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Abstract

In competitive electricity markets, markets designs basegower exchanges where supply bidding
(barring demand-side bidding) is at the sole short run mafgiost may not guarantee resource adequacy.
As alternative ways to remedy the resource adequacy prolenfocus on three different market designs
in detail when demand is inelastic, namely an energy-onlgketavith VOLL pricing (or a price cap), an
additional capacity market, and operating-reserve micilVe also discuss demand-side bidding (i.e., a
price responsive demand) which can be seen as a categpditdient alternative to remedy the resource
adequacy problem. We consider a perfectly competitive etartinsisting of three types of agents: genera-
tors, a transmission system operator, and consumers;aitagre assumed to have no market power. For
each market design, we model and analyze capacity investheites of firms using a two-stage game
where generation capacities are installed in the first shagegeneration takes place in future spot markets
at the second stage. When future spot market conditionssatereed to be knowa priori (i.e., determin-
istic demand case), we show that all of these two-stage raed#i different market mechanisms, except
operating-reserve pricing, can be cast as single optimizaroblems. When future spot market conditions
are not known in advance (i.e., under demand uncertaing/gsgentially have a two-stage stochastic game.
Interestingly, an equilibrium point of this stochastic gaman be found by solving a two-stage stochastic
program, in case of all of the market mechanisms except tipgreeserve pricing. In case of operating-
reserve pricing, while the formulation of an equivalentedetinistic or stochastic optimization problem is
possible when operating-reserves are based on observezhdethis simplicity is lost when operating-
reserves are based on installed capacities. We geneltadize tesults for other uncertain parameters in spot
markets such as fuel costs and transmission capacitiealljFiwe illustrate how all these models can be
numerically tackled and present numerical experimentsuimumerical experiments, we observe that un-
certainty of demand leads to higher total generation c&pagpansion and a broader mix of technologies
compared to the investment decisions assuming averagendelmeaels. Furthermore for the same VOLL
(or price cap) level and under the assumptions of random démvih finite support and no forced outages,
energy-only markets with VOLL pricing tend to lead to totahgration capacity below the peak load with a
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certain probability whereas energy markets with a forwagbcity market or operating-reserve pricing re-
sult in higher investments. Finally, the regulator degisi¢e.g., reserve capacity target) in capacity markets
and operating-reserve pricing can be chosen in such a wayethats in very similar investment levels and
fuel mix of generation capacities in both market designs.

Keywords: electricity markets, generation investment modeling,acitg market, operating reserve pricing,
perfect competition equilibrium, stochastic optimizatio

JEL codes:C61,C63,D41,C68,L94,0Q48

1 Introduction

In the days of regulated monopolies, there was no issue afrggon resource adequacy. Companies were
obligated to serve the demand and had to invest accordiaglgptimization model was used to compute the
expansion of generation capacity decisions that wouldfyatiemand at minimal investment and operations
costs (subject to reliability constraints that we will nasaliss here). In compensation for this obligation,

electricity prices were regulated (often at average cast)way that guaranteed that the company could pay for
its expenses (including reimbursement of long term deld)ranke a reasonable profit on equity. The theory
of peak load pricing for non-storable commodities, suchlastecity, is the economic counterpart of these

computational models; it can be seen as an economic intatiore of the capacity expansion model in terms

of electricity prices that induce efficient investments aperations. Of particular importance, the theory of

peak load pricing explains that the price of electricity lie thighest demand period must embed a particular
(peak load) component to induce an efficient capacity mixhBloe capacity expansion models and the theory
of peak load pricing can be traced back to work conductegléstricite de France in the fifties and sixties (see

the collection of early papers treating both subjects inlktand Bessiere (1971)).

Capacity expansion models were extensively developeagltine regulatory periods before loosing some
of their appeal after restructuring. After restructuriggneration and investments became the responsibility of
companies who had to make a profit on the electricity markbts §ave rise to the question whether energy-
only electricity markets would provide incentives for adatg investments and thereby maintain security of
supply. This discussion focuses especially on those polaetgpwhich will only be needed to meet demand
at peak hours and therefore have to earn sufficient revenubese hours to cover their investment costs. The
theory of peak load pricing, which was initially developed the regulated monopoly, was later proved equally
relevant to perfectly competitive markets (in case of éa#mand, see Crew et al. (1995) for a survey). This
theory has become crucial today to explain why competitigetecity markets may not spontaneously provide
the right incentive to invest in generation capacity forkpkead and to suggest remedies to this market failure.

In this paper, we consider three variations of competitieetecity market designs known as energy-only
market with VOLL pricing (or a price cap), a forward capaaityarket, and operating-reserve pricing as possi-
ble remedies to a market failure of insufficient generatiapacity investment. We also discuss demand-side
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bidding which is strictly speaking not a remedy to a markitifa but an alternative way to remove this market
failure. We formulate generation capacity investmentslens in these electricity market designs as two-stage
equilibrium problems, which is a natural way of modellinglplems with multiple decision makers in a com-
petitive environment. We show that most of these equiliormodels can be cast in mathematical programming
formulations that are not too far from the early capacityamgion models. Establishing the exact relations be-
tween the two-stage equilibrium problems and the early@gpaxpansion models under these market designs
is one of the main objectives of this paper. We continue titr@duction by formalizing the question of resource
adequacy in competitive electricity markets. We do so bgrrafg to the early capacity expansion models (in
the most simplified setting) and to the interpretation ofrtdaal solution in peak load pricing terms.

Consider the following simple generation capacity expamsnodel of a regulated monopoly where supply
and demand are located at a single node. There is a finite p&traftypesK and a finite set of time segments
Q (these can also be interpreted as states of the world, ageveltg each occurring with some duratiatw)
(that we later interpret as probabilities)(w) is the demand in time segmeat ki andcy are the unit capacity
and unit generation cost of plakt x is the capacity of plant typk andyi(w) is the generation of this plant
in time segmentv. Assuming the monopoly firm is regulated in a way that moégatost minimization, the
capacity expansion model, together with its dual varigiffés) and p(w)?, is stated as:

minZkaH- Zn(w)%ckyk(w)
S.t. Xk — Yk(w) >0 m(w)Bx(w) Vw VK
ZYk(w) —d(w) >0 mMw)p(w) Yo

Yk(w) >0 x>0 Vw Vk

(1)

This model allows the monopoly firm to determine an optimaésiment portfolio of generation capacity
mix for satisfying various demand levélsThe closely related producer and consumer surplus maatioiz
problem has a richer economic content. BPétv,d) be the inverse demand function of the market where the
price is given as a function of quantity supplied in time segtaw € Q. The producer and consumer surplus
maximization problem is written as:

max m(e) [ [ e - chykw)] L
s.t. X — Yk(w) >0 mw)fk(w) Vo VK (2)
S~ (@) >0 M@)p(w) Yo

(@) >0 x>0 Yo Yk,

INote that we multiply these dual variables with their prabgés in the models (1) and (2) for the purpose of scaling.

2|n the formulation (1), the demand constraint is assumedttalivays binding ity > 0,Vk. In more general market models with
transmission or unit commitment constraints, howeverpgtenal solution might not be binding since technical andnenic reasons
may drive generators to run even when power supply exceed$etinand. In these situations, generators may seek to inadotigput
by offering to pay wholesale buyers to take their eleclyichthis could yield negative price in some locations or pdsio
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d(w)
Where/ P(w,&)d¢ is known as the consumers’ willingness to paydétv). The KKT conditions of
problem (2) provide the necessary relations to explain ¢éseurce adequacy problem. Specifically the KKT
condition associated with a positive generation varighle) is stated as:

o+ B w) = P(w,d(w) = p(w), Vo. -
Alternatively, the KKT condition associated with a posgtinvestment variablg is stated as:

Y (w)B(w) = K. (4)

The economic interpretation of (3) is that a plant of tyehich is operating in time segmeatgenerates a
(scarcity or capacity) reri(w) in that time segment; this rent is equal to the differencevben the electricity
price p(w) in that time segment and the plant’s fuel cost The economic interpretation of (4) is that one
invests in a plant of typ& when the duration7f) weighted sum of the rent8(w) over all time segments
w is equal to the investment cost. Departing from this pricing scheme induces inefficiencather at the
consumption or generation side. The question of resoureguaty is whether restructured electricity markets
lead to electricity prices that satisfy these relationsioff, there is a resource adequacy problem.

It is now recognized that the original restructured eleitifrimarkets do not spontaneously satisfy relations
(3) and (4). Because electricity is not storable, the mafixatring demand-side bidding) clears in the short
run when demand is inelastic. The market therefore doesnsutre (3), because it does not face a downward
sloping demand curve in the short run. Instead, the orgaoizaf the market sets the price at the bid of the
last plant selected to satisfy the demand, which used to bielelywsed pricing scheme when liberalisation
was introduced in many countries such as in Europe and in eBarring market power and demand-side
bidding, this price is equal to the fuel cost of the last sel@gower plant in time segmeni. This implies
that the most expensive unit in operations over the diffetieme segmentso (the peak plant) does not make
any margin and hence (3) is not satisfied for that unit. Thislz&interpreted as follows: the electricity price
in the peak does not incorporate the necessary compondlet] ea “scarcity rent”, that pays for the capacity
at peak demand. The peak plant therefore appears with a zegimin (4) which is thus also never satisfied
for that equipment. This missing margin is now commonly mefg to as the missing money. Stoft (2002)
was among the first ones to analyze investments by invokisigfficient payments for capacity. He explained
how, barring well developed demand-side bidding, pools gmder exchanges prevent prices on the market
to reflect scarcity in generation capacity (see also CraratwhStoft (2005, 2006)). Both Hogan (2005) and
Joskow (2007, 2008) also offer enlightening and in depthyaisaof the missing money. Oren (2007) provides
a comprehensive description of the different techniquesediat restoring resource adequacy; he also discusses
various implementations and gives an extensive list ofesfees.

Guaranteeing resource adequacy therefore requires atimgnthe missing money by creating enough ca-



pacity rentfy(w) to cover the capital costs of an efficient generation systeciyding the capacity cost of the
peak plant. This in turn requires changing the electricitgipg mechanism. In an energy-only system, the idea
is to price electricity at a high value that is supposed teotfihe value of lost load (VOLL), known as VOLL
pricing, when demand is curtailed. In perfectly competitimarkets, Stoft (2002) shows that VOLL pricing re-
sults in optimal generation capacity investments. Howereeality VOLL is difficult to estimate and therefore

a price cap (which is in general lower than VOLL) is used. # fgrice cap induced by the regulator is not high
enough, this will constrain prices from rising up to theinguetitive levels at peak hours, yielding underinvest-
ment in generation capacity (e.g., see Joskow (2008)). #enreitive solution for avoiding market failure is to
implement a capacity market where the regulator impose® s@pacity target in line with historical data and
expected demand and the firms contributing to the sufficremstment level receive numerations accordingly.
In order to increase the robustness against market poway; vaaiants of capacity markets have been proposed
regarding the implementation of the market design and #etrirent of demand response (e.g., Cramton and
Stoft (2005), Joskow (2008), Hobbs et al. (2007), Cramtah@okenfels (2011)). Here we assume a forward
capacity market where capacity is auctioned before thestnvent decision is made and the resulting capacity
payment is certain for the lifetime of the plant. A more sapibated alternative remedy is to apply some form
of reliability or operating-reserve pricing so that elégtty price increases when the reserve margin decreases
(Stoft (2002), Hogan (2005), Hogan (2009)). Lastly, as agatically different alternative, ensuring a price
responsive demand in the short-run as well as in the longray remedy the resource adequacy issue.

In recent years, more and more countries have implemented ((S states) or are planning to implement
a variety of these market mechanisms aimed at stimulatimgstments in new generation capacity, such as
scarcity pricing when capacity is inadequate or capacignpnts via additional capacity markets next to the
electricity market. For policy analysis in real world prebis, practical tools are needed to gain insights into
the social implications of a market design or a policy tar@ete e.g., Schroeder (2012) and Allcott (2012)
for examples of real world applications). Thus, we con@aton these four mechanisms (including demand-
side bidding briefly) in our analysis with the following cabutions. We first expand on existing short run
equilibrium models of restructured systems to include ggien capacity decisions under these resource ade-
guacy mechanisms and uncertainty about future electmcétyket conditions. The natural approach is to resort
to complementarity formulations as this mathematical mogning paradigm has been extensively used to
model restructured electricity systems. We then assessxtkeat to which these models can be restated as op-
timization problems as solvers for optimization problemes @ow numerous and quite powerful. Furthermore,
we provide insights about to what extent the investmentnitiees are affected by these different mechanisms
under demand uncertainty. To this end, we illustrate howhalse models can be numerically tackled and
present some numerical experiments.

We assume price-taking firms and hence exclude market p@&wen if real markets may depart from per-
fect competition, perfect competition models provide aseesial benchmark for imperfect competition models.
Moreover, real markets may suffer from inefficiencies assalteof regulatory intervention or market design.
Utilizing perfect competition models still allows policyakers to gain insights into the social implications of



a market design or a policy target (e.g., Allcott (2012)).atidition, there are computational reasons. Multi-
stage imperfect competition models are difficult if not irapible to solve. This is already true for two-stage
investment and operation models that are EPEC (equilibgtohlem subject to equilibrium constraints) when
involving market power (see Ralph and Smeers (2006), Hu aphR2007) for more details on these and
related complications). More general models involving gussice of cycle of investment and operations are
at this stage computationally unexplored. Last, the eepeg of reformed markets indeed shows that market
power mitigation instruments are effective and that priypgesigned reformed markets function competitively
and hence can be modeled under the perfect competition pisnm For example, the market monitoring
results of PIM (2012) and CASIO (2012) indicate that markieep are at or near competitive levels most of
the time in US states. Furthermore, the European Union aridémber States are underway to move towards
a fully integrated European electricity market by 2014 wilile aim to increase competition and maximize
the economic welfare of all players. In some of the regiong. (&ermany-Belgium-France-The Netherlands)
where the integration has already taken place for some $igeificant price convergence is observed between
the countries in most of the hours, which is a good indicadorcbmpetitiveness (see DG ENERGY (2012)).
To sum up, in this paper we will deal with a computable repnteg@n of the incentives to invest in power
markets functioning under perfect competition.

In reality, generation capacity expansion is a multi-pgfioocess. The market induces the creation of new
capacities and the retirement of old ones. A full versionhef tapacity expansion model therefore involves
a sequence of successive cycles of investment and operddan, Schroeder (2012)). We limit our analysis
to simplified models that represent a single cycle of investimand operation: investment takes place in the
first stage at some investment costs; the market operatbée isecond stage with generators collecting sales
revenues and incurring fuel costs. This restriction is miadehe sake of the presentation. In contrast with
multi-period imperfect competition models, it is perfgctiossible to implement the mechanisms considered
here in a multi-period context since convexity is in generalserved under perfect competition.

