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Abstract

We analyze a two-stage game of strategic firms facing uncertain demand and exerting market power

in decentralized electricity markets. These firms choose their generation capacities at the first stage while

anticipating a perfectly competitive future electricity spot market outcome at the second stage; thus it is a

closed loop game. In general, such games can be formulated asan equilibrium problem with equilibrium

constraints (EPEC) and examples have been posed in the literature that have multiple or no equilibria.

Therefore, it is of interest to define general sets of conditions under which solutions exist and are unique,

which would enhance the value of such models for policy and market intelligence purposes. In this paper, we

consider various types of such a closed loop model regardingthe underlying price-demand relations (elastic

and inelastic demand), the assumed demand uncertainty witha broad class of continuous distributions, and

any finite number of players with symmetric or asymmetric costs. We establish sufficient conditions for the

random demand’s probability distribution which guaranteeexistence and uniqueness of equilibria in most

of the cases of this closed loop model. We identify a broad class of commonly used continuous probability

distributions satisfying these conditions.

Keywords: electricity markets, strategic generation investment modeling, demand uncertainty, existence and

uniqueness of equilibrium.

JEL codes: C62,C68,C72,D43,L94

1 Introduction

In this paper, we establish sufficient conditions which guarantee existence and uniqueness of equilibria in

oligopolistic electricity markets where strategic electricity generators (anticipating a perfectly competitive spot
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market outcome) make capacity choices about future market conditions under demand uncertainty and the

power generation is dispatched after the level of demand is realized; thus it is a closed loop game. In general,

such games can be formulated as an equilibrium problem with equilibrium constraints (EPEC) which may have

multiple or no equilibria. Therefore, it is of interest to define general sets of conditions under which solutions

exist and are unique, which would enhance the value of such models for policy and market intelligence purposes

(e.g., Schroeder (2012), Allcott (2012)). Furthermore, when firms anticipate a perfectly competitive spot market

outcome, an equilibrium of the closed loop1 model may not be found by solving a less complicated open loop

model1 (see Wogrin et al. (2012)). Thus, it is of interest to users ofthese models to know whether their

assumptions satisfy some conditions which guarantee the existence and uniqueness of an equilibrium before

solving such complicated closed loop models.

Short term aspects of market power (related to choices of production when capacities are given) within

various specific market design assumptions have been extensively analyzed in the literature. Among these,

equilibrium modeling of Nash games in quantities is a commonapproach (e.g., see Borenstein and Bushnell

(1999), Wei and Smeers (1999), Hobbs (2001) for reviews). Long term aspects of market power related to

generation capacity expansion have also received growing attention. Among the most important works in the

literature, Kreps and Scheinkman (1983) analyze capacity choice at the first stage prior to price competition at

the second stage (e.g., Bertrand) with deterministic demand. They show that there exists a unique equilibrium

which is equivalent to the single stage Cournot outcomes. Gabszewicz and Poddar (1997) analyze capacity

choices of two symmetric firms at the first stage prior to a Cournot market at the second stage with demand

uncertainty. They prove existence of symmetric equilibrium and compare it with the deterministic solution of

using expected demand. Murphy and Smeers (2005) move one step further and formulate open and closed loop

market models with two asymmetric Cournot players and finitenumber of demand scenarios, each having a

linear demand curve with respective probabilities. In their analysis, Murphy and Smeers (2005) conclude that

the complexity of solving capacity expansion increases with a closed loop model even without considering the

network limitations. They find closed loop examples which may not have an equilibrium. They show that if an

equilibrium exists, then it is unique and falls between the perfect competition and open loop equilibria.

All the models mentioned above assume an elastic demand represented by a linear price-demand curve with

random intercept and the structure of the assumed probability distribution is in general simple (i.e., uniform

demand segments). Furthermore, their analysis are in general based on limited number of players (e.g., two

players). In this paper, we consider both inelastic random demand and an elastic demand represented by a linear

price-demand curve with random intercept having a general underlying continuous probability distribution. In

addition, we analyze the capacity choices of both symmetricand asymmetric firms. We establish existence

and uniqueness results under a broader scope in terms of the underlying price-demand relations (elastic and

inelastic demand), the assumed demand uncertainty with a broad class of continuous distributions, and any

finite number of players with symmetric or asymmetric costs.

1In an open loop model, firms sell electricity production simultaneously with their investment decision, while in a closed loop model
firms choose their capacity at the first stage and sell production at the second stage.
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In a similar closed loop model with symmetric firms and elastic demand, Grimm and Zoettl (2008) analyze

strategic capacity choices under more general assumptionsof a monotone random demand curve and its under-

lying probability distribution. They establish existenceand uniqueness results when firms engage in Cournot

competition at the second stage. They also show existence ofequilibrium when firms anticipate competitive

spot market outcomes at the second stage; however the uniqueness of equilibrium cannot be established under

their general assumptions. In our analysis, the closed loopgame with symmetric firms facing a linear demand

curve with random intercept is indeed a subclass of their model whereas the closed loop model with inelastic

random demand constitutes another type. For both cases, we establish sufficient conditions for the random

demand’s probability distribution which guarantee a unique equilibrium for symmetric firms anticipating com-

petitive spot market outcomes. Furthermore, we establish sufficient conditions for a unique equilibrium of such

a closed loop game with asymmetric firms facing an elastic random demand (i.e., a linear demand curve with

random intercept). We explain our analysis in more detail below and elaborate on our results and contributions.

In a single stage Cournot model where symmetric firms choose their production output under uncertainty

about the intercept of a linear price-demand function, Lagerlöf (2006) shows that if the distribution of the

demand has a monotone hazard rate then the uniqueness of equilibrium is guaranteed. In this paper, we establish

an extension of that result for a two-stage game in oligopolistic energy-only electricity markets. As we mention

before, we consider strategic firms facing uncertain demandand competing as Cournot players when they

choose their generation capacities at the first stage while anticipating a perfectly competitive future spot market

outcome based on their choices (for example they may expect regulatory intervention at the spot market).

After a firm installs its capacity at the first stage, its production takes place in electricity spot market at the

second stage which represents a competitive energy-only market. We look into both symmetric and asymmetric

firms facing inelastic or elastic demand. In reality, electricity demand is uncertain and/or fluctuating with a

very low elasticity. We focus on two cases of demand uncertainty: (i) an inelastic random demand drawn

from a continuous distribution; or(ii) price-demand relationship that can be well approximated bya linear

curve with a random intercept having a general underlying continuous probability distribution. Due to demand

uncertainty, firms’ capacity choices at the first stage may not be utilized for all the demand realizations at the

second stage. For such a two-stage game, we characterize theclass of problems and continuous probability

distributions under which we can show that a unique equilibrium exists. We show that one general class of

distributions having a monotone increasing hazard rate arelogconcave distributions under which existence and

uniqueness of equilibria is guaranteed for symmetric generators facing an inelastic or elastic random demand.

When firms have asymmetric costs and the demand curve is elastic (represented by a linear demand curve

with random intercept), uniqueness of equilibria can stillbe established under some sufficient conditions of

demand’s probability distribution which are similar to a standard assumption used for the demand function

itself in the literature (see Sherali et al. (1983), Wolf andSmeers (1997), Grimm and Zoettl (2008), and Xu

(2005)).

Finding optimal capacity choices of oligopolistic firms in aclosed loop model is in general complex. In the

absence of market power, the corresponding two-stage capacity investment problem is a convex problem and, as
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shown by Gürkan et al. (2012), most of the two-stage capacity investment equilibrium problems in competitive

markets can be cast into convex non(linear) optimization problems similar to the early capacity expansion

models. However, convexity is in general lost when market power is introduced. The two-stage capacity

investment problem of a strategic firm may be formulated as a bilevel problem, to be more precise as a stochastic

MPEC (mathematical program with equilibrium constraints). We consider in this paper multiple strategic firms

having an MPEC problem each, then one can speak of finding a Nash equilibrium toan equilibrium problem

with equilibrium constraints (EPEC). It is well known that EPECs are in general nonconvex problems and

they may have multiple or no solutions (e.g., Hu (2003), Ehrenmann (2004), Hu and Ralph (2007), Gabriel

et al. (2012)). As a consequence, an equilibrium for the corresponding two-stage game may not exist or, if

exists, it is in general not unique. Thus, establishing a setof general conditions for existence and uniqueness

is desirable for policy and market models including strategic firms so that users can have confidence in their

solutions. Throughout the analysis in this paper, we aim to shed light on the characteristics of the random

demand affecting the continuity, differentiability, and generalized concavity of each firm’s expected payoff at

the first stage which are crucial in establishing the existence and uniqueness of the equilibria of the two-stage

strategic capacity choice game.

In the first part of the analysis, we consider an inelastic random demand and strategic firms anticipating a

competitive energy-only spot market with VOLL pricing (or price cap). The idea of VOLL pricing is to price

electricity at a high value that is supposed to reflect the value of lost load (VOLL) when demand is curtailed.

In reality since VOLL is difficult to estimate, a high price cap (which is in general lower than VOLL) is used.

As a preliminary, we first establish that whether strategic firms sell their power via central auction or bilateral

contracts in the competitive spot market, the corresponding two-stage games yield the same equilibrium, if it

exists. A similar result has also been established by Metzler et al. (2003) for a short-run Cournot competition in

electricity spot markets where generation capacities are fixed. Metzler et al. (2003) show that a bilateral market

model with Cournot producers and perfect arbitrageurs yields the same Nash-Cournot equilibrium (e.g., prices,

generation) as a pool market with Cournot players. We extendtheir result for the two-stage capacity expansion

equilibrium problem we consider here. As a result, we continue our analysis with the bilevel problem of each

firm under the assumption of a stylized pool market model and in order to preserve analytical tractability we do

not consider any network constraints. We note that the continuity of random demand distribution is a necessary

condition for the rest of the analysis and the results we present below.

For the bilevel problem of each strategic firm maximizing itsexpected profit, the constraint set is closed and

convex; however, the objective function is in general not concave. Hence, continuity and (strict) quasiconcav-

ity of the objective function are desirable properties for establishing existence and uniqueness results for the

corresponding two-stage stochastic game. We first show thateach firm’s expected profit is continuous provided

that the probability distribution of the demand is continuous. Moreover, when firms are symmetric and the

distribution of random demand has a monotone hazard rate, each firm’s expected profit is strictly quasiconcave

and hence the corresponding two-stage game has a unique equilibrium. One class of probability distributions

having a monotone increasing hazard functions is logconcave probability distributions. The random demand
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vector is log-concavely distributed if the logarithm of itsprobability density function is concave on its support.

Logconcave probability distributions constitute a broad class (e.g., the uniform, normal, exponential, logistic,

Weibull, gamma). Bagnoli and Bergstrom (2005) give a systematic treatment of the logconcave distributions

and their crucial role in a wide variety of economic models. As a result, we show that in case of symmetric

firms, random demand with a monotone increasing hazard function is sufficient to guarantee uniqueness of

equilibrium. When firms are asymmetric, quasiconcavity of the expected profit function is lost for the ones in-

vesting in base-load technologies whereas the objective function of the firm investing in a peak load technology

has similar characteristics to that of symmetric firms. Hence, the quasiconcavity of a firm’s expected profit is

dependent both on the characteristics of the underlying continuous probability distribution of the demand and

on whether it is investing in a marginal unit or not. We also show by an example that even with two genera-

tors (e.g., peak-load and base-load) facing uniform exogenous demand, the first stage objective function of the

base-load generator may not satisfy generalized concavity. Hence, an equilibrium may not exist.

In the second part of our analysis, instead of VOLL pricing weconsider a linear price-demand curve with a

random intercept, which implies random or fluctuating consumption levels for a given price. Under this setting,

we can show that each firm’s expected profit is differentiableprovided that the probability density function of

the intercept is continuous. Moreover when firms are symmetric and the underlying probability density function

of the random intercept is logconcave, each firm’s expected profit is strictly logconcave. Thus logconcavity of

the underlying probability distribution is again a sufficient condition guaranteeing existence and uniqueness

of the equilibrium for the two-stage capacity investment game between symmetric firms. When firms are

asymmetric, the uniqueness of equilibrium is guaranteed for another condition (different than logconcavity)

of probability distribution under which we prove strict concavity of all firms’ expected profit functions. The

corresponding condition is also similar to a standard assumption in the literature used for the demand function

itself (see Sherali et al. (1983), Wolf and Smeers (1997), Grimm and Zoettl (2008), and Xu (2005)). We also

conjecture that the logconcavity of probability distributions may also be sufficient to guarantee the existence of

a unique equilibrium for closed loop games with asymmetric firms when demand is endogenous. Although we

could not establish a theoretical proof for this conjecture, we observed it numerically. In a closed loop game

with two asymmetric firms facing an elastic demand, we numerically computed the expected profit function

of each firm under various logconcave probability distributions of random intercept (e.g., uniform, normal,

exponential, Weibull, gamma, beta) and we observed that each firm’s expected profit is strictly quasiconcave in

all the cases.

To summarize, we take up a closed loop game in oligopolistic electricity markets which has received grow-

ing attention in the literature. In such a game, we formulatethe two-stage investment model of multiple strategic

firms which make generation capacity choices about future market conditions under demand uncertainty while

anticipating a perfectly competitive spot market outcome.We contribute to existing literature along two dimen-

sions:

• We show that whether strategic firms sell their power via central auction or bilateral contracts in the

competitive spot market, the corresponding closed loop games yield the same equilibrium, if it exists.
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Thus, when the spot market is perfectly competitive, different structures of buying and selling electricity

do not affect the generation capacity choices of strategic firms.

• In general, such two-stage games can be formulated as an EPECand examples have been posed in the

literature that have multiple or no equilibria. We considervarious types of the two-stage investment

model of firms regarding the underlying price-demand relations, the assumed demand uncertainty, and

any finite number of players with symmetric or asymmetric costs. In most of the cases, we establish suf-

ficient conditions under which solutions exist and are unique and we identify a broad class of commonly

used continuous probability distributions of the random demand satisfying these conditions, which will

enhance the value of such models for policy and market intelligence purposes. In particular, establishing

a set of general conditions for existence and uniqueness is desirable for policy and market models includ-

ing strategic firms so that users can have confidence in their solutions before solving such complicated

closed loop models.

The paper is organized as follows: In Section 2, we introducethe notation and some characteristics of

short-run competitive equilibria in spot markets established in the literature. In Section 3, we formulate the

two-stage game of multiple strategic firms in an energy-onlyelectricity market with VOLL pricing in which

we consider two different market structures of buying and selling electricity at the second stage. We first

formulate the second stage game representing a spot market with a central auction (pool market) in Section 3.1.

Then we consider, in Section 3.2, a bilateral market where firms trade bilaterally at the second stage. When

the spot market is competitive, Boucher and Smeers (2001) show that for given capacities and fixed demand

bilateral and pool markets yield the same equilibrium. By using their result, Section 3.3 concludes that the two-

stage game with pool market and the two stage game with bilateral market yield the same equilibrium (e.g.,

capacities, prices, generation) when demand is random and capacities are endogenous. We analyze in Section

3.4 a simplified pool market model with exogenous random demand. For this simplified model, we show strict

quasiconcavity of a firm’s expected profit and existence and uniqueness of equilibria under symmetric costs and

random demand having logconcave continuous probability distribution. Then in Section 4, we replace VOLL

pricing with linear price-demand curves with random intercepts. Similar to the exogenous demand case, we

show strict log-concavity of a firm’s expected profit and existence and uniqueness of equilibria when firms have

same costs and the corresponding probability density function is logconcave. When firms have different costs,

a sufficient condition which grantees existence and uniqueness of equilibria is also established. We finish the

paper with our conclusions. Appendix contains the proofs ofall theorems, lemmas, and propositions.
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2 Set up

2.1 Notation

We consider an energy-only electricity market model in which there are three types of agents; namely gener-

ators, a transmission system operator (TSO), and consumers. We consider this model in a two-stage set-up:

firms invest in generation capacity in the first stage and the market clears to satisfy demand in the spot market

at the second stage. Firms maximize their profits at the first stage while anticipating a competitive spot market

outcome at the second stage. They compete “a la Cournot” while choosing their generation capacities. That is,

each firm chooses its generation capacity taking as given theinvestment strategies of its rivals. In reality, elec-

tricity demand is time varying and future demand is uncertain. We represent both phenomena by assuming that

demand can take different values in different states of the world ω ∈ Ω, each occurring with some probability.

