ω)) ∀i ∈ Ig,k∈ Kg

yg
ik(ω)≥ 0 ∀i ∈ Ig,k∈ Kg,

(15)

which is identical to (5) when there is one state of the world with constant demand. Note that since all firms are

assumed to be price-takers, the nodal prices,p(ω), appear as parameters in firms’ both first and second stage

problems.

By similar arguments in Section 3.1.1, we know that we can finda perfect competition equilibrium of the

spot market at eachω by solving OPF problem (16). For givenx and eachω ∈ Ω:

Z∗(ω ,x) := min
{y(ω),δ (ω), f (ω)}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik(ω)+VOLL∑
n

δn(ω) (16)

s.t.

ConsMarket(ω) :
∑
g∈G

∑
k∈Kg

yg
jk(ω)+δ j(ω)+ f j(ω)≥ d j(ω) (p j(ω)) ∀ j ∈ {N∪ I}

δn(ω)≥ 0 ∀n∈ N
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ConsTSO(ω) :

∑
j∈{N∪I}

f j(ω) = 0 (ρ(ω))

hl − ∑
j∈{N∪I}

PTDFl , j f j(ω)≥ 0 (λ+
l (ω)) ∀l

hl + ∑
j∈{N∪I}

PTDFl , j f j(ω)≥ 0 (λ−
l (ω)) ∀l

Consg(ω ,xg) :
xg

ik −yg
ik(ω)≥ 0 (β g

ik(ω)) ∀g∈ G, i ∈ Ig,k∈ Kg

yg
ik(ω)≥ 0 ∀i ∈ Ig,k∈ Kg.

∀g∈ G

Remark3.5. Note that (16) is almost identical to (9) in which we indicatethe explicit dependence toω for the

variables that are affected by demand uncertainty. From Boucher and Smeers (2001), we know that at eachω
a solution of (16) is also a perfect competition equilibriumof the spot market at the second stage.

First Stage: At the first stage, we assume risk neutral firms making decisions on the basis of the expectation

of their short term profit in the spot market. Consequently, we can write the optimization problem of each risk

neutral firmg∈ G maximizing its long term profit at the first stage:

max
xg≥0

Eω [∑
i∈Ig

∑
k∈Kg

(pi(ω)−cg
ik)y

∗g
ik (ω ,xg)]− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik, (17)

wherey∗(ω ,x) is the vector of generation quantities of firms in the spot market at equilibrium and, hence is the

solution of Optimal Power Flow Problem (16) at the second stage for givenx andω ∈ Ω.

It is obvious that we no longer have the equality of first and second stage decision variables as in Lemma

3.1 when we move to the two-stage game under uncertainty. However, one can still use arguments similar to

the ones inProof of Lemma 3.2in order to formulate the impact of average scarcity rent received at the second

stage on the investment decisions of the firms.

Lemma 3.6. LetΠ∗
g(ω ,xg) be finite at the neighborhood of a point x∗ = {x∗g}g∈G for almost everyω ∈ Ω. For

investment choice x∗g, let Eω [β ∗g
ik (ω)] be the expected scarcity rent that firm g∈ G receives at the second stage

for using technology k∈ Kg at node i∈ Ig. Then x∗ is a solution of the first stage game if and only if

0≤−Eω [β ∗g
ik (ω)]+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg. (18)

Proof. See Appendix.

One can interpret the expected scarcity rent in (18) as the expected marginal revenue of firmg at nodei

for investing in technologyk. If the expected marginal revenue of investing in technology k at nodei is not
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enough to cover the firm’s marginal cost of investment in technology k (κk), the firm chooses not to invest in

that technology at nodei. Otherwise, the firm invests in technologyk at nodei at a level where the expected

scarcity rent is equal to the unit investment cost. (18) is essentially identical to the relation (4) of early capacity

expansion models. For peak load generators,β ∗g
ik (ω) is equal to zero unless demand is curtailed. Thus, peak

load generators tend to underinvest so that total generation capacity is below the peak load with a certain

probability and they cover their investment costs by VOLL during peak hours. Note that (18) represents the

first stage equilibrium conditions of risk neutral generators. When generators are assumed to be risk averse, the

formulation in (18) can be modified by replacing the statistical probabilities with the risk adjusted probabilities;

see Ehrenmann and Smeers (2011) for the corresponding modification.

3.2.2 An Equivalent Two-stage Stochastic Program

In this section we show that one can find an equilibrium to the two-stage stochastic game by simply solving a

stochastic program. As a consequence, the computational challenge of finding a solution of the two-stage game

may be considerably reduced. The stochastic program we present below may be considered as the capacity

expansion problem of a central decision maker who chooses the capacities(x) of all firms at the first stage in

order to minimize the total expected cost of the system without knowing the future uncertain demand. He/she

then determines the dispatch quantitiesy(ω) of all firms after observing the demand (possibly repeatedly) at the

second stage by solving (16). The problem faced by the central decision maker at the first stage is formulated

as

min
x≥0

Eω [Z
∗(ω ,x)]+ ∑

g∈G
∑
i∈Ig

∑
k∈Kg

κkx
g
ik. (19)

Note that in Section 3.2.1 we have an equilibrium problem at the first stage consisting of| G | optimization

problems, each one given by (17) forg ∈ G. The stochastic program we introduce here consists of a single

optimization problem, namely (19), at the first stage and thedecision variables are the investment quantities

of all firms. At the second stage, we have another single optimization problem for each realization which is

formulated by (16).

Theorem 3.7. Consider the two-stage stochastic program which consists of the problems(19)at the first stage

and(16)at the second stage. Let x∗ be the optimal solution of this two-stage stochastic program where Z∗(ω ,x)

andΠ∗
g(ω ,xg) are finite in the neighborhood of x∗ for almost everyω ∈ Ω. Then x∗ is also a perfect competition

equilibrium of the two-stage stochastic game given in Section 3.2.1 and vice versa.

Proof. (16) is a linear program. Thus, we know thatZ∗(ω ,x) is a convex function ofx for all ω ∈ Ω which

implies the convexity of the expectationEω [Z∗(ω , ·)]. By using an argument similar to the one in theProof of
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Lemma 3.6, one can show thatEω [β ∗g
ik (ω)] is unique,Eω [Z∗(ω , ·)] is differentiable, and

∂Eω [Z∗(ω , ·)]

∂xg
ik

=−Eω [β ∗g
ik (ω)]. (20)

SinceEω [Z∗(ω , ·)] is convex and differentiable,x∗ is optimal for the problem (19) if and only if

0≤
∂Eω [Z∗(ω ,x∗)]

∂xg
ik

+κk ⊥ x∗g
ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

By using (20), we can rewrite the necessary and sufficient optimality conditions of (19) as

0≤−Eω [β ∗g
ik (ω)]+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg. (21)

The necessary and sufficient optimality conditions in (21) are identical to the equilibrium conditions of the

first stage game given in Lemma 3.6. Besides, the necessary and sufficient optimality conditions of (16) are

the equilibrium conditions of the second stage game. The solution (x∗,y∗(ω ,x∗)) to the two-stage stochastic

program is feasible for the first stage game and an equilibrium of the second stage game since it satisfies the

optimality conditions of (16). Moreover, it is also an equilibrium of the first stage game since it satisfies the

equilibrium conditions at the first stage by equivalence of (21) and (18).

One can also make the same argument for the opposite direction. If (x∗,y∗(ω ,x∗)) is an equilibrium of

the two-stage stochastic game, then it is a solution to the complementarity problem (18) and it satisfies the

optimality conditions of (16). Since (18) is equivalent to (21) and the second stage optimality conditions of

both the stochastic program and the stochastic game are derived from the same problem (16),(x∗,y∗(ω ,x∗))

will also be a solution of the two-stage stochastic program.

As a conclusion, under the perfect competition assumption one can solve the stochastic optimization prob-

lem (19) of the central decision maker and take its optimal solution as equilibrium point of the two-stage

stochastic game defined in Section 3.2.1.

3.2.3 Equivalence of Open and Closed Loop Equilibria with Finite Number of Scenarios

In this section, we assume that the demand distributionΨ has a finite support (e.g., set of time segments)

and takes valuesd(ω1),d(ω2), . . . ,d(ωM) with respective probabilitiesπ1,π2, . . . ,πM (e.g., duration of time

segments). Obviously, one could also viewd(ω1),d(ω2), . . . ,d(ωM) as a particular sample of the random
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variabled(ω) with a general distribution. Then,

Eω [Π∗
g(ω ,xg)] = Eω [∑

i∈Ig
∑

k∈Kg

(pi(ω)−cg
ik)y

∗g
ik (ω ,xg)]− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik

=
M

∑
m=1

πm ∑
i∈Ig

∑
k∈Kg

(pi(ωm)−cg
ik)y

∗g
ik (ωm,x

g)− ∑
i∈Ig

∑
k∈Kg

κkx
g
ik

is the first stage objective function (17) of each firmg∈ G wherep(ωm) is given. Lety∗(ωm,x) be the solution

of the second stage OPF problem (16) for the scenarioωm. The equilibrium conditions (18) of the first stage

game can easily be restated as:

0≤−
M

∑
m=1

πmβ ∗g
ik (ωm)+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg. (22)

The equilibrium conditions of the second stage game can alsobe easily modified as the KKT optimality

conditions of OPF (16) driven for each scenario. Next, we show that one can find an equilibrium point of

the corresponding two-stage stochastic game with finite number of demand scenarios by solving a single-stage

stochastic game. We first outline this single-stage game between the firms and TSO.

Each firmg∈ G chooses its optimal investment amount and generation quantities simultaneously such that

it maximizes its total expected profit in (23):

max
{xg,yg(ωm)}

M

∑
m=1

πm ∑
i∈Ig

∑
k∈Kg

(pi(ωm)−cg
ik)y

g
ik(ωm)− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik

s.t. yg(ωm) satisfyConsg(ωm,xg) ∀m∈ M

xg ≥ 0,

(23)

wherep(ωm) is the price observed by each firm in scenarioωm. p(ωm) is exogenous to each firm’s problem

and TSO’s problem whereas it is endogenous to the MCP formulated by the KKT optimality conditions of all

firms and TSO together with the market clearance conditions.

TSO’s problem (24) is almost identical to (6) except it is formulated with explicit depends onωm since its

import/export decisions depend on the state of the world (i.e., observed demandd(ωm)). For each scenarioωm,

TSO solves

max
f (ωm)

∑
j∈{N∪I}

p j(ωm) f j(ωm)

s.t. f (ωm) satisfyConsTSO(ωm).

(24)

Similarly, the spot market clearance conditions,MCP Market(ωm), at each state of the world is almost
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identical to (7) except it is formulated with explicit depends onωm.

Next, we show in Theorem 3.8 that if the random demand has discrete distribution then we can find an equi-

librium of the corresponding two-stage stochastic game in Section 3.2.1 by solving this single-stage stochastic

game.

Theorem 3.8.Let the demand distributionΨ has a finite support and takes values d(ω1),d(ω2), . . . ,d(ωM) with

respective probabilitiesπ1,π2, . . . ,πM. Then an equilibrium of the single-stage stochastic game formulated by

(23), (24), and MCPMarket(ωm), if it exits, is also an equilibrium of the corresponding two-stage stochastic

game given in Section 3.2.1 (by(17) and (16)). Moreover if there exists an equilibrium of this two-stage

stochastic game, then it is also an equilibrium of the single-stage stochastic game.

Proof. See Appendix.