Although we focus mainly on electricity demand being uraiarand/or fluctuating with a very low elas-
ticity, our methodology and results summarized below camdmly generalized to spot markets with other
uncertainties (i.e., fuel costs, transmission capagitidad generation etc.). For given wind capacity and
volatile wind generation, one can substitute demand wisidual demand levels (i.e., demand minus wind).
Under uncertainty about future electricity market corisi, real world problems including generation capacity
investment decisions lead to stochastic equilibrium motd (e.g., Schroeder (2012) and Allcott (2012)) that
are large scale and computationally more complex to soblue éfstochastic optimization problem. Equilibrium
problems are indeed broader than optimization problemstwikiaddressed in detail by Gabriel et al. (2012). In
this paper, we not only emphasize the link between optinazaand equilibrium problems but also show that,
regarding the problem of generation capacity investmenpeifectly competitive electricity markets, most of
the formulations of stochastic equilibrium problems carcast as two-stage stochastic programs.

We consider a perfectly competitive market consisting céeitypes of agents namely generators, a trans-
mission system operator (TSO), and consumers; all ageatsriae takers. Generators are assumed to be risk
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neutral and maximize their expected profits. The transprissystem operator sells transmission services in
order to maximize the value of its infrastructure and coretsnare simply represented by an inelastic demand
in most of the paper, except in Section 6 where we consideica pgsponsive demand. It may also be of in-
terest to include risk averseness of generators by usirttgtent risk measures” (e.g., Enrenmann and Smeers
(2011) and Ralph and Smeers (2011)). The resulting probémstill stochastic equilibrium problems which
are somewhat modified versions of the stochastic equitibpuoblems presented in this paper. When the mar-
kets are “perfectly competitive” and “complete”, the foramion of an equivalent two-stage stochastic program
is still possible as shown by Ralph and Smeers (2011). The cmatributions of this paper can be summarized
as follows:

e We expand the existing short-run models of restructurectr@gy system to include both uncertainty
of spot market conditions (i.e., demand uncertainty) asduece adequacy mechanisms, such as VOLL
pricing, capacity market, and operating-reserve pricamgl also demand-side bidding as an alternative.

e In perfect competition, we show that most of the formulagiaf these “equilibrium” models are in
fact equivalent to or can be cast as optimization problemspalticular, in the stochastic setting this
result indicates the prevalence of two-stage stochastigramming for providing solutions to stochastic
equilibrium models. We believe that this result is helpfot fnaking an economic assessment of the
investment incentives in new generation capacity in realdvsystems for the following reasons: in
Sections 8 and 9, we explain how we can solve a two-stageastictprogram as a nonlinear or linear
optimization problem. Due to the availability of powerfuidaefficient nonlinear programming solvers
and decomposition methods for two-stage stochastic pmugrsolving a two-stage stochastic program is
computationally much faster than solving a stochasticlidggiuim model for large scale systems, which
we also observe in our numerical experiments. In only one oésperating-reserve pricing, we obtain
a complementarity problem that is not equivalent to an ogaition problem.

e In perfect competition, we show that single and two-stageesentation of these “equilibrium” models
are equivalent. In other words, the open loop equilibria #redclosed loop equilibria of these models
coincide.

e We use sample-path methods and provide detailed algodthpproaches for numerically tackling all
these models, which allows solving these computationatyex stochastic problems by utilizing de-
terministic off-the-shelf solvers. We also illustratetttteese algorithmic approaches help further decrease
the computational time compared to solving the two-stagdibgum problem as a potentially very large
MCP (Mixed Complementarity Problem) including all the fiastd second stage decision variables.

e Through numerical experiments, we gain insights on the ahp& demand uncertainty and to what
extend these different mechanisms can remedy the resodecgiacy issue. In particular, we first find



that uncertainty of demand leads to higher total generatapacity expansion and a broader mix of
technologies compared to the investment decisions asgumarage demand levels. Furthermore for the
same VOLL (or price cap) level, energy-only markets with MQdricing tend to lead to total generation
capacity below the peak load with a certain probability vélasrenergy markets with a forward capacity
market or operating-reserve pricing result in higher itvesits assuming random demand with finite
support and no forced outaged_ast, the regulator decisions (e.g., reserve capacityetpin capacity
markets and operating-reserve pricing can be chosen insswely that results in very similar investment
levels and fuel mix of generation capacities in both marlksighs.

The rest of the paper is organized as follows. In Section Zymethe set up and notation used throughout
the paper. In Section 3, we first introduce the deterministrestment and operations model (in the context
of a two-stage equilibrium problem under perfect commmijtiand present it in two different formulations.
One is a single-stage (open loop) version of the model wherermgtors simultaneously invest and decide
operations knowing future market prices. The other formmtais a two-stage (closed loop) model in which
investment and operation decisions are made sequentisiyerators operate the capacities inherited from the
first stage to maximize their profits. This market operatiesutts in marginal values of plants that generators
take into account in the first stage in order to decide on thegstments. The distinction between open and
closed loop models is important when there is market power.skidw that this distinction is irrelevant here:
both models are equivalent and can be reformulated as asipgjimization problem of the standard capacity
expansion type. Although Section 3 begins with a deterriinimodel, the rest of the paper elaborates on
stochastic models involving demand that is unknown at tine f investment. In Section 3.2 we extend the
formulation to a stochastic energy-only equilibrium moeet again find that it is equivalent to a stochastic
capacity expansion model, which is a two-stage stochastigram. In Section 4, we take up the capacity
market formulation, which we find again equivalent to a carstechastic programming problem. In Section 5,
we consider the more novel question of operating-resetiegengrfor which we give two formulations that differ
by the computation of the operating-reserves. One foriamaefers the reserve to observed demand; the other
refers it to the total capacity. The former one turns out taloenvex stochastic optimization problem, but the
latter is not. In Section 6, we give a brief discussion of dediside bidding which we treat by assuming price
responsive demand; this can be thought of a completelyrdiffevay of addressing resource adequacy issue.
Section 7 outlines how all our results can be generalizeatioer uncertain elements in spot markets, such
as unit generation costs and transmission capacities. $¢est various algorithmic approaches for handling
these models numerically in Section 8. We report numerisllilts in Section 9 and provide insights to what
extent the remedies to the missing money, discussed indBscsi, 4, and 5, incite the generators to invest in
generation capacity. Conclusions terminate the papeallzid\ppendix contains the proofs of some theorems,
lemmas, and propositions.

SNote that under different assumptions (e.g., forced ostaggmand distribution without a finite support), VOLL prigi(with high
values of VOLL) may also result in similar investment levatsthe other market designs (see the result of Hobbs et &l1YR0



2 Set-up and Notation

We consider a market with a regulator and three types of ageaimely generators, a transmission system
operator (a TSO), and consumers. Generators and the TSQieeetgkers and maximize profits at given
prices; consumers are represented by an inelastic demamebr&ors and consumers are spatially distributed
in an electricity transmission network which is operatedh®/TSO. Generation and transmission of electricity
take place in the spot market and the locational marginalmiis assumed to clear the spot market.

The regulator intervenes to remedy the lack of incentivent@st; his/her role differs depending on the
market design. In an energy-only electricity market, he/sbts the price of the unserved energy (VOLL) or
the price cap in case of demand curtailment. In an elegtriniarket with a forward capacity market, he/she
sets the capacity target to guarantee resource adequacgwaadis the firms who contribute to the sufficient
investments to reach the target. Finally, in an electriaitgrket with operating-reserve pricing, he/she sets
the price of the operating-reserve and provides the firmis additional payments whenever the systems total
reserve is scarce.

We consider agents interacting in a two-stage set-up: g@nsrinvest in their generation capacities in the
first stage and the generation is dispatched in the secoge wtiaere the spot market clears to satisfy demand
under transmission limitations. Under all market desighs,demand is first assumed to be constant during
the whole year. Then we consider a random demand which vaviersa year and extend our analysis under
uncertainty of demand. The following notation would appiyaipurely deterministic world:

Sets

N . set of all demand nodes

G . setof all firms

g : set of supply nodes of firge G

I . set of all supply noded (= Uglg)

Kg . set of plant types of firng € G

L . set of electricity transmission lines in the network

Parameters

cﬁ( . unit generation cost of plant typec Ky owned by firmg € G at supply node € 4

Kk . unit capacity cost of plant typlec Kg

dn . demand atnodec N

PTDHh : power transmitted through lirle L due to one unit of power injection from node
j € {NUI} to an arbitrary hubnode

hy . capacity limit of linel e L

VOLL . the value of unserved energy or lost load

4PTDF is calculated based on a hub nodaia N in a standard DC load flow model. The choice of hub node israryit That is,
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Variables:
Second Stage:

yﬁ( . quantity of power generated by plant tybe Kq of firm g € G at supply node € Iy

f; : net power flow dispatched by TSO from nople {NUI}

on : unserved (curtailed) energy at nade N

P; . locational market price (nodal price) at nofle {NUI} which corresponds to shadow
price of market clearing constraint

First Stage:

xﬁ( . capacity of plant typé € Kq owned by firmg € G at nodei € Ig.

3 Energy-only Market

We start our analysis with an energy-only electricity marke an energy-only market with inelastic (exoge-

nous) demand, the price of electricity is set by the markehatbid of the most expensive plant generating
unless the demand is curtailed. When demand is curtailedptiice is capped by the regulator at the value
of loss load (VOLL) or a price cap. During the hours of curtaht, the peak plant obtains extra margin to
compensate its missing money for the whole year. The densdirdtiassumed to be constant during the whole
year in Section 3.1. In Section 3.2, we consider a random ddméich varies over a year.

3.1 Two-stage Equilibrium Model with Constant Exogenous Dmand

In Section 3.1.1, we give the exact formulation of the intdoams between the agents in an energy-only market
at both stages when demand is fixed and we show some chastcsedf both the short run and the long run
perfect competition equilibria. By using these charast&s, we show in Section 3.1.2 that solving a single
optimization problem where all the generation capacitiesdetermined by a central decision maker finds a
perfect competition equilibrium of the two-stage gameddtrced in Section 3.1.1.

3.1.1 The Perfect Competition Equilibrium as Mixed Complenentarity Problem

We next formulate each agent’s problem in the two-stage galheee firms give their investment decisions,
simultaneously at the first stage and they decide on theimapgeneration levels;, in the spot market at the
second stage. Note that demand is exogenous and known torehiiho are price takers at both stages.

Second Stage: At the second stage, each figre G maximizes its short term profit from the spot market by
optimization problem (5):

the flows resulting from a power injection at one node and aralegithdrawal at another do not depend on the location ohtte
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M (x9) := max (pi —c)yd
g v iengeZKg 1 ik/Yik

st.

(5)

Vi <X (BR) VielgkeKg

Consg(x9) :
96¢) ¥y >0 Vi € lg,k € Kg,

where9 is the vector of Lagrange multipliers associated with thgaciy constraintsy < x¥) and is referred

as capacity/scarcity rent. Note that the nodal priggsgnter as parameters to firms’ second stage problems.
Since all firms are price-takers under perfect competitioey act as if they cannot affect the valuegpofAs an
important consequence, the nodal prices will also be takgraeameters in firms’ first stage problems given in
(10).

For a given set of generation decisiof\ }gcc of the firms and nodal pricegp; }jcnuiy, if there exists
a price difference between any two nodes in the spot marl&@ decides on imports/export floWs; } jenui
as long as there are available transmission possibilitielsitamaximizes its profits from the transmission of
electricity. Specifically, TSO effectively acts as an adgeur. TSO’s problem is given by (6):

max {2 p; f;
f je{NUI'}

st.

fi=0 (P)
je{NUI} (6)
ConsTSO: > PTDR;fi<h (A" W
je{NuUI'}

— ; PTDF[lrjijh| (Alf) v,
je{NuUl'}

wherep,A*, and A~ are Lagrange multipliers of problem (6). In (€pnsT SOis the set of Kirchoff law
based transmission constraints faced by TSO in the eliggtrietwork. TSO is also a price-taker and cannot
affect the nodal priceq, to maximize its profit.

Finally, the nodal prices are determined to clear the spokebavhen supply matches the demand minus
possible curtailments. In case of a curtailment, the etattris priced at VOLL by the regulator. The spot
market clearance conditions are given in (7):

= ZG > Vit g+ fi—di L pj>0 Vje{Nul}
MCP_Market: geGkeRy -

0<VOLL-pn 1L >0 VneN,

where p; represents the locational marginal price of unit power (%N at nodej € {NUI} and d; is the
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curtailed energy. Note that nogemay be both a supply and a demand node. Ifitis only a supplg rtbeno;
andd; equal to zero or if it is only a demand node tk(gﬁ()geqkeK equal to zero.

The spot market equilibrium conditions consist of the KKTtioyality conditions of problem (5) for all
firms g € G, the KKT optimality conditions of TSO’s problem (6), and thearket clearance conditions (7),
which can altogether be formulated by the mixed complenmigyntaroblem (MCP) (8). An equilibrium point
satisfying the conditions in MCP (8) consists of the optigpaheration quantitieg” for all firms and the optimal
import/export flow decision$* for TSO in the spot market:

o<cl—p+B9 L y3>0 VgeG,iclykeK
MCP_Firms(x) : - p'*;_B'k y"ig_ geB Il KERy
0<% —VYik L B9>0 VgeG,ielgkekKg
O<h— % PTDR;f} L At>0 W
je{NuUI'}
o< h+ ; PTDFR ;f] L AT>0 VW
MCP_TSO: jeiNul} _ .
P —p*+ > PTDR (A" —A"") =0 Vie{Nul}
leL
fr=0
je{NuUI'}
0< 3 D YRHTO +Ti—d L pj=0 Vie{Nul}
MCP_Market: geGKER
0<VOLL—p; 1 &>0 VneN.

Boucher and Smeers (2001) consider a competitive equilibof a game in spot market where none of
the agents (firms, consumers, and TSO) has market powerniéragtions between firms and TSO in (5) and
(6), respectively, is an example of such a game. Boucher amek& (2001) also introduce an optimization
problem referred to as Optimal Power Flow Problem (OPF).unsetting, for giverx, the OPF problem with
exogenous demand corresponds to a linear program (LP) e igiv(9):

min dy? LVOLLY &,

(8.1} g;iggk;g ikYik Z

st.
% Y Yito+fi=di (p) Vje{Nul}

ConsMarket: geGkeRy o
on >0 vne N

f satisfyConsT SO
y9 satisfyConsg(x?) Vge G.
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Let (y*,0%) and p* be the optimal primal solution (generation quantities tailed demand) and optimal
dual solution (nodal prices) of OPF problem (9) for a givemespectively. Boucher and Smeers (2001) show
that the solutior{y*, 8*, p*) is also a competitive equilibrium of the game between firnts BRO defined in (8)
and vice versa. Indeed, it is easy to verify that the set oéssary and sufficient optimality conditions of the
LP (9) is equivalent to the MCP (8). Therefore, we may soleeltR (9) directly and take its optimal solution
as a perfect competition equilibrium of the spot market atsbcond stage.

First Stage: At the first stage, each firm e G determines its optimal investment quantitidamaximizing its
long term profit which is equal to its optimal short term préfitm the spot market at the second stage minus
its investment cost. Since firms are price-takers, they adtthe market price is given, and hence the nodal
prices,p, appear as parameters in firms’ both first and second stagéeprs (10) and (5), respectively. Given
p, each firmg € G maximizes its long term profit by optimization problem (10}ee first stage:

max (P — GV () — 2 Kok
X320 ieZg keZKg . i€ gkeZKg (10)
where{y;’(x9), Vg,i,k} are the optimal generation quantities of firms in the spoketaat equilibrium for given
(x9)gec. Next, in Lemma 3.1, we show that each firm’s optimal investiig equal to its optimal generation
amount in the spot market at equilibrium when we have cohstamand. This is an intuitive result for
deterministic investment problems with fixed demand lelwelyever we are not aware of a formal proof.