The following notation would apply in state of the worldω ∈ Ω:
Sets

N : set of all demand nodes

G : set of all firms

Ig : set of supply nodes of firmg∈ G

I : set of all supply nodes (I := ∪gIg)

Kg : set of plant types of firmg∈ G

L : set of electricity transmission lines in the network

Parameters

cg
ik : unit generation cost of plant typek∈ Kg owned by firmg∈ G at supply nodei ∈ Ig

κk : unit capacity cost of plant typek∈ Kg

dn(ω) : demand at noden∈ N

PTDFl , j : power transmitted through linel ∈ L due to one unit of power injection from node

j ∈ {N∪ I} to an arbitrary hub2 node

hl : capacity limit of linel ∈ L

VOLL : the value of unserved energy or lost load

2PTDF is calculated based on a hub node inn∈ N in a standard DC load flow model. The choice of hub node is arbitrary. That is,

the flows resulting from a power injection at one node and an equal withdrawal at another do not depend on the location of thehub.
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Variables:

Second Stage:

yg
ik(ω) : quantity of power generated by plant typek∈ Kg of firm g∈ G at supply nodei ∈ Ig

f j(ω) : net power flow dispatched by TSO from nodej ∈ {N∪ I}

δn : unserved (curtailed) energy at noden∈ N

p j(ω) : locational market price (nodal price) at nodej ∈ {N∪ I} which corresponds to

shadow price of market clearing constraint

First Stage:

xg
ik : the capacity of plant typek∈ Kg owned by firmg∈ G at nodei ∈ Ig.

2.2 Characterizations of Perfectly Competitive Spot Markets

The spot market at the second stage may be considered under two different market structures, namely bilateral

and pool spot markets. Boucher and Smeers (2001) consider a competitive equilibrium of a game in both pool

and bilateral spot markets where all parameters are deterministic and none of the agents (firms, consumers,

and TSO) has market power. Boucher and Smeers (2001) also consider, for pool and bilateral spot markets, a

corresponding optimization problem referred to as OptimalPower Flow Problem (OPF) which minimizes the

total system cost of the spot market. We will use their following result to formulate the second stage problem

of each firm and to establish the equivalence of two-stage game in bilateral and pool markets.

Proposition 2.1. [Theorem 1 of Boucher and Smeers (2001)] Consider a power system in a competitive pool

or bilateral spot markets when capacities are given and all parameters are deterministic. If there exists an

optimal dispatch, then there exists at least one equilibrium, which is a competitive equilibrium, for each of

these markets. Moreover:

(i) There is one-to-one correspondence between the equilibriaof these spot markets; that is any equilibrium of

the pool market can be written as an equilibrium of the bilateral spot market and vice versa.

(ii) The equilibria of both pool and bilateral spot markets are equivalent to the solution of their associated OPF

problems (which are specified later in Sections 3.1.1 and 3.2.1).

3 Two-stage Capacity Choice Model under Exogenous Random Demand

In this section, we formulate the generation capacity investment model of a strategic firm anticipating the com-

petitive energy-only spot market outcome under demand uncertainty. We focus on theVOLLpricing mechanism

in the spot market which gives the firms the incentive to buildpeak capacity. Whenever there is a shortage of

capacity, there is curtailment and the electricity price becomes a very high value (theVOLL or a price cap) set
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by the regulator where

VOLL> max{cg
ik|g∈ G, i ∈ Ig,k∈ Kg}.

Hence, only when there is curtailment, the peak generator sells power at a price (theVOLL) higher than its

marginal production cost. The difference between theVOLL and the marginal cost of the peak generator

operating contributes to covering its investment cost.

We also consider an exogenous random demand which varies, say, over a year. Let(Ω,F ,Ψ) denote the

common underlying probability space whereΨ represents the joint probability distribution for the random

demand vectord(ω) := {dn(ω)}n∈N,ω∈Ω with E[|d(ω)|] < ∞. Then eachdn(ω), demand at noden∈ N, has a

general distributionΨn whereΨ :=
N

∏
n=1

Ψn.

Next, we formulate the two-stage game under two different market structures, namely bilateral and pool

markets. Each of these market structures gives rise to different types of model formulations as outlined in

Sections 3.1 and 3.2. As mentioned earlier, Boucher and Smeers (2001) address the equivalence of pool and

bilateral markets in a single-stage perfectly competitivegame when capacities are given and demand is de-

terministic. Section 3.3 is an extension of their result in our setting. First, instead of a single-stage perfectly

competitive model we have a two-stage game and the firms may exert market power at the fist stage. Second,

the generation capacities are decision variables of the firms at the first stage. Finally, instead of deterministic

demand we consider stochastic demand at the second stage. Weshow in Section 3.3 that the two-stage games

with pool and bilateral markets, outlined in Sections 3.1 and 3.2, respectively, yield the same first and the

second stage equilibria; hence they are equivalent.

3.1 Pool Market Model

We first consider the two-stage game in pool market in which competitive firms sell power to a central auction

operated by the Transmission System Operator (TSO) at the price of their supply nodes and the TSO dispatches

this power to the consumers at demand nodes. Next, we give details of the two stages in this setting.

3.1.1 Perfect Competition Equilibrium at Second Stage

By Proposition 2.1 (ii) we know that, in deterministic setting, competitive equilibria of the perfectly competitive

pool market is equivalent to the solution of its associated OPF problem. Indeed, this result holds for each state

of the world in our setting. For each state of the worldω ∈ Ω, one can find a competitive equilibrium of the
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pool market at the second stage by solving the following OPF (Optimal Power Flow) problem:

Z∗
pool(ω ,x) := min

{y(ω),δ (ω), f (ω)}
∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik(ω)+VOLL∑
n

δn(ω)

s.t.

ConsBalancepool(ω) :

∑
g∈G

∑
k∈Kg

yg
jk(ω)+δ j(ω)+ f j(ω)≥ d j(ω) (p j(ω)) ∀ j ∈ {N∪ I}

∑
j∈{N∪I}

f j(ω) = 0 (ρ(ω))

ConsCap(ω ,x) : xg
ik −yg

ik(ω)≥ 0 (β g
ik(ω)) ∀g∈ G, i ∈ Ig,k∈ Kg

ConsPTDF(ω) :

hl − ∑
j∈{N∪I}

PTDFl , j f j(ω)≥ 0 (λ+
l (ω)) ∀l

hl + ∑
j∈{N∪I}

PTDFl , j f j(ω)≥ 0 (λ−
l (ω)) ∀l

y(ω)≥ 0, δ (ω)≥ 0, (1)

whereρ(ω), p j(ω),λ+
l (ω),λ−

l (ω), andβ g
ik(ω) are Lagrange multipliers; in particular,p j(ω) is the price of

unit power (e/MWh) at node j ∈ {N∪ I}. In OPF problem (1),ConsBalancepool(ω) is the set of energy

balance equations which state that the difference between total generation and demand at any node has to be

balanced by injections into or withdrawals from the grid andthe sum of all injections into and withdrawals

from the grid should be zero.ConsPTDF(ω) is the set of constraints for the technical network limits while

the generation capacity constraints are given inConsCap(ω) which indicate that firms cannot produce more

than their maximum capacity. KKT conditions of the OPF problem (1), which is a linear program, yield the

following equilibrium conditions of the pool market:
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For eachω ∈ Ω andx,

0≤ cg
ik − p∗i (ω)+β ∗g

ik (ω) ⊥ y∗g
ik (ω)≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤VOLL− p∗n(ω) ⊥ δ ∗
n (ω)≥ 0 ∀n∈ N

0≤ ∑
g∈G

∑
k∈Kg

y∗g
jk (ω)+δ ∗

j (ω)− f ∗j (ω)−d j(ω) ⊥ p∗j (ω)≥ 0 ∀ j ∈ {N∪ I}

p∗j (ω)−ρ∗(ω)+∑
l∈L

PTDFl , j(λ ∗+
l (ω)−λ ∗−

l (ω)) = 0 ∀ j ∈ {N∪ I}

∑
j∈{N∪I}

f ∗j (ω) = 0

0≤ xg
ik −y∗g

ik (ω) ⊥ β ∗g
ik (ω)≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤ hl − ∑
j∈{N∪I}

PTDFl , j f ∗j (ω) ⊥ λ ∗+
l (ω)≥ 0 ∀l

0≤ hl + ∑
j∈{N∪I}

PTDFl , j f ∗j (ω) ⊥ λ ∗−
l (ω)≥ 0 ∀l .

(2)

3.1.2 First Stage Behavior with Market Power

If firm g ∈ G operates at nodei ∈ Ig, then it sells power to TSO in the spot market at the price of node i.

Consequently, it receives a marginal profit equal to unit price(p∗i (ω , .)) minus unit cost of its production(cg
ik)

at nodei for realizationω ∈ Ω. The long run profit of each firm at the first stage is determinedby its investment

costs. Letx−g be the set of investment decisions of the rival firms. For fixedbut arbitraryx−g, the profit of firm

g∈ G at the first stage for each realizationω ∈ Ω can be formulated as:

Πg
pool(ω ,xg,x−g) = ∑

i∈Ig
∑

k∈Kg

(p∗i (ω ,xg,x−g)−cg
ik)y

∗g
ik (ω ,xg,x−g)− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik.

For givenx−g, firm g∈ G determines its optimal investment decisionx∗g by solving its profit maximization

problem:

χg
pool(x

−g) := {x∗g|x∗g = argmax
xg≥0

Eω [Πg
pool(ω ,xg,x−g)]}.

whereχg
pool(x

−g) is the set of solutions which maximize firmg’s long run profit for givenx−g.

3.2 Bilateral Market Model

In a bilateral market, competitive firms supply power by bilateral transactions and purchase transmission ser-

vices for these transactions from TSO who prices transmission capacity based on a congestion pricing scheme.

The TSO charges a congestion based wheeling feeν j (e/MWh) for transmitting power from an arbitrary hub

node to nodej. Firm g∈ G pays−νi to get power to the hub from its supply nodei ∈ Ig andνn to convey power
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for sale from the hub to customers at noden∈ N. The additional decision variables of the bilateral marketat

the second stage are the following:

sg
n(ω) : quantity of power sold by firmg∈ G at demand noden∈ N at demand realizationd(ω)

ν j(ω) : wheeling fee for transmitting power from an arbitrary hub node to nodej ∈ {N∪ I} at demand realiza-

tion d(ω).

Next, we formulate the two-stage model of each firm in a bilateral market.

3.2.1 Perfect Competition Equilibrium at Second Stage

Again by using Proposition 2.1 (ii), we know that the solution of OPF problem (3) is a competitive equilibrium

of the bilateral spot market for eachω ∈ Ω. It can be easily observed that the only difference between OPF

problems (1) and (3) is the energy balance constraints:

Z∗
bilateral(ω ,x) := min

{s(ω),y(ω),δ (ω), f (ω)}
∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik(ω)+VOLL ∑
n∈N

δn(ω)

s.t.

ConsBalancebilateral(ω) :

∑
g∈G

sg
n(ω)+ δn(ω)≥ dn(ω) (pn(ω)) ∀n∈ N

∑
g∈G

∑
k∈Kg

yg
jk(ω)− ∑

g∈G

sg
j (ω)− f j(ω) = 0 (ν j(ω)) ∀ j ∈ {N∪ I}

∑
i∈Ig

∑
k∈Kg

yg
ik(ω)− ∑

n∈N
sg
n(ω) = 0 (ρg(ω)) ∀g∈ G

y(ω) satisfyConsCap(ω ,x), f (ω) satisfyConsPTDF(ω)

y(ω)≥ 0, δ (ω)≥ 0, s(ω)≥ 0.

(3)

Again, ρg(ω), pn(ω), and ν j(ω), are Lagrange multipliers; in particular,pn(ω) is the price of unit power

(e/MWh) at demand noden and, as mentioned earlier,ν j(ω) is the congestion based wheeling fee (e/MWh)

for transmitting power from an arbitrary node to nodej. ρg(ω) is the dual variable of the energy balance

equation of firmg ∈ G at the hub; hence its standard interpretation is the marginal cost of firm g at the hub

of the linearized DC network. The KKT conditions of the OPF problem (3) yield the following equilibrium

conditions of the bilateral market:

12



For eachω ∈ Ω andx,

0≤ cg
ik −ρ∗

g(ω)−ν∗
i (ω)+β ∗g

ik (ω) ⊥ y∗g
ik (ω)≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤ ρ∗
g(ω)− p∗n(ω)+ν∗

n(ω) ⊥ s∗g
n (ω)≥ 0 ∀g∈ G,n∈ N

0≤VOLL− p∗n(ω) ⊥ δ ∗
n (ω)≥ 0 ∀n∈ N

0≤ ∑
g∈G

s∗g
n (ω)+δ ∗

n (ω)−dn(ω) ⊥ p∗n(ω)≥ 0 ∀n∈ N

ν∗
j (ω)+∑

l∈L

PTDFl , j(λ ∗+
l (ω)−λ ∗−

l (ω)) = 0 ∀ j ∈ {N∪ I}

∑
i∈Ig

∑
k∈Kg

y∗g
ik (ω)− ∑

n∈N
s∗g
n (ω) = 0 ∀g∈ G

∑
g∈G

∑
k∈Kg

y∗g
jk (ω)− ∑

g∈G

s∗g
j (ω)− f ∗j (ω) = 0 ∀ j ∈ {N∪ I}

0≤ xg
ik −y∗g

ik (ω) ⊥ β ∗g
ik (ω)≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤ hl − ∑
j∈{N∪I}

PTDFl , j f ∗j (ω) ⊥ λ ∗+
l (ω)≥ 0 ∀l

0≤ hl + ∑
j∈{N∪I}

PTDFl , j f ∗j (ω) ⊥ λ ∗−
l (ω)≥ 0 ∀l ,

(4)

whereλ+
l (ω) andλ−

l (ω) are Lagrange multipliers ofConsPTDF(ω) andβ (ω) is the vector of Langrange

multipliers associated toConsCap(ω ,x).

3.2.2 First Stage Behavior with Market Power

At the first stage, each firm maximizes its revenue minus costs. The revenue of a firm from each demand node

n∈N is the unit price multiplied by the number of units sold by that firm at that demand noden. There are three

components of the firm’s total cost; namely investment, production, and shipment costs. The unit shipment cost

consists of the wheeling fee for the generation at supply nodes (−νi) and the wheeling fee for the sales at

demand nodes (νn). For fixed but arbitraryx−g, the profit of firmg ∈ G in the first stage at each realization

ω ∈ Ω is formulated as:

Πg
bilateral(ω ,xg,x−g) = ∑

n∈N

[p∗n(ω ,xg,x−g)−ν∗
n(ω ,xg,x−g)]s∗g

n (ω ,xg,x−g)

−∑
i∈Ig

∑
k∈Kg

[cg
ik −ν∗

i (ω ,xg,x−g)]y∗g
ik (ω ,xg,x−g)− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik.