To summarize, the energy-only market model presented in Section 3 provides positive margin for peak load

generators when demand is curtailed and electricity price is set at VOLL. As a result, energy-only markets tend

to lead to total generation capacity below the peak load witha certain probability. In reality VOLL is difficult

to estimate in a direct way. An alternative is to assess the impact of a particular VOLL value on the probability

of not meeting the load and to revise this value if this probability is not satisfactory (too high or too low, see

Stoft (2002)). In case price caps lower than VOLL are used in practice, this may lead to higher frequency

of curtailments and may enhance the resource adequacy problem. Hence, it may be necessary to resort to

additional market mechanisms as remedies to create better incentives for capacity investment and operation.

Next, we consider two different market designs, namely a capacity market in Section 4 and operating-reserve

pricing in Section 5, as potential remedies to resource adequacy problem.

4 Imposing a Capacity Market

An alternative way to avoid resource adequacy problem is to implement a capacity market where the regulator

sets a total capacity target based on historic data and expected demand and rewards a side payment to the firms

who contribute to reach this target. We continue our analysis by including such a capacity market in our basic

model of Section 3. In this modified model, the regulator imposes a capacity constraint on the total capacity

which needs to be fulfilled at the time of investment. To account for this, the following modifications are

needed:

(i) We impose the following market condition of the regulator at the first stage:

0≤ ∑
g,i,k

xg
ik −H ⊥ λ ≥ 0, (25)
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whereH is the capacity target which may be estimated by the regulator on the basis of the forecasts of

the demand fluctuations andλ may be considered as the price of the capacity which is paid tothe firms

who contribute to the sufficient investment level.

(ii) We also add the corresponding side payments for capacity to each firm’s profit at the first stage:

λ ∑
i,k

xg
ik.

Mathematically, these modifications constitute a straightforward extension of the two-stage game in Section

3. When we have constant demand, the equilibrium (KKT optimality) conditions of the first stage game given

in Lemma 3.2 can easily be modified to:

0≤−β ∗g
ik −λ ∗+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg,

0≤ ∑
g,i,k

x∗g
ik −H ⊥ λ ∗ ≥ 0. (26)

In case of implementation of a capacity market, the result inLemma 3.1 (which is established for energy-

only markets) holds ifH ≤ ∑
j

d j whereas a similar type of result given in Theorem 3.4 always holds; that is, it

is still possible to show that one can find an equilibrium of this two-stage game by solving a single optimization

problem. This optimization problem is a slightly modified version of (14) and is given in (27):

min
{x,y,δ , f}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

(cg
ikyg

ik +κkx
g
ik)+VOLL∑

n
δn

s.t. ∑
g,i,k

xg
ik −H ≥ 0 (λ )

x ≥ 0

(y,δ , f ) satisfyConsMarket

f satisfyConsTSO

yg satisfyConsg(xg) ∀g∈ G.

(27)

In case of uncertain demand, a similar modification of the equilibrium conditions (18) in Lemma 3.6 can be

done for the first stage game:

0≤−Eω [β ∗g
ik (ω)]−λ ∗+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg,

0≤ ∑
g,i,k

x∗g
ik −H ⊥ λ ∗ ≥ 0. (28)

Note that the equilibrium conditions of the second stage game in the future spot market do not change and

are thus still formulated by the optimality conditions of the OPF problem (16). Therefore, by similar arguments
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used for the energy-only market, we can again prove that an equilibrium of this two-stage stochastic game with

capacity market can be found by solving a two-stage stochastic program. This stochastic program given in (29)

is a slightly modified version of (19) in Section 3.2.2 with the additional deterministic constraint∑
g,i,k

xg
ik ≥ H:

min
x≥0

Eω [Z
∗(ω ,x)]+ ∑

g∈G
∑
i∈Ig

∑
k∈Kg

κkx
g
ik

s.t. ∑
g,i,k

xg
ik −H ≥ 0 (λ ).

(29)

Hence, the two-stage stochastic program consists of an optimization problem, namely (29), which minimizes

the total expected cost of the system subject to a single constraint at the first stage and the OPF problem (16) at

the second stage.

5 Operating-reserve Pricing

A more sophisticated approach for the regulator to provide extra capacity payments to the firms contributing

to a sufficient level of investment is operating-reserve pricing. The principle of operating-reserve pricing is

providing the firms with extra regulated payment whenever the system’s total operating-reserve is scarce.

Let rp(r,x,d) be the value of operating-reserves determined by the regulator for a given value of total

operating-reservesr = ex−eywheree is the transpose of the vector of 1’s of appropriate dimension. Oncex,y,

andd are observed in the spot market, a mark-up price ofrp(r,x,d) is computed by the regulator and then taken

as exogenous reserve price by the firms. For givenx andd, we assume the following properties ofrp(r,x,d).

Assumption 5.1. rp(r,x,d) is a monotone decreasing and differentiable function of total operating-reserves r

where

• If ed= ey≪ ex, there is ample operating-reserve and there is no markup;that is rp(r,x,d) = 0.

• If ed = ey≤ ex and ey is close to ex, then the operating-reserve is scarceand the regulator charges

consumers with the extra price of rp(r,x,d) in addition to the equilibrium price p.

• If ex= ey< ed, there is curtailment and the regulator sets the price to VOLL (or to a price cap).

Next, we modify the formulation of the two-stage game in Section 3 by incorporating operating-reserve pric-

ing scheme. In Sections 5.1 and 5.2, we give the corresponding two-stage model formulations in deterministic

and stochastic settings respectively and derive the equilibrium conditions at the first stage. Note that choosing

the functionrp(r,x,d) is an important issue since it may change the structure of theunderlying mathematical

formulation of the model and consequently applicable solution methods. In Section 5.3, we elaborate on that
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issue and give two possible formulations ofrp(r,x,d) function. We show that depending on the formulation,

one cannot always preserve the simplicity of the single optimization formulation in deterministic setting and

the two-stage stochastic program in stochastic setting.

5.1 The Perfect Competition Equilibrium under Constant Demand

In this section, we modify both the first and the second stage problems given in Section 3.1 by incorporating

the operating-reserve pricing.

Second Stage: Let γ denote the unit price of operating-reserves. It is exogenous to the firms since they are

price-takers and is set by the regulator at equilibrium in the spot market. For a givenγ , firm g ∈ G receives

additional revenue,∑
i∈Ig

∑
k∈Kg

γ(xg
ik −yg

ik), for its operating-reserves at the second stage. This extraregulated

payment received by firmg ∈ G is added to its objective function at the second stage. The modified second

stage problem of each firmg∈ G maximizing its short run profit is given as:

Π∗R
g (xg) := max

yg ∑
i∈Ig

∑
k∈Kg

(pi −cg
ik − γ)yg

ik + γ ∑
i∈Ig

∑
k∈Kg

xg
ik

s.t.

Consg(xg) :
yg

ik ≤ xg
ik (β g

ik) ∀i ∈ Ig,k∈ Kg

yg
ik ≥ 0 ∀i ∈ Ig,k∈ Kg,

(30)

where p andγ are exogenous parameters to each firm’s problem whereas theyare endogenous to the whole

system and are set at a level where the spot market clears itself. To emphasize,γ∗ = rp(ex−ey∗,x,d) is the unit

operating-reserve price set by the regulator for givenx,d and optimal generation dispatchy∗ in the spot market

at equilibrium. In addition, TSO’s problem and the market clearing conditions remain identical to (6) and (7),

respectively.

One can write the necessary and sufficient KKT optimality conditions of (30) for each firmg∈ G, the op-

timality conditions of (6) for TSO, and the market clearing conditions (7) and setγ∗ = rp(ex−ey∗,x,d). The

resulting KKT conditions are equivalent to the MCP (31). Hence, the solution to MCP (31) is a competitive

equilibrium of the spot market. The first complementarity constraint in (31) ensures that when a firm pro-

duces positive amount(y∗g
ik > 0), a price is paid, which covers its marginal cost plus the scarcity rent plus the

operating-reserve pricerp(ex−ey∗,x,d):
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0≤ cg
ik − p∗i +β ∗g

ik + rp(ex−ey∗,x,d) ⊥ y∗g
ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤ xg
ik −y∗g

ik ⊥ β ∗g
ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

(y∗,δ ∗, f ∗, p∗,ρ∗,λ ∗+,λ ∗−) satisfy MCP Market∩MCP TSO.

(31)

As discussed in Section 3.1, we can formulate the corresponding OPF problem (32) whose solution gives

perfect competition equilibrium in the spot market for given x:

min
{y,δ , f}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik +VOLL ∑
n∈N

δn−R(ex−ey,x,d)

s.t. (y,δ , f ) satisfyConsMarket

f satisfyConsTSO

yg satisfyConsg(xg) ∀g∈ G,

(32)

in which R(ex− ey,x,d) :=
∫ ex−ey

0
rp(s,x,d)ds can be interpreted as the additional welfare due to improved

reliability, or willingness to pay for extra reliability; it is similar to the integral of the inverse demand function

(e.g., in (2) or (42)) which is interpreted as consumers’ willingness to pay. By Assumption 5.1, for givenx

and d, rp(ex− ey,x,d) is a monotone decreasing function ofex− ey; thereforeR(ex− ey,x,d) is a concave

function of(ex−ey) and consequently it is concave iny. Hence OPF problem (32) is convex. The solution of

OPF problem (32) is a competitive equilibrium of the modifiedgame in the spot market since its necessary and

sufficient KKT optimality conditions are equivalent to the MCP (31).

First Stage: Similar to Section 3.1, each firmg∈ G maximizes its long term profit at the first stage:

max
xg≥0

Π∗R
g (xg)− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik. (33)

When we consider the interaction between first and second stage problems, Lemma 3.1 does not hold

anymore. Instead, we next show that optimality conditions of each firm’s problem at the first stage now involves

the scarcity rent and the operating-reserve price it receives at the second stage.

Theorem 5.2. Let x∗ = {x∗g}g∈G be such that OPF problem(32) has a feasible solution andΠ∗R
g (xg) is finite

for all g ∈ G in the neighborhood of x∗. Then x∗ is an equilibrium of the first-stage game if and only if there

existsβ ∗ and y∗ such that

0≤−β ∗g
ik − rp(ex∗−ey∗,x∗,d)+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg. (34)
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Proof. See Appendix.

5.2 The Perfect Competition Equilibrium under Demand Uncertainty

We next formulate the two-stage game including operating-reserve pricing scheme when demand,dn(ω),

at each noden is random having a general distributionΨn. Let (Ω,F ,Ψ) denote the common underly-

ing probability space whereΨ represents the joint probability distribution for the random demand vector

d(ω) := {dn(ω)}n∈N with E[|d(ω)|]< ∞.

Second Stage: Let γ(ω) be the unit price of reserved capacity at demand realizationω ∈ Ω. As mentioned

earlier, it is exogenous to the firms at both stages since theyare price-takers and is set by the regulator at a level

where the spot market clears itself:γ∗(ω) = rp(ex−ey∗(ω),x,d(ω)).

For givenω ∈ Ω, the second stage game is identical to its deterministic formulation given in Section 5.1

except with explicit dependence onω . Hence, the arguments in Section 5.1 hold when demand is stochastic

as well. That is, for eachω , Π∗R
g (ω ,xg) is a concave function ofxg andβ ∗g

ik (ω)+ γ∗(ω) is a subgradient of

Π∗R
g (ω ,xg) at a givenxg. Moreover, one can solve the OPF problem (35) to find an equilibrium of the spot

market at the second stage.