Lemma 3.1. Let X9 be the vector of optimal investment quantities of each firm@ for (10) and y be the
vector of optimal generation quantities from OPF problemf(® x = x*. Theny9 = x*9 for all g € G.

Proof. There are two possibilities fo9 as a solution of OPF problem far= x*: yi9 = x;2, ory;2 < x;9. The
latter cannot hold at optimum of the first stage problem of firm G, since one can always decreaﬁ% to
the level ofyi*kg and achieve a higher profit. In other words, the latter is gbxdominated by the former which
achieves the same cost for OPF problem and a higher profirfogfe G. 1

In the next lemma, we provide a characterization for thenaglity conditions of each firm’s capacity
decisions at the first stage. This type of formulation foredw®inistic problems has also been formulated in
the literature and explicitly illustrates the impact of thearcity rents determined at the second stage on the
firm’s investment decisions at the first stage. We see thasfirave an incentive to invest if the scarcity rents
determined at the second stage offset their investment ddss is a very intuitive result which can also be
observed in early capacity expansion models developedgltggulatory periods. A corresponding result (with
the expectation of scarcity rents) will appear later whemsgichoose their capacity under demand uncertainty
in Section 3.2.1, as well as when the firms have market powtbedirst stage as shown by Girkan et al. (2012).

5Note that this result will not hold for all periods and all fisrwhen we have multiple demand periods, see Section 3.2 faitsle
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Lemma 3.2. Let X' = {x"9}4cc be a point such that lower level problem (9) has a feasiblatimi andrg(x%)
is finite for all g€ G in the neighborhood of‘x Then X is an equilibrium of the first-stage game if and only if
there existg3* such that

0<-BI+kk L xI>0 VgeG,iclgkeKy. (11)

Proof. Firm g's problem (10) can also be formulated as follows:

max [M5(x9) — K

00 9 ieZg keZKg g

wherelly(x?) is the optimal objective function value for problem (5) atieeg x? and given prices. Note that

(5) is a linear program when€ is the right hand side parameter. It is well known they(-) is a concave

function ofx9. My(x9) is also subdifferentiable at® whenly(x9) is finite in the neighborhood of . Hence,

oM (x9)
g

——= - satisfying the
X

x*9 is an optimal solution of (10) for each firme G if and only if there exist(?i’lig €

necessary and sufficient optimality conditions

0<-B2+k L x2>0 vgeG,ielgkekKgl

Therefore, a solution to this two-stage game, if it existgud satisfy the optimality conditions given in
(11) at the first stage and the optimality conditions giveri@nat the second stage simultaneously, and vice
versa. Combining these with Lemma 3.1, we obtain the nextrlam

Lemma 3.3. If there exists a solution*xo the two-stage game then it satisfies the following comgxhéanity
conditions:

0<ch—pi+ke L x>0 VgeG,iclgkeKy
Og%ZXTEJréj*Jrfj*—dj 1 p; >0 Vjie {Nul}
geGkeKgy (12)
0<VOLL—p; L 5 >0 vneN

(f*,p",p*,A*,A*") satisfy MCPTSQ
Moreover, if there exists a solution to the complementaritgditions in (12), then it is a solution to the two-

stage game.

Proof. See Appendix.
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3.1.2 An Equivalent Single Optimization Problem

It is easy to see that since we will always have=y* in the two-stage game with constant demand, (10) and
(5) reduce to the following single-stage formulation:

M (39) := max (pi — Ci — Ki)X;
g X3 |€Zg keZKg 1 ik ik
(13)

st. x§ >0 Vi € lg,k € Kg.

The market clearance conditions can also be modified sutly&hia (7) is replaced with@ (say in (7)).
Then, one can easily verify that the equilibrium conditiofithe resulting single-stage game ((13), (6), an§ (7)
are equivalent to the complementarity conditions giverl);therefore by using Lemma 3.3, the solution of
this single-stage game is equal to the solution of the tagesgame in Section 3.1.1. In other words, in perfect
competition open loop and closed loop equilibria coincide.

Next, we show that a perfect competition equilibrium of twestage (or one-stage) game can be found by
solving a particular single optimization problem which we&@duce below in (14). This formulation is nothing
but a variation of early capacity expansion models, givefi)nused for decisions of regulated monopolies. In
this formulation, one can also think that the investment @am® of all firms are decided by a central decision
maker or a regulated monopoly who is minimizing the totat cbthe system (i.e., total generation, investment,
and dispatch costs):

min (cd + k)X +VOLLY &y
(x3,f} ggGiEngeZKg ik ik ;

st. %ZX?k‘Féj‘i‘ijdj (p;) Vie{Nul} (14)
geGkeKy

X,0>0
f satisfyConsT SQ

Theorem 3.4. A solution to the optimization problem (14), if it exists,aisolution of the two-stage game.
Moreover, if there exists a solution of the two-stage gahem it is also a solution of the optimization problem
(14).

Proof. The necessary and sufficient optimality conditions of tinedr program in (14) is equivalent to the
complementarity conditions given in (12). By using Lemma, &he result follows immediately.

By using Theorem 3.4, the uniqueness and existence of caimpetquilibria for the two-stage game in
Section 3.1.1 may also be established. The existence fofimm the existence of a solution to the optimization
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problem (14), i.e., if it is feasible and bounded. Moreoifahe solution to (14) is unique, then clearly there is
a unique perfect competition equilibrium to the two-stageng.

3.2 Two-stage Equilibrium Model with Stochastic Exogenou®emand

In Section 3.1, we focused on a constant demand load overraapelashowed that single (open loop) and
two-stage (closed loop) games are equivalent; furtherpmore can find the perfect competition equilibrium by
solving a single optimization problem. We have done thisresent the notation and the basic properties of
the underlying mathematical model. Clearly, demand is@&dsand time varying in reality. Moreover, future
demand is uncertain. Both seasonality and uncertainty tafédudemand affect the choice of the plant type.
While a constant yearly demand would lead to selecting desteghnology in the solution of (14), seasonality
and uncertainty of demand imply a portfolio of technologié& thus extend the preceding model and consider
the more realistic case in which demand is uncertain an@sasay, over a year. First, we prove that one can
find a perfect competition equilibrium to the two-stage gamder demand uncertainty by solving a two-stage
stochastic program. We then show that the equivalence glesand two-stage games still holds in a perfectly
competitive market when demand is random and has finite nuofl@ssible scenarios. In other words, the
open loop equilibria and the closed loop equilibria coiecid

In Section 3.2.1, we analyze the solution of the two-stagepaiitive game outlined in Section 3.1.1 under
demand uncertainty. We then introduce in Section 3.2.2 estage stochastic program where a central decision
maker decides on the capacity levels of all firms minimizihg total expected cost at the upper level under
demand uncertainty. He/she then chooses the optimal gemeguantities of all firms as demand is observed
at the lower level. The spirit of this stochastic programas very far away from the early capacity expansion
model given in (1). We end Section 3.2.2 with Theorem 3.7 bywshg that a solution of this two-stage
stochastic program is also a solution of the two-stage si@hgame. Finally, in Section 3.2.3 we give the
single-stage formulation of the two-stage stochastic gaimen the random demand has discrete distribution.
We show that an equilibrium of the single-stage formulattoalso an equilibrium of the two-stage formulation

3.2.1 The Perfect Competition Equilibrium under Demand Unertainty

Consider now the case when the investment decision at thestirge should be made before observing the
uncertain demand at the second stage. The notation of thetdge model under uncertainty will be almost
identical to the notation given in Section 2 except we wiillize w € Q to denote the uncertainty in demand
that can take different values in different states of theldvar € Q, each occurring with some probability. We
will also denote the dependency of the second stage vasialith respect tav in order to facilitate the main
distinction between the first stage variables and the sestag#® variables where the former do not depend on
w € Q. To derive our theoretical results, we will assume that trebability distribution of demandi(w),

is known. This assumption is valid in situations where trapdich of electricity and market clearance in the
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spot market repeats itself and the distribution of demamndoesestimated from historical data. In practice, also
as part of our numerical procedures in Section 8, we will nealgl a sample ofi(w) rather than the entire
distribution ofd(w). Without knowing the exact distribution of the random vhtéa samples ofl(w) may be
obtained simply from historical data or, for instance, froomputation-based simulations (where it may be
easier to estimate the so-called basic factors, but siresetfactors interact in nonlinear and/or non-smooth
ways, numerical procedures are needed to draw the samples).

Second Stage: For now, we suppose thdj(w) indicates continuous random demand at nodéth a general
distributionW,. Let (Q,.%#,W¥) denote the common underlying probability space wheénepresents the joint
probability distribution for the random demand vectiiw) := {dn(w) }nen With E[|d(w)|] < «. Then for
givenw € Q, we can write the second stage problem of each §imG in (5), TSO’s problem in (6), and the
market clearing conditions in (7) in the state of the waddi.e., with second stage variables dependingadn
For instance for given?, the second stage problem of each fgr G in state of the worldw is given as:

My(w,x) ;= max ZKZK (Pi(@) — Gy ()

¥(w)
st. "
g g .
Consg(w,xd) : Y(w) <% (Bi(w)) Vi€ lgke K
Yi(w) >0 Vi € lg,k € Kg,

which is identical to (5) when there is one state of the worilthwonstant demand. Note that since all firms are
assumed to be price-takers, the nodal priggsy), appear as parameters in firms’ both first and second stage
problems.

By similar arguments in Section 3.1.1, we know that we can éiqbrfect competition equilibrium of the
spot market at eactvy by solving OPF problem (16). For giverand eachw € Q:

Z*(w, X = min cdyd () +VOLLYS &n(w 16
() e S0 2o keZKg () 2.5 (o

st.

%Zygk )+ 6j(w) + fj(w) > dj(w) (pj(w)) Vie{NUI}
9

cGkeKy
on(w) >0 Yne N

ConsMarket(w)
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fi(w)=0 (p(w))

je{NUI'}
ConsTSQw) hl_jE%UI}PTDFLJfJ(W)ZO A () W

h + z PTDF[’jfj(O.))ZO ()\I‘(oo)) vl
je{NuUI'}

X} —yi(w) >0 (B)(w)) YgeG,iclgkeKy

vge G
Yi(w) >0 Vi € lg,k € Kq. g

Consg(w,x9)

Remark3.5. Note that (16) is almost identical to (9) in which we indic#te explicit dependence to for the
variables that are affected by demand uncertainty. FrontBeruand Smeers (2001), we know that at each
a solution of (16) is also a perfect competition equilibriofrthe spot market at the second stage.

First Stage: At the first stage, we assume risk neutral firms making detssan the basis of the expectation
of their short term profit in the spot market. Consequently,can write the optimization problem of each risk
neutral firmg € G maximizing its long term profit at the first stage:

r)gg())( Ew[iezg keZKg (pi(w) — c)Yid (@,X9)] - ieZg keZKg KioGe (17)

wherey*(w,X) is the vector of generation quantities of firms in the spotkaiat equilibrium and, hence is the
solution of Optimal Power Flow Problem (16) at the secondestar givenx andw € Q.

It is obvious that we no longer have the equality of first anchsed stage decision variables as in Lemma
3.1 when we move to the two-stage game under uncertainty.ekawone can still use arguments similar to
the ones irProof of Lemma 3.2 order to formulate the impact of average scarcity rentiked at the second
stage on the investment decisions of the firms.

Lemma 3.6. Let Mg (w,x?) be finite at the neighborhood of a poiritx {x9}4cc for almost everyw € Q. For
investment choice*y, let Ew[BiT(g(w)] be the expected scarcity rent that firne@s receives at the second stage
for using technology k Kq at node ic lq. Then X is a solution of the first stage game if and only if

0< —Eu[Bl(w)]+k« L %2>0 VgeG,iclgkeKq (18)

Proof. See Appendix.

One can interpret the expected scarcity rent in (18) as theated marginal revenue of firmat nodei
for investing in technologk. If the expected marginal revenue of investing in technplk@t nodei is not
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enough to cover the firm’s marginal cost of investment in tebdbgy k (kx), the firm chooses not to invest in
that technology at nodie Otherwise, the firm invests in technologyat nodei at a level where the expected
scarcity rent is equal to the unit investment cost. (18) $&m8ally identical to the relation (4) of early capacity
expansion models. For peak load generatﬁiﬁg(w) is equal to zero unless demand is curtailed. Thus, peak
load generators tend to underinvest so that total genaratipacity is below the peak load with a certain
probability and they cover their investment costs by VOLLidg peak hours. Note that (18) represents the
first stage equilibrium conditions of risk neutral generat&hen generators are assumed to be risk averse, the
formulation in (18) can be modified by replacing the statadtprobabilities with the risk adjusted probabilities;
see Ehrenmann and Smeers (2011) for the corresponding oadidifi.

3.2.2 An Equivalent Two-stage Stochastic Program

In this section we show that one can find an equilibrium to W& $tage stochastic game by simply solving a
stochastic program. As a consequence, the computatioatee of finding a solution of the two-stage game
may be considerably reduced. The stochastic program wendréglow may be considered as the capacity
expansion problem of a central decision maker who choosesapacitiegx) of all firms at the first stage in
order to minimize the total expected cost of the system witlkaowing the future uncertain demand. He/she
then determines the dispatch quantifé®) of all firms after observing the demand (possibly repeajeatiyhe
second stage by solving (16). The problem faced by the datdgcision maker at the first stage is formulated
as

min  Ey[Z*(w,X)] + K3 .
min - EulZ" (w,x)] g;iggkg(g kX (19)

Note that in Section 3.2.1 we have an equilibrium problenhatffirst stage consisting 06 | optimization
problems, each one given by (17) fgre G. The stochastic program we introduce here consists of desing
optimization problem, namely (19), at the first stage anddibesion variables are the investment quantities
of all firms. At the second stage, we have another single dgition problem for each realization which is
formulated by (16).

Theorem 3.7. Consider the two-stage stochastic program which consigtseoproblemg19) at the first stage
and(16)at the second stage. Let e the optimal solution of this two-stage stochastic progrhere Z(w, x)
and[g(ew, x9) are finite in the neighborhood of for almost everyv € Q. Then X is also a perfect competition
equilibrium of the two-stage stochastic game given in 8e@&i2.1 and vice versa.

Proof. (16) is a linear program. Thus, we know tl&t(w, x) is a convex function ok for all w € Q which
implies the convexity of the expectatidh,[Z*(w,-)]. By using an argument similar to the one in fof of
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Lemma 3.60ne can show tha,[B,°(w)] is unique,Eq[Z*(w,-)] is differentiable, and

OEu[Z"(w, )]

o~ EulB(@) (20)

SinceE,[Z*(w,-)] is convex and differentiable¢” is optimal for the problem (19) if and only if

O0E,[Z* (0, X")]

0<
2

+ke L x3>0 VgeG,i€lgkeKq.