Thus for givenx−g, each firmg ∈ G determines its optimal investment decisionx∗g by solving its profit

maximization problem:

χg
bilateral(x

−g) := {x∗g|x∗g = argmax
xg≥0

Eω [Πg
bilateral(ω ,xg,x−g)]},
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whereχg
bilateral(x

−g) is the set of solutions which maximize firmg’s long run profit for givenx−g.

3.3 Equivalence of Two-stage Bilateral and Pool Market Models

In this section, we show that the capacity choice set of the firms anticipating the competitive outcome of a pool

market is equivalent to that of the firms anticipating the competitive outcome of a bilateral market. Proposition

2.1 (i) addresses the equivalence of the equilibria in bilateral and pool markets (i.e., same prices, production

quantities, and scarcity rents) when capacities are given.By using this result in our setting, we can easily

conclude that for given anyx andω ∈ Ω:

• p∗p(ω ,xg,x−g) = p∗b(ω ,xg,x−g),

• y∗pg(ω ,xg,x−g) = y∗bg(ω ,xg,x−g),

• β ∗pg(ω ,xg,x−g) = β ∗bg(ω ,xg,x−g),

where we put superscriptsp andb to indicate the variables in pool and bilateral markets, respectively. By using

the above equalities, we next show that when demand is stochastic and generation capacities are endogenously

chosen at the first stage in which firms may exert market power,the first and the second stage problems still

yield the same equilibria (i.e., same capacities, prices, production quantities, and scarcity rents) for both market

models.

Proposition 3.1. For a firm anticipating the competitive spot market outcome of the the second stage, Eω [Πg
pool(ω ,xg,x−g)]=

Eω [Πg
bilateral(ω ,xg,x−g)] holds for all g∈G at any given(xg,x−g). This implies that the two-stage game models

with pool and bilateral markets not only yield the same second-stage equilibria at eachω but also the solution

sets of the first stage game in these markets are equal, which implies both markets yield the same first stage

equilibria.

Proof. See Appendix.

Proposition 3.1 also holds when firms are Cournot players at the second stage by using the equivalence

result of Metzler et al. (2003) (i.e., Theorem 1) for bilateral and pool spot market models. When capacities are

given, Metzler et al. (2003) show that Cournot generators inbilateral spot markets with perfectly competitive

arbitrageurs yield the same Nash equilibrium as Cournot competition in pool spot markets. Due to the equiva-

lence of pool and bilateral market models, we continue our analysis with pool market model. Thus, we ignore

the superscriptp in the corresponding variables and useΠg(·) to refer to the profit function of firmg∈ G in

pool market model.
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3.4 Characterization of the Two-stage Game

In this section, we investigate the characteristics of the expected profit function of a strategic firm anticipating

a competitive market outcome under a continuous random demand with a general distribution. In order to

preserve analytical tractability, we consider an electricity market without any network limitations; this in turn

collapses the problem to a single node case. In such a single node market, there are several suppliers coping

with an aggregated demand. LetD = ∑
n∈N

dn denote the aggregated continuous random demand. The following

assumptions hold for the two-stage model.

Assumption 3.2. D is a continuous random demand with a cumulative distribution Ψ and a continuous prob-

ability density functionΨ′ whose support is on some interval[D,D].

Assumption 3.3. (i) There is a single firm at each supply node and each firm invests in only one technology;

that is | G |=| I |=| K |. Firm 1 owns the cheapest generator and firm K owns the peak generatorwhere

c1 < c2 < .. . < cK andκ1 > κ2 > .. . > κK .

(ii) For at least one technology k∈ K, it holds that VOLL> ck+κk.

From now on, we usex−k := (x j)
K
j=1, j 6=k to denote the vector of strategies of the rival firms of firmk ∈ K

andx∗−k := (x∗j )
K
j=1, j 6=k is the vector of their optimal decisions at equilibrium.

The continuity of the probability density function in Assumption 3.2 is crucial for establishing our results

in this section. Furthermore, Assumption 3.3 (ii) guarantees that the equilibrium of the two-stage game is

nontrivial. Let the total generation capacity be lower thanthe minimum demand (
K

∑
j=1

x j < D). Then, the market

prices would be equal toVOLL for all demand realizations in the perfectly competitive spot market. According

to Assumption 3.3 (ii),VOLL is higher than the unit investment and operation cost for at least one technology,

say k′ ∈ K. This, in turn, implies that when there isn’t sufficient capacity for any demand realization, the

expected scarcity rent of at least one firm investing in technology k′, which is equal toVOLL− ck′ , is higher

than its unit investment cost,κk′ . Therefore, for givenx−k′ < D,
∂Eω [Πk′(ω ,xk′ ,x−k′)]

∂xk′
=VOLL−ck′ −κk′ > 0

for xk′ ∈ [0,D−x−k′). Thus, firmk′ would be able to increase its expected profit by investing in technologyk′

until there is sufficient capacity at least for the minimum demand level. Thus, Assumption 3.3 (ii) guarantees

that total investment capacity at equilibrium satisfies at least the minimum demand:
K

∑
j=1

x∗j ≥ D.

As given in Section 3.1.2, for each fixed and arbitraryx−k, firm k∈K obtains its expected profitEω [Πk(ω ,xk,x−k)]

and determines its optimal strategy by solving its profit maximization problem:

max
xk≥0

Eω [Πk(ω ,xk,x−k)]. (5)

15



For any givenx−k, let χk(x−k) denote the solution set of problem (5). Then a Nash equilibrium is a point

such thatx∗k ∈ χk(x∗−k) for all k∈ K. Next, we assess the properties ofEω [Πk(ω ,xk,x−k)] in (5). Based on the

corresponding properties, we will analyze the existence and uniqueness of equilibriax∗k ∈ χk(x∗k) for all k∈ K.

From the proof of Proposition 3.1 given in Appendix 5, one caneasily see that, at the first stage, the expected

profit function of each firmk∈ K for givenx−k can be formulated in terms of its expected scarcity rent:

Eω [Πk(ω ,xk,x−k)] = (Eω [β ∗
k (ω ,xk,x−k)]−κk)xk.

For given(xk,x−k) at the second stage, Figure 1 illustrates the stepwise supply curve and some demand

realizations within[D, D] in a single-node spot market. As illustrated in Figure 1 unless the capacity of all firms

are fully utilized at realizationω ∈Ω, the market price (p∗(ω ,xk,x−k)) is equal to one of the marginal generating

cost values where the corresponding demand realization crosses the stepwise supply curve. Otherwise, the

market price is equal toVOLL. Note that when demand is elastic with a random inverse demand curve, the

market prices can also take values betweenck andck+1 for all k∈ {1, . . . ,K −1} or betweencK andVOLL for

some realizationsω ∈ Ω as illustrated in Section 4.2 (See Figures 3 and 4).

Figure 1: Illustration of a single-node market with stepwise supply function for givenx and exoge-
nous random demand

Next, we derive a closed form expression for the expected scarcity rent of firm k and establish two basic

functional properties; namely its continuity and monotonicity in xk. For givenx−k, we denote the total capacity
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of the (m− 1) cheapest firms excluding firmk in the market asXm−1(k) =
m

∑
j=1, j 6=k

x j , for k ≤ m≤ K. Then

Xm−1(k)+xk is the total capacity of them cheapest firms including firmk in the market.

Proposition 3.4. Under Assumption 3.2, for given x−k, the expected scarcity rent of firm k∈ K can be formu-

lated in a closed form expression as follows:

Eω [β ∗
k (ω ,xk,x−k)] =VOLL−ck− (VOLL−cK)Ψ(xk+XK−1(k))−

K−1

∑
m=k

(cm+1−cm)Ψ(xk+Xm−1(k)). (6)

Proof. See Appendix.

We may also write expression (6) in terms of probabilities (that are both driven from equation (20) given in

Proof of Proposition 3.4in Appendix 5) which makes it easier to interpret:

Eω [β ∗
k (ω ,xk,x−k)] =

K−1

∑
m=k

(cm+1−ck)P(Xm−1(k)+xk ≤ D ≤ Xm(k)+xk)

+(VOLL−ck)P(D ≥ XK−1(k)+xk).

The above expression indicates the following: Firmk receives a positive scarcity rent either when there is

at least one other firm operating with a higher marginal generation cost in the market or when demand exceeds

the total generation capacity and the market price is set atVOLL. The price of the electricity iscm+1 with

probability P(Xm−1(k) + xk ≤ D ≤ Xm(k) + xk) in which case the firm operating with the highest marginal

generation cost is using the technologym+ 1, m≥ k. The price of the electricity may go up toVOLL with

probability P(D ≥ XK−1(k) + xk) in which case the demand is so high that there is not enough generating

capacity in the market. Since the marginal generation cost of firm k is ck, its scarcity rent from the second

stage would be(cm+1−ck) with probabilityP(Xm−1(k)+xk ≤ D ≤ Xm(k)+xk), m≥ k, and(VOLL−ck) with

probabilityP(D ≥ XK−1(k)+xk). Note that for givenx−k, the values of these probabilities depend onxk which

changes the corresponding ranges.

Lemma 3.5. Under Assumption 3.2, the following properties hold for theexpected scarcity rent function (6) of

firm k∈ K:

(i) Eω [β ∗
k (ω ,xk,x−k)] is a continuous function of(xk,x−k) ∈ RK

+ , and

(ii) Eω [β ∗
k (ω ,xk,x−k)] is nonincreasing in xk ∈ R+.

Proof. See Appendix.

17



Next, by using the functional properties of the expected scarcity rent function of firmk∈ K, we will explore

the functional properties - such as continuity, differentiability and concavity - of the expected profit function of

firm k. In doing so, we will differentiate between two cases. The first one is the simpler case of symmetric firms

using the same technology; hence having the same operational and investment costs. We show that when firms

are symmetric, the expected profit of each firm is continuous and strictly quasiconcave under certain conditions

and there exists a unique Nash equilibrium. Then we will consider asymmetric firms whose expected profit

functions are more complicated and may be analytically intractable in general.

3.4.1 Symmetric Firms

In the symmetric case, the unit production and investment costs of all firms have the same value; that is,

c1 = c2 = . . . = cK = c and κ1 = κ2 = · · · = κK = κ . This yields an identical profit function for all firms,

Eω [Πk(ω ,xk,x−k)] = (Eω [β ∗
k (ω ,xk,x−k)]−κ)xk, and (6) reduces to (7):

Eω [β ∗
k (ω ,xk,x−k)] = (VOLL−c)(1−Ψ(xk+XK−1(k)), (7)

whereXK−1(k) =
K

∑
j=1, j 6=k

x j is the total capacity of all the rival firms. Next, we show in Lemma 3.6 that the

expected scarcity rent function of each firmk in (7) is differentiable with respect toxk almost everywhere

except at three breakpointsxk ∈ {0,max(0,D−XK−1(k)),max(0,D−XK−1(k))}. Among these breakpoints,

xmin
k = D−XK−1(k) is the investment level below which the probability of demand exceeding total investment

capacity is 1 andxmax
k = D−XK−1(k)) is the investment level above which probability of demand exceeding

total investment capacity is zero.

Lemma 3.6. For given x−k, if Ψ is differentiable on[D,D], then Eω [β ∗
k (ω ,xk,x−k)] in (7) is differentiable w.r.t.

xk ∈ R+ almost everywhere except xk ∈ {0,xmin
k ,xmax

k }.

Proof. See Appendix.

In Theorems 3.8 and 3.10 we show thatEω [Πk(ω ,xk,x−k)] is a continuous function and (strictly) quasi-

concave inxk under certain conditions on the cumulative distribution function Ψ. It is well known that games

possess a Nash equilibrium if (1) the strategy spaces are nonempty, convex and compact, and (2) players have

continuous and quasiconcave payoff functions [e.g., Debreu (1952), Fudenberg and Tirole (1991)]. For com-

pleteness, we give the result by Debreu (1952) in the following proposition. This result can be used to establish

existence of a Nash equilibrium for our symmetric game whichis given by Theorem 3.13.

Proposition 3.7. [Debreu (1952)]An n-persons strategic game has a Nash equilibrium if the strategy spaces
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Si , i = 1. . .n, in this game are non-empty, compact, convex subsets of a Euclidian space and the payoff functions

ui are continuous at s and quasiconcave in si where si ∈ Si is the strategy of player i.

Theorem 3.8. Let Ψ be twice continuously differentiable function on[D, D] whereΨ′
andΨ′′

are the first and

second derivatives ofΨ. Then the expected profit function of each firm k∈ K has the following properties:

(i) Eω [Πk(ω ,xk,x−k)]] is continuous at(xk,x−k) ∈ RK
+ ;

(ii) For given x−k, Eω [Πk(ω ,xk,x−k)] is differentiable w.r.t. xk ∈R+ almost everywhere except xk ∈{0,xmin
k ,xmax

k };

(iii) For given x−k, Eω [Πk(ω ,xk,x−k)] is (strictly) concave for xk ∈ (xmin
k ,xmax

k ) iff −Ψ′′
(s+C)s−Ψ′

(s+C) (<

)≤ 0 for ∀s,C∈R+ where C is some constant. Whenever this condition holds, Eω [Πk(ω ,xk,x−k)] is a (strictly)

quasiconcave function of xk onR+.

Proof. See Appendix.

Remark3.9. If the probability density function,Ψ′
, is nondecreasing, then−Ψ′′

(xk + XK−1)xk − Ψ′
(xk +

XK−1) ≤ 0 holds for allxk ∈ R+. Therefore, the nondecreasing property of a probability density function is a

sufficient condition for quasiconcavity ofEω [Πk(ω ,xk,x−k)] on [0 ∞). In particular, the uniform distribution

satisfies this property.

The condition stated in(iii) of Theorem 3.8 is similar to a standard assumption used in theliterature (see

Sherali et al. (1983), Wolf and Smeers (1997), Grimm and Zoettl (2008), and Xu (2005)). In these references,

the corresponding assumption is given for a random inverse demand function. In our setting with random

exogenous demand, Theorem 3.8 indicates that a similar condition needs to be assumed for the cumulative

probability function of demand. Aside from this standard condition, we identify, in the next theorem, a large

class of probability distributions having a monotone increasing hazard function that guarantees the strict qua-

siconcavity ofEω [Πk(ω ,xk,x−k)] w.r.t. xk. In particular, logconcave probability distributions have a monotone

increasing hazard function which is a milder condition thanthe condition stated in Remark 3.9. We will come

back to this in Remark 3.14.

Theorem 3.10. Under Assumption 3.2, let the hazard function of demand, H(s) = Ψ′(s)/(1− Ψ(s)), be

monotone increasing on[D, D]. Then for any k∈ K and x−k, Eω [Πk(ω ,xk,x−k)] is strictly quasiconcave for

xk ∈ [xmin
k ,xmax

k ] which implies that it is also strictly quasiconcave w.r.t. xk onR+.

Proof. See Appendix.

The strategy space of each firmk∈ K can be represented by a nonempty, compact, and convex set which is
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shown in the next lemma. Then in Lemma 3.12, we establish the boundaries for the total generation capacity at

the first-stage equilibrium problem. Finally, in Theorem 3.13, we establish the existence and uniqueness result

and characterize the Nash equilibrium for the generation capacity investment game of the symmetric firms.

Lemma 3.11. The strategy space of each firm k∈ K is Sk := [0,D] which is nonempty, compact, and convex.

Proof. See Appendix.

Lemma 3.12. Assume that there exists an equilibrium,(x∗k)
K
k=1, for the symmetric game. Then, under Assump-

tion 3.3, it holds that D≤
K

∑
j=k

x∗k ≤ D.

Proof. See Appendix.