For givenx andω ∈ Ω, we haveR(ex−ey(ω),x,d(ω)) =

∫ ex−ey(ω)

0
rp(s,x,d(ω))ds. Then the correspond-

ing OPF problem at the second stage is formulated as:

min
{y(ω),δ (ω), f (ω)}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik(ω)+VOLL ∑
n∈N

δn(ω)−R(ex−ey(ω),x,d(ω))

s.t. (y(ω),δ (ω), f (ω)) satisfyConsMarket(ω)

f (ω) satisfyConsTSO(ω)

yg(ω) satisfyConsg(ω ,xg) ∀g∈ G.

(35)

First Stage: Assuming risk neutral firms, each firmg∈ G maximizes its long term expected profit at the first

stage:

max
xg≥0

Eω [Π∗R
g (ω ,xg)]− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik, (36)

where, for givenxg, Π∗R
g (ω ,xg) is the optimal value of firmg’s problem in the spot market(short term profit of

firm g∈ G) at realizationω ∈ Ω.

Similar to Lemma 3.6, it is possible to write the equilibriumconditions of the first stage game in terms of

expected scarcity rent and operating-reserve prices that the firms receive at the second stage which is stated in

27



the next theorem.

Theorem 5.3. Let Π∗R
g (ω ,xg) be finite at the neighborhood of a point x∗ = {x∗g}g∈G for almost everyω ∈ Ω.

For investment choice x∗g, let Eω [β ∗g
ik (ω)+ rp(ex∗ −ey∗(ω),x∗,d(ω))] be the expected marginal revenue that

firm g∈ G receives at the second stage for using technology k∈ Kg at node i∈ Ig. Then x∗ is an equilibrium of

the first stage game if and only if there existsβ ∗(ω) and y∗(ω) such that

−Eω [β ∗g
ik (ω)+ rp(ex∗−ey∗(ω),x∗,d(ω))]+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg. (37)

Proof. See Appendix.

5.3 Operating-reserve Price Curve

Operating-reserve prices are based on predetermined reserve target levels set by the regulator. How to determine

these target levels is an important issue since they would have an effect on the investment incentives. Moreover,

the formulation of therp(·) function would also effect the mathematical properties of the resulting two-stage

game. Next, we give two different formulations for therp(·) function. In the first one, the reserve targets are set

by predetermined ratios of observed demand. In the latter one, the reserve targets are set by the predetermined

ratios of installed capacity. We show that while the two-stage game with the first formulation is still convertible

to a single-stage optimization problem in the deterministic setting and to a two-stage stochastic program in the

stochastic setting, this simplicity is lost when the targetlevels depend on the installed capacity.

5.3.1 Setting Reserve Targets Based on Observed Demand

In this case, the regulator determines the reserve targets based on observed demand. Therefore, we take the

operating-reserve price function as

rp(ex−ey,x,d) := rp demand(
ex−ey

ed
).

An example of the corresponding price curve for a total fixed demand level (ed), taken from Hogan (2005),

is depicted in Figure 1. Thex-axis denotes the percentage of over-capacity (or operating-reserves) with respect

to the observed demand. For givenx andd, rp demand(ex−ey
ed ) is a piecewise linear decreasing function of

operating-reserves. In the operating-reserve price curveof Hogan (2005), the critical operating-reserve levels

predetermined by the regulator are the minimum level of reserve (3% of demand) and the nominal reserve

target (7% of demand). The minimum level of reserves is set bythe regulator to prevent a catastrophic failure

through a widespread and uncontrolled blackout in the system. The regulator would not go below this level

of reserves even if this required curtailment of inflexible demand. Above this minimum level, there would be
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more flexibility up to nominal reserve target (7%). This is the price-sensitive part of the operating-reserve price

curve illustrated in Figure 1. In the range between 3%−7%, as reserve levels approach the nominal target, the

operating-reserve price would be decreasing.

Note that Hogan’s operating-reserve price curve given in Figure 1 is piecewise linear. In our analysis, in

order to preserve twice differentiability in OPF problems (32) and (35), we assume a differentiable operating-

reserve price curve which is a smooth approximation of Hogan’s curve. The details of this approximation using

a sigmoid function are given in Section 9 and an example of thecorresponding differentiable operating-reserve

price curve is illustrated in Figure 1.
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Figure 1: Operating-reserve price curve which is a smooth approximation of Hogan’s curve on basis
of observed demand

Next, for givenx andd, we can calculateR(ex−ey,x,d) as

R(ex−ey,x,d) := R demand(ex−ey
ed )

=

∫ ex−ey

0
rp demand(

s
ed

)ds= ed
∫

ex−ey
ed

0
rp demand(s)ds.

We know from Assumption 5.1 thatrp demand(ex−ey
ed ) is a monotone decreasing function ofex−ey

ed ; therefore

R demand(ex−ey
ed ) is concave inex−ey

ed which is an affine function of(x,y). As we mentioned above, we assume

thatrp demand(ex−ey
ed ) is differentiable; henceR demand(ex−ey

ed ) is twice differentiable. Moreover, it is concave

in (x,y) with

∂R demand(ex−ey
ed )

∂xg
ik

= rp demand(
ex−ey

ed
), and (38)
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∂ 2R demand(ex−ey
ed )

∂ (xg
ik)

2 =
∂ rp demand(ex−ey

ed )

∂ (ex−ey
ed )

1
ed

≤ 0.

Remark5.4. Joint concavity in(x,y) of R demand(ex−ey
ed ) can be seen by constructing its Hessian matrix of and

showing that it is negative semi-definite. The details of theproof are given in Appendix 10.

(38) indicates that a unit increase ofxg
ik indeed entails a marginal revenue for firmg from operating-reserves,

which is equal to the operating-reserve price. By utilizing(38), we next show that a solution to (39) is a perfect

competition equilibrium of the two-stage deterministic game:

min
{x,y,δ , f}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

(cg
ikyg

ik +κkx
g
ik)+VOLL ∑

n∈N
δn−R demand(

ex−ey
ed

)

s.t. (y,δ , f ) satisfyConsMarket

f satisfyConsTSO

yg satisfyConsg(xg) ∀g∈ G

x ≥ 0.

(39)

Theorem 5.5.A solution to the optimization problem(39), if it exists, is a solution of the two-stage deterministic

game with operating-reserve pricing. Moreover, if there exists a solution of the two-stage deterministic game,

then it is also a solution of the optimization problem(39).

Proof. The nonlinear program in (39) is convex in(x,y,δ , f ). The necessary and sufficient optimality conditions

of NLP (39) is equivalent to the first and second stage equilibrium conditions given in (34) and (31) respectively.

The result follows immediately.

Next, we obtain the corresponding result in the stochastic setting; that is, a solution to the two-stage stochas-

tic program given in (40) is a perfect competition equilibrium of the two-stage stochastic game.

min
x≥0

Eω [Z∗R(ω ,x)]+ ∑
i∈Ig

∑
k∈Kg

κkx
g
ik, (40)

where

Z∗R(ω ,x) = min
{y(ω),δ (ω), f (ω)}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik(ω)+VOLL ∑
n∈N

δn(ω)−R demand(
ex−ey(ω)

ed(ω)
)

s.t. (y(ω),δ (ω), f (ω)) satisfyConsMarket(ω)

f (ω) satisfyConsTSO(ω)

yg(ω) satisfyConsg(ω ,xg) ∀g∈ G.
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Theorem 5.6. Let x∗ be an optimal solution of the two-stage stochastic program formulated in(40) where

Z∗R(ω ,x) andΠ∗R(ω ,xg) are finite in the neighborhood of x∗ for almost everyω ∈ Ω. Then x∗ is also a perfect

competition equilibrium of the two-stage stochastic game with operating-reserve pricing and vice versa.

Proof. By using the concavity ofR demand(ex−ey(ω)
ed(ω) ) in x, we know thatZ∗R(ω ,x) is a convex function ofx

for all ω ∈ Ω which implies the convexity ofEω [Z∗R(ω ,x)]. One can compute the components of the gradient

of Z∗R(ω ,x) as:

∂Z∗R(ω ,x)
∂xg

ik

=−β ∗g
ik (ω)−

∂R demand(ex−ey∗(ω)
ed(ω) )

∂ (ex−ey∗(ω)
ed(ω) )

·
1
ed

=−β ∗g
ik (ω)− rp demand(ex−ey∗(ω)

ed(ω) ),

except on a set L of Lebesgue measure zero.

By utilizing a similar argument in theProof of Theorem 3.7, one can show thatEω [Z∗R(ω ,x)] is differen-

tiable and

∂Eω [Z∗R(ω ,x∗)]
∂xg

ik

=−E[β ∗g
ik (ω)+ rp demand(

ex∗ −ey∗(ω)

ed(ω)
)].

Then one can easily derive the necessary and sufficient optimality conditions of the two-stage stochastic pro-

gram (40) which are equivalent to the equilibrium conditions of the first stage game given in (37) and the

optimality conditions of OPF problem (35).

5.3.2 Setting Reserve Targets Based on Installed Capacity

Next, we deal with the case that the regulator determines thereserve targets based on total installed capacity.

An example of the corresponding operating-reserve price curve for a fixed total installed capacity (ex) is given

in Figure 2. This time thex-axis denotes the percentage of unused capacity with respect to the total available

capacity. We assume the same minimum level of reserve (3% of total capacity) and the nominal reserve target

(7% of total capacity) as in Figure 1. This time, working withan operating-reserve price curve like Figure 2

would mean that we takerp(ey−ex,x,d) := rp capacity(ex−ey
ex ) which is again a differentiable function. Then,

for givenx, we can compute the corresponding willingness to pay for improved reliability as:

R(ex−ey,x,d) := R capacity(ex−ey
ex )

=
∫ ex−ey

0
rp capacity(

s
ex

)ds= ex
∫

ex−ey
ex

0
rp capacity(s)ds.

Since rp capacity(ex−ey
ex ) is differentiable, R capacity(ex−ey

ex ) is twice differentiable. Moreover,
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R capacity(ex−ey
ex ) is concave in(x,y) with

∂R capacity(ex−ey
ex )

∂xg
ik

=

∫
ex−ey

ex

0
rp capacity(s)ds+ rp capacity(

ex−ey
ex

)
ey
ex
, and

∂ 2R capacity(ex−ey
ex )

∂ (xg
ik)

2 =
∂ rp capacity(ex−ey

ex )

∂ (ex−ey
ex )

ey2

ex3 ≤ 0, ∀x≥ 0,

(41)

whereey2 is the sum of squares for all the elements of a vectory andex3 is the sum of cubes for all the elements

of a vectorx.
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Figure 2: Operating-reserve price curve on basis of installed capacity

Remark5.7. Similar to Remark 5.4, joint concavity in(x,y) of R capacity(ex−ey
ex ) can be seen by constructing

the Hessian matrix ofR capacity(ex−ey
ex ) and showing that it is negative semi-definite. The details ofthe proof

are given in Appendix 10.

The first equation in (41) indicates that a unit increase ofxg
ik entails a marginal revenue from operating-

reserves, which is different from the operating-reserve price. In other words, when we calculate the derivative

of R capacitywith respect toxg
ik, we do not getrp capacity(ex−ey

ex ). Therefore, we cannot get the KKT condi-

tions given in (11) from an optimization problem; hence, we can no longer reduce the two-stage game formu-

lation to a single optimization problem in the deterministic setting and to a two-stage stochastic program in the
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stochastic setting. However, we can still formulate a mixedcomplementarity problem (MCP) which involves

the equilibrium conditions of both first and second stage games and solve the corresponding MCP. We explain

the details of solution methods for these problems in Section 8.

6 Demand-side Bidding (or an Endogenous Demand Curve)

In previous sections we consider three different ways of regulator’s intervention to provide incentives for

sufficient investment levels in electricity markets. Without the intervention of the regulator, the power systems

tend to underinvest in generation capacity because of imperfections in the market due to unresponsive demand.