By using (20), we can rewrite the necessary and sufficieninaity conditions of (19) as

0< —Eu[Bil(w)]+Kkk L x>0 VgeG,iclgkeKq. (21)

The necessary and sufficient optimality conditions in (2&)identical to the equilibrium conditions of the
first stage game given in Lemma 3.6. Besides, the necessdrgudiicient optimality conditions of (16) are
the equilibrium conditions of the second stage game. Thetisal (X*,y*(w,X")) to the two-stage stochastic
program is feasible for the first stage game and an equitibifithe second stage game since it satisfies the
optimality conditions of (16). Moreover, it is also an edwium of the first stage game since it satisfies the
equilibrium conditions at the first stage by equivalence2di) @nd (18).

One can also make the same argument for the opposite diredfigx*,y*(w,x*)) is an equilibrium of
the two-stage stochastic game, then it is a solution to timeptamentarity problem (18) and it satisfies the
optimality conditions of (16). Since (18) is equivalent 1] and the second stage optimality conditions of
both the stochastic program and the stochastic game areeddrom the same problem (16)*,y*(w,x"))
will also be a solution of the two-stage stochastic progdhm.

As a conclusion, under the perfect competition assumpti@noan solve the stochastic optimization prob-
lem (19) of the central decision maker and take its optiméltsm as equilibrium point of the two-stage
stochastic game defined in Section 3.2.1.

3.2.3 Equivalence of Open and Closed Loop Equilibria with Riite Number of Scenarios

In this section, we assume that the demand distributibhas a finite support (e.g., set of time segments)
and takes valued(wy),d(wy),...,d(wv) with respective probabilitiess, 7o, ...,y (e.g., duration of time
segments). Obviously, one could also vieMew;),d(wy),...,d(wy) as a particular sample of the random
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variabled(w) with a general distribution. Then,

Eollly(@)] =Eoly 3 (@)~ GN@)] - 3 3 Kok

M
PR PRCICIELATICISOED 3 R
m=1  icTykeRg i€Tg keKg

is the first stage objective function (17) of each figra G wherep(wn) is given. Lety*(wm,X) be the solution
of the second stage OPF problem (16) for the scenayio The equilibrium conditions (18) of the first stage
game can easily be restated as:

M
0<— Y mBl(wm)+ke L x>0 VgeGiclgkeK, (22)
m=1

The equilibrium conditions of the second stage game cantadseasily modified as the KKT optimality
conditions of OPF (16) driven for each scenario. Next, weastiwat one can find an equilibrium point of
the corresponding two-stage stochastic game with finiteb@uraf demand scenarios by solving a single-stage
stochastic game. We first outline this single-stage gamedast the firms and TSO.

Each firmg € G chooses its optimal investment amount and generation igjeargimultaneously such that
it maximizes its total expected profit in (23):

M
. g g
a2 ”;mnigg kEZKg(pl(mn) — Ci)Yie (@) — igg keng KicXii
(23)
st. y9(wn) satisfyConsg(wm,x9) vme M
x¢ >0,

wherep(wnm) is the price observed by each firm in scenadq. p(wm) is exogenous to each firm’s problem
and TSO's problem whereas it is endogenous to the MCP fotetdilay the KKT optimality conditions of all
firms and TSO together with the market clearance conditions.

TSO'’s problem (24) is almost identical to (6) except it isnfiodated with explicit depends a@y, since its
import/export decisions depend on the state of the wowrd, @bserved demarntticr,)). For each scenarian,
TSO solves

max ; Pj () fj ()
flam) e fNuy

(24)
st.  f(wm) satisfyConsT SO w).

Similarly, the spot market clearance conditioMCP_Market(wy), at each state of the world is almost
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identical to (7) except it is formulated with explicit degksnonwy,.

Next, we show in Theorem 3.8 that if the random demand hasatiésdistribution then we can find an equi-
librium of the corresponding two-stage stochastic gameeietiBn 3.2.1 by solving this single-stage stochastic
game.

Theorem 3.8.Let the demand distributio# has a finite support and takes valuegsdl), d(wy), . .. ,d(wv) with
respective probabilitiess, 1o, ..., y. Then an equilibrium of the single-stage stochastic gamadtated by
(23), (24), and MCRMarket(an), if it exits, is also an equilibrium of the corresponding tatage stochastic
game given in Section 3.2.1 (1§47) and (16)). Moreover if there exists an equilibrium of this two-stage
stochastic game, then it is also an equilibrium of the sirgdége stochastic game.

Proof. See Appendix.

To summarize, the energy-only market model presented itidBe® provides positive margin for peak load
generators when demand is curtailed and electricity psiset at VOLL. As a result, energy-only markets tend
to lead to total generation capacity below the peak load witkertain probability. In reality VOLL is difficult
to estimate in a direct way. An alternative is to assess tipadatnof a particular VOLL value on the probability
of not meeting the load and to revise this value if this prdliighis not satisfactory (too high or too low, see
Stoft (2002)). In case price caps lower than VOLL are usedrattice, this may lead to higher frequency
of curtailments and may enhance the resource adequacyeprobHence, it may be necessary to resort to
additional market mechanisms as remedies to create bettentives for capacity investment and operation.
Next, we consider two different market designs, namely aci&p market in Section 4 and operating-reserve
pricing in Section 5, as potential remedies to resource watggproblem.

4 Imposing a Capacity Market

An alternative way to avoid resource adequacy problem imf@ément a capacity market where the regulator
sets a total capacity target based on historic data and xpdemand and rewards a side payment to the firms
who contribute to reach this target. We continue our analygiincluding such a capacity market in our basic
model of Section 3. In this modified model, the regulator isgsa capacity constraint on the total capacity
which needs to be fulfilled at the time of investment. To actdor this, the following modifications are
needed:

(i) We impose the following market condition of the regutaéb the first stage:

0< kaﬁ(—H L A>0, (25)
g7|7
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whereH is the capacity target which may be estimated by the regutatdhe basis of the forecasts of
the demand fluctuations addmay be considered as the price of the capacity which is patitetéirms
who contribute to the sufficient investment level.

(i) We also add the corresponding side payments for capsxitach firm’s profit at the first stage:

)\;&%.

Mathematically, these modifications constitute a strdigiward extension of the two-stage game in Section
3. When we have constant demand, the equilibrium (KKT ogttgyaconditions of the first stage game given

in Lemma 3.2 can easily be modified to:

0<-BI-A+ke L x>0 VgeG,iclgkeKq,
0< Zkﬁkg—H 1 A*>0. (26)
gl

In case of implementation of a capacity market, the resulteimma 3.1 (which is established for energy-
only markets) holds iH < Z d; whereas a similar type of result given in Theorem 3.4 alwaydd) that is, it

]
is still possible to show that one can find an equilibrium @ thvo-stage game by solving a single optimization
problem. This optimization problem is a slightly modifiedsien of (14) and is given in (27):

min A+ kxd)+VOLLY &,
géi;k;g( ikYik T K% ) Z

{xy.0,f}
st. 9_H>0 A
PR . (27)
X >0
(y,0,f) satisfyConsMarket
f satisfyConsT SO
y9 satisfyConsg(x?) VgeG.

In case of uncertain demand, a similar modification of thelégiwm conditions (18) in Lemma 3.6 can be
done for the first stage game:

0< —Eu[Bil(w)] —A*+ke L xI>0 VgeG,ic€lgkeKq,

0< ka;‘kg—H L Ar>o0. (28)
g‘,l‘,

Note that the equilibrium conditions of the second stageegamthe future spot market do not change and
are thus still formulated by the optimality conditions o#t®PF problem (16). Therefore, by similar arguments
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used for the energy-only market, we can again prove that aifiteium of this two-stage stochastic game with
capacity market can be found by solving a two-stage stochastgram. This stochastic program given in (29)
is a slightly modified version of (19) in Section 3.2.2 witletadditional deterministic constrairZ(xﬁ’( > H:

g‘,l‘,

min  Ey[Z*(w,X)] + %Z KXy
x20 ge ieg,keZKgl

(29)
st. J_H>0 (A).
g;kxlk

Hence, the two-stage stochastic program consists of amizgtion problem, namely (29), which minimizes
the total expected cost of the system subject to a singlereamisat the first stage and the OPF problem (16) at
the second stage.

5 Operating-reserve Pricing

A more sophisticated approach for the regulator to provideaecapacity payments to the firms contributing
to a sufficient level of investment is operating-reserveipg. The principle of operating-reserve pricing is
providing the firms with extra regulated payment wheneversystem’s total operating-reserve is scarce.

Let rp(r,x,d) be the value of operating-reserves determined by the regular a given value of total
operating-reservas= ex— eywhereeis the transpose of the vector of 1's of appropriate dimensncex,y,
andd are observed in the spot market, a mark-up priagéf, x, d) is computed by the regulator and then taken
as exogenous reserve price by the firms. For givandd, we assume the following propertiesrgf(r,x,d).

Assumption 5.1. rp(r,x,d) is a monotone decreasing and differentiable function @fltoperating-reserves r
where

e If ed = ey« ex, there is ample operating-reserve and there is no marthas;is rp(r,x,d) = 0.

e If ed=ey< ex and ey is close to ex, then the operating-reserve is s@rdethe regulator charges
consumers with the extra price of (rpx,d) in addition to the equilibrium price p.

e If ex=ey< ed, there is curtailment and the regulator sets the price @V (or to a price cap).

Next, we modify the formulation of the two-stage game in 8&c8 by incorporating operating-reserve pric-
ing scheme. In Sections 5.1 and 5.2, we give the correspgrdio-stage model formulations in deterministic
and stochastic settings respectively and derive the eqguith conditions at the first stage. Note that choosing
the functionrp(r,x,d) is an important issue since it may change the structure afiniderlying mathematical
formulation of the model and consequently applicable smiunethods. In Section 5.3, we elaborate on that
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issue and give two possible formulationsrgf(r, x,d) function. We show that depending on the formulation,
one cannot always preserve the simplicity of the singlenaigition formulation in deterministic setting and
the two-stage stochastic program in stochastic setting.

5.1 The Perfect Competition Equilibrium under Constant Demand

In this section, we modify both the first and the second stagbl@ms given in Section 3.1 by incorporating
the operating-reserve pricing.

Second Stage: Let y denote the unit price of operating-reserves. It is exogenotthe firms since they are
price-takers and is set by the regulator at equilibrium & dpot market. For a given firm g € G receives

additional revenue,Z Z y(xﬁ’(—yﬁ’(), for its operating-reserves at the second stage. This estalated
i€lg keKg
payment received by firrg € G is added to its objective function at the second stage. Thdified second

stage problem of each firgne G maximizing its short run profit is given as:

MgR0@) := max > (P—C— MY tYY > %
i€lgkeky

e ngKg
st. | -
Consg(x9) : Y <% (Bl VielgkeKg
yi >0 Vi € lg,k € Kg,

where p and y are exogenous parameters to each firm’'s problem whereaatbegndogenous to the whole
system and are set at a level where the spot market cledfsTeemphasizey* = rp(ex—ey',x,d) is the unit
operating-reserve price set by the regulator for gixghand optimal generation dispatghin the spot market
at equilibrium. In addition, TSO’s problem and the markeiacing conditions remain identical to (6) and (7),
respectively.

One can write the necessary and sufficient KKT optimalityditions of (30) for each firng € G, the op-
timality conditions of (6) for TSO, and the market clearirgnditions (7) and sef* = rp(ex— ey, x,d). The
resulting KKT conditions are equivalent to the MCP (31). Eenthe solution to MCP (31) is a competitive
equilibrium of the spot market. The first complementarityhstoaint in (31) ensures that when a firm pro-
duces positive amoumyi*kg > 0), a price is paid, which covers its marginal cost plus thedgarent plus the
operating-reserve priag(ex— ey, x,d):
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0<cy —pi+ B +rplex—ey,x,d) L Vid>0 VgeG,iclgkeKqg
0< X3 — Yl il BI9>0 VgeG,ielgkeKg 1)

(y*, 0%, f*, p*, p*, A* T A%7) satisfy MCP_Marketn MCP_T SQ

As discussed in Section 3.1, we can formulate the correspgr@PF problem (32) whose solution gives
perfect competition equilibrium in the spot market for give

min clyl +VOLL'S &, — R(ex—eyx,d)
{%.8.1} g;iezgkezr(g K nZN

st. (y,0,f) satisfyConsMarket (32)
f satisfyConsTSO
y¥ satisfyConsg(x9) Vge G,
ex—ey
in which R(ex— ey x,d) := rp(s,x,d)ds can be interpreted as the additional welfare due to improved

reliability, or willingness to pay for extra reliabilityt is similar to the integral of the inverse demand function
(e.g., in (2) or (42)) which is interpreted as consumerslimghess to pay. By Assumption 5.1, for giv&n
andd, rp(ex— ey x,d) is a monotone decreasing function e{— ey, thereforeR(ex— ey x,d) is a concave
function of (ex— ey) and consequently it is concaveynHence OPF problem (32) is convex. The solution of
OPF problem (32) is a competitive equilibrium of the modifggtne in the spot market since its necessary and
sufficient KKT optimality conditions are equivalent to theO® (31).

First Stage: Similar to Section 3.1, each firgpme G maximizes its long term profit at the first stage:

max M:R(x9) — KiX.
€0 9 iengeZKg g (33)

When we consider the interaction between first and secomy® sieoblems, Lemma 3.1 does not hold
anymore. Instead, we next show that optimality conditidresagh firm’s problem at the first stage now involves
the scarcity rent and the operating-reserve price it reset the second stage.

Theorem 5.2. Let X = {x"9}4cc be such that OPF probleif82) has a feasible solution arﬂgR(xg) is finite
for all g € G in the neighborhood of*x Then X is an equilibrium of the first-stage game if and only if there
existsf3* and y* such that

0<-BI—rp(ex—ey,x,d)+ke L x2>0 VgeG,iclgkeKy. (34)
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Proof. See Appendix.
5.2 The Perfect Competition Equilibrium under Demand Uncetainty

We next formulate the two-stage game including operatésgive pricing scheme when demaud(w),
at each noden is random having a general distributid,. Let (Q,.#,¥) denote the common underly-
ing probability space wher&® represents the joint probability distribution for the rand demand vector
d(w) := {dh(w)}nen With E[|d(w)]] < .

Second Stage: Let y(w) be the unit price of reserved capacity at demand realizatiahQ. As mentioned
earlier, it is exogenous to the firms at both stages sinceareprice-takers and is set by the regulator at a level
where the spot market clears itseff:(w) = rp(ex— ey (w),x, d(w)).

For givenw € Q, the second stage game is identical to its deterministimditation given in Section 5.1
except with explicit dependence em Hence, the arguments in Section 5.1 hold when demand ibastic
as well. That is, for eacl, I'IER(a),xg) is a concave function of and 3,’(w) + y*(w) is a subgradient of
I'IaR(w,xg) at a givenx?. Moreover, one can solve the OPF problem (35) to find an dxjuith of the spot

market at the second stage.
ex—ey(w)
For givenx andw € Q, we haveR(ex—ey(w),x,d(w)) = rp(s,x,d(w))ds Then the correspond-

ing OPF problem at the second stage is formulated as:

min 2y (w)+VOLLS &n(w)— R(ex—eyw),x,d(w
@) £ (6} g;iggk;}(g ikYik (@) nZN () —R( ), %, d(w))

st. (Y(w),d(w), f(w)) satisfyConsMarket(w) (35)
f

(w) satisfyConsTSQw)
(

Y(w) satisfyConsg(w,x9) Vg e G.