Theorem 3.13 (Existence and Uniqueness). Under Assumptions 3.3 and 3.2, let the hazard function of de-

mand, H(s) = Ψ′(s)/(1−Ψ(s)), be monotone increasing on[D, D]. Then for the games defined in Sections

3.1.2 and 3.2.2 with symmetric firms and unlimited transmission capacity, there exists a unique symmetric Nash

equilibrium, x∗ = x∗1 = . . .= x∗K , which satisfies

x∗ =
(VOLL−c)(1−Ψ(Kx∗))−κ

(VOLL−c)Ψ′
(Kx∗)

(8)

and D≤ Kx∗ ≤ D.

Proof. See Appendix.

Remark3.14. By Corollary 2 of Bagnoli and Bergstrom (2005), we know that if the probability density function

Ψ′
(s) is logconcave on[D, D], then the hazard functionH(s) is monotone increasing on[D, D]. Hence, the log-

concavity of probability density function of demand implies strict quasiconcavity ofEω [Πk(ω ,xk,x−k)] w.r.t.

xk for eachk. By Remark 1 of Bagnoli and Bergstrom (2005), the converse isnot true because there exists

probability distributions with monotone increasing hazard functions but without logconcave density functions.

By Remark 3.14, we can identify a broad class of commonly usedcontinuous probability distributions which

guarantee the strict quasiconcavity of profit function of each firm at the first stage and hence the existence and

uniqueness of Nash equilibria characterized as in Theorem 3.13. Bagnoli and Bergstrom (2005) list a number of

distributions with logconcave density functions in their Table 1. These include several widely used distributions

such as uniform, normal, exponential, Gamma (parameter≥ 1), Weibull (parameter≥ 1), Beta (both parameters

≥ 1), among others.
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3.4.2 Asymmetric Firms

In the asymmetric case, firms may not have identical profit functions since each firm’s marginal generation and

investment costs are different. In the symmetric case, we have seen that the expected scarcity rent function of

each firm is a continuous piecewise function with at most three breakpoints including zero. In the asymmetric

case, for each firmk∈ K, Eω [β ∗
k (ω ,xk,x−k)] will be a piecewise continuous function which may have between

3 and 2(K − 1)+ 3 breakpoints. The number of breakpoints depends on the position of the firm in the merit

order in the spot market. A firm with the highest marginal generation cost (cK) will have a similar expected

scarcity rent function with at most 3 breakpoints as in the symmetric case whereas a firm with the lowest

marginal generation cost (c1) will have at most 2(K − 1)+ 3 breakpoints. To generalize, a firmk ∈ K with

marginal generation costck will have at most 2(K − k)+ 3 breakpoints which can be calculated by doing a

careful accounting of the breakpoints in (6). Letxk(m) = max(0,D−Xm(k)) andxk(m) = max(0,D−Xm(k)).

The breakpoints of the firmk’s expected scarcity rent function will be 0,{xk(m)}K−1
m=k−1,{xk(m)}K−1

m=k−1.

As a result of expected scarcity rent being a piecewise continuous function,Eω [Πk(ω ,xk,x−k)] is also

piecewise and continuous for each firmk. Moreover, Eω [Πk(ω ,xk,x−k)] consists of at most 2(K − k) +

4 function pieces with 2(K − k) + 3 breakpoints. To establish conditions that guarantee quasiconcavity of

Eω [Πk(ω ,xk,x−k)] w.r.t. xk for each firmk under a general distribution is more complicated here. Thiscan be

done fork= K,

Eω [β ∗
K(ω ,xK ,x−K)] = (VOLL−cK)(1−Ψ(xK +XK−1(k))

which is similar to (7). Therefore, the results in Theorems 3.8, 3.10, 3.13 and Remarks 3.9 and 3.14 also hold

for the profit function of the most expensive firm (k= K) but not necessarily for the other firms (k< K).

Next, we give an example with two firms (a base-load and a peak generator) to illustrate the expected

scarcity rent and expected profit functions of these firms when demand is uniformly distributed. The example

clearly illustrates that for when the demand is uniformly distributed, the expected scarcity rent functions of the

firms are piecewise linear. However even in this very simple case, the expected profit function of the base-load

generator is not necessarily quasiconcave.

Assume that there are two generators: base-load (g= 1) and peak (g= 2) with c1 < c2 andκ1 > κ2. Let the

transmission capacities be infinite (h= ∞) and the aggregated demand of all nodes be uniformly distributed on

[dmin, dmax]; that isd ∼U [dmin, dmax]. Next, we give the formulation of the expected scarcity rentfunction of

each firm given a investment strategy of its rival firm. Without loss of generality, we will give the formulations

when the given investment strategies satisfyx1 < dmin andx2 < dmin since this will yield the maximum number

of breakpoints for the expected scarcity rent and the expected profit functions for both firms. Depending on the

values ofx1 andx2, the number of breakpoints may be lower but the formulationsof corresponding function

segments will remain the same.
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Lemma 3.15. For given x2 ≥ 0, there are constants a1
β1
,a2

β1
,a3

β1
∈ R and b1β1

,b2
β1
,b3

β1
> 0 which satisfy

Eω [β ∗
1 (ω ,x1,x2)] =





VOLL−c1, if 0≤ x1 < dmin−x2

a1
β1
−b1

β1
x1, if dmin−x2 ≤ x1 < dmin

a2
β1
−b2

β1
x1, if dmin ≤ x1 < dmax−x2

a3
β1
−b3

β1
x1, if dmax−x2 ≤ x1 < dmax

0 otherwise.

Similarly for given x1 ≥ 0, there are constants aβ2
∈ R, and bβ2

> 0 satisfying

Eω [β ∗
2 (ω ,x2,x1)] =





VOLL−c2, if 0≤ x2 < dmin−x1

aβ2
−bβ2

x2, if dmin−x1 ≤ x2 < dmax−x1

0 otherwise.

Furthermore, these constants can be explicitly found.

Proof. See Appendix.

Obviously, by using Lemma 3.15, the expected profit functions of firm 1 and 2 can also be explicitly formu-

lated as follows (see the proof of Lemma 3.15 in Appendix 5 forthe associated constants):

For givenx2 ≥ 0,

Eω [Π1(ω ,x1,x2)] =





(VOLL−c1−κ1)x1, if 0 ≤ x1 < dmin−x2

(a1
β1
−κ1)x1−b1

β1
x2

1, if dmin−x2 ≤ x1 < dmin

(a2
β1
−κ1)x1−b2

β1
x2

1, if dmin ≤ x1 < dmax−x2

(a3
β1
−κ1)x1−b3

β1
x2

1, if dmax−x2 ≤ x1 < dmax

−κ1x1 otherwise.
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Similarly for givenx1 ≥ 0,

Eω [Π2(ω ,x2,x1)] =





(VOLL−c2−κ2)x2, if 0 ≤ x2 < dmin−x1

(aβ2
−κ2)x2−bβ2

x2
2, if dmin−x1 ≤ x2 < dmax−x1

−κ2x2 otherwise.

Lemma 3.16. Eω [Π1(ω ,x1,x2)] and Eω [Π2(ω ,x2,x1)] are continuous functions of x1 ∈ R+ and x2 ∈ R+,

respectively; however Eω [Π1(ω ,x1,x2)] is not differentiable at points x1 ∈ {dmin− x2,dmin,dmax− x2,dmax}

and Eω [Π2(ω ,x2,x1)] is not differentiable at points x2 ∈ {dmin−x1,dmax−x1}. Moreover, Eω [Π2(ω ,x2,x1)] is

quasiconcave in x2.

Proof. See Appendix.

Remark 3.17. For the above example, each function piece ofEω [Π1(ω ,x1,x2)] is concave. Let
∂+Eω [Π1(ω ,x1,x2)]

∂x1
and

∂−Eω [Π1(ω ,x1,x2)]

∂x1
be the right-hand and left-hand side derivatives w.r.t.x1,

respectively. Then,Eω [Π1(ω ,x1,x2)] is quasiconcave inx1 if the following condition holds at each breakpoint

x1 ∈ {dmin−x2,dmin,dmax−x2,dmax}:

If
∂−Eω [Π1(ω ,x1,x2)]

∂x1
< 0 then

∂+Eω [Π1(ω ,x1,x2)]

∂x1
< 0, (9)

which implies wheneverEω [Π1(ω ,x1,x2)] starts to decrease, it does not increase again.

Since we know the constants explicitly, we can calculate theright and left derivatives at each breakpoint and

identify the cases whenEω [Π1(ω ,x1,x2)] will be quasiconcave. For the above example, all the breakpoints,

exceptx1 = dmax− x2, always satisfy condition (9) regardless of the constant values. Thus forx1 = dmax− x2,

the constantsa2
β1
,a3

β1
,b2

β1
,b3

β1
satisfying condition (9) guarantee the quasiconcavity ofEω [Π1(ω ,x1,x2)]:

If
∂−Eω [Π1(ω ,dmax−x2,x2)]

∂x1
= (a2

β1
−κ1)−2b2

β1
(dmax−x2)< 0,

then
∂+Eω [Π1(ω ,dmax−x2,x2)]

∂x1
= (a3

β1
−κ1)−2b3

β1
(dmax−x2)< 0.

(10)

Since there are two firms in the example above, the expected profit functions of base-load and peak gener-

ators are piecewise continuous functions with maximum 5 and3 breakpoints, respectively. Since the demand

is uniformly distributed, each function piece is linear or quadratic. However, even for uniform demand the

expected profit function of base-load generator may not be quasiconcave if it does not satisfy the condition

given in (10). For instance, let[dmin, dmax] := [100,500] andVOLL= 10000,c1 = 10,c2 = 200,κ1 = 20, then

whenx2 = 400, condition (10) does not hold; henceEω [Π1(ω ,x1,x2)] is not quasiconcave as shown in Figure
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2. Thus, the conditions of Theorem 3.7 for existence of equilibrium are not satisfied.
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Figure 2: Expected profit function of firm 1 (base-load generator) atx2 = 400

4 Two-stage Capacity Choice Model with Endogenous Random Linear Price-

Demand Curve

In this section, instead of VOLL pricing we consider an electricity market where consumers can respond to

prices and give firms an incentive to build generation capacity. When consumers respond to prices, we have

an elastic demand and we represent the reaction of consumersto the prices by decreasing linear price-demand

curves. The standard linear inverse demand function with random parameters may be represented byPn(ω ,dn):

Pn(ω ,dn) = αn(ω)− γn(ω)dn,

wherePn(ω ,0) = αn(ω)< ∞,∀ω . For givenω , dn is not fixed as in Section 3 but it is a decision variable which

depends on the price of electricity at noden.

We focus on the case of random intercept:Pn(ω ,d) = αn(ω)− γndn. This a standard assumption in general

in the literature (e.g., Gabszewicz and Poddar (1997), Xu (2005), Murphy and Smeers (2005), Lagerlöf (2006)).

We denote the cumulative distribution ofα(ω) by Φ whose support is on some interval[αmin,αmax].

Dealing with an elastic demand (without VOLL pricing) instead of a fixed demand with VOLL pricing

will slightly change the equilibrium conditions of the second stage game and the corresponding OPF problem

for pool and bilateral markets. For inelastic demand in Section 3, we showed that the first and second stage

equilibrium of bilateral and pool market models are equivalent. This result will also hold when demand is

endogenous. Hence, we will continue this section with pool market model formulation.
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4.1 Pool Market Model

Perfect Competition Equilibrium at Second Stage: When demand responds to prices, the corresponding Op-

timal Power Flow Problem (OPF) will slightly be different from the OPF Problem (1). For anyω ∈ Ω and

x,

Z∗
pool(ω ,x) = min

{y(ω), f (ω),d(ω)}
∑
g∈G

∑
i∈Ig

∑
k∈Kg

cg
ikyg

ik(ω)− ∑
n∈N

∫ dn(ω)

0
Pn(ω ,s)ds,

s.t. ∑
g∈G

∑
k∈Kg

yg
jk(ω)+ f j(ω)≥ d j(ω) (p j(ω)) ∀ j ∈ {N∪ I}

y(ω) satisfyConsCap(ω ,x)

f (ω) satisfyConsPTDF(ω)

y(ω)≥ 0, d(ω)≥ 0,

(11)

wheredn(ω) is the decision variable representing endogenous demand inthe state of the worldω and
∫ dn(ω)

0 Pn(ω ,s)ds

can be interpreted as the consumer’s willingness to pay in the state of the worldω . The endogenous demand

assumption results in the second stage equilibrium conditions in which the following conditions are different

compared to the equilibrium conditions given in (2). For each ω ∈ Ω andx,

0≤ cg
ik − p∗i (ω)+β ∗g

ik (ω) ⊥ y∗g
ik (ω)≥ 0 ∀g∈ G, i ∈ Ig,k∈ Kg

0≤ p∗n(ω)−P(ω ,d∗
n(ω)) ⊥ d∗

n(ω)≥ 0 ∀n∈ N

0≤ ∑
g∈G

∑
k∈Kg

y∗g
jk (ω)− f ∗j (ω)−d∗

j (ω) ⊥ p∗j (ω)≥ 0 j ∈ {N∪ I}.

The above conditions imply that, at equilibrium, if any generator sells power at demand noden (d∗
n(ω)> 0)

then the market price at noden is equal to the price which consumers are willing to pay. Moreover, if any firm

produces power at nodei (y∗g
ik (ω)> 0), then the market price at nodei is equal to its marginal cost plus scarcity

rent. Then for givenx andω ∈ Ω, the KKT conditions associated with a positive consumptionand generation

can be stated as:

p∗n(ω ,x) = P(ω ,d∗
n(ω ,x)),∀n∈ N,

p∗i (ω ,x) = cg
ik +β ∗g

ik (ω ,x),∀g∈ G, i ∈ Ig,k∈ Kg.
(12)

First Stage Behavior with Market Power: For givenx∗−g, each firm’s behavior and equilibrium conditions at

first stage is the same. The profit function (Πg
pool(ω ,xg,x−g)) for firm g∈ G at each realizationω ∈ Ω and the

solution setχg
pool(x

−g) can be formulated similar to the first stage profit function and the solution set given in

Section 3.1.2.
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4.2 Characterization of the Two-stage Game

In order to preserve analytical tractability as in Section 3.4, we again consider a simplified model without any

network limits. Then the model reduces to a single node electricity market where all demand and supply is

concentrated at one node (d∗(ω) = ∑
n

d∗
n(ω)) and Assumption 3.3(i) holds. Combining Assumption 3.3(i)

and equation (12), the KKT condition associated with a positive generationy∗k(ω ,x)> 0 in a single node market

can be stated, for givenx andω ∈ Ω, as

p∗(ω ,x) = P(ω ,d∗(ω ,x)) = ck+β ∗
k (ω ,x),∀k ∈ K. (13)

According to (13), consumers’ willingness to pay is equal toa single market price paid to each firm when

the spot market is cleared. Furthermore, each generating firm receives scarcity rent being equal to the market

price minus its marginal cost. Thus, from now onp∗(ω ,x) andP(ω ,d∗(ω ,x)) will be used interchangeably

when we formulate the first stage problem of the firms.

Besides Assumption 3.3(i), we also make the following assumptions for the two-stage model with linear

price-demand curve.

Assumption 4.1. α is a continuous random variable with a cumulative distribution Φ and a continuous prob-

ability density functionΦ′ whose support is on some interval[αmin,αmax].

Assumption 4.2. For at least one technology k∈ K, it holds that

∫ αmax

αmin

P(s,0)Φ
′
(s)ds> ck+κk.

When there is zero capacity (∑K
j=1x j = 0), consumers are not supplied with any power (d∗(ω) = 0) and are

willing to pay P(ω ,0) for the first unit of power at all realizations, which yields

∫ αmax

αmin

P(s,0)Φ
′
(s)ds= E[α(ω)]

as the expected price that consumers are willing to pay for the first unit of power. According to Assumption

4.2, there exists at least one technology, sayk′ ∈ K, such that the expected price that consumers are willing to

pay for the first unit of power from technologyk′ is higher than its cost of investment and operation. Therefore,

firm k′ will be able to increase its expected profit by investing at a positive level in technologyk′; i.e.,xk′ > 0.