When demand responds to price, regulator’s intervention isneeded less and the electricity market is more

likely to operate normally such that the prices clear the market where supply meets the demand without any

curtailments (e.g., Allcott (2012)). Therefore, if we consider “demand-side bidding” as a mechanism to ensure

a price responsive demand, then it can be thought of as an alternative way of addressing the resource adequacy

issue. In this section, we briefly comment on an electricity market where consumers can respond to prices.

When consumers respond to prices, we have an elastic demand and we represent the reaction of consumers

to the prices by decreasing price-demand curvespn(d) with pn(0) < ∞ for each demand noden∈ N. On such

a curve, consumers at demand noden choose their consumption level which maximizes their surplus at a given

price pn. We may represent the decision making process of the consumers at the second stage by incorporating,

for each demand noden, an optimization problem which maximizes the consumer surplus. Letd∗
n denote the

optimal consumption at demand noden such that

d∗
n := argmax

dn≥0
{Un(dn)− pndn}, (42)

whereUn(dn) =
∫ dn

0
pn(s)dsdenotes the willingness to pay function.

Incorporating the consumers’ problem will slightly changethe equilibrium conditions of the second stage

game. Note thatp(·) is a decreasing function which leads toUn(·) being a concave function. Therefore, we can

still formulate a convex OPF problem whose solution maximizes the profit of firms, the surplus of consumers,

and the profit of TSO in charge of operating the network as indicated in Boucher and Smeers (2001). The

modified OPF problem will slightly be different from the onesintroduced previously such that its objective

functions will also include maximizingUn(·). For example, the OPF problem involving price-demand curves

with deterministic parameters will be formulated, for given x, as

Z∗(x) = min
{y, f ,d}

∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik − ∑
n∈N

U(dn)

s.t. ∑
g∈G

∑
k∈Kg

yg
jk + f j ≥ d j (p j) ∀ j ∈ {N∪ I} (43)
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d ≥ 0

f satisfyConsTSO

yg satisfyConsg(xg) ∀g∈ G,

wheredn is the demand of consumers as a reaction of pricepn at noden.

When the parameters in the price-demand curve are assumed tobe deterministic, we end up with a two-stage

deterministic game in which the first and second stage optimization problems of firmg∈ G are still the same.

Hence, the arguments in Lemmas 3.1 and 3.2 still hold. Moreover, Z∗(x) in OPF problem (43) is a convex

function ofx. By using similar arguments inProof of Theorem 3.4, one can still formulate a single optimization

problem which finds an equilibrium of the corresponding two-stage deterministic game.

Furthermore, the approach in previous sections that assumes a fixed random demand can be extended to

a random demand function where key parameters such as reference consumption for a given reference price

and elasticities are random. Price elasticities are only known with very little accuracy. It thus makes sense

to treat them as uncertain and to embed such parameters in thestate of the world. When some parameters

in price-demand curves are random, we have a two-stage stochastic game in which the first and second stage

optimization problems of firmg∈G in Section 3.2 remain the same. Similarly, the arguments in Lemma 3.6 and

Theorem 3.8 still hold. One can write OPF problem (43) with explicit dependency onω and the corresponding

optimal valueZ∗(ω ,x) will be a convex function ofx for everyω ∈ Ω. Therefore,Eω [Z∗(ω , ·)] is also convex.

By using a similar argument inProof of Theorem 3.7, one can still formulate a two-stage stochastic program

which solves the corresponding two-stage stochastic game.

The standard view in the approach outlined so far is to assumea demand response with a particular func-

tional form and possibly with some random parameters. This idea raises some questions though. The power

generation part of the model discussed so far is long-term, in the sense that investments can change the capacity

structure of the generation system; therefore, the response of the power system to price changes takes place

both through modifications of plant operations and capacities. In contrast, the representation of consumption

embedded in a demand function such as (42) does not offer thatdual long and short term representation. Its

most standard interpretation is to assume that it reflects demand-side bidding; that is, participation of the de-

mand to the short-term power market.pn(d) is typically a short-run response of the demand to price withgiven

capacity in the consuming sector. This creates a model inconsistency between the representation of the supply

and demand sectors that can only be removed by introducing a more complex demand model that accounts

for both the long run changes of capacity structure in the consuming sector and the short run response of de-

mand with given capacity; for example a representation of consumer decision making including investments in

durable energy, using equipment, and habit formation whichresults in a short run (very low) elasticity, but a

longer term adjustment with higher long term elasticity (e.g., Celebi and Fuller (2012)). This discussion goes

beyond the scope of this paper.
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7 More General Forms of Uncertainties in Spot Markets

In this section, we give a summary of possible extensions to generalize the basic assumption of uncertain

demand. In the previous sections, we assume that the demand in the spot market is possibly random. It is

also possible to view some of the other parameters as random.These parameters include generation costs

c(ω), transmission capacitieshl (ω), and power transfer distribution factorsPTDF(ω) with Eω [| c(ω) |] < ∞,

Eω [| hl (ω) |]< ∞, andEω [| PTDF(ω) |]< ∞, respectively. When these parameters are random, one can prove

that the results obtained throughout this paper still hold as argued briefly in the following propositions.

Proposition 7.1. Let c, h, and PTDF be random and let the second stage problem ofeach firm g∈ G and TSO

be feasible and bounded in the neighborhood of a feasible point x∗. Then the equilibrium conditions of the first

stage game given in Lemma 3.6 (energy-only market), MCP(28) (energy market with capacity requirements),

and Theorem 5.3 (energy market with operating-reserve pricing) still hold.

Proof: The second stage revenues of firmg∈ G, Π∗
g(ω , ·) andΠ∗R

g (ω , ·), are concave functions ofxg for every

ω ∈ Ω and g ∈ G regardless of the random parameter. By similar arguments inProofs of Lemma 3.6and

Theorem 5.3, one can derive the equilibrium conditions (18), (28), and (37) for the first stage game.

Proposition 7.2. Let c, h, and PTDF be random and let the corresponding lower level problem(16) be feasi-

ble and bounded in the neighborhood of a feasible point x∗. Then in case of an energy-only market, an energy

market with capacity requirements, an energy market with operating-reserve pricing based on observed de-

mand as given in Figure 1, or an energy market with demand bidding, the equivalence result with respect to

the equilibrium of the two-stage game and the solution of a two-stage stochastic program established under

random demand in previous sections (e.g., Theorem 3.7) still holds. That is, one can find a perfect competition

equilibrium of these markets by solving the corresponding two-stage stochastic program (from the perspective

of a central planner).

Proof: The optimal value of the corresponding OPF problem,Z∗(ω ,x), is a convex function ofx for every

ω ∈Ω regardless of the random parameter which implies the convexity of the expected system costEω [Z∗(ω , ·)]

incurred at the second stage. By utilizing Proposition 7.1 and using a similar argument inProof of Theorem

3.7, the results follow.
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8 Computational Methods for Solving Two-stage Equilibrium Models

In this section, we discuss the possible computational methods for solving the two-stage games numerically

in four different market settings we have considered; namely energy-only markets, energy markets including

forward capacity market, energy markets with operating-reserve pricing, and demand bidding.

8.1 Solving Two-stage Deterministic Equilibrium Models

MCP Approach

We showed that when we have constant demand, we can always write the equilibrium conditions of the two-

stage game as a mixed complementarity problem; for instancethe MCP (12) in energy-only markets, the MCP

consisting of the KKT conditions of (27) in energy markets with forward capacity market, the MCP consisting

of (31) and (34) in energy markets with operating-reserve pricing, and finally the MCP consisting of (11) and

the KKT conditions of (43) in energy markets with demand bidding. We can solve these MCPs by using a state

of the art MCP solver such as PATH (Dirkse and Ferris (1995) and Ferris and Munson (2008)). Our results

ensure that a point satisfying such an MCP is indeed a solution to the original two-stage game.

(N)LP Approach

We showed in Section 3.1.2 that we can find an equilibrium of the two stage game in energy-only markets by

solving the linear program (14). In Sections 4 and 5.3.1, we showed that we can extend this result to energy

markets with forward capacity market and energy markets with operating-reserve pricing based on an observed

demand. Hence instead of solving the MCPs of these two-stagegames, we can solve the corresponding (N)LPs

(14), (27), and (39) respectively and take the solution as anequilibrium point of the corresponding two-stage

game in these market designs. Moreover as mentioned in Section 6, under the assumption of demand response

we can again formulate a single optimization problem which is a nonlinear program, solve it using an off the

shelf nonlinear programming solver, and take its optimal solution as an equilibrium point of the corresponding

market. LPs may be much simpler to solve compared to MCPs, especially when we have realistic systems of

large networks. Depending on the problem, NLPs may or may notbe easier to solve than MCPs.

One should also note that it may not be possible to formulate asingle optimization problem for every

two-stage game under perfect competition as we elaborate this issue in Section 5.3.2 for energy markets with

operating-reserve pricing based on installed capacities;in that case, one needs to resort to an MCP approach to

provide numerical solutions.
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8.2 Solving Two-stage Stochastic Equilibrium Models

In general, when we have demand uncertainty, we cannot observe the expected function values explicitly; hence

we propose to approximate them by the corresponding sample average functions and solve the resulting approx-

imate problem. The basic method we use is known assample-path methodor sample average approximation

method; see for example Robinson (1996) and Shapiro and Homem-De-Mello (1998) for the theoretical back-

ground in optimization context. Roughly speaking, in sample-path methods the stochastic problem is observed

for a fixed and long sample-path by fixing a large sample size and using the method of common random num-

bers. Since the sample path and length are fixed, the approximate problem actually becomes a deterministic

problem. The resulting deterministic problem is solved by fast and effective solution methods available and

its solution is taken as the approximate solution of the stochastic problem. We refer the interested reader to

Gürkan et al. (1999) and Gürkan and Pang (2009) for the theoretical analysis of the sample-path method for

solving stochastic equilibrium models.

Next, we explain how we use the basic idea ofsample-path methodsto solve the two-stage stochastic

games in each market setting. We again propose two differentsolution approaches; in the solution approaches

outlined below, we use a large, fixed sample sizeM and an i.i.d. sample pointω := {ω1,ω2 . . . ,ωM}. Let

β (ω1),β (ω2), . . . ,β (ωM) be the vectors of scarcity rents corresponding to this sample.

MCP Approach

We can always formulate the approximate two-stage stochastic game as a potentially very large MCP. This MCP

consists of the KKT conditions of every firm’s first and second-stage problems for all realizations in the sample

{ωm}
M
m=1. For instance, consider the energy-only market in Section 3. We cannot observeEω [β ∗g

ik (ω)]; however

using our random sample of sizeM, we can approximate it by a sample average function− 1
M ∑M

m=1β ∗g
ik (ωm). It

follows from the strong law of large numbers that− 1
M ∑M

m=1 β ∗g
ik (ωm) converges toEω [β ∗g

ik (ω)] with probability

1 asM gets large. We can then solve the MCP system which actually consists of (44) below and the KKT

conditions of OPF problem (16) for all{ωm}
M
m=1 and take its solution as an approximate solution of the two-

stage stochastic game in Section 3.2:

0≤−
1
M

M

∑
m=1

β ∗g
ik (ωm)+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg. (44)

We can use the same approach for formulating the MCPs of the other three electricity market designs;

namely energy markets including forward capacity market, with operating-reserve pricing, and with demand

response. Then we can solve the corresponding MCP by a deterministic solver such as PATH. However, this

approach has the following drawback: The size of the MCP increases rapidly with the sample sizeM and the

size of the network. Therefore, straightforward construction of an MCP in the stochastic setting for realistic
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networks and solving this large scale system by using the currently available software may be a computational

challenge, as we briefly illustrate in Section 9.