First Stage: Assuming risk neutral firms, each firgie G maximizes its long term expected profit at the first
stage:

max Eq[M:R(w,x9)] — KiX

where, for giverx®, I'ISR(a),xg) is the optimal value of firny’s problem in the spot market(short term profit of
firm g € G) at realizationw € Q.

Similar to Lemma 3.6, it is possible to write the equilibriwonditions of the first stage game in terms of
expected scarcity rent and operating-reserve priceshbdirims receive at the second stage which is stated in
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the next theorem.

Theorem 5.3. Letl'lgR(w,xg) be finite at the neighborhood of a poirit x {x*9}4.g for almost everyw € Q.
For investment choice*%, let E, B2 (w) +rp(ex — ey (w),x*,d(w))] be the expected marginal revenue that
firm g € G receives at the second stage for using technolog¥k at node ic Ig. Then X is an equilibrium of
the first stage game if and only if there exiftgw) and y'(w) such that

—Eu[Bi’(w) +rp(ex —ey'(w),x",d(w))] +k« L xI>0 VgeG,iclgkeKq. (37)

Proof. See Appendix.
5.3 Operating-reserve Price Curve

Operating-reserve prices are based on predeterminededaeget levels set by the regulator. How to determine
these target levels is an important issue since they wowle &ia effect on the investment incentives. Moreover,
the formulation of the'p(-) function would also effect the mathematical propertieshef tesulting two-stage
game. Next, we give two different formulations for ) function. In the first one, the reserve targets are set
by predetermined ratios of observed demand. In the latteythie reserve targets are set by the predetermined
ratios of installed capacity. We show that while the twaggetgame with the first formulation is still convertible

to a single-stage optimization problem in the determinisétting and to a two-stage stochastic program in the
stochastic setting, this simplicity is lost when the talgeels depend on the installed capacity.

5.3.1 Setting Reserve Targets Based on Observed Demand

In this case, the regulator determines the reserve targsexbon observed demand. Therefore, we take the
operating-reserve price function as

ex— ey)
ed 7

rp(ex— ey x,d) :=rp_-demand

An example of the corresponding price curve for a total fixeshdnd level €d), taken from Hogan (2005),
is depicted in Figure 1. Theaxis denotes the percentage of over-capacity (or opgratiserves) with respect
to the observed demand. For giverandd, rp_demand®.¥) is a piecewise linear decreasing function of
operating-reserves. In the operating-reserve price anfrtéogan (2005), the critical operating-reserve levels
predetermined by the regulator are the minimum level ofrkesé3% of demand) and the nominal reserve
target (7% of demand). The minimum level of reserves is sehbyegulator to prevent a catastrophic failure
through a widespread and uncontrolled blackout in the Byst€he regulator would not go below this level

of reserves even if this required curtailment of inflexibrdind. Above this minimum level, there would be
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more flexibility up to nominal reserve target (7%). This ie firice-sensitive part of the operating-reserve price
curve illustrated in Figure 1. In the range between-3%8%0, as reserve levels approach the nominal target, the
operating-reserve price would be decreasing.

Note that Hogan’s operating-reserve price curve given guié 1 is piecewise linear. In our analysis, in
order to preserve twice differentiability in OPF probler82) and (35), we assume a differentiable operating-
reserve price curve which is a smooth approximation of Hsgaurve. The details of this approximation using
a sigmoid function are given in Section 9 and an example oftiheesponding differentiable operating-reserve
price curve is illustrated in Figure 1.

T T
smooth approximation
10000 ———mmimim = = — \ — -~ operating reserve price curve of Hogan (2005)

9000 —

8000

7000~

6000 —

5000 —

1p_demand((ex-ey)/ed)

4000 —

3000

2000

1000

1 1
0.05 0.06 0.07 0.08 0.09 0.1

(ex-ey)led

0 I I I I
0 0.01 0.02 0.03 0.04

Figure 1: Operating-reserve price curve which is a smooginagimation of Hogan’s curve on basis
of observed demand

Next, for givenx andd, we can calculat®(ex— ey x,d) as

Rex—eyx,d) :=Rdemand®)

ex—ey

ex—ey S ed
:/ rp_demand— )ds= ed/ rp_-demands)ds
0 ed 0

We know from Assumption 5.1 thap_demand®.¥) is a monotone decreasing function®gf”; therefore
EX— €'

R.demand®;?) is concave in®c¥ which is an affine function ofx,y). As we mentioned above, we assume

thatrp_demand ®¥) is differentiable; hencB demand®5¥) is twice differentiable. Moreover, itis concave
in (x,y) with
dR demand 2> —
dxlgd e ) _ rp_demanojex ey)’ and (38)
ik
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9’Rdemand®) _ 0rp_demancd%’)i “0
()2 (%)  ed”

Remarks.4. Joint concavity inx,y) of Rdemanca%’) can be seen by constructing its Hessian matrix of and
showing that it is negative semi-definite. The details offirwof are given in Appendix 10.

(38) indicates that a unit increasexﬁjindeed entails a marginal revenue for figfrom operating-reserves,
which is equal to the operating-reserve price. By utiliz{88), we next show that a solution to (39) is a perfect
competition equilibrium of the two-stage deterministicga

, ex—ey
min (cdyd + Kk ) +VOLL Y &, — Rdemand )
ot g;iezg keng ikYik T Kk ng\‘ ed
st. (y,0,f) satisfyConsMarket (39)
f satisfyConsTSO
y9 satisfyConsg(x9) vge G
x >0.

Theorem 5.5. A solution to the optimization proble(B9), if it exists, is a solution of the two-stage deterministic
game with operating-reserve pricing. Moreover, if therésexa solution of the two-stage deterministic game,
then it is also a solution of the optimization probl€¢&®).

Proof. The nonlinear program in (39) is convex(ixy, d, f). The necessary and sufficient optimality conditions
of NLP (39) is equivalent to the first and second stage equihiv conditions given in (34) and (31) respectively.
The result follows immediatell

Next, we obtain the corresponding result in the stochastiing; that is, a solution to the two-stage stochas-
tic program given in (40) is a perfect competition equiliton of the two-stage stochastic game.

min  Ey[ZR(w,x)] + > KX,

x20 i€T kER (40)
where
ZR(w,x) = min Ay (w)+VOLLS &,(w)—Rdeman ex—ey(w)
(@ {Y(@).0(w). T (w)} géggk;g k() n; (@) d ed(w) )
st. (Y(w),d(w), f(w)) satisfyConsMarket(w)
f(w) satisfyConsTSQw)
Y(w) satisfyConsg(w,x9) Vg e G.



Theorem 5.6. Let X' be an optimal solution of the two-stage stochastic prograrmtilated in(40) where
ZR(w,x) andM*R(w, x9) are finite in the neighborhood of for aimost everyo € Q. Then X is also a perfect
competition equilibrium of the two-stage stochastic garitk @perating-reserve pricing and vice versa.

Proof. By using the concavity oR. demand =, eW")) in x, we know thatZ*R(w, x) is a convex function ok

for all w € Q which implies the convexity oEw[Z*R(w, x)]. One can compute the components of the gradient
of Z*R(w, x) as:

aZ*R(CU,X) B*g( ) 0R_deman01ex ey ( >) 1
T T Pk (@) Py
X | 5(exe§(y;)() )) ed

= ~Bi(w) — rp-demand ).

except on a set L of Lebesgue measure zero.
By utilizing a similar argument in th@roof of Theorem 3,70ne can show thd,[Z*R(w,x)] is differen-
tiable and

OE,[ZR(w,x*)]
%

ex —ey(w)

— —E[B;:%(w) + rp_demand odw) )]-

Then one can easily derive the necessary and sufficient alitiinconditions of the two-stage stochastic pro-
gram (40) which are equivalent to the equilibrium condisiaf the first stage game given in (37) and the
optimality conditions of OPF problem (33).

5.3.2 Setting Reserve Targets Based on Installed Capacity

Next, we deal with the case that the regulator determinesetberve targets based on total installed capacity.
An example of the corresponding operating-reserve priceecior a fixed total installed capacitgy) is given

in Figure 2. This time the-axis denotes the percentage of unused capacity with resptte total available
capacity. We assume the same minimum level of reserve (3%talfdapacity) and the nominal reserve target
(7% of total capacity) as in Figure 1. This time, working wéth operating-reserve price curve like Figure 2
would mean that we takep(ey— ex x,d) := rp_capacityl . ¥) which is again a differentiable function. Then,
for givenx, we can compute the corresponding willingness to pay foraved reliability as:

R(ex—eyx,d) :=Rcapacity Z;Y)
ex_ey

ex—ey . S X .
= / rp_capacityf — )ds= ex / rp_capacitys)ds
0 ex 0

ex— ey) ex— ey)

Since rp_capacity is differentiable, R capacity is twice differentiable. Moreover,
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R capacity Z5Y) is concave ir(x,y) with

dR capacity ¥5Y) o ey. ey
P = /0 rp_capacitys)ds+rp- capacm( )ex’ and
(41)
2 i\ f €X—ey ex—ey
0°R capacity = ) drp_capacity =5Y) ey’ <0, Vx>0,
9 (%) I(%&) o

whereey’ is the sum of squares for all the elements of a vegtondex is the sum of cubes for all the elements
of a vectorx.
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Figure 2: Operating-reserve price curve on basis of irtatapacity

Remark5.7. Similar to Remark 5.4, joint concavity ifx,y) of R.capacity ©) can be seen by constructing

the Hessian matrix dR_capacity *5) and showing that it is negative semi-definite. The detailthefproof
are given in Appendix 10.

The first equation in (41) indicates that a unit increasajoentails a marginal revenue from operating-
reserves, which is different from the operating-resenieeprin other words, when we calculate the derivative
of R.capacitywith respect tog, we do not getp_capacity Z=2). Therefore, we cannot get the KKT condi-
tions given in (11) from an optimization problem; hence, \&a ao longer reduce the two-stage game formu-

lation to a single optimization problem in the determimisetting and to a two-stage stochastic program in the
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stochastic setting. However, we can still formulate a migechplementarity problem (MCP) which involves
the equilibrium conditions of both first and second stageegand solve the corresponding MCP. We explain
the details of solution methods for these problems in Se@&io

6 Demand-side Bidding (or an Endogenous Demand Curve)

In previous sections we consider three different ways ofilegr's intervention to provide incentives for
sufficient investment levels in electricity markets. Witlh¢he intervention of the regulator, the power systems
tend to underinvest in generation capacity because of fieq@ns in the market due to unresponsive demand.
When demand responds to price, regulator’s interventiomeeded less and the electricity market is more
likely to operate normally such that the prices clear theketawhere supply meets the demand without any
curtailments (e.g., Allcott (2012)). Therefore, if we cimtes “demand-side bidding” as a mechanism to ensure
a price responsive demand, then it can be thought of as anatitee way of addressing the resource adequacy
issue. In this section, we briefly comment on an electricigrkat where consumers can respond to prices.

When consumers respond to prices, we have an elastic demdvdearepresent the reaction of consumers
to the prices by decreasing price-demand cugxgd) with pn(0) < o for each demand nodec N. On such
a curve, consumers at demand nod#hoose their consumption level which maximizes their sigrit a given
price pn. We may represent the decision making process of the comswanthe second stage by incorporating,
for each demand nodg an optimization problem which maximizes the consumerlsarpLetd;; denote the
optimal consumption at demand noalsuch that

dy 1= arg maxUn(dn) — pach}, (42)

thn
whereUp(dp) :/ pn(s)dsdenotes the willingness to pay function.
0

Incorporating the consumers’ problem will slightly chartge equilibrium conditions of the second stage
game. Note thap(-) is a decreasing function which leadddg(-) being a concave function. Therefore, we can
still formulate a convex OPF problem whose solution maxesithe profit of firms, the surplus of consumers,
and the profit of TSO in charge of operating the network ascatdid in Boucher and Smeers (2001). The
modified OPF problem will slightly be different from the oniesroduced previously such that its objective
functions will also include maximizing,(-). For example, the OPF problem involving price-demand airve
with deterministic parameters will be formulated, for give as

Z*(X) = min clyl — S ud
( ) {yvf’d}ge%iezgkezl(g ik Yik ng\l ( ”)

s.t.%Zy?k%—szdj (pj) Vje{Nul} (43)
geGkeKy
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d >0
f satisfyConsT SO
y9 satisfyConsg(x9) Vg e G,

whered, is the demand of consumers as a reaction of guicat noden.

When the parameters in the price-demand curve are assurbedl&terministic, we end up with a two-stage
deterministic game in which the first and second stage opditioin problems of firng € G are still the same.
Hence, the arguments in Lemmas 3.1 and 3.2 still hold. Mae@’(x) in OPF problem (43) is a convex
function ofx. By using similar arguments iAroof of Theorem 3,4€ne can still formulate a single optimization
problem which finds an equilibrium of the corresponding tstage deterministic game.

Furthermore, the approach in previous sections that assanfized random demand can be extended to
a random demand function where key parameters such asnedecensumption for a given reference price
and elasticities are random. Price elasticities are onbwknwith very little accuracy. It thus makes sense
to treat them as uncertain and to embed such parameters statecof the world. When some parameters
in price-demand curves are random, we have a two-stageastiiciyame in which the first and second stage
optimization problems of firng € G in Section 3.2 remain the same. Similarly, the argumentemina 3.6 and
Theorem 3.8 still hold. One can write OPF problem (43) witpliext dependency o and the corresponding
optimal valueZ*(w, x) will be a convex function ok for everyw € Q. Therefore E,[Z*(w, )] is also convex.
By using a similar argument iRroof of Theorem 3,70ne can still formulate a two-stage stochastic program
which solves the corresponding two-stage stochastic game.

The standard view in the approach outlined so far is to assudemand response with a particular func-
tional form and possibly with some random parameters. Tdes iraises some questions though. The power
generation part of the model discussed so far is long-terithe sense that investments can change the capacity
structure of the generation system; therefore, the regpohthe power system to price changes takes place
both through modifications of plant operations and capeitin contrast, the representation of consumption
embedded in a demand function such as (42) does not offedtiziiong and short term representation. Its
most standard interpretation is to assume that it reflectsadd-side bidding; that is, participation of the de-
mand to the short-term power market(d) is typically a short-run response of the demand to price wgiiten
capacity in the consuming sector. This creates a model sist@mcy between the representation of the supply
and demand sectors that can only be removed by introducingra ocomplex demand model that accounts
for both the long run changes of capacity structure in thesgoring sector and the short run response of de-
mand with given capacity; for example a representation nsamer decision making including investments in
durable energy, using equipment, and habit formation wheshilts in a short run (very low) elasticity, but a
longer term adjustment with higher long term elasticityg(eCelebi and Fuller (2012)). This discussion goes
beyond the scope of this paper.
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7 More General Forms of Uncertainties in Spot Markets

In this section, we give a summary of possible extensionseteerplize the basic assumption of uncertain
demand. In the previous sections, we assume that the demahd spot market is possibly random. It is
also possible to view some of the other parameters as randdrase parameters include generation costs
c(w), transmission capacitids(w), and power transfer distribution factdPS DF(w) with E,[| c(w) || < oo,

Ew[| hi(w) |] < o, andE[| PTDF(w) |] < o, respectively. When these parameters are random, one acea pr
that the results obtained throughout this paper still heldrgued briefly in the following propositions.