Thus, Assumption 4.2 guarantees that∑K
j=1x∗j > 0.

Similar to the exogenous demand case, the expected profit function of firm k ∈ K for given x−k can be
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formulated in terms of its expected scarcity rent:

Eω [Πk(ω ,xk,x−k)] = (Eω [β ∗
k (ω ,xk,x−k)]−κk)xk.

Next, we derive a closed form expression for the expected scarcity rent function for cases with symmetric

and asymmetric firms and establish the characteristics of the expected scarcity rent and the expected profit func-

tions for each firm. Different from the case with exogenous demand, the expected scarcity rent and the expected

profit function of each firm are differentiable everywhere. On the other hand, similar to the case with exoge-

nous demand, when firms are symmetric we show that the expected profit of each firm is strictly quasiconcave

under logconcavity assumption of underlying probability density function and there exists a unique symmetric

Nash equilibrium. In case of asymmetric firms, we can still show existence and uniqueness of equilibria under

a stricter condition than logconcavity of probability density function.

4.2.1 Symmetric Firms

As mentioned in Section 3 for the exogenous demand case, the assumption of symmetric firms implies that the

unit costs are the same for all firms; that is,c1 = c2 = . . .= cK = c andκ1 = κ2 = · · ·= κK = κ . This yields an

identical expected scarcity rent and profit function for allfirms as shown in Proposition 4.3.

For given(xk,x−k), Figure 3 illustrates the competitive equilibrium in the spot market for a subset of realiza-

tions of the demand curve. As illustrated in the figure, thereis a threshold value of intercept, sayα(ω̂), which

depends on(xk,x−k) and from which all firms’ capacities are fully utilized. For realizationsα(ω) ≤ α(ω̂),

firms’ total available generation capacity is not fully utilized and the competitive market price is equal to the

firms’ marginal generating cost where the corresponding demand curve crosses the supply curve. According to

(13), this yields zero scarcity rent for all firms. For realizationsα(ω)> α(ω̂), firms’ total available generation

capacity is fully utilized (e.g.,d∗(ω) =XK−1(k)+xk whereXK−1(k) =
K

∑
j=1, j 6=k

x j ) and the market price is higher

than the firms’ marginal generating cost, which yields a positive scarcity rent equal toP(ω ,XK−1(k)+ xk)− c

for all firms.

As mentioned before, the value ofα(ω̂) depends on(xk,x−k) which can be easily derived from Figure 3 as:

α(ω̂) = c+ γ · (XK−1(k)+xk).

Next, we derive the closed form expression of firmk’s expected scarcity rent function for givenx−k.

Proposition 4.3. Under Assumption 4.1, for given x−k, the expected scarcity rent of firm k∈ K can be formu-
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Figure 3: Illustration of a single-node market with symmetric firms and linear demand curve with
random intercept for givenx

lated as follows:

Eω [β ∗
k (ω ,xk,x−k)] =

∫ αmax

α(ω̂)
(1−Φ(s))ds, (14)

whereα(ω̂) = c+ γ · (XK−1(k)+xk).

Proof. See Appendix.

In the following lemmas, we establish the differentiability of both expected scarcity rent and expected

profit functions with respect toxk which also imply their continuity. Then, we show in Theorem 4.5 that

Eω [Πk(ω ,xk,x−k)] is strictly logconcave under certain conditions on the support of cumulative distribution

functionΦ.

Lemma 4.4. LetΦ be a differentiable function on its support. For given x−k, the expected scarcity rent of each

firm k∈ K given in (14) is differentiable and nonincreasing w.r.t. xk ∈ R+ with:

∂Eω [β ∗
k (ω ,xk,x−k)]

∂xk
=−γ · (1−Φ(α(ω̂))≤ 0. (15)
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Moreover, Eω [β ∗
k (ω ,xk,x−k)] is a convex function of xk ∈ R+.

Proof. See Appendix.

Theorem 4.5. Let Φ be a differentiable function on its support. For given k∈ K and x−k,

(i) Eω [Πk(ω ,xk,x−k)] is differentiable w.r.t. xk ∈ R+, and

(ii) if the probability density functionΦ′ is logconcave, then Eω [Πk(ω ,xk,x−k)] is a strictly logconcave function

of xk ∈ R+.

Proof. See Appendix.

As in the exogenous demand case, we prove in the next lemmas that the strategy space of each firm is

bounded and convex. Then in Theorem 4.7, we show existence and uniqueness of Nash equilibrium.

Lemma 4.6. The strategy space of each firm k∈K is Sk := [0, αmax−c
γ ] which is nonempty, compact, and convex.

Proof. See Appendix.

Theorem 4.7 (Existence and Uniqueness). LetΦ be a differentiable function on its support and the probability

density functionΦ′
be logconcave and Assumption 4.2 holds. Then for the game defined in Section 4.1 with

symmetric firms and endogenous demand curve with random intercept, there exists a unique symmetric Nash

equilibrium, x∗ = x∗1 = . . .= x∗K , which satisfies

x∗ =

∫ αmax

α(ω̂)
(1−Φ(ω))dω −κ

γ · (1−Φ(α(ω̂)))
, (16)

and x∗ > 0 whereω̂ is such thatα(ω̂) = c+Kγx∗.

Proof. See Appendix.

4.2.2 Asymmetric Firms

For given(xk,x−k), Figure 4 illustrates the competitive equilibrium in the spot market for a subset of realizations

of demand curve. In comparison to Figure 3 of the symmetric case, the supply curve of asymmetric generators
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is a piecewise constant function having more than one piece.Thus, there are multiple threshold values of

intercept,α(ω1) < α(ω1)< α(ω2)< α(ω2) < .. . < α(ωK)< α(ωK), at which the market price changes as

explained below. For instance, let’s takek= 1 in Figure 4 and consider the set of realizations[α(ω1),α(ω1)]

Figure 4: Illustration of a single-node market with asymmetric firms and linear demand curve with
random intercept for givenx

and [α(ω1),α(ω2)] at which firm 1 is the marginal unit and the other firms do not generate at all. For given

x1, the market price is equal to the sum of the marginal cost and the scarcity rent of firm 1 (c1 andβ ∗
1 ) for the

realizations within these sets:

(a) for α(ω) ∈ [α(ω1),α(ω1)), the capacity of firm 1 is not binding (i.e.,d(ω) < x1), hence the market

price is equal toc1 andβ ∗
1 (ω ,x1,x−1) = 0,

(b) for α(ω) ∈ [α(ω1),α(ω2)], the capacity of firm 1 is binding (i.e.,d(ω) = x1) and the market price is

equal toP(ω ,x1) andβ ∗
1 (ω ,x1,x−1) = P(ω ,x1)−c1.

Similarly, let’s consider the set of realizations[α(ω2),α(ω2)] and[α(ω2),α(ω3)] at which firm 1’s capacity

is fully utilized and firm 2 is the marginal unit. The other firms having higher marginal costs do not generate at

all. Then for givenx1, the market price is equal to the sum of the marginal cost and scarcity rent of firm 2 (c2

andβ ∗
2 ) for the realizations within these sets:

(c) for α(ω) ∈ [α(ω2),α(ω2)), the capacity of firm 2 is not binding (i.e.,x1 < d(ω) < x1+ x2) hence the

market price is equal toc2 andβ ∗
1 (ω ,x1,x−1) = c2−c1,
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(d) for α(ω) ∈ [α(ω2),α(ω3)], the capacity of firm 2 is binding (i.e.,d(ω) = x1+x2) and the market price

is equal toP(ω ,x1+x2) andβ ∗
1 (ω ,x1,x−1) = P(ω ,x1+x2)−c1.

Next we will generalize the formulation ofβ ∗
k (ω ,xk,x−k) for eachk andα(ω) ∈ [αmin,αmax]. The value

of β ∗
k (ω ,xk,x−k) depends on the type of firm being the marginal unit at eachα(ω) as explained above. At a

realizationα(ω), if firms 1,2, . . . ,m are generating, then firmm is called the marginal unit since it is the most

expensive firm setting the market price. Furthermore, the scarcity rent of firmk is equal to the market price

minus the marginal cost of firmk. For a givenk, we will specify a range ofα(ω) where the marginal unit

is firm m with a higher marginal cost (m≥ k). Otherwise when the marginal unit is with lower marginal cost

(m< k), firm k is not generating at all and its scarcity rent is zero. Note that in the above example, (a) and (b)

show the situation wherek= m= 1 whereas (c) and (d) show the situation wherek= 1 andm= 2.

Fork≤m≤K−1, letΩm := [α(ωm),α(ωm+1)] denote the set of realizations where the capacity of marginal

unit m is binding; that isd(ω) =
m

∑
j=1

x j . Similarly,ΩK := [α(ωK),αmax] is the set of realizations where all firms’

capacities are binding. In addition, fork < m≤ K, let Ωm := [α(ωm),α(ωm)) denote the set of realizations

where the marginal unitm is generating but its capacity is not fully utilized; that is
m−1

∑
j=1

x j < d(ω) <
m

∑
j=1

x j .

Then for each firmk∈ K, the following holds:

(i) For αmin ≤ α(ω)< α(ωk), the capacity of firmk is not fully utilized, henceβ ∗
k (ω ,xk,x−k) = 0.

(ii) For α(ω) ∈ Ωm(m≥ k), firm k and marginal unitmgenerate at full capacity and market price is equal to

P(ω ,
m

∑
j=1

x j). Thus,β ∗
k (ω ,xk,x−k) = P(ω ,

m

∑
j=1

x j)−ck ≥ 0.

(iii) For α(ω) ∈ Ωm(m≥ k+1), firm k generates at full capacity but marginal unitm generates less than its

capacity. Then the market price is equal to the marginal costof unit m. Thus,P(ω ,d(ω)) = cm and

β ∗
k (ω ,xk,x−k) = cm−ck > 0.

Recall that for givenx−k, we denote the total capacity of the(m−1) cheapest firms excluding firmk in the

market asXm−1(k) =
m

∑
j=1, j 6=k

x j , for k≤ m≤ K. ThenXm−1(k)+xk is the total capacity of themcheapest firms

including firmk in the market. Then by using (i)-(iii) above and for givenx−k, we get:

β ∗
k (ω ,xk,x−k) = 0I{αmin ≤α(ω)<α(ωk)}

+
K−1

∑
m=k

(P(ω ,Xm−1(k)+xk)−ck)I{α(ωm)≤α(ω)≤α(ωm+1)}

+(P(ω ,XK−1(k)+xk)−ck)I{α(ωK)≤α(ω)≤αmax}

+
K

∑
m=k+1

(cm−ck)I{α(ωm)<α(ω)<α(ωm)}.
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ThenEω [β ∗
k (ω ,xk,x−k)] can be formulated as follows:

Eω [β ∗
k (ω ,xk,x−k)] =

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
(P(s,Xm−1(k)+xk)−ck)Φ′(s)ds

+

∫ αmax

α(ωK)
(P(s,XK−1(k)+xk)−ck)Φ′(s)ds

+
K

∑
m=k+1

∫ α(ωm)

α(ωm)
(cm−ck)Φ′(s)ds

(17)

By using the explicit formulation of the linear price-demand function, (17) can further be simplified as a

closed form expression as given in the next proposition.

Proposition 4.8. Under Assumption 4.1, for given xk, the expected scarcity rent of firm k∈K can be formulated

in a closed form expression as follows:

Eω [β ∗
k (ω ,xk,x−k)] = = (cK −ck)+

∫ αmax

α(ωK)
(1−Φ(s))ds−

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
Φ(s)ds, (18)

where, for m= k, . . . ,K − 1, the threshold valuesα(ωm) and α(ωm+1) depend on the capacities of firms

generating atωm andωm+1, respectively and they can be easily derived from Figure 4:

α(ωm) = cm+ γ · (Xm−1(k)+xk) andα(ωm+1) = cm+1+ γ · (Xm−1(k)+xk),∀m≥ k. (19)

Proof. See Appendix.

Note that when firms are symmetriccK = ck = c andα(ωm) = α(ωm+1),∀m. Then, (18) is reduced to (14).

The expected scarcity rent function of each firm given in (18)is differentiable and decreasing as shown in the

next lemma.

Lemma 4.9. LetΦ be a differentiable function on its support. For given x−k, the expected scarcity rent of each

firm k∈ K given in(18) is differentiable w.r.t. xk ∈ R+. Moreover,(18) is a decreasing function of xk ∈ R+.

Proof. See Appendix.

Next, we can show strict concavity of the expected profit function of each firm under a sufficient condition

satisfied by the probability distribution function.

Theorem 4.10. Let Φ be a differentiable function on its support. For given x−k,
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(i) the expected profit function of each firm k is differentiable w.r.t. xk ∈ R+, and

(ii) the expected profit function of each firm k is (strictly) concave if

−Φ′(s+C)−s·Φ′′(s+C)(<)≤ 0, for all s,C ∈ R+, where C is some constant.

Proof. See Appendix.

The condition stated in Theorem 4.10(ii) is again similar to the standard assumption used in the literature

(see Sherali et al. (1983), Wolf and Smeers (1997), Grimm andZoettl (2008), and Xu (2005)). Rosen (1965)

shows that there is a unique equilibrium point for every strictly concave game. We next show that the strategy

space of each firm is bounded and convex. Finally, in Theorem 4.12, we conclude with existence and uniqueness

of a Nash equilibrium for the two-stage game with asymmetricfirms by using the result of Rosen (1965).

Lemma 4.11. The strategy space of each firm k∈ K is Sk := [0, αmax−ck
γ ] which is nonempty, compact, and

convex.

Proof. See Appendix.

Theorem 4.12. [Existence and Uniqueness] Let Φ be a differentiable function on its support and−Φ′(s+

C)− s·Φ′′(s+C) < 0, for all s,C ∈ R+, where C is some constant. Then, under Assumption 4.2, for the

game with asymmetric firms and endogenous demand curve with random intercept, there exists a unique Nash

equilibrium.

Proof. See Appendix.

5 Conclusions

In this paper, we establish sufficient conditions which guarantee existence and uniqueness of equilibria in

oligopolistic electricity markets where strategic electricity generators anticipate perfectly competitive spot mar-

ket outcomes with demand uncertainty while choosing their capacities and their power generation is dispatched

after the level of demand is realized. In case of symmetric firms, we show that a large class of continuous prob-

ability distributions guarantee uniqueness of equilibrium for the two-stage game. In case of asymmetric firms,

equilibrium may not exist since the first-stage payoff functions of firms do not, in general, satisfy generalized

concavity when demand is exogenous. When demand is endogenous, a condition on probability distribution

function, which is similar to the standard assumption used in the literature for inverse demand curve, is suffi-

cient to guarantee uniqueness of the equilibrium.

33



In general, two-stage closed loop models with strategic firms are nonconvex problems and examples have

been posed in the literature that have multiple or no equilibria. Therefore, it is of interest to users of such

closed loop models to know general sets of conditions, as we define here, under which the existence of a unique

equilibrium is guaranteed. Availability of such conditions will enhance the value of these closed loop models

for their implementation for policy and market intelligence purposes.