Implicit Function Approach

Energy-only Markets: We showed in Section 3.2.2 that we can find an equilibrium of the two-stage stochastic

game in an energy-only market by solving a two-stage stochastic program. The first and second stages of this

two-stage program are formulated in (19) and (16) respectively. As mentioned earlier, we cannot observe the

expected cost functionEω [Z∗(ω ,x)] in the first-stage problem (19); however we can again approximate it by a

sample-average function using the sample{ωm}
M
m=1 and solve the approximate problem by using sample-path

optimization.

We know that the following holds for the sample-average estimator of the expected cost and its (sub)gradient:

1
M

M

∑
m=1

Z∗(ωm,x) → Eω [Z∗(ω ,x)] asM → ∞ almost surely for givenx,and

1
M

M

∑
m=1

β ∗g
ik (ωm) → Eω [β ∗g

ik (ω)] =
∂Eω [Z∗(ω ,x)]

∂xg
ik

asM → ∞ almost surely.

(45)

We can construct the approximate problem (46) below to approximate (19):

min
x≥0

1
M

M

∑
m=1

Z∗(ωm,x)+ ∑
g∈G

∑
i∈Ig

∑
k∈Kg

κkx
g
ik. (46)

Note that (46) is in general an NLP and we can try to solve it by using a standard NLP solver. An efficient

NLP solver would require us to provide function values as well as (sub)gradient values of the objective function

(46) as input. Although we do not have an explicit expressionfor Z∗(ωm,x), givenωm andx, we can solve the

second stage problem (16) numerically (by using a standard LP solver) to obtainZ∗(ωm,x) at that point. Once

the optimal solution of (16) is found, we also haveβ ∗g
ik (ωm) ∈

∂Z∗(ωm,x)
∂xg

ik
for everyg, i, andk as a by-product.

Sincex is a right-hand side parameter in (16),β ∗g
ik (ωm) is simply the associated multiplier.

To summarize, this approach would involve solvingM consecutive LPs of format (16) at any pointx that

the NLP solver (used for solving (46)) would like to evaluateits optimality.

Energy Markets with a Forward Capacity Market: In Section 4, we showed that the main results of Section

3.2.2 can directly be extended to the two-stage game of Section 4, namely energy markets with forward capacity

market. In this market setting, we can still find an equilibrium of the corresponding two-stage stochastic game

by solving the two-stage stochastic program (29). By using the fixed sample point{ωm}
M
m=1, problem (29) can
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be approximated by (47):

min
x≥0

1
M

M

∑
m=1

Z∗(ωm,x)+ ∑
g∈G

∑
i∈Ig

∑
k∈Kg

κkx
g
ik

s.t. ∑
g,i,k

xg
ik ≥ H.

(47)

The only difference between the approximate problems (46) and (47) is that a deterministic capacity regu-

lation constraint is imposed in the latter. Hence, the arguments for solving (46) are also valid for (47).

Energy Markets with Operating-reserve Pricing: In Section 5.3, we showed that it is not always possible

to formulate a two-stage stochastic program that finds an equilibrium of the two-stage stochastic game under

perfect competition. If one can formulate a two-stage program as in Section 5.3.1, then it is possible to solve

(40) in a similar way used for (19), as explained inimplicit function approachfor energy-only markets. If

one cannot formulate a two-stage program as in Section 5.3.2, then in order to find an equilibrium of the

corresponding two-stage stochastic game, one has to solve the stochastic complementarity problem (37) at the

first stage and the optimization problem (35) at the second stage.

As explained before, one possible approach is solving the corresponding aggregate MCP system (that is,

MCP (37) and KKT conditions of (35)) to find an approximate equilibrium point of the two-stage stochastic

game, as described in MCP approach for stochastic systems. However, the size of the resulting aggregate

MCP system grows rapidly with the sample sizeM. Hence, it may be computationally very time-consuming or

impossible to solve such an MCP system for realistic networks.

We next propose another way for finding an approximate equilibrium of the two-stage stochastic game of

Section 5.3.2 by implicit function approach. First, we approximate (37) by using sample average approxima-

tions of the expected functions. For givenx, one can easily approximateEω [β ∗g
ik (ω)+ rp capacity(ex−ey∗ (ω)

ex )]

by the sample average function− 1
M ∑M

m=1[β
∗g
ik (ωm)+ rp capacity(ex−ey∗ (ωm)

ex )]. Thus, we construct (48) below

to approximate (37):

0≤−
1
M

M

∑
m=1

[β ∗g
ik (ωm)+ rp capacity(

ex∗ −ey∗(ωm)

ex∗
)]+κk ⊥ x∗g

ik ≥ 0, ∀g∈ G, i ∈ Ig,k∈ Kg. (48)

As mentioned, we would like to solve (48) reminiscent of the implicit function approach. Note that the

size of (48) does not depend on the sample sizeM. In order to solve (48), we need to provide function and

(sub)gradient values of− 1
M ∑M

m=1[β
∗g
ik (ωm)+ rp capacity(ex−ey∗ (ωm)

ex )] at anyx that PATH would like to explore.

Given anyx, we can solve the second stage OPF problem (35)M consecutive times and obtain the values of

β ∗g
ik (ωm) andrp capacity(ex−ey∗ (ωm)

ex ) for eachm∈ M.

Unfortunately, to approximate the (sub)gradient ofEω [β ∗g
ik (ω)+ rp capacity(ex−ey∗ (ω)

ex )], we cannot directly

use the (sub)gradient values ofβ ∗g
ik (ωm). AlthoughE[β ∗g

ik ] is continuous and1
M ∑M

m=1β ∗g
ik (ωm) becomes almost
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continuous for largeM, β ∗g
ik (ωm) is actually a piecewise constant function ofx. Thus, the (sub)gradient of

β ∗g
ik (ωm) is either zero or undefined for a givenx and ωm. Hence, we use the following steps to obtain an

sample average estimator of∂Eω [β ∗g
ik (ω)+ rp capacity(ex−ey∗ (ω)

ex )]/∂xg
ik for anyxg

ik > 0 :

• By using (31), for anyω with y∗ik(ω)> 0:

Eω [β ∗g
ik (ω)+ rp capacity(ex−ey∗ (ω)

ex )] = Eω [(p∗i (ω)−cg
ik)].

• Again, by (31), for anyω with y∗ik(ω) = 0, we haveβ ∗g
ik (ω) = 0. Thus:

Eω [β ∗g
ik (ω)+ rp capacity(ex−ey∗ (ω)

ex )] = Eω [rp capacity(ex−ey∗ (ω)
ex )].

• Hence, by these two together, we can write:

Eω [β ∗g
ik (ω)+ rp capacity(ex−ey∗ (ω)

ex )] = Eω [(p∗i (ω)−cg
ik)I{y∗ik(ω)>0}]

+Eω [rp capacity(ex−ey∗ (ω)
ex )I{y∗ik(ω)=0}].

(49)

By calculating the subgradients of (49), we get

∂Eω [β ∗g
ik (ω)+ rp capacity(ex−ey∗ (ω)

ex )]

∂xg
ik

=
∂Eω [(p∗i (ω)−cg

ik)I{y∗ik(ω)>0}]

∂xg
ik

+
∂Eω [rp capacity(ex−ey∗ (ω)

ex )I{y∗ik(ω)=0}]

∂xg
ik

.

(50)

• Note that for a fixed sample{ωm}
M
m=1, we can always perturbxg

ik > 0 small enough such thatxg
ik+∆xg

ik > 0

and the values of the indicator functionsI{y∗ik(ω)>0} andI{y∗ik(ω)=0} do not change; hence they can be treated

as constants.

• Next, we approximate the (sub)gradients ofEω [(p∗i (ω) − cg
ik)I{y∗ik(ω)>0}] and

Eω [rp capacity(ex−ey∗ (ω)
ex )I{y∗ik(ω)=0}] for any xg

ik > 0 by using the following sample-average esti-

mators. Letu(ωm) =
ex−ey∗(ωm)

ex
, then:
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1
M

M

∑
m=1

∂ p∗i (ωm)

∂xg
ik

I{y∗ik(ωm)>0} →
∂Eω [(p∗i (ω)−cg

ik)I{y∗ik(ω)>0}]

∂xg
ik

, and

1
M

M

∑
m=1

∂ rp capacity(u(ωm))

∂u(ωm)

∂u(ωm)

∂xg
ik

I{y∗ik(ωm)=0} →
∂Eω [rp capacity(ex−ey∗ (ω)

ex )I{y∗ik(ω)=0}]

∂xg
ik

asM → ∞ almost surely.

(51)

Given anyx, we can calculate the the corresponding (sub)gradient values by using (50) and (51). Thus,

one needs to calculate the values(y∗(ωm),u(ωm)) and the subgradients∂ rp capacity(u(ωm))/∂u(ωm),

∂u(ωm)/∂xg
ik, and∂ p∗i (ωm)/∂xg

ik. Once the functionrp capacity(·) is explicitly defined, all of these

values, except subgradient ofp∗i (ωm), are straightforward to calculate from the solution of OPF problem

(35). For instance,

(u(ωm),
∂u(ωm)

∂xg
ik

) = (
ex−ey∗(ωm)

ex
,
ey∗(ωm)

ex2 ).

For the calculation of the subgradient ofp∗i (ωm), Castillo et al. (2006) gives an integrated approach which

at once yields all the sensitivities of the optimal solutionof an NLP problem to changes in the parameter

values. They illustrate how to obtain the directional and partial derivatives of the optimal objective

function value, optimal primal, and dual variable values with respect to the parameters of a general NLP

problem by a single calculation. Once we solve the OPF problem (35), we utilize the approach of Castillo

et al. (2006) to calculate the subgradient ofp∗i (ωm).

Energy Markets with Demand-side bidding: Similar to the energy-only market, the first stage prob-

lem of the two-stage stochastic model can be approximated by(46). The only difference between the

approximate problems of energy-only market and energy market with demand response is the second

stage OPF problem. The second stage OPF problem of energy market with demand response would be

almost identical to (43) with explicit depends onωm. Hence, the discussion related to solving (46) remain

applicable in this case as well.

41



9 Numerical Illustration

The numerical experiments reported here have been conducted to serve two purposes. Firstly, we would

like to compare the performance of the computational methods discussed in Section 8 and secondly we

would like to see the impact of the market designs discussed in this paper on investment incentives of the

firms. To this end, we apply in this section the methods proposed in Section 8 to solve the equilibrium for

the electricity markets discussed throughout this paper under both deterministic and stochastic setting.

All the numerical experiments reported are performed by a Dell PC with Dual-Intel Xeon, 575 2.66

GHz processors, and 2 GB 266 MHz DDR Non-ECC SDRAM Memory using 576 Windows 2000. The

solvers utilized for each problem depend on both the type of application problem and the method, which

are summarized in Tables 1 and 2. Note that the methodologiesdiscussed in Section 8 allow modularity;

that is, one can always use any off-the-shelf solvers. In Table 2, (Non)Linear Program ((N)LP) and

Mixed Linear/Nonlinear Complementarity Problem (MLCP/MNCP) are used to solve first and second

stage problems simultaneously whereas Stochastic Program(SP) and MCP s.t. NLP are based on implicit

function approach discussed in Section 8; that is, first stage problem and second stage problems at each

realization are solved iteratively. Thus, one can use a separate solver for each stage. In our case, we use

CONOPT(warm start) and SNOPT sequentially for SPs and PATH for MCPs to find an equilibrium of

the first stage. These first stage solvers call the second stage solverM consecutive times at a pointx to

explore its optimality. The up-to-date information on the first stage solvers can be found in the online

documentations available by GAMS (see GAMS (2012)). In addition, for solving the second stage OPF

problem we use the deterministic nonlinear optimization code E04UCC of NAG C library, Mark 7, NAG

(2002). E04UCC is designed to minimize an arbitrary smooth function subject to constraints, which may

include simple bounds on the variables, linear constraints, and smooth nonlinear constraints. Essentially,

it is a sequential quadratic programming method incorporating an augmented Lagrangian merit function

and a BFGS quasi-Newton approximation to the Hessian of the Lagrangian.