Proposition 7.1. Let c, h, and PTDF be random and let the second stage probleaabf firm gc G and TSO
be feasible and bounded in the neighborhood of a feasiblet gai Then the equilibrium conditions of the first
stage game given in Lemma 3.6 (energy-only market), NRBP(energy market with capacity requirements),
and Theorem 5.3 (energy market with operating-reservarm)cstill hold.

Proof: The second stage revenues of figra G, M;(w, -) andl‘lgR(w, -), are concave functions af for every
w € Q andg € G regardless of the random parameter. By similar argumenBranfs of Lemma 3.éand
Theorem 5.3one can derive the equilibrium conditions (18), (28), a8id) for the first stage gamk.

Proposition 7.2. Let ¢, h, and PTDF be random and let the corresponding lowezllproblem(16) be feasi-

ble and bounded in the neighborhood of a feasible pdinfTken in case of an energy-only market, an energy
market with capacity requirements, an energy market witbrajing-reserve pricing based on observed de-
mand as given in Figure 1, or an energy market with demandibigdhe equivalence result with respect to
the equilibrium of the two-stage game and the solution of @dtage stochastic program established under
random demand in previous sections (e.g., Theorem 3.Fhestils. That is, one can find a perfect competition
equilibrium of these markets by solving the correspondimgr$tage stochastic program (from the perspective
of a central planner).

Proof: The optimal value of the corresponding OPF probletfw,X), is a convex function ok for every
w € Qregardless of the random parameter which implies the capvafithe expected system cds},[Z*(w, -)]
incurred at the second stage. By utilizing Proposition hd asing a similar argument iAroof of Theorem
3.7, the results followl
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8 Computational Methods for Solving Two-stage Equilibrium Models

In this section, we discuss the possible computational oasthior solving the two-stage games numerically
in four different market settings we have considered; ngraakrgy-only markets, energy markets including
forward capacity market, energy markets with operatirsginee pricing, and demand bidding.

8.1 Solving Two-stage Deterministic Equilibrium Models
MCP Approach

We showed that when we have constant demand, we can alwagstigiequilibrium conditions of the two-
stage game as a mixed complementarity problem; for instdrec®MCP (12) in energy-only markets, the MCP
consisting of the KKT conditions of (27) in energy marketshaforward capacity market, the MCP consisting
of (31) and (34) in energy markets with operating-reserveimy, and finally the MCP consisting of (11) and
the KKT conditions of (43) in energy markets with demand bidd We can solve these MCPs by using a state
of the art MCP solver such as PATH (Dirkse and Ferris (199%) B@rris and Munson (2008)). Our results
ensure that a point satisfying such an MCP is indeed a saltaithe original two-stage game.

(N)LP Approach

We showed in Section 3.1.2 that we can find an equilibrium efttto stage game in energy-only markets by
solving the linear program (14). In Sections 4 and 5.3.1, mew&d that we can extend this result to energy
markets with forward capacity market and energy markets aperating-reserve pricing based on an observed
demand. Hence instead of solving the MCPs of these two-giages, we can solve the corresponding (N)LPs
(14), (27), and (39) respectively and take the solution ascaulibrium point of the corresponding two-stage
game in these market designs. Moreover as mentioned ir8es;tunder the assumption of demand response
we can again formulate a single optimization problem whgh nonlinear program, solve it using an off the
shelf nonlinear programming solver, and take its optiméltg&m as an equilibrium point of the corresponding
market. LPs may be much simpler to solve compared to MCPsgc&dly when we have realistic systems of
large networks. Depending on the problem, NLPs may or mapeeasier to solve than MCPs.

One should also note that it may not be possible to formulasengle optimization problem for every
two-stage game under perfect competition as we elaboratésiue in Section 5.3.2 for energy markets with
operating-reserve pricing based on installed capacitigbat case, one needs to resort to an MCP approach to
provide numerical solutions.
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8.2 Solving Two-stage Stochastic Equilibrium Models

In general, when we have demand uncertainty, we cannotwabter expected function values explicitly; hence
we propose to approximate them by the corresponding samgtage functions and solve the resulting approx-
imate problem. The basic method we use is knowsample-path methodr sample average approximation
method see for example Robinson (1996) and Shapiro and Homem-B8l&1998) for the theoretical back-
ground in optimization context. Roughly speaking, in savghth methods the stochastic problem is observed
for a fixed and long sample-path by fixing a large sample sizeusing the method of common random num-
bers. Since the sample path and length are fixed, the appateiproblem actually becomes a deterministic
problem. The resulting deterministic problem is solved &st fand effective solution methods available and
its solution is taken as the approximate solution of thelsstic problem. We refer the interested reader to
Gurkan et al. (1999) and Gurkan and Pang (2009) for ther¢tieal analysis of the sample-path method for
solving stochastic equilibrium models.

Next, we explain how we use the basic ideasaimple-path method® solve the two-stage stochastic
games in each market setting. We again propose two diffemuation approaches; in the solution approaches
outlined below, we use a large, fixed sample $zeand an i.i.d. sample poirb := {wy, ..., wv}. Let
B(w),B(wy),...,B(wv) be the vectors of scarcity rents corresponding to this sampl

MCP Approach

We can always formulate the approximate two-stage stactgeine as a potentially very large MCP. This MCP
consists of the KKT conditions of every firm’s first and secatage problems for all realizations in the sample
{om}M_,. Forinstance, consider the energy-only market in SectidhieScannot obserng, B, (w)]; however
using our random sample of siké we can approximate it by a sample average func{i@zklﬁiﬁg(mﬂ). It
follows from the strong law of large numbers tha S, B;°(wm) converges t&, (B, (w)] with probability

1 asM gets large. We can then solve the MCP system which actualigists of (44) below and the KKT
conditions of OPF problem (16) for afkun 1™ _, and take its solution as an approximate solution of the two-
stage stochastic game in Section 3.2:

M
0<—= 5 Bl(wm)+Kke L x>0 VgeGiclgkeKy (44)
m=1

1
M
We can use the same approach for formulating the MCPs of ther ¢iree electricity market designs;
namely energy markets including forward capacity markatt) wperating-reserve pricing, and with demand
response. Then we can solve the corresponding MCP by a deigtimsolver such as PATH. However, this
approach has the following drawback: The size of the MCPemses rapidly with the sample sikkand the
size of the network. Therefore, straightforward constancbf an MCP in the stochastic setting for realistic
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networks and solving this large scale system by using theiotly available software may be a computational
challenge, as we briefly illustrate in Section 9.

Implicit Function Approach

Energy-only Markets: We showed in Section 3.2.2 that we can find an equilibrium efto-stage stochastic
game in an energy-only market by solving a two-stage stdichpiogram. The first and second stages of this
two-stage program are formulated in (19) and (16) respagtiAs mentioned earlier, we cannot observe the
expected cost functioB,[Z*(w,X)] in the first-stage problem (19); however we can again appraté it by a
sample-average function using the samfalg,}M ; and solve the approximate problem by using sample-path
optimization.

We know that the following holds for the sample-averagewstir of the expected cost and its (sub)gradient:

M
% Z Z*(wm,X) — Epl[Z*(w,X)] asM — o« almost surely for givexiand
;M OE,[Z" (,X)] (43)
=Y Bllwm) = Eu[Bl(w)] = w—g’) asM — « almost surely.
M IXik

We can construct the approximate problem (46) below to aqprate (19):

1M
min — (&, X) + Kk 46
PR AP R (46)

Note that (46) is in general an NLP and we can try to solve itsipngia standard NLP solver. An efficient
NLP solver would require us to provide function values ad a®(sub)gradient values of the objective function
(46) as input. Although we do not have an explicit expres§rZ* (wm, X), given wy, andx, we can solve the
second stage problem (16) numerically (by using a standarsldLver) to obtairZ* (wm, X) at that point. Once
the optimal solution of (16) is found, we also ha&ﬁg( ) € —(Xﬁ](—) for everyg,i, andk as a by-product.
Sincex is a right-hand side parameter in (193;;9(%) is simply the associated multiplier.

To summarize, this approach would involve solvikigconsecutive LPs of format (16) at any pointhat
the NLP solver (used for solving (46)) would like to evaludseoptimality.

Energy Markets with a Forward Capacity Market: In Section 4, we showed that the main results of Section
3.2.2 can directly be extended to the two-stage game of@ettinamely energy markets with forward capacity
market. In this market setting, we can still find an equilibmi of the corresponding two-stage stochastic game
by solving the two-stage stochastic program (29). By udhegfixed sample poinfwm}™_,, problem (29) can
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be approximated by (47):

1 M
mn — § Z*(wm,X) + % Z KicX,
x0 M n;l geGic gkeZKg

;ﬁzﬂ
g7|7

The only difference between the approximate problems (48)(47) is that a deterministic capacity regu-
lation constraint is imposed in the latter. Hence, the agpuisifor solving (46) are also valid for (47).

(47)

Energy Markets with Operating-reserve Pricing: In Section 5.3, we showed that it is not always possible
to formulate a two-stage stochastic program that finds afliledgum of the two-stage stochastic game under
perfect competition. If one can formulate a two-stage moyas in Section 5.3.1, then it is possible to solve
(40) in a similar way used for (19), as explainediimplicit function approachor energy-only markets. If
one cannot formulate a two-stage program as in Section,53p in order to find an equilibrium of the
corresponding two-stage stochastic game, one has to $mhatdchastic complementarity problem (37) at the
first stage and the optimization problem (35) at the secaagkst

As explained before, one possible approach is solving theggonding aggregate MCP system (that is,
MCP (37) and KKT conditions of (35)) to find an approximate igguum point of the two-stage stochastic
game, as described in MCP approach for stochastic systerowevdr, the size of the resulting aggregate
MCP system grows rapidly with the sample sMeHence, it may be computationally very time-consuming or
impossible to solve such an MCP system for realistic netaork

We next propose another way for finding an approximate dxitilin of the two-stage stochastic game of
Section 5.3.2 by implicit function approach. First, we apqimate (37) by using sample average approxima-
tions of the expected functions. For givenone can easily approximaE@u[Bi* () +rp- capacm(w)]

by the sample average functienk SM_,[:9( ) + rp_capacity 2L @n))) Thus, we construct (48) below
to approximate (37):

ex’ — ey (wm)

e )]+ K L X2 >0, Vg€ G,i € g,k € Kq. (48)

12 :
0<-4 Y 1By () + rp-capacity
m=1

As mentioned, we would like to solve (48) reminiscent of theolicit function approach. Note that the
size of (48) does not depend on the sample Bizeln order to solve (48), we need to provide function and
(sub)gradient values Gfﬁ S 1 [Bid(wm) +rp- capacn)(w)] at anyx that PATH would like to explore.
Given anyx, we can solve the second stage OPF problem §8%pnsecutive times and obtain the values of

B9 (cm) andrp_capacity &= @) for eachm e M.

Unfortunately, to approximate the (sub)gradienEg{Bi* () +rp- capacn)(w)], we cannot directly
use the (sub)gradient values@f®(wm). AlthoughE[B,7] is continuous anq}l S 1 B (o) becomes almost
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continuous for largeM, Bi’lig(wm) is actually a piecewise constant function»of Thus, the (sub)gradient of
Bi’lzg(wm) is either zero or undefined for a givemand wy,. Hence, we use the following steps to obtain an
sample average estimator &,[B;2(w) + rp_capacity 2 2))] /9x3 for anyxd >0

e By using (31), for anyw with y; (w) >0

Eo[B;2(w) + rp_capacity 22 (@) = E,[(pf(w) — ).

e Again, by (31), for anyw with y; (w) = 0, we have,’(w) = 0. Thus:

Ew|B;2(w) + rp_capacity 2=y — E,,[rp_capacity - ()]

e Hence, by these two together, we can write:

EwlB;d(w) + rp-capacity -2 = Ey[(pf (@) — )l gy, (w)=0}]

(49)
+Eg[rp- capamtxw) iy (00)=0})-
By calculating the subgradients of (49), we get
9Eu|Bid(w) + rp-capacity *F @]  IE[(p7 () — Gl gy (w)>0)]
% x5
(50)

| 9Eulrp- capacity )l y, (-0}
X .

e Note that for a fixed samplewm}M_,, we can always pertunkﬁ< > 0 small enough such thq‘l< +Ax >0
and the values of the indicator funct|0q§ ©)>0} andl{y*( w)—0y do not change; hence they can be treated
as constants.

e Next, we approximate the  (sub)gradients  ofEy[(p/(w) — c)l i (>0  and
Ewlrp- capacm(w) Lys ( )—oy] for any x > 0 by using the following sample-average esti-
mators. Leu(wny) = %y;(), then:
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1 ¥ op(wm) OEu[(P; (@) =€)y (00)>0})

= [ d

M v 0Xi?< {¥ik (wm)>0} — 0Xi?< » an

1 % arp- capacn)(u( ) 9u(a), R OE,[rp-capacity =% . () o] (51)
M&  du(an) oxg Vom0 ox,

asM — oo almost surely.

Given anyx, we can calculate the the corresponding (sub)gradienesdly using (50) and (51). Thus,
one needs to calculate the valug$(wm),u(wn)) and the subgradien@rp_capacity{u(cwm)),/du(wm),

W) /0%, and dp; (wm)/9x3.. Once the functionrp_capacity(-) is explicitly defined, all of these
values, except subgradient gf(cwn), are straightforward to calculate from the solution of OF&bem
(35). For instance,

au(wm)) B (ex— ey (wm) ey*(cqn))
oy ex e

(u(em),

For the calculation of the subgradientmf( c,), Castillo et al. (2006) gives an integrated approach which
at once yields all the sensitivities of the optimal solutadrman NLP problem to changes in the parameter
values. They illustrate how to obtain the directional andigbderivatives of the optimal objective
function value, optimal primal, and dual variable valuethwespect to the parameters of a general NLP
problem by a single calculation. Once we solve the OPF pnol(85), we utilize the approach of Castillo
et al. (2006) to calculate the subgradientpdfwn).

Energy Markets with Demand-side bidding: Similar to the energy-only market, the first stage prob-
lem of the two-stage stochastic model can be approximate@®)y The only difference between the
approximate problems of energy-only market and energy etawith demand response is the second
stage OPF problem. The second stage OPF problem of energpetmath demand response would be
almost identical to (43) with explicit depends ap,. Hence, the discussion related to solving (46) remain
applicable in this case as well.
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9 Numerical lllustration

The numerical experiments reported here have been combiccgerve two purposes. Firstly, we would
like to compare the performance of the computational metitiscussed in Section 8 and secondly we
would like to see the impact of the market designs discuss#ds paper on investment incentives of the
firms. To this end, we apply in this section the methods pregas Section 8 to solve the equilibrium for
the electricity markets discussed throughout this papdeuboth deterministic and stochastic setting.