As a final remark, in a closed loop game with two asymmetric firms facing an elastic demand, we numeri-

cally computed the expected profit function of each firm undervarious logconcave probability distributions of

random intercept (e.g., uniform, normal, exponential, Weibull, gamma, beta) and we observed that each firm’s

expected profit is strictly quasiconcave in all the cases. Thus, we conjecture that the logconcavity of probability

distributions may also be sufficient to guarantee the existence of a unique equilibrium for closed loop games

with asymmetric firms when demand is endogenous. However, wecould not establish a theoretical proof for

this conjecture which remains to be a topic for future research.
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Appendix: Proofs of Propositions, Lemmas, and Theorems

Proof of Proposition 3.1. First, we look at the profit of firmg∈ G at realizationω ∈ Ω in a bilateral market at

a givenx−g:

Πg
bilateral(ω ,xg,x−g) = ∑

n∈N

[p∗b
n (ω ,xg,x−g)−ν∗b

n (ω ,xg,x−g)]s∗bg
n (ω ,xg,x−g)

−∑
i∈Ig

∑
k∈Kg

[cg
ik −ν∗b

i (ω ,xg,x−g)]y∗bg
ik (ω ,xg,x−g)− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik.

From the KKT conditions in (4), we have:

If y∗bg
ik (ω ,xg,x−g)> 0, thenν∗b

i (ω ,xg,x−g) = cg
ik +β ∗bg

ik (ω ,xg,x−g)−ρ∗b
g (ω ,xg,x−g).

If s∗bg
n (ω ,xg,x−g)> 0, thenν∗b

n (ω ,xg,x−g) = p∗b
n (ω ,xg,x−g)−ρ∗b

g (ω ,xg,x−g).

Then by utilizing these together with the third constraint of OPF problem (3) we can simplify the profit function

to:

Πg
bilateral(ω ,xg,x−g) = ∑

i∈Ig
∑

k∈Kg

β ∗bg
ik (ω ,xg,x−g)y∗bg

ik (ω ,xg,x−g)− ∑
i∈Ig

∑
k∈Kg

κkx
g
ik.

We also know that ifβ ∗bg
ik (ω ,xg,x−g) > 0, theny∗bg

ik (ω ,xg,x−g) = xg
ik; hence the profit function of the bilateral

market model becomes:

Πg
bilateral(ω ,xg,x−g) = ∑

i∈Ig
∑

k∈Kg

β ∗bg
ik (ω ,xg,x−g)xg

ik − ∑
i∈Ig

∑
k∈Kg

κkx
g
ik.

Now, we look at the profit of firmg∈ G at realizationω ∈ Ω in pool market at a givenx:

Πg
pool(ω ,xg,x−g) = ∑

i∈Ig
∑

k∈Kg

(p∗p
i (ω ,xg,x−g)−cg

ik)y
∗pg
ik (ω ,xg,x−g)− ∑

i∈Ig
∑

k∈Kg

κkx
g
ik.

From the KKT conditions in (2), we have:

If y∗pg
ik (ω ,xg,x−g)> 0, thenp∗p

i (ω ,xg,x−g) = cg
ik +β ∗pg

ik (ω ,xg,x−g).

Using this, we can again simplify the profit function to :

Πg
pool(ω ,xg,x−g) = ∑

i∈Ig
∑

k∈Kg

β ∗pg
ik (ω ,xg,x−g)y∗pg

ik (ω ,xg,x−g)− ∑
i∈Ig

∑
k∈Kg

κkx
g
ik

= ∑
i∈Ig

∑
k∈Kg

β ∗pg
ik (ω ,xg,x−g)xg

ik − ∑
i∈Ig

∑
k∈Kg

κkx
g
ik.

The last equality follows with a similar reasoning used for the bilateral case.

The result given in Proposition 2.1 (i) indicates that at anygiven(xg,x−g), β ∗pg
ik (ω ,xg,x−g)= β ∗bg

ik (ω ,xg,x−g).

Therefore,Πg
pool(ω ,xg,x−g)=Πg

bilateral(ω ,xg,x−g) which in turn impliesEω [Πg
pool(ω ,xg,x−g)]=Eω [Πg

bilateral(ω ,xg,x−g)].

Thus, for givenx−g, if there exists ax∗g ∈ χbilateral(x−g) then it also holds thatx∗g ∈ χpool(x−g) for all g∈G and
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vice versa. Hence, the optimal solution sets of the upper level problems in both market structures are identical

which implies both markets yield the same first stage equilibria.

Proof of Proposition 3.4. We know thatβ ∗
k (ω ,xk,x−k) = p∗(ω ,xk,x−k)− ck. Thus, for given{Xm−1(k)}K

m=k,

the scarcity rent paid to firmk∈ K at realizationωΩ can be formulated as follows:

β ∗
k (ω ,xk,x−k) = 0I{D ≤D≤ Xk−1(k)+xk}

+
K−1

∑
m=k

(cm+1−ck)I{Xm−1(k)+xk <D≤ Xm(k)+xk}

+ (VOLL−ck)I{XK−1(k)+xk <D≤ D}.

Then calculation ofEω [β ∗
k (ω ,xk,x−k)] will yield the following:

Eω [β ∗
k (ω ,xk,x−k)] =

K−1

∑
m=k

∫ Xm(k)+xk

Xm−1(k)+xk

(cm+1−ck)d(Ψ(s))+
∫ D

XK−1(k)+xk

(VOLL−ck)d(Ψ(s))

=
K−1

∑
m=k

(cm+1−ck)[Ψ(Xm(k)+xk)−Ψ(Xm−1(k)+xk)]

+(VOLL−ck)(1−Ψ(XK−1(k)+xk)).

(20)

The expression (20) can be simplified to:

Eω [β ∗
k (ω ,xk,x−k)] =VOLL−ck− (VOLL−cK)Ψ(XK−1(k)+xk)−

K−1

∑
m=k

((cm+1−cm)Ψ(Xm−1(k)+xk)).

Proof of Lemma 3.5.

(i) From (6), it is easy to see thatEω [β ∗
k (ω ,xk,x−k)] is a continuous function of(xk,x−k) ∈ RK

+ sinceΨ is the

cumulative distribution function of continuous random demand.

(ii) We know thatΨ is a nondecreasing function of its argument. Fix ak, then for all 0≤ a< b:

0 ≤ Ψ(Xl (k)+a)≤ Ψ(Xl (k)+b)≤ 1, k−1≤ l ≤ K−1 which implies

0 ≤ Eω [β ∗
k (ω ,b,x−k)] =VOLL− ck− (VOLL− cK)Ψ(XK−1(k)+b)−

K−1

∑
m=k

(cm+1− cm)Ψ(Xm−1(k)+b)

≤VOLL− ck− (VOLL− cK)Ψ(XK−1(k)+a)−
K−1

∑
m=k

(cm+1− cm)Ψ(Xm−1(k)+a) = Eω [β ∗
k (ω ,a,x−k)].

Proof of Lemma 3.6. By Lemma 3.5, we know thatEω [β ∗
k (ω ,xk,x−k)] in (7) is a continuous function on[0, ∞]
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where

Eω [β ∗
k (ω ,xk,x−k)] =





VOLL−c, 0≤ xk < xmin
k

(VOLL−c)(1−Ψ(xk+XK−1(k)), xmin
k ≤ xk < xmax

k

0, otherwise.

(21)

Therefore, wheneverΨ is differentiable, thenEω [β ∗
k (ω ,xk,x−k)] is also differentiable w.r.t.xk ∈ R+ except

at the breakpoints given in (21):

∂Eω [β ∗
k (ω ,xk,x−k)]

∂xk
=





0, xk ∈ [0, xmin
k ) ∪ [xmax

k , ∞)

−(VOLL−c)Ψ′
(xk+XK−1(k)), xk ∈ [xmin

k , xmax
k ).

(22)

Proof of Theorem 3.8. SinceEω [Πk(ω ,xk,x−k)] = (Eω [β ∗
k (ω ,xk,x−k)]−κ)xk, (i) and(ii) directly follow from

Lemma 3.5(i) and Lemma 3.6, respectively.

(iii) E ω [Πk(ω ,xk,x−k)] is continuous and differentiable w.r.t.xk on S := (xmin
k ,xmax

k ). Therefore, we know

that it is also (strictly) concave onS if and only if

∂ 2Eω [Πk(ω ,xk,x−k))]

∂x2
k

(<)≤ 0, ∀xk ∈ S

⇔
∂ 2Eω [β ∗

k (ω ,xk,x−k))]

∂x2
k

xk+2
∂Eω [β ∗

k (ω ,xk,x−k))]

∂xk
(<)≤ 0, ∀xk ∈ S

⇔ −Ψ′′
(xk+XK−1(k))xk−2Ψ′

(xk+XK−1(k)) (<)≤ 0, ∀xk ∈ S.

SinceΨ′
(xk+XK−1(k)) is nonnegative, the last inequality holds iff−Ψ′′

(xk+XK−1(k))xk−Ψ′
(xk+XK−1(k)) (<

)≤ 0.

Outside ofS, Eω [Πk(ω ,xk,x−k)] is equal to(VOLL− c− κ)xk on (0,xmin
k ) and −κxk on (xmax

k ,∞) which

are increasing and decreasing linear functions, respectively. Therefore, whenever the stated condition holds,

Eω [Πk(ω ,xk,x−k)] is a (strictly) quasiconcave function ofxk onR+.

Proof of Theorem 3.10. Eω [Πk(ω ,xk,x−k)] is equal to(VOLL− c−κ)xk on [0,xmin
k ) and−κxk on (xmax

k ,∞)

which are increasing and decreasing linear functions, respectively. Therefore, ifEω [Πk(ω ,xk,x−k)] is strictly

quasiconcave on[xmin
k ,xmax

k ], it is also strictly quasiconcave onR+, which we prove next.
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We know that

∂Eω [Πk(ω ,xk,x−k)]

∂xk
=

∂Eω [β ∗
k (ω ,xk,x−k)]

∂xk
xk+Eω [β ∗

k (ω ,xk,x−k)]−κ ,

which can be formulated explicitly by using (21) and (22):

∂Eω [Πk(ω ,xk,x−k)]

∂xk
=





VOLL− c−κ , xk ∈ [0, xmin
k )

(VOLL− c)[1−Ψ(xk+XK−1(k))−Ψ′
(xk+XK−1(k))xk]−κ , xk ∈ [xmin

k , xmax
k )

−κ , xk ∈ [xmax
k , ∞).

• Then forxk ∈ (xmin
k ,xmax

k ),

∂Eω [Πk(ω ,xk,x−k)]

∂xk
=−(VOLL−c)Ψ

′
(xk+XK−1(k))xk+(VOLL−c)(1−Ψ(xk+XK−1(k)))−κ ,

is the gradient ofEω [Πk(ω ,xmin
k ,x−k)].

• For the breakpointsxk ∈ {xmin
k ,xmax

k },

∂Eω [Πk(ω ,xmin
k ,x−k)]

∂xk
:= [VOLL−c−κ , (VOLL−c)(1−Ψ′

(D)xmin
k )−κ ],

∂Eω [Πk(ω ,xmax
k ,x−k)]

∂xk
:= [−κ , −(VOLL−c)Ψ′

(D)xmax
k −κ ]< 0.

(23)

are the subdifferentials ofEω [Πk(ω ,xk,x−k)] atxk = xmin
k andxk = xmax

k , respectively.

Furthermore, note that since the hazard function of demand is monotone increasing:

(i) 1−
Ψ′

(xk+XK−1(k))
(1−Ψ(xk+XK−1(k)))

xk is a decreasing function ofxk, and

(ii)
κ

(VOLL−c)(1−Ψ(xk+XK−1(k)))
is a nondecreasing function ofxk.

Next, we differentiate the three only possible cases :

Case (1) xmin
k > 0: We know thatEω [Πk(ω ,xk,x−k)] is continuous, and it is an increasing function on[0,xmin

k )
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and a decreasing function on(xmax
k ,∞). Hence, there exists an ˜xk ∈ [xmin

k ,xmax
k ) such that

0∈
∂Eω [Πk(ω , x̃k,x−k)]

∂xk
.

Note that ˜xk 6= xmax
k since

∂Eω [Πk(ω ,xmax
k ,x−k)]

∂xk
< 0 from (23). For ˜xk, the following holds:

−(VOLL−c)Ψ
′
(x̃k+XK−1(k))x̃k+(VOLL−c)(1−Ψ(x̃k+XK−1(k))) = κ ,

which implies 1−
Ψ′

(x̃k+XK−1(k))
(1−Ψ(x̃k+XK−1(k)))

x̃k =
κ

(VOLL−c)(1−Ψ(x̃k+XK−1(k)))
. (24)

Next we distinguish between the cases ˜xk = xmin
k andx̃k > xmin

k :

(1a) Whenx̃k = xmin
k , by utilizing (i) and(ii) , for xmin

k = x̃k < xk < xmax
k ,

1−
Ψ′

(xk+XK−1(k))
(1−Ψ(xk+XK−1(k)))

xk < 1−
Ψ′

(x̃k+XK−1(k))
(1−Ψ(x̃k+XK−1(k)))

x̃k =
κ

(VOLL− c)(1−Ψ(x̃k+XK−1(k)))

≤
κ

(VOLL− c)(1−Ψ(xk+XK−1(k)))
.

Consequently,

−(VOLL−c)Ψ
′
(xk+XK−1(k))xk+(VOLL−c)(1−Ψ(xk+XK−1(k)))< κ ,

which implies that

∂Eω [Πk(ω ,xk,x−k)]

∂xk
< 0.

Thus,Eω [Πk(ω ,xk,x−k)] is a decreasing function and hence strictly quasiconcave on[xmin
k ,xmax

k ].

(1b) Whenx̃k > xmin
k , again by utilizing(i) and(ii) for xmin

k < xk < x̃k,

1−
Ψ′

(xk+XK−1(k))
(1−Ψ(xk+XK−1(k)))

xk > 1−
Ψ′

(x̃k+XK−1(k))
(1−Ψ(x̃k+XK−1(k)))

x̃k =
κ

(VOLL− c)(1−Ψ(x̃k+XK−1(k)))

≥
κ

(VOLL− c)(1−Ψ(xk+XK−1(k)))
.

Consequently,

−(VOLL−c)Ψ
′
(xk+XK−1(k))xk+(VOLL−c)(1−Ψ(xk+XK−1(k)))> κ , and
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∂Eω [Πk(ω ,xk,x−k)]

∂xk
> 0.

Similarly, for x̃k < xk < xmax
k

1−
Ψ′

(xk+XK−1(k))
(1−Ψ(xk+XK−1(k)))

xk < 1−
Ψ′

(x̃k+XK−1(k))
(1−Ψ(x̃k+XK−1(k)))

x̃k =
κ

(VOLL− c)(1−Ψ(x̃k+XK−1(k)))

≤
κ

(VOLL− c)(1−Ψ(xk+XK−1(k)))
,

which implies with the same argument that

∂Eω [Πk(ω ,xk,x−k)]

∂xk
< 0.

We can conclude in this case thatEω [Πk(ω ,xk,x−k)] is an increasing function forxk ∈ [xmin
k , x̃k] and a decreasing

function forxk ∈ [x̃k,xmax
k ]. Then we can conclude thatEω [Πk(ω ,xk,x−k)] is strictly quasiconcave on[xmin

k ,xmax
k ]

by using the above arguments.

Case (2) xmin
k = 0 andxmax

k > 0: Eω [Πk(ω ,xk,x−k)] is continuous and decreasing on(xmax
k ,∞). Moreover,

from (23) and Assumption (3.3) (ii), we know that

∂Eω [Πk(ω ,xmin
k ,x−k)]

∂xk
=VOLL−c−κ > 0,

∂Eω [Πk(ω ,xmax
k ,x−k)]

∂xk
< 0.

Then there exists an ˜xk ∈ (0,xmax
k ) such that 0∈

∂Eω [Πk(ω , x̃k,x−k)]

∂xk
and we are back in Case (1). Thus,

Eω [Πk(ω ,xk,x−k)] is a strictly quasiconcave function.

Case (3) xmax
k = 0: ThenEω [β ∗

k (ω ,xk,x−k)]= 0 andEω [Πk(ω ,xk,x−k)]=−κxk on [0,∞). Hence,Eω [Πk(ω ,xk,x−k)]

is decreasing and strictly quasiconcave.