Application
Problem Remedy Mechanism
EO Energy-only with VOLL pricing
ECAP Capacity markets
EORP1 Operating-reserve pricing based on demand
EORP2 Operating-reserve pricing based on capacity

Table 1: Overview of application problems

We consider a competitive power market of six nodes given by Chao and Peck (1998) in Figure 3, which

has the following characteristics:
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Application Solver Solver
Method Problem First Stage Second Stage

LP/NLP All except EORP2 CPLEX/SNOPT(GAMS) with 1st stage
(1st and 2nd stage)

MLCP/MNCP All PATH(GAMS) with 1st stage
(1st and 2nd stage)

SP All except EORP2 CONOPT(warm start) E04UCC
and SNOPT(GAMS) (NAG C)

MNCP s.t. NLP EORP2 E04UCC
PATH(GAMS) (NAG C)

Table 2: Overview of solvers utilized for each method and problem type

– The nodes 1, 2, and 4 are supply nodes (I := {1,2,4}) and the nodes 3, 5, and 6 are demand nodes

(N := {3,5,6}).

– Without loss of generality, at each supply node there is a single firm investing in one technology

(g = i = k). The unit generation and investment costs of these firms are given in Figure 3. The

corresponding data for marginal costs for these three generator types are taken from Schulkin et al.

(2010).

– The demand in nodes 3, 5, and 6 are uniformly distributed withcorresponding upper (Dmax) and

lower bounds (Dmin) given in Figure 3.

– To analyze the electricity market with limited network capacity, we assume all lines have infinite

capacities except for the lines (1-6) and (2-5) whereh16 = 8 andh25 = 8. All line impedances are

equal to 1 except for (1-6) and (2-5) that have impedances equal to 2. The PTDFs in Table 3 indicate

the flows through lines (1-6) and (2-5) resulting from one unit injection at each node of the network

and withdrawal at node 6, which is taken as the hub.

– VOLL is taken as 10,000 Euro/MWh which is a standard value of lost load used in the literature

(e.g., Stoft (2002), Hogan (2005)).

– In case of operating-reserve pricing, both operating-reserve price curves introduced in Sections

5.3.1 and 5.3.2 are assumed to be smooth sigmoid functions asgiven in Figures 1 and 2, respectively.

The mathematical representation of a sigmoid function is:F(t) =
Fmax

1+ek(t−Fmid)
whereFmax is the

maximum value of the function.Fmid gives the mid value of the function (F(Fmid) = Fmax/2).

Finally, k gives the curvature information centered onFmid. Regarding the approximating function

of the operating-reserve price curve offered by Hogan (2005) in Figure 1 and the operating-reserve
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price curve based on installed capacity in Figure 2, one should takeFmax= 10,000 andFmid = 0.05.

In order to determine the value ofk, the error between the real function and the approximating

function is calculated for different values ofk andk = 133 gives the best approximation with the

smallest error. Therefore for the numerical results reported in this section, we use the formulation

rp( f (x,y,d)) =
10000

1+e133( f (x,y,d)−0.05)
for the operating-reserve price curves,rp demand(ex−ey∗

ed ) and

rp capacity(ex−ey∗

ex ), given in Figures 1 and 2, respectively. The unit of operating-reserve price in

these figures are taken as Euro/MWh.

n Dmin(GW) Dmax(GW)

3 8 12
5 3 5
6 15 20

Figure 3: The data of 6-node example

Next, we solve two-stage deterministic and two-stage stochastic games by using the approaches proposed

in Section 8.
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Node Line (1-6) Line (2-5)
1 0.6250 0.3750
2 0.5000 0.5000
3 0.5625 0.4375
4 0.0625 -0.0625
5 0.1250 -0.1250

Table 3: Power distribution factors (PTDFl , j)

Example 9.1. Perfect competition equilibria under deterministic demand

We first consider the situation in which the firms solve their first stage problem by simply taking the

expected values of the demand:d3 = 10,d5 = 4, andd6 = 17.5. Then the corresponding game is a two-

stage deterministic game. In the energy-only (EO) market, energy market with forward capacity market

(ECAP), and energy market with operating-reserve pricing based on the observed demand (EORP1), we

find the equilibrium of the two-stage deterministic game by utilizing both MCP and (N)LP approaches.

In the energy market with operating-reserve pricing based on installed capacity (EORP2), we find the

equilibrium of the two-stage deterministic game by utilizing MCP approach. In the ECAP market, we

impose that the capacity market requires 11.2% more capacity than the total expected demand (H = 35.2)

which results in same reserve capacity as in EORP2 market. The results are presented in Tables 4 and

5. Furthermore, the results obtained by MCP approach and (N)LP approach for EO, ECAP, and EORP1

markets are identical and the computation time for both approaches takes less than a second.

Investment Incentives:Regarding the EO market result as reference, Tables 4 and 5 indicate that the

investments increase when there is capacity market or operating-reserve pricing. The prices in both

EORP markets remain identical whereas the prices in ECAP market are lower. However, there is an extra

capacity priceλ ∗ = 5.7 euro/MWh paid to the firms in ECAP market. If the consumers are paying this

capacity price, then one can conclude that ECAP market results in identical prices as well.

Compared to EO market, total generation capacity investments are higher in ECAP and EORP markets;

hence the system has higher investment costs in these markets. Regarding the comparison between

different market designs, investment incentives are higher in EORP2 market than in EORP1 market. In

addition, ECAP market results in identical investment levels as in EORP2 market sinceH is chosen to

be equal to the total generation capacity in EORP2 market. IfH were chosen to be equal to the total

generation capacity in EORP1 market, then ECAP market wouldresult in identical investment levels as

in EORP1 market. Based on our extensive numerical experiments, we conjecture that for any operating-

reserve functionrp in EORP1 or EORP2 market, there is a correspondingH in ECAP market which

results in identical total reserve capacity and mix of technologies. This observation is also made by Hobbs

et al. (2001). Furthermore, if the “correct” extra capacityprice (λ ∗ = 5.7) is paid by the consumers, then
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one can conclude that whenH is equal to the total generation capacity in an EORP market, there is no

difference between ECAP and the corresponding EORP market.

GW euro / MWh Investment and
Market Design x∗1 x∗2 x∗4 p∗3 p∗5 p∗6 Operational Cost (k Euro)

EO 31.5 0 0 33.7 33.7 33.7 1061.5
EORP1 31.5 3.3 0 33.7 33.7 33.7 1080.4
EORP2 31.5 3.7 0 33.7 33.7 33.7 1082.6
ECAP 31.5 3.7 0 28.0 28.0 28.0 1082.6

Table 4: Equilibrium in two-stage deterministic game with infinite transmission line capacities

GW euro / MWh Investment and
Market Design x∗1 x∗2 x∗4 p∗3 p∗5 p∗6 Operational Cost (k Euro)

EO 21.6 0 9.9 35.4 46.9 50.3 1208.9
EORP1 21.6 3.3 9.9 35.4 46.9 50.3 1227.9
EORP2 21.6 3.7 9.9 35.4 46.9 50.3 1230.1
ECAP 21.6 3.7 9.9 29.7 41.2 44.6 1230.0

Table 5: Equilibrium in two-stage deterministic game with limited network capacity
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Example 9.2. Perfect competition equilibria under demand uncertainty

We now consider the situation in which the firms take the randomness of demand into account and

the corresponding two-stage stochastic game needs to be solved. We first solve the two-stage stochastic

games in EO, ECAP, and EORP2 markets by using both MCP and implicit function approaches discussed

in Section 8 and compare the performance of these approaches. We use sample sizes ofM = 1000

andM = 8760 and compare the computational performance of these twoapproaches in the energy-only

market in Table 6, in EORP2 market in Table 7, and in ECAP market in Table 8, respectively. We report

optimal capacities installed together with the solution time. We skip the comparison of the computational

performance of these approaches for EORP1 market since the corresponding solution times are similar

to that of EO market. Note that the particular problem being solved in the MCP approach is referred as

mixed linear complementarity problem (MLCP) for energy-only and ECAP markets and mixed nonlinear

complementarity problem (MNCP) for EORP2 market. Moreover, the particular problem being solved in

the implicit function approach is referred as stochastic program (SP) for energy-only and ECAP markets

and MNLCP s.t. NLP in EOPR2 market (since mixed nonlinear complementarity problem is solved at

the upper level subject to the optimal solution set of the nonlinear program at the lower level). Next for

M = 8760, we compare the corresponding generation capacity investments, average consumer prices,

and average investment and operational (generation and curtailment) costs for EO, ECAP, and EORP

markets for both unlimited and limited network in Tables 10 and 11, respectively.

Computational Performance:The comparisons between the MCP approach (MLCP or MNCP) and im-

plicit function approach (SP or MNCP s.t. NLP) in all tables indicate that the computational time to

solve the two-stage stochastic game by MCP approach increases rapidly with the sample sizeM. Since

the implicit function approach involves solving the lower level (N)LP problemM consecutive times, the

computational time increases with sample sizeM in a linear way. Hence, the MCP approach is more

efficient in solving problems with smaller sample size (e.g., M = 1000) and implicit function approach

is more efficient in solving problems with large sample size (e.g.,M = 8760). We note that the solutions

of the approximating problem with small sample size (M = 1000) are almost identical to the solutions

of the approximating problem with large sample size (M = 8760) in Tables 6-8. This is mainly a conse-

quence of using uniform distribution in which case the approximation functions converge to their limit

very rapidly. Next, we consider an example in the energy-only market in which the stochastic demand in

nodes 3,5, and 6 has triangular distribution with peak values 9,3.5, and 16, respectively. Table 9 contains

the equilibrium points of this two-stage game. We see that the equilibria for different sample sizes show

wider variations in this case. Therefore, depending on the variability of the underlying random data and

the final accuracy desired, one may sometimes prefer to solvethe two-stage game for larger sample sizes

(e.g.,M = 8760) which get closer to the true solution.
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Investment Incentives:The comparison of investment capacities installed by each technology, average

consumer prices, and total investment and operational costof the system under each market design is

given in Tables 10 and 11. The values in these tables represent the computations done with sample size

of 8760. The results indicate that the total generation capacity in energy-only market is 1-2% less than

the total peak demand, whereas ECAP and operating-reserve pricing in EORP1 and EORP2 markets

result in total generation capacities that are about 4.5% - 5.0% above the total peak demand level. Thus,

energy-only markets with VOLL pricing tend to lead to total generation capacity below the peak load

with a certain probability whereas energy markets with a forward capacity market or operating-reserve

pricing result in higher investments. VOLL pricing (with high values of VOLL) may also result in

similar investment levels as the other market designs if forced outages are taken into account and the

demand is assumed to have a distribution without a finite support (see the result of Hobbs et al. (2001)).

In our experiments, since we do not consider forced outages and we assume demand distributions with

finite support, the regulator’s reserve target assumptions(in case of capacity markets or operating-reserve

pricing) result in total generation capacity higher than the peak demand level which cannot be achieved

by VOLL pricing.