All the numerical experiments reported are performed by & P& with Dual-Intel Xeon, 575 2.66
GHz processors, and 2 GB 266 MHz DDR Non-ECC SDRAM Memory &6 Windows 2000. The
solvers utilized for each problem depend on both the typgplieation problem and the method, which
are summarized in Tables 1 and 2. Note that the methodoldigeassed in Section 8 allow modularity;
that is, one can always use any off-the-shelf solvers. IreTab (Non)Linear Program ((N)LP) and
Mixed Linear/Nonlinear Complementarity Problem (MLCP/I@R) are used to solve first and second
stage problems simultaneously whereas Stochastic Praq@Rjrand MCP s.t. NLP are based on implicit
function approach discussed in Section 8; that is, firstesfagblem and second stage problems at each
realization are solved iteratively. Thus, one can use arapaolver for each stage. In our case, we use
CONOPT(warm start) and SNOPT sequentially for SPs and PAYH/CPs to find an equilibrium of
the first stage. These first stage solvers call the second stdgerM consecutive times at a poirtto
explore its optimality. The up-to-date information on thestfistage solvers can be found in the online
documentations available by GAMS (see GAMS (2012)). In tholdli for solving the second stage OPF
problem we use the deterministic nonlinear optimizatiodecB04UCC of NAG C library, Mark 7, NAG
(2002). E04UCC is designed to minimize an arbitrary smootittfion subject to constraints, which may
include simple bounds on the variables, linear constrasémd smooth nonlinear constraints. Essentially,
it is a sequential quadratic programming method incorjogean augmented Lagrangian merit function
and a BFGS quasi-Newton approximation to the Hessian of éggdngian.

Application

Problem Remedy Mechanism

EO Energy-only with VOLL pricing

ECAP Capacity markets

EORP1 Operating-reserve pricing based on demand
EORP2 Operating-reserve pricing based on capagity

Table 1: Overview of application problems

We consider a competitive power market of six nodes given liigaGand Peck (1998) in Figure 3, which
has the following characteristics:
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Application Solver Solver

Method Problem First Stage Second Stage

LP/NLP All except EORP2| CPLEX/SNOPT(GAMS)| with 15 stage
(15t and 29 stage)

MLCP/MNCP | All PATH(GAMS) with 15t stage
(15t and 29 stage)

SP All except EORP2| CONOPT(warm start) EO04UCC
and SNOPT(GAMS) (NAG C)

MNCP s.t. NLP| EORP2 EO4UCC
PATH(GAMS) (NAG C)

Table 2: Overview of solvers utilized for each method andfmm type

— The nodes 1, 2, and 4 are supply nodes=({1,2,4}) and the nodes 3, 5, and 6 are demand nodes
(N :={3,5,6}).

— Without loss of generality, at each supply node there is glsifirm investing in one technology
(g=1i=Kk). The unit generation and investment costs of these firmsiaea ¢n Figure 3. The
corresponding data for marginal costs for these three gwrelypes are taken from Schulkin et al.
(2010).

— The demand in nodes 3, 5, and 6 are uniformly distributed wdttiesponding uppeD(™®) and
lower bounds P™") given in Figure 3.

— To analyze the electricity market with limited network ceipg we assume all lines have infinite
capacities except for the lines (1-6) and (2-5) wharge= 8 andhys = 8. All line impedances are
equal to 1 except for (1-6) and (2-5) that have impedanceal ég@. The PTDFs in Table 3 indicate
the flows through lines (1-6) and (2-5) resulting from ond imjéction at each node of the network
and withdrawal at node 6, which is taken as the hub.

— VOLL is taken as 10,000 Euro/MWh which is a standard valueosf load used in the literature
(e.g., Stoft (2002), Hogan (2005)).

— In case of operating-reserve pricing, both operatingrueserice curves introduced in Sections

5.3.1and 5.3.2 are assumed to be smooth sigmoid functiagigeasin Figures 1 and 2, respectively.
max

1 -+ ek(t—Fmia)
maximum value of the functionFyq gives the mid value of the functiorF (Fmid) = Fmax/2)-

Finally, k gives the curvature information centeredfgy. Regarding the approximating function
of the operating-reserve price curve offered by Hogan (200bigure 1 and the operating-reserve

The mathematical representation of a sigmoid functiorFig) = whereFnax is the
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price curve based on installed capacity in Figure 2, oneldhakeF,ax= 10,000 andFy,q = 0.05.

In order to determine the value &f the error between the real function and the approximating
function is calculated for different values kfandk = 133 gives the best approximation with the
smallest error. Therefore for the numerical results regabim this section, we use the formulation

rp(f(xy,d)) = 1+613]3f(?832)_0405) for the operating-reserve price curveg,demand®:%") and

rp_capacitx%), given in Figures 1 and 2, respectively. The unit of opetgptigserve price in

these figures are taken as Euro/MWh.

C,=80€/MWh

C,=20€/MWh K, =5.7 €MWh

K, =13.7 €MWh

C,=40 €/ MWh
K, = 8.6 €MWh

n [ D™(GW) [ D™(GW)
3 8 12
5 3 5
6 15 20

Figure 3: The data of 6-node example

Next, we solve two-stage deterministic and two-stage ststihigames by using the approaches proposed
in Section 8.
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Node | Line (1-6) | Line (2-5)
1 0.6250 0.3750
2 0.5000 0.5000
3 0.5625 0.4375
4 0.0625 -0.0625
5 0.1250 -0.1250

Table 3: Power distribution factor®T DF ;)

Example 9.1. Perfect competition equilibria under determnistic demand

We first consider the situation in which the firms solve theastfstage problem by simply taking the
expected values of the demardy: = 10,d5 = 4, andds = 17.5. Then the corresponding game is a two-
stage deterministic game. In the energy-only (EO) marketrgy market with forward capacity market
(ECAP), and energy market with operating-reserve priciagedl on the observed demand (EORP1), we
find the equilibrium of the two-stage deterministic game bijzing both MCP and (N)LP approaches.
In the energy market with operating-reserve pricing basethstalled capacity (EORP2), we find the
equilibrium of the two-stage deterministic game by utiligZiMCP approach. In the ECAP market, we
impose that the capacity market requires 11.2% more cgdheih the total expected demartti £ 35.2)
which results in same reserve capacity as in EORP2 market.rd3ults are presented in Tables 4 and
5. Furthermore, the results obtained by MCP approach and_(lspproach for EO, ECAP, and EORP1
markets are identical and the computation time for both @gghres takes less than a second.

Investment IncentivesRegarding the EO market result as reference, Tables 4 andidaia that the
investments increase when there is capacity market or tipgnieserve pricing. The prices in both
EORP markets remain identical whereas the prices in ECAReahare lower. However, there is an extra
capacity priceA* = 5.7 euro/MWh paid to the firms in ECAP market. If the consumeesying this
capacity price, then one can conclude that ECAP markettssisuidentical prices as well.

Compared to EO market, total generation capacity invesisrame higher in ECAP and EORP markets;
hence the system has higher investment costs in these marRetgarding the comparison between
different market designs, investment incentives are mgh&ORP2 market than in EORP1 market. In
addition, ECAP market results in identical investment Iewas in EORP2 market sind¢ is chosen to
be equal to the total generation capacity in EORP2 markeil Were chosen to be equal to the total
generation capacity in EORP1 market, then ECAP market waadgdlt in identical investment levels as
in EORP1 market. Based on our extensive numerical expetsnem conjecture that for any operating-
reserve functiorrp in EORP1 or EORP2 market, there is a correspondingp ECAP market which
results in identical total reserve capacity and mix of t@thgies. This observation is also made by Hobbs
et al. (2001). Furthermore, if the “correct” extra capagitice A * = 5.7) is paid by the consumers, then
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one can conclude that whehis equal to the total generation capacity in an EORP marketgtis no
difference between ECAP and the corresponding EORP market.

GW euro / MWh Investment and
Market Design| xj X5 X | P3 Ps pg | Operational Cost (k Euro
EO 315 0 0| 33.7 33.7 33.7 1061.5
EORP1 315 33 0| 337 33.7 33.7 1080.4
EORP2 315 3.7 0| 337 33.7 33.7 1082.6
ECAP 315 37 0]28.0 28.0 28.0 1082.6

Table 4: Equilibrium in two-stage deterministic game witfinite transmission line capacities

GW euro / MWh Investment and
Market Design| xj X5 X 08 Ps pg | Operational Cost (k Euro
EO 216 0 99| 354 46.9 50.3 1208.9
EORP1 216 3.3 9.9 354 46.9 50.3 1227.9
EORP2 216 3.7 99 354 46.9 50.3 1230.1
ECAP 21.6 3.7 9.9 29.7 41.2 44.6 1230.0

Table 5: Equilibrium in two-stage deterministic game withited network capacity
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Example 9.2. Perfect competition equilibria under demand ncertainty

We now consider the situation in which the firms take the ramu®ss of demand into account and
the corresponding two-stage stochastic game needs tomzsale first solve the two-stage stochastic
games in EO, ECAP, and EORP2 markets by using both MCP anétibfphction approaches discussed
in Section 8 and compare the performance of these approadifesuse sample sizes t = 1000
andM = 8760 and compare the computational performance of thesapwmaches in the energy-only
market in Table 6, in EORP2 market in Table 7, and in ECAP mark&able 8, respectively. We report
optimal capacities installed together with the solutioneti We skip the comparison of the computational
performance of these approaches for EORP1 market sincevttesponding solution times are similar
to that of EO market. Note that the particular problem beinlgexl in the MCP approach is referred as
mixed linear complementarity problem (MLCP) for energyyoand ECAP markets and mixed nonlinear
complementarity problem (MNCP) for EORP2 market. Morepthes particular problem being solved in
the implicit function approach is referred as stochastagpam (SP) for energy-only and ECAP markets
and MNLCP s.t. NLP in EOPR2 market (since mixed nonlinear glementarity problem is solved at
the upper level subject to the optimal solution set of thelinear program at the lower level). Next for
M = 8760, we compare the corresponding generation capacigstiments, average consumer prices,
and average investment and operational (generation amglment) costs for EO, ECAP, and EORP
markets for both unlimited and limited network in Tables a4 1, respectively.

Computational Performancefhe comparisons between the MCP approach (MLCP or MNCP)rand i
plicit function approach (SP or MNCP s.t. NLP) in all tableslicate that the computational time to
solve the two-stage stochastic game by MCP approach iregeapidly with the sample si2d. Since
the implicit function approach involves solving the lowevél (N)LP problenM consecutive times, the
computational time increases with sample dizeén a linear way. Hence, the MCP approach is more
efficient in solving problems with smaller sample size (eMj= 1000) and implicit function approach
is more efficient in solving problems with large sample sizg (M = 8760). We note that the solutions
of the approximating problem with small sample sik&- 1000) are almost identical to the solutions
of the approximating problem with large sample sikk=£ 8760) in Tables 6-8. This is mainly a conse-
guence of using uniform distribution in which case the agpnation functions converge to their limit
very rapidly. Next, we consider an example in the energy-omhrket in which the stochastic demand in
nodes 35, and 6 has triangular distribution with peak valug3®, and 16, respectively. Table 9 contains
the equilibrium points of this two-stage game. We see thattjuilibria for different sample sizes show
wider variations in this case. Therefore, depending on #m@bility of the underlying random data and
the final accuracy desired, one may sometimes prefer to #odvievo-stage game for larger sample sizes
(e.g.,M = 8760) which get closer to the true solution.
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Investment IncentivesThe comparison of investment capacities installed by eachriblogy, average
consumer prices, and total investment and operationalafasie system under each market design is
given in Tables 10 and 11. The values in these tables refrds=nomputations done with sample size
of 8760. The results indicate that the total generation @apan energy-only market is 1-2% less than
the total peak demand, whereas ECAP and operating-resepiagpin EORP1 and EORP2 markets
result in total generation capacities that are about 4.5%%%bove the total peak demand level. Thus,
energy-only markets with VOLL pricing tend to lead to tot&ngration capacity below the peak load
with a certain probability whereas energy markets with avéod capacity market or operating-reserve
pricing result in higher investments. VOLL pricing (withdhi values of VOLL) may also result in
similar investment levels as the other market designs @ddroutages are taken into account and the
demand is assumed to have a distribution without a finite atigpee the result of Hobbs et al. (2001)).
In our experiments, since we do not consider forced outageésv@ assume demand distributions with
finite support, the regulator’s reserve target assumpfiorsase of capacity markets or operating-reserve
pricing) result in total generation capacity higher tha@ peak demand level which cannot be achieved
by VOLL pricing.

As observed in the deterministic case, EORP2 market resultggher investment level of peak unit
compared to EORP1 market. Different from the determinisiise, the average consumer prices in
EORP2 market are slightly higher than the average pricesOREL market. In ECAP market, we
used the total capacity requiremeéiht= 38.8. As one can see in Tables 10 and 11, the investment levels
obtained in ECAP market are close to the investment levélORP markets. Similar to the deterministic
case, we conjecture a similar result of Hobbs et al. (20041) fitr any operating-reserve functiop in
EORP1 or EORP2 market, there is a correspondingp ECAP market which results in identical total
reserve capacity and mix of technologies.