Proof of Lemma 3.11. One can easily see that the strategy space is nonempty sincexk = 0 is feasible for all

firms. Moreover, there cannot be any optimal strategyx∗k > D since
∂Eω [Πk(ω ,xk,x−k)]

∂xk
= −κ < 0 for all

xk > D.

Proof of Lemma 3.12. By Assumption 3.3 (ii),
K

∑
k=1

x∗k ≥ D. Let x1 be the the vector of investment decisions

of all firms where the total generation capacity is equal to the maximum demand levelD; that isx1 ∈ {x1
k,k ∈

1, . . .K|∑K
k=1x1

k = D}. Now assume any candidatex2 for the equilibrium of all firms wherex2 ∈ {x2
k,k ∈

1, . . .K|∑K
k=1x2

k > D}. Then the following holds:

(i) At both x1 andx2, the market price is equal toc for all demand realizations and the expected scarcity rents

of all firms are zero which implies that all firms have negativeprofits equal to−κx1
k and−κx2

k, respectively.
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(ii) Sincex1
k < x2

k for at least one firmk, the profit of at least one firm decreases fromx1 to x2; that is,−κx2
k <

−κx1
k for at least one firmk.

Thenx2 cannot be an equilibrium since at least one firm has incentiveto deviate from this point tox1 to increase

its profit. Thus
K

∑
k=1

x∗k ≤ D holds at equilibrium.

Proof of Theorem 3.13. From Lemma 3.11, we know that the strategy spaces of the firms are non-empty,

compact and convex. Continuity and quasiconcavity of theirpayoff functions directly follow from Theorems

3.8 and 3.10, respectively. Then by utilizing Proposition 3.7, there exits a Nash equilibrium.

Each firmk∈ K is interested in finding a solutionx∗k which maximizes its expected profit for givenx−k:

x∗k = argmax
xk≥0

Eω [Πk(ω ,xk,x−k)]}.

Let χk(x−k) denote the solution set of firmk for given x−k. Then a Nash equilibrium is a point such that

x∗k ∈ χk(x∗−k) for all k ∈ K and the following first-stage optimality conditions will hold for all firms at an

equilibrium of the two-stage game:

0≤−
∂Eω [Πk(ω ,x∗k,x

∗
−k)]

∂xk
⊥ x∗k ≥ 0 ∀k. (25)

Next we show that(i) no asymmetric equilibria exist for the symmetric game and(ii) for symmetric equilibria,

denoted byx∗ for each firm, (8) holds andD ≤ Kx∗ ≤ D, (iii) finally symmetric equilibrium satisfying (8) is

unique.

(i) First we assume that there is an asymmetric equilibrium. Anycandidatex∗ for an asymmetric equilibrium of

arbitrary firmsi and j can be ordered as 0≤ x∗i < x∗j . Next we show by contradiction that an asymmetric equi-

librium cannot exist since the first-stage optimality conditions of firmsi and j are not simultaneously satisfied

at (x∗i ,x
∗
j ):

• If 0 < x∗i < x∗j , then the first-stage optimality conditions (25) for both firms i and j should satisfy the

following:

∂Eω [Πi(ω ,x∗i ,x
∗
−i)]

∂xi
=

∂Eω [Π j(ω ,x∗j ,x
∗
− j)]

∂x j
= 0.

We next show that whenever one of the equations above holds, the other cannot hold. Let

∂Eω [Πi(ω ,x∗i ,x
∗
−i)]

∂xi
=−(VOLL−c)Ψ

′
(

K

∑
k=1

x∗k)x
∗
i +(VOLL−c)(1−Ψ(

K

∑
k=1

x∗k))−κ = 0.

41



If the above equation holds then we get

∂Eω [Π j(ω ,x∗j ,x
∗
− j)]

∂x j
=−(VOLL−c)Ψ

′
(

K

∑
k=1

x∗k)x
∗
j +(VOLL−c)(1−Ψ(

K

∑
k=1

x∗k))−κ < 0 sincex∗i < x∗j .

• If 0 = x∗i < x∗j , then the first-stage optimality conditions of firmi and j should satisfy

∂Eω [Πi(ω ,0,x∗−i)]

∂xi
= (VOLL−c)(1−Ψ(

K

∑
k=1

x∗k))−κ ≤ 0 and

Eω [Π j(ω ,x∗j ,x
∗
− j)]

∂x j
= 0.

By using a similar reasoning to the case above, whenever the first equation holds, then

∂Eω [Πk(ω ,x∗j ,x
∗
− j)]

∂x j
=−(VOLL−c)Ψ

′
(

K

∑
k=1

x∗k)x
∗
j +(VOLL−c)(1−Ψ(

K

∑
k=1

x∗k))−κ < 0 sincex∗j > 0.

Hence, no asymmetric equilibria exits.

(ii) Any symmetric equilibrium can be denoted byx∗ = x∗1 = . . .= x∗K . Next we identify the symmetric equilib-

rium by using Lemma 3.12 and the optimality conditions of thefirst stage:

• By Lemma 3.12,D ≤ Kx∗ ≤ D. Thus,
D
K

≤ x∗ ≤
D
K

.

• Since
D
K

≤ x∗ ≤
D
K

, we are either in Case (1) or in Case (2) (i.e.,D= 0) of Proof of Theorem 3.10. Hence,

there existsx∗ which satisfies
∂Eω [Πk(ω ,x∗,(K −1)x∗)]

∂xk
= 0. By using the equality (24) given inProof

of Theorem 3.10, we get

x∗ =
(VOLL−c)(1−Ψ(Kx∗))−κ

(VOLL−c)Ψ′(Kx∗)
.

(iii) From the above arguments we know that each firm’s first stage problem (26) is equivalent and has at

least one symmetric equilibriumx∗ = x∗1 = . . . = x∗K . Thus, at equilibrium, we know thatx∗ will be the optimal

investment strategy of firmk whenx−k := ex∗ (wheree is the vector of 1’s of appropriate dimension). Therefore

for givenx−k := ex∗, we would like to findx∗ which is the solution to the following problem of any firmk:

x∗ = argmax
xk∈S

Eω [Π(ω ,xk,ex∗)], (26)
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By Lemma 3.12,S:= {xk|D− (K −1)x∗ ≤ xk ≤ D− (K−1)x∗} which is equivalent toxk ∈ [xmin
k ,xmax

k ]. By

Theorem 3.10, we know that if the hazard rate functionH(s) = Ψ′(s)/(1−Ψ(s)) is monotone increasing, then

Eω [Π(ω ,xk,ex∗)] is strictly quasiconcave onS. Thus, there exists a uniquex∗ which maximizes the problem

(26).

Proof of Lemma 3.15. From derivation of (20), recall that for givenx2 and realizationω ,

β ∗
1 (ω ,x1,x2) = 0I{d(ω)≤x1}+(c2−c1)I{x1<d(ω)≤x1+x2}+(VOLL−c1)I{x1+x2<d(ω)}

and hence:

Eω [β ∗
1 (ω ,x1,x2)] =

∫ x1+x2
x1

(c2−c1)d(Ψ(s))+
∫ dmax

x1+x2
(VOLL−c1)d(Ψ(s))

= (c2−c1)(Ψ(x1+x2)−Ψ(x1))+ (VOLL−c1)(1−Ψ(x1+x2))

=VOLL−c1− (c2−c1)Ψ(x1)− (VOLL−c2)Ψ(x1+x2).

When demand is uniformly distributed over[dmin,dmax], Ψ(s) =
s−dmin

dmax−dmin
is the cumulative distribution func-

tion. Therefore:

1) If 0 ≤ x1 < dmin−x2, thenΨ(x1) = Ψ(x1+x2) = 0 andEω [β ∗
1 (ω ,x1,x2)] =VOLL−c1.

2) If dmin−x2 ≤ x1 < dmin, thenΨ(x1) = 0. By plugging inΨ(x1+x2) =
x1+x2−dmin

dmax−dmin
, we get:

Eω [β ∗
1 (ω ,x1,x2)] =VOLL−c1−

(VOLL−c2)(x2−dmin)

dmax−dmin
−

(VOLL−c2)x1

dmax−dmin
.

It is easily seen thatEω [β ∗
1 (ω ,x1,x2)] is a linear function where

VOLL−c1−
(VOLL−c2)(x2−dmin)

dmax−dmin
andb1

β1
=

(VOLL−c2)

dmax−dmin
> 0.

3) Fordmin ≤ x1 < dmax−x2, Ψ(x1) =
x1−dmin

dmax−dmin
≥ 0 andΨ(x1+x2) =

x1+x2−dmin

dmax−dmin
≥ 0. Hence,

Eω [β ∗
1 (ω ,x1,x2)] =

(VOLL−c1)dmax

dmax−dmin
−

(VOLL−c2)x2

dmax−dmin
−

(VOLL−c1)

dmax−dmin
x1.

Eω [β ∗
1 (ω ,x1,x2)] is a linear function where

a2
β1
=

(VOLL−c1)dmax

dmax−dmin
−

(VOLL−c2)x2

dmax−dmin
andb2

β1
=

(VOLL−c1)

dmax−dmin
> 0.
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4) Fordmax−x2 ≤ x1 < dmax, Ψ(x1) =
x1−dmin

dmax−dmin
≥ 0, andΨ(x1+x2) = 1. Then,

Eω [β ∗
1 (ω ,x1,x2)] =

(c2−c1)dmax

dmax−dmin
−

(c2−c1)

dmax−dmin
x1,

which is again a linear function witha3
β1
=

(c2−c1)dmax

dmax−dmin
andb3

β1
=

(c2−c1)

dmax−dmin
> 0.

5) If x1 ≥ dmax, thenΨ(x1) = Ψ(x1+x2) = 1 andEω [β ∗
1 (ω ,x1,x2)] = 0.

Similarly, for a givenx1 and realizationω ,

β ∗
2 (ω ,x2,x1) = 0I{d(ω)≤x1+x2}+(VOLL−c2)I{x1+x2<d(ω)} which yields

Eω [β ∗
2 (ω ,x2,x1)] =

∫ dmax
x1+x2

(VOLL−c2)d(Ψ(s))

= (VOLL−c2)(1−Ψ(x1+x2))

=VOLL−c2− (VOLL−c2)Ψ(x1+x2).

When we haved ∼U [dmin, dmax], we get:

1) If 0 ≤ x2 < dmin−x1, thenΨ(x1+x2) = 0 andEω [β ∗
2 (ω ,x2,x1)] =VOLL−c2.

2) Fordmin−x1 ≤ x2 < dmax−x1,

Eω [β ∗
2 (ω ,x2,x1)] =

(VOLL−c2)dmax

dmax−dmin
−

(VOLL−c2)x1

dmax−dmin
−

(VOLL−c2)

dmax−dmin
x2.

Clearly this is a linear function with

aβ2
=

(VOLL−c2)dmax

dmax−dmin
−

(VOLL−c2)x1

dmax−dmin
andββ2

=
(VOLL−c2)

dmax−dmin
> 0.

3) If x2 ≥ dmax−x1, thenΨ(x1+x2) = 1 andEω [β ∗
2 (ω ,x2,x1)] = 0.

Proof of Lemma 3.16. We can write the expected profit functions asEω [Π1(ω ,x1,x2)] =

(Eω [β ∗
1 (ω ,x1,x2)] − κ1)x1 and Eω [Π2(ω ,x2,x1)] = (Eω [β ∗

2 (ω ,x2,x1)] − κ2)x2. From Lemma 3.15, we

know that bothEω [β ∗
1 (ω ,x1,x2)] andEω [β ∗

2 (ω ,x2,x1)] are continuous piecewise linear functions ofx1 ∈ R+

and x2 ∈ R+, respectively; therefore the expected profit functions arecontinuous as well. They are also

differentiable w.r.t.x1 ∈ R+ andx2 ∈ R+ in each region, respectively, due to the differentiabilityof expected

scarcity rent functions in those regions. However, they arenot differentiable at the breakpoints of the

corresponding expected scarcity rent functions.
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Given x2, Eω [Π1(ω ,x1,x2)] is concave inx1 in each region 0≤ x1 < dmin − x2, dmin − x2 ≤ x1 < dmin,

dmin ≤ x1 < dmax− x2, dmax− x2 ≤ x1 < dmax, andx1 ≥ dmax since it is a linear or quadratic function in these

regions. However, it is not necessarily quasiconcave onR+. On the other hand, givenx1, Eω [Π2(ω ,x2,x1)] is

an increasing linear function ofx2 on (0,dmin− x1), concave on[dmin− x1,dmax− x1], and a decreasing linear

function on(dmax−x1,∞). Hence it is a quasiconcave function onR+.

Proof of Proposition 4.3. From the illustration in Figure 3 and equation (13), we know thatβ ∗
k (ω ,xk,x−k) has

a positive value which is equal toP(ω ,XK−1(k)+xk)−c whenα(ω)> α(ω̂):

β ∗
k (ω ,xk,x−k) = 0I{αmin ≤ α(ω)≤ α(ω̂)}

+ [α(ω)− γ · (XK−1(k)+xk)−c]I{α(ω̂) < α(ω)≤ αmax}.

Then calculation ofEω [β ∗
k (ω ,xk,x−k)] will yield the following:

Eω [β ∗
k (ω ,xk,x−k)] =

∫ αmax

α(ω̂)
[s− γ · (XK−1(k)+xk)−c]d(Φ(s))

=

∫ αmax

α(ω̂)
sd(Φ(s))− [c+ γ · (XK−1(k)+xk)][1−Φ(α(ω̂)].

By using integration by parts and the equalityα(ω̂) = c+ γ · (XK−1(k)+xk),

Eω [β ∗
k (ω ,xk,x−k)] = sΦ(s)|αmax

α(ω̂)
−

∫ αmax

α(ω̂)
Φ(s)ds−α(ω̂)[1−Φ(α(ω̂))]

= αmaxΦ(αmax)−

∫ αmax

α(ω̂)
Φ(s)ds−α(ω̂).

SinceΦ(αmax)=1, the above equation yields

Eω [β ∗
k (ω ,xk,x−k)] = αmax−α(ω̂)−

∫ αmax

α(ω̂)
Φ(s)ds

=
∫ αmax

α(ω̂)
(1−Φ(s))ds.

Proof of Lemma 4.4. Φ is a differentiable function andα(ω̂) = c+ γ · (XK−1(k)+xk), which is the limit of the

integral in (14), is also differentiable w.r.t.xk ∈ R+. ThenEω [β ∗
k (ω ,xk,x−k)] is differentiable w.r.t.xk ∈ R+.
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By using Leibniz rule and the fundamental theorem of calculus for differentiation of integral, we get:

∂Eω [β ∗
k (ω ,xk,x−k)]

∂xk
=−

∂α(ω̂)

∂xk
(1−Φ(α(ω̂)))

=−γ · (1−Φ(α(ω̂)))≤ 0.

Moreover, the second derivative ofEω [β ∗
k (ω ,xk,x−k)] w.r.t. xk will yield the following:

∂ 2Eω [β ∗
k (ω ,xk,x−k)]

∂x2
k

= γ2Φ′(α(ω̂))≥ 0.

Hence,Eω [β ∗
k (ω ,xk,x−k)] is a non-increasing convex function ofxk ∈ R+.

Proof of Theorem 4.5. SinceEω [Πk(ω ,xk,x−k)] = (Eω [β ∗
k (ω ,xk,x−k)]−κk)xk, (i) immediately follows from

Lemma 4.4.

For (ii) , note that

log(Eω [Πk(ω ,xk,x−k)]) = logxk+ log(Eω [β ∗
k (ω ,xk,x−k)]−κ).