As observed in the deterministic case, EORP2 market resultsin higher investment level of peak unit

compared to EORP1 market. Different from the deterministiccase, the average consumer prices in

EORP2 market are slightly higher than the average prices in EORP1 market. In ECAP market, we

used the total capacity requirementH = 38.8. As one can see in Tables 10 and 11, the investment levels

obtained in ECAP market are close to the investment levels inEORP markets. Similar to the deterministic

case, we conjecture a similar result of Hobbs et al. (2001) that for any operating-reserve functionrp in

EORP1 or EORP2 market, there is a correspondingH in ECAP market which results in identical total

reserve capacity and mix of technologies.

Although the average prices in ECAP market are the lowest, there is again an extra capacity priceλ ∗ = 5.7

euro/MWh which is likely be paid by the consumers. Furthermore compared to the EO market, the

relative increase in system operational and investment cost in ECAP and EORP markets under uncertainty

is lower than the increase in the total cost for the deterministic case. This can be explained by the

impact of higher operational cost due to the curtailment at some realizations and lower investment cost

in EO market versus lower operational and higher investmentcosts in the other market designs. Finally,

the comparison of the results in deterministic and stochastic settings indicate that when uncertainty of

future demand is taken into account by the risk neutral generators, their investments result in higher total

generation capacity and a broader mix of technologies compared to the case when generators invest based

on the expected demand.
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Infinite network capacity Limited network capacity
(x∗1,x

∗
2,x

∗
4) (x∗1,x

∗
2,x

∗
4)

Sample size CPU time CPU time
M MLCP SP MLCP SP

1000 (32.9, 2.0, 1.5) (32.9, 2.0, 1.5) (22.1, 1.3, 13.0) (22.1, 1.3, 13.0)
00h 00’47” 00h 13’46” 00h 05’04” 00h 27’45’

8760 (32.9, 2.1, 1.5) (32.9, 2.1, 1.5) (22.0, 1.2, 13.3) (22.0, 1.2, 13.3)
06h 16’ 49” 01h 36’ 25” 23h 01’ 09” 02h 32’ 38”

Table 6: Equilibrium of two-stage stochastic game in energy-only markets (EO)

Infinite network capacity Limited network capacity
(x∗1,x

∗
2,x

∗
4) (x∗1,x

∗
2,x

∗
4)

Sample size CPU time CPU time
M MNCP MNCP s.t. NLP MNCP MNCP s.t. NLP

1000 (32.9, 4.4, 1.5) (32.3, 3.6, 2.9) (22.1, 3.7, 12.9) (22.1, 3.7, 12.9)
00h 01’05” 01h 0’07” 00h 05’04” 01h 15’53”

8760 (32.9, 4.5, 1.5) (32.9, 4.5, 1.5) NA (time limit) (22.0, 3.8, 13.0)
10h 46’ 22” 09h 31’ 38” 75h 48’ 19” 08h 19’ 42”

Table 7: Equilibrium of two-stage stochastic game in energymarkets with operating-reserve price
(EORP2)

Infinite network capacity Limited network capacity
(x∗1,x

∗
2,x

∗
4) (x∗1,x

∗
2,x

∗
4)

Sample size CPU time CPU time
M MNCP MNCP s.t. NLP MNCP MNCP s.t. NLP

1000 (32.9, 4.4, 1.5) (32.9, 4.4, 1.5) (22.1, 3.7, 12.9) (22.1, 3.7, 12.9)
00h 00’33” 00h 27’48” 00h 02’21” 00h 24’50”

8760 (32.9, 4.4, 1.5) (32.9, 4.4, 1.5) (22.1,3.6,13.1) (22.1, 3.6, 13.1)
4h 44’ 11” 01h 54’ 11” 21h 38’ 34” 01h 54’ 49”

Table 8: Equilibrium of two-stage stochastic game in energymarkets with forward capacity require-
ments (ECAP)

Infinite network capacity Limited network capacity
(x∗1,x

∗
2,x

∗
4) (x∗1,x

∗
2,x

∗
4)

Sample size CPU time CPU time
M MLCP SP MLCP SP

1000 (31.5, 2.2, 1.1) (31.5, 2.2, 1.1) (21.5, 1.0, 12.3) (21.5, 1.0, 12.3)
00h 00’51” 00h 14’18” 00h 02’21” 00h 23’48’

8760 (31.5, 2.4, 1.2) (31.5, 2.4, 1.2) (21.5, 0.8, 12.8) (21.5, 0.8, 12.8)
10h 43’ 53” 02h 06’ 01” 34h 18’ 31” 04h 59’ 28”

Table 9: Equilibrium of two-stage stochastic game in EO markets with stochastic demand sampled
from triangular distribution
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GW euro / MWh Average Investment and
Market Design x∗1 x∗2 x∗4 E[p∗3] E[p∗5] E[p∗6] Operational Cost (k Euro)

EO 32.9 2.1 1.5 33.6 33.6 33.6 1113.6
EORP1 32.9 4.3 1.5 33.5 33.5 33.5 1125.7
EORP2 32.9 4.5 1.5 33.8 33.8 33.8 1126.8
ECAP 32.9 4.4 1.5 28.0 28.0 28.0 1126.3

Table 10: Equilibrium in two-stage stochastic game with infinite transmission line capacities

GW euro / MWh Average Investment and
Market Design x∗1 x∗2 x∗4 E[p∗3] E[p∗5] E[p∗6] Operational Cost (k Euro)

EO 22.0 1.2 13.3 36.0 46.5 49.5 1256.8
EORP1 22.1 3.5 13.1 35.4 46.6 49.8 1268.6
EORP2 22.0 3.8 13.0 38.5 50.2 53.6 1269.3
ECAP 22.1 3.6 13.1 29.8 41.0 44.3 1269.1

Table 11: Equilibrium in two-stage stochastic game with limited network capacity

10 Conclusions

We have considered alternative market designs which may remedy the resource adequacy problem in

restructured electricity markets. Each market design corresponds to a different type of multi-agent model

formulation depending on the remedy mechanism and the assumption on the market agents’ behaviors.

Taking into account the uncertainty or variability of parameters in these multi-agent models may lead

to large-scale problems which are computationally complexto solve due to scarcity of resources (e.g.,

available memory and speed of computers). We show that, in perfectly competitive markets, most of

the market models can be cast into deterministic or stochastic optimization problems similar to the early

capacity expansion models of a regulated monopoly. This result also suggests that an equilibrium of a

single-stage (open loop) model in which investment and operation decisions are made simultaneously

coincides with an equilibrium of a two-stage (closed loop) model where investment and operation de-

cisions are made sequentially. By using this result, we showthat we can utilize sample-path methods

together with the powerful available solvers for deterministic optimization problems, which provides

computational simplicity for solving such models of realistic systems with stochastic elements.

By utilizing numerical experiments, we also provide insights on the impact of demand uncertainty

and to what extend these market designs provide incentives to invest in generation capacities. Firstly,

uncertainty of demand leads to higher investments in total generation capacity and a broader mix of

technologies compared to the investment decisions assuming average demand levels. Furthermore in

energy-only markets, peak-load generators tend to under-invest and curtail peak load so that they re-

ceive positive margin via high prices (e.g., VOLL) to cover their long-run marginal costs. In energy

markets with a forward capacity market or with operating-reserve pricing, peak-load generators receive
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positive margin not only via curtailment but also by providing more capacity to the system. Therefore

for the same VOLL (or price cap) level, energy-only markets with VOLL pricing tend to lead to total

generation capacity below the peak load with a certain probability whereas energy markets with a for-

ward capacity market or operating-reserve pricing result in higher investments under the assumptions

of random demand with finite support and no forced outages. Moreover given similar regulator targets,

operating-reserve pricing based on installed capacity provides higher incentives than operating-reserve

pricing based on observed demand and it does not increase thetotal investment and operational cost in

the system significantly. Lastly, the regulator decisions (e.g., reserve capacity target) in capacity markets

and operating-reserve pricing can be chosen in such a way that results in very similar investment levels

and fuel mix of generation capacities in both market designs.

Finally, the result of the prevalence of stochastic programming for providing solutions to stochastic

equilibrium models can be extended to generation capacity investment strategies in perfectly competitive

electricity markets with different regulatory mechanismssuch as emission trading scheme (Gürkan et al.

(2012)) or renewable obligations (Gürkan and Langestraat(2012)). In addition, risk aversion can also be

included by using “coherent risk measures” in the first stageproblem of the firms. This allows assessment

of investment incentives of risk averse generators by utilizing a two-stage stochastic program when the

markets are perfectly competitive and “complete” (Ralph and Smeers (2011)). However, this does not

necessarily guarantee that every equilibrium model under perfect competition can be cast as two-stage

stochastic program since equilibrium problems are indeed broader than optimization problems. The

natural approach is to resort initially to complementarityformulations as to model competitive electricity

markets. Depending on the structure of the market and regulatory intervention, market equilibrium may

or may not be equivalent to the solution of a system optimization. For instance in one case of operating-

reserve pricing, we obtain an equilibrium problem that is not equivalent to an optimization problem.
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Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 3.3. The first stage problem (10) is concave inxg and the second stage problem (9)

is a linear program and therefore is convex. Hence, (11) and (8) are necessary and sufficient optimality

conditions for all firms at both stages. By using the result,x∗ = y∗, from Lemma 3.1, we can rewrite (8)

by replacingy∗g
ik with x∗g

ik . Thus, the first two complementarity equations in (8) reduceto:

(i) 0≤ cg
ik − p∗i +β g∗

ik ⊥ x∗g
ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

(ii) β g∗
ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

In addition by Lemma 3.2,

(iii ) 0≤−β ∗g
ik +κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

should hold at the first stage. As a result, a solutionx∗ which satisfies(i)-(iii) would satisfy the following

complementarity conditions as well:

0≤ cg
ik − p∗i +κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

On the other hand, letx∗ be a solution to the complementarity conditions in (12). Then it is an equilibrium

of the two-stage game whereβ ∗g
ik = p∗i −cg

ik = κk for x∗g
ik > 0 and 0≤ β ∗g

ik ≤ κk for x∗g
ik = 0.

Proof of Lemma 3.6. Similar to Proof of Lemma 3.2, first stage problem of each firmg ∈ G can be

formulated as

max
xg≥0

Eω [Π∗
g(ω ,xg)]− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik, (A1)
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whereΠ∗
g(ω ,xg) is the optimal value of the firmg’s second stage problem (15) at realizationω ∈ Ω.

Similar to the arguments inProof of Lemma 3.2, Π∗
g(ω ,xg) is a concave function ofxg for all fixed

ω ∈ Ω; hence the expectationEω [Π∗
g(ω ,xg)] is a concave function ofxg as well. By using the fact that

(15) is a linear program, we know that at any givenxg if Π∗
g(ω ,xg) is finite thenβ ∗g

ik (ω) is a subgradient

of Π∗
g(ω , ·). Moreover,β ∗g

ik (ω) is unique andΠ∗
g(ω , ·) is differentiable except on a setL of Lebesgue

measure zero. Thus,

∂Π∗
g(ω , ·)

∂xg
ik

= β ∗g
ik (ω) except onL.