Although the average prices in ECAP market are the lowestetis again an extra capacity price=5.7
euro/MWh which is likely be paid by the consumers. Furtheencompared to the EO market, the
relative increase in system operational and investmenirt&CAP and EORP markets under uncertainty
is lower than the increase in the total cost for the detestimicase. This can be explained by the
impact of higher operational cost due to the curtailmenbaiesrealizations and lower investment cost
in EO market versus lower operational and higher investroesis in the other market designs. Finally,
the comparison of the results in deterministic and stoahasttings indicate that when uncertainty of
future demand is taken into account by the risk neutral gd¢oges, their investments result in higher total
generation capacity and a broader mix of technologies coedpa the case when generators invest based
on the expected demand.
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Infinite network capacity Limited network capacity
(X1,%5, %) (X3, %5,%)
Sample size CPU time CPU time
M MLCP SP MLCP SP
1000 (32.9, 2.0, 1.5) (32.9,2.0,1.5) (22.1, 1.3,13.0) (22.1,1.3,13.0)
00h 00'47” 00h 13'46” 00h 05'04” 00h 27'45’
8760 (32.9,2.1,1.5) (32.9, 2.1, 1.5)| (22.0, 1.2, 13.3) (22.0, 1.2, 13.3)
06h 16’ 49” 01h 36’ 25” 23h 01’ 09” 02h 32’ 38"

Table 6: Equilibrium of two-stage stochastic game in enengly markets (EO)

Infinite network capacity Limited network capacity
(X3,%5,%3) (X3, %5,%3)
Sample size CPU time CPU time
M MNCP MNCP s.t. NLP MNCP MNCP s.t. NLP
1000 (32.9,4.4,1.5) (32.3,3.6,2.9)| (22.1, 3.7,12.9) (22.1, 3.7, 12.9)
00h 01'05” 01h 0'07” 00h 05'04” 01h 15'53”
8760 (32.9,4.5,1.5) (32.9,4.5,1.5)| NA (time limit) | (22.0, 3.8, 13.0)
10h 46’ 22" 09h 31’ 38” 75h 48’ 19” 08h 19’ 42”

Table 7: Equilibrium of two-stage stochastic game in energykets with operating-reserve price

(EORP2)

Infinite network capacity
(X1,%5,%3)

Limited network capacity
(X1,%5,%3)

Sample size CPU time CPU time
M MNCP MNCP s.t. NLP MNCP MNCP s.t. NLP
1000 (32.9,4.4,1.5) (32.9,4.4,1.5)| (22.1,3.7,12.9) (22.1,3.7,12.9)
00h 00'33” 00h 27°48” 00h 02'21” 00h 24'50”
8760 (32.9,4.4,1.5) (32.9,4.4,1.5)| (22.1,3.6,13.1)| (22.1, 3.6, 13.1)
4h 44" 11" 01lh 54’ 11" 21h 38’ 34" 01h 54’ 49"

Table 8: Equilibrium of two-stage stochastic game in enengykets with forward capacity require-

ments (ECAP)

Infinite network capacity Limited network capacity
(X3,%5,%3) (X3, %5,%)
Sample size CPU time CPU time
M MLCP SP MLCP SP
1000 (315,2.2,1.1) (31.5,2.2,1.1) (21.5,1.0,12.3) (21.5,1.0,12.3)
00h 00'51” 00h 14'18” 00h 02'21” 00h 2348’
8760 (31.5,2.4,1.2) (31.5,2.4,1.2) (21.5,0.8,12.8) (21.5,0.8, 12.8)
10h 43’ 53” 02h 06’ 01” 34h 18’ 31" 04h 59’ 28”

Table 9: Equilibrium of two-stage stochastic game in EO ra&rkvith stochastic demand sampled
from triangular distribution
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GW euro / MWh Average Investment and

Market Design| Xj X5 X3 | E[p3] E[p] E[pg] | Operational Cost (k Euro
EO 329 21 15| 33.6 33.6 33.6 1113.6
EORP1 329 4.3 1.5 335 33.5 33.5 1125.7
EORP2 329 45 1.5 338 33.8 33.8 1126.8
ECAP 329 4.4 15| 280 28.0 28.0 1126.3

Table 10: Equilibrium in two-stage stochastic game withniitdi transmission line capacities

GW euro / MWh Average Investment and

Market Design| x; x5 X3 | E[p3] E[pg] E[pg] | Operational Cost (k Euro
EO 220 1.2 13.3 36.0 46.5 49.5 1256.8
EORP1 221 35 131 354 46.6 49.8 1268.6
EORP2 22.0 3.8 13.0 38.5 50.2 53.6 1269.3
ECAP 22.1 3.6 13.1 29.8 41.0 44.3 1269.1

Table 11: Equilibrium in two-stage stochastic game withtéd network capacity

10 Conclusions

We have considered alternative market designs which magdgrthe resource adequacy problem in
restructured electricity markets. Each market desigresponds to a different type of multi-agent model
formulation depending on the remedy mechanism and the gdgumon the market agents’ behaviors.
Taking into account the uncertainty or variability of paegtars in these multi-agent models may lead
to large-scale problems which are computationally compdesolve due to scarcity of resources (e.g.,
available memory and speed of computers). We show that, rieqily competitive markets, most of
the market models can be cast into deterministic or stoichagtimization problems similar to the early
capacity expansion models of a regulated monopoly. Thidtratso suggests that an equilibrium of a
single-stage (open loop) model in which investment and aijmer decisions are made simultaneously
coincides with an equilibrium of a two-stage (closed loopda where investment and operation de-
cisions are made sequentially. By using this result, we stiat/we can utilize sample-path methods
together with the powerful available solvers for deterstici optimization problems, which provides
computational simplicity for solving such models of reidisystems with stochastic elements.

By utilizing numerical experiments, we also provide ingggbn the impact of demand uncertainty
and to what extend these market designs provide incentives/¢st in generation capacities. Firstly,
uncertainty of demand leads to higher investments in tatalegation capacity and a broader mix of
technologies compared to the investment decisions asguavierage demand levels. Furthermore in
energy-only markets, peak-load generators tend to umgesi and curtail peak load so that they re-
ceive positive margin via high prices (e.g., VOLL) to covkeit long-run marginal costs. In energy
markets with a forward capacity market or with operatingerge pricing, peak-load generators receive
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positive margin not only via curtailment but also by prowiglimore capacity to the system. Therefore
for the same VOLL (or price cap) level, energy-only marketthhWw/OLL pricing tend to lead to total
generation capacity below the peak load with a certain foiibawhereas energy markets with a for-
ward capacity market or operating-reserve pricing resutligher investments under the assumptions
of random demand with finite support and no forced outageseMer given similar regulator targets,
operating-reserve pricing based on installed capacityiges higher incentives than operating-reserve
pricing based on observed demand and it does not increasetéihénvestment and operational cost in
the system significantly. Lastly, the regulator decisiang.( reserve capacity target) in capacity markets
and operating-reserve pricing can be chosen in such a wayethalts in very similar investment levels
and fuel mix of generation capacities in both market designs

Finally, the result of the prevalence of stochastic programg for providing solutions to stochastic
equilibrium models can be extended to generation capasigstment strategies in perfectly competitive
electricity markets with different regulatory mechanissash as emission trading scheme (Girkan et al.
(2012)) or renewable obligations (Gurkan and Langest@t2)). In addition, risk aversion can also be
included by using “coherent risk measures” in the first sfaggblem of the firms. This allows assessment
of investment incentives of risk averse generators byziriij a two-stage stochastic program when the
markets are perfectly competitive and “complete” (Ralpd &meers (2011)). However, this does not
necessarily guarantee that every equilibrium model undgiept competition can be cast as two-stage
stochastic program since equilibrium problems are indeedder than optimization problems. The
natural approach is to resort initially to complementafitymulations as to model competitive electricity
markets. Depending on the structure of the market and regylantervention, market equilibrium may
or may not be equivalent to the solution of a system optinopat-or instance in one case of operating-
reserve pricing, we obtain an equilibrium problem that isetuivalent to an optimization problem.
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Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 3.3. The first stage problem (10) is concavexthand the second stage problem (9)
is a linear program and therefore is convex. Hence, (11) &ndré necessary and sufficient optimality
conditions for all firms at both stages. By using the resdilt: y*, from Lemma 3.1, we can rewrite (8)
by replacingyi*kg with xi*kg. Thus, the first two complementarity equations in (8) redoce

(i) 0<cl—pr+BY L x2>0 VgeG,iclgkeKg
(i) By >0 VgeG,ielgkeKy.

In addition by Lemma 3.2,
(i) 0<-BI+ke L X2>0 VgeG,ielgkeKqy

should hold at the first stage. As a result, a solugowhich satisfiegi)-(iii) would satisfy the following
complementarity conditions as well;

0<cl—p+ke L xI>0 VgeG,iclgkeK,.

On the other hand, let be a solution to the complementarity conditions in (12). Ttés an equilibrium
of the two-stage game whefg® = p; — ¢ = ki for x;? > 0 and 0< B, < i for x;0 = 01

Proof of Lemma 3.6. Similar to Proof of Lemma 3.2first stage problem of each firgne G can be
formulated as

* _ 9
max  Eq[Mg(w,x%)] iEZg keng Kickics (A1)
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whereg(w,x?) is the optimal value of the firng's second stage problem (15) at realizatiore Q.
Similar to the arguments iRroof of Lemma 3.2M(w,x%) is a concave function of? for all fixed
w € Q; hence the expectatidg,|[I1g(w,x%)] is a concave function of as well. By using the fact that
(15) is a linear program, we know that at any givenf Mg (w,x?) is finite thenB,?(w) is a subgradient
of My(w,-). Moreover, 3, (w) is unique andly(w,-) is differentiable except on a sktof Lebesgue
measure zero. Thus,

= B:3(w) except orL.
N "

SinceB,d(w) is a subgradient dig(w,-), Ew[B’(w)] is a subgradient dE,[Mg(w,-)]. Moreoverd(w)
is a continuous random variable; henicénas a probability measure zero. Therefdg,B,°(w)] is
unique and

0E,[Mg(w, )] ]
— g =ElB()]. (A3)

ik
As a result, we can conclude tha,[Mf(w, )] is concave and differentiable. Hence{ is optimal for
firm g's problem (17) if and only if it satisfies the optimality catidns of problem (A1) given as

_9EulMg(@,x9)

Xk

By using the equality in (A3), we get the following equilibm conditions for the first-stage game:

0< —Eu[Bl(w)]+ke L x>0 VgeG,iclgkeKg.l

Proof of Theorem 3.8. Both (23) and (24) are convex problems. The necessary afidisof KKT
optimality conditions of (23) and (24) for all firms and TS@#&ther with the market clearing conditions
can be written as

M
0<— 5 mBd(wm)+ke L %0>0 VgeGiclgkeKg; (A4)
m=1

where form=1,2,... M:
(¥* (), B* (@), P*(t)) satisfyMCP_Firms(wm, X)
(F*(cm), P (@), A (@), A7 (i) satisfyMCP_T SQ(an)
(Y* (), 0" (), F* (), p*(cm)) satisfyMCP_Market( ).

In (A4), the first line is equivalent to the equilibrium cotidins of the first stage game given in (22)
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and the rest is KKT optimality conditions of the OPF probletg)(for everyw,. Hence, a solution to
the MCP (A4) is an equilibrium of the corresponding two-staochastic game with finite number of
demand scenarios. Furthermore, since (A4) consists obaaneand sufficient optimality conditions of
every firm’s problem in both two-stage and single-stage gamareequilibrium of the two-stage stochastic
game, if it exists, is also an equilibrium of the single-statpchastic ganie.

Proof of Theorem 5.2. The second stage problem (30) of each fggm G is a linear program whene¢
appears both as a coefficient in the objective function aradthe right side parameter in the constraints.
Since the objective function is a concave functionkdfind the corresponding constraints are convex in
X9, the optimal objective function valu&ﬂaR(xg), is a concave function off in (30). Whenl‘laR(xg)

is finite in the neighborhood of*?, it is also subdifferentiable at? and (Bi’lig + y*) is a subgradient

of I'I*R( x*¥). Hencex'9 is an optimal solution of (33) for each firgme G if and only if there exists

(B +y) e —g—> satisfying the necessary and sufficient optimality condgi

0<—(B2+y)+ke L X2>0 VgeG,iclgkeKq.

After plugging iny* = rp(ex‘ —ey",x*,d), we get the equilibrium conditions in first stage game as

—BI—rp(ex —ey ,x,d)+ke L xI>0 VgeG,iclgkeKq.l
Proof of Theorem 5.3. I'IER(w,xg) is the optimal objective function value of the second stagdlpm
(30) in stochastic setting defined for eamhe Q. As argued inProof of Theorem 5,2|'IaR(w,x9) is a

concave function of9; henceEw[I'IgR(w, -)] is concave. By using an argument similar to the onrivof
of Lemma 3.6we can conclude thﬁw[ﬂgR(w, -)] is differentiable and

0Ew[l'laR(w,-)]

= EulB(@) 4 ()]

Hence,x*? is an optimal solution of (36) for each finrme G if and only if it satisfies the optimality
conditions

0< —EuBl(w) +y (w)]+kk L xI>0 VgeG,iclgkeKy.

After plugging iny*(w) = rp(ex —y*(w),x*,d(w)), we get the equilibrium conditions in (37).

Proof of Remark 5.4. (x,y) € OY*M whereM := G x | x K. Rdemand ) is concave ir(x,y) iff its
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HessiarH := 0?M*2M js negative semidefinite. Next we calculate the HessigR.démand
LetH!:= OM*M then

ex— ey)

2 ex— ey 2 ex—ey 1
Oy R-.demand . ) = Oj,R demand od )=H"and
Rdemanca ey) Rdemancj dey) —HY,
drp_demand =
where Hi} =hi(exey) = P- e gy )e—d Vi,j € M andhy(exey) <0 by using Assumption
9( )

5.1. Then the Hessian matrix can be formulated as

Hl _Hl
Letz' =(zy 2z]wherez,z € OM. Next we show thal is negative semidefinite; that 8,H (x,y)z <
0 for eachz € O?M and(x,y) € OY>M:

Hl _Hl
ZTH(X7y)Z = [Zl 22] ( —Hl Hl ) [Zl ZZ]T

=21 H1z + Z/H'z = hy(ex ey)[(ez)? + (ez)?].

Sincehy(exey) <0,z H(x,y)z < 0 for eachz € 0?M. Thus,H is negative semidefinite.

Proof of Remark 5.7. (x,y) € OY*M whereM := G x | x K. Rdemand®¥) is concave ir(x,y) iff its
HessiarH := 0?M*2M is negative semidefinite. Next we calculate the HessidR démandZ_Y):
LetHY H? H3:= OM*M then

FLdemanaj ey) HY,
02,R.demand &= ey) =H?, and
Rdemanca ey) Rdemancj Xey) H3,

where for(x,y) € 0"*M and by using Assumption 5.1:
drp_capacity oY) ey?

(i) Hj= ex—ey ex3<o Vi, j € M.
a( )
ex
. drp_capacity “5Y) 1 .
i) HZ = — <0, Vi,jeM.
(ii) ij a(eiiw) ex — J
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drp_capacityf ZoY) ey .
— =2 > .
0(ex‘;xey) o = 0, Vi,jeM

(ii)y H3 =

Note thatey? denotes the sum of squares for all the elements of a vgaadexX denotes the sum of
cubes for all the elements of a vectdn the above equations. Then the Hessian matrix can be fatetll

as
Hl H3

Letz' =[zy 2] wherez,z € OM. Next we show thal is negative semidefinite; that 8,H (x,y)z <
0 for eachz e 0?M and(x,y) € OY*M:

Hl H3
ZTH(X7y)Z = [Zl 22] ( H3 H2 ) [Zl ZZ]T

=2 Hlz + ZH%2 + Z]H3, + I H3Z.

: e ex
By usingH; = _e_;/Hi?’ HE = —e—nyJ?, andH? = hs(exey) > 0, we have
e ex
Z’H(x,y)z = _e_iZIHSZl_ e—yz§H3zz+zIH322+z;H3zl

e ex
- _e_;/hs(x,y)(ezl)z - e_yha(x,y)(eZz)2 +2hs(x.y)ezez

ex e
=hs(x,y)(ez — e—yeZQ)(ezZ -~ e_iezl)'

In the above equation, one of the three cases holdZoez:

Caseléz < 9(tazz): Thenez > ﬂ/ezl which implies
ey ex
T _ & &
Z H(xy)z=hs(x,y)(eza eyeZz)(eZz o2 <0

ex e o
Case 2 €z > e—yeZZ): Thenez < e—iezl which implies

T _ _ & _ &
Z H(x,y)z=hs(x,y)(ea eyeZz)(eZz eXezl) <0.
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ex
C 3€éz =—ez). Th
ase 3éz eyeZQ) en

T _ _ & &
z H(x,y)z=hz(x,y)(ez eyeZQ)(eZZ exezl) 0.

Hencez H(x,y)z < 0 for eachz € 0%V andH is negative semidefinitd.
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