We know that logxk is strictly concave. We next show that if the probability density functionΦ′ is logconcave

thenB(xk) := Eω [β ∗
k (ω ,xk,x−k)]−κ is logconcave.

By using Theorem 3 of Bagnoli and Bergstrom (2005), we know that log-concavity ofΦ′ implies the log-

concavity of the right hand integral of the reliability function defined by

H(t) =
∫ αmax

t
(1−Φ(s))ds for t ∈ (αmin,αmax),

which implies

∂ 2(logH(t))
∂ t2 =

Φ′(t)
∫ αmax

t
(1−Φ(s))ds− (1−Φ(t))2

(H(t))2 ≤ 0

and

H(t) := Φ′(t)
∫ αmax

t
(1−Φ(s))ds− (1−Φ(t))2 ≤ 0.
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By using the above inequality we can prove that
∂ 2 log(B(xk))

∂x2
k

≤ 0:

∂ 2 log(B(xk))

∂x2
k

= γ2
Φ′(α(ω̂))

∫ αmax

α(ω̂)
(1−Φ(s))ds− (1−Φ(α(ω̂)))2

(B(xk))2

−γ2κΦ′(α(ω̂))

(B(xk))2

= γ2
H(t)|t=α(ω̂)

(B(xk))2 − γ2κΦ′(α(ω̂))

(B(xk))2 ≤ 0.

Hence,(Eω [β ∗
k (ω ,xk,x−k)]−κ) is a logconcave function ofxk. The sum of a strictly concave function, logxk,

and a concave function, log(Eω [β ∗
k (ω ,xk,x−k)]− κ), is strictly concave. Thus,Eω [Πk(ω ,xk,x−k)] is strictly

logconcave inxk.

Proof of Lemma 4.6. The strategy space is nonempty since the strategyxk = 0 is feasible for all firms. For

any firm k, if xk >
αmax−c

γ
then, by Proposition 4.3,Eω [β ∗

k (ω ,xk,x−k)] = 0 (note thatα(ω̂) > αmax for all

xk >
αmax−c

γ
). Then forxk >

αmax−c
γ

,
∂Eω [Πk(ω ,xk,x−k)]

∂xk
= −κ < 0 which implies that firmk’s profit

for this set of investment strategies is lower than its profitgained by the strategies inSk := [0,
αmax−c

γ
] and

therefore can be excluded from its strategy space.

Proof of Theorem 4.7. From Lemma 4.6, we know that the strategy spaces are non-empty, compact, and

convex. Continuity of the payoff functions directly follows from Theorem 4.5. Boyd and Vandenberghe (2004)

gives a composition theorem which shows the preservation ofquasiconcavity under monotonic functions (see

Section 3.4.4 on pages 101/102 and Section 3.5 on page 104). Utilizing this result, we know that (strict)

log-concavity implies (strict) quasiconcavity of firms’ payoff functions. A similar result can also be found in

Theorem 3.3 of Avriel (1972) under the notion ofρ-concavity. Then by utilizing Theorem 4.5 and Proposition

3.7, there exists a Nash equilibrium.

Eω [Πk(ω ,xk,x−k)] is differentiable and strictly logconcave inxk. Each firmk∈ K is interested in finding a

solutionx∗k which maximizes its expected profit for givenx−k:

x∗k = argmax
xk≥0

Eω [Πk(ω ,xk,x−k)]}.

Let χk(x−k) denote the solution set of firmk for given x−k. Then a Nash equilibrium is a point such that

x∗k ∈ χk(x∗−k) for all k ∈ K and the following first-stage optimality conditions will hold for all firms at an
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equilibrium of the two-stage game:

0≤−
∂Eω [Πk(ω ,x∗k,x

∗
−k)]

∂xk
⊥ x∗k ≥ 0,∀k∈ K, (27)

where
∂Eω [Πk(ω ,x∗k,x

∗
−k)]

∂xk
=

∫ αmax

α(ω̂)
(1−Φ(s))ds− γ · (1−Φ(α(ω̂)))x∗k −κ andα(ω̂) = c+ γ

K

∑
j=1

x∗j .

Next we show that(i) no asymmetric equilibria exist,(ii) for symmetric equilibria, denoted byx∗ for each

firm, (16) holds and 0< x∗ <
αmax−c

Kγ
, and(iii ) finally symmetric equilibrium satisfying (16) is unique.

(i) We first assume that there is an asymmetric equilibrium. Any candidatex∗ for an asymmetric equilibrium

of arbitrary firmsi and j can be ordered as 0≤ x∗i < x∗j . Next we show by contradiction that an asymmetric

equilibrium cannot exist since the first stage optimality conditions given in (27) are not simultaneously satisfied

for firms i and j .

• If 0 < x∗i < x∗j , then the first stage optimality conditions (27) for firmsi and j should satisfy the following

∂Eω [Πi(ω ,x∗i ,x
∗
−i)]

∂xi
=

∂Eω [Π j(ω ,x∗j ,x
∗
− j)]

∂x j
= 0.

We next show that whenever one of the equations above holds, the other cannot hold. Let

∂Eω [Πi(ω ,x∗i ,x
∗
−i)]

∂xi
=

∫ αmax

α(ω̂)
(1−Φ(s))ds− γ · (1−Φ(α(ω̂)))x∗i −κ = 0.

If the above equation holds then sincex∗i < x∗j ,

∂Eω [Π j(ω ,x∗j ,x
∗
− j)]

∂x j
=

∫ αmax

α(ω̂)
(1−Φ(s))ds− γ · (1−Φ(α(ω̂)))x∗j −κ < 0.

• If 0 = x∗i < x∗j , then the first-stage optimality conditions of firmi and j should satisfy

∂Eω [Πi(ω ,x∗i ,x
∗
−i)]

∂xi
=

∫ αmax

α(ω̂)
(1−Φ(s))ds−κ ≤ 0, and

∂Eω [Πi(ω ,x∗j ,x
∗
−i)]

∂xi
= 0.

By using a similar reasoning to the case above, whenever the first equation holds then sincex∗j > 0

∂Eω [Π j(ω ,x∗j ,x
∗
− j)]

∂x j
=

∫ αmax

α(ω̂)
(1−Φ(s))ds− γ · (1−Φ(α(ω̂)))x∗j −κ < 0.
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Hence, no asymmetric equilibria exits.

(ii) Any symmetric equilibrium can be denoted byx∗ = x∗1 = . . .= x∗K . Next we identify the symmetric equilib-

rium by using Assumption 4.2 and the optimality conditions of the first stage:

• By Assumption 4.2,x∗ > 0.

• At x∗ > 0, the following optimality conditions are satisfied for each firm

∂Eω [Πk(ω ,x∗,(K −1)x∗]
∂xk

=

∫ αmax

α(ω̂)
(1−Φ(s))ds− γ · (1−Φ(α(ω̂)))x∗−κ = 0.

Hence,
∫ αmax

α(ω̂)
(1−Φ(s))ds−κ = γ · (1−Φ(α(ω̂)))x∗ which yields (16).

(iii ) From the above arguments we know that each firm’s first stage problem (28) is equivalent and has at

least one symmetric equilibriumx∗ = x∗1 = . . . = x∗K . Thus, at equilibrium, we know thatx∗ will be the optimal

investment strategy of firmk whenx∗−k := ex∗ (wheree is the vector of 1’s of appropriate dimension). Therefore

for givenx−k := ex∗, we would like to findx∗ which is the solution to the following problem of firmk:

x∗ = argmax
xk≥0

Eω [Π(ω ,xk,ex∗)], (28)

By Theorem 4.5(ii), we know that ifΦ′
is logconcave, thenEω [Π(ω ,xk,ex∗)] is strictly logconcave forxk ∈ℜ+

which implies its strict quasiconcavity forxk ∈ℜ+. Thus, there exists a uniquex∗ maximizingEω [Π(ω ,xk,ex∗)]

in (28).

Proof of Proposition 4.8. By using explicit formulation of linear price demand curve,we get:

Eω [β ∗
k (ω ,xk,x−k)] =

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
(s−ck− γ · (Xm−1(k)+xk))Φ′(s)ds

+

∫ αmax

α(ωK)
(s−ck− γ · (XK−1(k)+xk))Φ′(s)ds

+
K

∑
m=k+1

∫ α(ωm)

α(ωm)
(cm−ck)Φ′(s)ds.
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Next we simplify the above formulation:

Eω [β ∗
k (ω ,xk,x−k)] =

K−1

∑
m=k

(α(ωm+1)Φ(α(ωm+1))−α(ωm)Φ(α(ωm))−

∫ α(ωm+1)

α(ωm)
Φ(s)ds

−
K−1

∑
m=k

(ck+ γ · (Xm−1(k)+xk))[Φ(α(ωm+1))−Φ(α(ωm))]

+
K

∑
m=k+1

(cm−ck)[Φ(α(ωm))−Φ(α(ωm))]

+(αmaxΦ(αmax)−α(ωK)Φ(α(ωK))−

∫ αmax

α(ωK)
Φ(s)ds

−(ck+ γ · (XK−1(k)+xk))[Φ(αmax)−Φ(α(ωK)), ]

Eω [β ∗
k (ω ,xk,x−k)] =

K−1

∑
m=k

(cm+1− ck)Φ(α(ωm+1))−
K−1

∑
m=k

(cm− ck)Φ(α(ωm))

+
K

∑
m=k+1

(cm− ck)Φ(α(ωm))−
K

∑
m=k+1

(cm− ck)Φ(α(ωm))

−
K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
Φ(s)ds−

∫ αmax

α(ωK )
Φ(s)ds

−(cK − ck)Φ(α(ωK))+αmax− (ck+ γ · (XK−1(k)+ xk)

Eω [β ∗
k (ω ,xk,x−k)] = (cK − ck)Φ(α(ωK))− (cK − ck)Φ(α(ωK))+αmax− (ck+ γ · (XK−1(k)+ xk))

−
K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
Φ(s)ds−

∫ αmax

α(ωK )
Φ(s)ds,

Eω [β ∗
k (ω ,xk,x−k)] = αmax− (ck+ γ · (XK−1(k)+ xk))−

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
Φ(s)ds−

∫ αmax

α(ωK)
Φ(s)ds,

Finally, we addcK −cK to the equation above, then we get:

Eω [β ∗
k (ω ,xk,x−k)] = (cK −ck)+

∫ αmax

α(ωK)
(1−Φ(s))ds−

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
Φ(s)ds.

Proof of Lemma 4.9. P(ω , ·) andΦ are differentiable w.r.t. their arguments andΦ is independent fromxk.

From (19) we know that, form≥ k, (α(ωm),α(ωm+1)) are differentiable w.r.t.xk ∈ R+. Then being a sum of
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differentiable functions in (17),Eω [β ∗
k (ω ,xk,x−k)] is differentiable w.r.t.xk ∈ R+. By using Leibniz rule and

the fundamental theorem of calculus for differentiation ofintegral in (17) and by utilizing (19) which simplifies

P(ωm+1,Xm−1(k)+xk) = cm+1 andP(ωm,Xm−1(k)+xk) = cm, we get

∂Eω [β ∗
k (ω ,xk,x−k)]

∂xk
=

K−1

∑
m=k

[
∂α(ωm+1)

∂xk
(cm+1−ck)Φ′(α(ωm+1))−

∂α(ωm)

∂xk
(cm−ck)Φ′(α(ωm))]

+
K−1

∑
m=k

∫ α(ωm+1)

α(ωm)

∂P(s,Xm−1(k)+xk)

∂xk
Φ′(s)ds

−
∂α(ωK)

∂xk
(cK −ck)Φ′(α(ωK))+

∫ αmax

α(ωK)

∂P(s,XK−1(k)+xk)

∂xk
Φ′(s)ds

+
K

∑
m=k+1

[
∂α(ωm)

∂xk
(cm−ck)Φ′(α(ωm))−

∂α(ωm)

∂xk
(cm−ck)Φ′(α(ωm))].

(29)

The expression in (29) can be simplified to:

∂Eω [β ∗
k (ω ,xk,x−k)]

∂xk
=

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)

∂P(s,Xm−1(k)+xk)

∂xk
Φ′(s)ds

+

∫ αmax

α(ωK)

∂P(s,XK−1(k)+xk)

∂xk
Φ′(s)ds

=−γ
K−1

∑
m=k

[Φ(α(ωm+1))−Φ(α(ωm)]− γ [1−Φ(α(ωK))]

< 0.

Thus,Eω [β ∗
k (ω ,xk,x−k)] is decreasing.

Proof of Theorem 4.10. SinceEω [Πk(ω ,xk,x−k)] = (Eω [β ∗
k (ω ,xk,x−k)]−κk)xk, (i) follows immediately from

Lemma 4.9. For(ii) , we know that

Eω [Πk(ω ,xk,x−k)] = xk(Eω [β ∗
k (ω ,xk,x−k)]−κ).

Eω [Πk(ω ,xk,x−k)] is a differentiable function ofxk with

∂Eω [Πk(ω ,xk,x−k)]

∂xk
= xk ·

∂Eω [β ∗
k (ω ,xk,x−k)]

∂xk
+Eω [β ∗

k (ω ,xk,x−k)]−κ .
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∂Eω [Πk(ω ,xk,x−k)]

∂xk
can be explicitly formulated by using (18):

∂Eω [Πk(ω ,xk,x−k)]

∂xk
=−xk · γ

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
Φ′(s)ds−xk · γ [1−Φ(α(ωK))]

+(cK −ck)+
∫ αmax

α(ωK)
(1−Φ(s))ds−

K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
Φ(s)ds,−κ .

which can further be rewritten as

∂Eω [Πk(ω ,xk,x−k)]

∂xk
= cK −ck−κ +

∫ αmax

α(ωK)
[(1−Φ(s))−xk · γΦ′(s)]ds

︸ ︷︷ ︸
A1(xk)

−
K−1

∑
m=k

∫ α(ωm+1)

α(ωm)
(Φ(s)+xk · γΦ′(s))ds

︸ ︷︷ ︸
A2(xk)

.

We know thatcK − ck − κ is constant. In addition under the condition−Φ′(s+C)− s· γΦ′′(s+C)(<

) ≤ 0 for all s,C ≥ 0, A1(xk) and A2(xk) are (decreasing) nonincreasing functions since
∂A1(xk)

∂xk
≤ 0 and

∂A2(xk)

∂xk
(<)≤ 0, which implies

∂ 2Eω [Πk(ω ,xk,x−k)]

∂x2
k

(<)≤ 0. Hence,Eω [Πk(ω ,xk,x−k)] is (strictly) concave

if −Φ′(s+C)−s· γΦ′′(s+C)(<)≤ 0 for all s,C ≥ 0.

Proof of Lemma 4.11. The strategy space is nonempty since the strategyxk = 0 is feasible for all firms. For any

firm k∈ K, if xk >
αmax−ck

γ
thenp∗k(ω ,xk,x−k) = ck for all ω ∈ Ω when firmk’s generation is positive. Thus,

Eω [β ∗
k (ω ,xk,x−k)] = 0 for all xk >

αmax−ck

γ
. Then forxk >

αmax−ck

γ
,

∂Eω [Πk(ω ,xk,x−k)]

∂xk
=−κ < 0 which

implies that firmk’s profit for this set of investment strategies is lower than its profit gained by the strategies in

Sk := [0,
αmax−ck

γ
] and therefore can be excluded from its strategy space.

Proof of Theorem 4.12. From Lemma 4.11, we know that the strategy spaces are non-empty, compact, and

convex. Continuity of the payoff functions directly follows from Theorem 4.10. Then by Proposition 3.7, there

exits a Nash equilibrium. Furthermore, Rosen (1965) shows that there exists a unique equilibrium point when

the payoff function of every player is strictly concave. By using the result of Rosen (1965), there exists a unique

equilibrium since the expected profit function of each firm isstrictly concave under the given condition.
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