Sinceβ ∗g
ik (ω) is a subgradient ofΠ∗

g(ω , ·), Eω [β ∗g
ik (ω)] is a subgradient ofEω [Π∗

g(ω , ·)]. Moreoverd(ω)

is a continuous random variable; henceL has a probability measure zero. Therefore,Eω [β ∗g
ik (ω)] is

unique and

∂Eω [Π∗
g(ω , ·)]

∂xg
ik

= Eω [β ∗g
ik (ω)]. (A3)

As a result, we can conclude thatEω [Π∗
g(ω , ·)] is concave and differentiable. Hence,x∗g is optimal for

firm g’s problem (17) if and only if it satisfies the optimality conditions of problem (A1) given as

0≤−
∂Eω [Π∗

g(ω ,x∗g)]

∂xg
ik

+κk ⊥ x∗g
ik ≥ 0 ∀i ∈ Ig,k∈ Kg.

By using the equality in (A3), we get the following equilibrium conditions for the first-stage game:

0≤−Eω [β ∗g
ik (ω)]+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

Proof of Theorem 3.8. Both (23) and (24) are convex problems. The necessary and sufficient KKT

optimality conditions of (23) and (24) for all firms and TSO together with the market clearing conditions

can be written as

0≤−
M

∑
m=1

πmβ ∗g
ik (ωm)+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg; (A4)

where form= 1,2, . . . ,M :

(y∗(ωm),β ∗(ωm), p∗(ωm)) satisfyMCP Firms(ωm,x)

( f ∗(ωm),ρ∗(ωm),λ ∗+
l (ωm),λ ∗−

l (ωm)) satisfyMCP TSO(ωm)

(y∗(ωm),δ ∗(ωm), f ∗(ωm), p∗(ωm)) satisfyMCP Market(ωm).

In (A4), the first line is equivalent to the equilibrium conditions of the first stage game given in (22)
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and the rest is KKT optimality conditions of the OPF problem (16) for everyωm. Hence, a solution to

the MCP (A4) is an equilibrium of the corresponding two-stage stochastic game with finite number of

demand scenarios. Furthermore, since (A4) consists of necessary and sufficient optimality conditions of

every firm’s problem in both two-stage and single-stage games, an equilibrium of the two-stage stochastic

game, if it exists, is also an equilibrium of the single-stage stochastic game.

Proof of Theorem 5.2. The second stage problem (30) of each firmg∈ G is a linear program wherexg

appears both as a coefficient in the objective function and asa the right side parameter in the constraints.

Since the objective function is a concave function ofxg and the corresponding constraints are convex in

xg, the optimal objective function value,Π∗R
g (xg), is a concave function ofxg in (30). WhenΠ∗R

g (xg)

is finite in the neighborhood ofx∗g, it is also subdifferentiable atx∗g and (β ∗g
ik + γ∗) is a subgradient

of Π∗R
g (x∗g). Hence,x∗g is an optimal solution of (33) for each firmg ∈ G if and only if there exists

(β ∗g
ik + γ∗) ∈ ∂Π∗R

g (x∗g)

∂xg
ik

satisfying the necessary and sufficient optimality conditions

0≤−(β ∗g
ik + γ∗)+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

After plugging inγ∗ = rp(ex∗−ey∗,x∗,d), we get the equilibrium conditions in first stage game as

0≤−β ∗g
ik − rp(ex∗−ey∗,x∗,d)+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

Proof of Theorem 5.3. Π∗R
g (ω ,xg) is the optimal objective function value of the second stage problem

(30) in stochastic setting defined for eachω ∈ Ω. As argued inProof of Theorem 5.2, Π∗R
g (ω ,xg) is a

concave function ofxg; henceEω [Π∗R
g (ω , ·)] is concave. By using an argument similar to the one inProof

of Lemma 3.6, we can conclude thatEω [Π∗R
g (ω , ·)] is differentiable and

∂Eω [Π∗R
g (ω , ·)]

∂xg
ik

= Eω [β ∗g
ik (ω)+ γ∗(ω)].

Hence,x∗g is an optimal solution of (36) for each firmg ∈ G if and only if it satisfies the optimality

conditions

0≤−Eω [β ∗g
ik (ω)+ γ∗(ω)]+κk ⊥ x∗g

ik ≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg.

After plugging inγ∗(ω) = rp(ex∗ −y∗(ω),x∗,d(ω)), we get the equilibrium conditions in (37).

Proof of Remark 5.4. (x,y) ∈ ℜM×M
+ whereM := G× I ×K. R demand(ex−ey

ed ) is concave in(x,y) iff its
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HessianH := ℜ2M×2M is negative semidefinite. Next we calculate the Hessian ofR demand(ex−ey
ed ):

Let H1 := ℜM×M , then

∇2
xxR demand(

ex−ey
ed

) = ∇2
yyR demand(

ex−ey
ed

) = H1 and

∇2
xyR demand(

ex−ey
ed

) = ∇2
yxR demand(

ex−ey
ed

) =−H1,

whereH1
i j = h1(ex,ey) =

∂ rp demand(ex−ey
ed )

∂ (
ex−ey

ed
)

1
ed

∀i, j ∈ M and h1(ex,ey) ≤ 0 by using Assumption

5.1. Then the Hessian matrix can be formulated as

H(x,y) =

(

H1 −H1

−H1 H1

)

.

LetzT = [z1 z2] wherez1,z2 ∈ℜM. Next we show thatH is negative semidefinite; that is,zTH(x,y)z≤

0 for eachz∈ ℜ2M and(x,y) ∈ ℜM×M
+ :

zTH(x,y)z = [z1 z2]

(

H1 −H1

−H1 H1

)

[z1 z2]
T

= zT
1 H1z1+zT

2 H1z2 = h1(ex,ey)[(ez1)2+(ez2)2].

Sinceh1(ex,ey) ≤ 0, zTH(x,y)z≤ 0 for eachz∈ ℜ2M. Thus,H is negative semidefinite.

Proof of Remark 5.7. (x,y) ∈ ℜM×M
+ whereM := G× I ×K. R demand(ex−ey

ex ) is concave in(x,y) iff its

HessianH := ℜ2M×2M is negative semidefinite. Next we calculate the Hessian ofR demand(ex−ey
ex ):

Let H1,H2,H3 := ℜM×M , then

∇2
xxR demand(

ex−ey
ex

) = H1,

∇2
yyR demand(

ex−ey
ex

) = H2, and

∇2
xyR demand(

ex−ey
ex

) = ∇2
yxR demand(

ex−ey
ex

) = H3,

where for(x,y) ∈ ℜM×M
+ and by using Assumption 5.1:

(i) H1
i j =

∂ rp capacity(ex−ey
ex )

∂ (
ex−ey

ex
)

ey2

ex3 ≤ 0, ∀i, j ∈ M.

(ii) H2
i j =

∂ rp capacity(ex−ey
ex )

∂ (ex−ey
ex )

1
ex

≤ 0, ∀i, j ∈ M.
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(iii) H3
i j =−

∂ rp capacity(ex−ey
ex )

∂ (ex−ey
ex )

ey
ex2 ≥ 0, ∀i, j ∈ M.

Note thatey2 denotes the sum of squares for all the elements of a vectory andex3 denotes the sum of

cubes for all the elements of a vectorx in the above equations. Then the Hessian matrix can be formulated

as

H(x,y) =

(

H1 H3

H3 H2

)

.

LetzT = [z1 z2] wherez1,z2 ∈ℜM. Next we show thatH is negative semidefinite; that is,zTH(x,y)z≤

0 for eachz∈ ℜ2M and(x,y) ∈ ℜM×M
+ :

zTH(x,y)z = [z1 z2]

(

H1 H3

H3 H2

)

[z1 z2]
T

= zT
1 H1z1+zT

2 H2z2+zT
1 H3z2+zT

2 H3z1.

By usingH1
i j =−

ey
ex

H3
i j , H2

i j =−
ex
ey

H3
i j , andH3

i j = h3(ex,ey) ≥ 0, we have

zTH(x,y)z =−
ey
ex

zT
1 H3z1−

ex
ey

zT
2 H3z2+zT

1 H3z2+zT
2 H3z1

=−
ey
ex

h3(x,y)(ez1)2−
ex
ey

h3(x,y)(ez2)2+2h3(x,y)ez1ez2

= h3(x,y)(ez1 −
ex
ey

ez2)(ez2−
ey
ex

ez1).

In the above equation, one of the three cases hold forez1,ez2:

Case 1 (ez1 <
ex
ey

ez2): Thenez2 >
ey
ex

ez1 which implies

zTH(x,y)z= h3(x,y)(ez1 −
ex
ey

ez2)(ez2−
ey
ex

ez1)< 0.

Case 2 (ez1 >
ex
ey

ez2): Thenez2 <
ey
ex

ez1 which implies

zTH(x,y)z= h3(x,y)(ez1 −
ex
ey

ez2)(ez2−
ey
ex

ez1)< 0.
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Case 3 (ez1 =
ex
ey

ez2): Then

zTH(x,y)z= h3(x,y)(ez1 −
ex
ey

ez2)(ez2−
ey
ex

ez1) = 0.

Hence,zTH(x,y)z≤ 0 for eachz∈ ℜ2M andH is negative semidefinite.

References

Allcott, H. (2012). Real-time pricing and electricity market design. Working Paper, Newy York Univer-

sity, New York, NY, USA.

Boucher, J. and Y. Smeers (2001). Alternative models of restructured electricity systems, part 1: no

market power.Operations Research 49(6), 821–838.

CASIO (2012). Annual market monitoring report. Available at: http://www.caiso.com.

Castillo, E., J. Conejo, C. Castillo, R. Minguez, and D. Ortigosa (2006). Perturbation approach to

sensitivity analysis in mathematical programming.Journal of Optimization Theory and Applica-

tions 128(1), 49–74.

Celebi, E. and J.D. Fuller (2012). Time-of-use pricing in electricity markets under different market

structures.IEEE Transactions on Power Systems 27(3), 1170–1181.

Chao, H. and S.C. Peck (1998). Reliability management in competitive electricity markets.Journal of

Regulatory Economics 14(2), 189–200.

Cramton, P. and A. Ockenfels (2011). Economics and design ofcapacity markets for the power sector.

Zeitschrift f̈ur Energiewirtschaft 36(2), 113–134.

Cramton, P. and S. Stoft (2005). A capacity market that makessense.Electricity Journal 18(7), 43–54.

Cramton, P. and S. Stoft (2006). The convergence of market designs for adequate generating capac-

ity. White Paper for the Electricity Oversight Board, April2006, Available at:http://stoft.com/

metaPage/lib/Cramton-Stoft-EOB-2006-04-ICAP-energy-convergence.pdf.

Crew, M.A., C.F. Fernando, and P.R. Kleindorfer (1995). Thetheory of peak-load pricing: a survey.

Journal of Regulatory Economics 8(3), 215–248.

DG ENERGY (April 2012). Quarterly report on european electricity markets. Available at:http:

//ec.europa.eu/energy/observatory/electricity/doc/qreem_2012_quarter2.pdf.

57



Dirkse, S.P. and M.C. Ferris (1995). The PATH solver: a non-monotone stabilization scheme for mixed

complementarity problems.Optimization Methods and Software 5(1), 123–156.

Ehrenmann, A. and Y. Smeers (2011). Generation capacity expansion in a risky environment.Operations

Research 59(6), 1332–1346.

Ferris, M.C. and T. Munson (2008). PATH 4.6. GAMS Solver Manual, Available at:http://www.

gams.com/dd/docs/solvers/path.pdf.

Gabriel, S.A., A.J. Conejo, B.F. Hobbs, D. Fuller, and C. Ruiz (2012). Complementarity Modeling in

Energy Markets. Springer, New York, NY, USA.

GAMS (2012). Documentation. Available at:http://www.gams.com/docs/document.htm.

Gürkan, G. and R. Langestraat (2012). Modeling and analysis of renewable energy obligations in the UK

electricity market. Working Paper, Tilburg University, Tilburg, The Netherlands.
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